

conference

proceedings

Proceedings of the 19th U
SEN

IX Sym
posium

 on N
etw

orked System
s Design and Im

plem
entation (N

SDI ’22)
Renton, W

A
, USA

April 4–6, 2022

Sponsored by

In cooperation with
ACM SIGCOMM and ACM SIGOPS

ISBN 978-1-939133-27-4

19th USENIX Symposium on
Networked Systems Design
and Implementation (NSDI ’22)

Renton, WA, USA
April 4–6, 2022

USENIX Supporters

USENIX Patrons
Amazon • Ethyca • Google • Meta
Microsoft • NetApp • Salesforce

USENIX Benefactors
AuriStor • Bloomberg • Discernible • Goldman Sachs • IBM

Shopify • Thinkst Canary • Transcend • Two Sigma

USENIX Partner
Blameless • Lightstep • Top10VPN

Open Access Supporter
Google

Open Access Publishing Partner
PeerJ

NSDI ’22 Sponsors

Gold Sponsor

Bronze Sponsors

Open Access Sponsor

Silver Sponsors

Platinum Sponsor

Diamond Sponsor

USENIX Association

April 4–6, 2022
Renton, WA, USA

Proceedings of the
19th USENIX Symposium on

Networked Systems Design and Implementation

© 2022 by The USENIX Association

All Rights Reserved

This volume is published as a collective work. Rights to individual papers remain with the author or the author’s
 employer. Permission is granted for the noncommercial reproduction of the complete work for educational or research
purposes. Permission is granted to print, primarily for one person’s exclusive use, a single copy of these Proceedings.
USENIX acknowledges all trademarks herein.

ISBN 978-1-939133-27-4

Conference Organizers
Program Co-Chairs
Amar Phanishayee, Microsoft Research
Vyas Sekar, Carnegie Mellon University

Program Committee
Sangeetha Abdu-Jyothi, University of California, Irvine, and

VMware Research
Fadel Adib, Massachusetts Institute of Technology
Behnaz Arzani, Microsoft Research
Anirudh Badam, Microsoft Research
Mahesh Balakrishnan, Facebook
Aruna Balasubramanian, Stony Brook University
Hitesh Ballani, Microsoft Research
Sujata Banerjee, VMware Research
Theo Benson, Brown University
Matthew Caesar, University of Illinois at Urbana–Champaign
Vijay Chidambaram, The University of Texas at Austin
Asaf Cidon, Columbia University
Angela Demke Brown, University of Toronto
Fahad Dogar, Tufts University
Giulia Fanti, Carnegie Mellon University
Rodrigo Fonseca, Microsoft Research
Manya Ghobadi, Massachusetts Institute of Technology
Soudeh Ghorbani, Johns Hopkins University
Phillipa Gill, Google
Brighten Godfrey, University of Illinois at Urbana–Champaign

and VMware
Shyam Gollakota, University of Washington
Ramesh Govindan, University of Southern California
Chuanxiong Guo, ByteDance
Andreas Haeberlen, University of Pennsylvania
Kurtis Heimerl, University of Washington
Wenjun Hu, Yale University
Kyle Jamieson, Princeton University
Junchen Jiang, University of Chicago
Anuj Kalia, Microsoft Research
Anurag Khandelwal, Yale University
Ana Klimovic, ETH Zurich
Dejan Kostic, KTH Royal Institute of Technology
Franck Le, IBM Research
Kate Lin, National Chiao Tung University
Zaoxing Alan Liu, Boston University
Jay Lorch, Microsoft Research
Jonathan Mace, Max Planck Institute for Software Systems

(MPI-SWS)

Harsha Madhyastha, University of Michigan
Aurojit Panda, New York University
Kyoongsoo Park, Korea Advanced Institute of Science and

Technology (KAIST)
Chunyi Peng, Purdue University
Ben Pfaff, VMware Research
George Porter, University of California, San Diego
Costin Raiciu, University Politehnica of Bucharest

and Correct Networks
Robert Ricci, University of Utah
Michael Schapira, The Hebrew University of Jerusalem
Stefan Schmid, Technische Universität Berlin

and University of Vienna
Brent Stephens, University of Utah
Laurent Vanbever, ETH Zurich
Shivaram Venkataraman, University of Wisconsin—Madison
David Walker, Princeton University
Jia Wang, AT&T Labs
Michael Wei, VMware Research
John Wilkes, Google
Xiaowei Yang, Duke University
Minlan Yu, Harvard University
Ellen Zegura, Georgia Institute of Technology
Ying Zhang, Facebook
Yiying Zhang, University of California, San Diego
Ben Zhao, University of Chicago
Wenting Zheng, Carnegie Mellon University
Lin Zhong, Yale University
Danyang Zhuo, Duke University

Steering Committee
Aditya Akella, University of Wisconsin–Madison
Sujata Banerjee, VMware Research
Ranjita Bhagwan, Microsoft Research India
Casey Henderson, USENIX Association
Jon Howell, VMware Research
Arvind Krishnamurthy, University of Washington
Jay Lorch, Microsoft Research
James Mickens, Harvard University
Jeff Mogul, Google
George Porter, University of California, San Diego
Timothy Roscoe, ETH Zurich
Srinivasan Seshan, Carnegie Mellon University
Renata Teixeira, Netflix
Minlan Yu, Harvard University

External Reviewers
Anubhavnidhi “Archie”
 Abhashkumar
Rachit Agarwal
Fawad Ahmad
Lixiang Ao
Rodrigo Bruno
Ang Chen
Italo Cunha
Weiqi Feng
Bryan Ford

Jiaqi Gao
Rajrup Ghosh
Junzhi Gong
Arpit Gupta
Indranil Gupta
Dongsu Han
Yitao Hu
Ryan Huang
Keon Jang
Weifan Jiang

Swarun Kumar
Chonlam Lao
Minghao Li
Devon Loehr
Pooria Namyar
Dave Oran
Dan Pei
Sivaram Ramanathan
Christopher Rossbach
Siddhartha Sen

Srini Seshan
Srinath Setty
Rob Sherwood
Alex Snoeren
Jiri Srba
Srikanth Sundaresan
Francois Taiani
Matteo Varvello
Yongqiang Xiong
Zhiying Xu

Francis Yan
Michelle X. Yeo
Irene Zhang
Mingyang Zhang
Yang Zhou
Noa Zilberman

Message from the
NSDI ’22 Program Co-Chairs

Welcome to NSDI 2022!

We live in unprecedented times. We have been through waves of multiple covid variants, parents dealing with the uncertainty
of school schedules, rapid scientific breakthroughs that resulted in effective vaccines, mass vaccination drives, and war in
parts of the world that threatens dislodging the lives of millions of people. It is difficult to reason about the importance of
our work in such turbulent times. But despite common as well as uniquely individual challenges, our community marches on,
building on lessons we have learnt on operating during the pandemic.

NSDI ’22 received a record number of submissions—396 papers in total: 104 in spring and 292 for the fall deadline. A total
of 78 papers were accepted for an acceptance rate of 19.7%—the highest we have seen in a while. Papers were reviewed by
a program committee of 65 experts from both academia and industry. One-shot revisions, first introduced to NSDI in 2019,
have proved to be quite successful and we continue this practice.

We sincerely thank our reviewers who provided thoughtful feedback to our authors, including those who re-reviewed one-
shot revisions from the prior NSDI edition (NSDI ’21 Fall) and our expert external reviewers. We also want to thank our
stand-in PC chairs (for chair-conflict papers) who helped out selflessly performing tasks that they had not necessarily signed
up for when they agreed to be on our PC: Ellen Zegura, Mahesh Balakishnan, and Ben Y. Zhao. We thank George Porter and
Harsha V. Madhyastha for going above and beyond the call of duty—and at short notice—to carefully read and help us select
the best paper award winners this year. We are also very grateful to prior NSDI chairs Arvind Krishnamurthy, Jay Lorch,
James Mickens, and Renata Teixeira for sharing their best practices with us. And we thank student volunteers Brian Singer
and Milind Srivatsava for helping us run a smooth Fall PC meeting over Zoom. Finally, we also thank the paper authors; your
submissions are what make NSDI such a great venue, and we hope that you will enjoy the conference program.

We are trying two new experiments this year. First, NSDI will be held as a hybrid event. We are excited that the program will
be held in-person, but we recognize that there are many authors and attendees who will only be able to attend virtually as the
threat of a new Covid variant looms large in many parts of the world. Second, for both safety (to avoid packing all attendees
in a single room), as well as providing the large number of accepted papers with ample time to present their ideas, we are
experimenting with a dual-track format. While changes to well-established ways of doing things make us a little anxious, we
could not be more excited that USENIX is the organization shepherding us through these changes.

Which brings us to thanking one of the most important groups that has helped us: USENIX. We’d like to thank all of the
USENIX staff who helped us to organize this year’s conference right from the get go: from configuring the HotCRP server to
dealing with camera-ready production of both papers and talks (and they had to do this twice for the spring and fall deadline),
the USENIX staff provided invaluable advice and flawless execution. We are certain we will miss many names we ought to
thank, and in some cases because we magically saw the result of your work but never got to know that you did it. Our
heartfelt thanks to Casey Henderson (for patiently helping us on so many different dimensions), Olivia Vernetti, Camille
Mulligan, Arnold Gatilao, Jasmine Murcia, Jessica Kim, Julia Hendrickson, Liz Markel, Sarah TerHune, and the rest of the
USENIX team. You are a magical team, and we as a community are lucky to have such dedicated, caring, and supremely
competent USENIX staff. We would be lost in the wilderness without you.

Stay safe and healthy, and enjoy NSDI in whichever format you choose to attend it!

Amar Phanishayee, Microsoft Research
Vyas Sekar, Carnegie Mellon University
NSDI ’22 Program Co-Chairs

19th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’22)

April 4–6, 2022

Renton, WA, USA

Monday, April 4
Cluster Resource Management
Efficient Scheduling Policies for Microsecond-Scale Tasks . 1
Sarah McClure and Amy Ousterhout, UC Berkeley; Scott Shenker, UC Berkeley, ICSI; Sylvia Ratnasamy, UC Berkeley

A Case for Task Sampling based Learning for Cluster Job Scheduling . 19
Akshay Jajoo, Nokia Bell Labs; Y. Charlie Hu and Xiaojun Lin, Purdue University; Nan Deng, Google

Starlight: Fast Container Provisioning on the Edge and over the WAN . 35
Jun Lin Chen, Daniyal Liaqat, Moshe Gabel, and Eyal de Lara, University of Toronto

Transport Layer - Part 1
PowerTCP: Pushing the Performance Limits of Datacenter Networks . 51
Vamsi Addanki, TU Berlin and University of Vienna; Oliver Michel, Princeton University and University of Vienna;
Stefan Schmid, TU Berlin and University of Vienna

RDMA is Turing complete, we just did not know it yet! . 71
Waleed Reda, Université catholique de Louvain and KTH Royal Institute of Technology; Marco Canini, KAUST;
Dejan Kostić, KTH Royal Institute of Technology; Simon Peter, University of Washington

FlexTOE: Flexible TCP Offload with Fine-Grained Parallelism . 87
Rajath Shashidhara, University of Washington; Tim Stamler, UT Austin; Antoine Kaufmann, MPI-SWS; Simon Peter,
University of Washington

Video Streaming
Swift: Adaptive Video Streaming with Layered Neural Codecs . 103
Mallesham Dasari, Kumara Kahatapitiya, Samir R. Das, Aruna Balasubramanian, and Dimitris Samaras, Stony Brook University

Ekya: Continuous Learning of Video Analytics Models on Edge Compute Servers . 119
Romil Bhardwaj, Microsoft and UC Berkeley; Zhengxu Xia, University of Chicago; Ganesh Ananthanarayanan,
Microsoft; Junchen Jiang, University of Chicago; Yuanchao Shu, Nikolaos Karianakis, Kevin Hsieh, and Paramvir Bahl,
Microsoft; Ion Stoica, UC Berkeley

YuZu: Neural-Enhanced Volumetric Video Streaming . 137
Anlan Zhang and Chendong Wang, University of Minnesota, Twin Cities; Bo Han, George Mason University; Feng Qian,
University of Minnesota, Twin Cities

Programmable Switches - Part 1
NetVRM: Virtual Register Memory for Programmable Networks . 155
Hang Zhu, Johns Hopkins University; Tao Wang, New York University; Yi Hong, Johns Hopkins University;
Dan R. K. Ports, Microsoft Research; Anirudh Sivaraman, New York University; Xin Jin, Peking University

SwiSh: Distributed Shared State Abstractions for Programmable Switches .171
Lior Zeno, Technion; Dan R. K. Ports, Jacob Nelson, and Daehyeok Kim, Microsoft Research; Shir Landau Feibish,
The Open University of Israel; Idit Keidar, Arik Rinberg, Alon Rashelbach, Igor De-Paula, and Mark Silberstein, Technion

Modular Switch Programming Under Resource Constraints . 193
Mary Hogan, Princeton University; Shir Landau-Feibish, The Open University of Israel; Mina Tahmasbi Arashloo,
Cornell University; Jennifer Rexford and David Walker, Princeton University

Security and Privacy
Privid: Practical, Privacy-Preserving Video Analytics Queries . 209
Frank Cangialosi, MIT CSAIL; Neil Agarwal, Princeton University; Venkat Arun, MIT CSAIL; Junchen Jiang,
University of Chicago; Srinivas Narayana and Anand Sarwate, Rutgers University; Ravi Netravali, Princeton University

Spectrum: High-Bandwidth Anonymous Broadcast . 229
Zachary Newman, Sacha Servan-Schreiber, and Srinivas Devadas, MIT CSAIL

Donar: Anonymous VoIP over Tor . 249
Yérom-David Bromberg, Quentin Dufour, and Davide Frey, Univ. Rennes - Inria - CNRS - IRISA; Etienne Rivière, UCLouvain

Network Troubleshooting and Debugging
Closed-loop Network Performance Monitoring and Diagnosis with SpiderMon . 267
Weitao Wang and Xinyu Crystal Wu, Rice University; Praveen Tammana, Indian Institute of Technology Hyderabad;
Ang Chen and T. S. Eugene Ng, Rice University

Collie: Finding Performance Anomalies in RDMA Subsystems . 287
Xinhao Kong, Duke University and ByteDance Inc.; Yibo Zhu, Huaping Zhou, Zhuo Jiang, Jianxi Ye, and Chuanxiong Guo,
ByteDance Inc.; Danyang Zhuo, Duke University

SCALE: Automatically Finding RFC Compliance Bugs in DNS Nameservers . 307
Siva Kesava Reddy Kakarla, University of California, Los Angeles; Ryan Beckett, Microsoft; Todd Millstein,
University of California, Los Angeles, and Intentionet; George Varghese, University of California, Los Angeles

Operational Track - Part 1
Decentralized cloud wide-area network traffic engineering with Blastshield . 325
Umesh Krishnaswamy, Rachee Singh, Nikolaj Bjørner, and Himanshu Raj, Microsoft

Detecting Ephemeral Optical Events with OpTel . 339
Congcong Miao and Minggang Chen, Tencent; Arpit Gupta, UC Santa Barbara; Zili Meng, Lianjin Ye, and Jingyu Xiao,
Tsinghua University; Jie Chen, Zekun He, and Xulong Luo, Tencent; Jilong Wang, Tsinghua University, BNRist, and
Peng Cheng Laboratory; Heng Yu, Tsinghua University

Bluebird: High-performance SDN for Bare-metal Cloud Services . 355
Manikandan Arumugam, Arista; Deepak Bansal, Microsoft; Navdeep Bhatia, Arista; James Boerner, Microsoft;
Simon Capper, Arista; Changhoon Kim, Intel; Sarah McClure, Neeraj Motwani, and Ranga Narasimhan, Microsoft;
Urvish Panchal, Arista; Tommaso Pimpo, Microsoft; Ariff Premji, Arista; Pranjal Shrivastava and Rishabh Tewari,
Microsoft

Cetus: Releasing P4 Programmers from the Chore of Trial and Error Compiling . 371
Yifan Li, Tsinghua University and Alibaba Group; Jiaqi Gao, Ennan Zhai, Mengqi Liu, Kun Liu, and Hongqiang Harry Liu,
Alibaba Group

Wireless - Part 1
Exploiting Digital Micro-Mirror Devices for Ambient Light Communication . 387
Talia Xu, Miguel Chávez Tapia, and Marco Zúñiga, Technical University Delft

Whisper: IoT in the TV White Space Spectrum . 401
Tusher Chakraborty and Heping Shi, Microsoft; Zerina Kapetanovic, University of Washington; Bodhi Priyantha,
Microsoft; Deepak Vasisht, UIUC; Binh Vu, Parag Pandit, Prasad Pillai, Yaswant Chabria, Andrew Nelson,
Michael Daum, and Ranveer Chandra, Microsoft

Learning to Communicate Effectively Between Battery-free Devices . 419
Kai Geissdoerfer and Marco Zimmerling, TU Dresden

Saiyan: Design and Implementation of a Low-power Demodulator for LoRa Backscatter Systems 437
Xiuzhen Guo, Tsinghua University; Longfei Shangguan, University of Pittsburgh & Microsoft; Yuan He, Tsinghua
University; Nan Jing, Yanshan University; Jiacheng Zhang, Haotian Jiang, and Yunhao Liu, Tsinghua University

Tuesday, April 5
Reliable Distributed Systems
Graham: Synchronizing Clocks by Leveraging Local Clock Properties . 453
Ali Najafi, Meta; Michael Wei, VMware Research

IA-CCF: Individual Accountability for Permissioned Ledgers . 467
Alex Shamis and Peter Pietzuch, Microsoft Research and Imperial College London; Burcu Canakci, Cornell University;
Miguel Castro, Cédric Fournet, Edward Ashton, Amaury Chamayou, Sylvan Clebsch, and Antoine Delignat-Lavaud,
Microsoft Research; Matthew Kerner, Microsoft Azure; Julien Maffre, Olga Vrousgou, Christoph M. Wintersteiger,
and Manuel Costa, Microsoft Research; Mark Russinovich, Microsoft Azure

DispersedLedger: High-Throughput Byzantine Consensus on Variable Bandwidth Networks 493
Lei Yang, Seo Jin Park, and Mohammad Alizadeh, MIT CSAIL; Sreeram Kannan, University of Washington;
David Tse, Stanford University

Raising the Bar for Programmable Hardware
Re-architecting Traffic Analysis with Neural Network Interface Cards . 513
Giuseppe Siracusano, NEC Laboratories Europe; Salvator Galea, University of Cambridge; Davide Sanvito,
NEC Laboratories Europe; Mohammad Malekzadeh, Imperial College London; Gianni Antichi, Queen Mary University
of London; Paolo Costa, Microsoft Research; Hamed Haddadi, Imperial College London; Roberto Bifulco,
NEC Laboratories Europe

Elixir: A High-performance and Low-cost Approach to Managing Hardware/Software Hybrid Flow Tables
Considering Flow Burstiness . 535
Yanshu Wang and Dan Li, Tsinghua University; Yuanwei Lu, Tencent; Jianping Wu, Hua Shao, and Yutian Wang,
Tsinghua University

Gearbox: A Hierarchical Packet Scheduler for Approximate Weighted Fair Queuing . 551
Peixuan Gao and Anthony Dalleggio, New York University; Yang Xu, Fudan University; H. Jonathan Chao, New York University

Testing and Verification
Performance Interfaces for Network Functions . 567
Rishabh Iyer, Katerina Argyraki, and George Candea, EPFL

Automated Verification of Network Function Binaries . 585
Solal Pirelli, EPFL; Akvilė Valentukonytė, Citrix Systems; Katerina Argyraki and George Candea, EPFL

Differential Network Analysis . 601
Peng Zhang, Xi’an Jiaotong University; Aaron Gember-Jacobson, Colgate University; Yueshang Zuo, Yuhao Huang,
Xu Liu, and Hao Li, Xi’an Jiaotong University

Katra: Realtime Verification for Multilayer Networks .617
Ryan Beckett, Microsoft; Aarti Gupta, Princeton University

Programmable Switches - Part 2
Enabling In-situ Programmability in Network Data Plane: From Architecture to Language 635
Yong Feng and Zhikang Chen, Tsinghua University; Haoyu Song, Futurewei Technologies; Wenquan Xu, Jiahao Li,
Zijian Zhang, Tong Yun, Ying Wan, and Bin Liu, Tsinghua University

Runtime Programmable Switches . 651
Jiarong Xing and Kuo-Feng Hsu, Rice University; Matty Kadosh, Alan Lo, and Yonatan Piasetzky, Nvidia;
Arvind Krishnamurthy, University of Washington; Ang Chen, Rice University

IMap: Fast and Scalable In-Network Scanning with Programmable Switches . 667
Guanyu Li, Tsinghua University; Menghao Zhang, Tsinghua University; Kuaishou Technology; Cheng Guo, Han Bao,
and Mingwei Xu, Tsinghua University; Hongxin Hu, University at Buffalo, SUNY; Fenghua Li, Tsinghua University

Unlocking the Power of Inline Floating-Point Operations on Programmable Switches . 683
Yifan Yuan, UIUC; Omar Alama, KAUST; Jiawei Fei, KAUST & NUDT; Jacob Nelson and Dan R. K. Ports,
Microsoft Research; Amedeo Sapio, Intel; Marco Canini, KAUST; Nam Sung Kim, UIUC

Sketch-based Telemetry
Dynamic Scheduling of Approximate Telemetry Queries . 701
Chris Misa, Walt O’Connor, Ramakrishnan Durairajan, and Reza Rejaie, University of Oregon; Walter Willinger, NIKSUN, Inc.

HeteroSketch: Coordinating Network-wide Monitoring in Heterogeneous and Dynamic Networks 719
Anup Agarwal, Carnegie Mellon University; Zaoxing Liu, Boston University; Srinivasan Seshan, Carnegie Mellon University

SketchLib: Enabling Efficient Sketch-based Monitoring on Programmable Switches . 743
Hun Namkung, Carnegie Mellon University; Zaoxing Liu, Boston University; Daehyeok Kim, Carnegie Mellon University
and Microsoft; Vyas Sekar and Peter Steenkiste, Carnegie Mellon University

Transport Layer - Part 2
An edge-queued datagram service for all datacenter traffic . 761
Vladimir Olteanu, Correct Networks and University Politehnica of Bucharest; Haggai Eran, Technion and NVIDIA;
Dragos Dumitrescu, Correct Networks and University Politehnica of Bucharest; Adrian Popa and Cristi Baciu,
Correct Networks; Mark Silberstein, Technion; Georgios Nikolaidis, Intel; Mark Handley, UCL and Correct Networks;
Costin Raiciu, Correct Networks and University Politehnica of Bucharest

Backpressure Flow Control . 779
Prateesh Goyal, MIT CSAIL; Preey Shah, IIT Bombay; Kevin Zhao, University of Washington; Georgios Nikolaidis, Intel,
Barefoot Switch Division; Mohammad Alizadeh, MIT CSAIL; Thomas E. Anderson, University of Washington

Packet Order Matters! Improving Application Performance by Deliberately Delaying Packets 807
Hamid Ghasemirahni, Tom Barbette, Georgios P. Katsikas, and Alireza Farshin, KTH Royal Institute of Technology;
Amir Roozbeh, KTH Royal Institute of Technology and Ericsson Research; Massimo Girondi, Marco Chiesa,
Gerald Q. Maguire Jr., and Dejan Kostić, KTH Royal Institute of Technology

Troubleshooting
Buffer-based End-to-end Request Event Monitoring in the Cloud . 829
Kaihui Gao, Tsinghua University and Alibaba Group; Chen Sun, Alibaba Group; Shuai Wang and Dan Li,
Tsinghua University; Yu Zhou, Hongqiang Harry Liu, Lingjun Zhu, and Ming Zhang, Alibaba Group

Characterizing Physical-Layer Transmission Errors in Cable Broadband Networks . 845
Jiyao Hu, Zhenyu Zhou, and Xiaowei Yang, Duke University

How to diagnose nanosecond network latencies in rich end-host stacks . 861
Roni Haecki, ETH Zurich; Radhika Niranjan Mysore, Lalith Suresh, Gerd Zellweger, Bo Gan, Timothy Merrifield,
and Sujata Banerjee, VMware; Timothy Roscoe, ETH Zurich

Wireless - Part 2
CurvingLoRa to Boost LoRa Network Throughput via Concurrent Transmission . 879
Chenning Li, Michigan State University; Xiuzhen Guo, Tsinghua University; Longfei Shangguan, University of Pittsburgh
& Microsoft; Zhichao Cao, Michigan State University; Kyle Jamieson, Princeton University

PLatter: On the Feasibility of Building-scale Power Line Backscatter . 897
Junbo Zhang, Carnegie Mellon University; Elahe Soltanaghai, University of Illinois at Urbana-Champaign;
Artur Balanuta, Reese Grimsley, Swarun Kumar, and Anthony Rowe, Carnegie Mellon University

Passive DSSS: Empowering the Downlink Communication for Backscatter Systems . 913
Songfan Li, Hui Zheng, Chong Zhang, Yihang Song, Shen Yang, Minghua Chen, and Li Lu, University of Electronic
Science and Technology of China (UESTC); Mo Li, Nanyang Technological University (NTU)

Wednesday, April 6
Operational Track - Part 2
Check-N-Run: a Checkpointing System for Training Deep Learning Recommendation Models 929
Assaf Eisenman, Kiran Kumar Matam, Steven Ingram, Dheevatsa Mudigere, Raghuraman Krishnamoorthi,
Krishnakumar Nair, and Misha Smelyanskiy, Facebook; Murali Annavaram, Facebook and USC

MLaaS in the Wild: Workload Analysis and Scheduling in Large-Scale Heterogeneous GPU Clusters 945
Qizhen Weng, Hong Kong University of Science and Technology and Alibaba Group; Wencong Xiao, Alibaba Group;
Yinghao Yu, Alibaba Group and Hong Kong University of Science and Technology; Wei Wang, Hong Kong University of
Science and Technology; Cheng Wang, Jian He, Yong Li, Liping Zhang, Wei Lin, and Yu Ding, Alibaba Group

Evolvable Network Telemetry at Facebook . 961
Yang Zhou, Harvard University; Ying Zhang, Facebook; Minlan Yu, Harvard University; Guangyu Wang, Dexter Cao,
Eric Sung, and Starsky Wong, Facebook

Edge IoT Applications
SwarmMap: Scaling Up Real-time Collaborative Visual SLAM at the Edge . 977
Jingao Xu, Hao Cao, and Zheng Yang, Tsinghua University; Longfei Shangguan, University of Pittsburgh & Microsoft;
Jialin Zhang, Xiaowu He, and Yunhao Liu, Tsinghua University

In-Network Velocity Control of Industrial Robot Arms . 995
Sándor Laki and Csaba Györgyi, ELTE Eötvös Loránd University, Budapest, Hungary; József Pető, Budapest University
of Technology and Economics, Budapest, Hungary; Péter Vörös, ELTE Eötvös Loránd University, Budapest, Hungary;
Géza Szabó, Ericsson Research, Budapest, Hungary

Enabling IoT Self-Localization Using Ambient 5G Signals .1011
Suraj Jog, Junfeng Guan, and Sohrab Madani, University of Illinois at Urbana Champaign; Ruochen Lu, University of
Texas at Austin; Songbin Gong, Deepak Vasisht, and Haitham Hassanieh, University of Illinois at Urbana Champaign

Cloud Scale Services
Accelerating Collective Communication in Data Parallel Training across Deep Learning Frameworks 1027
Joshua Romero, NVIDIA, Inc.; Junqi Yin, Nouamane Laanait, Bing Xie, and M. Todd Young, Oak Ridge National
Laboratory; Sean Treichler, NVIDIA, Inc.; Vitalii Starchenko and Albina Borisevich, Oak Ridge National Laboratory;
Alex Sergeev, Carbon Robotics; Michael Matheson, Oak Ridge National Laboratory

Cocktail: A Multidimensional Optimization for Model Serving in Cloud . 1041
Jashwant Raj Gunasekaran, Cyan Subhra Mishra, Prashanth Thinakaran, Bikash Sharma, Mahmut Taylan Kandemir,
and Chita R. Das, The Pennsylvania State University

Data-Parallel Actors: A Programming Model for Scalable Query Serving Systems . 1059
Peter Kraft, Fiodar Kazhamiaka, Peter Bailis, and Matei Zaharia, Stanford University

Orca: Server-assisted Multicast for Datacenter Networks . 1075
Khaled Diab, Parham Yassini, and Mohamed Hefeeda, Simon Fraser University

ISPs and CDNs
Yeti: Stateless and Generalized Multicast Forwarding . 1093
Khaled Diab and Mohamed Hefeeda, Simon Fraser University

cISP: A Speed-of-Light Internet Service Provider .1115
Debopam Bhattacherjee, ETH Zürich; Waqar Aqeel, Duke University; Sangeetha Abdu Jyothi, UC Irvine and VMware
Research; Ilker Nadi Bozkurt, Duke University; William Sentosa, UIUC; Muhammad Tirmazi, Harvard University;
Anthony Aguirre, UC Santa Cruz; Balakrishnan Chandrasekaran, VU Amsterdam; P. Brighten Godfrey, UIUC and VMware;
Gregory Laughlin, Yale University; Bruce Maggs, Duke University and Emerald Technologies; Ankit Singla, ETH Zürich

Configanator: A Data-driven Approach to Improving CDN Performance . 1135
Usama Naseer and Theophilus A. Benson, Brown University

C2DN: How to Harness Erasure Codes at the Edge for Efficient Content Delivery . 1159
Juncheng Yang, Carnegie Mellon University; Anirudh Sabnis, University of Massachusetts, Amherst; Daniel S. Berger,
Microsoft Research and University of Washington; K. V. Rashmi, Carnegie Mellon University; Ramesh K. Sitaraman,
University of Massachusetts, Amherst, and Akamai Technologies

Cloud Scale Resource Management
Optimizing Network Provisioning through Cooperation .1179
Harsha Sharma, Parth Thakkar, Sagar Bharadwaj, Ranjita Bhagwan, Venkata N. Padmanabhan, Yogesh Bansal,
Vijay Kumar, and Kathleen Voelbel, Microsoft

OrbWeaver: Using IDLE Cycles in Programmable Networks for Opportunistic Coordination 1195
Liangcheng Yu, University of Pennsylvania; John Sonchack, Princeton University; Vincent Liu, University of Pennsylvania

CloudCluster: Unearthing the Functional Structure of a Cloud Service . 1213
Weiwu Pang, University of Southern California; Sourav Panda, University of California, Riverside; Jehangir Amjad
and Christophe Diot, Google Inc.; Ramesh Govindan, University of Southern California

Data Center Network Infrastructure
Zeta: A Scalable and Robust East-West Communication Framework in Large-Scale Clouds 1231
Qianyu Zhang, Gongming Zhao, and Hongli Xu, University of Science and Technology of China; Zhuolong Yu,
Johns Hopkins University; Liguang Xie, Futurewei Technologies; Yangming Zhao, University of Science and Technology
of China; Chunming Qiao, SUNY at Buffalo; Ying Xiong, Futurewei Technologies; Liusheng Huang, University of Science
and Technology of China

Aquila: A unified, low-latency fabric for datacenter networks . 1249
Dan Gibson, Hema Hariharan, Eric Lance, Moray McLaren, Behnam Montazeri, Arjun Singh, Stephen Wang,
Hassan M. G. Wassel, Zhehua Wu, Sunghwan Yoo, Raghuraman Balasubramanian, Prashant Chandra, Michael Cutforth,
Peter Cuy, David Decotigny, Rakesh Gautam, Alex Iriza, Milo M. K. Martin, Rick Roy, Zuowei Shen, Ming Tan, Ye Tang,
Monica Wong-Chan, Joe Zbiciak, and Amin Vahdat, Google

RDC: Energy-Efficient Data Center Network Congestion Relief with Topological Reconfigurability at the Edge . 1267
Weitao Wang, Rice University; Dingming Wu, Bytedance Inc.; Sushovan Das, Afsaneh Rahbar, Ang Chen, and
T. S. Eugene Ng, Rice University

Multitenancy
Isolation Mechanisms for High-Speed Packet-Processing Pipelines . 1289
Tao Wang, New York University; Xiangrui Yang, National University of Defense Technology; Gianni Antichi,
Queen Mary University of London; Anirudh Sivaraman and Aurojit Panda, New York University

Justitia: Software Multi-Tenancy in Hardware Kernel-Bypass Networks . 1307
Yiwen Zhang, University of Michigan; Yue Tan, University of Michigan and Princeton University; Brent Stephens,
University of Illinois at Chicago; Mosharaf Chowdhury, University of Michigan

NetHint: White-Box Networking for Multi-Tenant Data Centers . 1327
Jingrong Chen, Duke University; Hong Zhang, University of California, Berkeley; Wei Zhang, Duke University;
Liang Luo, University of Washington; Jeffrey Chase, Duke University; Ion Stoica, University of California, Berkeley;
Danyang Zhuo, Duke University

Software Switching and Beyond
Tiara: A Scalable and Efficient Hardware Acceleration Architecture for Stateful Layer-4 Load Balancing 1345
Chaoliang Zeng, Hong Kong University of Science and Technology; Layong Luo and Teng Zhang, ByteDance;
Zilong Wang, Hong Kong University of Science and Technology; Luyang Li, ICT/CAS; Wenchen Han, Peking University;
Nan Chen, Lebing Wan, Lichao Liu, Zhipeng Ding, Xiongfei Geng, Tao Feng, and Feng Ning, ByteDance; Kai Chen,
Hong Kong University of Science and Technology; Chuanxiong Guo, ByteDance

Scaling Open vSwitch with a Computational Cache . 1359
Alon Rashelbach, Ori Rottenstreich, and Mark Silberstein, Technion

Backdraft: a Lossless Virtual Switch that Prevents the Slow Receiver Problem . 1375
Alireza Sanaee, Queen Mary University of London; Farbod Shahinfar, Sharif University of Technology;
Gianni Antichi, Queen Mary University of London; Brent E. Stephens, University of Utah

Efficient Scheduling Policies for Microsecond-Scale Tasks

Sarah McClure?, Amy Ousterhout?, Scott Shenker?†, Sylvia Ratnasamy?
?UC Berkeley †ICSI

Abstract
Datacenter operators today strive to support microsecond-

latency applications while also using their limited CPU re-
sources as efficiently as possible. To achieve this, several
recent systems allow multiple applications to run on the same
server, granting each a dedicated set of cores and reallocating
cores across applications over time as load varies. Unfortu-
nately, many of these systems do a poor job of navigating
the tradeoff between latency and efficiency, sacrificing one or
both, especially when handling tasks as short as 1 µs.

While the implementations of these systems (threading li-
braries, network stacks, etc.) have been heavily optimized,
the policy choices that they make have received less scrutiny.
Most systems implement a single choice of policy for allo-
cating cores across applications and for load-balancing tasks
across cores within an application. In this paper, we use simu-
lations to compare these different policy options and explore
which yield the best combination of latency and efficiency.
We conclude that work stealing performs best among load-
balancing policies, multiple policies can perform well for
core allocations, and, surprisingly, static core allocations of-
ten outperform reallocation with small tasks. We implement
the best-performing policy choices by building on Caladan,
an existing core-allocating system, and demonstrate that they
can yield efficiency improvements of up to 13-22% without
degrading (median or tail) latency.

1 Introduction
Modern datacenter applications often involve many short Re-
mote Procedure Calls (RPCs) to other servers. These RPCs
allow applications with large memory footprints to access
memory on other servers [2, 49, 51, 62, 69], enable appli-
cations to leverage large amounts of compute over short
timescales [6, 25, 46], and provide replication and consen-
sus [58]. The service times of these tasks grow ever smaller,
and today are often a single microsecond or less [10, 34].

Tasks with short service times are particularly vulnerable
to latency inflation; even small overheads can increase the
latency of a 1 µs task by an order of magnitude [10]. This is
problematic for today’s applications, which depend on low la-
tency both at the median and at the tail of the distribution (e.g.,
99% latency) [5, 19]. As a result, researchers have proposed
many techniques to reduce the overheads of handling these
short tasks. These systems improve software with low-latency
network stacks and better load balancing (DPDK [1], Zy-
gOS [66], Shinjuku [36], eRPC [38], etc.) or propose new
hardware to deliver packets to cores more quickly (RPC-

Valet [18], NeBuLa [74], NanoPU [34], Cerebros [65]). They
offer tail latencies of a few dozen microseconds with existing
hardware [26, 38] or several microseconds with new hard-
ware [34].

However, as Moore’s Law slows [23], datacenter opera-
tors are increasingly concerned not just with providing low
latency but also with achieving high CPU efficiency [79]. To
do so, they pack multiple applications on the same server so
that background applications can use any CPU cycles not
used by latency-sensitive applications, as their load varies
over time [11, 35, 80]. Several recent research systems enable
this deployment model by allocating a set of cores to each
application and then reallocating cores across applications
as load changes (e.g., IX [12], PerfISO [35], Arachne [67],
Shenango [60], Caladan [26], and Fred [40]). These sys-
tems walk a delicate tightrope, attempting to make spare
cycles available for batch applications without harming the
latency or throughput of latency-sensitive applications. Thus
researchers have heavily optimized these systems’ implemen-
tations, squeezing spare CPU cycles and extraneous cache
misses out of their network stacks, threading libraries, and
core-allocation mechanisms.

While there have been significant advances in these mech-
anisms, less effort has gone into studying the policies that
these core-reallocating systems implement. Each system im-
plements two main policies: (1) a policy for load-balancing
tasks across cores within an application and (2) a policy for
when to reallocate cores from one application to another.
There are many possible choices for each policy: popular load-
balancing policies include work stealing [14], work shedding,
and steering tasks to less-loaded cores when they are first
enqueued [55] while core-allocation policies may be based on
queueing delay [12, 26, 60], the arrival of new tasks [40], or
CPU utilization [35,67]. And yet, each system typically imple-
ments a single choice of load-balancing and core-allocation
policy, providing little clarity about how different policies
compare.

Unfortunately, as we will show (§2), these policy choices
can contribute to suboptimal performance, with existing sys-
tems sacrificing significant CPU efficiency in order to main-
tain low latency, especially with short tasks. The root of the
problem is that as task durations shrink from 100 µs to 1 µs,
the overheads of balancing tasks or reallocating cores (e.g., a
50 ns cache miss to probe state on a different core) become
relatively more significant, and inefficient policies become
much more costly. In this paper, we focus on these policies
and ask: what load-balancing and core-allocation policies

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1

yield the best combination of latency (median and tail) and
CPU efficiency for microsecond-scale tasks?

We focus on the combination of latency and efficiency
because while ideally we would like to optimize both, there is
an inherent tradeoff between the two. For example, allocating
infinite cores could achieve optimal latency at the cost of
terrible efficiency, while allocating a single core could achieve
good (but perhaps not optimal) efficiency, but potentially high
latency. The best one can hope for is to operate on the Pareto
frontier of latency and efficiency; i.e., a point where it is not
possible to improve one quantity without harming the other.

To compare policies fairly and independently from any
specific implementation, we turn to simulations (§4). We use
measurements of real systems to estimate the overheads of
balancing tasks across cores within an application and of re-
allocating cores across applications. We then model simple
versions of common load-balancing and core-allocation poli-
cies, and simulate them using our estimated overheads. We
use these simulations to conduct an extensive factor analysis,
teasing apart the impact of load-balancing policies and core-
allocation policies on both latency and efficiency. From this
analysis, we glean three key insights:

First, assuming commodity NIC hardware, work stealing
is the load-balancing policy that yields the best latency and
CPU efficiency and forms the Pareto frontier. We find that
this conclusion is remarkably robust across different average
service times, service time distributions, numbers of cores,
latency metrics (e.g., median vs. 99%), whether cores are dy-
namically reallocated or statically partitioned, and how much
overhead load-balancing a task entails.

Second, in contrast, our analysis of core-allocation poli-
cies shows that multiple policies can perform similarly well
(though some policies perform significantly worse). We find
that revoking cores proactively, rather than waiting until they
go idle to yield them to another application, makes it easier to
achieve good efficiency with small tasks, especially with many
cores. We identify two policies (based on average queueing
delay and average CPU utilization) that fit this criteria, per-
form well, and can be configured to make different tradeoffs
along the Pareto frontier; two other policies used in current
systems yielded worse latency, CPU efficiency, or both.

Third, even with the best core-allocation policies, if the
average load is fixed, with small tasks it is difficult to achieve
better performance by reallocating cores than by allocating
a fixed number of cores. For our request patterns (modeled
with exponentially-distributed inter-arrival times), reallocat-
ing cores in response to transient bursts does not improve
latency (median or tail) relative to statically allocating the
same average number of cores. Thus the main benefit of re-
allocating cores over short timescales with short tasks is the
ability to quickly adapt to changes in average load. In con-
trast, when average task service times are longer—several
microseconds or more—we find that reallocating cores does
improve performance even with constant average load.

0.00

0.25

0.50

0.75

1.00

0 1 2

Small Task Throughput (Million Tasks/s)

T
o

ta
l N

o
rm

a
liz

e
d

 T
h

ro
u

g
h

p
u

t

Background Small Tasks

(a) Arachne.

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20

Small Task Throughput (Million Tasks/s)

T
o

ta
l N

o
rm

a
liz

e
d

 T
h

ro
u

g
h

p
u

t

Background Small Tasks

(b) Caladan.

Figure 1: Total useful work done by two colocated applications—
one background, the other handling small (about 1 µs) memcached
tasks—as we vary memcached’s load (for two existing systems).

From this factor analysis we conclude that barring technol-
ogy changes (e.g., commercialization of recently proposed
NIC hardware [18, 34, 65, 74]), for low latency and high CPU
efficiency, work stealing is the best load-balancing policy, and
our two new core-allocation policies based on average delay
or average utilization (we refer to these policies as “delay
range” and “utilization range”) perform best. We implement
these policies in a real system by extending Caladan [26], a
state-of-the-art system for reallocating cores which already
supports work stealing. We demonstrate that when running
memcached, a key-value store, delay range and utilization
range can save up to 13-22% of cores relative to Shenango’s
and Caladan’s core-allocation policies, without degrading me-
dian or tail latency (§6).

2 Motivation
To demonstrate the inefficiencies of existing systems when
handling short tasks, we conduct an experiment in which we
run two applications on a server: a latency-sensitive applica-
tion that handles short tasks and a background application that
consumes all extra CPU cycles. We use memcached [49], a
key-value store with service times of about 1 µs, as our latency-
sensitive application. We vary the offered rate of memcached
tasks and measure how much useful application-level work
each application completes. We perform this experiment with
two existing systems: Arachne [67] and Caladan [26].

Both systems yield latency improvements: Arachne’s 99%
latency improves on that of Linux by hundreds of microsec-
onds, while Caladan reduces this further, due partially to re-
placing Linux’s network stack with kernel bypass. However,
in their efforts to provide low latency for the small tasks, these
systems waste significant CPU resources. Figure 1 shows the
total throughput achieved by each system, normalized by the
maximum throughput the application can achieve when run-
ning alone on the configured set of cores (16 for Arachne and
32 for Caladan). Thus at the lowest and highest loads (where
only one of the applications is running1), both systems are

1Arachne dedicates one core to each application, so its background
throughput never reaches zero.

2 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

at their highest possible efficiency, achieving a total normal-
ized throughput of 1.0. Ideally, the total throughput of both
applications would remain at 1.0 as the small task load varies.
However, at moderate loads, both systems suffer significant
efficiency losses, wasting up to 64% or 36% of their cores,
with Arachne and Caladan, respectively. This inefficiency is
not exclusively bad; the excess cycles can be used to handle
small tasks sooner, lowering latency.

From these results, it is clear that these systems are able to
multiplex cores between applications, but they are extremely
inefficient while doing so. When handling longer tasks (e.g.,
10 µs or 100 µs), these systems become much more efficient.
This begs the question: what is responsible for these effi-
ciency losses with short tasks? These systems differ along
many different dimensions: their core-allocation policies, their
load-balancing policies, their threading libraries, and whether
they use the Linux network stack (Arachne) or kernel-bypass
(Caladan). The latter implementation aspects can contribute
significantly, but they have been studied extensively by prior
work. We focus instead on the policy aspects and seek to
understand which load-balancing and core-allocation policies
yield the best performance for small tasks.

3 Design Space of Policies
If reallocating cores across applications and load balancing
tasks between cores incurred no overhead (i.e., they could
be done instantaneously), the optimal policies would be: (1)
immediately grant an application a new core whenever a task
arrives and yield the core when the task completes and (2)
steer each newly arrived task to its newly granted core. With
these policies, CPU usage would exactly match the time spent
on tasks (100% efficient) and if an additional core was always
available then tasks would never queue (zero added latency).

These idealized policies are sufficient with long task service
times (e.g., 100 µs or more), because the overheads of load
balancing and core reallocation are relatively small (§4.3).
However, with tasks as short as a single microsecond, load-
balancing and core-allocation overheads become significant
and we can no longer afford to perform both a core-allocation
and a load-balancing action for every task that arrives; doing
so wastes considerable CPU resources. For good performance
with short tasks we must consider other policies. The key
difference between distinct policies is when they choose to
incur overheads (e.g., when a task arrives vs. when a queue
builds up), and these choices determine their latency and CPU
efficiency. Thus finding the best load-balancing and core-
allocation policies amounts to asking the question: given that
load balancing and core allocation incur overheads, how
should we spend those overheads most effectively?

3.1 Setting and Assumptions

While exploring different policies, we make several assump-
tions about our setting (illustrated in Figure 2). We assume
that each server runs one or more applications, where each ap-

Figure 2: Applications use load balancing to balance tasks across
cores and core allocations to adjust the number of cores available to
each application.

plication is either a batch application that seeks high through-
put and is latency-insensitive or a latency-sensitive application
that handles short tasks. Each application is always allocated
a specific number of cores; when an application yields a core,
the core will be granted to another application if possible.

Tasks can either arrive from external sources (e.g., a packet
arrives over the network or a storage operation completes)
or be created by the local CPU (e.g., a thread spawns a new
thread). We focus on settings with commodity NICs that spray
packets randomly over available cores (e.g., with RSS [3]),
though we also discuss how performance could change with
recent proposals for new NIC hardware with advanced steer-
ing capabilities (§4.2.1). Unless specified otherwise, we as-
sume that each core maintains its own queue(s) of tasks and
that tasks are not intentionally re-ordered (cores handle them
in FIFO order). We assume no preemption of running tasks
and no a priori knowledge of how long each task will take to
run.

3.2 Policies

In this section, we summarize the main policies used for load
balancing and core allocation today and describe when each
incurs overheads; these are the policies we evaluate in our
factor analysis (§4). The list is not exhaustive but rather an
attempt to cover the main classes of existing policies as well
as the theoretically optimal policies.

3.2.1 Load-Balancing Policies

Load-balancing policies can perform load balancing either
when a task arrives or once it has already been queued. The
latter category can be further divided based on what triggers
load balancing (either a lack of tasks for a core or a core with
too many tasks). We begin by describing a theoretical opti-
mum, and then describe four practical policies that fall into
these categories. Note that these policies are not necessarily
mutually exclusive.

Single queue. With no overheads, the theoretically ideal load-
balancing policy places all tasks in a single shared queue.
However, this approach limits throughput in practice due
to contention for the single queue. Shinjku [36] and RAM-
Cloud [62] take this approach; Shinjuku can support only

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 3

Core-allocation Policy
System Load-balancing Policy Trigger for Adding a Core Trigger for

Revoking a Core

IX [12] none packet queueing delay low CPU utilization
Arachne [67] choice on enqueue with power-of-two choices [55] number of runnable threads low CPU utilization
Shenango [60], Caladan [26] work stealing max queueing delay of threads or packets failure to work-steal
Fred [40] steering on arrival or work-stealing once all cores are allocated task arrives task completes
Go [76] work stealing task arrives and no cores work stealing failure to work-steal

Table 1: Load-balancing and core-allocation policies used by existing systems. Core-allocation policies are highlighted to indicate whether
they rely on queueing , utilization , task arrival , or failure to find work .

about 5 million requests per second with a single queue.

No load balancing. Without load balancing, tasks are handled
by the core they first arrive at, such as the core that spawns a
thread or the core a packet or storage completion is steered
to by hardware [12, 42, 64]. This approach incurs no load-
balancing overheads.

Enqueue choice. Enqueue choice policies make a load-
balancing decision about which core to assign a task to when
the task is first created; tasks cannot be moved later. Exist-
ing systems commonly use “power of two choices” [55] to
enqueue a task to the less-loaded of two randomly sampled
cores [33, 67, 81]. When a task is first created, the creating
core incurs overhead to sample queues on other cores (which
can be done in parallel for small numbers of sampled cores)
and to enqueue the task to the chosen core.2

Work stealing. When a core is idle, it searches for a core that
has queued work, and then steals half the tasks from that core
and moves them to its own queue [14]. This approach is used
by the Go runtime [76], several multithreading platforms [9,
16, 17, 45, 47, 59, 68], and many research systems [26, 40, 44,
50, 60, 66, 81]. It incurs overhead to check other cores for
queued work and move work to its local queue.

Work shedding. With work shedding, overloaded cores can
shed load to other cores or request that other cores take some
of their load. This has been considered by several theoretical
papers [22,73,77] and for load-balancing systems in a variety
of contexts [56, 78]. We consider a work-shedding policy
in which a core that has had tasks queued for longer than a
specified threshold selects a random core and indicates that
it is overloaded. That core will then respond by stealing half
of the overloaded core’s tasks; this is the primary source of
overhead for this policy.

3.2.2 Core-Allocation Policies

All core-allocation policies incur overhead in the same way:
by adding or revoking a core. Their overheads are primarily
determined by how often they reallocate cores and consist of
both the latency until a core is available after a reallocation
decision is made and the CPU cycles that cannot be used pro-
ductively while a core is being reallocated. The performance
of each policy is determined by how effective the signals are
that it uses to trigger core reallocations. Most policies make

2Note that “no load balancing” is a special case of enqueue choice in
which there is only one choice and no overhead.

core-allocation decisions at fixed time intervals (e.g., every
5 µs [60]), though some are triggered by other conditions.

We cannot easily model or compute an optimal core-
allocation policy, i.e., one that achieves the optimal tail latency
for a given CPU efficiency or vice versa. This is because find-
ing the optimal tail latency for a given CPU usage bound
or vice versa is NP-hard assuming a finite number of cores
and non-constant service times; this can be shown by a re-
duction from the multiprocessor scheduling problem (see
Appendix A.1). We now list the core-allocation policies we
consider.

Static. With static core allocations, the number of cores al-
located to each application cannot change over time, as in
several research systems [42, 64, 66]. This incurs no overhead
for core reallocations. However, each application must be pro-
visioned with enough cores for peak load, wasting significant
CPU resources as load varies over time, which is typical of
datacenter workloads [11, 35].

Per-task. Systems such as Fred [40] with per-task core allo-
cations grant a core to an application every time a task arrives.
This incurs the overhead of a core allocation for each task,
except when all cores are in use.3

Queueing-based. Policies based on queueing delay grant an
application an additional core if the queueing—as measured
by either the number or delay of threads, packets, or storage
completions—exceeds a certain threshold. These policies
vary in whether they trigger based on the maximum queueing
across cores [26, 60] or use an average [12, 67].

CPU utilization-based. Utilization-based policies add or re-
voke cores based on the number of idle cores [35] or the
average fraction of time cores spend working on tasks (as
opposed to sitting idle or busy-spinning) [12, 67].

Failure to find work. In some systems, an application will
yield a core when the core is unable to find any tasks to work
on. This can happen when a core fails to find another core
with queued work to steal from [26,60,76] or when it finishes
its current task, with a per-task core-allocation policy [40].

3.3 Overheads

Both load balancing and core allocation entail overheads; in
this section we discuss the magnitude of these overheads in
typical systems today.

3Once all cores are allocated to an application, Fred places additional
arriving tasks in per-core queues and cores use work stealing to find them.

4 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Load-balancing overheads. Load-balancing overheads can
be impacted by several factors: the CPU architecture (how
long does it take to handle a cache miss? how many cache
misses can be outstanding simultaneously?), the workload
(how often is load-balancing state cached locally vs. modified
on remote cores?), and speculative execution (how success-
fully can the CPU overlap cache misses with other instruc-
tions via speculative execution?). Despite these factors, we
attempt to estimate the overheads of different load-balancing
policies and in Section §4.2.1 we demonstrate that our con-
clusions about the relative performance of different policies
are unlikely to change with different overheads.

Because load balancing requires communication between
cores, its overhead arises primarily from cache misses while
retrieving cache lines from the L2 cache of another core.
Depending on the CPU microarchitecture, one such cache
miss can cost between 30 ns (Intel Haswell) and 200 ns (Xeon
Phi) [72]. A load-balancing operation moves state from one
core to another; this typically entails about three cache misses
to read a remote cache line, invalidate it so that it can be
written in the local cache, and then a third cache miss when the
remote core reads the modified cache line [67]. The overhead
incurred by the core performing the load balancing will then
be about two cache misses, or 60-400 ns.4 For comparison,
we measured that Caladan [26] takes about 120 ns on average
to check via work stealing if another core has stealable work
(in the form of queued packets, threads, or timers).

Note that a single core can typically have up to about 10
cache misses outstanding at once [24] (we confirmed through
a microbenchmark [48] that this seems to be about 10-12 for
our Intel Skylake servers). This enables small numbers of
independent cache misses (such as those to sample the load
on two different cores) to incur in parallel.

Core-allocation overheads. The latency for a core alloca-
tion to complete varies depending on the mechanism used to
reallocate the core. At a bare minimum, reallocating a core
requires an inter-processor interrupt (IPI) from the core that
makes the reallocation decision to the core that will be reallo-
cated to a different application; this takes about 1993 cycles
or roughly 1 µs [36]. Existing systems report slightly higher
core-allocation latencies, varying from 2.2 µs to reallocate an
idle core or 7.4 µs to reallocate a busy core in Shenango [61]
to 29 µs to reallocate a core in Arachne [67].

4 Factor Analysis
In this section, we perform a factor analysis to determine the
relative performance of the load-balancing and core-allocation
policies defined in §3.2. We cannot effectively compare dif-
ferent policies by comparing existing systems that implement
them (e.g., Caladan vs. Arachne), because these systems differ
in many aspects besides their policies (threading libraries, net-

4This is an approximation; the exact overhead will depend on application
behavior.

work stacks, etc.). Even comparing different policies within a
single implemented system can be challenging, because the
optimal system design may vary depending on the policy. For
example, systems may use different locking mechanisms to
protect thread queues depending on whether only the local
core can enqueue to them (as in work stealing) or if remote
cores can also enqueue to them (as in enqueue choice). Thus,
to decouple the behavior of the policies from the behavior of
the systems that they are implemented in, we use simulations.

Our simulations rely on several parameters which define
both the workload and assumptions about the possible un-
derlying system. We find that our conclusions are quite ro-
bust to variations in these parameters, and therefore may
be applicable to a wide variety of implementations and
workloads. We have made the source code for our sim-
ulations available at https://github.com/smcclure20/
scheduling-policies-sim.

4.1 Simulation Methodology

While our focus is on policy choices rather than implementa-
tion details, we do seek to model realistic overheads for cross-
core communication and for allocating cores to applications.
In order to fairly compare different policies, we use consistent
values for each overhead, based on the overheads measured
above (§3.3). We model the cross-core communication gener-
ally required for load balancing as taking 100 ns. We model
the core-allocation overheads (both latency to allocate a core
and wasted CPU cycles) as 5 µs per core allocation. In §4.2.1,
we will consider some different values for load-balancing
overheads, though varying them by even 100% does not have
a profound impact on our results. We discuss the implications
of varying core-allocation overheads in §4.3.

Our overall model assumes that each core has a single local
queue (i.e., no distinction between packet and thread queues)
and that tasks arrive randomly at the queues of allocated
cores. This is representative of a NIC randomly steering tasks
to cores or of running threads randomly spawning an addi-
tional thread. Our simulator models each of the general policy
approaches outlined in §3.2, with specific implementation
choices made based on real system implementations when-
ever possible. We acknowledge that our model is a simplified
view of these systems, but we found that the general trends of
latency and efficiency are consistent between simulations and
experiments, for the systems we evaluated (§6). Our simulator
does not support preemption but could be extended to model
systems which do [20, 36, 82]. We now describe the specific
load-balancing and core-allocation policies that we simulate.

Load-balancing policies. We model no overheads for the
idealized single-queue policy or for the no load balancing
policy. For enqueue choice, when a task arrives, the core at
which it arrives incurs the 100 ns overhead to move the task to
its destination queue (the shortest queue from two randomly

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 5

https://github.com/smcclure20/scheduling-policies-sim
https://github.com/smcclure20/scheduling-policies-sim

sampled options).5 When work stealing is enabled and a core
does not have any work in its local queue, it begins iterating
through the other cores, checking if there is available work to
steal. Each check of a remote queue incurs the 100 ns over-
head, as does the act of stealing any found tasks. With work
shedding, each core checks if its queue’s current queueing
delay is higher than the configured threshold after each task
it finishes. If so, it selects a random core to notify or “flag.”
The remote core will check for flags between each of its tasks,
respond (if a flag is present) by stealing tasks from the over-
loaded queue so that the two queue lengths are balanced, and
incur the 100 ns overhead.

Core-allocation policies. Our per-task policy (based on
Fred [40]) immediately grants a new core to an application
if one is available in the system whenever a new task arrives.
The core at which the task is initially randomly placed pays
a 100 ns overhead to place the task at the new core. When a
core finishes a task, it checks if there are more queued tasks
in the system than available cores and yields if there are not.

The remaining core-allocation policies make decisions
at fixed time intervals. To model Shenango [60] and Cal-
adan [26], at the end of every core-allocation interval, the
simulation determines the maximum queueing delay across
cores within an application. If it exceeds a specified thresh-
old (typically the length of the interval itself), the simulation
grants an additional core to that application. An application
yields a core if the core attempts to work steal from every
other core in the application and fails to find any tasks to steal.
Shenango and Caladan have very similar policies; the main
distinguishing factor in our model is the difference in their
interval/threshold values (Table 2).

We also design and simulate two new core-allocation poli-
cies. First, we design a queueing-based policy called delay
range which attempts to maintain a specified average queue-
ing delay across all cores within an application. Every core-
allocation interval (every 5 µs), the simulation checks the
average queueing delay. If it is below the specified lower
bound, a core is revoked; if it is above the upper bound, a core
is added. Similarly, with our utilization range policy, a core
is added or removed whenever the average CPU utilization
over the past interval (fraction of time spent handling tasks)
falls outside the specified range.

There are three notable aspects of core-allocation systems
that we do not model. First, some systems dedicate a sched-
uler core to making core-allocation decisions and initiating
core allocations [26, 60, 67] while others have application
cores perform these tasks in a distributed way [40, 76]. We
do not model these distinctions and assume that all work for
initiating core reallocations could be offloaded to a separate
dedicated core. Second, we do not model the overheads in-
curred by applications measuring and exposing statistics to
the dedicated core; in practice these overheads are small and

5We assume the options may be checked in parallel as explained in §3.3.

Parameter Default Value
Work shedding delay threshold 2 µs
Enqueue choices 2
Utilization range 75-95%
Delay range 0.5-1 µs
Shenango max queueing threshold 5 µs
Caladan max queueing threshold 10 µs

Table 2: Canonical configuration parameters.

simply require application cores to write a small amount of
state (e.g., timestamp when a task was queued) to shared
memory. Third, we do not model the caching implications of
reassigning a core from one application to another.

Configuration. Each policy has its own unique parameters.
Unless stated otherwise, we use the default parameter values
shown in Table 2. We chose these specific values based on
the best overall performance seen for each policy, though we
will discuss the implications of configurability throughout
this section.

In all of our simulations, we use a canonical configuration
of 32 cores, exponentially-distributed service times with an
average of 1 µs, Poisson arrivals, and an offered load that
occupies 50% of the cores on average. Experiments below
will vary many of these dimensions independently, but we
will use this configuration by default. To contextualize the
policy overheads described above, with the average task time
set at 1 µs, the overhead for load balancing is 10% of average
task time while the overhead of core reallocation is 500%.

4.2 Load Balancing

To understand how load-balancing policies impact perfor-
mance, we first evaluate different load-balancing policies in a
setting where cores are statically allocated (cores are never
reallocated) (§4.2.1), and then evaluate whether core realloca-
tions impact these findings (§4.2.2).

4.2.1 With Static Core Allocations

Individual policies. We first evaluate each load-balancing
policy independent of any particular core-allocation policy
by running each experiment with a fixed number of cores.
This allows us to determine the relative performance of each
approach when given the same number of total CPU cycles,
since a given allocation policy will make different allocation
decisions depending on the behavior of the specific load-
balancing scheme, even under the same traffic. By decoupling
the two, we can determine which end-to-end effects are due
specifically to load-balancing policies.

Figure 3 shows the tail and median latencies (y-axis) of
different load-balancing policies as we vary the number of
statically-allocated cores (shown on the x-axis as a fraction
of the total possible), while offering an average load of 50%.
Each curve corresponds to a load-balancing policy with 100 ns
overheads, while the shaded regions vary this from 0 ns to
200 ns. In general, approaches that operate lower and to the
left in this graph are preferable. We will discuss the JBSQ

6 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) 99.9% latency. (b) Median latency.

Figure 3: Performance of each load-balancing policy with different numbers of statically
allocated cores. Shaded regions cover overheads 0-20% of average task time. The line in
each region shows the canonical case of 10% load-balancing overheads (100 ns).

Figure 4: Latency curves for combinations of
work stealing with other load-balancing policies,
with static core allocations.

curve later.

Finding 1: With static core allocations, work stealing
achieves better latency (at the median and tail) for a given
efficiency (number of allocated cores) than work shedding or
enqueue choice.

While all load-balancing policies yield significant improve-
ments over no load balancing, work stealing consistently has
significantly lower median and tail latency for the same num-
ber of statically-allocated cores than the other approaches;
work stealing Pareto-dominates enqueue choice and work
shedding. The relative performance between enqueue choice
and work shedding is less consistent and varies depending on
system and workload parameters such as the number of allo-
cated cores, latency percentile, and service time distribution
(Appendix A.2.2).

The enqueue choice curve is consistent with the well-
known “power-of-two choices” result [55], showing that two
choices of queues is much better than one (the “No Load
Balancing” curve). This is particularly true when there is no
overhead (as modeled in [55]) which is demonstrated by the
lower bound of enqueue choice’s shaded region in Figure 3.
Despite this, enqueue choice still performs worse than work
stealing. Further measurements revealed that this is due to
three main limitations: (1) per-task load-balancing overheads
that cap the possible throughput and add latency to all tasks,
(2) a limited number of queue choices, and (3) placement
based on number of queued tasks rather than the sum of ser-
vice times of queued tasks. Overall, (2) and (3) can result
in periods of load imbalance in which tasks are queued and
cores are idle, but there is no way for the idle cores to assist
with those “stranded” tasks. Choosing by the sum of the ser-
vice times in the queue [30, 31] or increasing the number of
choices can improve tail latency, though these are not always
practical, and reducing the overheads to 0 provided a bigger
performance benefit than either of those changes individually.

The tail latency gap between work stealing and work shed-

ding can be explained by the steps necessary to move a task
that ends up contributing to tail latency to the core that ul-
timately handles it. With work shedding, for a task at an
overloaded core, time is spent waiting to cross the signalling
threshold, waiting for the core to complete its current task
and raise a flag, and waiting for the remote core to respond.
In work stealing, tasks simply wait until a work-stealing core
checks their queue; the latency of this depends primarily on
the number of excess cores. With a work-shedding queueing
threshold of 2 µs we found that on average tasks that were
shed spent 3.1-4.5 µs queued on cores other than the one
that ultimately handled the task, compared to 0.3-1.4 µs with
work stealing. Most tasks at the tail are stolen at least once,
explaining the corresponding gap between the two in tail la-
tency. Lowering the queueing threshold only yields marginal
improvements, because at higher loads most cores will always
have a flag pending. In addition, without preemption, tasks
still incur delays from the other two steps described above.

We now investigate the robustness of these results to
changes in overheads in case our overhead estimates are not
representative of certain underlying hardware or better tech-
nology arises in the future. Note that this does not apply to
single queue simulations or those with no load balancing as
they have no overheads. By looking at the upper or lower
bounds of the shaded regions in Figure 3, we see that for the
same overhead, work stealing consistently outperforms the
other approaches. Even if inter-core communication was free
for enqueue choice and work shedding, work stealing with
200 ns overheads outperforms for most numbers of allocated
cores. Further, work stealing consistently achieves the best
performance even if we model the load-balancing overhead
as 400 ns, the upper bound of our estimate from §3.3.

Work stealing’s superior performance is robust across dif-
ferent latency percentiles (median to 99.9%) (Figure 3), av-
erage service times (e.g., 1, 10, 100 µs) (Figure 5), num-
bers of cores (Figure 6), loads (Appendiex A.2.1), and ser-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 7

vice time distributions (exponential, constant, bimodal) (Ap-
pendix A.2.2). For all service time distributions evaluated, the
ordering of the static curves remained the same as in expo-
nential distributions shown. Though, when service times are
constant, the specific choice of load-balancing policy has less
overall impact on system performance.

Combining policies. Notably, these load-balancing ap-
proaches are not mutually exclusive. Since each policy takes
effect at a different time in the handling of a task, work steal-
ing can take advantage of extra cycles while work shedding
addresses excessively loaded cores or enqueue choice proac-
tively tries to balance queues. Accordingly, we simulated
work stealing combined with each other approach with static
core allocations.

Finding 2: With static core allocations, adding shedding on
top of work stealing provides some latency benefit (primarily
at the tail) while adding enqueue choice to work stealing
makes performance unchanged or worse.

This is demonstrated in Figure 4. We see that adding en-
queue choice to a system that already employs work stealing
does not improve performance. There are two reasons for this,
depending on what efficiency (x-axis) we are operating at:
(1) with few cores available, enqueue choice adds significant
overhead per-task which degrades throughput, and (2) with
many cores available, there is little room for improvement
between work stealing and single queue. When adding work
shedding to work stealing, however, there are some benefits
since the shedding mechanism can help balance out queues
under high-load conditions when work stealing lacks the extra
cycles to help, though the benefit is fairly limited to certain ef-
ficiencies as the overheads of flagging can become excessive
when spare cycles are rare.

Leveraging hardware. Given these results, we ask two ques-
tions motivated by recent advances in hardware: (1) what if
the NIC can perform more intelligent distribution than simple
hashing? and (2) what impact would handling many cache
misses in parallel have? (1) is motivated by recently proposed
systems such as the NanoPU [34] which selects queues for
incoming packets according to join bounded shortest queue
(JBSQ) [43].6 JBSQ is known to achieve good performance
with tail latency improvements up to 10 µs over work steal-
ing, as shown in Figure 3. However, this boost requires new
hardware to direct incoming traffic intelligently.

To address (2), we simulated scenarios where the underly-
ing hardware could resolve several cache misses at once (as
described in §3.3). Ultimately, this capability means that load-
balancing policies may communicate with multiple cores for
the price of one (e.g., check 10 cores for the presence of work
in work stealing). However, we found that these modifica-

6JBSQ(n) queues up to n outstanding tasks at each core (including the task
currently being handled) and maintains any surplus in a central queue [43].
We evaluate the case of 3 outstanding tasks, as in NanoPU, though we label
this as JBSQ(3) in the terminology of [43] rather than JBSQ(2) as in NanoPU.

tions provided marginal benefits at best, even assuming that
processing the results of parallel checks incurs no overhead.

In general, work stealing was consistently the best perform-
ing load-balancing policy when given the same number of
cycles as other approaches even as overheads and workload
parameters vary. Broadly, work stealing achieves high per-
formance by avoiding per-task overheads and leveraging idle
cores to avoid stranding tasks at overloaded cores. Ultimately,
absent new hardware, work stealing is the best option for
load-balancing approaches among those we evaluated. While
work stealing’s superiority may seem unsurprising given its
widespread use, we believe that we are the first to compare it
against other policies and demonstrate its benefits when han-
dling microsecond-scale tasks with realistic load-balancing
overheads.

4.2.2 With Dynamic Core Allocations

Next, we consider how load-balancing policies perform when
cores can also be reallocated: does reallocating cores change
the findings above? When the number of cores allocated to
a given application varies over time, it becomes harder to
compare approaches (combinations of load-balancing and
core-allocation policies). Each combination represents a sin-
gle point in the tradeoff space between latency and efficiency.
If one combination has better latency but worse efficiency than
another (i.e., neither is Pareto dominant), which is preferable?
Some core-allocation policies are configurable and could be
tuned to operate at the same efficiency to compare their laten-
cies. However, not all approaches are tunable (e.g., per-task
allocations), so this methodology cannot be used to compare
all policies. Thus it is not always possible to say that one
policy combination is definitively better than another.

We attempt to pair each load-balancing policy with each
other core-allocation policy, but some pairings require modi-
fications or are not reasonable. In Shenango/Caladan, cores
park upon failing to find any work to steal. We modify this
to work with other load-balancing policies by revoking cores
after they spin for the time it would take to check all cores in
traditional work stealing, assuming no additional work arrives
in the meantime. Per-task allocations maintain the invariant
that the number of active cores is equal to the minimum of the
number of tasks present and the total number of cores. This
is only reasonable with a work-conserving load-balancing
policy, so we only evaluate per-task core allocations with the
work-stealing load-balancing policy.

With this in mind, we simulated all coherent combinations
of load-balancing and core-allocation policies to compare
how they explore the available tradeoff space. The results
across different average task durations are shown in Figure 5.
Finding 3: When cores are dynamically reallocated, work
stealing performs better than shedding or enqueue choice.
This is robust against all factors mentioned in Finding 1.

Figure 5a shows each combination of load-balancing and
core-allocation policies with static-allocation curves for ref-

8 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) 1 µs average task service time. (b) 10 µs average task service time. (c) 100 µs average task service time.

Figure 5: Combinations of each core-allocation policy with a load-balancing policy at 50% load with static-allocation curves for each
load-balancing policy for reference. Each policy uses the canonical configurations from §4.1. Points for each combination of policies are the
color of their load-balancing curve and have the shape type (squares, circles, stars, or triangles) of their core-allocation scheme.

Figure 6: Core-allocation and load-balancing policy combinations
for 64 cores and 1 µs tasks. Refer to the legend in Figure 5.

erence. Comparing each core-allocation policy (shape type)
across load-balancing policies (colors), we see that work steal-
ing always performs best in terms of proximity to the single
queue curve. Note that this graph only shows one choice of
parameters for each core-allocation policy, but some can be
configured to make different latency vs. efficiency tradeoffs.
We generally chose the configuration closest to the bottom-left
of the graph, though we will discuss configurability broadly
in §4.3.

While adding dynamic core allocations makes the indi-
vidual performance of each load-balancing policy less clear,
overall work stealing still consistently performs better than
other load-balancing approaches (absent new hardware).

4.3 Core Allocation

In this section, we compare the performance of different
core-allocation policies. Since core-allocation policies are
designed to react to changes in load, their performance tends
to be tightly coupled with the load-balancing policy employed.

Better load-balancing policies will more effectively use the
available cycles, allowing the core-allocation policy to be
more conservative in granting cores. Therefore, we evaluate
each core-allocation policy across each load-balancing policy
and seek to find patterns in the tradeoffs between efficiency
and latency that each core-allocation policy makes.

We note that some existing systems use an additional ded-
icated core (such as Shenango’s IOKernel) to perform core
allocations [26,60,67]. We do not count these cores as we are
focusing on policy rather than the implementation of that pol-
icy. If we were to include these cores, all efficiency results for
these policies would incur an additional 3% CPU utilization
for a 32-core system.

We began by asking the question: does reallocating cores
yield better performance than sticking with a constant number
of cores? One might expect that even with constant average
load, being able to react to bursts in load over small time scales
would yield significant performance benefits. Surprisingly, we
found that the answer to this question is often ‘no’.

Finding 4: For short tasks, none of the core-allocation poli-
cies we tried achieved better latency (median or tail) for a
given average efficiency than static core allocations (with the
same load-balancing policy). However, this becomes possible
with longer tasks.

In Figure 5a, none of the core-allocation policies achieve
better tail latency for the same efficiency as a static allocation
(the points fall up and to the right of their corresponding static
core-allocation curves). As shown in Figures 5b and 5c, when
the average task service time is longer (e.g., 10 µs or 100 µs),
some policy combinations (points) can achieve better perfor-
mance than their static-allocation curves. With work stealing
and 10 µs service times, delay range, utilization range, and
Caladan all beat the static curve for 99.9% tail latency, but

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 9

not for the median (omitted for space). This is true for 100 µs
service times as well, with per-task also beating the work-
stealing curve. As the average task duration increases, the
relative importance of the core-allocation overhead decreases
and allocating new cores for additional tasks becomes reason-
ably efficient. The only policy combinations which beat their
respective curve include work stealing as the load-balancing
policy. Work stealing leverages extra cycles to distribute load
while enqueue choice and work shedding are limited in im-
pact since newly added cores will spin idly, unable to handle
tasks until a new task arrives or they are flagged by another
core.

The only method we have found that can outperform the
static curve with tasks as small as 1 µs requires the core-
allocation system to be extremely reactive, making core-
allocation decisions more frequently than 5 µs and giving
the new cores to the application faster than in 5 µs. More
frequent allocations are challenging in a real-world imple-
mentation because of the overheads of checking state and
initiating core reallocations. For example, in Shenango, these
actions take roughly 2.1 µs or 3.4 µs with 32 or 64 application
cores, respectively [61]. Completing each core reallocation in
less than a few microseconds is similarly challenging (§3.3).

Even though core allocations may not provide performance
benefits with short tasks, one may employ a core-allocation
policy to ensure that the application can adapt to changes in
load. Average load in datacenters tends to vary over time [11],
so allocating a static number of cores for a constant load would
require provisioning for the peak load, wasting CPU cycles
over time as load varies. Reacting more slowly to changes in
load is also unlikely to perform well; prior work has shown
that reactions at 50 ms timescales can cause significant tail
latency spikes [60].

Assuming that achieving better performance than the static-
allocation curves is unlikely for small tasks, we evaluate the
different core-allocation policies in terms of the consistency
of their performance and their ability to achieve high CPU
efficiency. For some core-allocation policies, the placement
relative to a static curve can vary significantly depending on
the workload and load, making it difficult for an operator to
configure the policy to achieve their goals (e.g., a specific tail
latency or CPU efficiency target). By comparing the tradeoffs
core-allocation policies make across workloads and loads, we
find the policies that exhibit consistent performance.

Finding 5: Policies that explicitly optimize for an end-to-end
user-visible metric (e.g., delay range and utilization range)
have more consistent performance, as measured by those
metrics, across different configurations.

For example, Figure 5 illustrates that for Caladan and per-
task, the operating point changes with different service times.
In contrast, utilization range and delay range specify a range
on the x and y axes of the graphs, respectively, that the system
should not leave. This generally forces the points to specific

(a) Efficiency measured in excess cores.

(b) 99.9% latency.

Figure 7: Performance of core-allocation policies paired with work
stealing across loads for 64 cores. Efficiency is measured in the
excess cores used compared to the single queue simulation.

regions of their static-allocation curves (when the curves can-
not be crossed). For example, utilization range points achieve
close to 60% CPU utilization across all service times in Fig-
ure 5.

Delay range and utilization range also have more predi-
catable performance across different loads. In Figure 7, we
illustrate how performance of different core-allocation poli-
cies varies with load (when paired with work stealing). We use
64 cores instead of 32 in order to sweep a wider range of loads.
Figure 7a shows the efficiency measured as excess cores in
comparison to the single queue ideal simulation (i.e., total
number of cores used by a given policy minus those used in
the ideal case) while Figure 7b shows the tail latency. Caladan,
Shenango, and per-task have inconsistent efficiency and tail
latency across loads, while delay range and utilization range
each keep their respective end-to-end metric relatively con-
stant. Overall, we found that policies such as delay range and
utilization range have consistent performance across work-
loads and configurations, enabling the operator to directly
tune the policy’s parameters to achieve a specific end-to-end
performance objective.

Next, we consider whether each core-allocation policy can
be configured to operate near the bend of each static-allocation
curve, achieving high CPU efficiency while only minimally
compromising in tail latency.

Finding 6: Yielding cores only when no work is found (when
there is no queued work or work stealing fails) makes it chal-
lenging to achieve good efficiency with small tasks, especially
with many cores.

The policies that yield cores only when no work is found
(Caladan, Shenango, and per-task) cannot always achieve
good CPU efficiency, especially with many cores. Here we
focus on analyzing each core-allocation policy when paired

10 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

with work-stealing, as it performs best. Figure 5a illustrates
that per-task achieves poor CPU efficiency with 32 cores,
while Figure 6 shows that per-task and Caladan both achieve
poor CPU efficiency with 64 cores, using more than 80% of
CPU cores for a workload that only requires 50% of cores. In
contrast, delay range and utilization range both operate near
the bend of the static-allocation curves for 32 and 64 cores.
Figure 7 illustrates that utilization range and delay range can
save up to 15 cores for similar tail latency across loads.

The efficiency of the Shenango, Caladan, and per-task poli-
cies is limited because these policies are slow to yield excess
cores. With per-task core allocations, before all cores are al-
located the efficiency cannot reach higher than T/(T +R)
where T is the average task time and R is the core-allocation
overhead, because a core is allocated for every task. Simi-
larly, in policies that yield cores only when work stealing fails
(Shenango and Caladan), a significant amount of cycles can
be wasted searching through all other cores to never find work
or only to find it late in the search. As the number of cores
increases, this effect gets worse. Neither Shenango/Caladan
nor per-task can be configured to avoid these inefficiencies.
Therefore, to achieve high efficiency across workloads and
configurations, a core-allocation policy must revoke cores
proactively, even when there is or may be some queued work.

We did assess other core-allocation policies such as main-
taining a buffer of idle (or work-stealing) cores of a certain
size (similar to PerfISO [35]) and enforcing this buffer at
every allocation interval. However, this approach tended to be
too noisy with short core-allocation intervals and performed
significantly worse than other policies.

All together, we found that it is difficult to outperform static
core allocations with small tasks, and if the average load is
constant and known a priori, then statically allocating cores is
the best option. However, when load is unknown or changes
over time, dynamic allocation policies that proactively revoke
cores perform best.

4.4 Policy Takeaways

Overall, our factor analysis found that without new hardware,
the best approach is to use work stealing as the load-balancing
policy with delay range or utilization range for core alloca-
tions, depending on which end-to-end metric is more impor-
tant to specify and stabilize. Both of these policies are able
to operate close to the work-stealing static curve with short
tasks or better than the curve with long tasks. Both are ro-
bust in the face of service time variability, different service
time distributions, load changes, and changes in number of
cores. Lastly, both are configurable, allowing the operator to
choose whether they prefer CPU efficiency or tail latency (and
to what extent). These approaches are intuitive; since core-
allocation policies make a tradeoff between CPU efficiency
and tail latency, using either parameter effectively as a signal
for reallocating cores and controlling where to operate in the
space of tradeoffs makes sense.

5 Implementation
We implement our policies in a real system by extending Cal-
adan [75]; our source code is available at https://github.
com/shenango/caladan-policies. Like its predecessor
Shenango [60], Caladan’s key components are its application
runtime and its dedicated scheduler core, which implements
the core-allocation policy. Caladan provides lightweight user-
level threading, a high-performance network stack, and load
balancing via work stealing. It also enables higher network
throughput and its core-allocation mechanisms are more scal-
able compared to those of Shenango.

We implement both delay range and utilization range atop
Caladan. This requires small modifications to both the runtime
(50 LOC) and to the scheduler (125 LOC). The Caladan
runtime already exposes information about the queueing delay
of threads and packets to the scheduler core; we augment this
with information about CPU utilization (time spent executing
the application vs. in the runtime scheduler) as well. We also
add the ability for application cores to yield voluntarily when
notified by the scheduler core to do so. When application
cores enter the runtime scheduler between tasks, they check
if they should yield; for efficiency we do not preempt cores
while they are handling tasks. In the scheduler core, we simply
add logic for polling the utilization information exposed by
applications, and use this or the delay information (depending
on the current policy) to decide whether to add or revoke cores.
When a core revocation is necessary, the scheduler revokes
the core that currently has the least amount of queued work.

Measuring the CPU utilization of application cores over
fine timescales is more challenging in practice than in simu-
lation. This is because we do not interrupt running tasks to
record CPU usage and only record how CPU time is spent
whenever a task starts or finishes. Thus if a task runs for the
entirety of a 5 µs core-allocation interval, the scheduler core
will observe 0 cycles spent in both the application and the
runtime scheduler for that core. The scheduler core handles
this by assuming that when application cores report no CPU
usage for a core-allocation interval, their utilization is 100%,
and it adds a core. In the case when an application has zero
allocated CPU cores, CPU utilization is not a useful metric for
deciding if an application needs more cores. Thus regardless
of the core-allocation policy, the scheduler core always uses
the arrival of packets to decide when to grant an application
its first core, as in Shenango and Caladan.

6 Evaluation
The goal of our evaluation is to verify that the high-performing
policies we identified above can actually yield performance
improvements in practice for a real system. Unfortunately,
varying the load-balancing policy within a single system
would likely involve significant system changes, making a
fair comparison difficult (§4). Thus we focus on evaluating
the core-allocation policies. We start with a system (Caladan)

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 11

https://github.com/shenango/caladan-policies
https://github.com/shenango/caladan-policies

0

50

100

150

0 5 10 15 20

Memcached Offered Load (million tasks/s)

9
9

%
 L

a
te

n
c
y
 (
μ

s
)

Caladan

Delay Range 0.5-1us

Delay Range 1-4us

Shenango

Util Range 0.75-0.95

(a) Tail latency for memcached.

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20

Memcached Offered Load (million tasks/s)

N
o

rm
a

liz
e

d
 B

a
c
k
g

ro
u

n
d

 O
p

s
/s

Caladan

Delay Range 0.5-1us

Delay Range 1-4us

Shenango

Util Range 0.75-0.95

(b) Normalized throughput of the background application.

Figure 8: Performance of two applications under different core-
allocation policies, when implemented atop Caladan. The x-axis
varies the load of memcached.

that uses the best-performing load-balancing policy (work
stealing) and evaluate its performance with different core-
allocation policies. We evaluate four policies: Shenango [60],
Caladan [26], delay range, and utilization range.

Experimental setup. We conduct experiments using two
dual-socket servers with 28-core Intel Xeon Platinum 8176
CPUs operating at 2.1 GHz. Our server machine is equipped
with a 40 Gbits/s Mellanox Connect X-5 Bluefield NIC (we
do not use the SmartNIC features) and our client machine is
equipped with an Intel E810C 100 Gbits/s NIC.7 We enable
hyperthreads and disable TurboBoost and frequency scaling.
We use 32 hyperthreads on the second socket (to which our
NICs are attached). We use Ubuntu 20.04 with kernel version
5.4.0.

Applications. We evaluate the different policies using mem-
cached (v1.5.6) [49], a popular key-value store, as our latency-
sensitive application. We use loadgen, Caladan’s open-loop
load generator, to generate requests with Poisson arrivals over
UDP [75]. Our workload consists of a mixture of read and
write requests according to Facebook’s USR request distribu-
tion [8]; requests have service times of about 1 µs. We run the
swaptions workload from the PARSEC benchmark suite [13]
as a background application and allow it to use all CPU cycles
not used by memcached.

7We run Caladan in “queue steering mode” in which we reconfigure the
mappings between NIC queues and cores when core allocations change [61]
because our NICs do not support Caladan’s default “flow steering mode.”

6.1 Policy Comparisons

Our experimental results show that different policies yield
different latency vs. CPU efficiency tradeoffs, but that delay
range and utilization range generally outperform Shenango
and Caladan, confirming the findings of our simulation-based
factor analysis. Figure 8a shows the tail latency of mem-
cached while Figure 8b shows the throughput achieved by
the background application, both as we vary the load offered
to memcached (x-axis). We show results for two different
configurations of delay range to illustrate the impact of tuning
the target range.

In Figure 8, utilization range and delay range (0.5-1 µs)
achieve similar tail latency for memcached as Caladan and
Shenango, while achieving higher CPU efficiency for the
background application. In addition, all of these policies yield
similar median latency for memcached (not shown). Shenango
is least efficient overall, and these two new policies achieve
up to 22% more of the total possible throughput for the back-
ground application (7 hyperthreads worth) than Shenango.
Compared to Caladan, these policies achieve up to 13% more
throughput for the background application (4 hyperthreads
worth). This is because with Shenango and Caladan’s policies,
memcached spends much more time in the runtime scheduler,
primarily work stealing (up to 26% and 21% of its time, re-
spectively). In contrast, with the other policies, CPU time in
the scheduler is much lower. For example, with utilization
range, memcached spends less than 14% of its time in the
scheduler at all except the lowest loads. By proactively re-
voking unused cores rather than waiting for work stealing to
fail to find tasks to handle, delay range and utilization range
can achieve higher CPU efficiency without degrading the
performance for memcached.

Both the delay range and utilization range policies take as
input a target range, and these ranges can be adjusted to make
different tradeoffs between tail latency and CPU efficiency.
As an example, Figure 8 shows two different ranges for de-
lay range. Delay range 1-4 µs achieves about 2 hyperthreads
worth of additional throughput for the batch application com-
pared to delay range 0.5-1 µs, at the cost of 10-15 µs of tail
latency.

7 Related Work

Load-balancing policies. Load-balancing policies have been
studied extensively, both theoretically and in the context of
real systems. Several systems have adopted the ideal policy
of maintaining a single shared queue [36, 62], though they
experience throughput bottlenecks as a result. Others take the
opposite approach and perform no load balancing in software,
leaving it to the NIC [12, 64] or storage device [42] to ran-
domly distribute work across cores; these approaches suffer
from load imbalances.

Work stealing was originally proposed as a way of effi-
ciently scheduling multithreaded computations across multi-

12 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ple cores [14,39,71]. Variants of work stealing have been stud-
ied thoroughly [54, 57] and adopted in task-parallel platforms
such as OpenMP [59], IntelTBB [68], Cilk [47], Habanero [9,
16], X10 [17], Java Fork/Join [45], and the Go runtime [76].
More recently, work stealing has been adopted in datacenter
systems as a way to provide low tail latency [26,44,60,66,81].
Similarly, past work has analyzed the power-of-two choices
load-balancing policy [55] as well as variants of it, such as
those that consider known service times [31] or general ser-
vice time distributions [15]. Arachne [67], SKQ [81], and
many other systems [29, 33, 63, 82] leverage power-of-two
or the more general power-of-k choices for load balancing.
Others have studied work shedding approaches [73] and com-
pared them to other policies [22, 77]. Finally, several recent
proposals implement more advanced load-balancing policies
such as JBSQ [43] in NIC hardware [18, 34, 70, 74].

Our findings are consistent with past comparisons of load-
balancing policies. For example, we confirm that “work-first”
load-balancing policies such as work stealing have better
performance [21, 22, 27]. However, our analysis differs in
two key ways. First, we are not aware of any prior work that
compares load-balancing policies in the presence of realis-
tic load-balancing overheads; prior work either assumes no
overhead or analyzes a single system and its policy and over-
heads. Second, prior work evaluates metrics such as delay,
throughput, and communication rate, but does not consider
CPU efficiency. In contrast, we compare the tradeoffs that
different policies make in terms of latency and efficiency, in
the presence of load-balancing overheads.

Core-allocation policies. Existing systems adopt a variety of
different policies for deciding when to reallocate cores, either
across different applications or between cores available for
applications and those designated for network processing or
a file system. These approaches make decisions based on task
arrivals [40], queueing delay [12, 20, 26, 52, 53, 60, 67], CPU
utilization [12, 20, 35, 41, 67], or failure to find work [4, 7, 21,
27, 40, 76]. None of these systems compare different policies
in the presence of the same overheads, so it is not possible to
determine from these works which policies provide the best
combination of latency and efficiency. Some past work points
out that work-stealing cores can waste considerable CPU
cycles, and proposes policies for yielding cores to mitigate
this [4, 7, 21]. However, these policies target throughput and
fairness for longer tasks (e.g., hundreds of microseconds or
more); in contrast, our analysis focuses on which policies
provide the best efficiency and latency for microsecond-scale
tasks, and thus yields different conclusions.

Implementing policies. The systems Syrup [37] and
ghOSt [32] enable users to control scheduling policies in
the kernel scheduler, network stack, and network card from
code written in userspace. These systems are complementary
to our work; they make it easier to express scheduling policies
but do not specify which policies users should implement.

8 Conclusion
Numerous systems have been designed to support latency-
sensitive datacenter applications while dynamically allocating
cores to react to changes in load. However, these systems
often come with a significant efficiency penalty with short
tasks. In this paper, we systematically evaluated the effects of
different policy choices on efficiency and latency to determine
which load-balancing and core-allocating schemes achieve the
best performance when considering realistic overheads. Work
stealing is the definitive best policy option in today’s hardware
while the core-allocation space is more complex. We designed
and implemented two core-allocation policies which provide
consistent and configurable performance on the Pareto frontier
when paired with work stealing and demonstrated how they
can improve efficiency without sacrificing latency.

9 Acknowledgments
We thank our shepherd Ana Klimovic, the anonymous re-
viewers, John Ousterhout, and the members of NetSys for
their useful feedback. We thank Daniel Grier for assistance
with the NP-hardness proof. This work was funded in part by
NSF Grants 1817116 and 1704941, and by grants from Intel,
VMware, Ericsson, Futurewei, and Cisco.

References
[1] Dpdk. https://www.dpdk.org/.

[2] redis. https://redis.io/.

[3] Rss. https://docs.microsoft.com/en-us/windows-
hardware/drivers/network/introduction-to-receive-side-
scaling.

[4] K. Agrawal, C. E. Leiserson, Y. He, and W. J. Hsu. Adap-
tive work-stealing with parallelism feedback. ACM
Transactions on Computer Systems (TOCS), 26(3):1–32,
2008.

[5] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,
P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan.
Data center tcp (DCTCP). In Proceedings of the ACM
SIGCOMM 2010 Conference, pages 63–74, 2010.

[6] L. Ao, L. Izhikevich, G. M. Voelker, and G. Porter.
Sprocket: A serverless video processing framework. In
Proceedings of the ACM Symposium on Cloud Comput-
ing, pages 263–274, 2018.

[7] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread
scheduling for multiprogrammed multiprocessors. The-
ory of computing systems, 34(2):115–144, 2001.

[8] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload analysis of a large-scale key-
value store. In Proceedings of the 12th ACM SIGMET-
RICS/PERFORMANCE Joint International Conference

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 13

on Measurement and Modeling of Computer Systems,
SIGMETRICS ’12, page 53–64, New York, NY, USA,
2012. Association for Computing Machinery.

[9] R. Barik, Z. Budimlic, V. Cavè, S. Chatterjee, Y. Guo,
D. Peixotto, R. Raman, J. Shirako, S. Taşırlar, Y. Yan,
et al. The habanero multicore software research project.
In Proceedings of the 24th ACM SIGPLAN conference
companion on Object oriented programming systems
languages and applications, pages 735–736, 2009.

[10] L. Barroso, M. Marty, D. Patterson, and P. Ranganathan.
Attack of the killer microseconds. Communications of
the ACM, 60(4):48–54, 2017.

[11] L. A. Barroso and U. Hölzle. The datacenter as a com-
puter: An introduction to the design of warehouse-scale
machines. Synthesis lectures on computer architecture,
4(1):1–108, 2009.

[12] A. Belay, G. Prekas, M. Primorac, A. Klimovic, S. Gross-
man, C. Kozyrakis, and E. Bugnion. The ix operating
system: Combining low latency, high throughput, and
efficiency in a protected dataplane. ACM Transactions
on Computer Systems (TOCS), 34(4):1–39, 2016.

[13] C. Bienia. Benchmarking modern multiprocessors.
Princeton University, 2011.

[14] R. D. Blumofe and C. E. Leiserson. Scheduling multi-
threaded computations by work stealing. Journal of the
ACM (JACM), 46(5):720–748, 1999.

[15] M. Bramson, Y. Lu, and B. Prabhakar. Randomized
load balancing with general service time distributions.
ACM SIGMETRICS performance evaluation review,
38(1):275–286, 2010.

[16] V. Cavé, J. Zhao, J. Shirako, and V. Sarkar. Habanero-
java: the new adventures of old x10. In Proceedings
of the 9th International Conference on Principles and
Practice of Programming in Java, pages 51–61, 2011.

[17] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kiel-
stra, K. Ebcioglu, C. Von Praun, and V. Sarkar. X10: an
object-oriented approach to non-uniform cluster com-
puting. ACM SIGPLAN Notices, 40(10):519–538, 2005.

[18] A. Daglis, M. Sutherland, and B. Falsafi. Rpcvalet:
Ni-driven tail-aware balancing of µs-scale rpcs. In Pro-
ceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages
and Operating Systems, pages 35–48, 2019.

[19] J. Dean and L. A. Barroso. The tail at scale. Communi-
cations of the ACM, 56(2):74–80, 2013.

[20] H. M. Demoulin, J. Fried, I. Pedisich, M. Kogias, B. T.
Loo, L. T. X. Phan, and I. Zhang. When idling is ideal:
Optimizing tail-latency for heavy-tailed datacenter work-
loads with perséphone. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Princi-
ples (SOSP), pages 621–637, 2021.

[21] X. Ding, K. Wang, P. B. Gibbons, and X. Zhang. Bws:
balanced work stealing for time-sharing multicores. In
Proceedings of the 7th ACM european conference on
Computer Systems, pages 365–378, 2012.

[22] D. L. Eager, E. D. Lazowska, and J. Zahorjan. A com-
parison of receiver-initiated and sender-initiated adap-
tive load sharing. Performance evaluation, 6(1):53–68,
1986.

[23] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankar-
alingam, and D. Burger. Dark silicon and the end of
multicore scaling. In 2011 38th Annual international
symposium on computer architecture (ISCA), pages 365–
376. IEEE, 2011.

[24] Z. Fang, S. Mehta, P.-C. Yew, A. Zhai, J. Greensky,
G. Beeraka, and B. Zang. Measuring microarchitec-
tural details of multi-and many-core memory systems
through microbenchmarking. ACM Transactions on Ar-
chitecture and Code Optimization (TACO), 11(4):1–26,
2015.

[25] S. Fouladi, R. S. Wahby, B. Shacklett, K. V. Balasubra-
maniam, W. Zeng, R. Bhalerao, A. Sivaraman, G. Porter,
and K. Winstein. Encoding, fast and slow: Low-latency
video processing using thousands of tiny threads. In
14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), pages 363–376, 2017.

[26] J. Fried, Z. Ruan, A. Ousterhout, and A. Belay. Caladan:
Mitigating interference at microsecond timescales. In
14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20), pages 281–297, 2020.

[27] M. Frigo, C. E. Leiserson, and K. H. Randall. The
implementation of the cilk-5 multithreaded language.
In Proceedings of the ACM SIGPLAN 1998 conference
on Programming language design and implementation,
pages 212–223, 1998.

[28] M. R. Garey and D. S. Johnson. Computers and in-
tractability, volume 174. freeman San Francisco, 1979.

[29] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin.
Efficient memory disaggregation with infiniswap. In
14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), pages 649–667, 2017.

14 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[30] T. Hellemans, T. Bodas, and B. Van Houdt. Performance
analysis of workload dependent load balancing policies.
Proceedings of the ACM on Measurement and Analysis
of Computing Systems, 3(2):1–35, 2019.

[31] T. Hellemans and B. Van Houdt. On the power-of-d-
choices with least loaded server selection. Proceedings
of the ACM on Measurement and Analysis of Computing
Systems, 2(2):1–22, 2018.

[32] J. T. Humphries, N. Natu, A. Chaugule, O. Weisse,
B. Rhoden, J. Don, L. Rizzo, O. Rombakh, P. Turner,
and C. Kozyrakis. ghost: Fast & flexible user-space
delegation of linux scheduling. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems
Principles (SOSP), pages 588–604, 2021.

[33] J. Hwang, M. Vuppalapati, S. Peter, and R. Agarwal.
Rearchitecting linux storage stack for µs latency and
high throughput. In 15th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 21),
pages 113–128. USENIX Association, July 2021.

[34] S. Ibanez, A. Mallery, S. Arslan, T. Jepsen, M. Shahbaz,
C. Kim, and N. McKeown. The nanopu: A nanosecond
network stack for datacenters. In 15th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 21), pages 239–256, 2021.

[35] C. Iorgulescu, R. Azimi, Y. Kwon, S. Elnikety, M. Sya-
mala, V. Narasayya, H. Herodotou, P. Tomita, A. Chen,
J. Zhang, et al. Perfiso: Performance isolation for com-
mercial latency-sensitive services. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18), pages
519–532, 2018.

[36] K. Kaffes, T. Chong, J. T. Humphries, A. Belay, D. Maz-
ières, and C. Kozyrakis. Shinjuku: Preemptive schedul-
ing for µsecond-scale tail latency. In 16th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 19), pages 345–360, 2019.

[37] K. Kaffes, J. T. Humphries, D. Mazières, and
C. Kozyrakis. Syrup: User-defined scheduling across
the stack. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles (SOSP),
pages 605–620, 2021.

[38] A. Kalia, M. Kaminsky, and D. Andersen. Datacenter
rpcs can be general and fast. In 16th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 19), pages 1–16, 2019.

[39] R. M. Karp and Y. Zhang. Randomized parallel algo-
rithms for backtrack search and branch-and-bound com-
putation. Journal of the ACM (JACM), 40(3):765–789,
1993.

[40] M. Karsten and S. Barghi. User-level threading: Have
your cake and eat it too. Proceedings of the ACM
on Measurement and Analysis of Computing Systems,
4(1):1–30, 2020.

[41] A. Kaufmann, T. Stamler, S. Peter, N. K. Sharma, A. Kr-
ishnamurthy, and T. Anderson. Tas: Tcp acceleration as
an os service. In Proceedings of the Fourteenth EuroSys
Conference 2019, pages 1–16, 2019.

[42] A. Klimovic, H. Litz, and C. Kozyrakis. Reflex: Re-
mote flash ≈ local flash. ACM SIGARCH Computer
Architecture News, 45(1):345–359, 2017.

[43] M. Kogias, G. Prekas, A. Ghosn, J. Fietz, and
E. Bugnion. R2P2: Making RPCs first-class datacenter
citizens. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19), pages 863–880, 2019.

[44] C. Kulkarni, S. Moore, M. Naqvi, T. Zhang, R. Ricci,
and R. Stutsman. Splinter: Bare-metal extensions for
multi-tenant low-latency storage. In 13th USENIX Sym-
posium on Operating Systems Design and Implementa-
tion (OSDI 18), pages 627–643, 2018.

[45] D. Lea. A java fork/join framework. In Proceedings
of the ACM 2000 conference on Java Grande, pages
36–43, 2000.

[46] C. Lee and J. Ousterhout. Granular computing. In
Proceedings of the Workshop on Hot Topics in Operating
Systems, pages 149–154, 2019.

[47] C. E. Leiserson. The cilk++ concurrency platform. The
Journal of Supercomputing, 51(3):244–257, 2010.

[48] D. Lemire. Code used on daniel lemire’s blog.
https://github.com/lemire/Code-used-on-Daniel-
Lemire-s-blog/tree/master/2019/01/01.

[49] J. Leverich and C. Kozyrakis. Reconciling high server
utilization and sub-millisecond quality-of-service. In
Proceedings of the Ninth European Conference on Com-
puter Systems, pages 1–14, 2014.

[50] J. Li, K. Agrawal, S. Elnikety, Y. He, I.-T. A. Lee, C. Lu,
and K. S. McKinley. Work stealing for interactive ser-
vices to meet target latency. In Proceedings of the 21st
ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, pages 1–13, 2016.

[51] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky.
MICA: A holistic approach to fast in-memory key-value
storage. In 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14), pages
429–444, 2014.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 15

[52] J. Liu, A. Rebello, Y. Dai, C. Ye, S. Kannan, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Scale and
performance in a filesystem semi-microkernel. In Pro-
ceedings of the ACM SIGOPS 28th Symposium on Oper-
ating Systems Principles (SOSP), pages 819–835, 2021.

[53] M. Marty, M. de Kruijf, J. Adriaens, C. Alfeld, S. Bauer,
C. Contavalli, M. Dalton, N. Dukkipati, W. C. Evans,
S. Gribble, et al. Snap: A microkernel approach to host
networking. In Proceedings of the 27th ACM Sympo-
sium on Operating Systems Principles (SOSP), pages
399–413, 2019.

[54] M. Mitzenmacher. Analyses of load stealing models
based on differential equations. In Proceedings of the
tenth annual ACM symposium on Parallel algorithms
and architectures, pages 212–221, 1998.

[55] M. Mitzenmacher. The power of two choices in random-
ized load balancing. IEEE Transactions on Parallel and
Distributed Systems, 12(10):1094–1104, 2001.

[56] M. Nandagopal, K. Gokulnath, and V. R. Uthariaraj.
Sender initiated decentralized dynamic load balancing
for multi cluster computational grid environment. In
Proceedings of the 1st Amrita ACM-W Celebration on
Women in Computing in India, pages 1–4. 2010.

[57] D. Neill and A. Wierman. On the benefits of work
stealing in shared-memory multiprocessors. Department
of Computer Science, Carnegie Mellon University, Tech.
Rep, 2009.

[58] D. Ongaro and J. Ousterhout. In search of an under-
standable consensus algorithm. In 2014 USENIX An-
nual Technical Conference (USENIX ATC 14), pages
305–319, Philadelphia, PA, June 2014. USENIX Asso-
ciation.

[59] OpenMP. Openmp application programming interface.
https://www.openmp.org/wp-content/uploads/
OpenMP-API-Specification-5.0.pdf, 2018.

[60] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and H. Bal-
akrishnan. Shenango: Achieving high CPU efficiency
for latency-sensitive datacenter workloads. In 16th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19), pages 361–378, 2019.

[61] A. E. Ousterhout. Achieving high CPU efficiency
and low tail latency in datacenters. PhD thesis, Mas-
sachusetts Institute of Technology, 2019.

[62] J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal,
C. Lee, B. Montazeri, D. Ongaro, S. J. Park, H. Qin,
M. Rosenblum, et al. The ramcloud storage sys-
tem. ACM Transactions on Computer Systems (TOCS),
33(3):1–55, 2015.

[63] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica.
Sparrow: distributed, low latency scheduling. In Pro-
ceedings of the Twenty-Fourth ACM Symposium on Op-
erating Systems Principles (SOSP), pages 69–84, 2013.

[64] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Kr-
ishnamurthy, T. Anderson, and T. Roscoe. Arrakis: The
operating system is the control plane. In 11th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 14), pages 1–16, 2014.

[65] A. Pourhabibi, M. Sutherland, A. Daglis, and B. Falsafi.
Cerebros: Evading the rpc tax in datacenters. In MICRO-
54: 54th Annual IEEE/ACM International Symposium
on Microarchitecture, pages 407–420, 2021.

[66] G. Prekas, M. Kogias, and E. Bugnion. Zygos: Achiev-
ing low tail latency for microsecond-scale networked
tasks. In Proceedings of the 26th Symposium on Oper-
ating Systems Principles (SOSP), pages 325–341, 2017.

[67] H. Qin, Q. Li, J. Speiser, P. Kraft, and J. Ousterhout.
Arachne: core-aware thread management. In 13th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pages 145–160, 2018.

[68] J. Reinders. Intel Threading Building Blocks: Outfitting
C++ for Multi-Core Processor Parallelism. 2007.

[69] Z. Ruan, M. Schwarzkopf, M. K. Aguilera, and A. Be-
lay. AIFM: High-performance, application-integrated
far memory. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pages
315–332, 2020.

[70] A. Rucker, M. Shahbaz, T. Swamy, and K. Olukotun.
Elastic RSS: Co-scheduling packets and cores using
programmable NICs. In Proceedings of the 3rd Asia-
Pacific Workshop on Networking 2019, pages 71–77,
2019.

[71] L. Rudolph, M. Slivkin-Allalouf, and E. Upfal. A simple
load balancing scheme for task allocation in parallel
machines. In Proceedings of the third annual ACM
symposium on Parallel algorithms and architectures,
pages 237–245, 1991.

[72] H. Schweizer, M. Besta, and T. Hoefler. Evaluating
the cost of atomic operations on modern architectures.
https://arxiv.org/pdf/2010.09852.pdf.

[73] N. G. Shivaratri, P. Krueger, and M. Singhal. Load
distributing for locally distributed systems. Computer,
25(12):33–44, 1992.

[74] M. Sutherland, S. Gupta, B. Falsafi, V. Marathe, D. Pnev-
matikatos, and A. Daglis. The nebula rpc-optimized

16 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf

architecture. In 2020 ACM/IEEE 47th Annual Inter-
national Symposium on Computer Architecture (ISCA),
pages 199–212. IEEE, 2020.

[75] The Caladan Authors. Caladan’s open-source release.
https://github.com/shenango/caladan.

[76] The Go Community. The go programming language.
https://golang.org.

[77] B. Van Houdt. Randomized work stealing versus sharing
in large-scale systems with non-exponential job sizes.
IEEE/ACM Transactions on Networking, 27(5):2137–
2149, 2019.

[78] R. V. Van Nieuwpoort, T. Kielmann, and H. E. Bal. Ef-
ficient load balancing for wide-area divide-and-conquer
applications. In Proceedings of the eighth ACM SIG-
PLAN symposium on Principles and practices of paral-
lel programming, pages 34–43, 2001.

[79] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer,
E. Tune, and J. Wilkes. Large-scale cluster management
at google with borg. In Proceedings of the Tenth Eu-
ropean Conference on Computer Systems, pages 1–17,
2015.

[80] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale,
and J. Wilkes. Cpi2: Cpu performance isolation for
shared compute clusters. In Proceedings of the 8th ACM
European Conference on Computer Systems, pages 379–
391, 2013.

[81] S. Zhao, H. Gu, and A. J. Mashtizadeh. Skq: Event
scheduling for optimizing tail latency in a traditional os
kernel. In 2021 USENIX Annual Technical Conference
(USENIX ATC 21), pages 759–772, 2021.

[82] H. Zhu, K. Kaffes, Z. Chen, Z. Liu, C. Kozyrakis, I. Sto-
ica, and X. Jin. RackSched: A Microsecond-Scale sched-
uler for Rack-Scale computers. In 14th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 20), pages 1225–1240. USENIX Association,
Nov. 2020.

A Appendix
A.1 Proof of NP-Hardness for Optimal Core Alloca-

tions

In this appendix, we prove that finding the optimal tail la-
tency for a given CPU usage bound or vice versa is NP-hard,
assuming a finite number of cores and non-constant service
times. We show this using a reduction from the multiprocessor
scheduling decision problem.
Multiprocessor Scheduling Problem [28]
Input: A non-zero number of cores c, a set of tasks T where
each task t has a positive integer service time (or length) l(t),
and an overall deadline D for completing all tasks.
Question: Is there a schedule of the tasks T over the c cores
that meets the overall deadline D? Such a schedule assigns a
start time to each task t such that there are never more than c
tasks being handled simultaneously and for each task, its start
time plus l(t) is at most D.

The Multiprocessor Scheduling Problem is NP-complete,
assuming that all tasks do not have the same service time;
with constant service times, this problem is trivial [28].
Optimal Core-Allocation Problem
Input: A non-zero number of cores c where each core can be
either on or off, and transitioning from off to on requires a
start-up time of S; a set of tasks T where each task t has an
arrival time a(t) and a positive integer service time l(t); the
total “wasted” CPU time W , or time spent by cores while they
are starting up or on but not handling a task; a tail latency
percentile P < 1 (e.g., 99.9th percentile); and a tail latency
target L.
Question: Is there a schedule for the c cores and the tasks T
such that tasks are only scheduled on cores that are on, the
wasted CPU time is at most W , and the latency at percentile
P is at most L? A schedule for the cores assigns periods of on
and off time to each, noting that it takes S time to transition
from off to on. A schedule for the tasks assigns a start time to
each task t such that the start time for t is at least a(t) and the
number of tasks being handled simultaneously never exceeds
the number of cores that are on. Finally, for P percent of the
tasks, their start time plus l(t) is at most L.

We can reduce the multiprocessor scheduling problem to
the optimal core allocation problem as follows. The number
of cores in the core allocation problem matches that in the
multiprocessor scheduling problem and we set L = D. We
construct the set of tasks for the core allocation problem by
replicating the tasks and their service times from the multi-
processor scheduling problem and setting them to all arrive at
the beginning (i.e., a(t) = 0 for all t ∈ T). In addition, we add
additional dummy tasks with l(t)> D so that the tasks in the
multiprocessor scheduling problem constitute P percent of the
total tasks in the core allocation problem; because the dummy
tasks cannot possibly meet the latency bound, the problem is
only solvable by having all non-dummy tasks meet the latency
bound. Finally we set the start-up time S to be zero and the

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 17

(a) 30% load. (b) 70% load.

Figure 9: Performance of core-allocation and load-balancing policies from Figure 5 at additional loads.

wasted CPU time bound W to be high enough to be irrelevant
(e.g., W ≥ c ·D). We leave it as a simple exercise to show that
there exists a polynomial time algorithm for such an instance
of the optimal core allocation problem if and only if there is
a polynomial time algorithm for the corresponding instance
of the multiprocessor scheduling problem. In addition, the
optimal core allocation problem is clearly in NP; thus it is
NP-complete.

Because the optimal core allocation decision problem is
NP-complete, the optimization problem of finding the optimal
tail latency for a given efficiency bound or vice versa is NP-
hard. This proof assumes that the service time distribution
l(t) is not constant; the optimization problem with constant
service times may also be NP-hard but this cannot be shown
using the proof above.

A.2 Extended Factor Analysis

In this appendix we include additional data omitted for space
in the factor analysis.

A.2.1 Additional Loads for Static Curves

In Figure 5, we compared the performance of different load-
balancing policies across different average service times to
demonstrate that beating static allocations is more difficult
with short tasks. The graphs look at both efficiency and latency
simultaneously by keeping load constant. In Figure 9, we vary
the offered load to 30% and 70%. To see a complete view of
efficiency and latency (without static load-balancing curves
for reference) across load, see Figure 7.

A.2.2 Additional Service Time Distributions

We compared the load-balancing policies across different
service time distributions. Specifically, we created static al-
location performance curves for each load-balancing policy
for both constant service times of 1 µs and a bimodal dis-
tribution with 500 ns service times for 90% of requests and
5.5 µs for the remaining 10% (average service time of 1 µs).
In Figure 10, we see that across these different service time
distributions, work stealing consistently outperforms the other

load-balancing policies. Since load-balancing choices are less
significant to end-to-end performance when service times are
constant (Figure 10a), work stealing provides smaller bene-
fits.

(a) Constant service times (1 µs).

(b) Bimodal service time distribution.

Figure 10: Performance of load-balancing policies with static core
allocations for different service time distributions.

18 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A Case for Task Sampling based Learning for Cluster Job Scheduling

Akshay Jajoo∗
akshay.jajoo@nokia-bell-labs.com

Y. Charlie Hu
ychu@purdue.edu

Xiaojun Lin
linx@purdue.edu

Nan Deng
dengnan@google.com

Abstract

The ability to accurately estimate job runtime properties
allows a scheduler to e�ectively schedule jobs. State-of-the-
art online cluster job schedulers use history-based learning,
which uses past job execution information to estimate the
runtime properties of newly arrived jobs. However, with
fast-paced development in cluster technology (in both hard-
ware and software) and changing user inputs, job runtime
properties can change over time, which lead to inaccurate
predictions.

In this paper, we explore the potential and limitation of
real-time learning of job runtime properties, by proactively
sampling and scheduling a small fraction of the tasks of each
job. Such a task-sampling-based approach exploits the simi-
larity among runtime properties of the tasks of the same job
and is inherently immune to changing job behavior. Our ana-
lytical and experimental analysis of 3 production traces with
di�erent skew and job distribution shows that learning in
space can be substantially more accurate. Our simulation and
testbed evaluation on Azure of the two learning approaches
anchored in a generic job scheduler using 3 production clus-
ter job traces shows that despite its online overhead, learning
in space reduces the average Job Completion Time (JCT) by
1.28×, 1.56×, and 1.32× compared to the prior-art history-
based predictor. Finally, we show how sampling-based learn-
ing can be extended to schedule DAG jobs and achieve similar
speedups over the prior-art history-based predictor.

1 Introduction

In big-data compute clusters, jobs arrive online and compete
to share the cluster resources. In order to best utilize the
cluster and to ensure that jobs also meet their service level
objectives, e�cient scheduling is essential. However, as jobs
arrive online, their runtime characteristics are not known a
priori. Due to this lack of information, it is challenging for
the cluster scheduler to determine the right job execution
order that optimizes scheduling metrics such as maximal
resource utilization or application service level objectives.

An e�ective way to tackle the challenges of cluster schedul-
ing is to learn the runtime characteristics of pending jobs,
which allows the scheduler to exploit o�ine scheduling algo-
rithms that are known to be optimal, e.g., Shortest Job First
(SJF) for minimizing the average completion time. Indeed,
there has been a large amount of work [27, 36, 43, 44, 47, 49,
∗The work was done while the author was pursuing his Ph.D. at Purdue

University.

52, 55] on learning job runtime characteristics to facilitate
cluster job scheduling.

In essence, all of the previous learning algorithms learn job
runtime characteristics from observing historical executions
of the same jobs, which execute the same code but process
di�erent sets of data, or of similar jobs, which have matching
features such as the same application name, the same job
name, or the same user who submitted the job.

The e�ectiveness of the above history-based learning
schemes critically rely on two conditions to hold true: (1)
The jobs are recurring; (2) The performance of the same or
similar jobs will remain consistent over time.

In practice, however, the two conditions often do not hold
true. First, many previous work have acknowledged that not
all jobs are recurrent. For example, in the traces used in Corral
[43] and Jockey [30], only 40% of the jobs are recurrent, and
Morpheus [44] shows that only 60% of the jobs are recurrent.
Second, even the authors of history-based prediction schemes
such as 3Sigma [47] and Morpheus [44] strongly argued why
runtime properties of jobs, even with the same input, will
not remain consistent and will keep evolving. The primary
reason is due to updates in cluster hardware, application
software, and user scripts to execute the cluster jobs. Third,
our own analysis of three production cluster traces (§4) have
also shown that historical job runtime characteristics have
considerable variations.

In this paper, we explore an alternative approach to learn-
ing runtime properties of distributed jobs online to facilitate
cluster job scheduling. The approach is motivated by the
following key observations about distributed jobs running
on shared clusters: (1) a job typically has a spatial dimension,
i.e., it typically consists of many tasks; and (2) the tasks (in
the same phase) of a job typically execute the same code and
process di�erent chunks of similarly sized data [9,16]. These
observations suggest that if the scheduler �rst schedules a
few sampled tasks of a job, known as pilot tasks, to run till �n-
ish, it can use the observed runtime properties of those tasks
to accurately estimate those of the whole job. E�ectively,
such a task-sampling-based approach learns job properties in
the spatial dimension. We denote the new learning scheme
as SLearn, for “learning in space”.

Intuitively, by using the execution of pilot tasks to predict
the properties of other tasks, SLearn avoids the primary
drawback of history-based learning techniques, i.e., relying
on jobs to be recurring and job properties to remain station-
ary over time. However, learning in space introduces two
new challenges: (1) its estimation accuracy can be a�ected

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 19

by the variations of task runtime properties, i.e., task skew;
(2) delaying scheduling the remaining tasks of a job till the
completion of sampled tasks may potentially hurt the job’s
completion time.

In this paper, we perform a comprehensive compara-
tive study of history-based learning (learning in time) and
sampling-based learning (learning in space), to systemati-
cally answer the following questions: (1) Can learning in
space be more accurate than learning in time? (2) If so, can
delaying scheduling the remaining tasks of a job till the com-
pletion of sampled tasks be more than compensated by the
improved accuracy and result in improved job performance,
e.g., completion time?

We answer the �rst question via quantitative analysis, and
trace and experimental analysis based on three production
job traces, including two public cluster traces from Google
released in 2011 and 2019 [8, 11] and a private trace from
2Sigma [1]. We answer the second question by designing
a generic scheduler that schedules jobs based on job run-
time estimates to optimize a given performance metric, e.g.,
average job completion time (JCT), and then plug into the
scheduler di�erent prediction schemes, in particular, learning
in time and learning in space, to compare their e�ectiveness.

We summarize the major �ndings and contributions of
this paper as follows:

• Based on literature survey and analysis using three pro-
duction cluster traces, we show that history is not a
stable and accurate predictor for runtime characteris-
tics of distributed jobs.

• We propose SLearn, a novel learning approach that
uses sampling in the spatial dimension of jobs to learn
job runtime properties online. We also provide solutions
to practical issues such as dealing with thin jobs (jobs
with a few tasks only) and work conservation.

• Via quantitative, trace and experimental analysis, we
demonstrate that SLearn can predict job runtime prop-
erties with much higher accuracy than history-based
schemes. For the 2Sigma, Google 2011, and Google 2019
cluster traces, the median prediction error are 18.98%,
13.68%, and 51.84% for SLearn but 36.57%, 21.39%, and
71.56% for the state-of-the-art history-based 3Sigma,
respectively.

• We show that learning job runtime properties by sam-
pling job tasks, although delays scheduling the remain-
ing tasks of a job, can be more than compensated by the
improved accuracy, and as a result reduces the average
JCT. In particular, our extensive simulations and testbed
experiments using a prototype on a 150-node cluster in
Microsoft Azure show that compared to the prior-art
history-based predictor, SLearn reduces the average
JCT by 1.28×, 1.56×, and 1.32× for the extracted 2Sigma,
Google 2011 and Google 2019 traces, respectively.

• We show how the sampling-based learning can be ex-
tended to schedule DAG jobs. Using a DAG trace gen-
erated from the Google 2019 trace, we show a hybrid
sampling-based and history-based scheme reduces the
average JCT by 1.25× over a pure history-based scheme.

2 Background and Related Work
In this section, we provide a brief background on the cluster
scheduling problem, review existing learning-based sched-
ulers, and discuss their weaknesses.

2.1 Cluster Scheduling Problem
In both public and private clouds, clusters are typically shared
among multiple users to execute diverse jobs. Such jobs typi-
cally arrive online and compete for shared resources. In order
to best utilize the cluster and to ensure that jobs also meet
their service level objectives (SLOs), e�cient job scheduling
is essential. Since jobs arrive online, their runtime character-
istics are not known a priori. This lack of information makes
it challenging for the scheduler to determine the right or-
der for running the jobs that maximizes resource utilization
and/or meets application SLOs. Additionally, jobs have di�er-
ent SLOs. For some meeting deadlines is important while for
others faster completion or minimizing the use of networks is
more important. Such a diverse set of objectives pose further
challenges to e�ective job scheduling [19,30,31,43,44,55,56].
2.2 Job Model
We consider big-data compute clusters running data-parallel
frameworks such as Hadoop [4], Hive [6], Dryad [37],
Scope [22], and Spark [7] that run simple MapReduce
jobs [28] or more complex DAG-structured jobs, where each
job processes a large amount of data. Each job consists of
one or multiple stages, such as map or reduce, and each stage
partitions the data into manageable chunks and runs many
parallel tasks, each for processing one data chunk.

2.3 Existing Learning-based Schedulers
An e�ective way to tackle the challenges of cluster schedul-
ing is to learn runtime characteristics of pending jobs. As
such cluster schedulers using various learning methods have
been proposed [19, 21, 25, 36, 43–45, 47, 49, 50, 52]. In essence,
all previous learning schemes are history-based, i.e., they
learn job characteristics by observations made from the past
job executions.1 In particular, existing learning approaches
can be broadly categorized into the following groups, as
summarized in Table 1.
Learning o�line models. Corral’s prediction model is de-
signed with the primary assumptions that most jobs are

1Some recent work use the characteristics of completed mini-batches
as a proxy for the remaining mini-batches, to improve the scheduling of
ML jobs [54]. However, such jobs are di�erent in that the mini-batches in
general experience signi�cantly less (task-level) variations than what we
studied in this paper.

20 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 1: Summary of selected previous work that use history-
based learning techniques.

Name Property Estimation Learning
estimated technique frequency

Corral Job runtime O�ine model On arrival
[43] (not updated)

DCOSR Memory elasti- O�ine model Scheduler
[36] city pro�le (not updated) dependent

Jockey Job runtime O�ine Periodic
[30] simulator

3Sigma Job runtime O�ine On arrival
[47] history dist. model

recurring in nature, and the latency of each stage of a multi-
stage job is proportional to the amount of data processed by
it, which do not always hold true [43].

DCOSR [36] predicts the memory usage for data parallel
compute jobs using an o�ine model built from a �xed num-
ber of pro�le runs that are speci�c to the framework and
depend on the framework’s properties. Any software update
in the existing frameworks, addition of new framework or
hardware update will require an update in pro�le.

For analytics jobs that perform the same computation
periodically on di�erent sets of data, Tetris [32] takes mea-
surements from past executions of a job to estimate the re-
quirements for the current execution.
Learning o�line models with periodic updates. Jockey
[30] periodically characterizes job progress at runtime, which
along with a job’s current resource allocation is used by an
o�ine simulator to estimate the job’s completion time and
update the job’s resource allocation. Jockey relies on job
recurrences and cannot work with new jobs.
Learning from similar jobs. Instead of using execution
history from the exact same jobs, JVuPredict [51] matches
jobs on the basis of some common features such as appli-
cation name, job name, the user who owns the job, and the
resource requested by the job. 3Sigma [47] extends JVuPre-
dict [51] by introducing a new idea on prediction: instead
of using point metrics to predict runtimes, it uses full dis-
tributions of relevant runtime histories. However, since it
is impractical to maintain precise distributions for each fea-
ture value, it resorts to approximating distributions, which
compromises the bene�ts of having full distributions.

2.4 Learning fromHistory: Assumptions andReality
Predicting job runtime characteristics from history informa-
tion relies on the following two conditions to hold, which
we argue may not be applicable to modern day clusters.
Condition 1: The jobs are recurring. Many previous
works have acknowledged that not all jobs are recurrent. For
example, the traces used in Corral [43] and Jockey [30] show
that only 40% of the jobs are recurrent and Morpheus [44]
shows that 60% of the jobs are recurrent.

Condition 2: The performance of the same or sim-
ilar jobs will remain consistent over time. Previous
works [30, 43, 44, 47] that exploited history-based prediction
have considered jobs in one of the following two categories.
(1) Recurring jobs: A job is re-scheduled to run on newly
arriving data; (2) Similar jobs: A job has not been seen before
but has some attributes in common with some jobs executed
in the past [47, 51]. Many of the history-based approaches
only predict for recurring jobs [30, 43, 44], while some oth-
ers [25, 45, 47, 51] work for both categories of jobs.

However, even the authors of history-based prediction
schemes such as 3Sigma [47] and Morpheus [44] strongly
argued why runtime properties of jobs, even with the same
input, will keep evolving. The primary reason is that updates
in cluster hardware, application software, and user scripts
to execute the cluster jobs a�ect the job runtime charac-
teristics. They found that in a large Microsoft production
cluster, within a one-month period, applications correspond-
ing to more than 50% of the recurring jobs were updated.
The source code changed by at least 10% for applications
corresponding to 15-20% of the jobs. Additionally, over a
one-year period, the proportion of two di�erent types of ma-
chines in the cluster changed from 80/20 to 55/45. For a same
production Spark job, there is a 40% di�erence between the
running time observed on the two types of machines [44].

For these reasons, although the state-of-the-art history-
based system 3Sigma [47] uses sophisticated prediction tech-
niques, the predicted running time for more than 23% of the
jobs have at least 100% error, and for many the prediction is
o� by an order of magnitude.

3 SLearn – Learning in Space
In this paper, we explore an alternative approach to learning
job runtime properties online in order to facilitate cluster
job scheduling. The approach is motivated by the following
key observations about distributed jobs running in shared
clusters: (1) a distributed job has a spatial dimension, i.e., it
typically consists of many tasks; (2) all the tasks in the same
phase of a job typically execute the same code with the same
settings [9, 12, 16], and di�er in that they process di�erent
chunks of similarly sized data. Hence, it is likely that their
runtime behavior will be statistically similar.

The above observations suggest that if the scheduler �rst
schedules a few sampled tasks of a job to run till �nish, it
can use the observed runtime properties of those tasks to
accurately estimate those of the whole job. In a modular
design, such an online learning scheme can be decoupled
from the cluster scheduler. In particular, upon a job arrival,
the predictor �rst schedules sampled tasks of the job, called
pilot tasks, till their completion, to learn the job runtime
properties. The learned job properties are then fed into the
cluster job scheduler, which can employ di�erent scheduling
polices to meet respective SLOs. E�ectively, the new scheme
learns job properties in the spatial dimension, i.e.,learning in

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 21

Table 2: Comparison of learning in time and learning in space
of job runtime properties.

Applicability Adapti- Accuracy Runtime
veness overhead

Time Recurring jobs No/Yes Depends No
Space New/Recurring jobs Yes Depends Yes

space. We denote the new learning scheme as SLearn.
Table 2 summarizes the pros and cons of the two learning

approaches along four dimensions: (1) Applicability: As
discussed in §2.3, most history-based predictors cannot be
used for the jobs of a new category or for categories for which
the jobs are rarely executed. In contrast, learning in space
has no such limitation; it can be applied to any new job. (2)
Adaptiveness to change: Further, history-based predictors
assume job runtime properties persist over time, which often
does not hold, as discussed in §2.4. (3) Accuracy: The accu-
racy of the two approaches are directly a�ected by how they
learn, i.e., in space versus in time. The accuracy of history-
based approaches is a�ected by how stable the job runtime
properties persist over time, while that of sampling-based
approach is a�ected by the variation of the task runtime prop-
erties, i.e., the extent of task skew. (4) Runtime overhead:
The history-based approach has an inherent advantage of
having very low to zero runtime overhead. It performs o�ine
analysis of historical data to generate a prediction model. In
contrast, sampling-based predictors do not have o�ine cost,
but need to �rst run a few pilot tasks till completion before
scheduling the remaining tasks. This may potentially delay
the execution of non-sampled tasks.

The above qualitative comparison of the two learning ap-
proaches raises the following two questions: (1) Can learning
in space be more accurate than learning in time? (2) If so, can
delaying scheduling the remaining tasks of a job till the com-
pletion of sampled tasks be more than compensated by the
improved accuracy, so that the overall job performance, e.g.,
completion time, is improved? We answer the �rst question
via analytical, trace and experimental analysis in §4 and the
second question via a case study of cluster job scheduling
using the two types of predictors in §5.

4 Accuracy Analysis
In this section, we perform an in-depth study of the predic-
tion accuracy of the two learning approaches: learning in time
(history-based learning) and learning in space (task-sampling-
based learning). Both approaches can potentially be used
to learn di�erent job properties for di�erent optimization
objectives. In this paper, we focus on job completion time
because it is an important metric that has been intensively
studied in recent work [23, 24, 29, 33, 35, 36, 43, 47].
4.1 Analytical Comparison
We �rst present a theoretical analysis of the prediction accu-
racies of the two approaches. We caution that here we use a
highly-stylized model (e.g., two jobs and normal task-length

distributions), which does not capture the possible complex-
ity in real clusters, such as heavy parallelism across servers
and highly-skewed task-length distributions. Nonetheless, it
reveals important insights that help us understand in which
regimes history-based schemes or sampling-based schemes
will perform better. Consider a simple case of two jobs j1
and j2, where each job has n tasks. The size of each task of
j1 is known. Without loss of generality, let us assume that
the task size of j1 is 1. Thus, the total size of j1 is n. The size
of a task of j2 is however unknown. Let x denote the average
task size of j2, and this its total size is nx. Clearly, if we knew
x precisely, then we should have scheduled j1 �rst if x > 1
and j2 �rst if x ≤ 1. However, suppose that we only know
the following: (1) (Prior distribution:) x follows a normal
distribution with mean µ and variance σ2

o; (2) Given x, the
size of a random task of the job follows a normal distribution
with mean x and variance σ2

1. Intuitively, σ2
o captures the

variation of mean task-lengths across many i.i.d. copies of
job j2, i.e., job-wise variation, while σ2

1 captures the variation
of task-lengths within a single run of job j2, i.e., task-wise
variation. We note that the parameters σ2

o and σ2
1 are not

used by the predictors below.
Now, consider two options for estimating the mean task-

length x:1) A history-based approach (§4.1.1) and (2) a
sampling-based approach where we sample m tasks from
j2 (§4.1.2).
4.1.1 History-based Schemes
Since no samples of job j2 are used, the best predictor for
its mean task length is µ. In other words, the scheduling
decision will be based on µ only. The di�erence between the
true mean task length, x, and µ is simply captured by the
job-wise variance σ2

o.
4.1.2 Sampling-based Schemes
Suppose that we sample m tasks from j2. Collect the sampled
task lengths into a vector:

~y = (y1,y2, ...,ym).

Then, based on our probabilistic model, we have

P(yi|x) = 1√
2πσ1

e
− (yi−x)2

2σ2
1 , P(~y|x) = ∏

m
i=1

1√
2πσ1

e
− (yi−x)2

2σ2
1

We are interested in an estimator of x given~y. We have

P(x|~y) = P(~y|x)·P(x)
P(~y) = P(~y|x)·P(x)∫

x P(~y|x)·P(x)dx

= 1√
2π

[
m
σ2

1
+ 1

σ2
o

] 1
2 · e
−
(

m
2σ2

1
+ 1

2σ2o

)x−
∑

m
i=1

1
σ2

1
yi+

1
σ2o

µ

m
σ2

1
+ 1

σ2o

,

where the last step follows from standard results on the poste-
rior distribution with Gaussian priors (see, e.g., [18]). In other
words, conditioned on~y, x also follows a normal distribution

with mean =
∑

m
i=1

1
σ2

1
yi+

1
σ2o

µ

m
σ2

1
+ 1

σ2o

and variance = 1
m
σ2

1
+ 1

σ2o

.

22 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 3: Summary of trace properties.
Trace Arrival Resource Resource Indiv. task

time requested usage duration
2Sigma Yes Yes No Yes

Google 2011 Yes Yes Yes Yes
Google 2019 Yes Yes Yes Yes

Note that this represents the estimator quality using the
information of both job-wise variations and task-wise varia-
tions. If the estimator is not informed of the job-wise varia-
tions, we can take σ2

o→+∞, and the conditional distribution
of x given~y becomes normal with mean 1

m ∑
m
i=1 yi and vari-

ance σ2
1

m .
From here we can draw the following conclusions. First,

whether history-based schemes or sampling-based schemes
have better prediction accuracy for an unknown job depends
on the relationship between job-wise variations σ2

o and the
task-wise variation σ2

1. If the job-wise variation is large but
the task-wise variation is small, i.e.,σ2

o >>
σ2

1
m , then sampling-

based schemes will have better prediction accuracy. Con-
versely, if the job-wise variation is small but the task-wise
variation is large, i.e., σ2

o <<
σ2

1
m , then history-based schemes

will have better prediction accuracy. Second, while the ac-
curacy of history-based schemes is �xed at σ2

o, the accu-
racy of sampling-based schemes improves as m increases.
Thus, when we can a�ord the overhead of more samples,
the sampling-based schemes become favorable. Our results
from experimental data below will further con�rm these
intuitions.

4.2 Trace-based Variability Analysis
Our theoretical analysis in §4.1 provides insights on how the
prediction accuracies of the two approaches depend on the
variation of job run times across time and space. To under-
stand how such variations fare against each other in practice,
we next measure the actual variations in three production
cluster traces. Table 3 summarizes the information available
in the traces that are used in our analysis.
Traces. Our �rst trace is provided by 2Sigma [1]. The cluster
uses an internal proprietary job scheduler running on top of
a Mesos cluster manager [2]. This trace was collected over a
period of 7 months, from January to July 2016, and from 441
machines and contains approximately 0.4 million jobs [17].

We also include two publicly available traces from Google
released in May 2011 and May 2019 [8, 11], collected from 1
and 8 Borg [53] cells over periods of 29 and 31 days, respec-
tively. The machines in the clusters are highly heterogeneous,
belonging to at least three di�erent platforms that use di�er-
ent micro-architectures and/or memory technologies [20].
Further, according to [9], the machines in the same platform
can have substantially di�erent clock rates, memory speed,
and core counts. Since the original Google 2019 trace has
data from 8 di�erent cells located in 8 di�erent locations,

and given that we already have two other traces from the
US, we chose the batch tier of Cluster G in the Google 2019
trace, which is located in Singapore [12], as our third trace
to diversify our trace collection.

We calculate the variations in task runtimes for each job
across time and across space as follows.
Variation across time. To measure the variation in mean
task runtime for a job across the history, we follow the fol-
lowing prediction mechanism de�ned in 3Sigma [47] to �nd
similar jobs.

As discussed in §2.3, 3Sigma [47] uses multiple features to
identify a job and predicts its runtime using the feature that
gives the least prediction error in the past. We include all six
features used in 3Sigma: application name, job name, user
name (the owner of the job), job submission time (day and
hour), and resources requested (cpu and memory) by the job.

For each feature, we de�ne the set of similar jobs as all
the jobs executed in the history window (de�ned below) that
had the same feature value. Next, we calculate the average
task runtime of each job in the set. Then, we calculate the
Coe�cient of Variation (CoV) of the average task runtimes
across all the jobs in the set. We repeat the above process
for all the features. We then compare the CoV values thus
calculated and pick the minimum CoV. E�ectively, the above
procedure selects the least possible variation across history.
Varying the history length in prediction across time.
3Sigma used the entire history for prediction. Intuitively, the
length of the history a�ects the trade-o� between the number
of similar jobs and the staleness of the history information.
For this reason, we optimized 3Sigma by �nding and using
the history length that gives the least variation. Speci�cally,
we de�ne the length of history based on a window size w, i.e.,
the number of past consecutive days. In our analysis below,
we vary w among 3, 7, and 14 for the three traces.
Variation across space. To measure the extent of variation
across space, we look at the CoV (CoV = σ

µ) in the task run-
times within a job. As shown in §4.1, the variance in the
task runtime predicted from sampling is σ2

1
m , where σ2

1 is
the variance in the runtimes across all the tasks within the
job and m is the number of tasks sampled. Thus, we �rst
estimate σ2

1 from all tasks within the job. We then report
the CoV of our task runtime prediction after sampling m
tasks as σ1/

√
m

µ . Our complete scheduler design in §5.1 uses
an adaptive sampling algorithm which mostly uses 3% for
the three traces. Thus, for measuring the extent of variation
across space here, we assume a 3% sampling ratio and plot

σ1
(
√

0.03×numberO f TasksInJob)×µ .
Variability comparison. For consistency, all analysis re-
sults here are for the same, shortest trace period that can
be used for sliding-window-history based analysis, e.g., the
last 15 days under the 14-day window for the 29-day Google
2011 trace. (The analysis then varies the length of the sliding
window in history-based learning.)

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 23

0 1 2 3 4 5 tail
CoVs in task duration

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Space
History-3 days
History-7 days
History-14 days

(a) Task runtime – 2Sigma

0 1 2 3 4 5
CoVs in task duration

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Space
History-3 days
History-7 days
History-14 days

(b) Task runtime – Google 11

0 1 2 3 4 5
CoVs in task duration

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Space
History-3 days
History-7 days
History-14 days

(c) Task runtime – Google 19

0 1 2 3 4 5
CoVs in CPU usage

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Space
History-3 days
History-7 days
History-14 days

(d) CPU usage – Google 11

0 1 2 3 4 5 tail
CoVs in diskIO time

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Space
History-3 days
History-7 days
History-14 days

(e) Disk IO time – Google 11
Figure 1: CDF of CoV of runtime properties across space and across time with varying history windows, using the 2Sigma,
Google 2011 and Google 2019 traces. Single-task jobs are excluded from the analysis across space.

Table 4: CoV in task runtime across time and across space
for the the 2Sigma, Google 2011, and Google 2019 traces.

Trace CoV over Time CoV over Space
P50 P90 P50 P90

2Sigma 1.00 3.10 0.18 0.55
Google 2011 0.20 0.73 0.04 0.58
Google 2019 1.35 1.67 0.70 1.33

Fig. 1(a)–Fig. 1(c) show the CDFs of CoVs in task dura-
tion measured across space and across history for multiple
history window sizes for the three traces. We see that in gen-
eral using a shorter sliding window reduces the prediction
error of 3Sigma, and the CoVs across tasks are moderately
lower than the CoVs across history for the Google 2011 trace
but signi�cantly lower for 2Sigma and Google 2019 traces.
For example, for the 2Sigma trace, the CoV across history is
higher than the CoV across tasks for 85.40% of the jobs (not
seen in Fig. 1(a) as jobs are ordered di�erently in di�erent
CDFs) and for more than 30% of the jobs, the CoV across
history is at least 12.10× higher than the CoV across tasks.

Table 4 summarizes the results, where the CoVs across
time correspond to the best history window size, i.e., 3 days
for both Google traces and 14 days for the 2Sigma trace. As
shown in the table, the P50 (P90) CoV across history are 1.00
(3.10) for the 2Sigma trace, 0.20 (0.73) for the Google 2011
trace, and 1.35 (1.67) for the Google 2019 trace. In contrast,
the P50 (P90) CoV value across the task duration of the same
set of jobs is much lower, 0.18 (0.55) for the 2Sigma trace,
0.04 (0.58) for the Google 2011 trace, and 0.70 (1.33) for the
Google 2019 trace.

Fig. 1(d) and Fig. 1(e) further show the CDF of CoVs for
CPU usage and Disk IO time for the Google 2011 trace (such
resource usage is not available in the 2Sigma trace). The
�gures show that the variation in the values of these proper-
ties when sampled across space is also considerably lower
compared to the variation observed over time.

4.3 Experimental Prediction Error Analysis

Recall from our analysis in §4.1 that lower task-wise varia-
tion than job-wise variation (§4.2) will translate into better
prediction accuracy of sampling-based schemes over history-
based schemes. While our analysis in §4.1 assumes normal
distribution, we believe that a similar conclusion will hold

in more general settings. To validate this, we next imple-
ment a sampling-based predictor SLearn, and experimentally
compare it against a state-of-the-art history-based predic-
tor 3Sigma [47] in estimating the job runtimes directly on
production job traces.
Workload characteristics. Since the three production
traces described in §4.2 are too large, as in 3Sigma [47], we
extracted smaller traces for experiments using the procedure
described below.

Since the history-based predictor 3Sigma needs a history
trace, we followed the same process as in [47] to extract
the training trace for 3Sigma and the execution trace for all
predictors, in three steps. (1) We divided each original trace in
chronological order in two halves. (2) We compressed 2Sigma
jobs to 150 tasks or fewer, by applying a compression ratio
of original cluster size/150. Since the Google traces do not
have many wide jobs yet the original clusters are very wide,
with 12.5K machines, we dropped jobs with more than 150
tasks 2. (3) We next selected the execution trace following the
process below from the second half; these became 2STrace,
GTrace11 and GTrace19, respectively. (4) We then selected
jobs from the �rst half of each original trace that are feature-
clustered with those jobs in the execution trace to form the
"history" trace for 3Sigma.

We extracted the execution trace from each of the above-
mentioned second halves by randomly selecting 1250 jobs
with equal probability. Then, for each extracted trace, we
adjust the arrival time of the jobs so that the average cluster
load matches that in the original trace [8, 11, 17]. Table 5
summarizes the workload per window of the extracted traces,
where a window is de�ned as a 1000-second interval sliding
by 100 seconds at a time, and the load per window is the total
runtime of all the jobs arrived in that window, normalized
by the total number of CPUs in the cluster times the window
length, i.e., 1000s. We see that for all three traces, the average
system load is close to 1, though the load �uctuates over time,
which is preserved by the random uniform job extraction.
Prediction mechanisms and experimental setups. We
implement the 3Sigma predictor following its description

2This is to avoid potential bias towards SLearn. A job with more than
150 tasks will have to be scheduled in more than one phase, which will be
in favor of SLearn by diminishing the sampling overhead.

24 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 5: Statistics for system load per 1000s sliding window.
Trace Average P50 P90

2STrace 1.05 0.13 2.47
GTrace11 1.01 0.29 1.49
GTrace19 1.04 0.09 0.91

in [47]. After learning the job runtime distribution (§4.2),
it uses a utility function of the estimated job runtime asso-
ciated with every job to derive its estimated runtime from
the distribution, by integrating the utility function over the
entire runtime distribution. Since our goal is to minimize
the average JCT, we used a utility function that is inversely
proportional to the square of runtime. We kept all the default
settings we learned from the authors of 3Sigma [47].

As in §4.2, SLearn samples max(1,0.03 ·S) tasks per job,
where S is the number of tasks in the job. We only show
the results for wide jobs (with 3 or more tasks) as in the
complete SLearn design (§5.1.1), only wide jobs go through
the sampling phase.
Results. Fig. 2 shows the CDF of percentage error in the
predicted job runtimes for the three traces. We see that
SLearn has much better prediction accuracy than 3Sigma.
For 2STrace, GTrace11, and GTrace19, the P50 prediction er-
ror are 18.30%, 9.15%, 21.39% for SLearn but 36.57%, 21.39%,
71.56% for 3Sigma, respectively, and the P90 prediction error
are 58.66%, 49.95%, 92.25% for SLearn but 475.78%, 294.52%,
1927.51% for 3Sigma, respectively.

5 Integrating Sampling-based Learning
with Job Scheduling: A Case Study

In this section, we answer the second key question about
the sampling-based learning: Can delaying scheduling the
remaining tasks till completing the sampled tasks be com-
pensated by the improved prediction accuracy? We answer
it through extensive simulation and testbed experiments.

Our approach is to design a generic scheduler, denoted as
GS, that schedules jobs based on job runtime estimates to
optimize a given performance metric, average job comple-
tion time (JCT). We then plug into GS di�erent prediction
schemes to compare their end-to-end performance.

5.1 Scheduler and Predictor Design
5.1.1 Generic Scheduler GS
GS replaces the scheduling component of a cluster manager
like YARN [5]. The key scheduling objective of GS is to
minimize the average JCT. Additionally, GS aims to avoid
starvation.

The scheduling task in GS is divided into two phases, (1)
job runtime estimation, and (2) e�cient and starvation-free
scheduling of jobs whose runtimes have been estimated. We
focus here on the scheduling mechanism and discuss the
di�erent job runtime estimators in the following sections.

Inter-job scheduling. Shortest job �rst (SJF) is known to be
optimal in minimizing the average JCT when job execution
depends on a single resource. Previous work has shown that
scheduling distributed jobs even with prior knowledge is NP-
hard (e.g., [24]), and an e�ective online heuristic is to order
the distributed jobs based on each job’s total size [23, 39–41].
In GS we use a similar heuristic; the jobs are ordered based
on their total estimated runtime, i.e., mean task runtime ×
number o f tasks.
Starvation avoidance. SJF is known to cause starvation to
long jobs. Hence, in GS we adopt a well-known multi-level
priority queue structure to avoid job starvation [23,26,38,46,
48]. OnceGS receives the runtime estimates of a job, it assigns
the job to a priority queue based on its runtime. Within a
queue, we use FIFO to schedule jobs. Across the queues, we
use weighted sharing of resources, where a priority queue
receives a resource share according to its priority.

In particular, GS uses N queues, Q0 to QN−1, with each
queue having a lower queue threshold Qlo

q and a higher
threshold Qhi

q for job runtimes. We set Qlo
0 = 0, Qhi

N−1 = ∞,
Qlo

q+1 = Qhi
q . A queue with a lower index has a higher priority.

GS uses exponentially growing queue thresholds, i.e., Qhi
q+1 =

E · Qhi
q . To avoid any bias, we use the multiple priority queue

structure with the same con�guration when comparing dif-
ferent job runtime estimators.
Basic scheduling operation. GS keeps track of resources
being used by each priority queue. It o�ers the next avail-
able resource to a queue such that the weighted sharing
of resources among the queues for starvation avoidance is
maintained. Resources o�ered to a queue are always o�ered
to the job at the head of the queue.

5.1.2 SLearn
To seamlessly integrate SLearn with GS, we need to use
one of the priority queues for scheduling sampled tasks. We
denote it as the sampling queue.
Fast sampling. One design challenge is how to determine
the priority for the sampling queue w.r.t. the other priority
queues. On one hand, sampled tasks should be given high
priority so that the job runtime estimation can �nish quickly.
On the other hand, the jobs whose runtimes have already
been estimated should not be further delayed by learning
new jobs. To balance the two factors, we use the second
highest priority in GS as the sampling queue.
Handling thin jobs. Recall that in SLearn, when a new
job arrives, SLearn only schedules its pilot tasks, and delays
other tasks until the pilot tasks �nish and the job runtime
is estimated. Such a design choice can inadvertently lead to
higher JCTs for thin jobs, e.g., a two-task job would experi-
ence serialization of its two tasks. To avoid JCT degradations
for thin jobs, we place a job directly in the highest priority
queue if its width is under a threshold thinLimit.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 25

10−4 10−3 10−2 10−1 100 101 102

Prediction error

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

SLearn
3Sigma

(a) 2STrace

10−4 10−3 10−2 10−1 100 101 102

Prediction error

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

SLearn
3Sigma

(b) GTrace11

10−4 10−3 10−2 10−1 100 101 102

Prediction error

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

SLearn
3Sigma

(c) GTrace19

Figure 2: Job runtime prediction accuracy.

Basic operations. Upon the arrival of a new job, the cluster
manager asynchronously communicates the job’s informa-
tion to GS, which relays the information to SLearn. If the
number of tasks in the job is under thinLimit, SLearn as-
signs it to the highest priority queue; otherwise, the job is
assigned to the sampling queue, where a subset of its tasks
(pilot tasks) will be scheduled to run. Once a job’s runtime is
estimated from sampling, it is placed in the priority queue
corresponding to its runtime estimate where the rest of its
tasks will be scheduled.
How many and which pilot tasks to schedule? When a
new job arrives, SLearn �rst needs to determine the number
of pilot tasks. Sampling more tasks can give higher estimation
accuracy, but also consumes more resources early on, which
can potentially delay other jobs, if the job turns out to be a
long job and should have been scheduled to run later under
SJF. Further, we found the best sampling ratio appears to
vary across di�erence traces. To balance the trade-o�, we
use an adaptive algorithm to dynamically determine the
sampling ratio, as shown in Figure 3. The basic idea of the
algorithm is to suggest a sampling ratio that has resulted in
the lowest job completion time normalized by the job runtime
based on the recent past. To achieve this, for every value in
a de�ned range of possible sampling ratios (between 1% and
5%), it maintains a running score (srScoreMap), which is the
average normalized JCT of T recently �nished jobs that used
the corresponding sampling ratio. In practice we found a T
value of 100 works reasonably well. During system start-up,
it tries sampling ratios of 2%, 3%, and 4% for the �rst 3T jobs
(Line 2–7). It further tries sampling ratios of 1% and 5% if
going down from 3% to 2% or going up from 3% to 4% reduces
the normalized JCT. Afterwards, for each new job, it uses
the sampling ratio that has the lowest running score. Finally,
upon each job completion, the score map is updated (Line
16–24).

Once the sampling ratio is chosen, SLearn selects pilot
tasks for a job randomly.
How to estimate from sampled tasks? Several methods
such as bootstrapping, statistical mean or median can be
used to predict job properties from sampled tasks. In GS, we
use empirical mean to predict the mean task runtime.
Work conservation. When the system load is low, some

1: procedure GetCurrentSamplingPercentage(Job j)
2: if j in First T jobs then
3: return 3
4: else if j in Second T jobs then
5: return 2
6: else if j in Third T jobs then
7: return 4
8: minScore = getMinValue(srScoreMap)
9: if minScore.SR == 2 then

10: if 1.1*minScore.value < srScoreMap[3].value then
11: return 1
12: if minScore.SR == 4 then
13: if srScoreMap[3].value > 1.1*minScore.value then
14: return 5
15: return minScore.SR
16: procedure UpdateScoreOnJobCompletion(Job j)
17: sr = j.sr . Get j’s sampling ratio.
18: normalizedJCT = j.jct . Get j’s normalized JCT.
19: UpdateScoresMap(sr, normalizedJCT)
20: procedure UpdateScoreMaps(sr, normalizedJCT)
21: if Len(jobWiseSrScoresMap[sr])>T then
22: Drop �rst element of jobWiseSrScoresMap[sr]
23: jobWiseSrScoresMap[sr].append(normalizedJCT)
24: srScoreMap[sr].value = mean(jobWiseSrScoresMap[sr])

Figure 3: Adaptive sampling algorithm in SLearn.

machines may be idle while the non-sampling tasks are wait-
ing for the sampling tasks to �nish. In such cases, SLearn
schedules non-sampling tasks of jobs to run on otherwise
idle machines. In work conservation, the jobs are scheduled
in the FIFO order of their arrival.

5.1.3 Baseline Predictors and Policies
We compare SLearn’s e�ectiveness against four di�erent
baseline predictors and two policies: (1) 3Sigma: as dis-
cussed in §4.3. (2) 3SigmaTL: same as 3Sigma but handles
thin jobs in the same way as SLearn; they are directly placed
in the highest priority queue. This is to isolate the e�ect of
thin job handling. (3) Point-Est: same as 3Sigma, with the
only di�erence being that, instead of integrating a utility
function over the entire runtime history, it predicts a point
estimate (median in our case) from the history. (4) LAS: The
Least Attained Service [48] policy approximates SJF online

26 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

without explicitly learning job sizes, and is most recently
implemented in the Kairos [29] scheduler. LAS uses multiple
priority queues and the priority is inversely proportional
to the service attained so far, i.e., the total execution time
so far. We use the sum of all the task execution time to be
consistent with all the other schemes. (5) FIFO: The FIFO
policy in YARN simply prioritizes jobs in the order of their
arrival. Since FIFO is a starvation free policy, there is no need
for multiple priority queues. (6) Oracle: Oracle is an ideal
predictor that always predicts with 100% accuracy.

5.2 Experimental Results
We evaluated SLearn’s performance against the six baseline
schemes discussed above by plugging them inGS and execute
the 3 traces (2STrace, GTrace11, and GTrace19) using large
scale simulations and on a 150-node testbed cluster in Azure
(§5.2.6).

5.2.1 Experimental Setup

Cluster setup. We implemented GS, SLearn and baseline
estimators with 11 KLOC of Java and python2. We used an
open source java patch for Gridmix [15] and open source
java implementation of NumericHistogram [13] for Hadoop.
We used some parts from DSS, an open source job scheduling
simulator [10], in simulation experiments.

We implemented a proxy scheduler wrapper that plugs
into the resource manager of YARN [5] and conducted real
cluster experiments on a 150-node cluster in MS Azure [14].

Following the methodology in recent work on cluster job
scheduling [25,47,51], we implemented a synthetic generator
based on the Gridmix implementation to replay jobs that
follow the arrival time and task runtime from the input trace.
The Yarn master runs on a standard DS15 v2 server with
20-core 2.4 GHz Intel Xeon E5-2673 v3 (Haswell) processor
and 140GB memory, and the slaves run on D2v2 with the
same processor with 2-core and 7GB memory.
Parameters. The default parameters for priority queues in
GS in the experiments are: starting queue threshold (Qhi

0) is
106 ms, exponential threshold growth factor (E) is 10, number
of queues (N) is set to 10, and the weights for time sharing
assigned to individual priority queues decrease exponentially
by a factor of 10. Previous work (e.g., [23]) and our own
evaluation have shown that the scheduling results are fairly
insensitive to these con�guration parameters. We omit their
sensitivity study here due to page limit. SLearn chooses
the number of pilot tasks for wide jobs using the adaptive
algorithm described in §5.1.2 and the threshold for thin jobs
is set to 3. We evaluate the e�ectiveness of adaptive sampling
in §5.2.2 and the sensitivity to thinLimit in §5.2.8.
Performancemetrics.We measure three performance met-
rics in the evaluation: JCT speedup, de�ned as the ratio of
a JCT under a baseline scheme over under SLearn, the job
runtime estimation accuracy, and job waiting time.

Table 6: Performance improvement of SLearn over 3Sigma
under adaptive sampling and �xed-ratio sampling.

Fraction of tasks chosen as pilot tasks
1% 2% 3% 4% 5% 10% Adap.

2STrace
P50 pred. error (%) 19.4 19.0 19.0 18.7 18.4 16.9 19.0

Avg. JCT speedup (×) 1.24 1.23 1.27 1.26 1.27 1.28 1.28
P50 speedup (×) 0.93 0.92 0.93 0.92 0.93 0.91 0.92

GTrace11
P50 pred. error (%) 14.4 14.0 13.6 13.1 12.7 9.09 13.7

Avg. JCT speedup (×) 1.52 1.55 1.54 1.56 1.58 1.51 1.56
P50 speedup (×) 1.00 1.00 1.00 1.00 1.00 1.00 1.00

GTrace19
P50 pred. error (%) 55.7 53.8 47.1 46.5 42.1 36.1 51.8

Avg. JCT speedup (×) 1.31 1.31 1.31 1.32 1.28 1.24 1.32
P50 speedup (×) 1.07 1.07 1.05 1.05 1.01 1.00 1.07

Workload. We used the same training data for history-
based estimators and the test traces (2STrace, GTrace11 and
GTrace19) as described in §4.3.

5.2.2 E�ectiveness of Adaptive Sampling
In this experiment, we evaluate the e�ectiveness of our adap-
tive algorithm for task sampling. Fig. 4 shows how the sam-
pling ratio selected by the adaptive algorithm for each job
varies between 1% and 5% over the duration of the three
traces. We further compare average JCT speedup and P50
speedup under the adaptive algorithm with those under a
�xed sampling ratio, ranging between 1% and 10%. Table 6
shows that the adaptive sampling algorithm leads to the best
speedups for 2STrace and GTrace19 and is about only 1%
worse than the best for GTrace11. Interestingly, we observe
that no single sampling ratio works the best for all traces.
Nonetheless, the adaptive algorithm always chooses one
that is the best or closest to the best in terms of JCT speedup.
More importantly, we see that the adaptive algorithm does
not always use the sampling ratio with the best prediction ac-
curacy, which shows that it e�ectively balances the tradeo�
between prediction accuracy and sampling overhead.

5.2.3 Prediction Accuracy
SLearn achieves more accurate estimation of job runtime
over 3Sigma – the details were already discussed in §4.3.

5.2.4 Average JCT Improvement
We now compare the JCT speedups achieved using SLearn
over using the �ve baseline schemes de�ned in §5.1.3.

Fig. 5(a) shows the results for 2STrace. We make the follow-
ing observations. (1) Compared to Oracle, SLearn achieves
an average and P50 speedups of 0.79× and 0.73×, respec-
tively. This is because SLearn has some estimation error;
it places 10.91% of wide jobs in the wrong queues, 3.54%
in lower queues and 7.37% in higher queues. (2) SLearn
improves the average JCT over 3Sigma by 1.28×. This sig-
ni�cant improvement of SLearn comes from much higher
prediction accuracy compared to 3Sigma (Fig. 2). (3) The

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 27

0 100K 200K 300K 400K 500K 600K
Job arrival time (sec)

1%

2%

3%

4%

5%

Sa
m

pl
in

g
ra

tio

(a) 2STrace

0 20K 40K 60K 80K 100K 120K 140K 160K
Job arrival time (sec)

1%

2%

3%

4%

5%

Sa
m

pl
in

g
ra

tio

(b) GTrace11

0 200K 400K 600K 800K 1000K 1200K 1400K
Job arrival time (sec)

1%

2%

3%

4%

5%

Sa
m

pl
in

g
ra

tio

(c) GTrace19
Figure 4: Sampling ratios selected by the adaptive sampling algorithm. The duration of initial 3T jobs appear varying due to
uneven arrival times.

3Sigma 3SigmaTL LAS Point FIFO Oracle
Other predictors and policies

100

101

102

JC
T

Sp
ee

du
p

1.28 1.26 1.91 1.42
3.29

0.79

P10-P90
P50
Average

(a) 2STrace

3Sigma 3SigmaTL LAS Point FIFO Oracle
Other predictors and policies

100

101

102

JC
T

Sp
ee

du
p

1.56 1.55 1.65 2.17

7.29

0.82

P10-P90
P50
Average

(b) GTrace11

3Sigma 3SigmaTL LAS Point FIFO Oracle
Other predictors and policies

100

101

102

JC
T

Sp
ee

du
p

1.32 1.32 1.72 1.54
3.63

0.91

P10-P90
P50
Average

(c) GTrace19
Figure 5: JCT speedup using SLearn as compared to other baseline schemes for the three traces.

Table 7: Percentage of the wide jobs that had correct queue
assignment.

Prediction SLearn 3Sigma
Technique

2STrace 89.09% 73.84%
GTrace11 86.45% 76.20%
GTrace19 73.96% 58.07%

improvement of SLearn over 3SigmaTL, 1.26×, is similar to
that over 3Sigma, con�rming thin job handling only played a
small role in the performance di�erence of the two schemes.
To illustrate SLearn’s high prediction accuracy, we show in
Table 7 the fraction of wide jobs that were placed in correct
queues by SLearn and 3Sigma. We observe that SLearn
consistently assigns more wide jobs to correct queues than
3Sigma for all three traces. (4) Compared to Point-Est,
SLearn improves the average JCT by 1.42×. Again, this is
because SLearn estimates runtimes with higher accuracy. (5)
Compared to LAS, SLearn achieves an average JCT speedup
of 1.91× and P50 speedup of 1.29×. This is because LAS
pays a heavy penalty in identifying the correct queues of
jobs by moving them across the queues incrementally. (6)
Lastly, compared with FIFO, SLearn achieves an average
JCT speedup of 3.29× and P50 speedup of 8.45×.

Fig. 5(b) shows the results for GTrace11. Scheduling under
SLearn again outperforms all other schemes. In particular,
using SLearn improves the average JCT by 1.56× compared
to using 3Sigma, 1.55× compared to using 3SigmaTL, 2.17×
compared to using Point-Est, and 1.65× compared to us-
ing the LAS policy. Fig. 5(c) shows that scheduling under
SLearn outperforms all other schemes for GTrace19 too.
In particular, using SLearn improves the average JCT by
1.32×, 1.32×, 1.54×, and 1.72× compared to using 3Sigma,
3SigmaTL, Point-Est and the LAS policy, respectively.

In summary, our results above show that SLearn’s higher
estimation accuracy outweighs its runtime overhead from
sampling, and as a result achieves much lower average job
completion time than history-based predictors and the LAS
policy for the three production workloads.

5.2.5 Impact of Sampling on Job Waiting Time

To gain insight into why sampling pilot tasks �rst under
SLearn does not hurt the overall average JCT, we next com-
pare the normalized waiting time of jobs, calculated as the
average waiting time of its tasks under the respective scheme,
divided by the mean task length of the job.

Fig. 6 shows the CDF of the normalized job waiting time
under SLearn and 3Sigma. We see that the CDF curves
can be divided into three segments. (1) The �rst segment,
where both SLearn and 3Sigma have normalized waiting time
(NWT) less than 0.04, covers 36.58% of the jobs, and 35.57%
of the jobs are common. The jobs have almost identical NWT,
much lower than 1 under both schemes. This happens be-
cause during low system load periods, e.g., lower than 1,
the scheduler will schedule all the tasks to run under both
scheme; under SLearn it schedules non-sampled tasks of
jobs to run before their sampled tasks complete due to work
conservation. (2) The second segment, where both schemes
have NWT between 0.04 and 1.90, covers 30.51% of the jobs,
and 20.38% of the jobs are common. Out of these 20.38%,
29.81% have lower NWT under SLearn and 70.19% have
lower NWT under 3Sigma. This happens because when the
system load is moderate, the jobs experience longer waiting
time under SLearn than under 3Sigma because of sampling
delay. (3) The third segment, where both schemes have NWT
above 1.90, cover 32.91% of the jobs, and 24.68% of jobs are
common. Out of these 24.68%, 83.08% have lower waiting
time under SLearn and 16.92% under 3Sigma. This happens

28 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

10−4 10−3 10−2 10−1 100 101 102

Normalized job waiting time

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

SLearn
3Sigma

Figure 6: CDF of waiting times
for wide jobs in GTrace11.

10−1 100 101 102 103

JCT speedup over 3Sigma

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

GTrace11
2STrace
GTrace19

Figure 7: [Testbed] CDF of
speedup: SLearn vs 3Sigma.

Bin-1 Bin-2 Bin-3 Bin-4
Bins

100

101

JC
T

Sp
ee

du
p

ov
er

 3
Si

gm
a

10.54

1.86 0.80
1.38

P10-P90
P50
Average

Figure 8: Performance break-
down into the bins in Table 8.

3Sigma LAS Point FIFO Oracle
Other predictors and policies for DAGs

100

101

102

JC
T

Sp
ee

du
p

1.25
2.15 1.74

5.54

0.79

P10-P90
P50
Average

Figure 9: JCT speedup using
SLearn-DAG over baselines
for GTrace19-DAG.

Table 8: Breakdown of jobs based on total duration and width
(number of tasks) for 2STrace. Shown in brackets are a bin’s
fraction of all the jobs in the trace in terms of job count and
total job runtime.

width < 3 (thin) width ≥ 3 (wide)
size < 103s (sm) bin-1 (4.55%, 0.01%) bin-2 (28.73%, 0.06%)
size ≥ 103s (lg) bin-3 (14.29%, 5.41%) bin-4 (52.43%, 94.52%)

because when the system load is relatively high, although
jobs incur the sampling delay under SLearn, they also expe-
rience queuing delay under 3Sigma, and the more accurate
prediction of SLearn allows them to be scheduled following
Shortest Job First more closely than under 3Sigma.

A detailed analysis of how the system load of the trace
a�ects the relative job performance under the two predictors
can be found in the Appendix in [42].

5.2.6 Testbed Experiments
We next perform end-to-end evaluation of SLearn and
3Sigma on our 150-node Azure cluster. Fig. 7 shows the
CDF of JCT speedups using SLearn over 3Sigma using
2STrace, GTrace11 and GTrace19. SLearn’s performance on
the testbed is similar to that observed in the simulation. In
particular, SLearn achieves average JCT speedups of 1.33×,
1.46×, and 1.25× over 3Sigma for the 2STrace, GTrace11, and
GTrace19 traces, respectively.

5.2.7 Binning Analysis
To gain insight into how di�erent jobs are a�ected by SLearn
over 3Sigma, we divide the jobs into four bins in Table 8 for
2STrace and show the JCT speedups for each bin in Fig. 8. The
results for the other two traces are similar and are omitted
due to page limit.

We make the following observations. (1) SLearn improves
the JCT for 82.46% of the jobs in Bin-1 and the average JCT
speedup for the bin is 10.54×. This happens because the jobs
in this bin are thin and hence SLearn assigns them high
priorities, which is also the right thing to do since these jobs
are also small. (2) For bin-2, SLearn achieves an average
JCT speedup of 1.86× from better prediction accuracy of
SLearn. The speedups are lower than for Bin-1 as the jobs
have to undergo sampling. However, Bin-1 and Bin-2 make
up only 0.01% and 0.06% of the total job runtime and thus
have little impact on the overall JCT. (3) Bin-3, which has

Table 9: Sensitivity analysis for thinLimit. Table shows aver-
age JCT speedup over 3Sigma.

thinLimit 2 3 4 5 6
2STrace 1.23x 1.28x 1.14x 0.97x 0.84x

GTrace11 1.54x 1.56x 1.55x 1.54x 1.53x
GTrace19 1.33x 1.32x 1.32x 1.30x 1.29x

14.29% of the jobs and accounts for 5.41% of the total job size,
has a slowdown of 20.00%. The main reason is that SLearn
treats thin jobs in the FIFO order, whereas 3Sigma schedules
them based on predicted sizes. (4) Bin-4, which accounts
for a majority of the job and total job size, has an average
speedup of 1.38×, which contributes to the overall speedup
of 1.28×. The job speedups come from more accurate job
runtime estimation of SLearn over 3Sigma. Finally, we note
that while for the 2Sigma trace, the majority of thin jobs are
large, for the Google 2011 (Google 2019) trace, only 1.90%
(1.60%) of the total number of jobs are thin and large and
they make up only 0.5% (0.5%) of the total job runtime..

5.2.8 Sensitivity to Thin Job Bypass
Finally, we evaluate SLearn’s sensitivity to thinLimt. Table 9
shows that for GTrace11 and GTrace19, the average JCT
speedup barely varies with thinLimit, but for 2STrace, there
is a big dip when increasing thinLimit to 4 or 5. This is
because a signi�cant number of jobs in 2STrace have width
4, which causes the number of thin jobs to increase from
18.84% to 58.50% when increasing thinLimit from 4 to 5.

6 Scheduling for DAG Jobs

In earlier sections, we have focused on the bene�ts of
sampling-based prediction. On the other hand, we envision
that there are situations where it would be bene�cial to com-
bine sampling-based and history-based predictions. Below,
we present our preliminary work applying such a hybrid
strategy for scheduling DAG jobs. We will discuss several
other use cases of a hybrid strategy in §7. Note that for multi-
phase DAG jobs, simply applying sampling-based prediction
to each phase in turn cannot estimate the whole DAG run-
time ahead of time. Instead, our hybrid design below aims to
learn the runtime properties and optimize the performance
of a multi-phase DAG job as a whole (e.g., [30, 33]).
Hybrid learning for DAGs (SLearn-DAG). The key idea

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 29

of SLearn-DAG is to adjust history-based prediction of the
runtime of DAG jobs using sampling-based learning of its
�rst stage. Upon arrival of a new DAG job, we estimate the
runtime of its �rst stage using sampling-based prediction
as described in §5.1.2, denoted as ds. We also estimate the
duration of this stage using history-base 3Sigma, denoted
as dh, and compute the adjustment ratio of ds

dh
. For each of

the remaining stages of the DAG, we predict their runtime
using 3Sigma and then multiply it with the adjustment ratio.
In a nutshell, this hybrid design reduces the error of history-
based prediction due to staleness of the learning data, while
avoiding the delay of sampling across all other stages.
History-based learning for DAGs (3Sigma-DAG). This is
a straight-forward extension of 3Sigma. Upon arrival of a
DAG job, it predicts independently the runtime for each stage
using the 3Sigma and sums up the estimated runtime of all
stages as the estimated runtime of the entire DAG.

We similarly extended other baselines described in §5.1.3
for DAG job.
Experimental setup. We evaluated SLearn-DAG against
3Sigma-DAG by replaying cluster trace in simulation exper-
iments based on GS (§5.1.1). We kept the simulation setup
and parameters the same as used in the other experiments.
In particular, a DAG is placed in the corresponding priority
queue based on its estimated total runtime.
DAG Traces. The only publically available DAG trace we
could �nd is a trace from Alibaba [3], which could not be
used as it does not contain features required for history-based
prediction using 3Sigma. Instead, we followed the ideas in
previous work, e.g., Branch Scheduling [34], to generate a
synthetic DAG trace of about 900 jobs using the Google 2019
trace [11], denoted as GTrace19-DAG. The number of stages
in DAGs in the GTrace19-DAG was randomly choosen to
be between 2-5 and each stage is a complete job from the
Google 2019 trace. The jobs that are part of the same DAG
have the same jobname and the same username.
Results. The results in Fig. 9 show that SLearn-DAG
achieves signi�cant speedup over other designs. The speedup
is 1.26× over 3Sigma-DAG, 2.15× over LAS-DAG, and 1.74×
over Point-Est-DAG. Looking deeper, we �nd that our
sampling-based prediction still yields higher prediction ac-
curacy: the P50 prediction error is 33.90% for SLearn-DAG,
compared to 47.21% for 3Sigma-DAG. On the other hand, for
DAG jobs the relative overhead of sampling (e.g, the delay)
is lower since only the �rst stage is sampled. Together, they
produce speedup comparable to earlier sections.

7 Discussions and Future Work

Combining history and sampling. In addition to improv-
ing the scheduling of DAG jobs (§6), we discuss several ad-
ditional motivations for combining history- and sampling-
based learning. (1) For workloads with both recurring and

�rst-time jobs, sampling-based learning can be used to esti-
mate properties for �rst-time jobs, while history-based learn-
ing can be used for recurring jobs. (2) When the workload
has both thin and wide jobs, history-based learning can be
used for estimating the runtime for thin jobs, while sampling-
based learning is used for wide jobs. (3) History-based learn-
ing can be used to establish a prior distribution, and sampling-
based approach can be used to re�ne the posterior distribu-
tion. Such a combination is potentially more accurate than
using either approach alone. For example, knowing the prior
distribution of task lengths can help to develop better max
task-length predictors, which can be useful for jobs with
deadlines. (4) Though not seen in the production traces used
in our study, in cases when task-wise variation and job-wise
variation �uctuate, adaptively switching between the two
prediction schemes may also help. (5) When the cluster is
heterogeneous, an error adjustment using history, similar to
what we did in §6, can be applied.
Dynamic adjustment of ThinLimit. ThinLimit is a sub-
jective threshold. It helps in segregating jobs for which wait-
ing time due to sampling overshadows the improvement in
prediction accuracy. The optimal choice of this limit will
depend on the cluster load at the moment and hence can be
adaptively chosen like the sampling percentage (Fig. 3 on
page).
Heterogeneous clusters. Extending sampling-based learn-
ing to heterogeneous clusters requires adjusting the task
sampling process. One idea is to schedule pilot tasks on ho-
mogeneous servers and then scale their runtime to di�erent
types of servers using the ratio of machine speeds.

8 Conclusions

In this paper, we performed a comparative study of task-
sampling-based prediction and history-based prediction com-
monly used in the current cluster job schedulers. Our study
answers two key questions: (1) Via quantitative, trace and
experimental analysis, we showed that the task-sampling-
based approach can predict job runtime properties with much
higher accuracy than history-based schemes. (2) Via exten-
sive simulations and testbed experiments of a generic clus-
ter job scheduler, we showed that although sampling-based
learning delays non-sampled tasks till completion of sam-
pled tasks, such delay can be more than compensated by the
improved accuracy over the prior-art history-based predic-
tor, and as a result reduces the average JCT by 1.28×, 1.56×,
and 1.32× for three production cluster traces. These results
suggest task-sampling-based prediction o�ers a promising
alternative to the history-based prediction in facilitating clus-
ter job scheduling.
Acknowledgement We thank our shepherd Sangeetha
Abdu Jyothi and the anonymous reviewers for their helpful
comments. This work was supported in part by NSF grant
2113893.

30 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] 2sigma hedge fund. www.twosigma.com.

[2] 2sigma’s proprietary job scheduler.
https://www.twosigma.com/insights/article/cook-
a-fair-preemptive-resource-scheduler-for-compute-
clusters/.

[3] Alibaba cluster trace.
https://github.com/alibaba/clusterdata.

[4] Apache hadoop. http://hadoop.apache.org.

[5] Apache hadoop yarn.
https://hadoop.apache.org/docs/current/hadoop-
yarn/hadoop-yarn-site/YARN.html.

[6] Apache hive. http://hive.apache.org.

[7] Apache spark. http://spark.apache.org.

[8] Cluster trace from google - 2011.
https://github.com/google/cluster-
data/blob/master/ClusterData2011_2.md.

[9] A document released by google containing
schema and details of the cluster trace released
by google. https://drive.google.com/open?id=0B5g07T
_gRDg9Z0lsSTEtTWtpOW8.

[10] Dss scheduler. https://github.com/ep�-labos/DSS.

[11] Google cluster-usage traces, retrieved 21st july 2020.
https://research.google/tools/datasets/google-cluster-
workload-traces-2019/.

[12] Google cluster-usage traces, retrieved 21st
july 2020. https://drive.google.com/�le/d/
10r6cnJ5cJ89fPWCgj7j4LtLBqYN9RiI9/view.

[13] Hadoop patch for numeric histogram.
https://issues.apache.org/jira/browse/YARN-2672.

[14] Microsoft azure. http://azure.microsoft.com.

[15] A patch for gridmix.
https://issues.apache.org/jira/browse/YARN-2672.

[16] Personal communication with a 2sigma engineer re-
garding properties of the 2sigma trace used.

[17] A private trace collected by 2sigma engineers from their
clusters. www.twosigma.com.

[18] Resutls on the posteriro dis-
tribution with gaussian priors.
https://people.eecs.berkeley.edu/ jordan/courses/260-
spring10/lectures/lecture5.pdf.

[19] Faraz Ahmad, Srimat T. Chakradhar, Anand Raghu-
nathan, and T. N. Vijaykumar. Shu�ewatcher: Shu�e-
aware scheduling in multi-tenant mapreduce clusters.
In 2014 USENIX Annual Technical Conference (USENIX
ATC 14), pages 1–13, Philadelphia, PA, 2014. USENIX
Association.

[20] George Amvrosiadis, Jun Woo Park, Gregory R. Ganger,
Garth A. Gibson, Elisabeth Baseman, and Nathan De-
Bardeleben. On the diversity of cluster workloads and
its impact on research results. In 2018 USENIX Annual
Technical Conference (USENIX ATC 18), pages 533–546,
Boston, MA, 2018. USENIX Association.

[21] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren
Zhou, Zhengping Qian, Ming Wu, and Lidong Zhou.
Apollo: Scalable and coordinated scheduling for cloud-
scale computing. In 11th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI 14), pages
285–300, Broom�eld, CO, 2014. USENIX Association.

[22] Ronnie Chaiken, Bob Jenkins, Per-AAke Larson,
Bill Ramsey, Darren Shakib, Simon Weaver, and
Jingren Zhou. Scope: Easy and e�cient par-
allel processing of massive data sets. Proc.
VLDB Endow., 1(2):1265–1276, August 2008.
http://dx.doi.org/10.14778/1454159.1454166.

[23] Mosharaf Chowdhury and Ion Stoica. E�cient co�ow
scheduling without prior knowledge. In Proceedings of
the 2015 ACM Conference on Special Interest Group on
Data Communication, SIGCOMM ’15, pages 393–406,
New York, NY, USA, 2015. ACM.

[24] Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica. Ef-
�cient co�ow scheduling with varys. In Proceedings of
the 2014 ACM Conference on SIGCOMM, SIGCOMM ’14,
pages 443–454, New York, NY, USA, 2014. ACM.

[25] Andrew Chung, Jun Woo Park, and Gregory R. Ganger.
Stratus: Cost-aware container scheduling in the public
cloud. In Proceedings of the ACM Symposium on Cloud
Computing, SoCC ’18, pages 121–134, New York, NY,
USA, 2018. ACM.

[26] Edward G Co�man and Leonard Kleinrock. Feedback
queueing models for time-shared systems. Journal of
the ACM (JACM), 15(4):549–576, 1968.

[27] Carlo Curino, Djellel E. Difallah, Chris Douglas,
Subru Krishnan, Raghu Ramakrishnan, and Sriram
Rao. Reservation-based scheduling: If you’re late don’t
blame us! In Proceedings of the ACM Symposium on
Cloud Computing, SOCC ’14, pages 2:1–2:14, New York,
NY, USA, 2014. ACM.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 31

[28] Je�rey Dean and Sanjay Ghemawat. Mapreduce: Sim-
pli�ed data processing on large clusters. In OSDI’04:
Sixth Symposium on Operating System Design and Im-
plementation, pages 137–150, San Francisco, CA, 2004.

[29] Pamela Delgado, Diego Didona, Florin Dinu, and Willy
Zwaenepoel. Kairos: Preemptive data center scheduling
without runtime estimates. In Proceedings of the ACM
Symposium on Cloud Computing, SoCC ’18, pages 135–
148, New York, NY, USA, 2018. ACM.

[30] Andrew D. Ferguson, Peter Bodik, Srikanth Kandula,
Eric Boutin, and Rodrigo Fonseca. Jockey: Guaranteed
job latency in data parallel clusters. In Proceedings of
the 7th ACM European Conference on Computer Systems,
EuroSys ’12, pages 99–112, New York, NY, USA, 2012.
ACM.

[31] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy
Konwinski, Scott Shenker, and Ion Stoica. Dominant
resource fairness: Fair allocation of multiple resource
types. In Proceedings of the 8th USENIX Conference on
Networked Systems Design and Implementation, NSDI’11,
pages 323–336, Berkeley, CA, USA, 2011. USENIX As-
sociation.

[32] Robert Grandl, Ganesh Ananthanarayanan, Srikanth
Kandula, Sriram Rao, and Aditya Akella. Multi-resource
packing for cluster schedulers. In Proceedings of the 2014
ACM Conference on SIGCOMM, SIGCOMM ’14, pages
455–466, New York, NY, USA, 2014. ACM.

[33] Robert Grandl, Mosharaf Chowdhury, Aditya Akella,
and Ganesh Ananthanarayanan. Altruistic scheduling
in multi-resource clusters. In 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI
16), pages 65–80, Savannah, GA, 2016. USENIX Associ-
ation.

[34] Zhiyao Hu, Dongsheng Li, Yiming Zhang, Deke Guo,
and Ziyang Li. Branch scheduling: Dag-aware schedul-
ing for speeding up data-parallel jobs. In Proceedings
of the International Symposium on Quality of Service,
IWQoS ’19, New York, NY, USA, 2019. Association for
Computing Machinery.

[35] Zhe Huang, Bharath Balasubramanian, Michael Wang,
Tian Lan, Mung Chiang, and Danny HK Tsang. Need for
speed: Cora scheduler for optimizing completion-times
in the cloud. In 2015 IEEE Conference on Computer Com-
munications (INFOCOM), pages 891–899. IEEE, 2015.

[36] Calin Iorgulescu, Florin Dinu, Aunn Raza, Wajih Ul
Hassan, and Willy Zwaenepoel. Don’t cry over spilled
records: Memory elasticity of data-parallel applica-
tions and its application to cluster scheduling. In 2017
USENIX Annual Technical Conference (USENIX ATC 17),

pages 97–109, Santa Clara, CA, 2017. USENIX Associa-
tion.

[37] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell,
and Dennis Fetterly. Dryad: Distributed data-parallel
programs from sequential building blocks. In Proceed-
ings of the 2Nd ACM SIGOPS/EuroSys European Con-
ference on Computer Systems 2007, EuroSys ’07, pages
59–72, New York, NY, USA, 2007. ACM.

[38] Akshay Jajoo, Rohan Gandhi, and Y. Charlie Hu. Gravi-
ton: Twisting space and time to speed-up co�ows. In
8th USENIXWorkshop on Hot Topics in Cloud Computing
(HotCloud 16), Denver, CO, 2016. USENIX Association.

[39] Akshay Jajoo, Rohan Gandhi, Y. Charlie Hu, and Cheng-
Kok Koh. Saath: Speeding up co�ows by exploiting
the spatial dimension. In Proceedings of the 13th Inter-
national Conference on Emerging Networking EXperi-
ments and Technologies, CoNEXT ’17, pages 439–450,
New York, NY, USA, 2017. ACM.

[40] Akshay Jajoo, Y. Charlie Hu, and Xiaojun Lin. Your
co�ow has many �ows: Sampling them for fun and
speed. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19), pages 833–848, Renton, WA, 2019.
USENIX Association.

[41] Akshay Jajoo, Y. Charlie Hu, and Xiaojun Lin. A
case for �ow sampling based learning for co�ow
scheduling, 2021. http://arxiv.org/abs/
2108.11255.

[42] Akshay Jajoo, Y. Charlie Hu, Xiaojun Lin, and Nan Deng.
A case for task sampling based learning for cluster
job scheduling, 2021. http://arxiv.org/abs/
2108.10464.

[43] Virajith Jalaparti, Peter Bodik, Ishai Menache, Sriram
Rao, Konstantin Makarychev, and Matthew Caesar.
Network-aware scheduling for data-parallel jobs: Plan
when you can. In Proceedings of the 2015 ACM Confer-
ence on Special Interest Group on Data Communication,
SIGCOMM ’15, pages 407–420, New York, NY, USA, 2015.
ACM.

[44] Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache,
Shravan Matthur Narayanamurthy, Alexey Tumanov,
Jonathan Yaniv, Ruslan Mavlyutov, Inigo Goiri, Subru
Krishnan, Janardhan Kulkarni, and Sriram Rao. Mor-
pheus: Towards automated slos for enterprise clusters.
In 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16), pages 117–134, Savan-
nah, GA, 2016. USENIX Association.

32 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://arxiv.org/abs/2108.11255
http://arxiv.org/abs/2108.11255
http://arxiv.org/abs/2108.10464
http://arxiv.org/abs/2108.10464

[45] Shonali Krishnaswamy, Seng Wai Loke, and Arkady
Zaslavsky. Estimating computation times of data-
intensive applications. IEEE Distributed Systems Online,
5(4):1 – 12, 2004.

[46] Misja Nuyens and Adam Wierman. The foreground–
background queue: a survey. Performance evaluation,
65(3-4):286–307, 2008.

[47] Jun Woo Park, Alexey Tumanov, Angela Jiang,
Michael A. Kozuch, and Gregory R. Ganger. 3sigma:
Distribution-based cluster scheduling for runtime
uncertainty. In Proceedings of the Thirteenth EuroSys
Conference, EuroSys ’18, pages 2:1–2:17, New York, NY,
USA, 2018. ACM.

[48] Idris A. Rai, Guillaume Urvoy-Keller, and Ernst W. Bier-
sack. Analysis of las scheduling for job size distributions
with high variance. In Proceedings of the 2003 ACM SIG-
METRICS International Conference on Measurement and
Modeling of Computer Systems, SIGMETRICS ’03, pages
218–228, New York, NY, USA, 2003. ACM.

[49] Kaushik Rajan, Dharmesh Kakadia, Carlo Curino, and
Subru Krishnan. Perforator: Eloquent performance
models for resource optimization. In Proceedings of the
Seventh ACM Symposium on Cloud Computing, SoCC
’16, pages 415–427, New York, NY, USA, 2016. ACM.

[50] Warren Smith, Ian Foster, and Valerie Taylor. Predict-
ing application run times using historical information.
In Dror G. Feitelson and Larry Rudolph, editors, Job
Scheduling Strategies for Parallel Processing, pages 122–
142, Berlin, Heidelberg, 1998. Springer Berlin Heidel-
berg.

[51] Alexey Tumanov, Angela Jiang, Jun Woo Park,
Michael A. Kozuch, and Gregory R. Ganger. Jamaisvu:
Robust scheduling with auto-estimated job runtimes.
In Technical Report CMU-PDL-16-104. Carnegie Mellon
University, 2016.

[52] Alexey Tumanov, Timothy Zhu, Jun Woo Park,
Michael A. Kozuch, Mor Harchol-Balter, and Gregory R.
Ganger. Tetrisched: Global rescheduling with adap-
tive plan-ahead in dynamic heterogeneous clusters. In
Proceedings of the Eleventh European Conference on Com-
puter Systems, EuroSys ’16, pages 35:1–35:16, New York,
NY, USA, 2016. ACM.

[53] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu,
David Oppenheimer, Eric Tune, and John Wilkes. Large-
scale cluster management at Google with Borg. In
Proceedings of the European Conference on Computer
Systems (EuroSys), Bordeaux, France, 2015.

[54] Wencong Xiao, Romil Bhardwaj, Ramachandran Ram-
jee, Muthian Sivathanu, Nipun Kwatra, Zhenhua Han,
Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu Zhang,
Fan Yang, and Lidong Zhou. Gandiva: Introspective
cluster scheduling for deep learning. In 13th USENIX
Symposium on Operating Systems Design and Implemen-
tation (OSDI 18), pages 595–610, Carlsbad, CA, October
2018. USENIX Association.

[55] Yong Xu, Kaixin Sui, Randolph Yao, Hongyu Zhang,
Qingwei Lin, Yingnong Dang, Peng Li, Keceng Jiang,
Wenchi Zhang, Jian-Guang Lou, Murali Chintalapati,
and Dongmei Zhang. Improving service availability of
cloud systems by predicting disk error. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18), pages
481–494, Boston, MA, 2018. USENIX Association.

[56] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma,
Khaled Elmeleegy, Scott Shenker, and Ion Stoica. Delay
scheduling: A simple technique for achieving locality
and fairness in cluster scheduling. In Proceedings of the
5th European Conference on Computer Systems, EuroSys
’10, pages 265–278, New York, NY, USA, 2010. ACM.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 33

Starlight: Fast Container Provisioning on the Edge and over the WAN

Jun Lin Chen
University of Toronto

Daniyal Liaqat
University of Toronto

Moshe Gabel
University of Toronto

Eyal de Lara
University of Toronto

Abstract
Containers, originally designed for cloud environments, are
increasingly popular for provisioning workers outside the
cloud, for example in mobile and edge computing. These
settings, however, bring new challenges: high latency links,
limited bandwidth, and resource-constrained workers. The re-
sult is longer provisioning times when deploying new workers
or updating existing ones, much of it due to network traffic.

Our analysis shows that current piecemeal approaches to
reducing provisioning time are not always sufficient, and can
even make things worse as round-trip times grow. Rather,
we find that the very same layer-based structure that makes
containers easy to develop and use also makes it more difficult
to optimize deployment. Addressing this issue thus requires
rethinking the container deployment pipeline as a whole.

Based on our findings, we present Starlight: an accelerator
for container provisioning. Starlight decouples provisioning
from development by redesigning the container deployment
protocol, filesystem, and image storage format. Our eval-
uation using 21 popular containers shows that, on average,
Starlight deploys and starts containers 3.0× faster than the
current state-of-the-art implementation while incurring no
runtime overhead and little (5%) storage overhead. Finally,
it is backwards compatible with existing workers and uses
standard container registries.

1 Introduction

Docker and other container engines are a popular approach
for software provisioning due to their low overhead, standard-
ization, and ease of use [3, 41, 53, 60]. They provide isolation
and standardized packaging for application files, and are sup-
ported by a large suite of standard tools [16,18,21,23,24]. Un-
like VMs, containers are lightweight and easy to update: even
lightweight VMs [1, 38] require re-building and re-deploying
the entire image. Container images, on the other hand, are
built as a stack of layers; updating a component can be as
simple as rebuilding its layer rather than the entire image [15].

Similarly, we can extend a container by adding layers to the
top of its stack. Deploying is also straightforward: fetch com-
pressed layers from a registry server such as Docker Hub,
decompress them, mount using a layered filesystem [34], and
start the container process. The stack-of-layers structure thus
makes containers easy to develop and maintain, and fits well
into modern development workflows [5].

Though originally designed to be used inside a cloud data-
center [20], containers are becoming increasingly popular in
edge computing, mobile, and multi-cloud settings [11, 22, 25,
47, 56, 61].1 Placing workers outside the cloud and closer to
the user brings many advantages such as lower latency, band-
width and power reduction, and privacy [52, 59]. Containers
can be used to provision network functions at mobile base
stations [13], Function-as-a-Service (FaaS) runtimes on local
datacenters [43], local replicas in distributed stores [42], or
components of distributed applications [61].

However, as systems grow larger and more complex, fast
container provisioning is increasingly important. For exam-
ple, Container-as-a-Service (CaaS) and FaaS providers must
be able to provision workers quickly [3, 41, 60]. Another
common case is rolling software updates, where we must
update software across many thousands of workers [6, 50].
Edge computing brings its own set of challenges: high latency
upstream links, bandwidth limits, resource-constrained local
datacenters and workers, and user mobility. Pulling container
images from a registry in the cloud to an edge worker takes a
long time over wide-area links [25]. Another issue is user mo-
bility, which causes frequent reconfigurations [57], making
worker provisioning a common operation. Finally, limited re-
sources in edge datacenters means that placing a local registry
or cache at every edge can be expensive [25].

While there is work on improving container provisioning
time, many are designed for the cloud [25, 60, 63], and are
ill-suited for edge computing scenarios. For example, FaaS-
Net [60] uses a tree of workers to deploy containers in paral-
lel, which is infeasible when latency is large and bandwidth

1The distinctions between these settings are not relevant for this work,
hence we will refer to all of these using the umbrella term “edge computing”.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 35

is limited. Another popular approach is on-demand down-
load [28,37,58], where we start containers early and download
files on demand. These scale poorly with even moderate la-
tency, even though many containerized applications do not
necessarily require all mounted files immediately.
Our Contributions We identify three barriers to fast con-
tainer provisioning. First, the layer-based structure that makes
containers so convenient also prevents effectively applying
common optimizations such as eliminating redundancy and
downloading files on-demand. Second, the pull-based design
of current approaches, where workers request what they need,
becomes detrimental as latency grows. Finally, current ap-
proaches do not explicitly address the common scenario of
software updates. We argue that faster provisioning requires
a holistic approach to container deployment.

Motivated by these insights, we present Starlight: an ac-
celerator for provisioning container-based applications
that decouples the mechanism of container provisioning from
container development. Starlight maintains the convenient
stack-of-layers structure of container images, but uses a dif-
ferent representation when deploying them over the network.
The development and operational pipelines remain unchanged:
users can use existing containers, tools, and registries. In de-
signing Starlight, we revisit every aspect of the container
deployment mechanism:

• A redesigned worker-cloud deployment protocol sends
all file metadata first, allowing containers to start before
file contents are available. It uses a push-based approach to
avoid costly round-trip requests: workers can specify what
they already have in store, so we send only the files they
need in the order they would be needed.

• On the worker side, we use a new filesystem to mount
files as soon as metadata is available, allowing our custom
snapshotter plugin to start containers quickly while down-
loading file contents in the background. When a container
opens a file whose contents are pending, we block until the
contents are available.

• Workers connect to a new proxy component in the cloud
which implements the new protocol. The proxy optimizes
the list and order of files on-demand, across multiple layers
and containers This reduces duplication and makes updates
faster. The proxy works transparently with existing infras-
tructure: compressed layers are stored in a standard registry,
and legacy workers can connect to that registry as normal.

• A seekable compressed layer format allows the proxy to
send individual compressed files to the worker without hav-
ing to decompress stored layers first. This format has low
overhead (average of 4.2%) and is backwards compatible
with existing workers and registries, so there is no need to
store container images in two formats.

We use 21 popular container images to evaluate Starlight
across a range a range of network latencies, bandwidths, and
scenarios. Our results show that Starlight substantially outper-

forms other approaches across all latencies, with 3.0× faster
provisioning than a state-of-the-art baseline [21], and 1.9×
faster on average than the next best approach [58]. Starlight
also improves provisioning inside the cloud; for example it
can deploy updates 35% faster than prior work [58]. In fact,
Starlight containers often start faster than the time it would
take to merely download an optimized container image. Fi-
nally, Starlight has little-to-no runtime overhead: its worker
performance matches the standard state-of-the-art approach.

Starlight is currently available as an open source project at
https://github.com/mc256/starlight.

2 Background

A container is a process that is isolated from the host system
using techniques such as cgroups and namespaces [35]. A
container is structured as a stack of layers, where each layer
contains a part of the filesystem tree for the containerized
application. Layers are mounted by the container process
using a filesystem such as OverlayFS [34] that presents the
containerized application with a merged view: files in upper
layers replace those in lower layers, making it easy to update
container contents using copy-on-write from lower layers.
Most layers are read-only; writes go to a top read-write layer
using copy-on-write as needed. A container image is the set
of files and associated metadata that represent the container
at rest (i.e., when it is not running). Concretely, container
images are comprised of container configuration metadata
and a sequence of compressed layers: compressed files that
store the files in the layer and their associated metadata.

Containers are easy to develop, maintain, and deploy, due
to their layer-based structure and standardized tooling. For
example, developers can build new containerized applications
by adding layers on top of an existing container image; pack-
aging application updates is similarly straightforward. This
also makes security updates for underlying components fast
and automatic: applying an update simply requires updating
the base layer. The repository of container images (the reg-
istry server) thus resembles a tree where individual images
are split off from a common point.

Containers also make software provisioning easy using a
three-phase process managed by a container engine on the
worker such as containerd [21] or Docker [18]: (i) pull the re-
quested container image from the registry and decompress its
layers, (ii) create a container instance by preparing an initial
snapshot of its filesystem state, and (iii) start the container
instance, which involves mounting the snapshot filesystem
and starting the container process using a standard runtime.

2.1 Edge Computing
Edge computing, defined broadly in this work, is the idea of
placing computing resources outside the cloud, closer to the
data or end users [52, 62]: near the network edge (e.g., local

36 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/mc256/starlight

0 100 200 300
RTT (ms)

0

5

10

15

Ti
m

e
(s

)

redis

0 100 200 300
RTT (ms)

0
5

10
15

node

0 100 200 300
RTT (ms)

0

20

40
postgres

containerd eStargz download

Figure 1: Mean container provisioning time across a range of
latencies; shaded area show standard deviation across 5 runs.

datacenter, base station), user devices (e.g., mobile phone),
or even in low Earth orbit [14]. We include in this definition
settings such as mobile computing, content delivery networks
(CDNs), Internet of Things (IoT), wide-area networks, and
multi-cloud deployments.

Edge computing provides many benefits. For example, the
short distance to users and data means faster and more con-
sistent response times. And, since we no longer need to send
all data to the cloud for processing, it improves privacy and
reduces bandwidth usage. Other benefits include robustness
to network failures and emission reduction [51, 52, 54].

Computing on edge workers has its drawbacks, however.
First, they have much higher round-trip times (RTT) to the
cloud. Recent work has found RTT ranging from 10ms to
400ms [10, 59] on terrestrial internet, and medians of 45–
724ms on satellite-based internet [40]. Cross-datacenter laten-
cies are also high, with one cloud provider reporting RTT be-
tween 2 to 400ms [45]. Bandwidth is also limited, with inter-
datacenter bandwidths of 30–250Mbps [48]. Second, unlike
cloud datacenters that offer virtually endless compute and stor-
age, edge data centers are typically resource-constrained [54].
This encourages aggressive repurposing of workers, which
makes fast provisioning even more important. For example,
maintaining a pool of “hot” workers for elasticity is common
in the cloud FaaS infrastructures, but is more expensive on
the edge [43]. Lastly, edge and mobile applications are more
affected by user mobility than cloud applications: as users
move the nearest edge datacenter changes, which entails more
frequent reconfiguration [57], i.e., provisioning.

3 Motivation

To explore the effect of latency on containers, we use
containerd [21] to provision three popular containers over
a 100Mbps connection with variable latency (see §5.1 for
technical details). Figure 1 shows provisioning time, defined
as the time it takes for the containerized application to down-
load, decompress, start, and be ready. For comparison, we
also show the download time for a file of equivalent size
(dashed lines). We observe that containerd time increases
substantially as RTT grows, and can even triple when RTT is

300ms. Moreover, in all cases provisioning time increases at
a faster rate than would be expected simply due to extra net-
work latency, which can be seen by comparing provisioning
time to download time.

We also compare to eStargz [58], a recent approach that
accelerates provisioning by starting the container before its
layers have finished downloading and retrieving individual
files on-demand. Prior work has found that many files are not
used during container startup [28], indeed our three example
containers access less than 1% of their files during startup
(comprising 1–39% of data). Rather than wait until all files are
available, eStargz starts the container quickly and download
files on-demand [27, 28, 65]. It goes further by optimizing
the order of files in each compressed layer such that the “hot”
files needed early in container startup are placed first, thus
avoiding redundant requests. Workers first fetch the hot part
of each layer, start the container, and continue fetching the
remaining files in the background or lazily on-demand.

As Figure 1 shows, when latency is small eStargz can
accelerate provisioning. However, as RTT grows eStargz
scales worse than the baseline and can even become slower
than baseline containerd, as demonstrated for postgres
with RTT of 150ms or above.

In the rest of this section, we analyze what makes optimiz-
ing provisioning difficult. We find that the root cause for slow
provisioning time is the overall design of the provisioning
pipeline: it is pull-based, designed around the stack-of-layers
abstraction container images, and does not explicitly consider
container updates. We show below that this design hinders
optimization effort – both on the edge and in the cloud.

3.1 Pull-based Protocol
The protocol used to deploy containers to workers is pull-
based: workers simply download the compressed layers they
need from the registry using HTTP requests. This straightfor-
ward design avoids redundant pulls of layers that the worker
already has, and works well inside datacenters. However, out-
side the cloud this can cause queueing delays, since registry
implementations limits the number of concurrent connections
per client to 2 or 3 [17]. Most containers have more lay-
ers [28], so the resulting cumulative delay adds up as RTT
grows. Increasing the maximum number of concurrent con-
nections could overwhelm the registry and may be impractical
for resource-constrained workers.

On-demand downloading further exacerbates queuing by
making even more HTTP requests to the registry. eStargz [58]
uses a filesystem file access trace to determine the file order in
compressed layers. In practice, however, the file access order
of container workloads is not entirely deterministic due to
multi-threading and runtime configuration. Container startup
is thus slowed as multiple HTTP request due to out-of-order
file accesses queue in the registry and delay one another.2

2Interestingly, excessive round-trips and queuing delays were also ob-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 37

3.2 Layered-based Structure

Container images are structured as a stack of independent
layers: each layer is stored separately, and contains its own
metadata (e.g., list of files). While convenient for develop-
ment, we argue that this makes optimizing provisioning more
difficult: first, the information on container contents is dis-
tributed across multiple layers; second, because layers are the
wrong granularity for provisioning protocols; and third, layer
reuse does not capture updates well.
Distributed Metadata The first issue is that file metadata,
including the list of files in the container contents, is not sent
separately as part of the container image. Rather, each com-
pressed layer includes its own list of files, and their metadata
is intermingled with file contents. Yet, we cannot start a con-
tainer early since list of files in a container is unknown until
all layers are retrieved.

Consider again eStargz: since standard container images
lack file metadata, eStargz stores a table of contents (ToC)
at the end of every layer. Unfortunately, neither the size
of compressed layers nor the exact beginning of the ToC
is encoded in the image metadata. This in turn means at
least two and perhaps three HTTP requests per layer: one to
determine the size of its compressed image file, another to
retrieve the layer’s ToC from an estimated position before the
end, and potentially a third if the ToC is larger than expected.

Fixing this is not trivial, since container images are stan-
dardized; careless changes would make development harder.
For example, adding a table of contents to container image
metadata requires changing the standard and updating a huge
number of existing tools used by developers [18, 21, 23, 46].
Layer vs. File Granularity Second, and perhaps counter-
intuitively, the layer-based structure makes deployment
slower due to cross-layer (and cross-container) redundancy.
Containers evolve one layer at a time by extending other im-
ages with new layers. To update a file, we first copy it from
the original read-only layer to the top read-write layer. Chang-
ing file metadata (e.g., ownership) also requires copying since
layers cannot refer to each other. In both cases the original
file remains in the previous layer, with no indication that this
has happened. This cross-layer data duplication cannot be
captured explicitly since file metadata is stored in the lay-
ers, and cannot be exploited by compression since layers are
compressed independently.

Table 1 illustrates the cost of such redundancy for our sam-
ple containers by comparing the required download size using
the baseline layer-based approach, to the size of an optimized
“delta” update that only includes changed files and removes
duplicates across layers.3 The inflation in update sizes ranges
from 1.23× (redis) to a whopping 10.54× (node). Indeed, a

served in mobile web browsers that use HTTP/2 [36]. The underlying causes,
however, are quite different (handshaking and packet losses, respectively).
Determining whether the mitigation approaches in QUIC are applicable for
container provisioning (or vice versa) is beyond the scope of this work.

Container From→ To Baseline Delta

redis 6.2.1→ 6.2.2 9.6 7.8
node (alpine) 16-3.11→ 16-3.12 39.0 3.7
postgres 13.1→ 13.2 109.5 24.9

Table 1: Package size (MB) of standard and optimized update.

recent analysis of Docker Hub [64] found that 90% of layers
are only referenced by a single image, but over 99.4% of files
had duplicates. Exploiting this cross-layer duplication dur-
ing provisioning is difficult since file metadata is distributed
across multiple layer.

While there has been prior work that proposes deduplicat-
ing the registry [55, 63], this does not reduce provisioning
time since (by design) the downloaded container images and
provisioning protocol remain the same. Rather, such work
focus on saving registry space.
Limited Layer-reuse Ideally, an updated container image
would share common layers with its previous version, so
deploying updates requires only fetching and decompress-
ing the new layers. Unfortunately, even a minor change
to a single layer low in the stack causes cascading effect
where all layers above it must be updated, even though their
contents are mostly identical [15]. On such example is up-
dating a worker from postgres:13.1 to postgres:13.2.
These two container images share no layers since an update
to the debian:buster-20210208-slim image forced an up-
date to all downstream layers. Provisioning this update re-
quires downloading and decompressing the entire image, even
though the total size of changed files is much smaller. Our
analysis of 21 popular containers (Table 2) suggests that layer
reuse only captures 3% of duplication, on average.

3.3 No Explicit Update Support
Provisioning a worker is not a rare operation. Rather, over
the lifetime of a worker, we will deploy containers many
times and for different reasons: initial provisioning, software
updates, security patches, and so on. This even more common
on edge workers due to user mobility and limited resources
at edge datacenters (§2.1). This not only results in frequent
provisioning, but also means that worker contents is highly
diverse: as workers get updated and repurposed, the version
of the container image available in local storage varies from
worker to worker. As discussed above, such updates are an
opportunity for optimization since many of the files have not,
in fact changed (§3.2).

However, the current design of the provisioning pipeline
does not allow users to express update operations explicitly.

3Flattening container images down to a single merged layer this way
would mitigate many of the issues we discuss. However, would also eliminate
the advantages of containers in the first place (§2), and would require an
optimized image for every potential update path [47, 55].

38 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Under the current approach, updates are treated as any other
deployment: the worker simply pulls the needed layers from
the registry. Depending on the update, this may or may not
result in faster provisioning. While in theory we could prepare
optimized provisioning packages in advance, the diversity in
worker contents makes this approach impractical. A better
approach is to compile the provisioning package dynamically,
on-demand, by taking into account what is already available
at the worker when selecting which files to include. Doing
so, however, requires a capacity to express worker updates,
which the current provisioning protocol does not support.

4 Starlight

Starlight is designed to accelerate container provisioning by
considering the deployment pipeline holistically. In designing
Starlight, we set out to achieve several goals. First, accelerate
deployment on both low and high-latency links, and scale
gracefully as latency grows. Second, preserve the advantages
of containers for application developers. For the same rea-
son, Starlight should be easy to adopt incrementally, without
causing interference or requiring abrupt changes to working
systems – Starlight should be backwards-compatible with
non-Starlight workers, work with existing infrastructure, and
have low overhead. Finally, Starlight should better support
the common scenario of container updates.

4.1 Design Considerations
Starlight’s design is driven by four key principles, informed
by our analysis of container provisioning (§3): (1) start con-
tainers early, (2) send workers only what they need, (3) use a
push-based design to avoid costly round-trips, and (4) priori-
tize worker performance over cloud effort. These lead to the
following design decisions:

• The provisioning protocol should not resemble the stack-
of-layer structure of container images. Instead, it should be
pushed-based, and operate at file rather than layer granular-
ity. The list and order of files should be jointly optimized
across multiple layers and containers.

• The provisioning protocol should cleanly separate file meta-
data from contents, and send the metadata first. This allows
Starlight to start containers early by mounting a “mock”
filesystem while downloading contents in the background.

• The provisioning protocol should let workers explicitly re-
quest updates and specify what is available to them locally.

• Avoid changing registry by placing a proxy located near
it, which lets us to change provisioning protocol without
affecting existing workers.

• The proxy should create provisioning packages on-demand
based on what the worker already has available. This makes
updating workers more efficient, avoids inflating the reg-
istry with packages for every conceivable update, and places

snapshotter

CLI

containerd

filesystem

proxy

directory DB

registry

standard component Starlight component

worker cloud

1

2 3

4
5

6

7

8
9

Figure 2: Starlight architecture.

the computational burden on the cloud where it is cheaper
(§2.1). Supporting this requires storing a table of contents
and file metadata for every container.

• Storing compressed layers using a seekable backwards-
compatible format allows both Starlight and legacy workers
to use the same compressed layer files and standard reg-
istries, and avoids inflating the registry size.

• Use standard container images to support the large eco-
system of existing tools for building, storing, and serving
containers [16, 18, 21, 23, 24, 30, 46].

4.2 Overview

Figure 2 shows Starlight’s architecture, which is comprised
of a proxy and a directory database (§4.4) in the cloud next
a standard registry; and a snapshotter plugin (§4.5) on the
worker. The proxy and the snapshotter plugin communicate
using the Delta Bundle Protocol (§4.3). The snapshotter
plugin manages the lifecycle of the filesystem (§4.6) for the
container instance. We also include a command line tool.

We first describe Starlight’s operation at a high level, and
how it maps to the three-step PULL-CREATE-START process.

Once the user issues a worker PULL command to deploy
a container 1©, the command is received by the standard
containerd daemon. containerd then forwards the com-
mand to the Starlight snapshotter daemon 2©, and waits
for confirmation that the requested images have been found.
The Starlight snapshotter opens an HTTPS connection to the
Starlight proxy and sends the list of requested containers as
well as the list of relevant containers that already exist on
the worker 3©. The proxy queries the directory database 4©
for the list of files in the various layers of the requested con-
tainer image, as well in the image already available on the
worker. The proxy will then begin computing the delta bundle
that includes the set of distinct compressed file contents that
the worker does not already have, specifically organized to
speed up deployment; In the background, the proxy issues
a series of HTTPS requests to the registry 7© to retrieve the
compressed contents of files needed for delta bundle. Once
the contents of the delta bundle has been computed, the proxy
creates a Starlight manifest (SLM) – the list of file metadata,

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 39

container manifests, and other required metadata – and sends
it to the snapshotter 5©, which notifies containerd that the
PULL phase has finished successfully.

We can then use the SLM execute the CREATE phase: con-
figuring the container and the Starlight filesystem 6©.

Starlight then proceeds to the START phase: it mounts then
launch container instances. Note that even though the con-
tainer instances have launched, at this point the worker does
not have the contents of many files (or perhaps all, for new de-
ployments). Such files are mounted based on metadata only;
when opened, the Starlight filesystem will block until file
contents have arrived from the proxy. The proxy streams file
contents back to the snapshotter 8©, which in turn updates the
filesystem to unblocks the access of the file 9©. To optimize
provisioning times, the proxy sends files in the order they will
(likely) be needed; this order is determined when building the
delta bundle, and relies on preprocessed information stored
in the directory database.

4.3 Delta Bundle Protocol

Starlight uses a novel Delta Bundle Protocol to send con-
tainer images to the worker. This single-request HTTP-based
protocol is designed to reduce unnecessary transfers, avoid
round-trips, and prioritise information needed to start the con-
tainer. Much of Starlight’s design is informed by the need to
support the Delta Bundle Protocol.

A provisioning request includes the name and version of
the requested the container image as part of the request URL,
and optionally the old version in the worker’s local storage.
The response consists of two parts: a header and a body.

The Header The header contains of all the information
needed to start container instances of the requested images.
It it comprised of (1) a Starlight Manifest (SLM), (2) a ta-
ble of all layers digests from both the existing and requested
container images, and (3) other data required by the imple-
mentation such as protocol version and authentication..

An SLM includes a standard Open Container Initiative
(OCI) container image manifest file [24, 39], an OCI configu-
ration file for the instance, a list of indices into the table of
layer digests, and the filesystem table of content (ToC).

The ToC presents a merged (flattened) view of the re-
quested container’s filesystem (§2), providing sufficient in-
formation for the worker to mount the container’s filesystem
using StarlightFS without waiting for the response body. Each
entry in the ToC includes the file name and path, type (e.g.
regular file, link, or directory), attributes (e.g. ownership and
timestamps), and an SHA256 hash of the file content. Ad-
ditionally, every entry includes an index to the shared layer
digests table in the delta bundle header, which enables reusing
file contents on the worker’s local storage. Finally, each entry
also has an offset field which points to the file’s payload –
compressed file content – in the body of the delta bundle.

Using the SLM The name, metadata, offset, and index
into the digest list allow workers to reconstruct the requested
container’s filesystem. For new or updated files – those that
the worker does not already have in its local storage – the
offset points to the payload. This allows multiple file entries to
reuse the same payload in the body of delta bundle, reducing
the transfer volume. Alternatively, if a file’s metadata has
changed (e.g., ownership), the payload already exists on the
worker. The ToC entry thus contains the new metadata, an
empty payload offset, and an index pointing to the original
layer in the list of digests.
The Delta Bundle Body The body is a sequence of payloads
(compressed file contents) for new or updated files, sent in
the order which they are likely to be accessed. Since the
header allows multiple file to reference the same payload –
all payloads in the body are unique.

4.4 Proxy and Directory Database

Despite the name, the Starlight proxy is not merely a proxy
server or a simple bridge. It is in charge of optimizing and
building the delta bundle sent to the workers, as well as collect-
ing and analyzing filesystem traces used in this optimization.
The Directory Database The directory database stores the
table of contents and file metadata for each container image
in the registry, as well as additional information used by the
proxy to compute and optimize the delta bundle.

Whenever a new container image is uploaded to the registry
(triggered manually or by hooks), the proxy captures file
metadata from all layers, generates the ToC for the merged
view of the image, and then save the ToC, container manifest,
and image configuration file to the directory database.

The ToC in the directory database is the same as the ToC
included in the SLM with additional fields that fascilitate
building the delta bundle body. First, it records the source
compressed layer file, payload offset, and size for each file
to help retrieve it from the registry. Second, it includes two
extra columns, rank sum and hit count, used when sorting
payloads; we discuss these below.
Trace Collection To sort payloads in the order that the
worker is likely to access, Starlight collects filesystem traces
from the worker to analyse the file usage. Trace collection
is identical to running a container until it reports it is ready.
When initiated by the user, the worker starts the container
image locally using a special mode of the Starlight filesystem
(§4.6) that collects file accesses. The worker then uploads the
trace to the proxy, which ranks all files in the trace according
to their access order. Finally, for each file in a container
image, the proxy increases its hit count by one and adds its
rank to the rank sum column. The average rank of a file can
be computed from its rank sum and count.

Since file access can be non-deterministic, our design sup-
ports multiple collection runs. Collecting one trace usually

40 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

takes up to 2 minutes per run, depending on the container. By
default, we collect 10 traces for each container.

Note that while prior work [37, 58] stores file order in-
formation per layer inside the compressed layers, Starlight
associates this information with a container image and stores
it outside the registry. This provides several benefits. First, it
is possible to update file usage without rebuilding the com-
pressed layers. Second, it allows for the likelihood that a file
in a layer used by different containers to be accessed differ-
ently during startup. Third, new container image can reuse the
traces from a previous version – solving the cold start problem.
Finally, it allows for future development such as adjusting
payload orders online based on provisioning feedback.

Provisioning Process A provisioning request from a worker
contains the names and tags of two images: the image re-
quested for deployment, denoted by R, and the old version of
the image in its local storage (assuming there is one) denoted
by A. To build the delta bundle, the proxy first retrieves meta-
data from the directory database for both container images
R and A. It then issues a series of asynchronous requests to
the registry to retrieve the compressed layers for R. These
will be used to construct the body of the delta bundle.4 It
then proceeds to prepare an optimized delta bundle header
and send it to the worker. Once all requested layers to arrive
from the registry, the proxy send the delta bundle body: for
each payload in the delta bundle body as determined by the
header, we copy compressed file content directly from the
compressed layer and send them to the worker.

Optimizer The optimizer is responsible for selecting which
compressed file content (payload) should be included in the
body of the delta bundle and in which order, and then building
the delta bundle header. Crucially, the optimizer does not re-
quire retrieving the compressed layers; the directory database
contains all necessary information to build the delta bundle
header. The optimization proceeds in several phases:
• Merge: load the merged (flattened) ToC for R and A from

the directory database, denote them TR and TA.
• Difference: Compute the set difference T ′ = TR \TA: for

every file f in TR, we look for a corresponding entry f ′ in
TA with the same hash and name. If we find one, we update
the source layer index for f in TR to the corresponding one
in the old the entry in TA update its source layer index to the
corresponding layer of f ′. This step takes O(|TR|+ |TA|)
time and O(1) space.

• Consolidate: Consolidate files in T ′ with the same payload.
Assuming the chance of hash collision is low, this step takes
O(|TR|) time and O(|TR|) space.

4Our current implementation retrieves entire compressed layers. This
does not substantially affects provisioning time since the registry and the
proxy are located in the same cloud datacenter. Nevertheless, we stress
that Starlight’s directory database and the seekable image format support
retrieving only the contents of compressed files, by issuing HTTP range
requests to the registry when building the delta bundle body. We are planning
to implement this optimization in the immediate future.

• Select: Remove from T ′ files already available on the
worker (whose source layer is in TA).

• Sort: Sort the payloads in order of increasing average rank,
O(|T ′| log |T ′|). If different files point to the same payload
due to previous steps, use the lowest rank.

Compressed Layer Format The current format used to
store compressed layers is the tar gzip format: a sequence
of concatenated files with interleaved headers for metadata
(e.g., timestamps, ownership), compressed as one data stream.
This format is non-seekable: extracting a specific file requires
decompressing the entire compressed layer until we reach the
file, which takes time.

eStargz [58] uses an alternative seekable compressed layer
format that compresses files individually (or 4KB chunks of
larger a file) and appends an index at the end of the com-
pressed layer into the offsets of compressed files and chunks.
To maintain backwards compatibility, each file includes tar
headers and footers, so the tarball data stream remains un-
changed. The result is an increase in the size of compressed
layers due to the index at the end and the additional tar head-
ers and footers. Furthermore, compression is less effective
since file are compressed separately.

Our proposed format follows similar ideas, with three dif-
ferences. First, we do not include an index at the end of the
compressed layer, and instead use the directory database to
store the table of contents. This not only reduces the over-
head of our compressed layer format, but allows the proxy
to build the delta bundle while fetching compressed layers
in the background. Second, we do not need to split files into
4kb chunks since we retrieve files wholly, which simplifies
our provisioning protocol and reduces the size of the ToC.
Finally, since we do not need the metadata in tar headers and
footers during provisioning, we do not include them as part of
the compressed stream of file contents, which further reduces
payload size. The overhead of Starlight’s format is only 4.4%
for containers in Table 2 comparable to eStargz (4.7%).

4.5 Snapshotter Plugin
The containerd snapshotter daemon manages the life cycle
of a container filesystem: from downloading images to keep-
ing track of changes in the container’s mounted file system.
We take advantage of the snapshotter plugin-based design [7]
to write a snapshotter plugin to support Starlight provision-
ing. Figure 3 shows an overview of the Starlight snapshotter
plugin, which includes two components: the downloader and
metadata manager. The snapshotter also maintains the in-
stances of the user space component of StarlightFS – one for
every mounted container instance.
Delta Bundle Downloader The downloader is responsible
for downloading the delta bundle from the proxy and decom-
pressing the payloads to designated locations (if an image
has been completely downloaded, it is not started). Once
the downloader receives the delta bundle header, it saves the

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 41

kernel
user

VFS

FUSE networkext4

container instance

metadata manager

Starlight FilesystemStarlight FilesystemStarlight filesystem

Starlight
snapshotter

downloader

notify

1

2 78435

6

subscribe to

Figure 3: The flow of filesystem requests in Starlight.

SLM to the local storage and creates a metadata manager
using the SLM. At this point, we have enough information to
mount and start the container, so the snapshotter notifies the
containerd daemon that the PULL phase has finished. In the
background the downloader keeps receiving the payloads: it
decompresses the payloads to its designated location accord-
ing to the source layer information in the received SLM and
the share layer digests in the delta bundle. Once the decom-
pression of the payload has finished, it notifies the metadata
manager. When a payload belongs to multiple files, the down-
loader creates hard links to avoid writing to the underlying
filesystem multiple times.
Metadata Manager Multiple container instances can start
from the same container image. The metadata manager there-
fore acts as a centralize place for managing file’s availability
and its metadata. It maintains file metadata of all the files in
a container image and manages files’ actual location in the
host file system. Most importantly, it manages the availability
of file contents, and notifies StarlightFS once a file payload
has decompressed. Once the worker has downloaded the en-
tire image, we store its SLM locally so that future container
instances launch from the local storage. When removing an
old container image, the metadata manager removes any hard
link references (if any) and copies the file to a new location if
it is used by a newer version of this image.

4.6 The Starlight Filesystem (StarlightFS)
The customized filesystem serves two goals. First, we need to
start containers early using only their SLM. Second, we want
to reuse file contents across layers and images. As OverlayFS
and other filesystems do not support both of these features,
we use FUSE [33] to implement StarlightFS.
Structure StarlightFS relies on the underlying host filesys-
tem (e.g., ext4), similar to a typical OverlayFS and FUSE-
OverlayFS. Like OverlayFS, StarlightFS provides a container
with a merged view that combines multiple directories in the
underlying filesystem that represent multiple read-only layers
and a single read-write layer.

Starlight maintains a filesystem tree in memory, created
from the merged view ToC in SLM. Each file (or directory)
node keeps track of the actual location of the file contents –

whether it is in the read-only layer, in the read-write layer,
or pending payload. As with the ToC, some nodes might
reference read-only layers from the previous version of the
container image (§4.3). Nodes of pending files will be notified
by the metadata manager when the payload is available (in
our implementation, by subscribing to a Go signal channel in
the corresponding file entry of the metadata manager). The
user space portion of StarlightFS is located in the snapshotter
process to allow such low-overhead communication.

Note that StarlightFS does not maintain any file system
state on its own, nor does it have any on-disk structures. Meta-
data for files in read-only layers is stored in the ToC. State for
files in the read-write layer (i.e., mutable state) is stored in
the underlying host filesystem, with changes forwarded to it
immediately. For example, if a file is deleted by the container,
we write a whiteout entry to the read-write layer, similarly
to OverlayFS [34]. In case of a crash, error or remount, the
tree and all other state are rebuilt using the saved SLM and
underlying filesystem.
Operation When starting a container instance, the snapshot-
ter creates a filesystem instance which builds a filesystem tree
from the metadata manager’s ToC for this container image.

Figure 3 shows the flow of operations in StarlightFS. When
a container instance performs a file operation, it is forwarded
to StarlightFS via FUSE 1© 2©. In the best scenario, the con-
tent of the file is already in the local filesystem (e.g., ext4in
Figure 3). Starlight uses the file path provided by the file
node to opens the underlying file 3© 4© and then return the
file handle back to the container instance 5© 6©. In case the
file contents are still pending, but the operation only involves
reading metadata (e.g. GETATTR), StarlightFS returns the
metadata immediately using the information in the file node.

When an operation on a pending file involves setting meta-
data (e.g. SETATTR) or accessing file content (e.g. OPEN,
FSYNC), StarlightFS blocks the operation until the file is ready
by subscribing to a Go signal channel associated with the file’s
ToC entry in the medtadata manager. Once the downloader
has extracted the file payload 7© 8©, it notifies the correspond-
ing entry in the metadata manager, which closes the channel
associated with the file’s ToC entry. This releases any filesys-
tem tree nodes that are waiting for the payload, while newly
created instances will not be able to subscribe to a closed
message channel. StarlightFS can then load the file from the
local storage and update the file metadata if necessary 3© 4©,
then return the file to the container instance 5© 6©. If this
requires changing the file metadata or content, this file will be
copied from the read-only layer to the read-write layer. All
subsequent requests will be forwarded to the read-write layer.

5 Evaluation

We use 21 popular container images to evaluate Starlight’s
performance in both controlled and real-world networks. Our

42 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

main metric is provisioning time, defined as the time from
the initial command to deploy a container on a worker, to
the time the containerized application reports it is ready (as
with HelloBench [28], this is determined by monitoring the
application’s stdout). To show the benefit of Starlight, we
define two types of provisioning: a fresh deployment means
the container worker does not have any prior images in its
local storage, while an update means deploying the next avail-
able version of a container to a worker that already has the
previous version deployed.

5.1 Experimental Setup
We use AWS EC2 to run our experiments. Container workers
use m5a.large instances (AMD EPYC 7000 at 2.5GHz) with
2 cores (vCPUs) and 8GB RAM. The registry server runs
Docker Registry 2.05 v2.7.1 on a c5.xlarge instance (Intel
Xeon at 3.4GHz) with 4 vCPUs and 8GB RAM. The Starlight
proxy and the metadata database run on a second c5.xlarge
instance. All the machines run Ubuntu 20.04.3 LTS. We use
Linux’s Traffic Control tool [2, 29] to control round-trip time
and bandwidth between the worker and the other machines.
Bandwidth is limited to 100Mbps unless otherwise specified.
For cloud experiments, bandwidth and latency are not limited
(RTT is ∼0.15ms). Each experiment is run 5 times.
Benchmark Approaches We compare Starlight to two state-
of-the-art approaches: the containerd baseline [21] v1.5.0
and eStargz [8,58] v0.6.3.6 The baseline implementation first
downloads and decompresses all new compressed layers be-
fore launching the container. eStargz presorts the files in
each compressed layer according their expected order of or
use, and uses on-demand “lazy” download during deployment
to handle for unexpected accesses: when a running container
opens a file whose contents are not yet available, eStargz
pauses the container and requests the file from the registry.
We also plot two reference times: warm startup time de-
notes the container startup time once its image has already
been downloaded and decompressed to local storage; wget
time denotes the time to compute and download the Starlight
delta bundle over the network, serving as a lower bound on
provisioning time when not starting containers early.
Containers We evaluate Starlight on a variety of popu-
lar containers from Docker Hub [30]. Since many of the
containers in the original HelloBench container suite [28]
are outdated and can no longer be deployed using moderns
tools, we instead take several of its most popular containers,
finally, we add several container images used in edge com-
puting applications. The full list of containers is available in
Appendix A.1.

5This is the official Docker registry server [30, 49].
6We do not compare to Slacker [28] as its source is not public and since

eStargz is explicitly designed to supersede it in performance and features.
Similarly, our preliminary experiments showed eStargz offers similar or
superior performance to DADI [37].

5.2 Provisioning Time

Figure 4 shows the average normalized provisioning time for
all the containers in Table 2 across a range of round-trip times
(RTT) and network bandwidths. We normalize the provision-
ing time of each container to the time it takes to deploy a fresh
worker using the baseline approach over a 100Mbps network
with 0.15ms RTT. We also show the 95% confidence intervals
to help establish statistical significance [12].

Our first immediate observation is that Starlight is the
fastest provisioning approach for all latencies, bandwidths,
and scenarios we study, except when provisioning fresh work-
ers in the cloud, where Starlight provides similar performance
to eStargz. It is significantly faster than both the state-of-the-
art baseline approach and eStargz. Overall, Starlight provi-
sioning is 3.0× faster on average than the baseline, and 1.9×
faster than eStargz. Surprisingly, Starlight also frequently
outperforms wget. In other words, Starlight early start design
and effective scheduling of file payloads allows it to provision
a fresh worker faster than the time it takes to merely download
an optimized package. Conversely, eStargz, which also starts
containers early, is on average slower than wget except when
bandwidth is 54Mbps and RTT is low. Neither early start nor
building optimized container images is sufficient in isolation;
Starlight effectiveness is the result of its holistic design.

Effect of Latency When RTT is very low (i.e., inside a
single datacenter), Both Starlight and eStargz are significantly
faster than the baseline. However eStargz scales poorly when
RTT grows due to its pull-based design that requests “out-
of-order” files on-demand (§3). As latency grows, delays
due to these requests add up: eStargz’s provisioning time at
RTT=300ms grows by 3.7× when going from RTT of 0ms to
300ms on a 500Mbps network. In comparison, the baseline
provision time only doubles. For high bandwidth, high latency
networks (e.g., satellite links) eStargz performance is close to
the baseline approach, especially for updates.

Starlight, on the other hand, is far less sensitive to latency
than the other approaches: its provisioning time grows at a
slower rate than the baseline, eStargz, and wget. Starlight
scales well not because its prediction of file access order is
perfect (it is not), but rather due to its push-based design.
Unlike eStargz, Starlight avoids flooding the registry with
HTTP requests when containers open files “out of order”, and
instead waits for the file to arrive.

Deploying Updates Since updates are a common operation
(§3.3), we also consider the provisioning time for updating
containers on existing workers.

Starlight is very successful in optimizing updates: pro-
visioning updates using Starlight (bottom row of Figure 4)
is on average 1.7× faster than an equivalent fresh deploy-
ment (top row) using Starlight, and 2.5× faster than baseline
fresh deployment.7 The other approaches only show modest

7Harmonic mean of speedups across all bandwidths and latencies.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 43

0.0

0.5

1.0

1.5

2.0

Fr
es

h
de

pl
oy

m
en

t
no

rm
al

ize
d

pr
ov

. t
im

e

54Mbps

normalized to

100Mbps 500Mbps

0 100 200 300
RTT (ms)

0.0

0.5

1.0

1.5

2.0

Up
da

te
no

rm
al

ize
d

pr
ov

. t
im

e

0 100 200 300
RTT (ms)

0 100 200 300
RTT (ms)

baseline eStargz Starlight warm startup wget

(a) Edge and WAN.

0
1
2
3
4
5
6

Fr
es

h
de

pl
oy

m
en

t
 P

ro
v.

 ti
m

e
sp

ee
du

p

0 100 200 300
RTT (ms)

0
1
2
3
4
5
6

Up
da

te
 P

ro
v.

 ti
m

e
sp

ee
du

p

(b) Speedup with 100Mbps.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fr
es

h
de

pl
oy

m
en

t
no

rm
al

ize
d

pr
ov

. t
im

e 1.7x 2.7x 3.0x

speedup

25.4x

baseline eStargz Starlight wget
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Up
da

te
no

rm
al

ize
d

pr
ov

. t
im

e

2.0x 3.1x 4.2x 40.0x

(c) Cloud time and speedup.

Figure 4: (a) Normalized provisioning time for different methods, round-trip times, and network bandwidth, aggregated across
containers in Table 2. Solid line shows the geometric mean [19]; shaded areas show 95% confidence intervals. Top row shows
fresh deployment, bottom row shows updates. Time is normalized to fresh deployment of the same container using the baseline
approach with RTT of 0ms and a 100Mbps connection. (b) Speedups over baseline with 100Mbps (solid line shows harmonic
mean). (c) Provisioning time and speedup in the cloud (RTT approximately ∼0.15ms, no bandwidth restriction).

improvement when provisioning updates: average update pro-
visioning time for baseline and eStargz are close to those of
fresh deployment. Additionally, we observe that Starlight
update provisioning scales much better than the two other ap-
proaches as RTT grows. Finally, Starlight’s transfer volume
is smaller: the size of a median Starlight update is 30% that of
a fresh update using the size of a baseline fresh deployment,
while for eStargz and the baseline updates are 99% (figure
omitted for space).

As we discuss in §3, layer reuse is low in real-world con-
tainers, and even the on-demand “lazy” approach of eStargz
must still fetch file metadata from all layers. Conversely,
Starlight optimizes updates at a finer file-level granularity,
and also stores all file metadata at the beginning of the delta
bundle. The result is that Starlight is much better able to
exploit redundancy in updates, significantly outperforming
the benchmark approaches.

Effect of Bandwidth Can increasing bandwidth help miti-
gate slow provisioning time? We find that higher bandwidth
does not provide a corresponding improvement in provision-
ing time at higher RTT, even for the baseline approach at
0.15ms. This is not surprising: container provisioning is not
purely bandwidth-bound task, since we must also decompress
and start containers.

Very low bandwidth We repeated our experiments with a
5Mbps network. At such low bandwidth, transmission time
overwhelms the effect of latency: normalized provisioning
time for fresh deployments is 9–10.5× higher (compared to
100Mbps network with 0.15ms RTT) for baseline and wget,
while eStargz and Starlight reduce it to 2.5–4×. For up-

0

20

Fr
es

h
Pr

ov
. t

im
e

(s
) wordpress

0.0

2.5

5.0

alpine

0

50

ghost

0 100 200 300
RTT (ms)

0

20

Up
da

te
Pr

ov
. t

im
e

(s
)

0 100 200 300
RTT (ms)

0.0

2.5

5.0

0 100 200 300
RTT (ms)

0

50

baseline eStargz Starlight warm startup wget

Figure 5: Provisioning times versus round-trip latency for
selected containers. Shaded areas show standard deviation.

dates, the baseline is 8–9×, wget and eStargz are 2.5–3×,
and Starlight the fastest at 1× across the range of RTT values.

Interestingly, the network is so slow that Flink class loader
times out when opening one of the class files when provision-
ing with eStargz and Starlight. This is the only case we have
found of timeout due to on-demand downloading. Indeed,
such timeouts are very rare in practice since most software
does not timeout on read-only open() calls, and software
that does must handle timeouts correctly to function with
NFS mounts and other distributed filesystems. Nevertheless,
we could mitigate such issues by automatically or manually
sorting these files earlier in the delta bundle. Starlight’s on-
demand optimizer makes this straightforward.

44 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0

20K

40K

60K

Th
ro

ug
hp

ut
 (o

ps
) Redis

0

5K

10K

15K
MongoDB

0 10 20 30 40 50
Time (s)

0.0

0.2

0.4

0.6

La
te

nc
y

(m
s)

0 50 100 150
Time (s)

0

1

2

baseline eStargz Starlight

Figure 6: Redis (left) and MongoDB (right) performance
during provisioning. Shaded areas show standard deviation.

Individual Analysis Figure 5 shows provisioning time of
selected containers across a range of latencies at 100Mbps.

We find that eStargz is bottlenecked by queuing delays
caused by on-demand file downloads, and can be slower than
even the baseline for RTT over 50ms. Starlight outperforms
both except for ghost at 0ms, which is the worst case for
Starlight: a 84K file container whose delta bundle takes 3
seconds to build. See Appendix A.2 for in-depth analysis.

5.3 Performance
We measure application, worker, and proxy performance. Un-
less otherwise noted, proxy-worker RTT is set to 150ms.
Application Performance Ideally, containers deployed us-
ing Starlight would exhibit similar application performance as
those deployed using the baseline approach, especially during
provisioning when Starlight is decompressing files.

To confirm this, we measure application performance for
two databases: Redis (in-memory) and MongoDB (disk-
based). We run YCSB [9] Workload A (50% read/write ratio)
on a separate m5a.large instance as the client while we per-
form a fresh deployment the containerized application, and
measure the throughput and read latency of database opera-
tions. We repeat each experiment 5 times; each run consists of
2 million database operations, long enough sufficient to finish
provisioning and for application performance to stabilize.

Figure 6 depicts throughput and latency over time for both
applications. With Starlight, the worker starts handling re-
quests and finishes processing workload earlier than with the
other two methods. Additionally, it reaches the same maxi-
mum throughput and minimum query latency.

In summary, Starlight workers exhibit no performance over-
head compared to the baseline approach and eStargz, and
moreover the time gained by early provisioning directly trans-
lates to finishing jobs faster.
Worker CPU Usage and Memory We measured the total
CPU time used by the snapshotter and containerd daemons

1 2 3 4 5 6 7 8
Concurrent clients

0
1
2
3
4
5

Tr
an

sf
er

 ra
te

(G
bp

s/
se

c) wget (8 cores)
Starlight (4 cores)
Starlight (8 cores)

Figure 7: Scalability of Starlight proxy as the achieved trans-
fer rate for different number of concurrent workers. Network
bandwidth is capped at 5Gbps, and RTT is ∼0.15ms.

during provisioning of containers in Table 2. CPU usage is
largely determined by image size, up to 40 seconds of CPU
time for the largest image. Median CPU time was 12 seconds
for the baseline, 15.1 seconds for eStargz, and 9.8 seconds
for Starlight, since it is more effective in removing cross-
layer duplicate files. This is consistent with our finding that
containerized application exhibit no performance overhead.

Starlight memory usage, measured as total maximum res-
ident set size of the snapshotter and containerd daemons, is
linear in the number of files (140MB plus 9.5KB per file,
R2=0.784) since it maintains file metadata (§4.5 and §4.6).
Memory use for both Starlight and eStargz is similar, ranges
from under 200MB for most containers to 1GB for ghost – a
massive container image with over 84K files. A recent analy-
sis [64] finds that the median container image has 1,090 files,
while 70% of images have less fewer 20,000 files – approxi-
mately 330MB for Starlight.

Optimization Time Optimizing the delta bundle is by far the
most computationally intense operation for the proxy. We find
we can compute delta bundles for images of up to 30K files in
under one second (figure omitted for space), which includes
most of Table 2; the sole exception is ghost at 84K files,
which takes three seconds. Similarly, 80% of the container
images in Docker Hub [64] have fewer than 30K files, and
could therefore be processed within one second. Finally, the
time to build delta bundle could be eliminated completely
for common deployments by placing a cache in front of the
Starlight proxy; we do not do so in any of our experiments.

Scalability We use Apache Benchmark to measure the
achievable transfer rate of the Starlight proxy as we increase
the number of concurrent clients repeatedly requesting the
Redis delta bundle (36.8MB). This is equivalent to the com-
mon setup where hundreds of simultaneous Starlight worker
requests are load-balanced across multiple replicas of the
proxy, and the goal is to saturate the bandwidth – if the proxy
is network bound, we are serving as many clients as the net-
work supports. For this experiment, we run with no artificial
bandwidth or latency limits. For reference, we request an
image of equivalent size from an nginx webserver. Figure 7
shows a Starlight proxy running on a 4-core instance is able
to saturate about 80% of the link bandwidth before becoming

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 45

0

2

4

6

8

Fr
es

h
Pr

ov
. t

im
e

(s
)

redis

0

3

6

9

12
node

0

10

20

30

postgres

Montreal

Frankfurt

Singapore
0

2

4

6

8

Up
da

te
Pr

ov
. t

im
e

(s
)

Montreal

Frankfurt

Singapore
0

3

6

9

12

Montreal

Frankfurt

Singapore
0

10

20

30

baseline eStargz Starlight wget

Figure 8: Provisioning time when moving the worker between
different datacenters. Errors bars show standard deviation.
The registry is located in North Virginia.

bottlenecked due to the need to optimize the delta bundle.
Once we switch to 8 cores, it becomes network bound.

5.4 Geo-Distributed WAN Experiment

Thus far we have evaluated Starlight using controlled experi-
ments in a single AWS datacenter. Here, we Starlight perfor-
mance in a multi-cloud (wide area network) setup running in
multiple datacenters over the real network. We place the reg-
istry in us-east-1 region (N. Virginia) and move the worker
to increasingly distant locations: ca-central-1 (average
RTT to registry 14ms, bandwidth 4.24Gbps), eu-central-1
(89ms, 2.79Gbps), and ap-southeast-1 (209ms, 1.15Gbps).

Figure 8 shows the provisioning time for fresh and update
deployment. Results generally match our previous observa-
tions: Starlight substantially outperforms the baseline and
eStargz, and in many cases is faster than a simple wget of the
delta bundle. eStargz is sensitive to increased latency, in some
cases becoming slower than the baesline approach. Finally,
Starlight support for container updates is much more effective
than the other approaches, and can reduce provisioning time
to a fraction of the other approaches.

6 Related Work

There are several streams of work on container provisioning.
On-Demand Download Slacker [28] starts containers early
and uses NFS to load files on-demand without requiring the
entire container image. CRFS [27] follows a similar idea, but
uses a seekable tar gzip format with more efficient compres-
sion, allowing it to work with standard registries. DADI [37]
also uses on-demand fetching but operates at the block level,
which requires a customized image format and registry. eS-
targz [58] uses collected filesystem traces to identify files

needed during provisioning and prefetch them first, before
switching to on-demand downloading. Starlight also sorts
files based on collected traces, but its push-based design scales
better with higher latency. Moreover, Starlight’s protocol is
file-based rather than layer-based as prior approaches.

Peer-to-peer Some approaches use workers to help pro-
vision other workers, Wharf [65] and Shifter [26] propose
client-side image sharing: workers act as caches, serving
locally stored images to other workers. FID [32], CoMI-
Con [44], and Kraken [31] are P2P docker registries that help
reduce registry load by utilizing the bandwidth of workers in
the datacenter. Similarly, FaaSNet [60] uses a tree of work-
ers to accelerate provisioning inside datacenters for scsaling
Function-as-as-Service workloads inside a datacenter. These
approaches tend to focus on single datacenter setting with the
goal of reducing registry load. They may not be applicable
outside the datacenter or where bandwidth and other worker
resources are limited. Conversely, Starlight is focused on
accelerating provisioning without increasing worker load.

Registry optimizations Fu et al. [25] and Anwar et al. [4]
proposes smart caching and prefetching image layers from
the back-end object store to the registry using the production
workload, in order to do large scale software provisioning.
Starlight is orthogonal to, and compatible with, these works
since it does not require changing the registry.

7 Conclusion

Containers have evolved in a single datacenter environment,
but are increasingly used in geo-distributed settings such as
edge, mobile, and multi-cloud environments. We revisit sev-
eral of the design decisions behind containers, and show that
while they are convenient for developers, they slow down
provisioning. Starlight redesigns the provisioning pipeline
to support faster container deployment, while maintaining
the layer-based structure that makes containers easy to de-
velop and maintain. Empirical evaluation using a large set
of popular containers shows Starlight provisioning times
are significantly smaller than existing approaches, while
incurring no performance overhead. Moreover, Starlight
is backwards compatible and makes use of existing reg-
istries. Starlight is available as an open-source project at:
https://github.com/mc256/starlight.

Starlight’s design opens several avenues for improvement.
For example, since the delta bundle is optimized on-demand,
we can improve it and even tailor it to specific scenarios by
collecting traces online during deployment, or by training an
ML model to predict which files will be needed first. Another
improvement is support for repurposing workers: by modify-
ing the optimizer and extending the delta bundle design, we
could optimize switching between arbitrary sets of containers.

46 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/mc256/starlight

References

[1] Alexandru Agache, Marc Brooker, Alexandra Iordache,
Anthony Liguori, Rolf Neugebauer, Phil Piwonka, and
Diana-Maria Popa. Firecracker: Lightweight virtual-
ization for serverless applications. In 17th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 20), pages 419–434, Santa Clara, CA,
February 2020. USENIX Association.

[2] Werner Almesberger. Linux traffic control - implemen-
tation overview. Technical report, EPFL ICA, 1998.

[3] Amazon. Amazon Elastic Container Service (Amazon
ECS). https://aws.amazon.com/ecs/.

[4] Ali Anwar, Mohamed Mohamed, Vasily Tarasov,
Michael Littley, Lukas Rupprecht, Yue Cheng, Nan-
nan Zhao, Dimitrios Skourtis, Amit S. Warke, Heiko
Ludwig, Dean Hildebrand, and Ali R. Butt. Improving
docker registry design based on production workload
analysis. In 16th USENIX Conference on File and Stor-
age Technologies (FAST 18), pages 265–278, Oakland,
CA, February 2018. USENIX Association.

[5] A. Balalaie, A. Heydarnoori, and P. Jamshidi. Mi-
croservices architecture enables devops: Migration to a
cloud-native architecture. IEEE Software, 33(3):42–52,
2016.

[6] Steve Beattie, Seth Arnold, Crispin Cowan, Perry Wagle,
Chris Wright, and Adam Shostack. Timing the appli-
cation of security patches for optimal uptime. In 16th
Systems Administration Conference (LISA 02), Philadel-
phia, PA, November 2002. USENIX Association.

[7] Containerd. Snapshots design. https:
//github.com/containerd/containerd/blob/
main/design/snapshots.md.

[8] Containerd. Stargz snapshotter. https://
github.com/containerd/stargz-snapshotter.

[9] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the 1st
ACM Symposium on Cloud Computing, SoCC ’10, page
143–154, New York, NY, USA, 2010. Association for
Computing Machinery.

[10] Lorenzo Corneo, Maximilian Eder, Nitinder Mohan,
Aleksandr Zavodovski, Suzan Bayhan, Walter Wong,
Per Gunningberg, Jussi Kangasharju, and Jörg Ott. Sur-
rounded by the Clouds: A Comprehensive Cloud Reach-
ability Study, page 295–304. Association for Computing
Machinery, New York, NY, USA, 2021.

[11] Breno Costa, Joao Bachiega, Leonardo Rebouças
de Carvalho, and Aleteia P. F. Araujo. Orchestration in
fog computing: A comprehensive survey. ACM Comput.
Surv., 55(2), January 2022.

[12] Geoff Cumming, Fiona Fidler, and David L. Vaux. Error
bars in experimental biology . Journal of Cell Biology,
177(1):7–11, 04 2007.

[13] Richard Cziva and Dimitrios P. Pezaros. Container
network functions: Bringing nfv to the network edge.
IEEE Communications Magazine, 55(6):24–31, 2017.

[14] Bradley Denby and Brandon Lucia. Orbital edge com-
puting: Nanosatellite constellations as a new class of
computer system. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for
Programming Languages and Operating Systems, AS-
PLOS ’20, page 939–954, New York, NY, USA, 2020.
Association for Computing Machinery.

[15] Docker. Best practices for writing dock-
erfiles. https://docs.docker.com/develop/
develop-images/dockerfile_best-practices/.

[16] Docker. Docker compose. https://github.com/
docker/compose.

[17] Docker. Docker documentation. https:
//docs.docker.com/engine/reference/
commandline/dockerd/.

[18] Docker. Empowering app development for developers |
docker. https://www.docker.com/.

[19] Philip J. Fleming and John J. Wallace. How not
to lie with statistics: The correct way to summarize
benchmark results. Commun. ACM, 29(3):218–221,
March 1986.

[20] The Linux Foundation. Cloud native computing foun-
dation. https://cncf.io.

[21] The Linux Foundation. containerd: An industry-
standard container runtime with an emphasis on
simplicity, robustness and portability. https://
containerd.io/.

[22] The Linux Foundation. K3s: Lightweight kubernetes.
https://k3s.io.

[23] The Linux Foundation. Kubernetes. https://
kubernetes.io/.

[24] The Linux Foundation. Open container initiative.
https://opencontainers.org/.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 47

https://aws.amazon.com/ecs/
https://github.com/containerd/containerd/blob/main/design/snapshots.md
https://github.com/containerd/containerd/blob/main/design/snapshots.md
https://github.com/containerd/containerd/blob/main/design/snapshots.md
https://github.com/containerd/stargz-snapshotter
https://github.com/containerd/stargz-snapshotter
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://github.com/docker/compose
https://github.com/docker/compose
https://docs.docker.com/engine/reference/commandline/dockerd/
https://docs.docker.com/engine/reference/commandline/dockerd/
https://docs.docker.com/engine/reference/commandline/dockerd/
https://www.docker.com/
https://cncf.io
https://containerd.io/
https://containerd.io/
https://k3s.io
https://kubernetes.io/
https://kubernetes.io/
https://opencontainers.org/

[25] Silvery Fu, Radhika Mittal, Lei Zhang, and Sylvia Rat-
nasamy. Fast and efficient container startup at the edge
via dependency scheduling. In 3rd USENIX Work-
shop on Hot Topics in Edge Computing (HotEdge 20).
USENIX Association, June 2020.

[26] Lisa Gerhardt, Wahid Bhimji, Shane Canon, Markus
Fasel, Doug Jacobsen, Mustafa Mustafa, Jeff Porter, and
Vakho Tsulaia. Shifter: Containers for HPC. In Journal
of physics: Conference series, volume 898, page 082021.
IOP Publishing, 2017.

[27] Google. CRFS: Container registry filesystem. https:
//github.com/google/crfs.

[28] Tyler Harter, Brandon Salmon, Rose Liu, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
Slacker: Fast distribution with lazy docker containers.
In 14th USENIX Conference on File and Storage Tech-
nologies (FAST 16), pages 181–195, Santa Clara, CA,
February 2016. USENIX Association.

[29] Stephen Hemminger. Network emulation with NetEm.
In Linux Conf Australia, pages 18–23, 2005.

[30] Docker Inc. Docker Hub: Container im-
age library | app containerization. https://
registry.hub.docker.com/.

[31] Uber Inc. Kraken - p2p docker registry capable of dis-
tributing tbs of data in seconds. https://github.com/
uber/kraken.

[32] Wang Kangjin, Yang Yong, Li Ying, Luo Hanmei, and
Ma Lin. Fid: A faster image distribution system for
docker platform. In 2017 IEEE 2nd International Work-
shops on Foundations and Applications of Self* Systems
(FAS*W), pages 191–198, 2017.

[33] The kernel development community. Fuse the linux ker-
nel documentation. https://www.kernel.org/doc/
html/latest/filesystems/fuse.html.

[34] kernel.org. Overlay filesystem – the linux kernel doc-
umentation. https://www.kernel.org/doc/html/
latest/filesystems/overlayfs.html.

[35] Petros Koutoupis. Everything you need to know about
Linux containers, part i: Linux control groups and pro-
cess isolation. Linux Journal, 2018, 2018.

[36] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio
Vicente, Charles Krasic, Dan Zhang, Fan Yang, Fedor
Kouranov, Ian Swett, Janardhan Iyengar, Jeff Bailey,
Jeremy Dorfman, Jim Roskind, Joanna Kulik, Patrik
Westin, Raman Tenneti, Robbie Shade, Ryan Hamil-
ton, Victor Vasiliev, Wan-Teh Chang, and Zhongyi Shi.
The quic transport protocol: Design and internet-scale

deployment. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication,
SIGCOMM ’17, page 183–196, New York, NY, USA,
2017. Association for Computing Machinery.

[37] Huiba Li, Yifan Yuan, Rui Du, Kai Ma, Lanzheng Liu,
and Windsor Hsu. DADI: Block-level image service
for agile and elastic application deployment. In 2020
USENIX Annual Technical Conference (USENIX ATC
20), pages 727–740. USENIX Association, July 2020.

[38] Filipe Manco, Costin Lupu, Florian Schmidt, Jose
Mendes, Simon Kuenzer, Sumit Sati, Kenichi Yasukata,
Costin Raiciu, and Felipe Huici. My vm is lighter (and
safer) than your container. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP ’17,
page 218–233, New York, NY, USA, 2017. Association
for Computing Machinery.

[39] Scott McCarty. A practical introduction to container ter-
minology, 2018. https://developers.redhat.com/
blog/2018/02/22/container-terminology-
practical-introduction.

[40] Isla Mcketta. How Starlink’s satellite internet stacks
up against HughesNet and Viasat around the globe,
2021. https://www.speedtest.net/insights/
blog/starlink-hughesnet-viasat-performance-
q2-2021/.

[41] Microsoft. Azure container instances.
https://azure.microsoft.com/en-us/services/
container-instances/.

[42] Seyed Hossein Mortazavi, Mohammad Salehe, Moshe
Gabel, and Eyal de Lara. Feather: Hierarchical querying
for the edge. In 2020 IEEE/ACM Symposium on Edge
Computing (SEC), pages 271–284, 2020.

[43] Seyed Hossein Mortazavi, Mohammad Salehe, Car-
olina Simoes Gomes, Caleb Phillips, and Eyal de Lara.
Cloudpath: A multi-tier cloud computing framework.
In Proceedings of the Second ACM/IEEE Symposium on
Edge Computing, SEC ’17, New York, NY, USA, 2017.
Association for Computing Machinery.

[44] Senthil Nathan, Rahul Ghosh, Tridib Mukherjee, and
Krishnaprasad Narayanan. CoMICon: A co-operative
management system for docker container images. In
2017 IEEE International Conference on Cloud Engi-
neering (IC2E), pages 116–126, 2017.

[45] Mahesh Nayak, Kumud Dwivedi, and Cheryl McGuire.
Azure network round-trip latency statistics, 2021.
https://docs.microsoft.com/en-us/azure/
networking/azure-network-latency.

48 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/google/crfs
https://github.com/google/crfs
https://registry.hub.docker.com/
https://registry.hub.docker.com/
https://github.com/uber/kraken
https://github.com/uber/kraken
https://www.kernel.org/doc/html/latest/filesystems/fuse.html
https://www.kernel.org/doc/html/latest/filesystems/fuse.html
https://www.kernel.org/doc/html/latest/filesystems/overlayfs.html
https://www.kernel.org/doc/html/latest/filesystems/overlayfs.html
https://developers.redhat.com/blog/2018/02/22/container-terminology-practical-introduction
https://developers.redhat.com/blog/2018/02/22/container-terminology-practical-introduction
https://developers.redhat.com/blog/2018/02/22/container-terminology-practical-introduction
https://www.speedtest.net/insights/blog/starlink-hughesnet-viasat-performance-q2-2021/
https://www.speedtest.net/insights/blog/starlink-hughesnet-viasat-performance-q2-2021/
https://www.speedtest.net/insights/blog/starlink-hughesnet-viasat-performance-q2-2021/
https://azure.microsoft.com/en-us/services/container-instances/
https://azure.microsoft.com/en-us/services/container-instances/
https://docs.microsoft.com/en-us/azure/networking/azure-network-latency
https://docs.microsoft.com/en-us/azure/networking/azure-network-latency

[46] The Containers Organization. Buildah: a tool that facil-
itates building open container initiative (oci) container
images. https://buildah.io/.

[47] Misun Park, Ketan Bhardwaj, and Ada Gavrilovska.
Toward lighter containers for the edge. In 3rd USENIX
Workshop on Hot Topics in Edge Computing (HotEdge
20). USENIX Association, June 2020.

[48] Valerio Persico, Alessio Botta, Pietro Marchetta, An-
tonio Montieri, and Antonio Pescap. On the perfor-
mance of the wide-area networks interconnecting public-
cloud datacenters around the globe. Comput. Netw.,
112(C):67–83, January 2017.

[49] CNCF Distribution Project. Distribution - the toolkit to
pack, ship, store, and deliver container content. https:
//github.com/distribution/distribution.

[50] Prashanth Rajivan, Efrat Aharonov-Majar, and Cleotilde
Gonzalez. Update now or later? effects of experience,
cost, and risk preference on update decisions. Journal
of Cybersecurity, 6(1):tyaa002, 2020.

[51] Brian Ramprasad, Alexandre da Silva Veith, Moshe
Gabel, and Eyal de Lara. Sustainable computing on the
edge: A system dynamics perspective. In Proceedings
of the 22nd International Workshop on Mobile Com-
puting Systems and Applications, HotMobile ’21, page
64–70, New York, NY, USA, 2021. Association for
Computing Machinery.

[52] Mahadev Satyanarayanan. The emergence of edge
computing. Computer, 50(1):30–39, 2017.

[53] J. Shah and D. Dubaria. Building modern clouds: Using
Docker, Kubernetes & Google Cloud Platform. In
2019 IEEE 9th Annual Computing and Communication
Workshop and Conference (CCWC), pages 0184–0189,
2019.

[54] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and
Lanyu Xu. Edge computing: Vision and challenges.
IEEE Internet of Things Journal, 3(5):637–646, 2016.

[55] Dimitris Skourtis, Lukas Rupprecht, Vasily Tarasov, and
Nimrod Megiddo. Carving perfect layers out of docker
images. In 11th USENIX Workshop on Hot Topics in
Cloud Computing (HotCloud 19), Renton, WA, July
2019. USENIX Association.

[56] Jörg Thalheim, Pramod Bhatotia, Pedro Fonseca, and
Baris Kasikci. Cntr: Lightweight OS containers. In
2018 USENIX Annual Technical Conference (USENIX
ATC 18), pages 199–212, Boston, MA, July 2018.
USENIX Association.

[57] Abhishek Tiwari, Brian Ramprasad, Seyed Hossein Mor-
tazavi, Moshe Gabel, and Eyal de Lara. Reconfigurable
streaming for the mobile edge. In Proceedings of the
20th International Workshop on Mobile Computing Sys-
tems and Applications, HotMobile ’19, page 153–158,
New York, NY, USA, 2019. Association for Computing
Machinery.

[58] Kohei Tokunaga. Startup containers in lightning speed
with lazy image distribution on containerd, Apr 2020.

[59] B. Varghese, E. De Lara, A. Ding, C. Hong, F. Bonomi,
S. Dustdar, P. Harvey, P. Hewkin, W. Shi, M. Thiele, and
P. Willis. Revisiting the arguments for edge computing
research. IEEE Internet Computing, (01):1–1, jun 5555.

[60] Ao Wang, Shuai Chang, Huangshi Tian, Hongqi Wang,
Haoran Yang, Huiba Li, Rui Du, and Yue Cheng. FaaS-
Net: Scalable and fast provisioning of custom server-
less container runtimes at Alibaba cloud function com-
pute. In 2021 USENIX Annual Technical Conference
(USENIX ATC 21), pages 443–457. USENIX Associa-
tion, July 2021.

[61] Ying Xiong, Yulin Sun, Li Xing, and Ying Huang. Ex-
tend cloud to edge with KubeEdge. In 2018 IEEE/ACM
Symposium on Edge Computing (SEC), pages 373–377,
2018.

[62] Ashkan Yousefpour, Caleb Fung, Tam Nguyen, Krishna
Kadiyala, Fatemeh Jalali, Amirreza Niakanlahiji, Jian
Kong, and Jason P. Jue. All one needs to know about
fog computing and related edge computing paradigms:
A complete survey. Journal of Systems Architecture,
98:289–330, 2019.

[63] N. Zhao, V. Tarasov, A. Anwar, L. Rupprecht, D. Sk-
ourtis, A. Warke, M. Mohamed, and A. Butt. Slim-
mer: Weight loss secrets for Docker registries. In 2019
IEEE 12th International Conference on Cloud Comput-
ing (CLOUD), pages 517–519, 2019.

[64] Nannan Zhao, Vasily Tarasov, Hadeel Albahar, Ali
Anwar, Lukas Rupprecht, Dimitrios Skourtis, Amit S.
Warke, Mohamed Mohamed, and Ali R. Butt. Large-
scale analysis of the docker hub dataset. In 2019 IEEE
International Conference on Cluster Computing (CLUS-
TER), pages 1–10, Sep. 2019.

[65] Chao Zheng, Lukas Rupprecht, Vasily Tarasov, Douglas
Thain, Mohamed Mohamed, Dimitrios Skourtis, Amit S.
Warke, and Dean Hildebrand. Wharf: Sharing docker
images in a distributed file system. In Proceedings of
the ACM Symposium on Cloud Computing, SoCC ’18,
page 174–185, New York, NY, USA, 2018. Association
for Computing Machinery.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 49

https://buildah.io/
https://github.com/distribution/distribution
https://github.com/distribution/distribution

A Appendix

A.1 Container Images Used in Evaluation
Table 2 below lists containers and version tags used in our
experiments; combined, they have over 15 billion downloads
in Docker Hub.

Category Images

Linux alpine:3.13.4
ubuntu:focal-20210401

Web memcached:1.6.8
nginx:1.19.10
httpd:2.4.43

Data mysql:8.0.23
mariadb:10.5.8
redis:6.2.1
mongo:4.0.23
postgres:13.1
rabbitmq:3.8.13

Services registry:2.7.0
wordpress:php7.3-fpm
ghost:3.42.5-alpine

Dev node:16-alpine3.11
openjdk:11.0.11-9-jdk
golang:1.16.2
python:3.9.3

Edge flink:1.12.3-scala_2.11-java8
cassandra:3.11.9
eclipse-mosquitto:2.0.9-openssl

Table 2: Container images used in our evaluation.

A.2 Analysis of Selected Containers
Figure 5 shows provisioning time of selected containers
across a range of latencies at 100Mbps.

When updating wordpress, the baseline approach is able to
reuse 4 out of 18 layers, making it faster in update. eStargz,
though faster than the baseline approach in fresh deployments,
does not benefit much from this layer reuse since it is bottle-
necked by on-demand file downloads. Starlight, on the other
hand, is much faster than either approach, reducing update
provisioning time by approximately 8×.

For alpine eStargz is slower than the baseline when RTT is
above 50ms. This is because the alpine image is small and its
file access pattern is not entirely deterministic. Provisioning
time is thus dominated by queuing delays due layer down-
loads and on-demand file downloads. Starlight also suffers
somewhat from out-of-order file accesses, but is still able to
deploy the container quickly, and is even faster than wget.

Finally, we discuss ghost – the worst case for Starlight.
Starlight’s provisioning time with low RTT is 10% higher

0

20

Fr
es

h
Pr

ov
. t

im
e

(s
) wordpress

0.0

2.5

5.0

alpine

0

50

ghost

0 100 200 300
RTT (ms)

0

20

Up
da

te
Pr

ov
. t

im
e

(s
)

0 100 200 300
RTT (ms)

0.0

2.5

5.0

0 100 200 300
RTT (ms)

0

50

baseline eStargz Starlight warm startup wget

Figure 5: Provisioning times versus round-trip latency for
selected containers. Shaded areas show standard deviation.
(figure repeated from page 10)

than eStargz’s – the only container where this happens. Build-
ing a delta bundle takes 3 seconds for this 84K file container.
eStargz provisioning time grows quickly with latency, how-
ever, and Starlight outperforms it when RTT is above 50ms.

50 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

POWERTCP: Pushing the Performance Limits of Datacenter Networks∗

Vamsi Addanki
TU Berlin

University of Vienna

Oliver Michel
Princeton University
University of Vienna

Stefan Schmid
TU Berlin

University of Vienna

Abstract
Increasingly stringent throughput and latency requirements
in datacenter networks demand fast and accurate congestion
control. We observe that the reaction time and accuracy of
existing datacenter congestion control schemes are inherently
limited. They either rely only on explicit feedback about the
network state (e.g., queue lengths in DCTCP) or only on vari-
ations of state (e.g., RTT gradient in TIMELY). To overcome
these limitations, we propose a novel congestion control algo-
rithm, POWERTCP, which achieves much more fine-grained
congestion control by adapting to the bandwidth-window
product (henceforth called power). POWERTCP leverages
in-band network telemetry to react to changes in the network
instantaneously without loss of throughput and while keeping
queues short. Due to its fast reaction time, our algorithm is par-
ticularly well-suited for dynamic network environments and
bursty traffic patterns. We show analytically and empirically
that POWERTCP can significantly outperform the state-of-
the-art in both traditional datacenter topologies and emerging
reconfigurable datacenters where frequent bandwidth changes
make congestion control challenging. In traditional datacenter
networks, POWERTCP reduces tail flow completion times of
short flows by 80% compared to DCQCN and TIMELY, and
by 33% compared to HPCC even at 60% network load. In re-
configurable datacenters, POWERTCP achieves 85% circuit
utilization without incurring additional latency and cuts tail
latency by at least 2x compared to existing approaches.

1 Introduction
The performance of more and more cloud-based applications
critically depends on the underlying network, requiring data-
center networks (DCNs) to provide extremely low latency and
high bandwidth. For example, in distributed machine learning
applications that periodically require large data transfers, the
network is increasingly becoming a bottleneck [36]. Similarly,
stringent performance requirements are introduced by today’s
trend of resource disaggregation in datacenters where fast
access to remote resources (e.g., GPUs or memory) is pivotal
∗Research was conducted at the University of Vienna during 2020-21.

for the overall system performance [36]. Building systems
with strict performance requirements is especially challenging
under bursty traffic patterns as they are commonly observed
in datacenter networks [12, 16, 47, 53, 55].

These requirements introduce the need for fast and accu-
rate network resource management algorithms that optimally
utilize the available bandwidth while minimizing packet la-
tencies and flow completion times. Congestion control (CC)
plays an important role in this context being ‘‘a key enabler
(or limiter) of system performance in the datacenter’’ [34]. In
fact, fast reacting congestion control is not only essential to
efficiently adapt to bursty traffic [29,48], but is also becoming
increasingly important in the context of emerging reconfig-
urable datacenter networks (RDCNs) [13,14,20,33,38,39,50].
In these networks, a congestion control algorithm must be
able to quickly ramp up its sending rate when high-bandwidth
circuits become available [43].

Traditional congestion control in datacenters revolves
around a bottleneck link model: the control action is related to
the state i.e., queue length at the bottleneck link. A common
goal is to efficiently control queue buildup while achieving
high throughput. Existing algorithms can be broadly clas-
sified into two types based on the feedback that they react
to. In the following, we will use an analogy to electrical
circuits1 to describe these two types. The first category of
algorithms react to the absolute network state, such as the
queue length or the RTT: a function of network ‘‘effort’’ or
voltage defined as the sum of the bandwidth-delay product
and in-network queuing. The second category of algorithms
rather react to variations, such as the change of RTT. Since
these changes are related to the network ‘‘flow’’, we say that
these approaches depend on the current defined as the total
transmission rate. We tabulate our analogy and corresponding
network quantities in Table 1. According to this classifica-
tion, we call congestion control protocols such as CUBIC [21],
DCTCP [7], or Vegas [15] voltage-based CC algorithms as

1This analogy is inspired from S. Keshav’s lecture series based on mathe-
matical foundations of computer networking [31]. We emphasize that our
power analogy is meant for the networking context considered in this paper
and it should not be applied to other domains of science.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 51

Quantity Analogy
Total transmission rate (network flow) Current (λ)
BDP + buffered bytes (network effort) Voltage (ν)

Current × Voltage Power (Γ)

Table 1: Analogy between metrics in networks and in electri-
cal circuits. Note that the network here is the ‘‘pipe’’ seen by
a flow and not the whole network.

Reaction to queue length or RTT

R
ea

ct
io

n
to

 v
ar

ia
tio

ns

Power-b
ase

d C
C

PowerTCP
(Lyapunov stable
Asymptotically stable)

HPCC
Queue-length based

Timely, Swift
Delay-based

Timely
(low thresh - high thresh)
RTT-gradient based
(Unstable)

DCTCP, DCQCN
CUBIC, NewReno
Loss/ECN-based

Better inflight control

B
et

te
r

re
ac

tio
n

tim
e

Current-based CC

Voltage-based CC

Figure 1: Existing congestion control algorithms are funda-
mentally limited to a single dimension in their window (or
rate) update decisions and are unable to distinguish between
two scenarios across multiple dimensions.

they react to absolute properties such as the bottleneck queue
length, delay, Explicit Congestion Notification (ECN), or loss.
Recent proposals such as TIMELY [41] are current-based
CC algorithms as they react to the variations, such as the
RTT-gradient. In conclusion, we find that existing congestion
control algorithms are fundamentally limited to one of the
two dimensions (voltage or current) in the way they update
the congestion window.

We argue that the input to a congestion control algorithm
should rather be a function of the two-dimensional state of
the network (i.e., both voltage and current) to allow for more
informed and accurate reaction, improving performance and
stability. In our work, we show that there exists an accurate
relationship between the optimal adjustment of the conges-
tion window, the network voltage and the network current.
We analytically show that the optimal window adjustment de-
pends on the product of network voltage and network current.
We call this product network power: current × voltage, a
function of both queue lengths and queue dynamics.

Figure 1 illustrates our classification. Existing protocols
depend on a single dimension, voltage or current. This can
result in imprecise congestion control as the protocol is un-
able to distinguish between fundamentally different scenarios,
and, as a result, either reacts too slowly or overreacts, both
impeding performance. Accounting for both voltage and cur-
rent, i.e., power, balances accurate inflight control and fast
reaction, effectively providing the best of both worlds.

In this paper we present POWERTCP, a novel power-based
congestion control algorithm that accurately captures both
voltage and current dimensions for every control action us-
ing measurements taken within the network and propagated
through in-band network telemetry (INT). POWERTCP is
able to utilize available bandwidth within one or two RTTs
while being stable, maintaining low queue lengths, and re-
solving congestion rapidly. Furthermore, we show that POW-
ERTCP is Lyapunov-stable, as well as asymptotically stable
and has a convergence time as low as five update intervals
(Appendix A). This makes POWERTCP highly suitable for
today’s datacenter networks and dynamic network environ-
ments such as in reconfigurable datacenters.

POWERTCP leverages in-network measurements at pro-
grammable switches to accurately obtain the bottleneck link
state. Our switch component is lightweight and the required
INT header fields are standard in the literature [36]. We also
discuss an approximation of POWERTCP for use with non-
programmable, legacy switches.

To evaluate POWERTCP, we focus on a deployment sce-
nario in the context of RDMA networks where the CC al-
gorithm is implemented on a NIC. Our results from large-
scale simulations show that POWERTCP reduces the 99.9-
percentile short flow completion times by 80% compared
to DCQCN [56] and by 33% compared to the state-of-the-
art low-latency protocol HPCC [36]. We show that POW-
ERTCP maintains near-zero queue lengths without affecting
throughput or incurring long flow completion times even
at 80% load. As a case study, we explore the benefits of
POWERTCP in reconfigurable datacenter networks where it
achieves 80−85% circuit utilization and reduces tail latency
by at least 2× compared to the state-of-the-art [43]. Finally,
as a proof-of-concept, we implemented POWERTCP in the
Linux kernel and the telemetry component on an Intel Tofino
programmable line-rate switch using P4 [18].

In summary, our key contributions in this paper are:

• We reveal the shortcomings of existing congestion con-
trol approaches which either only react to the current
state or the dynamics of the network, and introduce the
notion of power to account for both.

• POWERTCP, a power-based approach to congestion con-
trol at the end-host which reacts faster to changes in the
network such as an arrival of burst, fluctuations in avail-
able bandwidth etc.,

• An evaluation of the benefits of POWERTCP in tradi-
tional DCNs and RDCNs.

• As a contribution to the research community and to fa-
cilitate future work, all our artefacts have been made
publicly available at:
https://powertcp.self-adjusting.net.

52 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://powertcp.self-adjusting.net

(a) Voltage-based CC is oblivious
to queue buildup rate.

(b) Current-based CC is oblivious
to queue lengths.

50

Increasing at rate 8x Draining at max rate Increasing at rate 8x

Bandwidth (b)Bandwidth (b)Bandwidth (b)

25

Case-1 Case-2 Case-3

Multiplicative decrease
Voltage-based: 3.24
Current-based: 9

Multiplicative decrease
Voltage-based: 2.12
Current-based: 1

Multiplicative decrease
Voltage-based: 2.12
Current-based: 9

Q
ue

ue

Q
u

eu
e

Q
u

eu
e

25

(c) Voltage-based CC cannot differentiate case-2 vs case-3;
whereas current-based CC cannot differentiate case-1 vs case-3.

Figure 2: Existing CC schemes, classified as voltage and current-based, are orthogonal in their response to queue length and
queue buildup rate.

2 Motivation
We first provide a more detailed motivation of our work by
highlighting the benefits and drawbacks of existing conges-
tion control approaches. In the following, voltage-based CC
refers to the class of end-host congestion control algorithms
that react to the state of the network in absolute values related
to the bandwidth-delay product, such as bottleneck queue
length, delay, loss, or ECN; current-based CC refers to the
class of algorithms that react to changes in the state, such as
the RTT-gradient. Voltage-based CC algorithms are likely to
exhibit better stability but are fundamentally limited in their
reaction time. Current-based CC algorithms detect congestion
faster but ensuring stability may be more challenging. In-
deed, TIMELY [41], a current-based CC, deployed at Google
datacenters, turned out to be unstable [57] and evolved to
SWIFT [34], a voltage-based CC.

Orthogonal to our approach, receiver-driven transport pro-
tocols [22,26,42] have been proposed which show significant
performance improvements. A receiver-driven transport ap-
proach relies on the assumption that datacenter networks are
well-provisioned and claims that congestion control is unnec-
essary; for example ‘‘NDP performs no congestion control
whatsoever in a Clos topology’’ [22]. The key difference is
that receiver-driven approaches take feedback from the ToR
downlink at the receiver which can only identify congestion
at the last hop, whereas sender-based approaches rely on a
variety of feedback signals to identify congestion anywhere
along the path. In this paper, we focus on the sender-based
congestion control approach which can in principle handle
congestion anywhere along the round-trip path between a
sender and a receiver, even in oversubscribed datacenters.

To take a leap forward and design fine-grained datacenter
congestion control algorithms, we present an analytical ap-
proach and study the fundamental problems faced by existing
algorithms. We first formally express the desirable proper-
ties of a datacenter congestion control law (§2.1) and then
analytically identify the drawbacks of existing control laws

(§2.2). Finally, we discuss the lessons learned and formulate
our design goals (§2.3).

2.1 Desirable Control Law Properties
Among various desired properties of datacenter congestion
control, high throughput and low tail latency are most im-
portant [7, 36, 41] with fairness and stability being essential
as well [54, 57]. Achieving these properties simultaneously
can be challenging. For example, to realize high throughput,
we may aim to keep the queue length at the bottleneck link
large; however, this may increase latency. Thus, an ideal CC
algorithm must be capable of maintaining near-zero queue
lengths, achieving both high throughput and low latency. It
must further minimize throughput loss and latency penalty
caused by perturbations, such as bursty traffic.

In order to formalize our requirements, we consider a single-
bottleneck link model widely used in the literature [24, 40,
54, 57]. Specifically, we assume that all senders use the same
protocol, transmit long flows2 sharing a common bottleneck
link with bandwidth b, and have a base round trip time τ (ex-
cluding queuing delays). In this model, equilibrium is a state
reached when the window size and bottleneck queue length
stabilize. We now formally express the desired equilibrium
state that captures our performance requirements in terms
of the sum of window sizes of all flows (aggregate window
size) w(t), bandwidth delay product b ·τ, and bottleneck queue
length q(t):

0 < q(t)< ε (1)

b · τ≤ w(t)< b · τ+ ε

q̇(t) = 0; ẇ(t) = 0

where ε is a positive integer. First, this captures the require-
ment for high throughput i.e., when w(t)> b · τ and q(t)> 0,
the number of inflight bytes are greater than the bandwidth-
delay product (BDP) and the queue length is greater than zero.

2Note that, although most DC flows are short flows, most DC traffic
volume (bytes) is from long flows [7, 9].

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 53

(a) Voltage-based CC (RTT or queue
length) exhibits equilibrium properties
but has an imprecise reaction leading to
throughput loss.

(b) Current-based CC (RTT-gradient) re-
acts faster but has no unique equilibrium
point, and is thereby unable to stabilize
queue lengths.

(c) POWERTCP, a power-based CC, ex-
hibits equilibrium properties and has a pre-
cise reaction to perturbations.

Figure 3: Phase plots showing the trajectories of existing schemes and our approach POWERTCP from different initial states
(circles) to equilibrium (triangles). At each point on the plane, arrows show the direction in which the system moves. An example
is depicted with bottleneck link bandwidth 100Gbps and a base RTT of 20µs. BDP is shown by a horizontal dotted line and any
trajectory going below this line indicates throughput loss.

Second, from w(t)< b · τ+ ε and q(t)< ε, the queue length
is at most ε, thereby achieving low latency. Finally, for the
system to stabilize, we need that q̇(t) = 0 and ẇ(t) = 0.

As simple as these requirements are, it is challenging to
control the aggregate window size w(t) while CC operates
per flow. In addition to the equilibrium state requirement,
we need fast response to perturbations. The response must
minimize the distance from the equilibrium i.e., minimize the
latency or throughput penalty caused by a perturbation (e.g.,
incast or changes in available bandwidth).

In this work, we ask two fundamental questions:
(Q1) Equilibrium point: Do existing algorithms satisfy the
equilibrium state in Eq. 1 for the aggregate window size?
In addition to the equilibrium behavior, we are also interested
in the reaction to a perturbation.
(Q2) Response to perturbation: What is the trajectory fol-
lowed after a perturbation, i.e., the dynamics of the bottleneck
queue as well as the TCP window sizes, from an initial point
to the equilibrium point?

2.2 Drawbacks of Existing Control Laws
We now aim to analytically answer our questions above and
shed light on the inefficiencies of existing protocols, both
voltage-based and current-based. We begin by simplifying
the congestion avoidance model of existing CC approaches
we are interested in, specifically delay, queue length, and
RTT-gradient based CC approaches as follows:

wi(t +δt) = γ ·
(

wi(t) ·
e

f (t)
+β

)
+(1− γ) ·wi(t) (2)

Here wi is the window of a flow i, β is the additive increase
term, e is the equilibrium point that the algorithm is expected
to reach, f (t) is the measured feedback and γ is the exponen-
tial moving average parameter. A queue length-based CC [36]
sets the desired equilibrium point e as b ·τ (BDP) and the feed-
back f (t) as the sum of bottleneck queue length and BDP i.e.,

voltage (ν). A delay-based CC [34] sets e to τ (base RTT)
and the feedback f (t) as RTT which is the sum of queuing
delay and base RTT i.e., voltage

bandwidth (ν

b). Similarly, the RTT-
gradient approach [41] sets e to 1 and the feedback f (t) as
one plus RTT-gradient i.e., current

bandwidth (λ

b). In Appendix B, we
further justify how Eq. 2 captures existing control laws3. Note
that our simplified model does not capture loss/ECN-based
CC algorithms; however, there exists rich literature on the
analysis of loss/ECN-based CC algorithms [24, 37] including
DCTCP [7, 8]. We now use Euler’s first order approximation
to obtain the window dynamics as follows:

ẇi(t) =
γ

δt
·
(

wi(t) ·
e

f (t)
−wi(t)+β

)
(3)

Each flow i has a sending rate λi and hence the bottleneck
queue experiences an aggregate arrival rate of λ. In our anal-
ogy, λ is the network current. We additionally use the tradi-
tional model of queue length dynamics which is independent
of the control law [24, 40]:

q̇(t) =

{
λ(t− t f)−µ(t) q(t)> 0
0 otherwise

(4)

where λ(t) = w(t)
θ(t) . An equilibrium point is the window size

we and queue length qe that satisfies ẇ(t) = 0 and q̇(t) = 0.
We are now ready to answer the questions raised.

Equilibrium point: It is well-known from literature that
loss/ECN-based schemes operate by maintaining a standing
queue [8, 24, 27]. For example, TCP NewReno flows fill the
queue to maximum (say qmax) and then react by reducing
windows by half. Consequently, the bottleneck queue-length
oscillates between qmax and qmax−b · τ or zero if qmax < b · τ.
DCTCP flows oscillate around the marking threshold K > b·τ

7

3TIMELY, for example, is rate-based while our simplification is window-
based. However, window and rate are interchangeable for update calculations.

54 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

which depends on BDP [7]. This does not satisfy our strin-
gent requirement in Eq. 1. While ECN-based schemes reduce
the amount of standing queue required, we still consider the
standing queue which is proportional to bandwidth to be un-
acceptable given the increasing gap between bandwidth vs
switch buffers.

It can be shown that there exists a unique equilibrium
point for queue length and delay approaches (voltage-based
CC) defined by Eq. 2. However, current-based CC and, in
particular, RTT-gradient approaches do not have a unique
equilibrium point suggesting a lack of control over queue
lengths. Intuitively, RTT-gradient approaches quickly adapt
the sending rate to stabilize the RTT-gradient (θ̇ = q̇

b) which
in turn only stabilizes the queue length gradient q̇(t) but fails
to control the absolute value of the queue length. It has indeed
been shown that TIMELY, a current-based CC does not have
a unique equilibrium [57].

Figure 3 visualizes the system behavior according to the
window dynamics in Eq. 3 and the queue dynamics in Eq. 4.
In Figure 3a we can see that voltage-based CC eventually
reaches a unique equilibrium point. In contrast, in Figure 3b
we see that current-based CC reaches different final points for
different initial points, indicating that there exists no unique
equilibrium point thereby violating the desired equilibrium
state properties (Eq. 1). To give more context on this observa-
tion, in Figure 2 we show the reactions of different schemes
for observed queue lengths and queue buildup rate. In Fig-
ure 2b, we can see that current-based CC has the same reaction
for different queue lengths but exhibits a proportional reaction
to queue buildup rate (Figure 2a); consequently, current-based
CC cannot stabilize at a unique equilibrium point. Due to
space constraints, we move the detailed proof of equilibrium
points to Appendix B.

Takeaway. While voltage-based CC can in principle meet
the desired equilibrium state requirements in Eq. 1, current-
based CC cannot.
Response to perturbation: We observe an orthogonal behav-
ior in the responses of voltage-based CC and current-based
CC. In Figure 2b we show that voltage-based CC has a propor-
tional reaction to increased queue lengths but a current-based
CC approach has the same response for any queue length.
Further in Figure 2a we observe that current-based CC has a
proportional reaction to the rate at which queue is building
up but a voltage-based CC has the same reaction for any rate
of queue build up. This orthogonality in existing schemes
often results in scenarios with either insufficient reaction or
overreaction. To underline our observation, we use the system
of differential equations (Eq. 3 and Eq. 4) to observe the tra-
jectories taken by different control laws after a perturbation.
We show the trajectories in Figure 3. Specifically, Figure 3a
shows that voltage-based CC (queue length or delay based)
eventually reaches a unique equilibrium point but overreacts
in the response and losing throughput (window < BDP and
q(t) = 0) almost for every initial point. In Figure 3b we ob-
serve that current-based CC (RTT-gradient) reaches different

end points for different initial states and consequently does
not have a single equilibrium point. However, we see that the
initial response is faster with current-based CC due to their
use of RTT-gradient which is arguably a superior signal to
detect congestion onset even at low queue lengths.

Takeaway. Current-based CC is superior in terms of fast
reaction but lacks equilibrium state properties while voltage-
based CC eventually reaches a unique equilibrium but over-
reacts in its response for almost any initial state resulting in
long trajectories from initial state to equilibrium state.

2.3 Lessons Learned and Design Goals
From our analysis we derive two key observations. First,
both voltage and current-based CC have individual benefits.
Particularly, voltage-based CC is desirable for the stringent
equilibrium properties we require and current-based CC is
desirable for fast reaction. Second, both voltage and current-
based CC have drawbacks. On one hand, voltage-based CC
is oblivious to congestion onset at low queue lengths and on
the other hand current-based CC is oblivious to the absolute
value of queue lengths. Moreover, voltage-based CC over-
reacts when the queue drains essentially losing throughput
immediately after.

Based on these observations, our goal is to design a control
law that systematically combines both voltage and current
for every window update action. Specifically our aim is to
design a congestion control algorithm with (i) equilibrium
properties from Eq. 1 exhibited by voltage-based CC and (ii)
fast response to perturbation exhibited by current-based CC.
The challenges are to avoid inheriting the drawbacks of both
types of CC, stability and fairness. However in order to design
such a control law we face the following challenges:

• Finding an accurate relationship between window,
voltage and current. . Property 1

• Ensuring stability, convergence and fairness.
. Theorem 1, 2, 3

3 Power-Based Congestion Control
Reflecting on our observations in §2, we seek to design a
congestion control algorithm that systematically reacts to
both the absolute value of the bottleneck queue length and
its rate of change. Our aim is to address today’s datacenter
performance requirements in terms of high throughput, low
latency, and fast reaction to bursts and bandwidth fluctuations.

3.1 The Notion of Power
To address the challenges faced by prior datacenter conges-
tion control algorithms and to optimize along both dimen-
sions, we introduce the notion of power associated with the
network pipe. Following the bottleneck link model from liter-
ature [24, 40], from Eq. 4 we observe that the window size is
indeed related to the product of network voltage and network
current which we call power (Table 1). This corresponds to
the product of (i) total sending rate λ (current) and (ii) the

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 55

sum of BDP plus the accumulated bytes q at the bottleneck
link (voltage), formally expressed in Eq. 5.

Γ(t)︸︷︷︸
power

= (q(t)+b · τ)︸ ︷︷ ︸
voltage

·λ(t− t f)︸ ︷︷ ︸
current

(5)

Notice that the unit of power is bit2

second . We will show the use-
ful properties of power specifically under congestion. Using
Eq. 4, we can rewrite Eq. 5 in terms of queue length gradient
q̇ and the transmission rate µ as,

Γ(t) = (q(t)+b · τ) · (q̇(t)+µ(t)) (6)

We now derive a useful property of power using Eq. 6 and
Eq. 4 showing an accurate relationship of power and window.

Property 1 (Relationship of Power and Congestion Window).
Power is the bandwidth-window product

Γ(t) = b ·w(t− t f)

Note that the property is over the aggregate window size i.e.,
the sum of window sizes of all flows sharing the common
bottleneck. We emphasize that our notion of power is intended
for the networking context and cannot be applied to other
domains of science. In the following, we outline the benefits
of considering the notion of power and how Property 1 can
be useful in the context of congestion control.

3.2 Benefits of Power-Based CC
A power-based control law can exploit Property 1 to pre-
cisely update per flow window sizes. Accurately controlling
aggregate window size is a key challenge for an end-host con-
gestion control algorithm. A power-based CC overcomes this
challenge by gaining precise knowledge about the aggregate
window size from measured power. First, using power en-
ables the window update action to account for the bottleneck
queue lengths as well as the queue build-up rate. As a result,
a power-based CC can rapidly detect congestion onset even at
very low queue lengths. At the same time, a power-based CC
also reacts to the absolute value of queue lengths, effectively
dampening perturbations. Second, calculating power at the
end-host requires no extra measurement and feedback mecha-
nisms compared to INT based schemes such as HPCC [36].

3.3 The POWERTCP Algorithm
Driven by our observations, we carefully designed our control
law based on power, capturing a systematic reaction to voltage
(related to bottleneck queue length), as well as to current
(related to variations in the bottleneck queue length).
Control law: POWERTCP is a window-based congestion
control algorithm and updates its window size upon receipt
of an acknowledgment. For a flow i, every window update is
based on (i) current window size wi(t), (ii) additive increase
β, (iii) window size at the time of transmission of the acknowl-
edged segment wi(t−θ(t)), and (iv) power measured from

the feedback information. We refer the reader to Table 2 for
the general notations being used. Formally, POWERTCP’s
control law can be expressed as

wi(t)← γ ·
(

wi(t−θ(t)) · e
f (t)

+β

)
+(1− γ) ·wi(t) (7)

e = b2 · τ; f (t) = Γ(t−θ(t)+ t f)

where γ ∈ (0,1] and β are parameters to the control law. The
base round trip time τ must be configured at compile time. If
baseRTT is not precisely known, an alternative is to keep track
of minimum observed RTT. We first describe how power Γ

is computed and then present the pseudocode of POWERTCP
in Algorithm 1.
Feedback: POWERTCP’s control law is based on power.
Note that power (Eq. 5) is only related to variables at the bot-
tleneck link. In order to measure power, we leverage in-band
network telemetry. Specifically, the workings of INT and the
header fields required are the same as in HPCC (Figure. 4
in [36]). When a TCP sender sends out a packet P into
the network, it additionally inserts an INT header INT into
the packet. Each switch along the path then pushes metadata
containing the egress queue length (qlen), timestamp (ts), so
far transmitted bytes (txBytes), and bandwidth (b). All val-
ues correspond to the time when the packet is scheduled for
transmission. At the receiver, the received packet P INT 1,2,...r

is read and the INT information is copied to the acknowl-
edgment ACK packet A INT 1,2,...r . The sender then receives
an ACK with an INT header and metadata inserted by all the
switches along the path from sender to receiver and back to
sender A INT 1,2,...r INT ..., n . Here, the INT header and meta-data
pushed by switches along the path serve as feedback and as
an input to the CC algorithm.
Accounting for the old window sizes: POWERTCP’s con-
trol law (Eq. 7) uses the past window size in addition to the
current window size to compute the new window size. POW-
ERTCP accounts for old window size by remembering current
window size once per RTT.
Algorithm: Putting it all together, we now present the work-
flow of POWERTCP in Algorithm 1. Upon the receipt of
a new acknowledgment (line 2), POWERTCP: (i) retrieves
the old cwnd (line 3), (ii) computes the normalized power
(line 19) i.e., f (t)

e in Eq. 7, (iii) updates cwnd (line 5), (iv) sets
the pacing rate (line 6), and (v) remembers the INT header
metadata and updates the old cwnd once per RTT based on
the ack sequence number (line 7).

Specifically, power is calculated in the function call to
NORMPOWER. First, the gradient of queue lengths is obtained
from the difference in queue lengths and difference in times-
tamps corresponding to an egress port (line 12). Then the
transmission rate of the egress port is calculated from the
difference in txBytes and timestamps (line 13). Current is
calculated by adding the queue gradient and transmission rate
(line 14). Then, the sum of BDP and the queue length gives

56 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

voltage (line 16). Finally, power is calculated by multiplying
current and voltage (line 17). We calculate the base power
(line 18) and obtain the normalized power (line 19). The nor-
malized power is calculated for each egress port along the
path and the maximum value is smoothed and used as an input
to the control law.

Finally, the congestion window is updated in the function
call to UPDATEWINDOW (line 26) where γ is the exponen-
tial moving average parameter and β is the additive increase
parameter, both being parameters to the control law (Eq. 7)

Algorithm 1: POWERTCP

1 /* ack contains an INT header with
sequence of per-hop egress port
meta-data accessed as ack.H[i] */

Input : ack and prevInt
Output : cwnd, rate

2 procedure NEWACK(ack):
3 cwndold = GETCWND(ack.seq)
4 normPower = NORMPOWER(ack)
5 UPDATEWINDOW(normPower, cwndold)
6 rate = cwnd

τ

7 prevInt = ack.H; UPDATEOLD(cwnd,ack.seq)
8 function NORMPOWER(ack):
9 Γnorm = 0

10 for each egress port i on the path do
11 dt = ack.H[i].ts− prevInt[i].ts
12 q̇ = ack.H[i].qlen−prevInt[i].qlen

dt . dq
dt

13 µ = ack.H[i].txBytes−prevInt[i].txBytes
dt . txRate

14 λ = q̇+µ . λ : Current
15 BDP = ack.H[i].b× τ

16 ν = ack.H[i].qlen+BDP . ν : Voltage
17 Γ

′ = λ×ν . Γ
′
: Power

18 e = (ack.H[i].b)2× τ

19 Γ
′
norm = Γ

′

e . Γ
′
norm :Normalized power

20 if Γ
′
> Γnorm then

21 Γnorm = Γ
′
; ∆t = dt

22 end if
23 end for
24 Γsmooth = Γsmooth·(τ−∆t)+Γnorm·∆t

τ
. Smoothing

25 return Γsmooth

26 function UPDATEWINDOW(power, ack):
27 cwnd = γ× (cwndold

normPower +β)+(1− γ)× cwnd
28 . γ : EWMA parameter
29 . β: Additive Increase
30 return cwnd

Parameters: POWERTCP has only two parameters, that is
the EWMA parameter γ and the additive increase parameter β.
γ dictates the balance in reaction time and sensitivity to noise.
We recommend γ = 0.9 based on our parameter sweep over
wide range of scenarios including traffic patterns that induce

rapid fluctuations in the bottleneck queue lengths. Reflecting
the intuition for additive increase in prior work [36], we set
β = HostBw×τ

N where N is the expected number of flows shar-
ing host NIC, HostBw is the NIC bandwidth at the host and τ

is the base-RTT. This is to avoid queuing at the local interface
or, in other words, to avoid making the host NIC a bottleneck,
assuming a maximum of N flows share the host NIC band-
width. Finally, all flows transmit at line rate in the first RTT
and use cwndinit = HostBw× τ. By transmitting at line rate,
a new flow is able to discover the bottleneck link state and
reduce its cwnd accordingly without getting throttled due to
the presence of existing flows.

3.4 Properties of POWERTCP
POWERTCP comes with strong theoretical guarantees. We
show that POWERTCP’s control law achieves asymptotic sta-
bility with a unique equilibrium point that satisfies our desired
equilibrium state properties (Eq. 1). POWERTCP also guaran-
tees rapid convergence to equilibrium and achieves fairness
at the same time. In the following we outline POWERTCP’s
properties and defer the proofs to Appendix A.

Theorem 1 (Stability). POWERTCP’s control law is
Lyapunov-stable as well as asymptotically stable with a
unique equilibrium point.

Theorem 2 (Convergence). After a perturbation, POW-
ERTCP’s control law exponentially converges to equilibrium
with a time constant δt

γ
where δt is the window update interval.

Theorem 3 (Fairness). POWERTCP is βi weighted propor-
tionally fair, where βi is the additive increase used by a flow
i.

Theorem 1 and Theorem 2 state the key properties of POW-
ERTCP. First, the convergence with time constant of δt

γ
shows

the fast reaction to perturbations. Second, the system being
asymptotically stable at low queue lengths satisfies our strin-
gent equilibrium property discussed in §2. Indeed, power and
Property 1 play a key role in the proof of Theorem 1 and The-
orem 2 (Appendix A) revealing its importance in congestion
control. In Figure 3c, we see the trajectories of POWERTCP
from different initial states to a unique equilibrium without
violating throughput and latency requirements, showing the
accurate control enabled by power-based congestion control.

3.5 θ-POWERTCP: Standalone Version
POWERTCP’s control law requires in-network queue length
information which can be obtained by using techniques
such as INT. In order to widen its applicability, POW-
ERTCP can still be deployed in datacenters with legacy, non-
programmable switches through accurate RTT measurement
capabilities at the end-host. In this case, we rearrange term e

f
in Eq. 7 as follows,

e
f
= b2 · τ

Γ
= b2 · τ

(q̇+b) · (q+b · τ)
= τ

(q̇
b +1) · (q

b + τ)

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 57

finally, using the fact that q
b + τ = θ (RTT) and q̇

b = θ̇ (RTT-
gradient), we reduce e

f to,

e
f
= τ

(θ̇+1) · (θ)
(8)

where θ̇ is the RTT-gradient and θ is RTT. Using Eq. 8 in
Eq. 7 allows for deployment even when INT is not sup-
ported by switches in the datacenter. Due to space con-
straints we moved the algorithm to Appendix D, presenting
θ-POWERTCP in Algorithm 2. This algorithm demonstrates
how POWERTCP’s control law can be mimicked by using a
delay signal without the need for switch support. However, as
we will show later in our evaluation, there are drawbacks in
using RTT instead of queue lengths. First, notice how queue
lengths are changed to RTT, where we assume bottleneck
txRate (µ) as bandwidth (b). The implication is that, when
using txRate which is essentially obtained from INT, the con-
trol law knows the exact transmission rate and rapidly fills
the available bandwidth. But, when using RTT, the control
law assumes the bottleneck is at maximum transmission rate
and does not react by multiplicative increase and rather relies
on slow additive increase to fill the available bandwidth. Sec-
ondly, in multi-bottleneck scenarios, the control law precisely
reacts to the most bottlenecked link when using INT but reacts
to the sum of queuing delays when using RTT. Nevertheless,
under congestion, both POWERTCP and θ-POWERTCP have
the same properties in a single-bottleneck scenario.

3.6 Deploying POWERTCP
Modern programmable switches are able to export user-
defined header fields and device metrics [18, 32]. These met-
rics can be embedded into data packets, a mechanism com-
monly referred to as in-band network telemetry (INT). POW-
ERTCP leverages INT to obtain fine-grained, per-packet feed-
back about queue occupancies, traffic counters, and link con-
figurations within the network. For deployment with legacy
networking equipment, we have proposed θ-POWERTCP
which only requires accurate timestamps to measure the RTT.

We imagine POWERTCP and θ-POWERTCP to be
deployed on low-latency kernel-bypass stacks such as
SNAP [11] or using NIC offload. Yet, in this work, instead
of implementing our algorithms for these platforms, we show
how POWERTCP and θ-POWERTCP can readily be deployed
by merely changing the control logic of existing congestion
control algorithms. In particular, we compare our work to
HPCC [36] which is based on INT feedback and SWIFT [34]
which is based on delay feedback.

POWERTCP requires the same switch support and header
format as HPCC, as well as packet pacing support from the
NIC. Additionally, it does not maintain additional state com-
pared to HPCC but requires one extra parameter γ, the moving
average parameter for window updates. Similar to SWIFT
and TIMELY, θ-POWERTCP requires accurate packet times-
tamps from the NIC but it does not require any switch sup-
port. The simpler logic of θ-POWERTCP (compared to POW-

ERTCP) only reacts once per RTT and reduces the number
of congestion control function calls.

The core contribution of this paper is the design of a novel
control law and we do not explore implementation challenges
further at this point since POWERTCP does not add addi-
tional complexity compared to existing algorithms. Still, to
confirm the practical feasibility of our approach, we imple-
mented POWERTCP as a Linux kernel congestion control
module. We also implemented the INT component as a proof
of concept for the Intel Tofino switch ASIC [18].

The switch implementation is written in P4 and uses a
direct counter associated with the egress port to maintain the
so far transmitted bytes and appends this metric together with
the current queue occupancy upon dequeue from the traffic
manager to each segment. We leverage a custom TCP option
type to encode this data and append 64 bit per-hop headers to
a 32 bit base header. The implementation uses less than one
out of 12 stages of the Tofino’s ingress pipeline (where the
headers are prepared and appended) and less than one out of
12 stages in the egress pipeline (where the measurements are
taken and inserted). The processing logic runs at line rate of
3.2 Tbit per second.

4 Evaluation
We evaluate the performance of POWERTCP and θ-
POWERTCP and compare against existing CC algorithms.
Our evaluation aims at answering four main questions.
(Q1) How well does POWERTCP react to congestion?
We find that POWERTCP outperforms the state-of-the-art
congestion control algorithms, reducing tail buffer occupancy
and consequently tail latency under congestion by 30% when
compared to HPCC and at least by 60% compared to TIMELY
and DCQCN.
(Q2) Does POWERTCP introduce a tradeoff between through-
put and latency?
Our evaluation shows that POWERTCP does not trade
throughput for latency and that POWERTCP rapidly con-
verges to near-zero queue lengths without losing throughput.
(Q3) How much can we benefit under realistic workloads?
We show that POWERTCP improves 99th-percentile flow
completion times for short flows (< 10KB) by 33% compared
to HPCC, by 99% compared to HOMA and by 74% compared
to TIMELY and DCQCN even at moderate network loads. At
the same time, we find that POWERTCP does not penalize
long flows (> 1MB). In fact, we find that θ-POWERTCP per-
forms equally well for short flows compared to POWERTCP
but performs similarly to TIMELY for medium and long
flows.
(Q4) How does POWERTCP perform under high load and
bursty traffic patterns?
Our evaluation shows that the benefits of POWERTCP are fur-
ther enhanced under high loads and that POWERTCP remains
stable even under bursty traffic.

58 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) POWERTCP (b) θ-POWERTCP (c) TIMELY (d) HPCC (e) HOMA

Figure 4: State-of-the-art congestion control algorithms vs POWERTCP in response to an incast. For each algorithm, we show
the corresponding reaction to 10 : 1 incast in the top row and to 255 : 1 incast in the bottom row.

4.1 Setup
Our evaluation is based on network simulator NS3 [4].
Topology: We consider a datacenter network based on a Fat-
Tree topology [5] with 2 core switches and 256 servers orga-
nized into four pods. Each pod consists of two ToR switches
and two aggregation switches. The capacity of all the switch-
to-switch links are 100Gbps and server-to-switch links are
all 25Gbps leading to 4 : 1 oversubscription similar to prior
work [49]. The links connecting to core switches have a
propagation delay of 5µs and all the remaining links have a
propagation delay of 1µs. We set up a shared memory archi-
tecture on all the switches and enable the Dynamic Thresh-
olds algorithm [17] for buffer management across all the
ports, commonly enabled in datacenter switches [1,2]. Finally
we set the buffer sizes in our topology proportional to the
bandwidth-buffer ratio of Intel Tofino switches [18].
Traffic mix: We generate traffic using the web search [7]
flow size distribution to evaluate our algorithm using real-
istic workloads. We evaluate an average load (on the ToR
uplinks) in the range of 20%−95%. We also use a synthetic
workload similar to prior work [6] to generate incast traffic.
Specifically, the synthetic workload represents a distributed
file system where each server requests a file from a set of
servers chosen uniformly at random from a different rack. All
the servers which receive the request respond at the same time
by transmitting the requested part of the file. As a result, each
file request creates an incast scenario. We evaluate across
different request rates and request sizes.
Comparisons and metrics: We evaluate POWERTCP with
and without switch support and compare to HPCC [36], DC-
QCN [56], and TIMELY [41] representing sender-based con-
trol law approaches similar to POWERTCP and HOMA [42]
representing receiver-driver transport. We report flow com-
pletion times and switch buffer occupancy metrics.
Configuration: We set γ = 0.9 for POWERTCP and θ-
POWERTCP. Both HPCC and POWERTCP are configured
with base-RTT (τ) set to the maximum RTT in our topol-
ogy and HostBw is set to the server NIC bandwidth. The

product of base-RTT and HostBw is configured as RTTBytes
for HOMA and the over-commitment level is set to 1 where
HOMA performed best across different overcommitment lev-
els in our setup. We report our results for all overcommit-
ment levels (1-6) in Appendix C. We set the parameters for
DCQCN following the suggestion in [36] which is based on
experience and TIMELY parameters are set according to [41].

4.2 Results

POWERTCP reacts rapidly yet accurately to congestion:
We evaluate POWERTCP’s reaction to congestion in two
scenarios: (i) 10 : 1 small-scale incast and (ii) 255 : 1 large-
scale incast. Figure 4 shows the aggregate throughput and
the buffer occupancy at the bottleneck link for POWERTCP,
TIMELY, HPCC and HOMA. First, at time t = 0, we launch
ten flows simultaneously towards the receiver of a long flow
leading to a 10:1 incast. We show in Figure 4a and Figure 4b
that POWERTCP quickly mitigates the incast and reaches
near zero queue lengths without losing throughput. In Fig-
ure 4d we see that HPCC indeed reacts quickly to get back
to near-zero queue lengths. On one hand, however, HPCC
does not react enough during the congestion onset and reaches
higher buffer occupancy ≈ 2x compared to POWERTCP and
on the other hand loses throughput after mitigating the incast
as opposed to POWERTCP’s stable throughput. TIMELY as
shown in Figure 4c does not control the queue-lengths ei-
ther and loses throughput after reacting to the incast. While
HOMA sustains throughput, we observe from Figure 4e that
HOMA does not accurately control bottleneck queue-lengths.
Second, at time t = 0, in addition to the 10 : 1 incast, the
256th server sends a query request (§4.1) to all the other
255 servers which then respond at the same time, creating a
255:1 incast. From Figure 4a and Figure 4b (bottom row),
we observe similar benefits from both POWERTCP and θ-
POWERTCP even at large-scale incast: both react quickly and
converge to near-zero queue-lengths without losing through-
put. In contrast, from Figure 4c and Figure 4d we see that
TIMELY and HPCC lose throughput immediately after re-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 59

(a) POWERTCP (ms scale) (b) HOMA (ms scale)

(c) θ-POWERTCP (d) TIMELY

Figure 5: Fairness and stability

(a) 20% load (b) 60% load

Figure 6: 99.9 percentile flow completion times with websearch workload
(a) even at low network load, POWERTCP outperforms existing algorithms
and (b) as the load increases the benefits of POWERTCP are enhanced.
However, only short flows benefit from θ-POWERTCP.

acting to the increased queue length. From Figure 4e we
observe that HOMA reaches approximately 500KB higher
queue-length compared to POWERTCP and cannot converge
to near-zero queue-lengths quickly.

POWERTCP is stable and achieves fairness: POWERTCP
not only reacts rapidly to reduce queue lengths but also fea-
tures excellent stability. Figure 5 shows how bandwidth is
shared by multiple flows as they arrive and leave. We see that
POWERTCP stabilizes to a fair share of bandwidth quickly,
both when flows arrive and leave, confirming POWERTCP’s
fast reaction to congestion as well as the available bandwidth.

Figure 4a showing convergence and Figure 5a showing
fairness and stability confirm the theoretical guarantees of
POWERTCP. Hereafter, all our results are based on the setup
described above, §4.1, using realistic workloads.

POWERTCP significantly improves short flows FCTs: In
Figure 6 we show the 99.9-percentile flow completion times
using POWERTCP and state-of-the-art datacenter congestion
control algorithms. At 20% network load (Figure 6a), POW-
ERTCP and θ-POWERTCP improve 99.9-percentile flow
completion times for short flows (< 10KB) by 9% compared
to HPCC and by 80% compared to TIMELY, DCQCN and
HOMA. Even at moderate load of 60% (Figure 6b), short
flows significantly benefit from POWERTCP as well as θ-
POWERTCP. Specifically, POWERTCP improves 99.9 per-
centile flow completion times for short flows by 33% com-
pared to HPCC, by 99% compared to HOMA and by 74%
compared to TIMELY and DCQCN. θ-POWERTCP provides
even greater benefits to short flows showing an improvement
of 36% compared to HPCC and 82% compared to TIMELY
and DCQCN. Indeed, web search workload being buffer-
intensive, our results confirm the observations made in §2.
TIMELY being a current-based CC, does not explicitly con-
trol queuing latency, while HPCC, a voltage-based CC, does
not react as fast as POWERTCP to mitigate congestion result-
ing in higher flow completion times. Surprisingly, HOMA

performs the worst, showing an order-of-magnitude higher
FCTs for short flows at high loads as shown in Figure 6b.

We also evaluate across various loads in the range 20%−
95% and show the 99.9-percentile flow completion times for
short flows in Figure 7a. In particular, we see that the benefits
of POWERTCP and θ-POWERTCP are further enhanced as
the network load increases. POWERTCP (and θ-POWERTCP)
improve the flow completion times of short flows by 36%
(and 55%) compared to HPCC. Short flows particularly bene-
fit from POWERTCP due its accurate control of buffer occu-
pancies close to zero. In Figure 7g we show the CDF of buffer
occupancies at 80% load. POWERTCP consistently maintains
lower buffer occupancy and cuts the tail buffer occupancy by
50% compared to HPCC.

Medium sized flows also benefit from POWERTCP: We
find that POWERTCP not only improves short flow perfor-
mance but also improves the 99.9-percentile flow completion
times for medium sized flows (100KB− 1M). In Figure 6
we see that POWERTCP consistently achieves better flow
completion times for medium sized flows. Specifically, at
20% network load (Figure 6a), POWERTCP improves 99.9-
percentile flow completion times for medium flows by 33%
compared to HPCC, by 76% compared to HOMA and by
62% (and 50%) compared to TIMELY (and DCQCN). In
Figure 6b, we observe similar benefits even at 60% load.

We notice from Figure 6a and Figure 6b that the perfor-
mance of θ-POWERTCP deteriorates sharply for medium
sized flows. θ-POWERTCP uses RTT for window update cal-
culations. While RTT can be a good congestion signal, it does
not signal under-utilization as opposed to INT that explicitly
notifies the exact utilization. As a result, medium flows with
θ-POWERTCP experience 60% worse performance on aver-
age compared to POWERTCP and HPCC. We also observe
similar performance for TIMELY that uses RTT as a conges-
tion signal. Although delay is simple and effective for short
flows performance even at the tail, our results show that delay

60 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Short flows FCT with web-
search workload

(b) Long flows FCT with web-
search workload

(c) Short flows FCTs with web-
search + incasts

(d) Long flows FCT with web-
search + incasts

(e) Short flows FCTs with web-
search + incasts

(f) Long flows FCT with web-
search + incasts

(g) Buffer occupancy with web-
search workload at 80% load

(h) Buffer occupancy with web-
search + incasts

Figure 7: A detailed comparison of POWERTCP, θ-POWERTCP and the state-of-the-art showing the benefits of POWERTCP and
the trade-offs of θ-POWERTCP. Particularly POWERTCP outperforms the state-of-the-art across a range of network loads even
under bursty traffic. However, θ-POWERTCP performs well for short flows but long flows cannot benefit from θ-POWERTCP.

as a congestion signal is not ideal if not worse for medium
sized flows.
POWERTCP does not penalize long flows: Fast reaction to
available bandwidth makes POWERTCP ideal for best per-
formance across all flow sizes. We observe from Figure 6
that POWERTCP achieves flow completion times compara-
ble to existing algorithms, indicating that POWERTCP does
not trade throughput for low latency. Further, in Figure 7b
we show the 99.9-percentile flow completion times for long
flows across various loads. At low load, POWERTCP per-
forms similar to HPCC and performs 9% better compared
to HPCC at 90% network loads. However, we see that θ-
POWERTCP is consistently 35% worse on average across
various loads compared to POWERTCP and HPCC.
POWERTCP outperforms under bursty traffic: We gener-
ate incast-like traffic described in §4.1 in addition to the web
search workload at 80% load. In Figure 7c and Figure 7d we
show the 99.9-percentile flow completion times for short and
long flows across different request rates for a request size of
2MB. Note that by varying request rates, we are essentially
varying the frequency of incasts. We observe that even un-
der bursty traffic, POWERTCP improves 99.9-percentile flow
completion times on average for short flows by 24% and for
long flows by 10% compared to HPCC. Further POWERTCP
outperforms at high request rates showing 33% improvement
over HPCC for short flows. On the other hand, θ-POWERTCP
improves flows completion times for short flows but performs
worse across all request rates compared to HPCC.

We further vary the request size at a request rate of four
per second. Note that by varying the request size, we also
vary the duration of congestion. In Figure 7e and Figure 7f,

we show the 99.9-percentile flow completion times for short
and long flows. Specifically, in Figure 7e we observe that
flow completion times with POWERTCP gradually increase
with request size. POWERTCP, compared to HPCC, improves
flow completion times of short flows by 20% at 1MB request
size and improves by 7% at 8MB request size. At the same
time, POWERTCP does not sacrifice long flows performance
under bursty traffic. POWERTCP improves flow completion
times for long flows by 5% on average compared to HPCC. θ-
POWERTCP’s performance similar to previous experiments
is on average 30% worse for long flows but 9% better for
short flows compared to HPCC. We show the CDF of buffer
occupancies under bursty traffic with 2MB request size and 16
per second request rate. Both POWERTCP and θ-POWERTCP
reduce the 99 percentile buffer by 31% compared to HPCC.

We note that HOMA’s performance in our evaluation is
not in line with the results presented in [42]. Recent work [26]
reports similar performance issues with HOMA. We suspect
two possible reasons: (i) HOMA’s accuracy in controlling
congestion is specifically limited in our network setup with
an oversubscribed Fat-Tree topology where congestion at the
ToR uplinks is a possibility which cannot be controlled by a
receiver-driven approach such as HOMA. (ii) As pointed out
by [26], HOMA’s original evaluation considered practically
infinite buffers at the switches whereas switches in our setup
are limited in buffer and use Dynamic Thresholds to share
buffer. Further, even at 20% load, asymmetric RTTs in a Fat-
Tree topology (consequently RTTBytes) across ToR pairs
contributes to HOMA’s inaccuracy in controlling congestion.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 61

(a) POWERTCP reacts rapidly to the available bandwidth achieving good circuit utilization.
(b) POWERTCP significantly reduces
the tail latency

Figure 8: The benefits of POWERTCP in reconfigurable datacenter networks showing its ability to achieve good circuit utilization
while significantly reducing the tail latency compared to reTCP.

5 Case Study: Reconfigurable DCNs
Given POWERTCP’s rapid reaction to congestion and avail-
able bandwidth, we believe that POWERTCP is well suited for
emerging reconfigurable datacenter networks (RDCN) [44].
We now examine POWERTCP’s applicability in this con-
text through a case study. Congestion control in RDCNs is
especially challenging as the available bandwidth rapidly fluc-
tuates due to changing circuits. In this section, we evaluate
the performance of POWERTCP and compare against the
state-of-the-art reTCP [43] and HPCC using packet-level sim-
ulations in NS3. We implement both POWERTCP and HPCC
in the transport layer and limit their window updates to once
per RTT for a fair comparison with reTCP. POWERTCP and
HPCC flows initialize the TCP header with the unused option
number 36. Switches are configured to append INT metadata
to TCP options. It should be noted that TCP options are lim-
ited to 40 bytes. As a result, our implementation can only
support at most four hops round-trip path length.

We evaluate in a topology with 25 ToR switches with 10
servers each and a single optical circuit switch connected to
all the ToR switches. ToR switches are also connected to a
separate packet switched network with 25Gbps links. The
optical switch internally connects each input port to an output
port and cycles across 24 matchings in a permutation schedule
where the switch stays in a specific matching for 225µs (one
day) and takes 20µs to reconfigure to the next matching (one
night). In this setting, each pair of ToR switches has direct
connectivity through the circuit switch once over a length
of 24 matchings (one week). We use single-hop routing in
the circuit network and a maximum base RTT is 24µs. Note
that circuit-on time (i.e., one day) is approximately 10 RTTs.
The links between servers and ToR switches are 25Gbps and
circuit links are 100Gbps. We configure the ToR switches
to forward packets exclusively on the circuit network when
available. Switches are further equipped with per-destination
virtual output queues (VOQs). Our setup is in line with prior
work [43]. We set reTCP’s prebuffering to 1800µs based

on the suggestions in [43] and set to 600µs based on our
parameter sweep for the minimum required prebuffering in
our topology. We compare against both versions.

In Figure 8a, we show the time series of throughput and
VOQ length for a pair of ToR switches. Specifically, the
gray-shaded area in Figure 8a highlights the availability of
high bandwidth through the circuit-switched network. On
one hand, reTCP instantly fills the available bandwidth but
incurs high latency due to prebuffering before the circuit is
available. On the other hand, HPCC maintains low queue
lengths but does not fill the available bandwidth. In contrast,
POWERTCP fills the available bandwidth within one RTT
and maintains near-zero queue lengths and thereby achieves
both high throughput and low latency. We show the tail queu-
ing latency incurred by reTCP, HPCC and POWERTCP in
Figure 8b. We observe that POWERTCP improves the tail
queuing latency at least by 5× compared to reTCP. Our case
study reveals that fine-grained congestion control algorithms
such as POWERTCP can alleviate the circuit utilization prob-
lem in RDCNs without trading latency for throughput.

6 Related Work
Dealing with congestion has been an active research topic for
decades with a wide spectrum of approaches, including buffer
management [3, 10, 17] and scheduling [9, 25, 45, 46]. In the
following, we will focus on the most closely related works on
end-host congestion control.

Approaches such as [7, 51, 56] (e.g., DCTCP, D2TCP) rely
on ECN as the congestion signal and react proportionally.
Such algorithms require the bottleneck queue to grow up to a
certain threshold, which results in queuing delays. ECN-based
schemes remain oblivious to congestion onset and intensity.
Protocols such as TIMELY [41], SWIFT [34], CDG [23],
DX [35] rely on RTT measurements for window update calcu-
lations. TIMELY and CDG partly react to congestion based
on delay gradients, remaining oblivious to absolute queue
lengths. TIMELY, for instance, uses a threshold to fall back

62 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

to proportional reaction to delay instead of delay gradient.
SWIFT, a successor of TIMELY, only reacts proportionally to
delay. As a result, SWIFT cannot detect congestion onset and
intensity unless the distance from target delay significantly in-
creases. In contrast, θ-POWERTCP also being a delay-based
congestion control algorithm updates the window sizes using
the notion of power. As a result, θ-POWERTCP accurately
detects congestion onset even at near-zero queue lengths.

XCP [30], D3 [52], RCP [19] rely on explicit network feed-
back based on rate calculations within the network. However,
the rate calculations are based on heuristics and require pa-
rameter tuning to adjust for different goals such as fairness
and utilization. HPCC [36] introduces a novel use of in-band
network telemetry and significantly improves the fidelity of
feedback. Our work builds on the same INT capabilities to
accurately measure the bottleneck link state. However, as we
show analytically and empirically, HPCC’s control law then
adjusts rate and window size solely based on observed queue
lengths and lacks control accuracy compared to POWERTCP.
Our proposal POWERTCP uses the same feedback signal but
uses the notion of power to update window sizes leading to
significantly more fine-grained and accurate reactions.

Receiver-driven transport protocols such as NDP [22],
HOMA [42], and Aeolus [26] have received much attention
lately. Such approaches are conceptually different from clas-
sic transmission control at the sender. Importantly, receiver-
driven transport approaches make assumptions on the uni-
formity in datacenter topologies and oversubscription [22].
POWERTCP is a sender-based classic CC approach that uses
our novel notion of power and achieves fine-grained control
over queuing delays without sacrificing throughput.

7 Conclusion
We presented POWERTCP, a novel fine-grained congestion
control algorithm. By reacting to both the current state of the
network as well as its trend (i.e., power), POWERTCP im-
proves throughput, reduces latency, and keeps queues within
the network short. We proved that POWERTCP has a set of
desirable properties, such as fast convergence and stability
allowing it to significantly improve flow completion times
compared to the state-of-the-art. Its fast reaction makes POW-
ERTCP attractive for many dynamic network environments
including emerging reconfigurable datacenters which served
us as a case study in this paper. In our future work, we plan
to explore more such use cases.

Acknowledgments

We would like to thank our shepherd, Michael Schapira, as
well as the anonymous NSDI reviewers for their useful feed-
back. This work is part of a project that has received funding
from the European Research Council (ERC) under the Eu-
ropean Union’s Horizon 2020 research and innovation pro-
gramme, consolidator project Self-Adjusting Networks (Ad-
justNet), grant agreement No. 864228, Horizon 2020, 2020-
2025.

References
[1] Broadcom. 12.8 tb/s strataxgs tomahawk 3 ether-

net switch series. https://www.broadcom.com/
products/ethernet-connectivity/switching/
strataxgs/bcm56980-series.

[2] Broadcom. 2020. 25.6 tb/s strataxgs tomahawk 4
ethernet switch series. https://www.broadcom.com/
products/ethernet-connectivity/switching/
strataxgs/bcm56990-series.

[3] Cisco nexus 9000 series switches. https://www.
cisco.com/c/en/us/products/collateral/
switches/nexus-9000-series-switches/
white-paper-c11-738488.html.

[4] Ns3 network simulator. https://www.nsnam.org/.

[5] Mohammad Al-Fares, Alexander Loukissas, and Amin
Vahdat. A scalable, commodity data center network
architecture. In Proceedings of the ACM SIGCOMM
2008 Conference, page 63–74, 2008.

[6] Mohammad Alizadeh and Tom Edsall. On the data path
performance of leaf-spine datacenter fabrics. In 2013
IEEE 21st annual symposium on high-performance in-
terconnects, pages 71--74. IEEE, 2013.

[7] Mohammad Alizadeh, Albert Greenberg, David A
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar,
Sudipta Sengupta, and Murari Sridharan. Data center
tcp (dctcp). In Proceedings of the ACM SIGCOMM
2010 Conference, pages 63--74, 2010.

[8] Mohammad Alizadeh, Adel Javanmard, and Balaji Prab-
hakar. Analysis of dctcp: stability, convergence, and
fairness. ACM SIGMETRICS Performance Evaluation
Review, 39(1):73--84, 2011.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 63

https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56980-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56980-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56980-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56990-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56990-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56990-series
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/white-paper-c11-738488.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/white-paper-c11-738488.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/white-paper-c11-738488.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/white-paper-c11-738488.html
https://www.nsnam.org/

[9] Mohammad Alizadeh, Shuang Yang, Milad Sharif,
Sachin Katti, Nick McKeown, Balaji Prabhakar, and
Scott Shenker. Pfabric: Minimal near-optimal datacen-
ter transport. In Proceedings of the ACM SIGCOMM
2013 Conference, page 435–446, 2013.

[10] Maria Apostolaki, Laurent Vanbever, and Manya
Ghobadi. Fab: Toward flow-aware buffer sharing on
programmable switches. In Proceedings of the 2019
Workshop on Buffer Sizing, pages 1--6, 2019.

[11] Mina Tahmasbi Arashloo, Yaron Koral, Michael Green-
berg, Jennifer Rexford, and David Walker. Snap: State-
ful network-wide abstractions for packet processing. In
Proceedings of the ACM SIGCOMM 2016 Conference,
page 29–43, 2016.

[12] Chen Avin, Manya Ghobadi, Chen Griner, and Stefan
Schmid. On the complexity of traffic traces and impli-
cations. In Proc. ACM SIGMETRICS, 2020.

[13] Chen Avin and Stefan Schmid. Renets: Statically-
optimal demand-aware networks. In Proc. SIAM Sym-
posium on Algorithmic Principles of Computer Systems
(APOCS), 2021.

[14] Hitesh Ballani, Paolo Costa, Raphael Behrendt, Daniel
Cletheroe, Istvan Haller, Krzysztof Jozwik, Fotini Kari-
nou, Sophie Lange, Kai Shi, Benn Thomsen, and Hugh
Williams. Sirius: A flat datacenter network with
nanosecond optical switching. In Proceedings of the
ACM SIGCOMM 2020 Conference, page 782–797,
2020.

[15] Lawrence S Brakmo, Sean W O’Malley, and Larry L
Peterson. Tcp vegas: New techniques for congestion
detection and avoidance. In Proceedings of the confer-
ence on Communications architectures, protocols and
applications, pages 24--35, 1994.

[16] Yanpei Chen, Rean Griffith, Junda Liu, Randy H Katz,
and Anthony D Joseph. Understanding tcp incast
throughput collapse in datacenter networks. In Proceed-
ings of the 1st ACM workshop on Research on enterprise
networking, pages 73--82, 2009.

[17] Abhijit K Choudhury and Ellen L Hahne. Dynamic
queue length thresholds for shared-memory packet
switches. IEEE/ACM Transactions On Networking,
6(2):130--140, 1998.

[18] Intel Corporation. Intel Tofino, 2020. Re-
trieved Dec. 29, 2020 from https://www.
intel.com/content/www/us/en/products/
network-io/programmable-ethernet-switch/
tofino-series/tofino.html.

[19] Nandita Dukkipati and Nick McKeown. Why flow-
completion time is the right metric for congestion con-
trol. ACM SIGCOMM Computer Communication Re-
view, 36(1):59--62, 2006.

[20] Monia Ghobadi, Ratul Mahajan, Amar Phanishayee,
Nikhil Devanur, Janardhan Kulkarni, Gireeja Ranade,
Pierre-Alexandre Blanche, Houman Rastegarfar,
Madeleine Glick, and Daniel Kilper. Projector: Agile
reconfigurable data center interconnect. In Proceedings
of the ACM SIGCOMM 2016 Conference, pages
216--229, 2016.

[21] Sangtae Ha, Injong Rhee, and Lisong Xu. Cubic: a
new tcp-friendly high-speed tcp variant. ACM SIGOPS
operating systems review, 42(5):64--74, 2008.

[22] Mark Handley, Costin Raiciu, Alexandru Agache, An-
drei Voinescu, Andrew W. Moore, Gianni Antichi, and
Marcin Wójcik. Re-architecting datacenter networks
and stacks for low latency and high performance. In
Proceedings of the ACM SIGCOMM 2017 Conference,
page 29–42, 2017.

[23] David A Hayes and Grenville Armitage. Revisiting tcp
congestion control using delay gradients. In Interna-
tional Conference on Research in Networking, pages
328--341. Springer, 2011.

[24] Christopher V Hollot, Vishal Misra, Don Towsley, and
Wei-Bo Gong. A control theoretic analysis of red. In
Proceedings IEEE INFOCOM 2001. Conference on
Computer Communications. Twentieth Annual Joint
Conference of the IEEE Computer and Communications
Society (Cat. No. 01CH37213), volume 3, pages 1510--
1519. IEEE, 2001.

[25] Chi-Yao Hong, Matthew Caesar, and P Brighten God-
frey. Finishing flows quickly with preemptive schedul-
ing. ACM SIGCOMM Computer Communication Re-
view, 42(4):127--138, 2012.

[26] Shuihai Hu, Wei Bai, Gaoxiong Zeng, Zilong Wang,
Baochen Qiao, Kai Chen, Kun Tan, and Yi Wang. Ae-
olus: A building block for proactive transport in data-
centers. In Proceedings of the ACM SIGCOMM 2020
Conference, page 422–434, 2020.

[27] V. Jacobson. Congestion avoidance and control. In Sym-
posium Proceedings on Communications Architectures
and Protocols, SIGCOMM ’88, page 314–329, 1988.

[28] Cheng Jin, David X Wei, and Steven H Low. Fast tcp:
motivation, architecture, algorithms, performance. In
IEEE INFOCOM 2004, volume 4, pages 2490--2501.
IEEE, 2004.

64 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html

[29] Srikanth Kandula, Sudipta Sengupta, Albert Greenberg,
Parveen Patel, and Ronnie Chaiken. The nature of data
center traffic: measurements & analysis. In Proceed-
ings of the 9th ACM SIGCOMM conference on Internet
measurement, pages 202--208, 2009.

[30] Dina Katabi, Mark Handley, and Charlie Rohrs. Conges-
tion control for high bandwidth-delay product networks.
In Proceedings of the 2002 conference on Applications,
technologies, architectures, and protocols for computer
communications, pages 89--102, 2002.

[31] Srinivasan Keshav. Mathematical foundations of com-
puter networking. Addison-Wesley, 2012.

[32] Changhoon Kim, Anirudh Sivaraman, Naga Katta, An-
tonin Bas, Advait Dixit, and Lawrence J Wobker. In-
band network telemetry via programmable dataplanes.
In ACM SIGCOMM ’15 Demos, 2015.

[33] Janardhan Kulkarni, Stefan Schmid, and Pawel Schmidt.
Scheduling opportunistic links in two-tiered reconfig-
urable datacenters. In 33rd ACM Symposium on Paral-
lelism in Algorithms and Architectures (SPAA), 2021.

[34] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan
M. G. Wassel, Xian Wu, Behnam Montazeri, Yaogong
Wang, Kevin Springborn, Christopher Alfeld, Michael
Ryan, David Wetherall, and Amin Vahdat. Swift: Delay
is simple and effective for congestion control in the
datacenter. In Proceedings of the ACM SIGCOMM
2020 Conference, page 514–528, 2020.

[35] Changhyun Lee, Chunjong Park, Keon Jang, Sue Moon,
and Dongsu Han. Accurate latency-based congestion
feedback for datacenters. In 2015 USENIX Annual Tech-
nical Conference (USENIX ATC 15), pages 403--415,
Santa Clara, CA, July 2015. USENIX Association.

[36] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, et al. Hpcc:
High precision congestion control. In Proceedings of
the ACM SIGCOMM 2019 Conference, pages 44--58,
2019.

[37] S.H. Low, F. Paganini, and J.C. Doyle. Internet conges-
tion control. IEEE Control Systems Magazine, 22(1):28-
-43, 2002.

[38] William M Mellette, Rajdeep Das, Yibo Guo, Rob
McGuinness, Alex C Snoeren, and George Porter. Ex-
panding across time to deliver bandwidth efficiency and
low latency. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pages
1--18, 2020.

[39] William M Mellette, Rob McGuinness, Arjun Roy, Alex
Forencich, George Papen, Alex C Snoeren, and George
Porter. Rotornet: A scalable, low-complexity, optical
datacenter network. In Proceedings of the ACM SIG-
COMM 2017 Conference, pages 267--280, 2017.

[40] Vishal Misra, Wei-Bo Gong, and Don Towsley. Fluid-
based analysis of a network of aqm routers supporting
tcp flows with an application to red. In Proceedings
of the conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communication,
pages 151--160, 2000.

[41] Radhika Mittal, Vinh The Lam, Nandita Dukkipati,
Emily Blem, Hassan Wassel, Monia Ghobadi, Amin
Vahdat, Yaogong Wang, David Wetherall, and David
Zats. Timely: Rtt-based congestion control for the dat-
acenter. In Proceedings of the ACM SIGCOMM 2015
Conference, page 537–550, 2015.

[42] Behnam Montazeri, Yilong Li, Mohammad Alizadeh,
and John Ousterhout. Homa: A receiver-driven low-
latency transport protocol using network priorities. In
Proceedings of the ACM SIGCOMM 2018 Conference,
page 221–235, 2018.

[43] Matthew K Mukerjee, Christopher Canel, Weiyang
Wang, Daehyeok Kim, Srinivasan Seshan, and Alex C
Snoeren. Adapting TCP for reconfigurable datacenter
networks. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pages
651--666, 2020.

[44] Matthew Nance Hall, Klaus-Tycho Foerster, Stefan
Schmid, and Ramakrishnan Durairajan. A survey of
reconfigurable optical networks. Optical Switching and
Networking, 41:100621, 2021.

[45] Jonathan Perry, Hari Balakrishnan, and Devavrat Shah.
Flowtune: Flowlet control for datacenter networks. In
14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), pages 421--435, Boston,
MA, March 2017. USENIX Association.

[46] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan,
Devavrat Shah, and Hans Fugal. Fastpass: A central-
ized" zero-queue" datacenter network. In Proceedings
of the ACM SIGCOMM 2014 conference, pages 307--
318, 2014.

[47] Amar Phanishayee, Elie Krevat, Vijay Vasudevan,
David G Andersen, Gregory R Ganger, Garth A Gibson,
and Srinivasan Seshan. Measurement and analysis of
tcp throughput collapse in cluster-based storage systems.
In FAST, volume 8, pages 1--14, 2008.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 65

[48] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter,
and Alex C Snoeren. Inside the social network’s (data-
center) network. In Proceedings of the ACM SIGCOMM
2015 Conference, pages 123--137, 2015.

[49] Ahmed Saeed, Varun Gupta, Prateesh Goyal, Milad
Sharif, Rong Pan, Mostafa Ammar, Ellen Zegura, Keon
Jang, Mohammad Alizadeh, Abdul Kabbani, and Amin
Vahdat. Annulus: A dual congestion control loop for
datacenter and wan traffic aggregates. In Proceedings of
the ACM SIGCOMM 2020 Conference, page 735–749,
2020.

[50] Stefan Schmid, Chen Avin, Christian Scheideler,
Michael Borokhovich, Bernhard Haeupler, and Zvi
Lotker. Splaynet: Towards locally self-adjusting net-
works. IEEE/ACM Transactions on Networking (ToN),
2016.

[51] Balajee Vamanan, Jahangir Hasan, and T.N. Vijayku-
mar. Deadline-aware datacenter tcp (d2tcp). In Pro-
ceedings of the ACM SIGCOMM 2012 Conference, page
115–126, 2012.

[52] Christo Wilson, Hitesh Ballani, Thomas Karagiannis,
and Ant Rowtron. Better never than late: Meeting dead-
lines in datacenter networks. In Proceedings of the ACM
SIGCOMM 2011 Conference, page 50–61, 2011.

[53] Jackson Woodruff, Andrew W Moore, and Noa Zilber-
man. Measuring burstiness in data center applications.
In Proceedings of the 2019 Workshop on Buffer Sizing,
2019.

[54] Doron Zarchy, Radhika Mittal, Michael Schapira, and
Scott Shenker. Axiomatizing congestion control. Pro-
ceedings of the ACM on Measurement and Analysis of
Computing Systems, 3(2):1--33, 2019.

[55] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind
Krishnamurthy. High-resolution measurement of data
center microbursts. In Proceedings of the 2017 Internet
Measurement Conference, pages 78--85, 2017.

[56] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong
Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra Pad-
hye, Shachar Raindel, Mohamad Haj Yahia, and Ming
Zhang. Congestion control for large-scale rdma deploy-
ments. ACM SIGCOMM Computer Communication
Review, 45(4):523--536, 2015.

[57] Yibo Zhu, Monia Ghobadi, Vishal Misra, and Jitendra
Padhye. Ecn or delay: Lessons learnt from analysis of
dcqcn and timely. In Proceedings of the 12th Interna-
tional on Conference on emerging Networking EXperi-
ments and Technologies, pages 313--327, 2016.

A Analysis
Our analysis is based on a a single bottleneck link model
widely used in the literature [24, 40, 54, 57]. Specifically, we
assume that all senders use the same protocol, transmit long
flows sharing a common bottleneck link with bandwidth b,
and have a base round trip time τ (excluding queuing delays).
We denote at time t queue length as q(t), aggregate window
size as w(t), window size of a sender i as wi(t), forward prop-
agation delay between sender and bottleneck queue as t f , the
round-trip time as θ(t) and a base round-trip time as τ. Here
w(t) = ∑i wi(t).
We additionally use the traditional model of queue length
dynamics which is independent of the control law [24, 40]

q̇(t) = w(t− t f)
θ(t)

−b (9)

where θ(t) is given by,

θ(t) = q(t)
b

+ τ (10)

Power at time t denoted by Γ(t) as defined in §3.1 is expressed
as,

Γ(t) = (q(t)+b · τ)︸ ︷︷ ︸
voltage

·(q̇(t)+µ(t))︸ ︷︷ ︸
current

(11)

POWERTCP’s control law at a source i is given by,

wi(t +δt) = γ ·
(

wi(t−θ(t)) · e
f (t)

+β

)
+(1− γ) ·wi(t) (12)

where e and f (t) are given by,

e = b2 · τ

f (t) = Γ(t−θ(t)+ t f)

and β is the additive increase term and γ ∈ (0,1] serves as the
weight given for new updates using EWMA. Both β and γ are
parameters to the control law.

Using the properties of power (Property 1), the aggregate
window size at time t − θ(t) can be expressed in terms of
power as,

w(t−θ(t)) = Γ(t−θ(t)+ t f)
b

= f (t)
b

(13)

Suppose an ack arrives at time t acknowledging a segment,
time t−θ(t) corresponds to the time when the acknowledged
segment was transmitted.

Theorem 1 (Stability). POWERTCP’s control law is
Lyapunov-stable as well as asymptotically stable with a
unique equilibrium point.

66 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Notation Description
b bottleneck bandwidth
q bottleneck queue length
τ base RTT
t f sender to bottleneck delay
θ round trip time RTT
wi window size of a flow i
w aggregate window size (of all flows)
γ EWMA parameter
β additive increase
e desired equilibrium point
f feedback

λi sending rate of a flow i
λ Current: aggregate sending rate
ν Voltage
Γ Power

Table 2: Key notations used in this paper. Additionally for
any variable say x, ẋ denotes its derivative with respect to
time i.e., dx

dt .

Proof. First, we rewrite Eq. 12 as follows to obtain the ag-
gregate window w,

∑
i

wi(t+δt)=∑
i

γ ·
(

wi(t−θ(t)) · e
f (t)

+β

)
+∑

i
(1−γ) ·wi(t)

let β̂ = ∑i β

w(t +δt) = γ ·
(

w(t−θ(t)) · e
f (t)

+ β̂

)
+(1− γ) ·w(t)

by rearranging the terms in the above equation we obtain,

w(t +δt)−w(t) = γ ·
(
−w(t)+ w(t−θ(t)) · e

f (t)
+ β̂

)
dividing by δt on both sides in the above equation and us-
ing Euler’s first-order approximation, we derive the window
dynamics for POWERTCP as follows,

ẇ(t) = γr ·
(
−w(t)+ w(t−θ(t)) · e

f (t)
+ β̂

)
(14)

where γr = γ

δt . Using Eq. 13 and substituting e = b2 ·τ, Eq. 14
reduces to,

ẇ(t) = γr ·
(
−w(t)+b · τ+ β̂

)
(15)

In the system defined by Eq. 9 and Eq. 14, when the win-
dow and the queue length stabilize i.e., ẇ(t) = 0 and q̇(t) = 0,
it is easy to observe that there exists a unique equilibrium
point (we,qe) = (b ·τ+ β̂, β̂). We now apply a change of vari-
able from t to t− t f in Eq. 15 and linearize Eq. 15 and Eq. 9
around (we,qe),

δẇ(t− t f) =−γr ·δw(t− t f) (16)

δq̇(t) =−δq(t)
τ

+ δw(t− t f)
τ

(17)

We now convert the above differential equations to matrix
form, [

δq̇(t)
δẇ(t)

]
=
[
− 1

τ

1
τ

0 −γr

]
×
[

δq(t)
δw(t)

]
It is then easy to observe that the eigenvalues of the system

are − 1
τ

and −γr. Since τ (base RTT) and γr = γ

δt are both
positive, we see that both the eigenvalues are negative. This
proves that the system is both lyapunav stable and asymptoti-
cally stable.

Theorem 2 (Convergence). After a perturbation, POW-
ERTCP’s control law exponentially converges to equilibrium
with a time constant δt

γ
where δt is the window update interval.

Proof. A perturbation at time t = 0 causes the window to
shift from we = c ·τ+ β̂ to say winit . We solve the differential
equation in Eq. 15 and obtain the following equation,

w(t) = we +(winit −we) · e−γr ·t︸ ︷︷ ︸
exponential decay

(18)

From Eq. 18 we can see that, for any error e = we−winit
caused by a perturbation, e exponentially decays with a time
constant 1

γr
= δt

γ
. Hence for e to decay 99.3%, it takes 5·δ

γ

time.

Theorem 3 (Fairness). POWERTCP is βi weighted propor-
tionally fair, where βi is the additive increase used by a flow
i.
Proof. Recall that POWERTCP’s control law for each flow i
is defined as,

wi(t +δt) = γ ·
(

wi(t−θ(t)) · e
f (t)

+βi

)
+(1− γ) ·wi(t)

From the proof of Theorem 1, we know that the equilib-
rium point for aggregate window size and queue length is
(we,qe) = (b · τ+ β̂, β̂). Using this equilibrium we can also
obtain the equilibrium value for f (t) as,

fe = (β̂+b · τ) ·b
We can then show that wi has an equilibrium point.

(wi)e =
β̂+b · τ

β̂
·βi

We use the argument that window sizes and rates are syn-
onymous especially that POWERTCP uses pacing with rate
ri = wi

τ
. We can then easily observe that the rate allocation

is approximately max-min fair if βi are small enough but βi
proportionally fair in general.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 67

B Justifying the Simplified Model
We considered a simplified control law model to study ex-
isting control laws in §2. Here we justify how the simplified
model approximately captures the existing control laws. Our
simplified model for congestion window update at time t +δt
is defined in Eq. 19 as a function of current congestion win-
dow size, a target e, the feedback f (t), an additive increase β

and an exponential moving average parameter γ.

wi(t +δt) = γ ·
(

wi(t) ·
e

f (t)
+β

)
︸ ︷︷ ︸

update

+(1− γ) ·wi(t)

︸ ︷︷ ︸
EWMA

(19)

where e and f (t) are given by,

e =

b · τ queue-length based CC
τ delay-based CC
1 RTT-gradient based CC

(20)

f (t) =

q(t−θ(t)+ t f)+b · τ queue-length based CC
q(t−θ(t)+t f)

b + τ delay-based CC
q̇(t−θ(t)+t f)

b +1 RTT-gradient based CC
(21)

We first use Euler’s first order approximation and obtain the
aggregate window (∑w) dynamics for the simplified model,

ẇ(t) = γ

δt
·
(

w(t) · e
f (t)
−w(t)+β

)
(22)

In order for the system to stabilize, we require q̇(t) = 0 and
ẇ(t) = 0. Using Eq. 9 and Eq. 22 and applying equilibrium
conditions and assuming that f (t) stabilizes,

qe = we−b · τ (23)

we =
β̂

1− e
f

(24)

Recall that β̂ = ∑βi , the sum of additive increase terms of all
flows sharing a bottleneck. To show whether there exists a
unique equilibrium point, it remains to show whether Eq. 23
and Eq. 24 have a unique solution for we and qe. We now
show how the simplified model captures existing control laws
and show the equilibrium properties.

Queue length or inflight-based control law: Substituting
e = b · τ and f (t) = q(t − θ(t)+ t f)+ b · τ, we express the
simplified queue length based control law as,

wi(t+δt) = γ ·
(

wi(t) ·b · τ
q(t−θ(t)+ t f)+b · τ

+β

)
+(1−γ) ·wi(t)

(25)

notice that the update is an MIMD based on inflight bytes.
Eq. 25 captures control laws based on inflight bytes; for ex-
ample HPCC [36].

A system defined by queue length based control law (Eq. 25
and the queue length dynamics (Eq. 9, there exists a unique
equilibrium point. It can be observed that Eq. 24 for queue
length based control law gives we = b · τ+ β̂ and qe = β̂.

Delay-based control law: Substituting e = τ and f (t) =
q(t−θ(t)+t f)

b +τ, we express the simplified delay-based control
law as,

wi(t+δt) = γ ·

(
wi(t) · τ

q(t−θ(t)+t f)
b + τ

+β

)
+(1−γ) ·wi(t) (26)

where the window update is an MIMD based on RTT. Eq. 26
captures control laws based on RTT; for example FAST [28].

Similar to queue-length based CC, a system defined by
delay-based control law (Eq. 26 and the queue length dy-
namics (Eq. 9, there exists a unique equilibrium point. It can
be observed that Eq. 24 for delay-based control law gives
we = b · τ+ β̂ and qe = β̂.

RTT-gradient based control law: Substituting e = 1 and
f (t) = q̇(t−θ(t)+t f)

b + 1, we express the simplified RTT-
gradient based control law as,

wi(t+δt) = γ ·

(
wi(t) ·1

q̇(t−θ(t)+t f)
b +1

+β

)
+(1−γ) ·wi(t) (27)

where the window update is an MIMD based on RTT-gradient.
Eq. 27 by rearranging the terms, captures control laws based
on RTT-gradient such as TIMELY [41].

In contrast to queue-length and delay-based CC, RTT-
gradient based CC has no unique equilibrium point since
f (t) = q̇(t−θ(t)+t f)

b +1 stabilizes when q̇ = 0. However only
q̇ = 0 leads to window dynamics Eq. 27 also to stabilize
(ẇ = 0) at any queue lengths. As a result under RTT-gradient
control law, Eq. 23 and Eq. 24 do not have a unique solution
and consequently we can state that RTT-gradient based CC
has no unique equilibrium point.

68 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

C HOMA’s Overcommitment

(a) Over-Commitment: 1 (b) Over-Commitment: 2

(c) Over-Commitment: 3 (d) Over-Commitment: 4

(e) Over-Commitment: 5 (f) Over-Commitment: 6

Figure 9: HOMA’s reaction to 255 : 1 incast at different over-
commitment levels.

(a) Over-Commitment: 1 (b) Over-Commitment: 2

(c) Over-Commitment: 3 (d) Over-Commitment: 4

(e) Over-Commitment: 5 (f) Over-Commitment: 6

Figure 10: HOMA’s reaction to 10 : 1 incast at different over-
commitment levels.

(a) Over-Commitment: 1 (b) Over-Commitment: 2

(c) Over-Commitment: 3 (d) Over-Commitment: 4

(e) Over-Commitment: 5 (f) Over-Commitment: 6

Figure 11: HOMA’s fairness at different over-commitment
levels.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 69

D θ-POWERTCP
We present θ-POWERTCP: standalone version of POW-
ERTCP which does not require switch support and only re-
quires accurate packet timestamp support at the end-host.

Algorithm 2: θ-POWERTCP (w/o switch support)

1 /* tc is the timestamp upon ack arrival */
Input : ack
Output : cwnd, rate

2 procedure NEWACK(ack):
3 cwndold = GETCWND(ack.seq)
4 normPower = NORMPOWER(ack)
5 UPDATEWINDOW(normPower, cwndold)
6 rate = cwnd

τ

7 prevRT T = RT T
8 t prev

c = tc
9 UPDATEOLD(cwnd,ack.seq)

10 function NORMPOWER(ack):
11 dt = tc− t prev

c

12 θ̇ = RT T−prevRT T
dt . dRT T

dt

13 Γnorm = (θ̇+1)×RT T
τ

. Γnorm :Normalized power

14 Γsmooth = Γsmooth·(τ−∆t)+Γnorm·∆t
τ

15 return Γsmooth

16 function UPDATEWINDOW(power, ack):
17 if ack.seq < lastU pdated then . per RTT
18 return cwnd
19 end if
20 cwnd = γ× (cwndold

normPower +β)+(1− γ)× cwnd
21 . γ : EWMA parameter
22 . β: Additive Increase
23 lastU pdated = snd_nxt
24 return cwnd

70 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

RDMA is Turing complete, we just did not know it yet!

Waleed Reda
Université catholique de Louvain

KTH Royal Institute of Technology

Marco Canini
KAUST

Dejan Kostić
KTH Royal Institute of Technology

Simon Peter
University of Washington

Abstract
It is becoming increasingly popular for distributed systems

to exploit offload to reduce load on the CPU. Remote Direct
Memory Access (RDMA) offload, in particular, has become
popular. However, RDMA still requires CPU intervention
for complex offloads that go beyond simple remote memory
access. As such, the offload potential is limited and RDMA-
based systems usually have to work around such limitations.

We present RedN, a principled, practical approach to im-
plementing complex RDMA offloads, without requiring any
hardware modifications. Using self-modifying RDMA chains,
we lift the existing RDMA verbs interface to a Turing com-
plete set of programming abstractions. We explore what is
possible in terms of offload complexity and performance with
a commodity RDMA NIC. We show how to integrate these
RDMA chains into applications, such as the Memcached key-
value store, allowing us to offload complex tasks such as key
lookups. RedN can reduce the latency of key-value get opera-
tions by up to 2.6× compared to state-of-the-art KV designs
that use one-sided RDMA primitives (e.g., FaRM-KV), as
well as traditional RPC-over-RDMA approaches. Moreover,
compared to these baselines, RedN provides performance
isolation and, in the presence of contention, can reduce la-
tency by up to 35× while providing applications with failure
resiliency to OS and process crashes.

1 Introduction
As server CPU cycles become an increasingly scarce resource,
offload is gaining in popularity [23, 28, 30–32, 36]. System
operators wish to reserve CPU cycles for application execu-
tion, while common, oft-repeated operations may be offloaded.
NIC offloads, in particular, have the benefit that they reside in
the network data path and NICs can carry out operations on
in-flight data with low latency [31].

For this reason, remote direct memory access (RDMA)
[15] has become ubiquitous [20]. Mellanox ConnectX NICs
[4] have pioneered ubiquitous RDMA support and Intel has
added RDMA support to their 800 series of Ethernet network
adapters [7]. RDMA focuses on the offload of simple message

passing (via SEND/RECV verbs) and remote memory access
(via READ/WRITE verbs) [15]. Both primitives are widely
used in networked applications and their offload is extremely
useful. However, RDMA is not designed for more complex
offloads that are also common in networked applications. For
example, remote data structure traversal and hash table access
are not normally deemed realizable with RDMA [39]. This led
to many RDMA-based systems requiring multiple network
round-trips or to reintroduce involvement of the server’s CPU
to execute such requests [18, 22, 26, 27, 35, 37, 41].

To support complex offloads, the networking commu-
nity has developed a number of SmartNIC architectures
[2, 3, 11, 14, 17]. SmartNICs incorporate more powerful com-
pute capabilities via CPUs or FPGAs. They can execute arbi-
trary programs on the NIC, including complex offloads. How-
ever, these SmartNICs are not ubiquitous and their smaller
volume implies a higher cost. SmartNICs can cost up to 5.7×
more than commodity RDMA NICs (RNICs) at the same
link speed (§2.1). Due to their custom architecture, they are
also a management burden to the system operator, who has to
support SmartNICs apart from the rest of the fleet.

We ask whether we can avoid this tradeoff and attempt to
use the ubiquitous RNICs to realize complex offloads. To
do so, we have to solve a number of challenges. First, we
have to answer if and how we can use the RNIC interface,
which consists only of simple data movement verbs (READ,
WRITE, SEND, RECV, etc.) and no conditionals or loops, to
realize complex offloads. Our solution has to be general so
that offload developers can use it to build complex RDMA
programs that can perform a wide range of functionality. Sec-
ond, we have to ensure that our solution is efficient and that
we understand the performance and performance variability
properties of using RNICs for complex offloads. Finally, we
have to answer how complex RNIC offloads integrate with
existing applications.

In this paper, we show that RDMA is Turing complete,
making it possible to use RNICs to implement complex of-
floads. To do so, we implement conditional branching via self-
modifying RDMA verbs. Clever use of the existing compare-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 71

and-swap (CAS) verb enables us to dynamically modify
the RNIC execution path by editing subsequent verbs in an
RDMA program, using the CAS operands as a predicate. Just
like self-modifying code executing on CPUs, self-modifying
verbs require careful control of the execution path to avoid
consistency issues due to RNIC verb prefetching. To do so,
we rely on the WAIT and ENABLE RDMA verbs [28, 34] that
provide execution dependencies. WAIT allows us to halt exe-
cution of new verbs until past verbs have completed, provid-
ing strict ordering among RDMA verbs. By controlling verb
prefetching, ENABLE enforces consistency for verbs modified
by preceding verbs. ENABLE also allows us to create loops
by re-triggering earlier, already-executed verbs in an RDMA
work queue—allowing the NIC to operate autonomously with-
out CPU intervention.

Based on these primitives, we present RedN, a principled,
practical approach to implementing complex RNIC offloads.
Using self-modifying RDMA programs, we develop a number
of building blocks that lift the existing RDMA verbs interface
to a Turing complete set of programming abstractions. Using
these abstractions, we explore what is possible in terms of
offload complexity and performance with just a commodity
RNIC. We show how to integrate complex RNIC offloads,
developed with RedN principles, into existing networked ap-
plications. RedN affords offload developers a practical way
to implement complex NIC offloads on commodity RNICs,
without the burden of acquiring and maintaining SmartNICs.
Our code is available at: https://redn.io.

We make the following contributions:
•We present RedN, a principled, practical approach to offload-
ing arbitrary computation to RDMA NICs. RedN leverages
RDMA ordering and compare-and-swap primitives to build
conditionals and loops. We show that these primitives are
sufficient to make RDMA Turing complete.
• Using RedN, we present and evaluate the implementation of
various offloads that are useful in common server computing
scenarios. In particular, we implement hash table lookup with
Hopscotch hashing and linked list traversal.
•We evaluate the complexity and performance of offload in a
number of use cases with the Memcached key-value store. In
particular, we evaluate offload of common key-value get oper-
ations, as well as performance isolation and failure resiliency
benefits. We demonstrate that RNIC offload with RedN can
realize all of these benefits. It can reduce average latency of
get operations by up to 2.6× compared to state-of-the-art one-
sided RDMA key-value stores (e.g., FaRM-KV [22]), as well
as traditional two-sided RPC-over-RDMA implementations.
Moreover, RedN provides superior performance isolation, im-
proving latency by up to 35× under contention, while also
providing higher availability under host-side failures.

2 Background
RDMA was conceived for high-performance computing
(HPC) clusters, but it has grown out of this niche [20]. It

is becoming ever-more popular due to the growth in network
bandwidth, with stagnating growth in CPU performance, mak-
ing CPU cycles an increasingly scarce resource that is best
reserved to running application code. With RNICs now con-
sidered commodity, it is opportunistic to explore the use-cases
where their hardware can yield benefits. These efforts, how-
ever, have been limited by the RDMA API, which constrains
the expression of many complex offloads. Consequently, the
networking community has built SmartNICs using FPGAs
and CPUs to investigate new complex offloads.

2.1 SmartNICs

To enable complex network offloads, SmartNICs have been
developed [1,2,10,11]. SmartNICs include dedicated comput-
ing units or FPGAs, memory, and several dedicated accelera-
tors, such as cryptography engines. For example, Mellanox
BlueField [11] has 8×ARMv8 cores with 16GB of memory
and 2×25GbE ports. These SmartNICs are capable of running
full-fledged operating systems, but also ship with lightweight
runtime systems that can provide kernel-bypass access to the
NIC’s IO engines.
Related work on SmartNIC offload. SmartNICs have been
used to offload complex tasks from server CPUs. For exam-
ple, StRoM [39] uses an FPGA NIC to implement RDMA
verbs and creates generic kernels (or building blocks) that
perform various functions, such as traversing linked lists. KV-
Direct [30] uses an FPGA NIC to accelerate key-value ac-
cesses. iPipe [31] and Floem [36] are programming frame-
works that simplify complex offload development for primar-
ily CPU-based SmartNICs. E3 [32] transparently offloads
microservices to SmartNICs.
The cost of SmartNICs. While SmartNICs provide the ca-
pabilities for complex offloads, they come at a cost. For ex-
ample, a dual-port 25GbE BlueField SmartNIC at $2,340
costs 5.7× more than the same-speed ConnectX-5 RNIC at
$410 (cf. [13]). Another cost is the additional management re-
quired for SmartNICs. SmartNICs are a special piece of com-
plex equipment that system administrators need to understand
and maintain. SmartNIC operating systems and runtimes can
crash, have security flaws, and need to be kept up-to-date with
the latest vendor patches. This is an additional maintenance
burden on operators that is not incurred by RNICs.

2.2 RDMA NICs

The processing power of RDMA NICs (RNICs) has doubled
with each subsequent generation. This allows RNICs to cope
with higher packet rates and more complex, hard-coded of-
floads (e.g., reduction operations, encryption, erasure coding).

We measure the verb processing bandwidth of several gen-
erations of Mellanox ConnectX NICs, using the Mellanox
ib_write_bw benchmark. This benchmark performs 64B
RDMA writes and, as such, it is not network bandwidth lim-
ited due to the small RDMA write size. We find that the verb
processing bandwidth doubles with each generation, as we can

72 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://redn.io

Client

CPU

3

4

S
e
rv

e
r

Host Memory

NOP

READ

Trigger Function (invoked as necessary)

1

WAIT

User buffers

Example: RDMA chain

5

Response Ready

Send back reply
RPC request

triggers WAIT

Conditional branch using

Compare-and-Swap (CAS)

Read/Write arbitrary

memory +

Conditional branching

= RDMA NIC is

Turing Complete
?CAS

2

Compile offload RDMA program

Post RDMA Code

(chain of work

requests)

Work Queues

(WQs)
WRITE

RECV

if (x == 5)
return true;

else
return false;

Example offload

Setup Offload
(done once)

RDMA NIC

Figure 1: RDMA NICs can implement complex offloads if we allow conditional branches to be expressed. Conditional branching can
be implemented by using CAS verbs to modify subsequent verbs in the chain, without any hardware modification.

see in Table 1. This is primarily due to a doubling in process-
ing units (PUs) in each generation.1 As a result, ConnectX-6
NICs can execute up to 110 million RDMA verbs per second
using a single NIC port. This increased hardware performance
further motivates the need for exploiting the computational
power of these devices.
Related work on RDMA offload. RDMA has been em-
ployed in many different contexts, including accelerating
key-value stores and filesystems [19, 22, 26, 35, 44], consen-
sus [18,27,37,41], distributed locking [45], and even nuanced
use-cases such as efficient access in distributed tree-based
indexing structures [46]. These systems operate within the
confines of RDMA’s intended use as a data movement offload
(via remote memory access and message passing). When com-
plex functionality is required, these systems involve multiple
RDMA round-trips and/or rely on host CPUs to carry out the
complex operations.

Within the storage context, Hyperloop [28] demonstrated
that pushing the RNIC offload capabilities is possible. Hyper-
loop combines RDMA verbs to implement complex storage
operations, such as chain replication, without CPU involve-
ment. However, it does not provide a blueprint for offloading
arbitrary processing and cannot offload functionality that uses
any type of conditional logic (e.g., walking a remote data
structure). Moreover, the Hyperloop protocol is likely incom-
patible with next-generation RNICs, as its implementation
relies on changing work request ownership—a feature that is
deprecated for ConnectX-4 and newer cards.

Unlike this body of previous work, we aim to unlock the
general-purpose processing power of RNICs and provide an

1Discussions with Mellanox affirmed our findings.

RNIC PUs Throughput
ConnectX-3 (2014) 2 15M verbs/s
ConnectX-5 (2016) 8 63M verbs/s
ConnectX-6 (2017) 16 112M verbs/s

Table 1: Number of Processing Units (PUs) and performance of
various ConnectX generations.

unprecedented level of programmability for complex offloads,
by using novel combinations of existing RDMA verbs (§3).

3 The RedN Computational Framework
To achieve our aforementioned goals, we develop a framework
that enables complex offloads, called RedN. RedN’s key idea
is to combine widely available capabilities of RNICs to enable
self-modifying RDMA programs. These programs—chains of
RDMA operations—are capable of executing dynamic control
flows with conditionals and loops. Fig. 1 illustrates the usage
of RedN. The setup phase involves (1) preparing/compiling
the RDMA code required for the service and (2) posting
the output chain(s) of RDMA WRs to the RNIC. Clients can
then use the offload by invoking a trigger (3) that causes the
server’s RNIC to (4) execute the posted RDMA program,
which returns a response (5) to the client upon completion.

To further understand this proposed framework, we first
look into the execution models offered by RNICs, and the
ordering guarantees they provide for RDMA verbs. We then
look into the expressivity of traditional RDMA verbs and
explore parallels with CPU instruction sets. We use these
insights to describe strategies for expressing complex logic
using traditional RDMA verbs, without requiring any hard-
ware modifications.

3.1 RDMA execution model

The RDMA interface specifies a number of data movement
verbs (READ, WRITE, SEND, RECV, etc.) that are posted as
work requests (WRs) by offload developers into work queues
(WQs) in host memory. The RNIC starts execution of a se-
quence of WRs in a WQ once the offload developer triggers a
doorbell—a special register in RNIC memory that informs the
RNIC that a WQ has been updated and should be executed.
Work request ordering. Ordering rules for RDMA WRs dis-
tinguish between write WRs and non-write WRs that return a
value. Within each category of operations, RDMA guarantees
in-order execution of WRs within a single WQ. In particular,
write WRs (i.e., SEND, WRITE, WRITEIMM) are totally or-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 73

WAIT

WR

WR

1

2

WAIT waits for a completion

before executing a WR

WR WR

SymbolPattern

1 2

TailHead

WQ1

WQ2

(a) Completion order.

Tail

WAIT

WR

Head

1

WR

WAIT + ENABLE waits for a

completion before

fetching & executing a WR

WR 21WR 2ENABLE

WQ1

WQ2

Managed queue fetch barrier

(b) Doorbell order.
Figure 2: Work request ordering modes that guarantee a total
order of operations 2a and, a more restrictive “doorbell” or-
der 2b, where operations are fetched by the NIC one-by-one.
The symbols on the right will be used as notation for these WR
chains in the examples of §3.

dered with regard to each other, but writes may be reordered
before prior non-write WRs.

We call the default RDMA ordering mode work queue
(WQ) ordering. Sophisticated offload logic often requires
stronger ordering constraints, which we construct with the
help of two RDMA verbs. Fig. 2 shows two stricter ordering
modes that we introduce and how to achieve them.

The WAIT verb stops WR execution until the completion
of a specified WR from another WQ or the preceding WR
in the same WQ. We call this completion ordering (Fig. 2a).
It achieves total ordering of WRs along the execution chain
(which potentially involves multiple WQs). It can be used to
enforce data consistency, similar to data memory barriers in
CPU instruction sets—to wait for data to be available before
executing the WRs operating on the data. Moreover, WAIT
allows developers to pre-post chains of RDMA verbs to the
RNIC, without immediately executing them.

In all the aforementioned ordering modes, the RNIC is free
to prefetch into its cache the WRs within a WQ. Thus, the
execution outcome reflects the WRs at the time they were
fetched, which can be incoherent with the versions that reside
in host memory in case these were later modified. To avoid
this issue, the RNIC allows placing a WQ into managed mode,
in which WR prefetch is disabled. The ENABLE verb is then
used to explicitly start the prefetching of WRs. This allows for
existing WRs to be modified within the WQ, as long as this
is done before completion of the posted ENABLE—similar to
an instruction barrier. We achieve a full (data and instruction)
barrier, by using WAIT and ENABLE in sequence. We call
this doorbell ordering (Fig. 2b). Doorbell ordering allows
developers to modify WR chains in-place. In particular, it
allows for data-dependent, self-modifying WRs.

(4) Send response

(2) Modify
posted WR

WRITE

RECVSEND

WRITE

WRITE

(1) Send RPC

(3) Trigger
response

Server

Client
WQ2

WQ1

WQ

Figure 3: Clients can trigger posted operations. Thick solid lines
represent (meta)data movements.

Thus, we have shown that we can control WR fetch and
execution via special verbs, which we will exploit in the next
section to develop full-fledged RDMA programs. These verbs
are widely available in commodity RNICs (e.g., Mellanox
terms them cross-channel communication [34]).

3.2 Dynamic RDMA Programs

While a static sequence of RDMA WRs is already a rudi-
mentary RDMA program, complex offloads require data-
dependent execution, where the logic of the offload is depen-
dent on input arguments. To realize data-dependent execution,
we construct self-modifying RDMA code.

Self-modifying RDMA code. Doorbell ordering enables
a restricted form of self-modifying code, capable of data-
dependent execution. To illustrate this concept, we use the
example of a server host that offloads an RPC handler to its
RNIC as shown in Fig. 3. The RPC response depends on the
argument set by the client and thus the RDMA offload is data-
dependent. The server posts the RDMA program that consists
of a set of WRs spanning two WQs. The client invokes the
offload by issuing a SEND operation. At the RNIC, the SEND
triggers the posted RECV operation. Observe that RECV spec-
ifies where the SEND data is placed. We configure RECV to
inject the received data into the posted WR chain in WQ2 to
modify its attributes. We achieve this by leveraging doorbell
ordering, to ensure that posted WRs are not prefetched by the
RNIC and can be altered by preceding WRs.

This is an instance of self-modifying code. As such, clients
can pass arguments to the offloaded RPC handler and the
RNIC will dynamically alter the executed code accordingly.
However, this by itself is not sufficient to provide a Turing
complete offload framework.

Turing completeness of RDMA. Turing completeness im-
plies that a system of data-manipulation rules, such as RDMA,
are computationally universal. For RDMA to be Turing com-
plete, we need to satisfy two requirements [25]:
T1: Ability to read/write arbitrary amounts of memory.
T2: Conditional branching (e.g. if/else statements).

T1 can be satisfied for limited amounts of memory with
regular RDMA verbs, whereas T2 has not been demonstrated
with RDMA NICs. However, to truly be capable of accessing
an arbitrary amount of memory, we need a way of realizing
loops. Loops open up a range of sophisticated use-cases and

74 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

CAS old: NOOP new: WRITE

NOOP data: 1 dst: R3→data

WRITE data: 0 dst: client

► R1 changes R2’s opcode from NOOP to WRITE
► R2 changes R3’s data to 1

𝑥 𝑦R1

If 𝑥 equals 𝑦:

R2

R3

opcode id

Pseudocode

Input 𝑥, 𝑦
If (𝑥 == 𝑦)

send(1);

else

send(0);

1

2

3

4

RDMA code

Figure 4: Simple if example and equivalent RDMA code. Con-
ditional execution relies on self-modifying code using CAS to
enable/disable WRs based on the operand values.

lower the number of constraints that programmers have to
consider for offloads. To highlight their importance, we add
them as a third requirement, necessary to fulfill the first:
T3: The ability to execute code repeatedly (loops).

In the next sub-sections, we show how dynamic execution
can be used to satisfy all the aforementioned requirements. A
proof sketch of Turing completeness is given in Appendix A.

3.3 Conditionals

Conditional execution—choosing what computation to per-
form based on a runtime condition—is typically realized us-
ing conditional branches, which are not readily available in
RDMA. To this end, we introduce a novel approach that uses
self-modifying CAS verbs. The main insight is that this verb
can be used to check a condition (i.e., equality of x and y)
and then perform a swap to modify the attributes of a WR.
We describe how this is done in Fig. 4. We insert a CAS
that compares the 64-bit value at the address of R2’s opcode
attribute (initially NOOP) with its old parameter (also initially
NOOP). We then set the id field of R2 to x. This field can
be manipulated freely without changing the behavior of the
WR, allowing us to use it to store x. Operand y is stored in
the corresponding position in the old field of R1. This means
that if x and y are equal, the CAS operation will succeed and
the value in R1’s new field—which we set to WRITE—will
replace R2’s opcode. Hence, in the case x = y, R2 will change
from a NOOP into a WRITE operation. This WRITE is set to
modify the data value of the return operation (R3) to 1. If x
and y are not equal, the default value 0 is returned.

Now that we have established the utility of this technique
for basic conditionals, we next look into how to can be used
to support loop constructs.

3.4 Loops

To support loop constructs efficiently, we require (1) condi-
tional branching to test the loop condition and break if neces-
sary, and (2) WR re-execution, to repeat the loop body. We
develop each, in turn, below.

Consider the while loop example in Figure 5. This offload
searches for x in an array A and sends the corresponding
index. The loop is static because A has finite size (in this case,
size =2), known a priori. To simplify presentation, consider
the case A[i] = i,∀i. Without this simplification, the example
would include an additional WRITE to fetch the value at A[i].

Input 𝑥

ADDWQ2

WQ1 RECV NOOP

If 𝑥 == A[𝑖]:
Send response (change NOOP to WRITE)

increment 𝑖
set old to A[𝑖]CAS

Input 𝑥𝑖 = 0;

while (𝑖 < 2)

if(𝑥 == A[𝑖])
send(𝑖)𝑖++;

CAS

NOOP

ADD

Iteration 1 Iteration 2

1

2

3

1

2

3

4

5

Figure 5: while loop using CAS. Loop is unrolled since loop size
is fixed and set to 2.

ADDWQ2

WQ1 RECV NOOP

If 𝑥 == A[𝑖]:
change NOOP to BREAK

BREAK changes NOOP to WRITE

and stops next iteration from executing

CAS

Input 𝑥𝑖 = 0;

while (1)

if(𝑥 == A[𝑖])
send(𝑖)
break;𝑖++;

NOOP

Input 𝑥1

2

NOOP

3

ADD1

2

3

4

5

6

Figure 6: while loop with breaks realized using CAS. To imple-
ment breaks, we use CAS to change a NOOP WR to an RDMA
WRITE, which then stops subsequent iterations from executing.

The loop body uses a CAS verb to implement the if condi-
tion (line 3), followed by an ADD verb to increment i (line 6).
Given that the loop size is known a priori (size = 2), RedN
can unroll the while loop in advance and post the WRs for all
iterations. As such, there is no need to check the condition
at line 2. For each iteration, if the CAS succeeds, the NOOP
verb in WQ1 will be changed to WRITE—which will send
the response back to the client. However, it is clear that, re-
gardless of the comparison result, all subsequent iterations
will be executed. This is inefficient since, if the send (line 4)
occurs before the loop is finished, a number of WRs will be
wastefully executed by the NIC. This is impractical for larger
loop sizes or if the number of iterations is not known a priori.

Unbounded loops and termination. Figure 6 modifies the
previous example to make it such that the loop is unbounded.
For efficiency, we add a break that exits the loop if the element
is found.The role of break is to prevent additional iterations
from being executed. We use an additional NOOP that is for-
matted such that, once transformed into a WRITE by the CAS
operation, it prevents the execution of subsequent iterations
in the loop. This is done by modifying the last WR in the
loop such that it does not trigger a completion event. The next
iteration in the loop, which WAITs on such an event (via com-
pletion ordering), will therefore not be executed. Moreover,
the WRITE will also modify the opcode of the WR used to
send back the response from NOOP to WRITE.

As such, break allows efficient and unbounded loop execu-
tion. However, it still remains necessary for the CPU to post
WRs to continue the loop after all its WRs are executed. This
consumes CPU cycles and can even increase latency if the
CPU is unable to keep up with the speed of WR execution.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 75

RedN Constructs Number of WRs Operand limit [bits]
if 1C + 1A + 3E

48while Unrolled 1C + 1A + 3E
Recycled 3C + 2A + 4E

Table 2: Breakdown of the overhead of our constructs with
different offload strategies. C refers to copy verbs, A refers
to atomic RDMA verbs, and E refers to WAIT/ENABLE verbs.
while loops that use WQ recycling incur 2 additional READs, 1
ADD, and 1 ENABLE WR.

Unbounded loops via WQ recycling. To allow the NIC to
recycle WRs without CPU intervention, we make use of a
novel technique that we call WQ recycling. RNICs iterate over
WQs, which are circular buffers, and execute the WRs therein.
By design, each WR is meant to execute only once. However,
there is no fundamental reason why WRs cannot be reused
since the RNIC does not actually erase them from the WQ.
To enable recycling of a WR chain, we insert a WAIT and
ENABLE sequence at the tail of the WQ. This instructs the
RNIC to wrap around the tail and re-execute the WR chain
for as many times as needed.

It is important to note that WQ recycling is not a panacea.
To allow the tail of the WQ to wrap around, all posted WAIT
and ENABLE WRs in the loop need to have their wqe_count
attribute updated. This attribute is used to determine the index
of the WR that these ordering verbs affect. In ConnectX NICs,
these indices are maintained internally by the RNIC and their
values are monotonically increasing (instead of resetting after
the WQ wraps around). As such, the wqe_count values need
to be incremented to match. This incurs overhead (as seen
in Table 2) and requires an additional ADD operation in
combination with other verbs. As such, loop unrolling, where
each iteration is manually posted by the CPU, is overall less
taxing on the RNIC. However, WQ recycling avoids CPU
intervention, allowing the offload to remain available even
amid host software failures (as we will see later in §5.6).

3.5 Putting it all together

With conditional branching, we can dynamically alter the
control flow of any function on an RNIC. Loops allow us
to traverse arbitrary data structures. Together, we have trans-
formed an RNIC into a general processing unit. In this section,
we discuss the usability aspects from overhead, security, pro-
grammability, and expressiveness perspectives.
Building blocks. We abstract and parameterize the RDMA
chains required for conditional branching and looping into if
and while constructs. The overhead in terms of RDMA WR
chains of our constructs is shown in Table 2. We can see a
breakdown of the minimum number of operations required
for each. Inequality predicates, such as < or >, can also be
supported by combining equality checks with MAX or MIN,
as seen later in Table 3. However, their availability is vendor-
specific and currently only supported by ConnectX NICs.
Operand limits. RedN’s limit is based on the supported size
for the CAS verb, which is 64 bits. The operand is provided

as a 48-bit value, encoded in its id and other neighboring
fields (which can also be freely modified without affecting
execution). The remaining bits are used for modifying the
opcode of the WR depending on the result of the compari-
son. We note that our advertised limits only signify what is
possible with the number of operations we allocate for our
constructs. For instance, despite the 48-bit operand limit for
our constructs, we can chain together multiple CAS opera-
tions to handle different segments of a larger operand (we do
not rely on the atomicity property of CAS). As such, there is
no fundamental limitation, only a performance penalty.
Offload setup. To offload an RDMA program, clients first
create an RDMA connection to the target server and send an
RPC to initiate the offload. We envision that the server already
has the offload code; however, other ways of deploying the
offload are possible. Upon receiving a connection request, the
server creates one or more managed local WQs to post the
offloaded code. Next, it registers two main types of memory
regions for RDMA access: (a) a code region, and (b) a data
region. The code region is the set of remote RDMA WQs
created on the server, which are unique to each client and
need to be accessible via RDMA to allow self-modifying code.
Code regions are protected by memory keys—special tokens
required for RDMA access—upon registration (at connection
time), prohibiting unauthorized access. The data region holds
any data elements used by the offload (e.g., a hash table). Data
regions can be shared or private, depending on the use-case.
Security. RedN does not solve security challenges in existing
RDMA or Infiniband implementations [40]. However, RedN
can help RDMA systems become more secure. For such sys-
tems, one-sided RDMA operations (e.g., RDMA READ and
WRITE) are frequently used [22,28,33,35,42,43] as they avoid
CPU overheads at the responder. However, doing so requires
clients to have direct read and/or write memory access. This
can compromise security if clients are buggy and/or malicious.
To give an example, FaRM allows clients to write messages
directly to shared RPC buffers. This requires clients to behave
correctly, as they could otherwise overwrite or modify other
clients’ RPCs. RedN allows applications to use two-sided
RDMA operations (e.g., SEND and RECV), which do not re-
quire direct memory access, while still fully bypassing server
CPUs. As we demonstrate in our use-cases in §5, SEND op-
erations can be used to trigger offload programs without any
CPU involvement.
Isolation. Given that RedN implements dynamic loops,
clients can abuse such constructs to consume more than their
fair share of resources. Luckily, popular RNICs, like Con-
nectX, provide WQ rate-limiters [6] for performance isolation.
As such, even if clients trigger non-terminating offload code,
they still have to adhere to their assigned rates. Moreover, of-
floaded code can be configured by the servers to be auditable
through completion events, created automatically after a WR
is executed. These events can be monitored and servers can
terminate connections to clients running misbehaving code.

76 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Parallelism. RDMA WR fetch and execution latencies are
more costly compared to CPU instructions, as WRs are
fetched/executed via PCIe (microseconds vs. nanoseconds).
As such, to hide WR latencies, it is important to parallelize
logically unrelated operations. Like threads of execution in
a CPU, each WQ is allocated a single RNIC PU to ensure
in-order execution without inter-PU synchronization. As such,
we carefully tune our offloaded code to allow unrelated verbs
to execute on independent queues to be able to parallelize
execution as much as possible. The benefits of parallelism are
evaluated in §5.2.

4 Implementation
Our offload framework is implemented in C with ∼2,300
lines of code—this includes our use cases (∼1400), and con-
venience wrappers for RDMA verbs (libibverbs) API (∼900).

Our approach does not require modifying any RDMA li-
braries or drivers. RedN uses low-level functions provided by
Mellanox’s ConnectX driver (libmlx5) to expose in-memory
WQ buffers and register them to the RNIC, allowing WRs to
be manipulated via RDMA verbs. We configure the ConnectX-
5 firmware to allow the WR id field to be manipulated freely,
which is required for conditional operations as well as WR
recycling. This is done by modifying specific configuration
registers on the NIC [12].

RedN is compatible with any ConnectX NICs that support
WAIT and ENABLE (e.g., ConnectX-3 and later models).

5 Evaluation
We start by characterizing the underlying RNIC performance
(§5.1) to understand how it affects our implemented program-
ming constructs. Then, in our evaluation against state-of-the-
art RNIC and SmartNIC offloads, we show that RedN:

1. Speeds up remote data structure traversals, such as hash
tables (§5.2) and linked lists (§5.3) compared to vanilla
RDMA offload;

2. Accelerates (§5.4) and provides performance isolation
(§5.5) for the Memcached key-value store;

3. Provides improved availability for applications (§5.6)—
allowing them to run in spite of OS & process crashes;

4. Exposes programming constructs generic enough to en-
able a wide-variety of use-cases (§5.2–§5.6);

Testbed. Our experimental testbed consists of 3× dual-socket
Haswell servers running at 3.2 GHz, with a total of 16
cores, 128 GB of DRAM, and 100 Gbps dual-port Mellanox
ConnectX-5 Infiniband RNICs. All nodes are running Ubuntu
18.04 with Linux Kernel version 4.15 and are connected via
back-to-back Infiniband links.
NIC setup. For all of our experiments, we use reliable con-
nection (RC) RDMA transport, which supports the RDMA
synchronization features we use. All WQs that enforce door-
bell order are initialized with a special “managed” flag to
disable the driver from issuing doorbells after a WR is posted.
The WQ size is set to match that of the offloaded program.

L
a

te
n

c
y
 (

u
s
)

0
.0

0
.5

1
.0

1
.5

2
.0

Copy Atomic Calc NOOP

READ WRITE CAS ADD MAX

R
e
m
ot
e

L
o

c
a
l

D
o

o
rb

e
ll

Network

Execution

Figure 7: Latencies of different RDMA verbs. The solid line
marks the latency of ringing the doorbell via MMIO. The differ-
ence between dashed and solid lines estimates network latency.

5.1 Microbenchmarks

We run microbenchmarks to break down RNIC verb execution
latency, understand the overheads of our different ordering
modes, and determine the processing bandwidth of different
RDMA verbs and of our constructs.

5.1.1 RDMA Latency

We break down the performance of RDMA verbs, configured
to perform 64B IO, by measuring their average latencies after
executing them 100K times. All verbs are executed remotely,
unless otherwise stated. As seen in Fig. 7, WRITE has a la-
tency of 1.6 µs. It uses posted PCIe transactions, which are
one-way. Comparatively, non-posted verbs such as READ or
atomics such as fetch-and-add (ADD) and compare-and-swap
(CAS) need to wait for a PCIe completion and take ∼1.8 µs.2

Overall, the execution time difference is small among verbs,
even for more advanced, vendor-specific Calc verbs that per-
form logical and arithmetic computations (e.g., MAX).

To break down the different latency components for RDMA
verb execution, we first estimate the latency of issuing a door-
bell and copying the WR to the RNIC. This can be done
by measuring the execution time of a NOOP WR. This time
can be subtracted from the latencies of other WRs to give
an estimate of their execution time once the WR is available
in the RNIC’s cache. We also quantify the network cost by
executing remote and local loopback NOOP WRs (shown on
the right-hand side) and measuring the difference—roughly
0.25 µs for our back-to-back connected nodes. Overall, these
results show low verb execution latency, justifying building
more sophisticated functions atop. We next measure the im-
plications of ordering for offloads.

5.1.2 Ordering Overheads

We show the latency of executing chains of RDMA verbs
using different ordering modes. All the posted WRs within a
chain are NOOP, to simplify isolating the performance impact
of ordering. We start by measuring the latency of executing
a chain of verbs posted to the same queue but absent any
constraints (WQ order), and compare it to the ordering modes

2Older-generation NICs (e.g., ConnectX-4) use a proprietary concurrency
control mechanism to implement atomics, resulting in higher latencies than
later generations that rely on PCIe atomic transactions.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 77

0
5

1
0

1
5

2
0

2
5

3
0

3
5

Number of Ops

L
a
te

n
c
y
 (

u
s
)

●
●

●
●

●
●

●

1 5 10 20 30 40 50

● WQ order Completion order Doorbell order

Figure 8: Execution latency of RDMA verbs posted using differ-
ent ordering modes. More restrictive modes such as Doorbell
order add non-negligible overheads as it requires the NIC to
fetch WRs sequentially.

that we introduced in Fig. 2—completion order and doorbell
order. WQ order only mandates in-order updates to memory,
which allows for increased concurrency. Operations that are
not modifying the same memory address can execute concur-
rently and the RNIC is free to prefetch multiple WRs with a
single DMA3. We can see in Fig. 8 that the latency of a sin-
gle NOOP is 1.21 µs and the overhead of adding subsequent
verbs is roughly 0.17 µs per verb. The first verb is slower
since it requires an initial doorbell to tell the NIC that there
is outstanding work. For completion ordering, less concur-
rency is possible since WRs await the completions of their
predecessors, and the overhead of increases slightly to 0.19
µs per additional WR. For doorbell order, no latency-hiding
is possible, as the NIC has to fetch WRs from memory one-
by-one, which results in an overhead of 0.54 µs per additional
WR. These results signify that, doorbell ordering should be
used conservatively, as there is more than 0.5 µs latency in-
crease for every instance of its use, compared to more relaxed
ordering modes.

5.1.3 RDMA Verb Throughput

We show the throughput of the common RDMA verbs in Ta-
ble 3 for a single ConnectX-5 port. ConnectX cards assign
compute resources on a per port basis. For ConnectX-5, each
port has 8 PUs. Atomic verbs, such as CAS, offer a compara-
tively limited throughput (8× lower than regular verbs) due
to memory synchronization across PCIe.

In addition, we measure the performance of RedN’s if and
while constructs. Using 48-bit operands, a ConnectX-5 NIC
can execute 700K if constructs per second. This is due to the
need for CAS to ensure doorbell ordering between CAS and
the subsequent WR it modifies. This causes the throughput
to be bound by NIC processing limits. Unrolled while loops
require the same number of verbs per iteration as an if state-
ment and their throughput is identical. while loops with WQ
recycling have reduced performance due to having to execute
more WRs per iteration.

3The number of operations fetched by the RNIC can change dynamically.
The Prefetch mechanism in ConnectX RNICs is proprietary.

Operation Throughput (M ops/s) Support

Atomic CAS 8.4
NativeADD

Copy READ 65
WRITE 63

Calc MAX 63 Mellanox

Constructs
if 0.7

RedNwhile Unrolled 0.7
Recycled 0.3

Table 3: Throughput of common RDMA verbs and RedN’s con-
structs on a single port of a ConnectX-5. if and unrolled while
have identical performance. while loops with WQ recycling re-
quire additional WRs and therefore have a lower throughput.

5.2 Offload: Hash Lookup

After evaluating the overheads of RedN’s ordering modes and
constructs, we next look into the performance of RedN for
offloading remote access to popular data structures. We first
look into hash tables, given their prominent use in key-value
stores for indexing stored objects. To perform a simple get op-
eration, clients first have to lookup the desired key-value entry
in the hash table. The entry can either have the value directly
inlined or a pointer to its memory address. The value is then
fetched and returned back to the client. Hopscotch hashing is
a popular hashing scheme that resolves collisions by using H
hashes for each entry and storing them in 1 out of H buckets.
Each bucket has a neighborhood that can probabilistically
hold a given key. A lookup might require searching more
than one bucket before the matching key-value entry is found.
To support dynamic value sizes, we assume the value is not
inlined in the bucket and is instead referenced via a pointer.

For distributed key-value stores built with RDMA, get op-
erations are usually implemented in one of two ways:
One-sided approaches first retrieve the key’s location using a
one-sided RDMA READ operation and then issue a second
READ to fetch the value. These approaches typically require
two network round-trips at a minimum. This greatly increases
latency but does not require involvement of the server’s CPU.
Many systems utilize this approach to implement lookups,
including FaRM [22] and Pilaf [35].
Two-sided approaches require the client to send a request
using an RDMA SEND or WRITE. The server intercepts the
request, locates the value and then returns it using one of the
aforementioned verbs. This widely used [19, 26] approach
follows traditional RPC implementations and avoids the need
for several roundtrips. However, this comes at the cost of
server CPU cycles.

5.2.1 RedN’s Approach

To offload key-value get operations, we leverage the offload
schemes introduced in §3.3 and §3.4.

Fig. 9 describes the RDMA operations involved for a single-
hash lookup. To get a value corresponding to a key, the client
first computes the hashes for its key. For this use-case, we
set the number of hashes to two, which is common in prac-
tice [24]. The client then performs a SEND with the value of

78 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

READ

set src to H1(𝑥)

set old to 𝑥
H1(𝑥)𝑥

NOOP
(WRITE)

set opcode to WRITE iff 𝑥 == H1(𝑥)→key

CAS

RECV

R1 R2

R4 R3

Client inputs

Figure 9: Hash lookup RDMA program. Black arrows indicate
order of execution of WRs in their WQs. Brown arrows indi-
cate self-modifying code dependencies and require doorbell or-
dering. x is the requested key and H1(x) is its first hash. The
acronym src indicates the “source address” field of WRs. old in-
dicates the “expected value” at the target address of the CAS
operation. The id field is used for storing conditional operands.

the key x and address of the first bucket H1(x), which are then
captured via a RECV WR posted on the server. The RECV
WR (R1) inserts x into the old field of the CAS WR (R3)
and the bucket address H1(x) into the READ WR (R2). The
READ WR retrieves the bucket and sets the source address
(src) of the response WR (R4) to the address of the value (ptr).
It also inserts the bucket’s key into the id field to prepare it
for the conditional check. Finally, CAS (R3) checks whether
the expected value old, which is set to key x, matches the id
field in (R4), which is set to the bucket’s key. If equal, (R4)’s
opcode is changed from NOOP to WRITE, which then returns
the value from the bucket. Given that each key may be stored
in multiple buckets (two in our setup), these lookups may
be performed sequentially or in parallel, depending on the
offload configuration.

5.2.2 Results

We evaluate our approach against both one-sided and two-
sided implementations of key-value get operations. We use
FaRM’s approach [22] to perform one-sided lookups. FaRM
uses Hopscotch hashing to locate the key using approximately
two RDMA READs — one for fetching the buckets in a neigh-
borhood that hold the key-value pairs and another for reading
the actual value. The neighborhood size is set to 6 by default,
implying a 6× overhead for RDMA metadata operations. For

64 1K 4K 16K 64K

Value Size (B)

L
a
te

n
c
y
 (

u
s
)

0
1
0

2
0

3
0

4
0

Ideal RedN One−sided Event Polling

Two−sided

Figure 10: Average latency of hash lookups. Ideal shows the la-
tency of a single network round-trip READ.

64 1K 4K 16K 64K

Value Size (B)

L
a
te

n
c
y
 (

u
s
)

0
5

1
0

1
5

2
0

2
5

Ideal One−sided Two−sidedSeq. Parallel
RedN

Figure 11: Average latency of hash lookups during collisions.
Ideal shows the latency of a single network round-trip READ.

two-sided lookups, our RPC to the host involves a client-
initiated RDMA SEND to transmit the get request, and an
RDMA WRITE initiated by the server to return the value after
performing the lookup.
Latency. Fig. 10 shows a latency comparison of KV get oper-
ations of RedN against one-sided and two-sided baselines. We
evaluate two distinct variations of two-sided. The event-based
approach blocks for a completion event to avoid wasting CPU
cycles, whereas the polling-based approach dedicates one
CPU core for polling the completion queue. We use 48-bit
keys and vary the value size. The value size is given on the
x-axis. In this scenario, we assume no hash collisions and that
all keys are found in the first bucket. RedN is able to outper-
form all baselines — fetching a 64 KB key-value pair in 16.22
µs, which is within 5% of a single network round-trip READ
(Ideal). RedN is able to deliver close-to-ideal performance
because it bypasses the server’s CPU and fetches the value in
a single network RTT. Compared to RedN, one-sided opera-
tions incur up to 2× higher latencies, as they require two RTTs
to fetch a value. Two-sided implementations do not incur any
extra RTT; however, they require server CPU intervention.
The polling-based variant consumes an entire CPU core but
provides competitive latencies. Event-based approaches block
for completion events to avoid wasting CPU cycles and incur
much higher latencies as a consequence. RedN is able to out-
perform polling-based and event-based approaches by up to
2 and 3.8×, respectively. Given the much higher latencies of
event-based approaches, for the remainder of this evaluation,
we will only focus on polling-based approaches and simply
refer to them hereafter as two-sided.

Fig. 11 shows the latency in the presence of hash collisions.
In this case, we assume a worst case scenario, where the
key-value pair is always found in the second bucket. In this
scenario, we introduce two offload variants for RedN— RedN-
Seq & RedN-Parallel. The former performs bucket lookups
sequentially within a single WQ. The latter parallelizes bucket
lookups by performing the lookups across two different WQs
to allow execution on different NIC PUs. We can see that
RedN-Parallel maintains similar latencies to lookups with no
hash collisions (i.e., RedN in Fig. 10), since bucket lookups
are almost completely parallelized. It is worth noting that
parallelism in this case does not cause unnecessary data move-
ment, since the value is only returned when the corresponding

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 79

Hash lookup IO Size
≤ 1 KB 64 KB

Port config. Single Dual Single Dual
Rate (ops/s) 500K 1M 180K 190K
Bottleneck NIC PU IB bw PCIe bw

Table 4: NIC throughput of hash lookups and its bottlenecks.

READ

set old to 𝑥
NOOP

(WRITE) CAS

RECV WRITE
set src to N0

N0𝑥
Client inputs

R1 R2 R3

R4R5

id

set opcode to WRITE iff 𝑥 ==

Copy N𝑖+1 = N𝑖 →next to next
iteration

Figure 12: Linked list RDMA program.

key is found. For the other bucket, the WRITE operation (R4
in Fig. 9) is a NOOP. RedN-Seq, on the other hand, incurs at
least 3 µs of extra latency as it needs to search the buckets
one-by-one. As such, whenever possible, operations with no
dependencies should be executed in parallel. The trade-off is
having to allocate extra WQs for each level of parallelism.

Throughput. We describe our throughput in Table 4. At lower
IO, RedN is bottlenecked by the NIC’s processing capacity
due to the use of doorbell ordering—reaching 500K ops/s on
a single port (1M ops/s with dual ports). At 64 KB, RedN
reaches the single-port IB bandwidth limit (~ 92 Gbps). Dual-
port configs are limited by ConnectX-5’s 16× PCIe 3.0 lanes.

SmartNIC comparison. We compare our performance for
hashtable gets against StRoM [39], a programmable FPGA-
based SmartNIC. Since we do not have access to a pro-
grammable FPGA, we extract the results from [39] for com-
parison, and report them in Table 5. RedN uses the same
experimental settings as before. Our hashtable configuration
is functionally identical to StRoM’s and our client and server
nodes are also connected via back-to-back links. We can
see that RedN provides lower lookup latencies than StRoM.
StRoM uses a Xilinx Virtex 7 FPGA, which runs at 156.25
MHz, and incurs at least two PCIe roundtrips to retrieve the
key and value. Our evaluation shows that RedN can provide
latency that is in-line with more expensive SmartNICs.

IO Size System Median 99thile

64 B RedN 5.7 µs 6.9 µs
StRoM ~7 µs ~7 µs

4 KB RedN 6.7 µs 8.4 µs
StRoM ~12 µs ~13 µs

Table 5: Latency comparison of hash gets. Results for StRoM
obtained from [39].

1 2 4 8

List range

L
a
te

n
c
y
 (

u
s
)

0
1
0

2
0

3
0

4
0

5
0

RedN (+break) One−sided Two−sided

Uses ~30 WRs
RedN

Uses ~50 WRs

Figure 13: Average latency of walking linked lists.

5.3 Offload: List Traversal

Next, we explore another data structure also popularly used in
storage systems. We focus on linked lists that store key-value
pairs, and evaluate the overhead of traversing them remotely
using our offloads. Similar to the previous use-case, we focus
on one-sided approaches, as used by FaRM and Pilaf [22, 35].

Linked list processing can be decomposed into a while
loop for traversing the list and an if condition for finding
and returning the key. We describe the implementation of our
offload in Fig. 12. The client provides the key x and address
of the first node in the list N0. A READ operation (R2) is then
performed to read the contents of the first node and update the
values for the return operation (R5). We also use a WRITE

operation (R3) to prepare the CAS operation (R4) by inserting
key x in its old field. As an optimization, this WRITE can be
removed and, instead, x can be inserted directly by the RECV
operation. This, however, will need to be done for every CAS
to be executed and, as such, this approach is limited to smaller
list sizes, since RECVs can only perform 16 scatters.

For this use-case, we introduce two offload variations. The
first, referred to simply as RedN, uses the implementation
in Fig. 12. The second uses an additional break statement
between R4 and R5 to exit the loop in order to avoid executing
any additional operations.

5.3.1 Results

Fig. 13 shows the latency of one-sided and two-sided variants
against RedN at various linked list ranges — where range rep-
resents the highest list element that the key can be randomly
placed in. The size of the list itself is set to a constant value of
8. We setup the linked list to use key and value sizes of 48 bits
and 64 bytes, respectively, and perform 100k list traversals for
each system. The requested key is chosen at random for each
RPC. In the variant labelled “RedN”, we do not use breaks
and assume that all 8 elements of the list need to be searched.
RedN outperforms all baselines for all list ranges until 8 —
providing up to a 2× improvement. RedN (+break) executes
a break statement with each iteration and performs worse than
RedN due to the extra overhead of checking the condition
of the break. However, using a break statement increases the
offload’s overall efficiency since no unneeded iterations are
executed after the key is found — using an average of 30
WRs across all experiments. Without breaks, RedN will need
to execute all subsequent iterations even after the key-value

80 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

64 1K 4K 16K 64K

Value Size (B)

L
a
te

n
c
y
 (

u
s
)

0
1
0

2
0

3
0

4
0

5
0

RedN One−sided Two−sided (VMA)

Figure 14: Memcached get latencies with different IO sizes.

pair is found/returned and it uses more than 65% more WRs.
As such, while RedN is able to provide better latencies, using
a break statement is more sensible for longer lists.

5.4 Use Case: Accelerating Memcached

Based on our earlier experience offloading remote data struc-
ture traversals, we set out to see: 1) how effective our afore-
mentioned techniques are in a real system, and 2) what are
the challenges in deploying it in such settings. Memcached
is a key-value store that is often used as a caching service
for large-scale storage services. We use a version of Mem-
cached that employs cuckoo hashing [24]. Since Memcached
does not natively support RDMA, we modify it with ∼700
LoC to integrate RDMA capabilities, allowing the RNIC to
register the hash table and storage object memory areas. We
also modify the buckets, so that the addresses to the values
are stored in big endian — to match the format used by the
WR attributes. We then use RedN to offload Memcached’s get
requests to allow them to be serviced directly by the RNIC
without CPU involvement. We compare our results to various
configurations of Memcached.

To benchmark Memcached, we use the Memtier bench-
mark, configure it to use UDP (to reduce TCP overheads
for the baselines), and issue 1 million get operations using
different key-value sizes. To create a competitive baseline
for two-sided approaches, we use Mellanox’s VMA [9]—a
kernel-bypass userspace TCP/IP stack that boosts the per-
formance of sockets-based applications by intercepting their
socket calls and using kernel-bypass to send/receive data. We
configure VMA in polling-mode to optimize for latency. In
addition, we also implement a one-sided approach, similar to
the one introduced in section 5.2.

Fig. 14 shows the latency of gets. As we can see, RedN’s
offload for hash gets is up to 1.7× faster than one-sided and
2.6× faster than two-sided. Despite the latter being configured
in polling-mode, VMA incurs extra overhead since it relies
on a network stack to process packets. In addition, to adhere
to the sockets API, VMA has to memcpy data from send and
receive buffers, further inflating latencies—which is why it
performs comparatively worse at higher value sizes.

5.5 Use Case: Performance Isolation

One of the benefits of exposing the latent turing power of
RNICs is to enforce isolation among applications. CPU con-

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

Number of clients

L
a
te

n
c
y
 (

u
s
)

● ●
●

●

●

●
●

●

●

●

1 2 4 8 16

●

●

RedN Avg.

RedN 99
th

−%ile

Two−sided Avg.

Two−sided 99
th

−%ile

Figure 15: Memcached get latencies under hardware contention
with varying numbers of writer-clients.

tention in multi-tenant and cloud settings can lead to arbitrary
context switches, which can, in turn, inflate average and tail
latencies. We explore such a scenario by sending background
traffic to Memcached using one or more writer (clients). These
writers generate set RPCs in a closed loop to load the Mem-
cached service. At the same time, we use a single reader
client to generate get operations. To stress CPU resources
while minimizing lock contention, each reader/writer is as-
signed a distinct set of 10K keys, which they use to generate
their queries. The keys within each set are accessed by the
clients sequentially.

We can see in Fig. 15 that, as we increase the # of writers,
both the average and 99th percentile latencies for two-sided
increase dramatically. For RedN, CPU contention has no im-
pact on the performance of the RNIC and both the average
and 99th percentiles sit below 7 µs. At 16 writers, RedN’s 99th

percentile latency is 35× lower than the baseline.
This indicates that RNIC offloads can also have other useful

effects. Service providers may opt to offload high priority
traffic for more predictable performance or allocate server
resources to tenants to reduce contention.

5.6 Use Case: Failure Resiliency

We now consider server failures and how failure is affected
by RNICs. Table 6 shows failure rates of server software and
hardware components. NICs are much less likely to fail than
software components—NIC annualized failure rate (AFR) is
an order of magnitude lower. Even more importantly, NICs
are partially decoupled from their hosts and can still access
memory (or NVM) in the presence of an OS failure. This
means that RNICs are capable of offloading key system func-
tionality that can allow servers to continue operating despite
OS failures (albeit in a degraded state). To put this to the test,
we conduct a fail-over experiment to explore how RedN can
enhance a service’s failure resiliency.
Process crashes. We look into how we can allow an RNIC to
continue serving RPCs after a Memcached instance crashes.
We find that this is not simple in practice. RNICs access
many resources in application memory (e.g., queues, doorbell
records, etc.) that are required for functionality. If the process
hosting these resources crashes, the memory belonging to

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 81

Component AFR MTTF Reliability
OS 41.9% 20,906 99%

DRAM 39.5% 22,177 99%
NIC 1.00% 876,000 99.99%

NVM < 1.00% 2 million 99.99%
Table 6: Failure rates of different server components [8, 37].
AFR means annualized failure rate, whereas MTTF stands for
mean time to failure and is expressed in hours. RNICs can still
access memory even in the presence of an OS failure.

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Time, failure = 5 [s]

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

● ●
● ● ●

● ●
● ● ●

●
● ●

●
●

● ●

●

● ● ● ●

●

●

●

●

●

●
● ● ● ●

● ●
●

●

●

● ● ● ● ●
●

● ● ●

1 2 3 4 5 6 7 8 9 10 11 12

●RedN Vanilla Memcached

Process crashes

OS detect crash and
immediately restarts
Memcached

Recover: Pass over data items,
and regenerate hash table

Figure 16: RedN can survive process crashes and continue serv-
ing RPCs via the RNIC without interruption.

these components will be automatically freed by the operat-
ing system resulting in termination of the RDMA program.
To counteract this, we use [38] forks to create an empty hull
parent for hosting RDMA resources and then allow Mem-
cached to run as a child process. Linux systems do not free
the resources of a crashed child until the parent also termi-
nates. As such, keeping the RDMA resources tied to an empty
process allows us to continue operating in spite of application
failures. We run an experiment (timeline shown in Fig. 16)
where we send get queries to a single instance of Memcached
and then simply kill Memcached during the run. The OS de-
tects the application’s termination and immediately restarts it.
Despite this, we can see that a vanilla Memcached instance
will take at least 1 second to bootstrap, and 1.25 additional
seconds to build its metadata and hashtables. With RedN, no
service disruption is experienced and get queries continue to
be issued without recovery time.
OS failure. We also programmatically induce a kernel panic
using sysctl, freezing the system. This is a simpler case than
process crashes, since we no longer have to worry about the
OS freeing RDMA resources. For brevity, we do not show
these results, but we experimentally verified that RedN of-
floads continue operating in the presence of an OS crash.

6 Discussion
Client scalability. RedN requires servers to manage at least
two WQs per client, which is not higher than other RDMA
systems. RedN can still introduce scalability challenges with
thousands of clients since RNIC cache is limited. However,
Mellanox’s dynamically-connected (DC) transport service
[5], which allows unused connections to be recycled, can
circumvent many such scalability limits.

Offload for sockets-based applications. Protocols such as
rsocket [16] can be used to transparently convert sockets-
based applications to use RDMA, making them possible tar-
gets for RedN. Although rsocket does not support popular
system calls, such as epoll, other extensions have been pro-
posed [29] that support a more comprehensive list of system
calls and were shown to work with applications like Mem-
cached and Redis.
Intel RNICs. Next-generation Intel RNICs are expected to
support atomic verbs, such as CAS—which RedN uses to
implement conditionals. To control when WRs can be fetched
by the NIC, Intel uses a validity bit in each WR header. This
bit can be dynamically modified via an RDMA operation
to mimic ENABLE. However, there is no equivalent for the
WAIT primitive, meaning that clients cannot trigger a pre-
posted chain. One possible workaround for this is to use
another PCIe device on the server to issue a doorbell to the
RNIC, allowing the WR chain to be triggered. We leave the
exploration of such techniques as future work.
Insights for next-generation RNICs. Our experience with
RedN has shown that keeping WRs in server memory (to
allow them to be modified by other RDMA verbs) is a key
bottleneck. If the NIC’s cache was made directly accessible
via RDMA, WRs can be pre-fetched in advance and unneces-
sary PCIe round-trips on the critical path can be avoided. We
hope future RNICs will support such features.

7 Conclusion
We show that, in spite of appearances, commodity RDMA
NICs are Turing-complete and capable of performing com-
plex offloads without any hardware modifications. We take
this insight and explore the feasibility and performance of
these offloads. We find that, using a commodity RNIC, we can
achieve up to 2.6× and 35× speed-up versus state-of-the-art
RDMA approaches, for key-value get operations under un-
contended and contended settings, respectively, while allow-
ing applications to gain failure resiliency to OS and process
crashes. We believe that this work opens the door for a wide
variety of innovations in RNIC offloading which, in turn, can
help guide the evolution of the RDMA standard.
RedN is available at https://redn.io.

Acknowledgements. This work has received funding
from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation
programme (grant agreement No. 770889), as well as
NSF grant 1751231. Waleed Reda was supported by a
fellowship from the Erasmus Mundus Joint Doctorate
in Distributed Computing (EMJD-DC), funded by the
European Commission (EACEA) (FPA 2012-0030). We
would like to thank Gerald Q. Maguire Jr. and our anony-
mous reviewers for their comments and feedback as well
as Jasmine Murcia. Thanks also go to our shepherd Ang Chen.

82 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://redn.io

References
[1] Agilio CX SmartNICs. https://www.netronome.

com/products/agilio-cx/.

[2] Catapult. https://www.microsoft.com/en-us/
research/project/project-catapult/.

[3] Cavium-Xpliant. https://www.openswitch.net/
cavium/.

[4] ConnectX series. https://www.mellanox.com/
products/ethernet/connectx-smartnic.

[5] Dynamically Connected (DC) QPs. https:
//docs.mellanox.com/display/rdmacore50/
DynamicallyConnected(DC)QPs.

[6] ibv_modify_qp_rate_limit(3) - Linux man page.
https://man7.org/linux/man-pages/man3/ibv_
modify_qp_rate_limit.3.html.

[7] Intel Ethernet 800 Series Network Adapters.
https://www.intel.com/content/www/us/en/
products/docs/network-io/ethernet/network-
adapters/ethernet-800-series-network-
adapters/e810-cqda1-100gbe-brief.html.

[8] Intel Optane DC Persistent Memory - Product
Brief. https://www.intel.com/content/dam/
www/public/us/en/documents/product-briefs/
optane-dc-persistent-memory-brief.pdf.

[9] LibVMA. https://github.com/Mellanox/libvma/
wiki/Architecture.

[10] LiquidIO II SmartNICs. https://www.marvell.
com/products/ethernet-adapters-and-
controllers/liquidio-smart-nics/liquidio-
ii-smart-nics.html.

[11] Mellanox BlueField. https://www.mellanox.com/
products/bluefield-overview.

[12] Mellanox PCX. https://github.com/Mellanox/
pcx/tree/master/config.

[13] Mellanox store. http://store.mellanox.com/.

[14] NetFPGA platform. https://netfpga.org/.

[15] RDMA RFC. https://tools.ietf.org/html/
rfc5040.

[16] rsocket(7) - Linux man page. https://linux.die.
net/man/7/rsocket.

[17] Stingray. https://www.broadcom.com/products/
ethernet-connectivity/smartnic.

[18] M. K. Aguilera, N. Ben-David, R. Guerraoui,
V. Marathe, and I. Zablotchi. The Impact of RDMA on
Agreement. arXiv preprint arXiv:1905.12143, 2019.

[19] T. E. Anderson, M. Canini, J. Kim, D. Kostić, Y. Kwon,
S. Peter, W. Reda, H. N. Schuh, and E. Witchel. Assise:
Performance and Availability via NVM Colocation in a
Distributed File System. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
20), 2020.

[20] O. Cardona. Towards Hyperscale High Per-
formance Computing with RDMA, 2019.
https://pc.nanog.org/static/published/
meetings/NANOG76/1999/20190612_Cardona_
Towards_Hyperscale_High_v1.pdf.

[21] S. Dolan. mov is Turing-complete. Cl. Cam. Ac. Uk,
pages 1–4, 2013.

[22] A. Dragojević, D. Narayanan, M. Castro, and O. Hodson.
FaRM: Fast remote memory. In 11th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 14), pages 401–414, 2014.

[23] H. Eran, L. Zeno, M. Tork, G. Malka, and M. Silberstein.
NICA: An Infrastructure for Inline Acceleration of Net-
work Applications. In 2019 USENIX Annual Technical
Conference (USENIX ATC 19), pages 345–362, 2019.

[24] B. Fan, D. G. Andersen, and M. Kaminsky. MemC3:
Compact and concurrent memcache with dumber
caching and smarter hashing. In 10th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 13), pages 371–384, 2013.

[25] M. Gabbrielli and S. Martini. Programming Languages:
Principles and Paradigms, page 145. Undergraduate
Topics in Computer Science. Springer London, 2010.

[26] A. Kalia, M. Kaminsky, and D. G. Andersen. Using
RDMA efficiently for key-value services. In ACM SIG-
COMM Computer Communication Review, volume 44,
pages 295–306. ACM, 2014.

[27] M. Kazhamiaka, B. Memon, C. Kankanamge, S. Sahu,
S. Rizvi, B. Wong, and K. Daudjee. Sift: resource-
efficient consensus with RDMA. In Proceedings of the
15th International Conference on Emerging Networking
Experiments And Technologies, pages 260–271, 2019.

[28] D. Kim, A. Memaripour, A. Badam, Y. Zhu, H. H. Liu,
J. Padhye, S. Raindel, S. Swanson, V. Sekar, and S. Se-
shan. Hyperloop: group-based NIC-offloading to ac-
celerate replicated transactions in multi-tenant storage
systems. In Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication,
pages 297–312, 2018.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 83

https://www.netronome.com/products/agilio-cx/
https://www.netronome.com/products/agilio-cx/
https://www.microsoft.com/en-us/research/project/project-catapult/
https://www.microsoft.com/en-us/research/project/project-catapult/
https://www.openswitch.net/cavium/
https://www.openswitch.net/cavium/
https://www.mellanox.com/products/ethernet/connectx-smartnic
https://www.mellanox.com/products/ethernet/connectx-smartnic
https://docs.mellanox.com/display/rdmacore50/Dynamically Connected (DC) QPs
https://docs.mellanox.com/display/rdmacore50/Dynamically Connected (DC) QPs
https://docs.mellanox.com/display/rdmacore50/Dynamically Connected (DC) QPs
https://man7.org/linux/man-pages/man3/ibv_modify_qp_rate_limit.3.html
https://man7.org/linux/man-pages/man3/ibv_modify_qp_rate_limit.3.html
https://www.intel.com/content/www/us/en/products/docs/network-io/ethernet/network-adapters/ethernet-800-series-network-adapters/e810-cqda1-100gbe-brief.html
https://www.intel.com/content/www/us/en/products/docs/network-io/ethernet/network-adapters/ethernet-800-series-network-adapters/e810-cqda1-100gbe-brief.html
https://www.intel.com/content/www/us/en/products/docs/network-io/ethernet/network-adapters/ethernet-800-series-network-adapters/e810-cqda1-100gbe-brief.html
https://www.intel.com/content/www/us/en/products/docs/network-io/ethernet/network-adapters/ethernet-800-series-network-adapters/e810-cqda1-100gbe-brief.html
https://www.intel.com/content/dam /www/public/us/en/documents/product-briefs/optane-dc-persistent-memory-brief.pdf
https://www.intel.com/content/dam /www/public/us/en/documents/product-briefs/optane-dc-persistent-memory-brief.pdf
https://www.intel.com/content/dam /www/public/us/en/documents/product-briefs/optane-dc-persistent-memory-brief.pdf
https://github.com/Mellanox/libvma/wiki/Architecture
https://github.com/Mellanox/libvma/wiki/Architecture
https://www.marvell.com/products/ethernet-adapters-and-controllers/liquidio-smart-nics/liquidio-ii-smart-nics.html
https://www.marvell.com/products/ethernet-adapters-and-controllers/liquidio-smart-nics/liquidio-ii-smart-nics.html
https://www.marvell.com/products/ethernet-adapters-and-controllers/liquidio-smart-nics/liquidio-ii-smart-nics.html
https://www.marvell.com/products/ethernet-adapters-and-controllers/liquidio-smart-nics/liquidio-ii-smart-nics.html
https://www.mellanox.com/products/bluefield-overview
https://www.mellanox.com/products/bluefield-overview
https://github.com/Mellanox/pcx/tree/master/config
https://github.com/Mellanox/pcx/tree/master/config
http://store.mellanox.com/
https://netfpga.org/
https://tools.ietf.org/html/rfc5040
https://tools.ietf.org/html/rfc5040
https://linux.die.net/man/7/rsocket
https://linux.die.net/man/7/rsocket
https://www.broadcom.com/products/ethernet-connectivity/smartnic
https://www.broadcom.com/products/ethernet-connectivity/smartnic
https://pc.nanog.org/static/published/meetings/NANOG76/1999/20190612_Cardona_Towards_Hyperscale_High_v1.pdf
https://pc.nanog.org/static/published/meetings/NANOG76/1999/20190612_Cardona_Towards_Hyperscale_High_v1.pdf
https://pc.nanog.org/static/published/meetings/NANOG76/1999/20190612_Cardona_Towards_Hyperscale_High_v1.pdf

[29] B. Li, T. Cui, Z. Wang, W. Bai, and L. Zhang. Socks-
Direct: Datacenter sockets can be fast and compatible.
In Proceedings of the ACM Special Interest Group on
Data Communication, pages 90–103. 2019.

[30] B. Li, Z. Ruan, W. Xiao, Y. Lu, Y. Xiong, A. Putnam,
E. Chen, and L. Zhang. KV-Direct: High-Performance
In-Memory Key-Value Store with Programmable NIC.
In Proceedings of the 26th Symposium on Operating
Systems Principles, pages 137–152, 2017.

[31] M. Liu, T. Cui, H. Schuh, A. Krishnamurthy, S. Peter,
and K. Gupta. Offloading distributed applications onto
SmartNICs using iPipe. In Proceedings of the ACM
Special Interest Group on Data Communication, pages
318–333. 2019.

[32] M. Liu, S. Peter, A. Krishnamurthy, and P. M.
Phothilimthana. E3: Energy-Efficient Microservices
on SmartNIC-Accelerated Servers. In 2019 USENIX
Annual Technical Conference (USENIX ATC 19), pages
363–378, 2019.

[33] Y. Lu, J. Shu, Y. Chen, and T. Li. Octopus: An RDMA-
enabled distributed persistent memory file system. In
2017 USENIX Annual Technical Conference (USENIX
ATC 17), pages 773–785, 2017.

[34] Mellanox RDMA Aware Networks Programming User
Manual. https://www.mellanox.com/related-
docs/prod_software/RDMA_Aware_Programming_
user_manual.pdf.

[35] C. Mitchell, Y. Geng, and J. Li. Using One-Sided
RDMA Reads to Build a Fast, CPU-Efficient Key-Value
Store. In 2013 USENIX Annual Technical Conference
(USENIX ATC 13), pages 103–114, 2013.

[36] P. M. Phothilimthana, M. Liu, A. Kaufmann, S. Peter,
R. Bodik, and T. Anderson. Floem: A Programming
System for NIC-Accelerated Network Applications. In
13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), pages 663–679, 2018.

[37] M. Poke and T. Hoefler. Dare: High-performance State
Machine Replication on RDMA Networks. In Pro-
ceedings of the 24th International Symposium on High-
Performance Parallel and Distributed Computing, pages
107–118. ACM, 2015.

[38] A. Rosenbaum. Multiprocess Sharing of RDMA Re-
sources, 2018. https://openfabrics.org/images/
2018workshop/presentations/103_ARosenbaum_
Multi-ProcessSharing.pdf.

[39] D. Sidler, Z. Wang, M. Chiosa, A. Kulkarni, and
G. Alonso. StRoM: Smart Remote Memory. Proceed-
ings of the Fifteenth EuroSys Conference, 2020.

[40] A. K. Simpson, A. Szekeres, J. Nelson, and I. Zhang.
Securing RDMA for High-Performance Datacenter Stor-
age Systems. In 12th USENIX Workshop on Hot Topics
in Cloud Computing (HotCloud 20), 2020.

[41] C. Wang, J. Jiang, X. Chen, N. Yi, and H. Cui. APUS:
Fast and Scalable Paxos on RDMA. In Proceedings
of the 2017 Symposium on Cloud Computing, pages
94–107, 2017.

[42] X. Wei, Z. Dong, R. Chen, and H. Chen. Deconstructing
RDMA-enabled distributed transactions: Hybrid is bet-
ter! In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), pages 233–251,
2018.

[43] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen. Fast in-
memory transaction processing using RDMA and HTM.
In Proceedings of the 25th Symposium on Operating
Systems Principles, pages 87–104, 2015.

[44] J. Yang, J. Izraelevitz, and S. Swanson. Orion: A dis-
tributed file system for non-volatile main memory and
RDMA-capable networks. In 17th USENIX Confer-
ence on File and Storage Technologies (FAST 19), pages
221–234, 2019.

[45] D. Y. Yoon, M. Chowdhury, and B. Mozafari. Dis-
tributed lock management with RDMA: decentralization
without starvation. In Proceedings of the 2018 Inter-
national Conference on Management of Data, pages
1571–1586, 2018.

[46] T. Ziegler, S. Tumkur Vani, C. Binnig, R. Fonseca, and
T. Kraska. Designing distributed tree-based index struc-
tures for fast RDMA-capable networks. In Proceedings
of the 2019 International Conference on Management
of Data, pages 741–758, 2019.

84 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.mellanox.com/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf
https://www.mellanox.com/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf
https://www.mellanox.com/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf
https://openfabrics.org/images/2018workshop/presentations/103_ARosenbaum_Multi-ProcessSharing.pdf
https://openfabrics.org/images/2018workshop/presentations/103_ARosenbaum_Multi-ProcessSharing.pdf
https://openfabrics.org/images/2018workshop/presentations/103_ARosenbaum_Multi-ProcessSharing.pdf

Appendix A Turing completeness sketch
To show that RDMA is turing complete, we need to establish
that RDMA has the following three properties:

1. Can read/write arbitrary amounts of memory.
2. Has conditional branching (e.g., if & else statements).
3. Allows nontermination.

Our paper already demonstrates that these properties can
be satisfied using our constructs but, for completeness, we
also analogize our system with x86 assembly instructions
that have been proven to be capable of simulating a Turing
machine. Dolan [21] demonstrated that this is in fact possible
using just the x86 mov instruction. As such, we need to prove
that RDMA has sufficient expressive power to emulate the
mov instruction.

A.1 Emulating the x86 mov instruction

To provide an RDMA implementation for mov, we first need
to consider the different addressing modes used by Dolan [21]
to simulate a Turing machine. The addressing mode describes
how a memory location is specified in the mov operands.

Table 7 shows a list of all required addressing modes, their
x86 syntax, and one possible implementation for each with
RDMA. R operands denote registers but, since RDMA op-
erations can only perform memory-to-memory transfers, we
assume these registers are stored in memory. For simplicity,
we only focus on mov instructions used to perform loads but
note that stores can be implemented in a similar manner.

For immediate addressing, the operand is part of the in-
struction and is passed directly to register Rdst . This can be
implemented simply using an WRITEIMM which takes a con-
stant in its immediate parameter and writes it to a specified
memory location (register Rdst in this case). To perform more
complex operations, indirect allows mov to use the value of

the operand as a memory address. This enables the dynamic
modification of the address at runtime, since it depends on
the contents of the register when the instruction is executed.
To implement this, we use two write operations with door-
bell ordering (refer to §3.1 for a discussion of our ordering
modes). The first WRITE changes the source address attribute
of the second WRITE operation to the value in register Rsrc.
This allows the second WRITE operation to write to register
Rdst using the value at the memory address pointed to by
Rsrc. Lastly, indexed addressing allows us to add an offset
(Ro f f) to the address in register Rsrc. This can be done by
simply performing an RDMA ADD operation between the
two writes with doorbell ordering, in order to add the offset
register value Ro f f to Rsrc. This allows us to finally write the
value [Rsrc +Ro f f] to Rdst . With these three implementations,
we showcase that RDMA can in fact emulate all the required
mov instruction variants.

A.2 Allowing nontermination

To simulate a real Turing machine, we need to also satisfy
the code nontermination requirement. In the x86 architecture,
this can be achieved via an unconditional jump [21] that loops
back to the start of the program. For RDMA, this can also
be achieved by having the CPU re-post the WRs after they
are executed. While this is sufficient for Turing completeness
it, nevertheless, wastes additional CPU cycles and can also
impact latency if CPU cores are busy or unable to keep up
with WR execution. As an alternative, RedN provides a way
to loop back without any CPU interaction by relying on WAIT
and ENABLE to recycle RDMA WRs (as described in §3.4).
Regardless of which approach is employed, RDMA is capable
of performing an unconditional jump to the beginning of the
program. This means that we can emulate all x86 instructions
used by Dolan [21] for simulating a Turing machine.

Addressing mode x86 syntax RedN equivalent

Immediate mov Rdst , C

–

WRITE

imm

C
Rdst

Indirect mov Rdst , [Rsrc]

–

set src to Rsrc

WRITE WRITE

[Rsrc]
RdstRsrc

Indexed mov Rdst , [Rsrc + Ro f f]

–

set src to Rsrc

WRITE WRITE

[Rsrc + Roff]
RdstRsrc ADD

Roff Add Roff to src

Table 7: Addressing modes for the x86 mov instruction and their RDMA implementation in RedN.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 85

FlexTOE: Flexible TCPOffload with Fine-Grained Parallelism
Rajath Shashidhara1 Tim Stamler2 Antoine Kaufmann3 Simon Peter1

1University ofWashington 2UT Austin 3MPI-SWS

Abstract
FlexTOE is a flexible, yet high-performance TCP offload en-
gine (TOE) to SmartNICs. FlexTOE eliminates almost all host
data-path TCP processing and is fully customizable. FlexTOE
interoperates well with other TCP stacks, is robust under
adverse network conditions, and supports POSIX sockets.

FlexTOEfocusesondata-pathoffloadofestablishedconnec-
tions, avoiding complex control logic and packet buffering in
theNIC. FlexTOE leverages fine-grained parallelization of the
TCP data-path and segment reordering for high performance
on wimpy SmartNIC architectures, while remaining flexible
viaamodulardesign.WecompareFlexTOEonanAgilio-CX40
to host TCP stacks Linux and TAS, and to the Chelsio Termi-
nator TOE.We find that Memcached scales up to 38% better
on FlexTOE versus TAS, while saving up to 81% host CPU
cycles versus Chelsio. FlexTOE provides competitive perfor-
mance for RPCs, even with wimpy SmartNICs. FlexTOE cuts
99.99th-percentile RPC RTT by 3.2× and 50% versus Chelsio
and TAS, respectively. FlexTOE’s data-path parallelism gen-
eralizes across hardware architectures, improving single con-
nectionRPCthroughputup to2.4×onx86and4×onBlueField.
FlexTOE supports C and XDP programs written in eBPF. It
allows us to implement popular data center transport features,
such as TCP tracing, packet filtering and capture, VLAN strip-
ping, flow classification, firewalling, and connection splicing.

1 Introduction
TCP remains the default protocol in many networks, even
as its CPU overhead is increasingly a burden to application
performance [3, 17, 46]. A long line of improvements to soft-
ware TCP stack architecture has reduced overheads: Careful
packet steering improves cache-locality for multi-cores [17,
24, 45], kernel-bypass enables safe direct NIC access from
user-space [3, 46], application libraries avoid system calls for
common socket operations [17], and fast-paths drastically re-
duceTCPprocessing overheads [19]. Yet, evenwith these opti-
mizations, communication-intensive applications spendup to
48% of per-CPU cycles in the TCP stack and NIC driver (§2.1).

Offloadpromises further reductionofCPUoverhead.While
moving parts of TCP processing, such as checksum and seg-
mentation, into theNIC is commonplace [54], full TCP offload
engines (TOEs) [6, 7, 33] have so far failed to find widespread
adoption.Aprimary reason is that fixedoffloads [56] limit pro-
tocol evolutionafter deployment [9, 29, 36]. Tonic [2] provides
buildingblocks for flexible transport protocol offload to FPGA-
SmartNICs, but FPGA development is still difficult and slow.
We present FlexTOE, a high-performance, yet flexible of-

fload of the widely-used TCP protocol. FlexTOE focuses on

scenarios that are common indata centers,where connections
are long-lived and small transfers are common [29]. FlexTOE
offloads the TCP data-path to a network processor (NPU)
based SmartNIC, enabling full customization of transport
logic and flexibility to implement data-path features whose
requirements change frequently in data centers. Applications
interface directly but transparently with the FlexTOE datap-
ath throughthe libTOE library that implementsPOSIXsockets,
while FlexTOE offloads all TCP data-path processing (§2.1).

TCP data-path offload to SmartNICs is challenging. Smart-
NICs support only restrictive programmingmodelswith strin-
gent per-packet time budgets and are geared towardsmassive
parallelism with wimpy cores [26]. They often lack timers,
as well as floating-point and other computational support,
such as division. Finally, offload has to mask high-latency
operations that cross PCIe. On the other hand, TCP requires
computationally intensive and stateful code paths to track
in-flight segments, for reassembly and retransmission, and to
perform congestion control [2]. For each connection, the TCP
data-path needs to provide low processing tail latency and
high throughput and is also extremely sensitive to reordering.

Resolving the gap between TCP’s requirements and Smart-
NIC hardware capabilities requires careful offload design to
efficiently utilize SmartNIC capabilities. Targeting FlexTOE
at the TCP data-path of established connections avoids com-
plex control logic in theNIC. FlexTOE’s offloaded data-path is
one-shot for each TCP segment—segments are never buffered
in the NIC. Instead, per-socket buffers are kept in per-process
hostmemorywhere libTOE interacts with them directly. Con-
nection management, retransmission, and congestion con-
trol are part of a separate control-plane, which executes in
its own protection domain, either on control cores of the
SmartNIC or on the host. To provide scalability and flexi-
bility, we decompose the TCP data-path into fine-grained
modules that keep private state and communicate explicitly.
Like microservices [29], FlexTOE modules leverage a data-
parallel execution model that maximizes SmartNIC resource
use and simplifies customization.We organize FlexTOEmod-
ules into a data-parallel computation pipeline. We also reorder
segments on-the-fly to support parallel, out-of-order process-
ing of pipeline stages, while enforcing in-order TCP segment
delivery. To our knowledge, no prior work attempting full
TCP data-path offload to NPU SmartNICs exists.
We make the following contributions:
• We characterize the CPU overhead of TCP data-path pro-
cessing for common data center applications (§2.1). Our
analysis shows thatup to48%ofper-CPUcycles are spent in
TCP data-path processing, evenwith optimized TCP stacks.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 87

• We present FlexTOE, a flexible, high-performance TCP of-
fload engine (§3). FlexTOE leverages data-path processing
with fine-grained parallelism for performance, but remains
flexible via a modular design. We show how to decompose
TCP into a data-path and a control-plane, and the data-path
into a data-parallel pipeline of processing modules to hide
SmartNIC processing and data access latencies.

• We implement FlexTOE on the Netronome Agilio-CX40
NPU SmartNIC architecture, as well as x86 andMellanox
BlueField (§4). Using FlexTOE design principles, we are the
first to demonstrate that NPU SmartNICs can support scal-
able, yet flexible TCP data-path offload. Our code is avail-
able at https://tcp-acceleration-service.github.io/FlexTOE.

• We evaluate FlexTOE on a range of workloads and com-
pare to Linux, the high-performance TAS [19] network
stack, and a Chelsio Terminator TOE [6] (§5). We find that
the Memcached [32] key-value store scales throughput up
to 38% better on FlexTOE than using TAS, while saving
up to 81% host CPU cycles versus Chelsio. FlexTOE cuts
99.99th-percentileRPCRTTby3.2×and50%versusChelsio
and TAS respectively, 27% higher throughput than Chel-
sio for bidirectional long flows,and an order of magnitude
higher throughput under 2% packet loss than Chelsio. We
extend the FlexTOEdata-pathwith debugging and auditing
functionality to demonstrate flexibility. FlexTOEmaintains
high performancewhen interoperatingwith other network
stacks. FlexTOE’s data-path parallelism generalizes across
platforms, improving single connection RPC throughput
up to 2.4× on x86 and 4× on BlueField.

2 Background
Wemotivate FlexTOE by analyzing TCP host CPU processing
overheads of related approaches (§2.1). We then place Flex-
TOE in context of this and further related work (§2.2). Finally,
we survey the relevant on-path SmartNIC architecture (§2.3).

2.1 TCP Impact onHost CPU Performance
Wequantify the impactofdifferentTCPprocessingapproaches
on host CPU performance in terms of CPU overhead, execu-
tion efficiency, and cache footprint,whenprocessing common
RPC-based workloads. We do so by instrumenting a single-
threaded Memcached [32] server application using hardware
performance counters (cf. §5 for details of our testbed).Weuse
the popular memtier_benchmark [51] to generate the client
load, consisting of 32 B keys and values, using asmany clients
as necessary to saturate the server, executing closed-loop
KV transactions on persistent connections. Table 1 shows a
breakdown of our server-side results, for each Memcached
request-response pair, into NIC driver, TCP/IP stack, POSIX
sockets, Memcached application, and other factors.

In-kernel. Linux’s TCP stack is versatile but bulky, lead-
ing to a large cache footprint, inefficient execution, and high
CPU overhead. Stateless offloads [54], such as segmentation

Module Linux Chelsio TAS FlexTOE
kc % kc % kc % kc %

NIC driver 0.71 6 1.28 14 0.18 5 0 0
TCP/IP stack 4.25 35 0.40 4 1.44 43 0 0
POSIX sockets 2.48 21 2.61 29 0.79 23 0.74 44
Application 1.26 10 1.31 16 0.85 26 0.89 53
Other 3.42 28 3.28 37 0.09 3 0.04 3

Total 12.13 100 8.89 100 3.34 100 1.67 100

Retiring 4.60 38 2.43 27 1.66 48 0.77 46
Frontend bound 3.53 29 1.52 17 0.46 13 0.34 21
Backend bound 3.40 28 4.68 53 1.24 36 0.46 27
Bad speculation 0.55 5 0.26 3 0.13 4 0.09 6

Instructions (k) 16.18 8.14 6.26 2.93
IPC 1.33 0.92 1.85 1.75
Icache (KB) 47.50 73.43 39.75 19.00

Table 1. Per-request CPU impact of TCP processing.

and generic receive offload [12], reduce overhead for large
transfers, but they have minimal impact on RPCworkloads
dominatedbyshortflows.WefindthatLinuxexecutes12.13 kc
per Memcached request on average, with only 10% spent in
the application. Not only does Linux have a high instruction
and instruction cache (Icache) footprint, but privilege mode
switches, scattered global state, and coarse-grained locking
lead to 62% of all cycles spent in instruction fetch stalls (fron-
tend bound), cache and TLB misses (backend bound), and
branch mispredictions (cf. [19]). These inefficiences result in
1.33 instructions per cycle (IPC), leveraging only 33% of our
4-way issue CPU architecture. Linux is, in principle, easy to
modify, but kernel code development is complex and security
sensitive. Hence, introducing optimizations and newnetwork
functionality to the kernel is often slow [29, 42, 43].

Kernel-bypass. Kernel-bypass, such as in mTCP [17] and
Arrakis [46], eliminates kernel overheads by entrusting the
TCP stack to the application, but it has security implica-
tions [52]. TAS [19] and Snap [29] instead execute a protected
user-mode TCP stack on dedicated cores, retaining security
and performance. By eliminating kernel calls, TAS spends
only 800 cycles in the socket API—31% of Linux’s API over-
head. TAS also reduces TCP stack overhead to 34% of Linux.
TAS reduces Icache footprint, front and back-end CPU stalls,
improving IPC by 40% versus Linux, and reducing the total
per-request CPU impact to 27% of Linux. However, kernel-
bypass still has significant overhead. Only 26% of per-request
cycles are spent in Memcached—the remainder is spent in
TAS (breakdown in §C).

Inflexible TCP offload. TCP offload can eliminate host
CPU overhead for TCP processing. Indeed, TOEs [7] that of-
fload the TCP data-path to the NIC have existed for a long
time. Existing approaches, such as the Chelsio Terminator [6],
hard-wire theTCPoffload. The resulting inflexibility prevents
data center operators from adapting the TOE to their needs

88 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://tcp-acceleration-service.github.io/FlexTOE

and leads to a slow upgrade path due to long hardware devel-
opment cycles. For example, the Chelsio Terminator line has
been slow to adapt to RPC-based data center workloads.

Chelsio’s inflexbility shows in our analysis. Despite drasti-
cally reducing the host TCP processing cycles to 10% of Linux
and 28% of TAS, Chelsio’s TOE only modestly reduces the
total per-request CPU cycles of Memcached by 27% versus
Linux and inflates them by 2.6× versus TAS. Chelsio’s design
requires interaction through the Linux kernel, leading to a
similar execution profile despite executing 50% fewer host
instructions per request. In addition, Chelsio requires a so-
phisticatedTOENICdriver,with complexbuffermanagement
and synchronization. Chelsio’s design is inefficient for RPC
processing and leaves only 16% of the total per-request cycles
toMemcached—6%more than Linux and 10% fewer than TAS.

FlexTOE. FlexTOEeliminatesallhostTCPstackoverheads.
FlexTOE’s instruction (and Icache) footprint is at least 2×
lower than the other stacks, leading to an execution profile
similar to TAS, where 46% of all cycles are spent retiring
instructions. In addition, 53% of all cycles can be spent in
Memcached—an improvement of 2× versus TAS, the next
best solution. The remaining cycles are spent in the POSIX
sockets API, which cannot be eliminated with TCP offload.
FlexTOE is also flexible, allowing operators to modify the

TOE at will. For example, we have modified the TCP data-
path many times, implementing many features that require
TOEmodification, including scalable socket API implemen-
tations [24, 45], congestion control protocols [1, 34], scalable
flow scheduling [53], scalable PCIe communication proto-
cols [44], TCP tracing [13], packet filtering and capture (tcp-
dump and PCAP), VLAN stripping, programmable flow clas-
sification (eBPF [30]), firewalling, and connection splicing
similar to AccelTCP [37]. All of these features are desirable
in data centers and are adapted frequently.

2.2 RelatedWork
Beyond the TCP implementations covered in §2.1, we cover
here further relatedwork in SmartNIC offload, parallel packet
processing, and API and network protocol specialization.

SmartNIC offload. On-path SmartNICs (§2.3), based on
networkprocessorunits (NPUs)andFPGAs,provideasuitable
substrate for flexible offload. Arsenic [47] is an early example
offlexiblepacketmultiplexingonaSmartNIC.Microsoft’sCat-
apult [48] offloads network management, while Dagger [22]
offloadsRPCprocessing toFPGA-SmartNICs.Neitheroffloads
a transport protocol, like TCP. AccelTCP [37] offloads TCP
connectionmanagementandsplicing [28] toNPU-SmartNICs,
but keeps the TCP data-path on the host using mTCP [17].
Tonic [2] demonstrates in simulation that high-performance,
flexible TCP transmission offload might be possible, but it
stops short of implementing full TCP data-path offload (in-
cluding receiver processing) in a non-simulated environment.
LineFS [20] offloads a distributed file system to an off-path

SmartNIC, leveraging parallelization to hide execution laten-
cies of wimpy SmartNIC CPUs and data access across PCIe.
Taking inspiration fromTonic and LineFS, but also from actor,
and microservice-based approaches presented in iPipe [26],
E3 [27], and Click [23, 38], FlexTOE shows how to decompose
the TCP data-path into a fine-grained data-parallel pipeline to
support full and flexible offload to on-path NPU-SmartNICs.

Parallel packet processing. RouteBricks [8] parallelizes
across cores and cluster nodes for high-performance routing,
achieving high line-rates but remaining flexible via software
programmability. Routing relies on read-mostly state and is
simple compared to TCP. FlexTOE applies fine-grained par-
allelization to complex, stateful code paths.

Specialized APIs and protocols. Another approach to
lower CPU utilization is specialization. R2P2 [21] is a UDP-
based protocol for remote procedure calls (RPCs) optimized
for efficient and parallel processing, both at the end-hosts and
in the network. eRPC [18] goes a step further and co-designs
an RPC protocol and API with a kernel-bypass network stack
to minimize CPU overhead per RPC. RDMA [49] is a popular
combination of a networking API, protocol, and a (typically
hardware) network stack. iWARP [50], in particular, lever-
ages a TCP stack underneath RDMA, offloading both. These
approaches improve processing efficiency, but at the cost of
requiring application re-design, all-or-nothing deployments,
and operational issues at scale [11], often due to inflexibil-
ity [36, 56]. FlexTOE instead offloads the TCP protocol in a
flexible manner by relying on SmartNICs. Upper-layer proto-
cols, such as iWARP, can also be implemented using FlexTOE.

2.3 On-path SmartNIC Architecture
On-path SmartNICs1, such as Marvell Octeon [5], Pensando
Capri [10, 55], and Netronome Agilio [39, 40], support mas-
sively parallel packet processingwith a large pool of flow pro-
cessing cores (FPCs), but they lack efficient support for sophis-
ticated program control flow and complex computation [26].

Network Block Interface NBI

MAC 40GbE

PCIe Gen3 x8

EMEM
DRAM
2 GB

IMEM
SRAM
4 MB

General Purpose Islands x5

CLS
SRAM
64 KB

CTM
SRAM

256 KB

Flow Processing Cores
(FPCs)

x12

DMA engine

Figure 1.NFP-4000 overview.

We explore offload
to the NFP-4000 NPU,
used in Netronome Ag-
ilio CX SmartNICs [39].
We show the relevant
architecture in Figure 1.
Likeotheron-pathSmart-
NICs, FPCs are orga-
nized into islands with
local memory and pro-
cessing resources, akin
to NUMA domains. Is-
lands are connected in a
mesh via a high-bandwidth interconnect (arrows in Figure 1).

1Mellanox BlueField [31] and Broadcom Stingray [4] are off-path SmartNICs
that are not optimized for packet processing [26].

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 89

The PCIe island has up to two PCIe Gen3 x8 interfaces and a
DMA engine exposing DMA transaction queues [41]. FPCs
can issue up to 256 asynchronous DMA transactions to per-
form IO between host and NIC memory. The MAC island
supports up to two 40Gbps Ethernet interfaces, accessed via
a network block interface (NBI).

Flow Processing Cores (FPCs). 60 FPCs are grouped into
five general-purpose islands (each containing 12 FPCs). Each
FPC is an independent 32-bit core at 800MHz with 8 hard-
ware threads, 32 KB instruction memory, 4 KB data memory,
and CRC acceleration. While FPCs have strong data flow pro-
cessing capabilities, they have small codestores, lack timers,
as well as floating-point and other complex computational
support, such as division. This makes them unsuitable to exe-
cute computationally and control intensive TCP functionality,
such as congestion, connection, and complex retransmission
control. For example, congestion avoidance involves com-
puting an ECN-ratio (gradient). We found that it takes 1,500
cycles (1.9 𝜇s) per RTT to perform this computation on FPCs.

Memory. TheNFP-4000 includesmultiplememories of var-
ious sizes and performance characteristics. General-purpose
islands have 64KB of island-local scratch (CLS) and 256KB
of island target memory (CTM), with access latencies of up
to 100 cycles from island-local FPCs for data processing and
transfer, respectively. The internal memory unit (IMEM) pro-
vides 4MB of SRAMwith an access latency of up to 250 cycles.
The external memory unit (EMEM) provides 2GB of DRAM,
fronted by a 3MB SRAM cache, with up to 500 cycles latency.

Implications for flexible offload. The NFP-4000 sup-
ports a broad range of protocols, but the computation and
memory restrictions require careful offload design. As FPCs
are wimpy andmemory latencies high, sequential instruction
execution is much slower than on host processors. Conven-
tional run-to-completion processing that assigns entire con-
nections to cores [3, 17, 19] results in poor per-connection
throughput and latency. In some cases, it is beyond the fea-
sible instruction and memory footprint. Instead, an efficient
offload needs to leverage more fine-grained parallelism to
limit the per-core compute and memory footprint.

3 FlexTOEDesign
In addition to flexibility, FlexTOE has the following goals:

• Low tail latency and high throughput. Modern dat-
acenter network loads consist of short and long flows.
Short flows, driven by remote procedure calls, require low
tail completion time, while long flows benefit from high
throughput. FlexTOE shall provide both.

• Scalability. The number of network flows and applica-
tion contexts that servers must handle simultaneously is
increasing. FlexTOE shall scale with this demand.

To achieve these goals and overcome SmartNIC hardware
limitations, we propose three design principles:

1. One-shotdata-pathoffload.WefocusoffloadontheTCP
RX/TX data-path, eliminating complex control, compute,
and state, thereby also enabling fine-grained paralleliza-
tion. Further, our data-path offload is one-shot for each
TCP segment. Segments are never buffered on the NIC,
vastly simplifying SmartNIC memory management.

2. Modularity.We decompose the TCP data-path into fine-
grained, customizable modules that keep private state and
communicate explicitly. New TCP extensions can be im-
plemented as modules and hooked into the data-flow, sim-
plifying development and integration.

3. Fine-grained parallelism. We organize the data-path
modules into a data-parallel computation pipeline that
maximizes SmartNIC resource use.Wemap stages to FPCs,
allowing us to fully utilize all FPC resources. We employ
TCP segment sequencing and reordering to support par-
allel, out-of-order processing of pipeline stages, while en-
forcing in-order segment delivery.

Decomposing TCP for offload. We use the TAS host TCP
stack architecture [19] as a starting point. TAS splits TCP
processing into three components: a data-path, a control-
plane, and an application library. The data-path is respon-
sible for scalable data transport of established connections:
TCP segmentation, loss detection and recovery, rate control,
payload transfer between socket buffers and the network,
and application notifications. The control-plane handles con-
nection and context management, congestion control, and
complex recovery involving timeouts. Finally, the application
library intercepts POSIX socket API calls and interacts with
control-plane and data-path using dedicated context queues
in shared memory. Data-path and control-plane execute in
their own protection domains on dedicated cores, isolated
from untrusted applications, and communicate through effi-
cient message passing queues.

FlexTOE offload architecture. In FlexTOE we adapt this
architecture for offload, by designing and integrating a data-
path running efficiently on the SmartNIC (§3.1). The FlexTOE
control-plane can run on the host or on a SmartNIC control
CPU, with the same functionality as in TAS (cf. §D). The
FlexTOE control-plane additionally manages the SmartNIC
data-path resources. Similarly, our application library (lib-
TOE) intercepts POSIX socket calls and is dynamically linked
to unmodifiedprocesses that use FlexTOE, and communicates
directly with the data-path.

Figure 2 shows the offload architecture of FlexTOE, with a
host control-plane (each box is a protection domain). libTOE,
data-path, and control-plane communicate via pairs of con-
text queues (CTX-Qs), one for each communication direction.
CTX-Qs leveragePCIeDMAandMMIOor sharedmemory for
SmartNIC-host and intra-host communication, respectively.

90 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

IPC

Kernel

Legacy
Applications

PCIe
Host

SmartNIC

Applications
Control-plane

Data-path

Connection Control
Application I/F Mgmt.

Congestion Policy

Segment Generation & Transmission

Loss Detection & Recovery Flow Scheduling

Payload Transfer
Application Notification

libTOE
POSIX Interpose

CTX-Qs

PAYLOAD-BUFs

CTX-Qs

Flow
State

Figure 2. FlexTOE offload architecture (host control-plane).

FlexTOE supports per-thread context queues for scalability.
Each TCP socket keeps receive and transmit payload buffers
(PAYLOAD-BUFs) in host memory. libTOE appends data for
transmission into the per-socket TX PAYLOAD-BUF and noti-
fies the data-path using a thread-local CTX-Q. The data-path
appends received segments to the socket’s RXPAYLOAD-BUF
after reassembly and libTOE is notified via the same thread-
local CTX-Q. Non-FlexTOE traffic is forwarded to the Linux
kernel, which legacy applications may use simultaneously.

3.1 TCPData-path Parallelization
To provide high offload performance using relatively wimpy
SmartNIC FPCs, FlexTOE has to leverage all available paral-
lelism within the TCP data-path. In this section, we analyze
the TAS host TCP data-path to investigate what parallelism
can be extracted. In particular, the TCP data-path in TAS has
the following three workflows:
• Hostcontrol (HC):Whenanapplicationwants to transmit
data, executes control operations on a socket, or when
retransmission is necessary, the data-path must update the
connection’s transmit and receive windows accordingly.

• Transmit (TX): When a TCP connection is ready to send—
based on congestion and flow control—the data-path pre-
pares a segment for transmission, fetching its payload from
a socket transmit buffer and sending it out to the MAC.

• Receive (RX): For each received segment of an established
connection, the data-path must perform byte-stream re-
assembly—advance the TCP window, determine the seg-
ment’s position in the socket receive buffer, generate an
acknowledgment to the sender, and, finally, notify the ap-
plication. If the received segment acknowledges previously
transmitted segments, the data-path must also free the
relevant payload in the socket transmit buffer.

Host TCP stacks, such as Linux or TAS, typically process
each workflow to completion in a critical section accessing
a shared per-connection state structure. HC workflows are
typically processed on the program threads that trigger them,
while TX and RX are typically triggered by NIC interrupts
and processed on high-priority (kernel or dedicated) threads.
For efficient offload, we decompose this data-path into an

up to five-stage parallel pipeline of processing modules: pre-
processing, protocol, post-processing,DMA, and context queue

HC

TX

RX

ProtoPCIe CTXQ PostPreDMADMADMA PrePre PostPost

Proto MACDMA PCIeSCH PostPrePrePre PostPost DMADMA

ProtoMAC DMA PCIeCTXQPostPrePrePre PostPost DMADMA

Figure 3. Per-connection data-path workflows. Protocol is
atomic. Other stages may be replicated for parallelism.

Transmit

Final

DB Fetch Steer Win FS Free

Win

Retransmit

DB Fetch Steer Fin FS Free

Reset

Time

DB Fetch Steer FS Free

Figure 4.HC pipeline: Transmit, FIN, and retransmit.

(Figure 3). Accordingly, we partition connection state into
module-local state (cf. §A). The pipeline stages are chosen
to maximize data-path parallelism. Pre-processing accesses
connection identifiers such as MAC and IP addresses for seg-
ment header preparation and filtering. The post-processing
blockhandles application interfaceparameters, suchas socket
buffer addresses and context queues. These parameters are
read-only after connection establishment and enable coordi-
nation-free scaling. Congestion control statistics are collected
by the post-processor, but are only read by forward stages and
can be updated out-of-order (updates commute). The protocol
stage executes data-path code that must atomically modify
protocol state, such as sequence numbers and socket buffer
positions. It is the only pipeline hazard—it cannot execute in
parallel with other stages. The DMA stage is stateless, while
context queue stages may be sharded. Both conduct high-
latency PCIe transactions and are thus separate stages that
execute in parallel and scale independently.

We run pipeline stages on dedicated FPCs that utilize local
memory for their portion of the connection state. Pipelining
allows us to execute the data-path in parallel. It also allows us
to replicate processing-intensive pipeline stages to scale to
additional FPCs. With the exception of protocol processing,
which is atomic per connection, all pipeline stages are repli-
cated. To concurrently process multiple connections, we also
replicate the entire pipeline. To keep flow state local, each
pipeline handles a fixed flow-group, determined by a hash on
the flow’s 4-tuple (the flow’s protocol type is ignored—itmust
be TCP). We now describe howwe parallelize each data-path
workflow by decomposing it into these pipeline stages.

3.1.1 Host Control (HC). HC processing is triggered by
a PCIe doorbell (DB) sent via memory-mapped IO (MMIO)
by the host to the context queue stage. Figure 4 shows the
HC pipeline for two transmits (the second transmit closes the
connection) triggered by libTOE, and a retransmit triggered
by the control-plane. HC requests may be batched.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 91

Seg #1

Seg #2

Alloc Head Steer Seq Pos Payload

Seq

TX

Seg #3

Alloc Head Steer Pos Payload

Seq

TX

Time

Alloc Head Steer Pos Payload TX

Figure 5. TX pipeline sending 3 segments.

The context queue stage polls for DBs. In response to a
DB, the stage allocates a descriptor buffer from a pool in NIC
memory. The limited pool size flow-controls host interac-
tions. If allocation fails, processing stops and is retried later.
Otherwise, the DMA stage fetches the descriptor from the
host context queue into the buffer (Fetch). The pre-processor
reads the descriptor, determines the flow-group, and routes
to the appropriate protocol stage (Steer). The protocol stage
updates connection receive and transmit windows (Win). If
the HC descriptor contains a connection-close indication, the
protocol stage also marks the connection as FIN (Fin). When
the transmit window expands due to the application sending
data for transmission, the post-processor updates the flow
scheduler (FS) and returns the descriptor to the pool (Free).
Retransmissions in response to timeouts are triggered by

the control-plane and processed the same as other HC events
(fast retransmitsdue toduplicateACKsaredescribed in§3.1.3).
The protocol stage resets the transmission state (Reset) to the
last ACKed sequence number (go-back-N retransmission).

3.1.2 Transmit (TX). Transmission is triggeredby theflow
scheduler (SCH) when a connection can send segments. Fig-
ure 5 shows the TX pipeline for 3 example segments.
The pre-processor allocates a segment in NIC memory

(Alloc), prepares Ethernet and IP headers (Head), and steers
the segment to the flow-group’s protocol stage (Steer). The
protocol stage assigns a TCP sequence number based on con-
nection state and determines the transmit offset in the host
socket transmit buffer (Seq). The post-processor determines
the socket transmit buffer address in host memory (Pos). The
DMA stage fetches the host payload into the segment (Pay-
load). After DMA completes, it issues the segment to the NBI
(TX), which transmits and frees it.

3.1.3 Receive (RX). Figure 6 shows the RX pipeline for 3
example segments, where segment #3 arrives out of order.

Pre-processing. The pre-processor first validates the seg-
ment header (Val). Non-data-path segments2 are filtered and
forwarded to the control-plane. Otherwise, the pre-processor
determines the connection index based on the segment’s 4-
tuple (Id) that is used by later stages to access connection
state. The pre-processor generates a header summary (Sum),
includingonly relevantheaderfields requiredby laterpipeline
stages and steers the summary and connection identifier to
the protocol stage of its flow-group (Steer).

2Data-path segments have any of the ACK, FIN, PSH, ECE, and CWR flags
and they may have the timestamp option.

Seg #1

Seg #3

Val Id Sum Steer Win ECN Stamp

Win

Ack Stats Payload TX Notify Free

Seg #2

Val Id Sum Steer Stats Payload

Win

Time

Val Id Sum Steer ECN Stamp Ack Stats Payload TX Notify Free

Figure 6. RX pipeline receiving 3 segments, 1 out of order.

Protocol. Based on the header summary, the protocol stage
updates the connection’s sequence and acknowledgment
numbers, the transmitwindow, and determines the segment’s
position in the host socket receive payload buffer, trimming
the payload to fit the receive window if necessary (Win). The
protocol stage also tracks duplicate ACKs and triggers fast
retransmissions if necessary, by resetting the transmission
state to the last acknowledged position. Finally, it forwards a
snapshot of relevant connection state to post-processing.

Out-of-order arrivals (segment #3 in Figure 6) need special
treatment. Like TAS [19], we track one out-of-order interval
in the receive window, allowing the protocol stage to perform
reassembly directly within the host socket receive buffer. We
merge out-of-order segments within the interval in the host
receive buffer. Segments outside of the interval are dropped
and generate acknowledgments with the expected sequence
number to trigger retransmissions at the sender. This design
performs well under loss (cf. §5.3).

Post-processing. Thepost-processorpreparesanacknowl-
edgment segment (Ack). FlexTOE provides explicit conges-
tion notification (ECN) feedback and accurate timestamps for
RTT estimation (Stamp) in acknowledgments. It also collects
congestion control and transmit window statistics, which it
sends to the control-plane and flow scheduler (Stats). Finally,
it determines the physical address of the host socket receive
buffer, payload offset, and length for theDMA stage. If libTOE
is to be notified, the post-processor allocates a context queue
descriptor with the appropriate notification.

DMA. The DMA stage first enqueues payload DMA de-
scriptors to the PCIe block (Payload). After payload DMA
completes, the DMA stage forwards the notification descrip-
tor to the context queue stage. Simultaneously, it sends the
prepared acknowledgment segment to the NBI (TX), which
frees it after transmission. This ordering is necessary to pre-
vent the host and the peer from receiving notifications before
the data transfer to the host socket receive buffer is complete.

Context queue. If necessary, the context queue stage al-
locates an entry on the context queue and issues the context
queue descriptor DMA to notify libTOE of new payload (No-
tify) and frees the internal descriptor buffer (Free).

3.2 Sequencing and Reordering
TCP requires that segments of the same connection are pro-
cessed in-order for receiver loss detection. However, stages in
FlexTOE’s data-parallel processing pipeline can have varying
processing time and hence may reorder segments. Figure 7

92 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

TX Seg #1

TX Seg #2

Alloc Head Steer Seq Pos Payload

Seq

TX

TX

RX Seg #1

Alloc Head Steer Pos Payload

Win

RX Seg #2

Val Id Sum Steer ECN

Win

Stamp Ack

Pos

Stats Payload TX Notify

TX

Free

Stats Payload

TX Seg #3

Val Id Sum Steer

Time

Alloc Head Steer Seq Payload

Figure 7. Undesirable pipeline reordering (red arrows).

shows three examples on a bidirectional connection where
undesirable segment reordering occurs.
1. TX. TX segment #1 stalls in DMA across a congested PCIe

link, causing it to be transmitted on the network after TX
segment #2, potentially triggering receiver loss detection.

2. RX. RX segment #1 stalls in flow identification during
pre-processing, entering the protocol stage later than RX
segment #2. The protocol stage detects a hole and triggers
unnecessary out-of-order processing.

3. ACK. TX segment #3 is processed after RX segment #1 in
the protocol stage. RX segment #1 generates an ACK, but
RX post-processing is complex, resulting in TX segment
#3 with a higher sequence number being sent before ACK
segment #1.

To avoid reordering, FlexTOE’s data-path pipeline sequences
and reorders segments if necessary. In particular, we assign a
sequence number to each segment entering the pipeline. The
parallel pipeline stages can operate on each segment in any
order. The protocol stage requires in-order processing andwe
buffer and re-order segments that arrive out-of-order before
admitting them to the protocol stage. Similarly, we buffer and
re-order segments for transmission before admitting them to
the NBI. We leverage additional FPCs for sequencing, buffer-
ing, and reordering.

3.3 Flexibility
Data center networks evolve quickly, requiring TCP stacks to
be easilymodifiable by operators, not just vendors [29, 42, 43].
Many desirable data center features require TOEmodification
and are adapted frequently by operators. FlexTOE provides
flexibility necessary to implement and maintain these fea-
tures even beyond host stacks such as TAS, by relying on a
programmable SmartNIC. To simplify development andmodi-
fication of the TCPdata-path, FlexTOEprovides an extensible,
data-parallel pipeline of self-contained modules, similar to
the Click [38] extensible router.

Module API. The FlexTOEmodule API provides develop-
ersone-shotaccess toTCPsegmentsandassociatedmeta-data.
Meta-data may be created and forwarded along the pipeline
by anymodule. Modules may also keep private state. For scal-
ability, private state cannot be accessed by other modules
or replicas of the same module. Instead, state that may be
accessed by further pipeline stages is forwarded as meta-data.
The replication factor of pipeline stages and assignment

to FPCs is manual and static in FlexTOE. As long as enough
FPCs are available, this approach is acceptable. Operators

can determine an appropriate replication factor that yields
acceptable TCP processing bandwidth for a pipeline stage
via throughput microbenchmarks at deployment. Stages that
modify connection state atomically may be deployed by in-
serting an appropriate steering stage that steers segments of
a connection to the module in the atomic stage, holding their
state (cf. protocol processing stage in §3.1).

XDPmodules. FlexTOE also supports eXpress Data Path
(XDP) modules [14–16], implemented in eBPF. XDPmodules
operate on raw packets, modify them if necessary, and out-
put one of the following result codes: (i) XDP_PASS: Forward
the packet to the next FlexTOE pipeline stage. (ii) XDP_DROP:
Drop the packet. (iii) XDP_TX: Send the packet out the MAC.
(iv) XDP_REDIRECT: Redirect the packet to the control-plane.

XDP modules may use BPF maps (arrays, hash tables) to
store andmodify state atomically [25],whichmaybemodified
by the control-plane. For example, afirewallmodulemaystore
blacklisted IPs in a hash map and the control-plane may add
or remove entries dynamically. The module can consult the
hash map to determine if a packet is blacklisted and drop it.
XDP stages scale like other pipeline stages, by replicating the
module. FlexTOE automatically reorders processed segments
after a parallel XDP stage (§3.2).

Using theseAPIs,wemodified theFlexTOEdata-pathmany
times, implementing the features listed in §2.1 (evaluation
in §5.1). Further, ECN feedback and segment timestamping
(cf. §3.1.3) are optional TCP features that support our conges-
tion control policies. Operators can remove the associated
post-processing modules if they are not needed.
By handling atomicity, parallelization, and ordering con-

cerns, FlexTOE allows complex offloads to be expressed using
few lines of code. For example, we implement AccelTCP’s
connection splicing in 24 lines of eBPF code (cf. Listing 1 in
the appendix). The module performs a lookup on the seg-
ment 4-tuple in a BPF hashmap. If a match is not found, we
forward the segment to the next pipeline stage. Otherwise,
we modify the destination MAC and IP addresses, TCP ports,
and translate sequence and acknowledgment numbers using
offsets configured by the control-plane, based on the connec-
tion’s initial sequence number. Finally, we transmit. FlexTOE
handles sequencing and updating the checksum of the seg-
ment. Additionally, when we receive segments with control
flags indicating connection closure, we atomically remove
the hashmap entry and notify the control-plane.

3.4 Flow Scheduling
FlexTOE leverages a work-conserving flow scheduler on the
NIC data-path. The flow scheduler obeys transmission rate-
limits andwindows configured by the control-plane’s conges-
tion control policy. For each connection, the flow scheduler
keeps track of how much data is available for transmission
and the configured rate. Transmission rates and windows

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 93

are stored in NIC memory and are directly updated by the
control-plane using MMIO.
We implement our flow scheduler based on Carousel [53].

Carousel schedules a largenumberofflowsusinga timewheel.
Based on the next transmission time, as computed from rate
limits and windows, we enqueue flows into corresponding
slots in the time wheel. As the time slot deadline passes, the
flowscheduler schedules eachflow in the slot for transmission
(§3.1.2). To conservework, the flow scheduler only adds flows
with a non-zero transmit window into the time wheel and
bypasses the rate limiter for uncongested flows. These flows
are scheduled round-robin.

4 Agilio-CX40 Implementation
This section describes FlexTOE’s Agilio-CX40 implementa-
tion. Due to space constraints, the x86 and BlueField ports
are described in detail in §E. FlexTOE’s design across the dif-
ferent ports is identical. We do not merge or split any of the
fine-grained modules or reorganize the pipeline across ports.
FlexTOE is implemented in 18,008 lines of C code (LoC).

The offloaded data-path comprises 5,801 lines of C code. We
implement parts of thedata-path in assembly for performance.
libTOE contains 4,620 lines of C, whereas the control path
contains 5,549 lines of C. libTOE and the control plane are
adapted fromTAS.Weuse theNFP compiler toolchain version
6.1.0.1 for SmartNIC development.

Driver. We develop a Linux FlexTOE driver based on the
igb_uio driver that enables libTOE and the control plane to
performMMIO to the SmartNIC from user space. The driver
supports MSI-X based interrupts. The control-plane regis-
ters an eventfd for each application context in the driver.
The interrupt handler in the driver pings the corresponding
eventfdwhen an interrupt is received from the data-path for
the application context. This enables libTOE to sleep when
waiting for IO and reduces the host CPU overhead of polling.

Hostmemorymapping. Tosimplify virtual tophysical ad-
dress translation for DMA operations, we allocate physically
contiguous host memory using 1G hugepages. The control-
plane maps a pool of 1G hugepages at startup and allocates
socket buffers and context queues out of this pool. In the fu-
ture, we can use the IOMMU to eliminate the requirement of
physically contiguous memory for FlexTOE buffers.

Context queues. Context queues use shared memory on
the host, but communication between SmartNIC and host
requires PCIe. We use scalable and efficient PCIe communica-
tion techniques [44] that poll on hostmemory locationswhen
executing in the host and on NIC-internal memory when exe-
cuting on the NIC. The NIC is notified of new queue entries
viaMMIO to a NIC doorbell. The context queuemanager noti-
fies applications throughMSI-X interrupts, converted by the
driver to an eventfd, after a queue has been inactive.

4.1 Near-memory Processing
Anorder ofmagnitude difference exists in the access latencies
of different memory levels of the NFP-4000. For performance,
it is critical tomaximize access to localmemory.TheNFP-4000
also provides certain near-memory acceleration, including
a lookup engine exposing a content addressable memory
(CAM) and a hash table for fast matching, a queue memory
engine exposing concurrent data structures such as linked
lists, ring buffers, journals, and work-stealing queues. Finally,
synchronization primitives such as ticket locks and inter-FPC
signaling are exposed to coordinate threads and to sequence
packets. We build specialized caches at multiple levels in the
different pipeline stages using these primitives. Other NICs
have similar accelerators.

Caching. We use each FPC’s CAM to build 16-entry fully-
associative local memory caches that evict entries based on
LRU. The protocol stage adds a 512-entry direct-mapped
second-level cache in CLS. Across four islands, we can ac-
commodate up to 2K flows in this cache. The final level of
memory is in EMEM.When an FPC processes a segment, it
fetches the relevant state into its local memory either from
CLS or from EMEM, evicting other cache entries as neces-
sary.We allocate connection identifiers in such a way that we
minimize collisions on the direct-mapped CLS cache.

Active connection database. To facilitate connection in-
dex lookup in the pre-processing stage, we employ the hard-
ware lookup capability of IMEM to maintain a database of
active connections. CAM is used to resolve hash collisions.
The pre-processor computes a CRC-32 hash on a segment’s 4-
tuple to locate the connection index using the lookup engine.
The pre-processor caches up to 128 lookup entries in its local
memory via a direct-mapped cache on the hash value.

FPCmapping. FlexTOE’s pipeline fully leverages the Ag-
ilio CX40 and is extensible to further FPCs, e.g. of the Agilio
LX [40]. For island-local interactions among modules, we
use CLS ring buffers. CLS supports the fastest intra-island
producer-consumer mechanisms. Among islands, we rely on
work-queues in IMEM and EMEM.

Weuseall but onegeneral-purpose islands for thefirst three
stages of the data-path pipeline (protocol islands). Each island
manages a flow-group. While protocol and post-processing
FPCs are local to a flow-group, pre-processors handle seg-
ments for any flow.We assign 4 FPCs to pre-/post-processing
stages in each flow-group. Each island retains 3 unassigned
FPCs that can run additional data-path modules (§5.1).
On the remaining general-purpose island (called service

island), we host remaining pipeline stages and adjacent mod-
ules, such as context queue FPCs, the flow scheduler (SCH),
and DMAmanagers. DMAmanagers are replicated to hide
PCIe latencies. The number of FPCs assigned to each function-
ality is determined such that no functionality may become a

94 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

bottleneck. Sequencing and reordering FPCs are located on a
further island with miscellaneous functionality.

Flow scheduler. We implement Carousel using hardware
queues in EMEM. Each slot is allocated a hardware queue.
To add a flow to the time wheel, we enqueue it on the queue
associated with the time slot. Note that the order of flows
within a particular slot is not preserved. EMEM support for a
large number of hardware queues enables us to efficiently im-
plement a time wheel with a small slot granularity and large
horizon to achieve high-fidelity congestion control. Convert-
ing transmission rates to deadlines requires division, which is
not supported on the NFP-4000. Thus, the control-plane com-
putes transmission intervals in cycles/byte units from rates
and programs them to NIC memory. This enables the flow
scheduler to compute the time slot using only multiplication.

5 Evaluation
We answer the following evaluation questions:
• Flexible offload.Canflexible offload improve throughput,

latency, and scalability of data center applications? Canwe
implement common data center features? (§5.1)

• RPCs.How does FlexTOE’s data-path parallelism enable
TCP offload for demanding RPCs? Do these benefits gener-
alize across hardware architectures?Does FlexTOEprovide
low latency for short RPCs? Does FlexTOE provide high
throughput for long RPCs? To how many simultaneous
connections can FlexTOE scale? (§5.2)

• Robustness.How does FlexTOE perform under loss and
congestion? Does it provide connection-fairness? (§5.3)

Testbed cluster. Our evaluation setup consists of two 20-
core Intel Xeon Gold 6138 @ 2GHz machines, with 40GB
RAMand48MBaggregate cache.Bothmachines are equipped
with Netronome Agilio CX40 40Gbps (single port), Chelsio
Terminator T62100-LP-CR 100Gbps and Intel XL710 40Gbps
NICs. We use one of the machines as a server, the other as a
client. As additional clients, we also use two 2×18-core Intel
XeonGold 6154@3GHz systemswith 90MBaggregate cache
and two 4-core Intel Xeon E3-1230 v5 @ 3.4GHz systems
with 9MB aggregate cache. The Xeon Gold machines are
equippedwithMellanoxConnectX-5MT27800100GbpsNICs,
whereas the Xeon E3 machines have 82599ES 10Gbps NICs.
The machines are connected to a 100Gbps Ethernet switch.

Baseline. We compare FlexTOE performance against the
Linux TCP stack, Chelsio’s kernel-based TOE3, and the TAS
kernel-bypass stack4. TAS does not perform well with the
AgilioCX40due toaslowNICDPDKdriver.WerunTASonthe
Intel XL710 NIC, as in [19], unless mentioned otherwise. We
use identical application binaries across all baselines. DCTCP
is our default congestion control policy.
3Chelsio does not support kernel-bypass.
4TAS [19] performs better than mTCP [17] on all of our benchmarks. Hence,
we omit a comparison to mTCP and AccelTCP [37], which uses mTCP.

2 4 6 8 10 12 14 16
Cores

0

4

8

12

Th
ro

ug
hp

ut
 (M

O
ps

)

Linux
Chelsio

TAS
FlexTOE

Figure 8.Memcached throughput scalability.

0 100 200 300
0

25

50

75

100

C
D

F

Server: Linux

0 100 200 300
Latency (us)

Server: Chelsio

0 100 200 300

Server: TAS

Linux
Chelsio
TAS
FlexTOE

0 100 200 300

Server: FlexTOE

Figure 9. Latency of different server-client combinations.

5.1 Benefit of Flexible Offload
Application throughput scalability. Offloaded CPU cy-

cles may be used for application work. We quantify these
benefits by running a Memcached server, as in §2.1, varying
the number of server cores. Figure 8 shows that, by saving
host CPU cycles (cf. Table 1), FlexTOE achieves up to 1.6×
TAS, 4.9× Chelsio, and 5.5× Linux throughput. FlexTOE and
TAS scale similarly—both use per-core context queues. The
Agilio CX becomes a compute-bottleneck at 12 host cores.
Linux and Chelsio are slow for this workload, due to system
call overheads, and do not scale well due to in-kernel locks.

Low (tail) latency. We repeat a single-threaded version of
the sameMemcachedbenchmark for all server-client network
stack combinations. Latency distributions are shown in Fig-
ure 9. We can see that FlexTOE consistently provides the low-
est median and tail Memcached operation latency across all
stack combinations. Offload provides excellent performance
isolation by physically separating the TCP data-path, even
though FlexTOE’s pipelining increases minimum latency in
some cases (cf. §5.2).

Flexibility. Unlikefixedoffloads and in-kernel stacks, Flex-
TOE provides full user-space programmability via a module
API, simplifying development. Customizing FlexTOE is sim-
ple anddoesnot require a systemreboot. For example,wehave
developed logging, statistics, and profiling capabilities that
can be turned on only when necessary. We make use of these
capabilities during development and optimization of FlexTOE.
We implemented up to 48 different tracepoints (including ex-
amples from bpftrace [13]) in the data-path pipeline, tracking
transport events such as per-connection drops, out-of-order
packets and retransmissions, inter-module queue occupan-
cies, and critical section lengths in the protocol module for
various event types. Table 2 shows that profiling degrades
data-path performance versus the baseline by up to 24%when
all 48 tracepoints are enabled. We also implement tcpdump-
style traffic logging, including packet filters based on header

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 95

Build Throughput (MOps)
Baseline FlexTOE 11.35
Statistics and profiling 8.67
tcpdump (no filter) 6.52
XDP (null) 10.87
XDP (vlan-strip) 10.83

Table 2. Performance with flexible extensions.

0.1G

1G

10G
40G

R
X

250 Cycles/Message 1000 Cycles/Message

32 128 512 2K
Message Size (bytes)

0.1G

1G

10G
40G

TX

TAS FlexTOE

32 128 512 2K
Message Size (bytes)

Linux Chelsio

Figure 10. RPC throughput for saturated server.

fields. Logging naturally has high overhead (up to 43% when
logging all packets). FlexTOE provides the flexibility to imple-
ment these features and to turn them on onlywhen necessary.

Furthermore, new data-plane functionality leveraging the
XDP API may be dynamically loaded into FlexTOE as eBPF
programs. eBPF programs can be compiled to NFP assembly.
This level of dynamic flexibility is hard to achieve with an
FPGA as it requires instruction set programmability (over-
lays [52]).Wemeasure the overhead of FlexTOEXDP support
by running a null program that simply passes on every packet
withoutmodification.We observe only 4% decline in through-
put. Common XDP modules, such as stripping VLAN tags
on ingress packets, also have negligible overhead. Finally,
connection splicing (cf. Listing 1 in the appendix) achieves
a maximum splicing performance of 6.4 million packets per
second, enough to saturate the NIC line rate with MTU-sized
packets, leveraging only idle FPCs5.

5.2 Remote Procedure Calls (RPCs)
RPCs are an important but difficult workload for flexible of-
fload. Latency and client scalability requirements favor fast
processing engines with large caches, such as found in CPUs
and ASICs. Neither are available in on-path SmartNICs. We
show that flexible offload can be competitive with state-of-
the-art designs. We then show that FlexTOE’s data-path par-
allelism is necessary to provide the necessary performance.

Typical RX / TX performance. We start with a typical
server scenario, processing RPCs of many (128) connections,
produced in an open loop by multiple (16) clients (multiple
pipelined RPCs per connection). To simulate application pro-
cessing, our server waits for an artificial delay of 250 or 1,000
cycles for each RPC.We run single-threaded to avoid the net-
work being a bottleneck. We quantify RX and TX throughput
separately, by switching RPC consumer and producer roles
among clients and servers, over different RPC sizes.

5Weare compute-limitedbyourAgilioCX.UsinganAgilioLX, likeAccelTCP,
would allow us to achieve even higher throughput.

32 64 128 256 512 1024 2048
Message Size (bytes)

0

100

200

La
te

nc
y

(u
s)

Linux Chelsio TAS FlexTOE

Figure 11.Median, 99p and 99.99p RPC RTT.

Figure 10 shows the results. For 250 cycles of processing
overhead, FlexTOE provides up to 4× better throughput than
Linux and 5.3× better throughput than Chelsio when receiv-
ing. For 2 KB message size, both TAS and FlexTOE reach
40Gbps line rate, whereas Linux and Chelsio barely reach
10Gbps and 7Gbps, respectively. When sending packets, the
difference in performance between Linux and FlexTOE is
starker. FlexTOE shows over 7.6× higher throughput over
bothLinux andChelsio for allmessage sizes. Thegains remain
at over 2.2× as we go to 1,000 cycles/RPC. Performance of
TAS and FlexTOE track closely for all message sizes. This is
expected as the single application server core is saturated by
both network stacks (TAS runs on additional host cores).

We break down this result by studying the performance sensi-
tivity of each TCP stack, varying each RPC parameter within
its sensitive dynamic range. For these benchmarks, we evalu-
ate the raw performance of the stacks, without application
processing delays.

RPC latency. A client establishes a single connection to
the server andmeasures single RPC RTT. Figure 11 shows the
median and tail RTT for various small message sizes (stacked
bars). The inefficiency of in-kernel networking is reflected
in the median latency of Linux, which is at least 5× worse
compared to other stacks. For message sizes < 256 B, Flex-
TOE’smedian latency (20 us) is 1.4×Chelsio’s median latency
(14 us) and 1.25× TAS’s median latency (16 us). FlexTOE’s
data-path pipeline across many wimpy FPCs increases me-
dian latency for single RPCs. However, FlexTOE has an up
to 3.2× smaller tail compared to Chelsio and nearly constant
per-segment overhead as the RPC size increases. In case of
a 2 KB RPC (larger than the TCP maximum segment size),
FlexTOE’s latency distribution remains nearly unchanged.
FlexTOE’s fine-grain parallelism is able to hide the processing
overhead of multiple segments, providing 22% lower median
and 50% lower tail latency than TAS.

Per-connection throughput. In this setup, a client trans-
fers a large RPCmessage to the server. In the first case (Fig-
ure 12a), the server responds with a 32 B response whereas in
the second case (b), the server echoes the message back to the
client (TAS performance is unstable with messages > 2MB in
this case—we omit these results). In the short-response case,
Chelsio performs 20% better than the other stacks—Chelsio is
a 100Gbps NIC optimized for unidirectional streaming. How-
ever, it has 20% lower throughput as compared to FlexTOE in

96 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

128K 512K 2M 8M 32M
Message Size (Bytes)

0

10

20

30

40

G
oo

dp
ut

 (G
bp

s)

(a) Unidirectional

128K 512K 2M 8M 32M
Message Size (Bytes)

(b) Bidirectional

Linux
Chelsio

TAS
FlexTOE

Figure 12. Large RPC throughput with varying RPC size.

2 4 6 8 10 12 14 16
Connections (K)

0

5

10

15

20

Th
ro

ug
hp

ut
 (m

O
ps

)

Linux Chelsio TAS FlexTOE

Figure 13. Connection scalability benchmark.

the echo case. Other stacks cannot parallelize per-connection
processing, leading to limited throughput6, while FlexTOE’s
throughput is limited by its protocol stage. FlexTOE currently
acknowledges every incoming packet. For bidirectional flows,
this quadruples the number of packets processed per second.
Implementing delayed ACKs would improve FlexTOE’s per-
formance further for large flows.

Connection scalability. We establish an increasing num-
ber of RPC client connections from all 5 client machines to a
multi-threaded echo server. To stress TCP processing, each
connection leaves a single 64 B RPC in-flight. Figure 13 shows
the throughput as we vary the number of connections. This
workload is very challenging for FlexTOE as it exhausts fast
memory and prevents per-connection batching, causing a
cachemiss at every pipeline stage for every segment. Up to 2K
connections, FlexTOE shows a throughput of 3.3× Linux. TAS
performs 1.5× better than FlexTOE for this workload. Flex-
TOE is compute-bottlenecked7 at the protocol stage, which
uses 8 FPCs in this benchmark. Agilio CX caches 2K connec-
tions in CLS memory. Beyond this, the protocol stage must
move state among local memory, CLS, and EMEM. EMEM’s
SRAMcache is increasingly strained as the number of connec-
tions increases. FlexTOE’s throughput declines by 24% as we
hit 8k connections and plateaus beyond that8. TAS’s fast-path
exhibits better connection scalability, as it has access to the
larger host CPU cache, while Linux’s throughput declines
significantly. Chelsio has poor performance for thisworkload,
as epoll() overhead dominates.

Benefit of data-path parallelism. To break down the
impactofFlexTOE’sdata-parallel designonRPCperformance,

6With multiple unidirectional flows, all stacks achieve line rate (Figure 15b).
7We expect that running FlexTOE on the Agilio LX with 1.2GHz FPCs—
1.5× faster than Agilio CX—would boost the peak throughput to match TAS
performance.Agilio LX also doubles the number of FPCs and islands. Itwould
allow us to exploit more parallelism and cache more connections.
8While we evaluate up to 16K connections, FlexTOE can leverage the 2GB
on-board DRAM to scale to 1M+ connections.

Design Throughput × Latency (us)
(Mbps) 50p 99.99p

Baseline 79.32 1 1,179 6,929
+ Pipelining 3,640.49 46 183 684
+ Intra-FPC parallelism 8,194.34 103 128 148
+ Replicated pre/post 11,086.93 140 94 106
+ Flow-group islands 22,684.69 286 46 58

Table 3. FlexTOE data-path parallelism breakdown.

1448 1024 512 256 128 64
MSS (Bytes)

0

5

10

15

Th
ro

ug
hp

ut
 (G

bp
s)

13.3

10.4

6.6

3.6
2.2 1.5

3.9
2.6 1.7 1.1 0.8 0.6

TAS
TAS-nocopy
FlexTOE
FlexTOE-scalar

Figure 14. FlexTOE benefits on BlueField SmartNIC.

we repeat the echo benchmarkwith 64 connections,with each
connection leaving a single 2 KB RPC in-flight (to be able to
evaluate both intra and inter connection parallelism). Table 3
shows the performance impact as we progressively add data-
path parallelism. Our baseline runs the entire TCP processing
to completion on the SmartNIC before processing the next
segment. Pipelining improves performance by 46× over the
baseline. As we enable 8 threads on the FPCs (2.25× gain),
we hide the latency of memory operations and improve FPC
utilization. Next, we replicate the pre-processing and post-
processing stages, leveraging sequencing and reordering for
correctness, to extract 1.35× improvement and finally, with
four flow-group islands,we see a further 2× improvement.We
can see that each level of data-path parallelism is necessary,
improving RPC throughput and latency by up to 286×.

Do these benefits generalize? We investigate whether
data-path parallelism provides benefits across platforms. In
particular, we investigate single connection throughput of
pipelined RPCs across a range of maximum segment sizes
(MSS) on a Mellanox BlueField [31] MBF1M332A-ASCAT
25Gbps SmartNIC and on a 32-core AMD 7452@ 2.35GHz
hostwith128GBRAM,148MBaggregate cache, anda conven-
tional 100Gbps ConnectX-5 NIC. We use a single-threaded
RPC sink application, running on the same platform9. We
compare TAS’s core-per-connection processing to FlexTOE’s
data-parallelism.We replicate each of FlexTOE’s pre and post
processing stages 2×, resulting in 9 FlexTOE cores. Further
gains may be achievable by more replication. To break down
FlexTOE’s benefits, we also compare to a FlexTOE pipeline
without replicated stages (FlexTOE-scalar), using 7 cores.

Figure 14 shows BlueField results. FlexTOE outperforms
TAS by up to 4× on BlueField (and 2.4× on x86). Depending
on RPC size, FlexTOE accelerates different stages of the TCP
data path. For large RPCs, FlexTOE accelerates data copy to
9BlueField is anoff-path SmartNIC that is not optimized for packet processing
offload to host-side applications (§2.3).

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 97

01234
Goodput (Gbps)

0

1e-4

1e-3

1e-2

1e-1

2

Lo
ss

 (%
)

(a) Small RPCs

Linux
Chelsio
TAS
FlexTOE

010203040
Goodput (Gbps)

(b) Large flows

Figure 15. Throughput, varying packet loss rate.

socket payload buffers. To show this, we eliminate the step in
TAS (TAS-nocopy), allowing TAS to perform at 0.5× FlexTOE
on BlueField (and identical to FlexTOE on x86). For smaller
RPCs, TAS-nocopy benefits diminish and FlexTOE supports
processing higher packet rates. FlexTOE-scalar achieves only
up to 2.3× speedup over TAS on BlueField (and 1.47× on x86),
showing that only part of the benefit comes from pipelining.
Finally, FlexTOE speedup is greater on the wimpier BlueField,
resembling our target architecture (§2.3), than on x86. To
save powerful x86 cores, some stages may be collapsed, even
dynamically (cf. Snap [29]), at little performance cost.

5.3 Robustness
Packet loss. We artificially induce packet losses in the

network by randomly dropping packets at the switch with a
fixed probability. Wemeasure the throughput between two
machines for 100 flows running 64 B echo-benchmark as we
vary the loss probability, shown in Figure 15a. We configure
the clients to pipeline up to 8 requests on each connection to
trigger out-of-order processing when packets are lost. Flex-
TOE’s throughput at 2% losses is at least twice as good as TAS
and an order ofmagnitude better than the other stacks for this
case.We repeat the unidirectional large RPC benchmarkwith
8 connections and measure the throughput as we increase
the packet loss rate. For this case (b), Chelsio has a very steep
decline in throughput evenwith 10−4% loss probability. Linux
is able to withstand higher loss rates as it implements more
sophisticated reassembly and recovery algorithms, including
selective acknowledgments—FlexTOE and TAS implement
single out-of-order interval tracking on the receiver-side and
go-back-n recovery on the sender. FlexTOE’s behavior under
loss is still better than TAS. FlexTOE processes acknowledg-
ments on the NIC, triggering retransmissions sooner, and its
predictable latency, even under load, helps FlexTOE recover
faster from packet loss. We note that RDMA tolerates up to
0.1% losses [35], while eRPC falters at 0.01% loss rate [18].
Unlike FlexTOE, RDMA discards all out-of-order packets on
the receiver side [35]. TAS [19] provides further evaluation
of the benefits of receiver out-of-order interval tracking.

Fairness. To show scalability of FlexTOE’s SCH (§3.4), we
measure the distribution of connection throughputs of bulk
flows between two nodes at line rate for 60 seconds. Figure 16
shows the median and 1st percentile throughput of FlexTOE
andLinuxaswevary thenumberof connections. For FlexTOE,
themedianclosely tracks the fair share throughputand the tail

64 128 256 512 1024 2048
Connections

0.0

0.5

1.0

G
oo

dp
ut

 /
Fa

irs
ha

re

Linux (50p)
Linux (1p)
FlexTOE (50p)
FlexTOE (1p)

Figure 16. Throughput distribution at line rate.

deg. # con. Tpt. (G) Lat. 99.99p (ms) JFI
on off on off on off

4 16 9.51 9.47 5.98 11.58 0.98 0.95
4 64 9.51 9.23 10.75 44.39 0.96 0.73
4 128 9.48 8.96 13.74 64.25 0.99 0.53
10 10 3.66 1.04 2.50 18.26 0.95 0.78
20 20 1.76 0.36 7.35 138.32 0.95 0.46

Table 4. FlexTOE congestion control under incast.

is 0.67×of themedian. Linux’s fairness is significantlyaffected
beyond 256 connections. Jain’s fairness index (JFI) drops to
0.36 at 2K connections for Linux,while FlexTOE achieves 0.98.
Above 1K connections, Linux’ median throughput is worse
than FlexTOE’s 1st percentile.

Incast. We simulate incast by enabling traffic shaping on
the switch to restrict port bandwidth to various incast degrees
andweconfigureWREDtoperformtaildropswhentheswitch
buffer is exhausted. In this experiment, the client transfers
64 KB RPCs and the server responds with a 32 B response on
each connection. As shown in Table 4, control-plane-driven
congestion control in FlexTOE is able to achieve the shaped
line rate,maintain low tail latency, and ensure fairness among
flows under congestion. Disabling it causes excessive drops,
inflating tail latency by 18.8× and skewing fairness by 2×.

6 Conclusion
FlexTOE is a flexible, yet high-performance TCP offload en-
gine to SmartNICs. FlexTOE leverages fine-grained paral-
lelization of the TCP data-path and segment reordering for
high performance onwimpy SmartNIC architecture, while re-
maining flexible via a modular design. We compare FlexTOE
to Linux, the TAS software TCP accelerator, and the Chelsio
Terminator TOE.We find that Memcached scales up to 38%
better on FlexTOE versus TAS, while saving up to 81% host
CPU cycles versus Chelsio. FlexTOE provides competitive
performance for RPCs, even with wimpy SmartNICs, and is
robust under adverse operating conditions. FlexTOE’s API
supports XDP programs written in eBPF. It allows us to im-
plement popular data center transport features, such as TCP
tracing, packet filtering and capture, VLAN stripping, flow
classification, firewalling, and connection splicing.

Acknowledgments. We thank the anonymous reviewers
and our shepherd, Brent Stephens, for their helpful comments
and feedback.Thisworkwas supportedbyNSFgrant1751231.

98 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Pad-

hye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari
Sridharan. Data center TCP (DCTCP). In Proceedings of the 2010
Conference of the ACM Special Interest Group on Data Communication,
SIGCOMM ’10, pages 63–74, New York, NY, USA, 2010. Association for
Computing Machinery.

[2] Mina Tahmasbi Arashloo, Alexey Lavrov, Manya Ghobadi, Jennifer
Rexford, DavidWalker, and DavidWentzlaff. Enabling programmable
transport protocols in high-speed NICs. In Proceedings of the 17th
USENIX Conference on Networked Systems Design and Implementation,
NSDI ’20, pages 93–110, USA, 2020. USENIX Association.

[3] AdamBelay, George Prekas, AnaKlimovic, Samuel Grossman, Christos
Kozyrakis, and Edouard Bugnion. IX: A protected dataplane operating
system for high throughput and low latency. In Proceedings of the 11th
USENIX Conference on Operating Systems Design and Implementation,
OSDI ’14, pages 49–65, USA, 2014. USENIX Association.

[4] Broadcom. Broadcom Stingray SmartNICs. https://www.broadcom.
com/products/ethernet-connectivity/smartnic/ps225, 2018.

[5] Cavium. Cavium OCTEON Development Kits. https://cavium.com/
octeon-software-develop-kit.html, 2018.

[6] Chelsio Communications. T6 ASIC: High performance, dual
port unified wire 1/10/25/40/50/100Gb Ethernet controller.
https://www.chelsio.com/wp-content/uploads/resources/Chelsio-
Terminator-6-Brief.pdf, 2017.

[7] Andy Currid. TCP offload to the rescue: Getting a toehold on TCP
offload engines—and why we need them. Queue, 2(3):58–65, May 2004.

[8] Mihai Dobrescu, Norbert Egi, Katerina Argyraki, Byung-Gon Chun,
Kevin Fall, Gianluca Iannaccone, Allan Knies, Maziar Manesh, and
SylviaRatnasamy. RouteBricks: Exploitingparallelism to scale software
routers. In Proceedings of the 22nd ACM Symposium on Operating
Systems Principles, SOSP ’09, pages 15–28, New York, NY, USA, 2009.
Association for Computing Machinery.

[9] Daniel Firestone, AndrewPutnam, SambhramaMundkur, DerekChiou,
Alireza Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu,
Adrian Caulfield, Eric Chung, Harish Kumar Chandrappa, Somesh
Chaturmohta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen
Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri, Shachar Raindel,
Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar, Nisheeth
Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug
Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg. Azure
accelerated networking: SmartNICs in the public cloud. In Proceedings
of the 15th USENIX Conference on Networked Systems Design and Imple-
mentation, NSDI ’18, pages 51–64, USA, 2018. USENIX Association.

[10] Michael Galles and Francis Matus. Pensando distributed services archi-
tecture. IEEE Micro, 41(2):43–49, 2021.

[11] Chuanxiong Guo, HaitaoWu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu
Padhye, and Marina Lipshteyn. RDMA over commodity ethernet at
scale. In Proceedings of the 2016 Conference of the ACM Special Interest
Group on Data Communication, SIGCOMM ’16, pages 202–215, New
York, NY, USA, 2016. Association for Computing Machinery.

[12] Intel Corporation. Intel 82599 10GbE controller datasheet. Revision 3.4,
November 2019. https://www.intel.com/content/www/us/en/ethernet-
controllers/82599-10-gbe-controller-datasheet.html.

[13] IO Visor Project, Linux Foundation. bpftace: High-level tracing lan-
guage for Linux eBPF. https://github.com/iovisor/bpftrace, 2021.

[14] IO Visor Project, Linux Foundation. XDP: express data path. https:
//www.iovisor.org/technology/xdp, 2021.

[15] Jakub Kicinski and Nicolaas Viljoen, Netronome Systems. ebpf hard-
wareoffloadtosmartnics: clsbpfandxdp. https://www.netronome.com/
media/documents/eBPF_HW_OFFLOAD_HNiMne8_2_.pdf, 2021.

[16] Jakub Kicinski and Nicolaas Viljoen, Netronome Systems. Xdp
hardware offload: Current work, debugging and edge cases.
https://www.netronome.com/media/documents/viljoen-xdpoffload-

talk_2.pdf, 2021.
[17] Eun Young Jeong, ShinaeWoo, Muhammad Jamshed, Haewon Jeong,

Sunghwan Ihm, Dongsu Han, and KyoungSoo Park. mTCP: A highly
scalable user-level TCP stack for multicore systems. In Proceedings of
the 11th USENIX Conference on Networked Systems Design and Imple-
mentation, NSDI ’14, pages 489–502, USA, 2014. USENIX Association.

[18] Anuj Kalia, Michael Kaminsky, and David G. Andersen. Datacenter
RPCs can be general and fast. In Proceedings of the 16th USENIX Confer-
ence on Networked Systems Design and Implementation, NSDI ’19, pages
1–16, USA, 2019. USENIX Association.

[19] Antoine Kaufmann, Tim Stamler, Simon Peter, Naveen Kr. Sharma,
Arvind Krishnamurthy, and Thomas Anderson. TAS: TCP acceleration
as an OS service. In Proceedings of the Fourteenth EuroSys Conference
2019, EuroSys ’19,NewYork,NY,USA, 2019.Association forComputing
Machinery.

[20] JongyulKim, Insu Jang,WaleedReda, Jaeseong Im,MarcoCanini,Dejan
Kostić, Youngjin Kwon, Simon Peter, and Emmett Witchel. LineFS:
Efficient SmartNIC offload of a distributed file system with pipeline
parallelism. In Proceedings of the 28th ACM Symposium on Operating
Systems Principles, SOSP ’21, pages 756–771, New York, NY, USA, 2021.
Association for Computing Machinery.

[21] Marios Kogias, George Prekas, Adrien Ghosn, Jonas Fietz, and Edouard
Bugnion. R2P2: Making rpcs first-class datacenter citizens. In Proceed-
ings of the 2019 USENIX Annual Technical Conference, USENIX ATC ’19,
pages 863–879, USA, 2019. USENIX Association.

[22] Nikita Lazarev, Shaojie Xiang, Neil Adit, Zhiru Zhang, and Christina
Delimitrou. Dagger: Efficient and fast RPCs in cloud microservices
with near-memory reconfigurable NICs. In Proceedings of the 26th
ACM International Conference onArchitectural Support for Programming
Languages and Operating Systems, ASPLOS ’21, pages 36–51, New York,
NY, USA, 2021. Association for Computing Machinery.

[23] Bojie Li, Kun Tan, Layong (Larry) Luo, Yanqing Peng, Renqian Luo,
Ningyi Xu, Yongqiang Xiong, Peng Cheng, and Enhong Chen. ClickNP:
Highly flexible and high performance network processing with recon-
figurable hardware. In Proceedings of the 2016 Conference of the ACM
Special Interest Group on Data Communication, SIGCOMM ’16, pages
1–14, New York, NY, USA, 2016. Association for ComputingMachinery.

[24] Xiaofeng Lin, Yu Chen, Xiaodong Li, Junjie Mao, Jiaquan He,Wei Xu,
and Yuanchun Shi. Scalable kernel TCP design and implementation
for short-lived connections. In Proceedings of the 21st International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’16, pages 339–352, New York, NY, USA,
2016. Association for Computing Machinery.

[25] Linux. bpf(2) — linux manual page. https://man7.org/linux/man-
pages/man2/bpf.2.html, 2021.

[26] Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishnamurthy, Simon
Peter, andKaranGupta. Offloading distributed applications onto Smart-
NICs using IPipe. In Proceedings of the 2019 Conference of the ACM
Special Interest Group on Data Communication, SIGCOMM ’19, pages
318–333, New York, NY, USA, 2019. Association for Computing Ma-
chinery.

[27] Ming Liu, Simon Peter, Arvind Krishnamurthy, and PhitchayaMangpo
Phothilimthana. E3: Energy-efficient microservices on SmartNIC-
accelerated servers. In Proceedings of the 2019 USENIXAnnual Technical
Conference, USENIX ATC ’19, pages 363–378, USA, 2019. USENIX As-
sociation.

[28] DavidA.Maltz and Pravin Bhagwat. TCP splice application layer proxy
performance. Journal of High Speed Networks, 8(3):225–240, January
2000.

[29] MichaelMarty,MarcdeKruijf, JacobAdriaens,ChristopherAlfeld, Sean
Bauer, Carlo Contavalli, Michael Dalton, Nandita Dukkipati,WilliamC.
Evans, Steve Gribble, Nicholas Kidd, Roman Kononov, Gautam Kumar,
Carl Mauer, Emily Musick, Lena Olson, Erik Rubow, Michael Ryan,
Kevin Springborn, Paul Turner, Valas Valancius, XiWang, and Amin

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 99

https://www.broadcom.com/products/ethernet-connectivity/smartnic/ps225
https://www.broadcom.com/products/ethernet-connectivity/smartnic/ps225
https://cavium.com/octeon-software-develop-kit.html
https://cavium.com/octeon-software-develop-kit.html
https://www.chelsio.com/wp-content/uploads/resources/Chelsio-Terminator-6-Brief.pdf
https://www.chelsio.com/wp-content/uploads/resources/Chelsio-Terminator-6-Brief.pdf
https://www.intel.com/content/www/us/en/ethernet-controllers/82599-10-gbe-controller-datasheet.html
https://www.intel.com/content/www/us/en/ethernet-controllers/82599-10-gbe-controller-datasheet.html
https://github.com/iovisor/bpftrace
https://www.iovisor.org/technology/xdp
https://www.iovisor.org/technology/xdp
https://www.netronome.com/media/documents/eBPF_HW_OFFLOAD_HNiMne8_2_.pdf
https://www.netronome.com/media/documents/eBPF_HW_OFFLOAD_HNiMne8_2_.pdf
https://www.netronome.com/media/documents/viljoen-xdpoffload-talk_2.pdf
https://www.netronome.com/media/documents/viljoen-xdpoffload-talk_2.pdf
https://man7.org/linux/man-pages/man2/bpf.2.html
https://man7.org/linux/man-pages/man2/bpf.2.html

Vahdat. Snap: A microkernel approach to host networking. In Pro-
ceedings of the 27th ACM Symposium on Operating Systems Principles,
SOSP ’19, pages 399–413, New York, NY, USA, 2019. Association for
Computing Machinery.

[30] Steven McCanne and Van Jacobson. The BSD packet filter: A new
architecture for user-level packet capture. In Proceedings of the 1993
USENIXWinter Conference, USENIX ’93, page 2, USA, 1993. USENIX
Association.

[31] Mellanox. Mellanox BlueField Platforms. http://www.mellanox.
com/related-docs/npu-multicore-processors/PB_BlueField_Ref_
Platform.pdf, 2018.

[32] memcached. Memcached, 2020. https://memcached.org/.
[33] Microsoft. Information about the TCP Chimney offload, receive side

scaling, and network directmemory access features inWindows Server
2008. https://docs.microsoft.com/en-US/troubleshoot/windows-
server/networking/information-about-tcp-chimney-offload-rss-
netdma-feature.

[34] RadhikaMittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan
Wassel, Monia Ghobadi, Amin Vahdat, YaogongWang, DavidWether-
all, and David Zats. TIMELY: RTT-based congestion control for the
datacenter. In Proceedings of the 2015 Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM ’15, pages 537–550,
New York, NY, USA, 2015. Association for Computing Machinery.

[35] RadhikaMittal,Alexander Shpiner,Aurojit Panda, EitanZahavi,Arvind
Krishnamurthy, Sylvia Ratnasamy, and Scott Shenker. Revisiting net-
work support for RDMA. In Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication, SIGCOMM ’18,
pages 313–326, New York, NY, USA, 2018. Association for Computing
Machinery.

[36] Jeffrey C. Mogul. Tcp offload is a dumb idea whose time has come. In
Proceedings of the 9th USENIX Conference on Hot Topics in Operating
Systems, HotOS ’03, page 5, USA, 2003. USENIX Association.

[37] YoungGyounMoon, SeungEon Lee, Muhammad Asim Jamshed, and
KyoungSoo Park. AccelTCP: Accelerating network applications with
stateful TCPoffloading. In Proceedings of the 17thUSENIXConference on
Networked Systems Design and Implementation, NSDI ’20, pages 77–92,
USA, 2020. USENIX Association.

[38] Robert Morris, Eddie Kohler, John Jannotti, and M. Frans Kaashoek.
The Click modular router. In Proceedings of the 17th ACM Symposium
on Operating Systems Principles, SOSP ’99, pages 217–231, New York,
NY, USA, 1999. Association for Computing Machinery.

[39] Netronome. NetronomeAgilio CX SmartNIC. https://www.netronome.
com/products/agilio-cx/, 2018.

[40] Netronome. Netronome Agilio LX SmartNIC. https://www.netronome.
com/products/agilio-lx/, 2018.

[41] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audze-
vich, Sergio López-Buedo, and Andrew W. Moore. Understanding
PCIe performance for end host networking. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication,
SIGCOMM ’18, pages 327–341, New York, NY, USA, 2018. Association
for Computing Machinery.

[42] Zhixiong Niu, Hong Xu, Peng Cheng, Qiang Su, Yongqiang Xiong, Tao
Wang, Dongsu Han, and KeithWinstein. NetKernel: Making network
stack part of the virtualized infrastructure. In Proceedings of the 2020
USENIX Annual Technical Conference, USENIX ATC ’20, USA, 2020.
USENIX Association.

[43] Zhixiong Niu, Hong Xu, Dongsu Han, Peng Cheng, Yongqiang Xiong,
Guo Chen, and KeithWinstein. Network stack as a service in the cloud.
In Proceedings of the 16th ACM Workshop on Hot Topics in Networks,
HotNets-XVI, pages 65–71, New York, NY, USA, 2017. Association for
Computing Machinery.

[44] NVM Express Workgroup. NVM Express: Base specifica-
tion. https://nvmexpress.org/wp-content/uploads/NVM-Express-1_
4a-2020.03.09-Ratified.pdf, 2020.

[45] Aleksey Pesterev, Jacob Strauss, Nickolai Zeldovich, and Robert T. Mor-
ris. Improving network connection locality on multicore systems. In
Proceedings of the 7th ACM European Conference on Computer Systems,
EuroSys ’12, pages 337–350, New York, NY, USA, 2012. Association for
Computing Machinery.

[46] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, DougWoos, Arvind
Krishnamurthy, Thomas Anderson, and Timothy Roscoe. Arrakis: The
operating system is the control plane. In Proceedings of the 11th USENIX
Symposium on Operating Systems Design and Implementation, OSDI ’14,
pages 1–16, Broomfield, CO, October 2014. USENIX Association.

[47] I. Pratt and K. Fraser. Arsenic: a user-accessible gigabit ethernet in-
terface. In Proceedings of the 20th Annual Joint Conference of the IEEE
Computer and Communications Society, volume 1 of INFOCOM ’01,
pages 67–76 vol.1, 2001.

[48] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou,
Kypros Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fow-
ers, Gopi Prashanth Gopal, Jan Gray, Michael Haselman, Scott Hauck,
Stephen Heil, Amir Hormati, Joo-Young Kim, Sitaram Lanka, James
Larus, Eric Peterson, Simon Pope, Aaron Smith, Jason Thong, Phillip Yi
Xiao, and Doug Burger. A reconfigurable fabric for accelerating large-
scale datacenter services. In Proceeding of the 41st Annual International
Symposium on Computer Architecuture, ISCA ’14, pages 13–24. IEEE
Press, 2014.

[49] RDMA Consortium. Architectural specifications for RDMA over
TCP/IP. http://www.rdmaconsortium.org/.

[50] Renato J. Recio, Paul R. Culley, Dave Garcia, Bernard Metzler, and Jeff
Hilland. A Remote Direct Memory Access Protocol Specification. RFC
5040, October 2007.

[51] Redis Labs. memtier_benchmark: Load generation and bechmarking
NoSQL key-value databases. https://github.com/RedisLabs/memtier_
benchmark, 2020.

[52] Hugo Sadok, Zhipeng Zhao, Valerie Choung, Nirav Atre, Daniel S.
Berger, James C. Hoe, Aurojit Panda, and Justine Sherry. We need
kernel interposition over the network dataplane. In Proceedings of the
2021WorkshoponHotTopics inOperatingSystems,HotOS ’21, pages152–
158, New York, NY, USA, 2021. Association for Computing Machinery.

[53] Ahmed Saeed, Nandita Dukkipati, Vytautas Valancius, Vinh The Lam,
Carlo Contavalli, and Amin Vahdat. Carousel: Scalable traffic shaping
at end hosts. In Proceedings of the 2017 Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM ’17, pages 404–417,
New York, NY, USA, 2017. Association for Computing Machinery.

[54] Pravin Shinde, Antoine Kaufmann, Timothy Roscoe, and Stefan Kaes-
tle. We need to talk about NICs. In Proceedings of the 14th USENIX
Conference on Hot Topics in Operating Systems, HotOS ’13, page 1, USA,
2013. USENIX Association.

[55] Pensando Systems. Pensando DSC-25 distributed services
card. https://pensando.io/wp-content/uploads/2020/03/Pensando-
DSC-25-Product-Brief.pdf, 2020.

[56] The Linux Foundation. toe. https://wiki.linuxfoundation.org/
networking/toe.

100 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://www.mellanox.com/related-docs/npu-multicore-processors/PB_BlueField_Ref_Platform.pdf
http://www.mellanox.com/related-docs/npu-multicore-processors/PB_BlueField_Ref_Platform.pdf
http://www.mellanox.com/related-docs/npu-multicore-processors/PB_BlueField_Ref_Platform.pdf
https://memcached.org/
https://docs.microsoft.com/en-US/troubleshoot/windows-server/networking/information-about-tcp-chimney-offload-rss-netdma-feature
https://docs.microsoft.com/en-US/troubleshoot/windows-server/networking/information-about-tcp-chimney-offload-rss-netdma-feature
https://docs.microsoft.com/en-US/troubleshoot/windows-server/networking/information-about-tcp-chimney-offload-rss-netdma-feature
https://www.netronome.com/products/agilio-cx/
https://www.netronome.com/products/agilio-cx/
https://www.netronome.com/products/agilio-lx/
https://www.netronome.com/products/agilio-lx/
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_4a-2020.03.09-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_4a-2020.03.09-Ratified.pdf
http://www.rdmaconsortium.org/
https://github.com/RedisLabs/memtier_benchmark
https://github.com/RedisLabs/memtier_benchmark
https://pensando.io/wp-content/uploads/2020/03/Pensando-DSC-25-Product-Brief.pdf
https://pensando.io/wp-content/uploads/2020/03/Pensando-DSC-25-Product-Brief.pdf
https://wiki.linuxfoundation.org/networking/toe
https://wiki.linuxfoundation.org/networking/toe

Field Bits Description

Pre-processor (connection identification)—15B:
peer_mac 48 Remote MAC address
peer_ip 32 Remote IP address
local|remote_port 32 TCP ports
flow_group 2 hash(4-tuple) % 4
Protocol (TCP state machine)—43B:
rx|tx_pos 64 RX/TX buffer head
tx_avail 32 Bytes ready for TX
rx_avail 32 Available RX buffer space
remote_win 16 Remote receive window
tx_sent 32 Sent unack. TX bytes
seq 32 TCP seq. number
ack 32 TCP remote seq. number
ooo_start|len 64 Out-of-order interval
dupack_cnt 4 Duplicate ACK count
next_ts 32 Peer timestamp to echo
Post-processor (ctx queue, congestion control)—51B:
opaque 64 App connection id
context 16 Context-queue id
rx|tx_base 128 RX/TX buffer base
rx|tx_size 64 RX/TX buffer size
cnt_ackb|ecnb 64 ACK’d and ECN bytes
cnt_fretx 8 Fast-retransmits count
rtt_est 32 RTT estimate
rate 32 TX rate

Table 5. Connection state partitions (total: 108B).

A TCPConnection State Partitioning
To enable fine-grained parallelism, we partition connection
state across pipeline stages. Table 5 shows the per-connection
state variables, grouped by pipeline stage. Pre-processor state
contains connection identifiers (MAC, IP addresses; TCP port
numbers). Protocol state contains TCP windows, sequence
and acknowledgment numbers, and host payload buffer posi-
tions. Post-processor state contains host payload buffer and
context queue locations, and data-path congestion control
state. DMA and context queue stages are stateless.
In aggregate, each TCP connection has 108 bytes of state,

allowingus tooffloadmillionsof connections to theSmartNIC.
In particular,we canmanage 16 connections per protocol FPC,
512 connections per flow-group, and 16K connections in the
EMEM cache. Using all of EMEM, we can support up to 8M
connections.

B Connection Splicing Implementation
We implement AccelTCP’s connection splicing in 24 lines of
eBPF code. Listing 1 shows the entire code.

C TAS TCP/IP Processing Breakdown
Table 6 shows a breakdown of the per-packet TCP/IP pro-
cessing overheads (summarized as TCP/IP stack in Table 1) in
TAS for the Memcached benchmark conducted in §2.1. For

BPF_MAP_HASH_DECLARE(splice_tbl, SPLICE_MAX_FLOWS, \
sizeof(struct pkt_4tuple_t), sizeof(struct tcp_splice_t));

int bpf_xdp_prog(struct xdp_md* ctx)
{
struct tcp_splice_t state;
struct pkt_hdr_t *hdr = BPF_XDP_ADDR(ctx->data);
struct pkt_4tuple_t *key = &hdr->ip.src;

// Filter non-IPv4/TCP segments to control-plane
if (!segment_ipv4_tcp(hdr))
return XDP_REDIRECT;

// Connection Control: Segments with SYN, FIN, RST
// Atomically remove map entry and forward to control-plane
if (segment_tcp_ctrlflags(hdr)) {
BPF_MAP_DELETE_ELEM(splice_tbl, key);
return XDP_REDIRECT;

}

if (BPF_MAP_LOOKUP_ELEM(splice_tbl, key, &state) < 0)
return XDP_PASS; // Send to data-plane

patch_headers(hdr, &state);
return XDP_TX; // Send out the MAC

}

void patch_headers(struct pkt_hdr_t *hdr,
struct tcp_splice_t *state)

{
hdr->eth.src = hdr->eth.dst;
hdr->eth.dst = state->remote_mac;
hdr->ip.src = hdr->ip.dst;
hdr->ip.dst = state->remote_ip;
hdr->tcp.sport = state->local_port;
hdr->tcp.dport = state->remote_port;

hdr->tcp.seq += state->seq_delta;
hdr->tcp.ack += state->ack_delta;

}

Listing 1. Connection splicing with XDP in FlexTOE.

each request, TAS performs loss detection (and potentially
recovery) that involves processing the incoming request seg-
ment, generating an acknowledgement for it, and additionally,
processing the acknowledgement for the response segment,
consuming 42% of the total per-packet processing cycles. TAS
spends 9% of the total cycles to prepare the response TCP seg-
ment for transmission and an additional 12% to schedule flows

Function Cycles %
Segment generation 130 9
Loss detection (and recovery) 606 42
Payload transfer 10 1
Application notification 381 26
Flow scheduling 172 12
Miscellaneous 141 10
Total 1,440 100

Table 6. Breakdown of TCP/IP stack overheads in TAS.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 101

based on the rate configured by the congestion control proto-
col. TAS spends 26% of per-packet cycles interacting with the
application, to notify when a request is received, to admit a
response for transmission, and to free the transmission buffer
when it is acknowledged. For small request-response pairs
(32B in this case), the payload copy overheads are negligible.

D Control Plane
FlexTOE’scontrolplane is similar to thatofexistingapproaches
that separatecontrolanddata-planeactivities, suchasTAS[19].
Using it, we implement control-plane policies, such as con-
gestion control, per-connection rate limits, per-application
connection limits, and port partitioning among applications
(cf. [52]). We briefly describe connection and congestion con-
trol in this appendix. Retransmissions are described in §3.1.1
and §3.1.3. TAS [19] provides further description and eval-
uation of the control plane (named “slow-path” in the TAS
paper).

Connection control. Connection control involves com-
plex control logic, such as ARP resolution, port and buffer
allocation, and the TCP connection state machine. The data-
path forwards control segments to the control-plane. The
control-plane notifies libTOE of incoming connections on
listening ports. If the application decides to accept() the
connection, the control-plane finishes the TCP handshake,
allocates host payload buffers and a unique connection in-
dex for the data-path. It then sets up connection state in the
data-path at the index location. Similarly, libTOE forwards
connect() calls to the control-plane, which establishes the
connection. On shutdown(), the control-plane disables the
connection and removes the corresponding data-path state.

Congestion control. FlexTOE provides a generic control-
plane framework to implement different rate and window-
based congestion control algorithms, akin to that in TAS [19].
The control-plane runs a loop over the set of active flows to
compute a new transmission rate, periodically. The interval
between each iteration of the loop is determined by the round-
trip time (RTT) of each flow. In each iteration, the control-
plane reads per-flow congestion control statistics from the
data-path to calculate a new rate or window for the flow. The
rate or window is then set in the data-path flow scheduler
(§3.4) for enforcement. We also monitor retransmission time-
outs in the control iteration. FlexTOE implements DCTCP [1]
and TIMELY [34] in this way.

E FlexTOE x86 and BlueField Ports
We have ported the FlexTOE data-path to the x86 and Blue-
Field platforms. FlexTOE’s design across the different ports
is identical. We do not merge or split any of the fine-grained
modules or reorganize the pipeline across ports. FlexTOE’s
decomposition, pipeline parallelism, and per-stage replica-
tion all generalize across platforms. Both ports are also almost

identical to the Agilio-CX40 implementation (cf. §4) andwere
completedwithin roughly 2person-weeks, demonstrating the
great development velocity of a software TCP offload engine.
We describe the implementation differences of each port to
the Agilio-CX40 version in this section.

Hardware cachemanagement. The hardware-managed
cache hierarchies of x86 and BlueField obviate the need for
software-managed caching that was implemented on Agilio.
Instead of leveraging near-memory processing acceleration
of the NFP-4000 (cf. §4.1), our ports implement multi-core
ring buffers, flow lookup and packet sequencers in software.
The more powerful x86 and BlueField cores make up for the
difference in performance.

Symmetric coremapping. Unlike the NFP-4000, where
FPCs are organized into islands, cores on x86 and BlueField
have mostly symmetric communication properties, so the as-
signment ofmodules to cores is arbitrary and themanual FPC
mapping step is omitted. However, we note that core map-
ping may still be beneficial, for example to leverage shared
caches and node locality on multi-socket x86 systems. Each
instance of a module runs on its own core. Apart from the
six fine-grained pipeline modules: pre-processing, protocol,
post-processing,DMA, context queue, and SCH shown in Fig-
ure 3, the ports utilize an additional netif module to inter-
face with DPDK NIC queues to receive and transmit packets.
Therefore, FlexTOE-scalar uses 7 cores and the FlexTOE-2×
configuration uses 2 additional cores to replicate the pre and
post-processing stages for a total of 9 cores.

Context queues use only sharedmemory. Our x86 and
BlueField ports currently only support applications running
on the same platform as FlexTOE. Hence, context queues al-
ways use shared memory rather than DMA. The correspond-
ing DMA pipeline stage executes the payload copies in soft-
ware using shared memory, rather than leveraging a DMA
engine.

Platform-specific parameters. The replication factor of
each pipeline stage is platform dependent. Stage-specific
microbenchmarks on each platform can determine it. Our
generalization experiments (§5.2) are designed to show that
FlexTOE’s data-parallelism can improve single connection
throughput. Hence, we configure only one instance of the
FlexTOE data-path pipeline in these versions (no flow-group
islands—we do not process multiple connections in these ex-
periments). Each port’s pipeline uses the same number of
stages as the Agilio-CX40 version, but we set different repli-
cation factors for the pre and post processing stages on x86
and BlueField (no replication and 2× replication). We do not
attempt to find the optimal replication factor for best perfor-
mance nor compact stages to reduce wasted CPU cycles.

102 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Swift: Adaptive Video Streaming with Layered Neural Codecs
Mallesham Dasari, Kumara Kahatapitiya, Samir R. Das, Aruna Balasubramanian, Dimitris Samaras

Stony Brook University

Abstract
Layered video coding compresses video segments into layers
(additional code bits). Decoding with each additional layer
improves video quality incrementally. This approach has po-
tential for very fine-grained rate adaptation. However, layered
coding has not seen much success in practice because of its
cross-layer compression overheads and decoding latencies.
We take a fresh new approach to layered video coding by ex-
ploiting recent advances in video coding using deep learning
techniques. We develop Swift, an adaptive video streaming
system that includes i) a layered encoder that learns to encode
a video frame into layered codes by purely encoding residu-
als from previous layers without introducing any cross-layer
compression overheads, ii) a decoder that can fuse together a
subset of these codes (based on availability) and decode them
all in one go, and, iii) an adaptive bit rate (ABR) protocol
that synergistically adapts video quality based on available
network and client-side compute capacity. Swift can be in-
tegrated easily in the current streaming ecosystem without
any change to network protocols and applications by simply
replacing the current codecs with the proposed layered neural
video codec when appropriate GPU or similar accelerator
functionality is available on the client side. Extensive evalu-
ations reveal Swift’s multi-dimensional benefits over prior
video streaming systems.

1 Introduction

Internet video delivery often encounters highly variable
and unpredictable network conditions. Despite various ad-
vances made, delivering the highest possible video qual-
ity continues to be a challenging problem due to this un-
certainty. The problem is more acute in wireless networks
as the channel conditions and mobility adds to the uncer-
tainty [39, 46]. Interestingly, the next generation wireless net-
works may even make the problem more challenging (e.g.,
60GHz/mmWave [10, 11, 38]).

To counter the challenges posed by such varying network
capacity, current video delivery solutions predominantly prac-
tice adaptive streaming (e.g., DASH [50]), where a source
video is split into segments that are encoded at the server into
multiple bitrates providing different video qualities, and a
client runs an adaptive bitrate (ABR) algorithm to dynami-
cally select the highest quality that fits within the estimated
network capacity for the next segment to be downloaded.
Need for layered coding. Most of the current commercial
ABR algorithms adopt a monolithic encoding practice (e.g.,

Video segment numbers

1 2 N... 1 2 N…

Layer_1

Layer_2

Layer_L

..

Rate_1 (360p)

Rate_2 (480p)

Rate_M (4K)

480p

4K/8K

Layered Coding Regular Coding

Video segment numbers

..

(c
0
)

(c
1
)

(c
L
)

(c
0
+ c

1
)

(c
0
+ c

1
+..+c

L
)

360p (c
0
) Q

1

Q
2

Q
M

..

Quality

Level

Figure 1: Layered vs. Regular coding methods. In Regular
coding the video segments are coded independently at dif-
ferent qualities. In Layered coding a given quality can be
reconstructed by combining codes for multiple layers thus
facilitating incremental upgrades or downgrades.

H.265 [53]), where the same video segment is encoded ‘in-
dependently’ for each quality level. The decision on fetching
a segment at a certain quality is considered final once the
ABR algorithm makes a determination based on estimating
the network capacity. However, these estimations are far from
accurate, resulting in either underutilizing or overshooting the
network capacity. For example, the ABR algorithm may fetch
at a low quality by underestimating the network capacity, or
it may fetch at a high quality causing video stalls by overesti-
mating. Consequently, even the optimal ABR algorithms fail
to provide a good quality of experience (QoE), as such rigid
methods that do not fit the need of the streaming conditions.

An alternate technique, called layered coding, has been
long studied [12, 14, 36, 47, 67] that can avoid the above
streaming issues. The key idea here is that, instead of in-
dependently encoding the segment in different qualities, the
segment is now encoded into layers; the base layer provides
a certain video quality, and additional layers improve the
video quality when applied over the base layer. See Figure 1.
This means that, if the network throughput improves, one can
fetch additional layers to improve video quality at a much
lower cost compared to a regular codec.1 We use the term
regular coding to indicate the current practice of indepen-
dent encoding in multiple qualities (current standards such as
H.265/HEVC [53]).
Challenges with layered coding. Layered coding, however,
faces two nontrivial challenges: compression overhead, and
coding latency. The compression overhead mainly comes
from not having the inter-layer frame prediction to avoid re-
construction drift in quality [29,42,61,67]. On the other hand,
the decoding latency is a function of the number of layers as

1We use terms coding or codec for encoding and decoding together.
Also we use the terms encoding/compression, decoding/decompression inter-
changeably.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 103

each layer needs to be decoded separately. Notwithstanding
these issues, some studies have indeed applied layered coding
in streaming and have shown slightly better QoE compared
to the regular coding methods, benefiting from its ability to
do dynamic quality upgrades [31]. However, they do not ad-
dress either the overhead or the latency issues directly. Indus-
try streaming solutions continue to adopt the regular codecs,
shipping these codecs in hardware to avoid computational
challenges, making it harder to adopt new innovations.
Neural video codecs. A learning approach to video coding
has shown tremendous improvement in compression effi-
ciency in just a few years [43,60,65]. Figure 2 shows bits-per-
pixel vs PSNR plots2 for several generations of codecs of two
types – neural codecs that use deep learning and traditional
algorithmic codecs that use the popular H.26x standards. It
took algorithmic codecs 18 years to make the same progress
that neural codecs achieved in the last 4 years! One reason
for this rapid development is that neural codecs can run in
software that can be integrated as part of the application, sup-
port agile codec development and provide royalty-free codecs.
Further, they run on data parallel platforms such as GPUs that
are increasingly available and powerful.

There are several insights in using neural codecs for video
coding – 1) unlike the traditional layered coding methods
where it is nontrivial to handcraft each layer3 to have unique
information, a neural network’s loss function can be optimized
to encode a video frame into unique layered codes by purely
encoding residuals from previous layers without introducing
a reconstruction drift; 2) a neural network can be trained to
accept a subset of the layered codes and decode all of them in
a single-shot, which again was traditionally difficult to do with
a handcrafted algorithm due to nonlinear relationships among
the codes. Additionally, 3) neural codecs enable software-
driven coding. We note here that GPUs or similar accelerators
for neural network computation are critical for success with
neural codecs. Fortunately, they are increasingly common in
modern devices.
Swift. Based on the above insights, we present Swift, a novel
video streaming system using layered coding built on the
principles of neural video codecs [32, 60, 65].4 We show that
learning can address the challenges of layered coding men-
tioned earlier – there is no additional compression overhead
with further layering and the decoding latency is independent
of the number of layers. Swift consists of three design com-
ponents: i) server-side encoder plus decoder, ii) client-side
decoder, and iii) ABR protocol adapted to layered coding and
varying compute capacity (in addition to varying network
capacity).

2Bits-per-pixel captures compression efficiency and PSNR (peak signal-
to-noise ratio) captures image quality. Both metrics together capture codec
performance.

3Throughout the paper, the term ‘layer’ refers to compressed code layers,
not neural network layers.

4The source code of Swift is available at the following site:
https://github.com/VideoForage/swift.

4 Years

18 Years

Neural Codecs Algorithmic Codecs

Figure 2: Evolution of neural and algorithmic video codecs
showing compression efficiency plots across generations.

We evaluate Swift with diverse video content and FCC-
released real-world network traces [8]. We compare Swift
with state-the-art streaming algorithms that combine either
regular coding [35,51,52] or layered coding [31] with state-of-
the-art ABR algorithms. In terms of QoE, Swift outperforms
the next-best streaming alternative by 45%. It does so using
16% less bandwidth and has a lower reaction time to changing
network conditions. In terms of the neural codec, Swift’s
layered coding outperforms the state-of-the-art layered codec
(SHVC [12]) by 58% in terms of compression ratio, and by
×4 (for six layers) in terms of decoding latency. In summary,
our contributions are the following:

• We show how deep learning-based coding can make layered
coding both practical and high-performing, while address-
ing existing challenges that stymied the interest in layered
coding.

• We design and build Swift to demonstrate a practical lay-
ered coding based video streaming system. Swift is an
embodiment of deep learning-based encoding and decoding
methods along with a purpose-built ABR protocol.

• We comprehensively evaluate and showcase the multi-
dimensional benefits of Swift in terms of QoE, bandwidth
usage, reaction times and compression efficiency.

2 Motivation

2.1 Limitations of Today’s Video Streaming
Due to Regular Coding

Today’s video providers predominantly use source rate adap-
tation (e.g., MPEG-DASH [50]) where video segments are
encoded at different qualities on the server and an adaptive
bitrate (ABR) algorithm chooses the best quality segment to
be downloaded based on the network capacity.

The streaming solutions that are widely deployed, use reg-
ular, standards-driven, algorithmic coding methods such as
H.265/HEVC [53] or VP9 [4] for encoding video segments.
These coding methods do not allow segments to be upgraded
or downgraded based on network conditions.

Figure 3 illustrates this problem using an example experi-
ment (more details about methodology are described in §6.1).
The figure shows the quality of segments that are fetched
by different state-of-the-art ABR algorithms that use regular

104 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

75sec

50sec

Slow

Reaction

(a) Most ABR algorithms (BOLA, Penseive) cannot upgrade the
quality of a video segment once downloaded and are slow to react
to changing network conditions.

75sec

Fast

Reaction
25sec

Bandwidth

wasteDiscarded

low quality segments

Refilled

high quality

segments

(b) BOLA-FS does allow video quality to be upgraded by re-
downloading a higher quality segment. However, the previously
downloaded segment is wasted.

Figure 3: Limitations of today’s ABR algorithms because
of regular coding: either slower reaction to network condi-
tions or bandwidth wastage to achieve faster reaction time to
highest quality. The reaction latency includes time to notice
throughput increase as well as playing the buffered segments,
and hence segment duration (5 sec here) plays a role. Penseive
aggressively controls video quality fluctuations to compen-
sate for incorrect bandwidth prediction, and hence the sudden
jump in quality compared to BOLA.

coding. During the experiment, the throughput improves dras-
tically at the 100 second mark. Two state-of-the-art streaming
algorithms, Pensieve [35] and BOLA [52], cannot upgrade
the quality of a segment once the segment has been down-
loaded. This causes a slow reaction to adjust to the improved
throughput. In Figure 3(b) however, BOLA-FS [51], a ver-
sion of BOLA, does allow the higher quality segment to be
re-downloaded when the network conditions improve. How-
ever, the previously downloaded lower quality segment is
discarded, resulting in wasted bandwidth.

2.2 Layered Coding

A more suitable coding method to address the above issues is
layered coding, where a video segment is encoded into a base
layer (providing the lowest playback quality level) and multi-
ple enhancement layers as shown in Figure 1. Clearly, layered
coding gives much finer control on rate adaptation compared
to regular coding. For example, multiple enhancement layers
for the same segment can be fetched incrementally as the esti-

2.5-fold

Bitrate Overhead

Figure 4: Compression efficiency of traditional layered coding.
We use H.265 [53] and its layered extension SHVC [12] to
encode the videos (described in §6.1). The single layer bitrate
curve is same for both, and the additional layers are for SHVC.
As shown, SHVC requires 2.5× more bits for 4 layers of
SHVC compared to a single layer for the same quality.

mate of the network capacity improves closer to the playback
time, which is not possible in case of regular coding.

2.3 Challenges of Adopting Traditional
Layered Coding in Video Streaming

Layered coding has typically been developed and imple-
mented as an extension to a regular coding technique. Pub-
lished standards demonstrate this dependency: SHVC [12]
has been developed as an extension of H.265 [53], similarly,
older SVC [47] as an extension for H.264 [57]. Developing
layered coding as an extension on top of a regular coding
introduces multiple challenges in real-life deployments:

1) Cross-layer compression overhead: The key to large com-
pression benefits in current generation video coding standards
(e.g., ≈ 2000× compression ratio for H.265 [53]) is inter-
frame prediction – the consecutive frames are similar and so
it is efficient to simply encode the difference between consec-
utive frames. However, using the inter-layer frame prediction
across enhancement layers of the current frame with respect
to the previous frame makes video quality drift during de-
coding [29, 42, 61, 67]. To minimize or avoid the drift, most
of the layered coding methods do not use inter-frame pre-
diction across layers and thus lose out on its compression
benefits [11, 17, 31]. In effect, to achieve the same quality,
layered coding (e.g., SHVC) requires significantly more bits
compared to its regular counterpart (e.g., H.265). In our study,
we find that a 4-layer SHVC coding method needs 2.5× bits
per pixel compared to its regular coding counterpart, H.265
(see Figure 4).

2) High encoding and decoding latency: The computational
complexity of these algorithmic codecs mainly comes from
the motion estimation process during inter-frame predic-
tion [53, 57]. During the motion estimation, it is useful - for
each pixel - to encode its motion vector, i.e., where its relative
location was in the previous frame. The motion vectors are
computed for each frame by dividing the frame into thou-
sands of blocks of pixels and searching a similar block in the
previous frames. In general, the codecs use a set of previous

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 105

frames to search blocks in each frame making it computation-
ally expensive. The process becomes even more complex in
case of layered coding because each layer has to be decoded
one after the other because of the dependency of a layer on the
previous one (to exploit the content redundancy) [11, 27, 30].
This serial process of layered coding makes the latency to
be a function of number of layers, and therefore the latency
increases progressively as we increase the number of layers.

1 2 3 4 5
Number of Layers

0

50

100
De

co
di

ng
 L

at
en

cy
 (m

s)
SHVC
x265

Figure 5: Latency challenges
of traditional layered coding.
The decoder is run on a high-
end Desktop (as described in
§5) using a single-threaded im-
plementation of SHVC [3].

Figure 5 shows per-frame
decoding latency of the
state-of-the-art layered cod-
ing (i.e., SHVC) of a 1-min
video on a desktop with con-
figuration described in §6.1.
As shown, it takes more than
100ms to decode each frame
for 5 layers, an order of mag-
nitude increase in coding la-
tency compared to its reg-
ular counterpart H.265 (an
x265 [7] implementation).
Despite several optimizations in the past, such range of la-
tencies makes it infeasible to realize real-time decoding on
heterogeneous platforms. Recent studies (e.g., Jigsaw [11])
tackle this challenge by proposing a lightweight layered cod-
ing method (using GPU implementation), but the latency is
still a function of number of layers.

Because of these challenges, traditional layered coding
is not used in practice today. In this work, rather than ap-
proaching this problem with yet another extension, we seek
to explore layered coding via a clean-slate, learning-based
approach with a goal towards efficient layered compression
by embracing the opportunities of new hardware capabilities
(e.g., GPUs and other data parallel accelerators).

2.4 Layered Coding using Neural Codecs

Video compression has recently experienced a paradigm
shift in the computer vision community due to new ad-
vances in deep learning [32, 43, 60, 65]. The compres-
sion/decompression here is achieved using neural networks
that we refer to as neural video codecs.

The basic idea is the use of an AutoEncoder (AE), a neural
network architecture used to learn efficient encodings that has
long been used for dimentionality reduction purposes [20].
The AE consists of an encoder and a decoder. The encoder
converts an input video to a code vector that has a lower
dimension than the input size, and the decoder reconstructs
(perhaps with a small error) the original input video from
the low-dimension code vector. The neural network weight
parameters (Wi for encoder and W ′

i for decoder) are trained
by minimizing the reconstruction error, that is, minimizing
the difference between the input and the output of the decoder.
The smaller the code, the larger the compression factor but

_ _ _ _
Original Image

MS-SSIM=1.0 MS-SSIM=0.90 MS-SSIM=0.94 MS-SSIM=0.97 MS-SSIM=0.99

r
0 r

1
r
2 r

3

High information loss Low information loss

Figure 6: Illustrating the residuals (r0, . . . ,r3) from an orig-
inal frame to a series of compressed-then-decoded frames.
MS-SSIM [56] is a perceptual measure of image quality. A
highly compressed frame (lowest MS-SSIM) has more resid-
ual information (r0).

higher the reconstruction error.
Our insight in using Autonencoders is that a their loss func-

tion can be optimized to encode a video frame into unique
layered codes by purely encoding residuals from previous lay-
ers, unlike the traditional layered coding where it is nontrivial
to handcraft each layer to have unique information.

3 Swift

3.1 Overview
Autoencoders are already shown to provide similar or better
performance relative to traditional codecs [32, 43, 60]. Recent
work such as Elf-vc [43] is also able to use Autoencoders
to provide flexible-rate video coding to fit a target network
capacity or achieve a target compression quality. However,
current work does not provide a way to encode in the video
in incrementally decodable layers. To do this, we make use of
residuals to form layered codes. A residual is the difference
between the input to an encoder and output of the correspond-
ing decoder. Residuals has been used in the past for tasks
such as recognition and compression to improve the applica-
tion’s efficiency (e.g., classification accuracy or compression
efficiency) [19, 55, 60].
Swift uses residuals for designing layered codecs for video

streaming. The idea is to employ a chain of Autoencoders of
identical structure. Each Autoencoder in the chain encodes the
residual from the previous layer, with the very first Autoen-
coder in the chain (implementing the base layer) encoding
the input video frames. Figure 6 shows an example, where
the residuals are shown from an original frame to a series
of progressively compressed-then-decoded frames. The first
decoded frame (marked with MS_SSIM = 0.9) has a relatively
high loss from the original frame. As a result, the residual
r0 has more information. When this residual information is
used for the next layer’s compression, the resulting decoded
frame is closer to the original, and in-turn the residual has
less information, and so on.

The above ‘iterative’ chaining implicitly represents a lay-
ered encoding mechanism. Each iteration (i.e., layer) pro-

106 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

duces a compressed version of the original video that we call
‘code.’ These codes encode incremental information such that
with more such codes decoded, the reconstruction becomes
progressively closer to the original. Swift essentially uses
this mechanism of residuals to create the layered codes. Such
iterative minimization of residual also acts as an implicit reg-
ularization to guide the reconstruction (at a given bandwidth),
instead of closely-following classical compression methods
as in Elf-vc [43].

Figure 7 shows the Autoencoder architecture (more details
in §3.2) on the server side. The architecture jointly learns
both the encoder and decoder in each layer. As before, the
Autoencoder’s weight parameters are trained to minimize
the reconstruction error between the input and output of the
decoder. In this process, the encoder generates a compact
code in each layer which is a compressed version of the input
video frames. These codes are transmitted to the client, where
they can be decoded for progressively better reconstructions.

The decoder learnt at the server is then optimized further
(§3.3) to be used at the client side. The client decoder initially
reconstructs the base layer from the first code. Then, if more
layers/codes are downloaded from the server, the decoder
reconstructs the residuals from the second layer onward, and
combines with the previous reconstruction(s) to generate the
output video frame.

Overall, Swift has three main components:
1. A learning-based layered encoder-decoder pair in a single

neural network to create residual-based layered codes on
the server-side (§3.2).

2. A separate learning-based decoder on the client side. This
decoder can decode any combination of layered codes in
a single-shot for real-time decoding (§3.3).

3. Extension of an ABR algorithm that can integrate the
codec into a complete end-to-end system (§4).

3.2 Layered Neural Encoder

We first describe how the encoder and the decoder are trained
at the server side. Assume, It is the image or video frame
at time t, for t ∈ {0,1, ...}. The encoder (E) takes each of
these frames as input and generates a compact code vector
(c) for each frame, i.e., ct = E(It). This code for each frame
is constructed by exploiting the redundancy across multiple
previous frames in the video. Therefore, the encoder takes a
set of previous frames as reference in order to encode each
frame. The decoder (D) reconstructs the frame Ît given ct ,
i.e., Ît = D(ct). The optimization problem here is to train E
and D pairs so as to minimize the difference between Ît and
It . Since we add our layered coding as a generic extension to
any neural codec without changing its internal logic, E and
D can be assumed as blackboxes. An example of a neural
codec is presented in Appendix A.

Figure 7 shows the design of our layered encoder-decoder
network on the server-side. Here, each iteration (or layer)

hE1

�̂�1

�̂�L

𝑟1

𝑟L

�̂�
0𝑟0

⊕
hE0

hEL

hD0

hD1

hDL

=I𝑟0

𝑟
0

𝑟
1= �̂�0_

𝑟
L-1

𝑟L = �̂�L-1_

Iteration 1

Iteration 2

Iteration L

Bi
na

riz
er

Bi
na

riz
er

Bi
na

riz
er

En
tro

py

En
co

de
r

En
tro

py

En
co

de
r

En
tro

py

En
co

de
r

En
tro

py

D
ec

od
er

En
tro

py

D
ec

od
er

En
tro

py

D
ec

od
er

11001..

10001..

01011..E

E

E

𝑐0

𝑐1

𝑐𝐿

Layered codes transmitted over network

𝐼$1

⊕ 𝐼$L

𝐼$0

Figure 7: Deep learning based layered coding: a) iterative
encoding (E) and decoding (D): in each iteration, E encodes
a residual into a code (ci) and the decoded output (from D) is
used to generate the residual for the next iteration.

encodes a residual ri into a code ci, where residual ri is the
difference between the encoder input and decoder output in
the previous layers. For the very first iteration, the encoder
directly encodes the the original video frame. Representing
this mathematically: ci = E(ri) and ri = ri−1 − r̂i−1 with r̂i =
D(ci), for i = 0, . . . ,L, with the exception that for i = 0 (base
layer), r0 = I.

At each iteration, the decoder can enhance the quality of
the video frame with a plain arithmetic sum of the outputs of
all previous iterations along with the base layer output. The
key here is that both E & D have separate hidden states (hE∗
and hD∗) that get updated iteratively, sharing information be-
tween iterations. In fact, this subset of weights shared across
iterations, allows better reconstruction of residuals. The en-
tropy (i.e., the information) is very high in the initial layers,
but progressively decreases due to the presence of the hidden
connections and thus the code size becomes progressively
smaller. The training objective for these iterative encoder-
decoder pairs is to minimize the L1 reconstruction loss for the
residuals:

Lrec =
1
L

L−1

∑
i=0

∥D(ci)− ri∥1

All Autoencoders E & D in the chain share the same net-
work and thus have identical input and output sizes. They
produce the same code sizes for all iterations. Swift relies
on a separate entropy encoding stage (Figure 7) to create the
residual codes that allocate proportional number of bits to
match the entropy in each iteration. The fixed length code vec-
tor from the output of the encoder E is binarized and passed
through a traditional entropy encoder similar to CABAC [54].

Note that the learned codec can work with a variety of
input video resolutions, and hence we do not need to train
a separate model for each video resolution. This is mainly
because the Autoencoder here takes one or more video frames
as input and extracts the features through convolutions (e.g.,
Conv2D [41]). Each convolutional kernel (with a fixed size
of k× k pixels that is much smaller than the input resolution)
is applied in a sliding window fashion on k × k blocks of
pixels to reduce the dimensions and form the Autoencoder’s

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 107

compact code vector. In our codec we use 4 downsampling
convolution blocks to reduce the dimensions. This makes
any input resolution (w×h) to be downsampled to (w/16)×
(h/16) resolution times the Autoencoder’s bottleneck bits (b)
after the encoding stage (see Appendix A). Therefore during
the testing, the encoder’s output for a 352×288 resolution
would be 22×18×b, while it is 80×45×b for 1280×720
resolution. Similarly the codec scales with other resolutions
during testing.

3.3 Layered Neural Decoder

The above iterative coding design already includes the de-
coder (Figure 7) that can reconstruct the video from the lay-
ered codes. In principle, the client can use the same decoder
already designed and learned on the server-side. However, the
iterative method incurs decoding latency proportional to the
number of iterations. This is because the residual codes are
created separately in each iteration and the decoder cannot
decode a code (ci) unless the previous iteration of encoder
encodes ci−1 and the corresponding decoder decodes it to
form the residual ri.

This latency is acceptable for video servers/CDNs that en-
code the videos offline and store them ready for on-demand
streaming, but clients need to decode the video in real-time
(≈30 fps). To address this, we develop a separate design of
single-shot decoder to be used at the clients, that can take any
combination of the codes as input and decode the correspond-
ing frames in one shot. See Figure 8.

𝑐
0

𝑐
1

⊕ 𝐼"
L

ss

E
n
tr

o
p
y

D
e
c
o
d
e
r

E
n
tr

o
p
y

D
e
c
o
d
e
r

Code Not

Available 0
0
..

Pad

zeros

H
1

H
2

H
L

Figure 8: Single-shot decoder
(Dss): a variable sized decoder
that takes a subset of the codes to
reconstruct a video frame in one
go.

The codes available
at the client are fused
and padded with zeros up
to a predetermined code
length (corresponding to
L levels) to account for
unavailable codes. They
are then fed into a ‘multi-
headed’ decoder (H) as
shown in the Figure 8.
In each head, the padded
version of each code ci
is separately processed
through individual neural
networks prior to combin-
ing them into a common network. When higher layers are
unavailable, the corresponding heads will have no effect on
reconstruction, and when available, generate a desired resid-
ual mapping. Essentially, these multiple heads are lightweight
and the common network (after combining the residual codes
after multiple-heads) follows the same decoder architecture
D from §3.2, but within one model. The heads or the com-
mon decoder do not share any parameters, in contrast to the
iterative decoder which shares hidden states across iterations.
Note that for preparing residual codes on the server-side, we

still need the iterative E-D architecture as described in §3.2.
To distinguish from the server-side decoder (D), we denote
this client-side single-shot decoder as Dss.

We train Dss by extending the objective function used at
the server-side. Specifically, in addition to the loss function
at the server-side decoder (D) which reconstructs a residual,
we add a loss function that corresponds to the actual image
reconstruction at client-side decoder (Dss) using the available
code layers. Using L1 loss function, both the objectives are
as shown below.

Lrec =
1
L

L−1

∑
i=0

[
∥D(ci)− ri∥1︸ ︷︷ ︸

residual quality loss

+
∥∥Dss(⊕i

k=0ck)− I
∥∥

1︸ ︷︷ ︸
image quality loss

]
Here, the server-side decoder (D) reconstructs the residual
image ri at each iteration based on the code ci, while the
client-side Dss reconstructs the original image I based on the
subset of the codes available at the corresponding iteration,
i.e., c0 . . .ci. This function allows us to train the encoder, and
both the decoders (server and clients-side) in a single training
loop. During the training, all three models E , D , and Dss are
jointly optimized by summing up the loss computed for E
and D in §3.2 and the direct loss computed for Dss that cor-
responds to original image reconstruction. This joint training
with a more complex objective (i.e., multiple loss functions)
does affect the performance of server-side decoder. The iter-
ative decoder from §3.2 has simpler objective than Dss, and
hence its performance is better when trained independently
(in which case only the second term in the loss function is
sufficient for Dss) compared to trained jointly. In our experi-
ments we observe very little drop in quality on average with
the joint training – that would be almost imperceptible to
users. Moreover, training each of these models can also incur
additional computation costs on servers.

4 Streaming with Layered Neural Codecs

Swift’s layered neural codes introduces two challenges to
end-to-end streaming. The first challenge arises because
Swift’s decoder at the client is expected to be run on the
GPU or other similar data-parallel accelerators and run in
software, instead of dedicated fixed hardware decoders as is
the norm for regular codecs. Even though the software codecs
have advantages in terms of on-demand codec upgrades and
agile development, it raises the possibility of resource con-
tention with other applications. Since GPU resource availabil-
ity can vary [33, 45], the client needs to be able to adapt to
the available resources.

The second challenge is in bitrate selection. Video stream-
ing protocols encode each video segment into different quali-
ties and uses ABR to select the next best quality video seg-
ment to stream. However, the ABR algorithm in Swift has a
more complex choice—should one fetch the next segment at
the highest possible quality or upgrade the current segment by

108 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

𝑐0

𝑐1
⊕

En
tr

op
y

De
co

de
r

En
tr

op
y

De
co

de
r

Code Not
Available 00

00
..

Pad
zeros

H1

H2

HL

Exits: 1 2 3 S

q1 q2 q3 qS

Figure 9: Scalable decoding using multiple exit heads to adapt
to dynamic compute capacity. Each exit provides a different
trade-off between compute capacity (and in-turn time required
to decode) and quality of the video segment.

fetching additional layers? This question is made even more
complex because the end-to-end streaming performance is af-
fected both by the network and the compute variability at the
client (see above). Traditional bitrate adaptation techniques
are designed to only adapt to network variability.

In this section, we describe the design of a scalable decoder
and neural-adapted ABR algorithm to tackle the challenges.

4.1 Scaling the Decoder based on Compute Ca-
pacity

The decoder architecture (shown in Figure 8) uses network
with a certain depth. 5 As is common in Autoencoders, the
more the depth, the better is the decoding accuracy, but lower
the depth, lower is the compute requirement.
Swift exploits this trade-off by designing multiple,

lightweight, output heads at different depths of the network.
The decoder then operates at different design points in the
accuracy vs compute requirement trade-off by exiting at dif-
ferent depths depending on the GPU capacity. We define GPU
capacity as the percentage of time over the past sample pe-
riod (1 sec in our case) during which one or more cores was
executing on the GPU. For example, a 100% GPU utilization
means all of the GPU cores are busy with other applications
in the last sample period. To this end, we introduce a number
of early-exit heads (hd j, where j = 1..S) in the Dss decoder
that are corresponding to different output video qualities. See
Figure 9. For example, if there are 5 exits in the network,
then each exit depth outputs ×16, ×8, ×4 and ×2 smaller in
resolution than the original image, with the final exit as the
original reconstruction. Here, the very first early exit outputs
a low quality while the final exit outputs higher quality. There
has been similar early exit networks used in the literature for
various tasks [28, 37].

In Swift, we define a loss function at each exit and opti-
mize the training objective of the decoder at all exits. The
decoder is trained by introducing additional L1 reconstruction

5here the depth refers to the number of layers in the neural network.

losses, so that the outputs of each of the early-exit heads mini-
mizes the difference with the original input (I). The objective
function is as shown below:

Lrec =
1
L

L−1

∑
i=0

[
∥D(ci)− ri∥1︸ ︷︷ ︸

residual quality loss

+
1

S+1

S

∑
j=0

∥∥∥Dss
hd j

(⊕i
k=0ck)− I

∥∥∥
1︸ ︷︷ ︸

image quality loss

]

1 2 3 4 5 6 7 8 9 10
No of Layers

1
2

3
4

E
xi

t D
ep

th

28

30

32

P
S

N
R

 (d
B

)

Figure 10: Quality matrix as a
function of exit depth and the
number of layered codes.

Here, S is the number
of exits. Given a com-
bination of these multi-
ple exits and downloaded
codes, the decoder outputs
the quality corresponding
to both dimensions. Fig-
ure 10 shows the heatmap
of average video quality
when the client decodes
different number layered codes while exiting at different
depths, for UVG videos described in §6.1. For example, if the
client only fetches the base layer (shown as 1 in the figure)
and exits at depth 1, the quality of the decoded segment is
28dB. However, if the client decodes 4 layers and decodes to
completion (exit at depth 4), the quality of the decoded seg-
ment increases to 32 dB. Note here that the number of layered
codes that can be fetched depends on the network capacity
while the exit depth depends on the compute capacity.

At runtime, Swift decoder decides on when to exit depend-
ing on the GPU capacity. The GPU capacity determines the
latency in decoding a segment by computing until different
depths. Given a GPU capacity, Swift chooses the maximum
depth such that the segment will be decoded without incurring
any stalls because the buffer is empty. In §5 we discuss how
the client chooses the decoder and obtains the relationship
between decode latency and exit depth.

4.2 Adapting ABR for Layered Neural Codecs
A traditional ABR algorithm [31,35,52] using regular codecs
takes as input the available throughput, buffer levels, and
details about the future video segments. The algorithm outputs
the quality of the video segment to download next. Swift
needs to adapt existing ABR algorithms to work with layered
neural codecs. We describe this adaptation in terms of changes
to ABR’s output, input, and the objective function. We then
discuss how we instantiate the ABR algorithm with these
changes. See Figure 11 for an overview. In the discussion
below, we assume that the ABR algorithm is run at the server;
but it can be adapted to run at the client.
Output: The crucial change to Swift’s ABR is that unlike
traditional ABR, our algorithm can make one of two choices:
download the base layer (i.e., the code with lowest quality)
of a future segment or, download an enhancement layer of
one of the buffered video segments (that is not played yet) to

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 109

Network

ABR
algorithm GPU

Decoder

GPU capacityNetwork
capacityDownload

decision

Client
buffer

Sizes, playback times Profiled
decoded quality

Base and
enhancement
layers of
segments

Segments

Client sideServer side

Decoder
profile

Historical decoded quality

Figure 11: Swift’s video streaming pipeline.

enhance quality. It makes this determination based on a (new)
set of inputs and the objective function. This change to the
output is needed for streaming algorithms that use layered
code, including Grad [31], the state-of-the-art streaming that
uses layered coding. We compare the performance of Swift
to Grad in §6.

Input: Swift introduces two additional inputs to the ABR
to take into account the compute variability while decoding.
ABR takes as input a matrix that maps the quality of the
decoded segment against compute capacity needed for this
decoding (similar to Figure 10). This quality matrix is gener-
ated offline at the server for each video segment for different
compute capacities i.e., for all combinations of layers and
exit depths. The next input is the current GPU capacity at
the client. Since we run the ABR algorithm at the server, this
information is sent by the client in the segment request packet.
If the ABR algorithm is run on the client, the GPU capacity
is readily available there. In this case the quality matrix at the
server can be sent as a part of the manifest file.

The second change is with respect to segments down-
loaded/buffered at the client but not yet played. Swift’s ABR
needs information about these segments to makes it choice.
Specifically, this includes i) the size of the remaining layers
for current/buffered segments, ii) the playback time of all
segments in the buffer, to determine if the segment can be
enhanced before playback. In addition to that, we input the
history of the decoded quality of the last k displayed segments
to reduce variation in quality (this is often called smoothness
and is an important metric for improving QoE).

Objective function: The video Quality of Experience (QoE)
is typically captured using three metrics: i) playback quality
(Q), i.e., the quality of the downloaded segments and ii) re-
buffering ratio (R) that measures how often the video stalls
because the buffer is empty, iii) smoothness (S) that mea-
sures fluctuation in quality. Formally, QoE = Q−αR−βS,
where α and β are the coefficients to control the penalties of
rebuffering and smoothness [31, 35, 52]. Since Swift’s de-
coding performance is variable, it may not always provide the
best quality that is possible from the downloaded segments.
So instead, the objective function in Swift takes into account
the quality of the decoded segment (Qd) instead of the down-
loaded segment. Similarly, we compute the smoothness from
the quality of decoded segments (Sd) instead of downloaded
qualities.

5 Implementation and System Setup

Swift’s end-to-end implementation includes its layered neu-
ral codecs and the ABR protocol presented in §3.1 and §4.

5.1 Layered Codec Implementation

We implement our layered coding on top of VCII [60]. VCII
is a state-of-the-art neural codec that is learnt over an Autoen-
coder network. VCII achieves compression efficiency close to
state-of-the-art regular (non-neural) video codecs. Similar to
regular codecs, VCII does not produce layered codes. Instead,
we implement the layered encoder over VCII as described
in §3.2. For the decoder at the client, similarly, we modify
the loss function to incorporate the single-shot decoding and
multi-exit decoder capability. Since our layered technique can
be applied as a general extension to any codec, we do not
need to change the internal codec logic.

After designing the new encoder/decoder over VCII, the
encoder and decoder is retrained for 100K iterations on an
Nvidia RTX 2070 GPU. We use ADAM optimizer with a
batch size of 16. During the training, we use multiple ran-
domly cropped 64×64 image patches from the original im-
ages for generalization purposes. The model is trained to
produce up to 10 layered codes.

For training, we use the Kinetics dataset [13]. It has 37K
videos. We train on 27K, test on 10K videos. For more rig-
orous testing, we also test on completely different datasets
(more details about testing in §6). The training takes around
6 hours. Since the training will be done offline and only once,
the training time is reasonable.

5.2 Streaming Implementation

We implement our adapted ABR by modifying Pensieve [35].
For training the ABR model, we use k = 10 throughput and
compute capacity measurements passing through a 1D-CNN
with 128 filters, the quality matrix passed through a 2D-CNN,
and aggregated with other inputs described in §4.2. The learn-
ing rate and discount factor for the network are 0.001 and
0.99 respectively. We run the ABR algorithm every time a
segment or its layer (s) is downloaded. We train the model
using simulated network and compute traces, similar to that
used in Pensieve [35].

We run the ABR algorithm at the server. Similar to other
video streaming servers, the Swift server processes the video
segments and encodes them. The server also performs fine-
grained profiling of the decoder for two bits of information.
First, it creates a matrix of quality levels for different depths.
Second, it creates a mapping between GPU capacities and
time taken to finish decoding until different depths. Both of
this are used as input to the adapted ABR algorithm.

110 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

6 Swift Evaluation

We evaluate Swift both in terms of end-to-end streaming
and coding performance. We compare Swift with a suite
of streaming algorithms and its layered coding with com-
monly used regular codec (HEVC) [68] and layered codec
(SHVC) [3]. Our evaluation shows that:
• Overall QoE with Swift improves by 45% at the median

compared to the second best streaming performance.
• Swift uses 16% and 22% less bandwidth compared to

next best streaming algorithms that use regular and layered
codecs, respectively.

• Swift’s neural layered codec improves compression effi-
ciency by 58% over state-of-the-art layered codec SHVC.

6.1 Evaluation Methodology

In this section, we describe the methodology to evaluate
Swift’s end-to-end streaming performance.
Experimental set up. We conduct all experiments on a desk-
top with Nvidia 2070 RTX GPU as the client. Our evaluation
uses FullHD videos from UVG [5] dataset consisting of 7
videos for streaming.6 Each video is of 5 mins and is di-
vided into 5 second segments. Each experiment runs for all
segments in the video emulated over network capacity and
compute capacity traces (described below). The performance
is reported as an average across all the segments in the video.
Network and compute conditions. Most of our evaluation
is over real traces collected by FCC [8], similar to recent
video streaming works [35, 69]. We use 500 traces and filter
the traces to have a minimum bandwidth of 1 Mbps. After
filtering, FCC dataset has an average bandwidth of 8.2 Mbps
with a standard deviation of 3.6 Mbps. These traces capture
real world network throughput variations.

Unlike other video streaming approaches, Swift is affected
by compute capacity. To stress test our system, we evaluate
Swift by synthetically varying the client’s GPU capacity. We
modify the GPU capacity by choosing a random number of
the processes to be active in each time slot; the number of
processes active is modeled as a Poisson distribution with
λ = 5. Each process shares the GPU equally and we constrain
the maximum number of processes to 5.

An ideal scenario for Swift is when the GPU capacity
is fixed and 100% of the GPU is available. For complete-
ness, we run experiments under this condition. We refer to
this as Swift-C in the graphs. For a fair comparison, we
compare Swift with existing methods assuming they have
hardware accelerated decoding, while varying GPU resources
for Swift.
Metrics. We measure streaming performance using the fol-
lowing metrics: 1) video QoE (as defined in §4.2) normalized

6Note that the compression performance is evaluated using a more diverse
and standard set of video sequences (see §6.3.1).

against maximum QoE possible and averaged across all seg-
ments for all traces, 2) bandwidth usage, 3) reaction time (as
defined in §6.2.3).
Baselines. We compare the performance of Swift with mul-
tiple state-of-the-art streaming algorithms that use different
combinations of video coding and ABR algorithms:
• Grad [31]: Grad is the state-of-the-art algorithm using

layered coding technique (SHVC [12]) combined with
ABR. This is the closest system to Swift. Grad employs
a hybrid coding mechanism with SHVC to minimize the
cross layer compression overhead and uses a reinforcement
learning-based ABR adapted from Penseive [35].

• BOLA [52]: BOLA and the two alternatives below use
regular (not layered) codec H.265. BOLA uses an ABR
algorithm that maximizes the quality of the video segment
based on the buffer levels at the client. BOLA is commonly
used in the industry [2].

• Pensieve [35]: Pensieve is also built over H.265 [53] but
uses a reinforcement learning-based ABR algorithm.

• BOLA-FS [51]: BOLA-FS builds over H.265 [53] and
uses buffer levels at the client to choose the next video seg-
ment, similar to BOLA. However, different from BOLA,
BOLA-FS allows video quality upgrades, where low qual-
ity segments in the buffer are replaced with higher quality
by re-downloading them, when network conditions im-
prove. The problem is that the previously downloaded
segments are not used, resulting in wasted bandwidth.

In all of these cases, when using H.265 [53], we encode each
segment into six bitrates:{1Mbps, 5Mbps, 8Mbps, 12Mbps,
16Mbps}. For Grad, which uses scalable coding, we encode
the video in six layers to achieve similar quality levels. We
note that in both cases, encoding the videos into 6 quality
levels provided the best results. In case of H.265, it does not
support fine-grained adaptation to work well with more qual-
ity levels. In case of Grad/SHVC, the compression overhead
is too high when using more quality levels. For Swift, we
encode up to 10 layers for more flexible adaptation as there is
no compression overhead.

6.2 End-to-end Streaming Results

6.2.1 End-to-end QoE Results

Figure 12 shows the overall QoE of Swift compared with the
four alternatives, along with Swift-C. Swift-C represents the
best possible performance of Swift, when compute capacity
does not vary and GPU availability is 100%.

We first compare Swift with Grad and BOLA-FS which
can both upgrade quality of the buffered video segments when
network conditions improve. Swift improves QoE by 43%
and 48% compared to Grad and BOLA-FS respectively. In the
case of Grad, the problem is the high compression overhead
incurred in implementing layered coding (§2.3). In case of
BOLA-FS, there is a significant bandwidth wastage. When

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 111

0.5 1.0 1.5 2.0 2.5
Normalized Average QoE

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

Swift-C
Swift
Grad
BOLA-FS
Pensieve
BOLA

Figure 12: End-to-end QoE. Swift im-
proves QoE by 45% at the median compared
to the second best performing algorithm.

Better

Better

Figure 13: Breakdown of QoE. Overall, Swift has
higher quality level while having less rebuffering
and smoothness penalty.

Swift w/o
 Multi-Exit

Swift w/o
 ABR

 Changes

Swift0.00

0.25

0.50

0.75

No
rm

al
ize

d
Av

er
ag

e
Qo

E

Figure 14: Breakdown
Swift’s performance with
its individual components.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Bandwidth Usage

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

Swift
Grad
BOLA-FS
Pensieve
BOLA

Figure 15: Bandwidth usage of Swift compared to state-of-
the-art streaming systems. Swift improves bandwidth usage
especially with respect to systems that upgrade quality when
the network conditions improve, namely, BOLA-FS and Grad.

compared to Pensieve and BOLA, Swift outperforms by 67%
and 74% respectively. Both Pensieve and BOLA do not up-
grade video segment quality when the network improves,
resulting in poorer quality.

Swift-C (Figure 12) shows the QoE achieved when GPU
is not fluctuating and 100% of the GPU is used. As ex-
pected, Swift-C outperforms Swift under varying GPU.
We also evaluated Swift under WiFi (802.11ac) network
(client-server RTT: 20ms) without throttling the bandwidth
and Nvidia 2070 GPU at 100%. We find that, Swift still
outperforms the next-best-performing algorithm by 28%.

QoE breakdown Figure 13 shows the performance of the five
streaming algorithms in terms of each QoE component: aver-
age quality of the video segments, rebuffering, and smooth-
ness penalty. Swift improves average quality by 19% com-
pared to the next-best streaming alternative. Swift also de-
creases rebuffering and smoothness penalty by 8% and 11%,
respectively, compared to the next best streaming alternative.

Ablation study Figure 14 shows the impact of Swift’s
components: 1) Swift without multi-exit, 2) Swift without
adapted ABR. The figure shows that both components are
critical to the performance of Swift. Swift without multi-
exit performs poorly compared to the full Swift because the
decoder runs through the entire network even when GPU
capacity is low rather than exit early. This results in high de-
coding latency and in-turn high video stalls. In case of Swift
without adapting ABR, the system performs poorly because it
only adapts to network variations and not compute variations.

6.2.2 Bandwidth Benefits

Figure 15 shows the bandwidth benefits of Swift over ex-
isting streaming alternatives. Swift uses 16% and 22% less
bandwidth compared to Grad and BOLA-FS, incurred due
to compression overhead and wasted bandwidth respectively.
Pensieve and BOLA results in comparatively less bandwidth
waste, but cannot upgrade quality when the network improves
resulting in poorer video quality (Figure 12).

6.2.3 Reaction to Bandwidth Fluctuations

One key advantage of Swift, or layered coding in general,
is that it can adapt to bandwidth fluctuation without wasting
bandwidth (see Figure 3). To illustrate this, we use an example
network trace that starts with an average low bandwidth of
1 Mbps for 100 seconds and increases to average 18 Mbps for
the rest of the trace (250 secs).

To compare the performance of these different streaming
techniques, we measure the reaction time in two ways: 1)
reaction time to any quality (RTA), which is the elapsed time
between when the bandwidth increases to when the user expe-
riences any higher quality video, 2) reaction time to highest
quality (RTH), which is the elapsed time between when the
bandwidth increases to when the user experiences the highest
sustainable video quality.

Figure 16 shows one scenario how the different stream-
ing algorithms adapt to changing network condition for a
250 second sample trace. The black line shows the change
in throughput. Swift is the first to react to the change in
throughput of all the other alternatives. Figure 17 shows qual-
itatively that Swift reacts faster, both in terms of RTA and
RTH, compared to the alternatives.

Overall, the normalized average video segment quality of
Swift throughout the trace was 1.8 compared to the next best
alternative, which was 1.6. The reaction time is low even when
the throughput decreases instead of increasing (not shown).

6.3 Compression Results
We compare Swift’s codec with:

• HEVC [53]: This is the most commonly used video codec
for video streaming today. We use the libx265 library

112 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 50 100 150 200 250
Time (sec)

0

10

20

30
Bi

tra
te

 (M
bp

s)
Swift
Grad
BOLA-FS

Throughput
Pensieve
BOLA

Figure 16: Swift reacts faster compared to all other alterna-
tives. Throughput changes at the 100 second mark.

0 50 100
Reaction Time to Any Quality (s)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F Swift

Grad
BOLA-FS
Pensieve
BOLA

(a) Reaction time to any quality

0 50 100
Reaction Time to Highest Quality (s)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F Swift

Grad
BOLA-FS
Pensieve
BOLA

(b) Reaction time to highest quality

Figure 17: Reaction time. Swift reacts 2× and 2.5× faster
than Grad and BOLA-FS to reach highest quality, and 25%
and 40% faster to reach any high quality.

from FFMPEG [7]. We did not investigate the latest coding
standard VVC [59] as it is still in its early stage. We report
H.265 results with commonly used codec configuration.7

• Scalable HEVC (SHVC) [12]: This is a state-of-the-art
layered coding method, built as a scalable extension of
HEVC also known as SHVC [12]. We evaluate SHVC
using a reference implementation from [1].

We present the result averaged over three datasets. One
dataset is the test set from the Kinetics dataset (§5). The other
two datasets are VTL [6] and UVG [5] that are not used
in training. All VTL test videos are in 352×288 and UVG
videos are in 1920×1080 resolution.

6.3.1 Compression Efficiency

Figure 18 shows the video quality vs. video size in terms of
bits per pixel (BPP) after compression. The metrics we use
are: 1) PSNR – this computes the peak signal to noise ratio
between two images (higher PSNR indicates better quality
of reconstruction), and 2) MS-SSIM (multi-scale structural
similarity index method) – a perceptual quality metric taking
into account the structural information to weigh more on
the spatially close pixels with strong inter-dependencies [56].
For SHVC and Swift’s layered coding a total of 6 layers
are used to produce the plots – each point refers to the joint
performance of all 6 layers. For HEVC or H.265, each quality
point is encoded independently with a different bitrate.
Swift’s layered coding achieves 58% better compression

on average compared to traditional layered coding (SHVC).
7We use fast preset with group of pictures value 30.

0.0 0.2 0.4 0.6 0.8 1.0
Bits Per Pixel

32

34

36

PS
NR

 (d
B)

Swift's Layered Coding
HEVC
Scalable HEVC

(a) PSNR

0.0 0.2 0.4 0.6 0.8 1.0
Bits Per Pixel

0.8

0.9

1.0

M
S-

SS
IM

Swift's Layered Coding
HEVC
Scalable HEVC

(b) MS-SSIM

Figure 18: Compression efficiency. Swift’s Layered coding
outperforms the traditional layered coding SHVC and per-
forms close to HEVC.

1 2 3 4 5 6
Number of Layers

0

10

20

En
co

di
ng

 L
at

en
cy

 (s
)

Swift's Layered Coding
Scalable HEVC

(a) Encoding Latency

1 2 3 4 5 6
Number of Layers

0

20

40

De
co

di
ng

 L
at

en
cy

 (m
s)

Swift's Layered Coding
Scalable HEVC

(b) Decoding Latency

Figure 19: Encoding and Decoding latency. Both the encoding
and decoding latency Swift’s layered coding is significantly
less than traditional layered coding. More importantly, the
decoding latency of Swift’s layered coding is independent
of number of layered codes unlike traditional layered coding.

The compression difference is mainly due to the cross-layer
overhead incurred by SHVC. Swift’s compression is close
to that of HEVC with Swift performing poorer by 0.02 MS-
SSIM and 0.8 dB in the median case. However, the QoE when
using Swift is still better than the QoE than HEVC because
of the fine-grained rate adaptation benefits.

6.3.2 Encoding and Decoding Latency

In this set of experiments, we compare the encoding and
decoding latency of Swift’s codec and the state-of-the-art
layered codec (we omit regular HEVC codec here because
it has negligible latencies). The evaluation here benchmarks
the latency on a Desktop machine (Intel 12 core CPU with
Nvidia RTX 2070 GPU).8 Figure 19 shows average per-frame
encoding and decoding latency as a function of number of lay-
ers. There is 15× increase in encoding latency from layer one
to six in case of traditional layared coding (SHVC). Swift’s
layered coding has an encoding latency of 20ms for one layer
and increases proportionately by 6× for the sixth layer. While
improvements are still needed to get close to the encoding la-
tency of regular (non-layered) codec, the encoding latency in
Swift is significantly less than SHVC. More importantly, the
decoding latency of Swift’s layered coding is independent
of the number of layers, while SHVC increases proportion-
ately similar to encoding latency. This is due to the use of the
single-shot decoder of Swift (§3.3).

8Of note, HEVC and SHVC are run on the CPU and our layered coding
runs on GPU as it is the most efficient on the GPU.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 113

7 Discussion

Swift’s layered coding addresses compression overhead chal-
lenge highlighted in §2. Below we discuss some of the addi-
tional benefits as well as limitations of layered neural codecs.

7.1 Additional Opportunities of Neural Codecs
Flexible data-driven approach: In a learning-based ap-
proach to video coding the learning can be made video spe-
cific, for example, customized to video types [9], likely provid-
ing an opportunity to better learn video type-specific features.
This ultimately leads to streaming quality improvements rela-
tive to the one-size-fits-all solution that exists today.
Software-defined coding: Unlike existing codecs, neural
codecs do not need to be baked into a fixed hardware. They
are more easily upgradable. Common ML tools (e.g., Py-
torch with CUDA support) ensure that running neural codecs
on data parallel co-processors (e.g., GPUs) requires signifi-
cantly less development cycle compared to porting traditional
codecs. The softwarization of video coding gives the content
providers flexibility to integrate codec features on demand,
support agile codec development, provide royalty-free codecs,
and eliminate compatibility issues.
Design of application-specific codecs: Various video ana-
lytics solutions [21, 24, 62] often apply DNN-based analytics
(e.g., object detection and classification) on video streams
that are coded using traditional video codecs. However, this
results in suboptimal performance because they are originally
designed for human perceptual quality. Instead, neural codecs
are amenable to training with loss functions more tuned to-
wards appropriate analytics. Similarly, specialized codecs can
be designed for conferencing or surveillance that may have
constant backgrounds or other commonly appearing features
that, once learnt, can be compressed very efficiently.

7.2 Limitations of Neural Codecs
One key assumption of Swift is that the client devices need
to be equipped with GPUs or other similar accelerators to
run neural networks. Otherwise, the decoding latency could
become a bottleneck. While such accelerators are expected to
be commonplace, they do add to the device cost and energy
consumption. Also, the current design of Swift targets on-
demand video streaming because the iterative layered coding
does not offer real-time encoding. More work is needed on
the encoding side for applying Swift to live video applica-
tions (such as conferencing or live analytics) to overcome the
encoding latency challenges.

Finally, the QoE evaluations for Swift are done using a
learning based ABR algorithm based on Pensieve [35] and
Grad [31]. It may be challenging to generalize such algo-
rithms for unknown environments that can still occur in prac-
tice [34, 63]. However, given our characterization of the input

and output along with the objective function, we expect that
other algorithmic ABR approaches (such as BOLA [52] or
FUGU [63]) are equally applicable for Swift.

8 Related Work

Video streaming: There has been an extensive prior work
on improving QoE for regular video streaming. Much of
the previous work focuses on improving the adaptive bi-
trate algorithms by better predicting the available through-
put. Festive [25] predicts throughput using a harmonic mean.
BBA [23] and BOLA [52] take into account the buffer ca-
pacity to determine video bitrate. Fugu [63] and MPC [66]
use learning-based throughput prediction. There is a recent
interest in using reinforcement learning for adaptive bitrate se-
lection (e.g., Pensieve [35] and other follow-up work). Recent
solutions such as SENSEI [69] improves QoE by introducing
user sensitivity into ABR algorithms. Swift is able to extend
existing ABR algorithms for use with neural codecs and can
synergistically optimize network and compute resources to
improve QoE.
Video compression: Traditional compression methods such
as H.264/265 [53, 57] employ many algorithms that include
frame prediction [64, 70], transform coding and quantiza-
tion [18, 40, 48, 58], and entropy coding [54]. In the past
decade or two, there have been several studies on improving
both the compression efficiency and coding latency for these
algorithms on an individual basis [15, 16, 26, 49]. Similarly,
there have been extensive studies on improving the traditional
layered coding, while still facing challenges of compression
overhead and high latency [11, 14, 67]. Unlike all these algo-
rithmic codecs, there is a recent shift in codec design using
deep learning [32, 43, 44, 60]. Swift belongs to this second
category and develops layered coding on top of neural codecs.

9 Conclusions

We have described Swift, an adaptive video streaming system
using layered neural codecs that use deep learning. Swift’s
neural codec achieves efficient layered compression without
introducing cross layer compression overheads and eliminates
the dependency of decoding latency on the number of layers.
Swift extends existing ABR frameworks to accommodate
layered neural codecs and demonstrates significant perfor-
mance benefits compared to state-of-the-art adaptive video
streaming systems.

Acknowledgements

We thank our shepherd Junchen Jiang and the anonymous re-
viewers for their feedback, which greatly improved the paper.
This work was partially supported by the Partner University
Fund, the SUNY2020 ITSC, and a gift from Adobe.

114 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] A Reference Implementation of SHVC (Scalable ex-
tentino to HEVC). https://hevc.hhi.fraunhofer.de/shvc.

[2] Akamai players. https://players.akamai.com/players/dashjs.

[3] HEVC scalability extension.
https://hevc.hhi.fraunhofer.de/shvc.

[4] libvpx-vp9. https://trac.ffmpeg.org/wiki/Encode/VP9.

[5] Ultra video group. http://ultravideo.fi/.

[6] Video trace library. http://trace.eas.asu.edu/index.html.

[7] x265. https://trac.ffmpeg.org/wiki/Encode/H.265.

[8] Measuring broadband America,
FCC. https://www.fcc.gov/reports-
research/reports/measuring-broadband-america/raw-
data-measuring-broadband-america-eighth, 2018.

[9] Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul
Natsev, George Toderici, Balakrishnan Varadarajan,
and Sudheendra Vijayanarasimhan. Youtube-8m: A
large-scale video classification benchmark. preprint
arXiv:1609.08675, 2016.

[10] Shivang Aggarwal, Urjit Satish Sardesai, Viral Sinha,
Deen Dayal Mohan, Moinak Ghoshal, and Dimitrios
Koutsonikolas. LiBRA: learning-based link adaptation
leveraging PHY layer information in 60 GHz WLANs.
In ACM Confernece on Emerging Networking Experi-
ments and Technologies, pages 245–260, 2020.

[11] Ghufran Baig, Jian He, Mubashir Adnan Qureshi, Lili
Qiu, Guohai Chen, Peng Chen, and Yinliang Hu. Jigsaw:
Robust live 4K video streaming. In MobiCom, pages
1–16, 2019.

[12] Jill M Boyce, Yan Ye, Jianle Chen, and Adarsh K Rama-
subramonian. Overview of shvc: Scalable extensions of
the high efficiency video coding standard. IEEE Trans-
actions on Circuits and Systems for Video Technology,
26(1):20–34, 2015.

[13] Joao Carreira and Andrew Zisserman. Quo vadis, Action
recognition? A new model and the kinetics dataset. In
CVPR. IEEE, 2017.

[14] Jacob Chakareski, Sangeun Han, and Bernd Girod. Lay-
ered coding vs. multiple descriptions for video stream-
ing over multiple paths. Multimedia Systems, 10(4):275–
285, 2005.

[15] Mei-Juan Chen, Yu-De Wu, Chia-Hung Yeh, Kao-Min
Lin, and Shinfeng D Lin. Efficient CU and PU deci-
sion based on motion information for interprediction of
HEVC. IEEE Transactions on Industrial Informatics,
14(11):4735–4745, 2018.

[16] Santiago De-Luxán-Hernández, Valeri George, Jackie
Ma, Tung Nguyen, Heiko Schwarz, Detlev Marpe, and
Thomas Wiegand. An intra subpartition coding mode for
vvc. In 2019 IEEE International Conference on Image
Processing (ICIP), pages 1203–1207. IEEE, 2019.

[17] Anis Elgabli, Vaneet Aggarwal, Shuai Hao, Feng Qian,
and Subhabrata Sen. LBP: robust rate adaptation algo-
rithm for SVC video streaming. IEEE/ACM Transac-
tions on Networking, 26(4):1633–1645, 2018.

[18] Vivek K Goyal. Theoretical foundations of transform
coding. IEEE Signal Processing Magazine, 18(5):9–21,
2001.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[20] Geoffrey E Hinton and Ruslan R Salakhutdinov. Re-
ducing the dimensionality of data with neural networks.
science, 313(5786):504–507, 2006.

[21] Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodik,
Shivaram Venkataraman, Paramvir Bahl, Matthai Phili-
pose, Phillip B Gibbons, and Onur Mutlu. Focus: Query-
ing large video datasets with low latency and low cost.
In Usenix OSDI, pages 269–286, 2018.

[22] Hanzhang Hu, Debadeepta Dey, Martial Hebert, and
J Andrew Bagnell. Learning anytime predictions in
neural networks via adaptive loss balancing. In AAAI,
volume 33, pages 3812–3821, 2019.

[23] Te-Yuan Huang, Ramesh Johari, Nick McKeown,
Matthew Trunnell, and Mark Watson. A buffer-based
approach to rate adaptation: Evidence from a large video
streaming service. ACM SIGCOMM Computer Commu-
nication Review, 44(4):187–198, 2015.

[24] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik,
Siddhartha Sen, and Ion Stoica. Chameleon: scalable
adaptation of video analytics. In ACM SIGCOMM,
pages 253–266, 2018.

[25] Junchen Jiang, Vyas Sekar, and Hui Zhang. Improving
fairness, efficiency, and stability in http-based adaptive
video streaming with festive. IEEE/ACM Transactions
on Networking (ToN), 22(1):326–340, 2014.

[26] Y-H Kim, J-W Yoo, S-W Lee, J Shin, J Paik, and H-
K Jung. Adaptive mode decision for H.264 encoder.
Electronics letters, 40(19):1172–1173, 2004.

[27] PoLin Lai, Shan Liu, and Shawmin Lei. Low latency
directional filtering for inter-layer prediction in scalable
video coding using hevc. In 2013 Picture Coding Sym-
posium (PCS), pages 269–272. IEEE, 2013.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 115

[28] Stefanos Laskaridis, Alexandros Kouris, and Nicholas D
Lane. Adaptive inference through early-exit networks:
Design, challenges and directions. arXiv preprint
arXiv:2106.05022, 2021.

[29] Athanasios Leontaris and Pamela C Cosman. Drift-
resistant snr scalable video coding. IEEE transactions
on image processing, 15(8):2191–2197, 2006.

[30] Weiyao Lin, Krit Panusopone, David M Baylon, and
Ming-Ting Sun. A computation control motion esti-
mation method for complexity-scalable video coding.
IEEE transactions on circuits and systems for video
technology, 20(11):1533–1543, 2010.

[31] Yunzhuo Liu, Bo Jiang, Tian Guo, Ramesh K Sitaraman,
Don Towsley, and Xinbing Wang. Grad: Learning for
overhead-aware adaptive video streaming with scalable
video coding. In Proceedings of the 28th ACM Interna-
tional Conference on Multimedia, pages 349–357, 2020.

[32] Guo Lu, Wanli Ouyang, Dong Xu, Xiaoyun Zhang,
Chunlei Cai, and Zhiyong Gao. DVC: An end-to-end
deep video compression framework. In CVPR, pages
11006–11015, 2019.

[33] Kshiteej Mahajan, Arjun Balasubramanian, Arjun
Singhvi, Shivaram Venkataraman, Aditya Akella, Amar
Phanishayee, and Shuchi Chawla. Themis: Fair and effi-
cient GPU cluster scheduling. In 17th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 20), pages 289–304, 2020.

[34] Hongzi Mao, Shannon Chen, Drew Dimmery, Shaun
Singh, Drew Blaisdell, Yuandong Tian, Mohammad Al-
izadeh, and Eytan Bakshy. Real-world video adap-
tation with reinforcement learning. arXiv preprint
arXiv:2008.12858, 2020.

[35] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh.
Neural adaptive video streaming with pensieve. In ACM
SIGCOMM, pages 197–210. ACM, 2017.

[36] Steven McCanne, Martin Vetterli, and Van Jacobson.
Low-complexity video coding for receiver-driven lay-
ered multicast. IEEE journal on selected areas in com-
munications, 15(6):983–1001, 1997.

[37] Alessandro Montanari, Manuja Sharma, Dainius Jenkus,
Mohammed Alloulah, Lorena Qendro, and Fahim
Kawsar. ePerceptive: Energy Reactive Embedded In-
telligence for Batteryless Sensors. In Proceedings of
the 18th Conference on Embedded Networked Sensor
Systems, pages 382–394, 2020.

[38] Arvind Narayanan, Eman Ramadan, Jason Carpenter,
Qingxu Liu, Yu Liu, Feng Qian, and Zhi-Li Zhang. A
first look at commercial 5g performance on smartphones.

In Proceedings of The Web Conference 2020, pages 894–
905, 2020.

[39] Arvind Narayanan, Eman Ramadan, Rishabh Mehta,
Xinyue Hu, Qingxu Liu, Rostand AK Fezeu, Udhaya Ku-
mar Dayalan, Saurabh Verma, Peiqi Ji, Tao Li, et al. Lu-
mos5g: Mapping and predicting commercial mmwave
5g throughput. In Proceedings of the ACM Internet
Measurement Conference, pages 176–193, 2020.

[40] Tung Nguyen, Philipp Helle, Martin Winken, Benjamin
Bross, Detlev Marpe, Heiko Schwarz, and Thomas Wie-
gand. Transform coding techniques in hevc. IEEE Jour-
nal of Selected Topics in Signal Processing, 7(6):978–
989, 2013.

[41] Keiron O’Shea and Ryan Nash. An introduction
to convolutional neural networks. arXiv preprint
arXiv:1511.08458, 2015.

[42] Amy R Reibman, Leon Bottou, and Andrea Basso. Scal-
able video coding with managed drift. IEEE trans-
actions on circuits and systems for video technology,
13(2):131–140, 2003.

[43] Oren Rippel, Alexander G Anderson, Kedar Tatwawadi,
Sanjay Nair, Craig Lytle, and Lubomir Bourdev. Elf-
vc: Efficient learned flexible-rate video coding. arXiv
preprint arXiv:2104.14335, 2021.

[44] Oren Rippel, Sanjay Nair, Carissa Lew, Steve Branson,
Alexander G Anderson, and Lubomir Bourdev. Learned
video compression. preprint arXiv:1811.06981, 2018.

[45] Francisco Romero, Qian Li, Neeraja J Yadwadkar, and
Christos Kozyrakis. Infaas: Automated model-less infer-
ence serving. In 2021 Usenix ATC 21, pages 397–411,
2021.

[46] Swetank Kumar Saha, Shivang Aggarwal, Rohan Pathak,
Dimitrios Koutsonikolas, and Joerg Widmer. MuSher:
An Agile Multipath-TCP Scheduler for Dual-Band
802.11 ad/ac Wireless LANs. In The 25th Annual In-
ternational Conference on Mobile Computing and Net-
working, pages 1–16, 2019.

[47] Heiko Schwarz, Detlev Marpe, and Thomas Wiegand.
Overview of the scalable video coding extension of the
H.264/AVC standard. IEEE Transactions on circuits and
systems for video technology, 17(9):1103–1120, 2007.

[48] Heiko Schwarz, Tung Nguyen, Detlev Marpe, and
Thomas Wiegand. Hybrid video coding with trellis-
coded quantization. In 2019 Data Compression Confer-
ence (DCC), pages 182–191. IEEE, 2019.

[49] Mahmut E Sinangil, Vivienne Sze, Minhua Zhou, and
Anantha P Chandrakasan. Cost and coding efficient

116 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

motion estimation design considerations for high effi-
ciency video coding (HEVC) standard. IEEE Journal
of selected topics in signal processing, 7(6):1017–1028,
2013.

[50] Iraj Sodagar. The MPEG-DASH standard for multime-
dia streaming over the internet. IEEE MultiMedia, (4),
2011.

[51] Kevin Spiteri, Ramesh Sitaraman, and Daniel Sparacio.
From theory to practice: Improving bitrate adaptation in
the dash reference player. ACM Transactions on Multi-
media Computing, Communications, and Applications
(TOMM), 15(2s):1–29, 2019.

[52] Kevin Spiteri, Rahul Urgaonkar, and Ramesh K Sitara-
man. Bola: Near-optimal bitrate adaptation for on-
line videos. IEEE/ACM Transactions on Networking,
28(4):1698–1711, 2020.

[53] Gary J Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and
Thomas Wiegand. Overview of the high efficiency video
coding (HEVC) standard. IEEE Transactions on circuits
and systems for video technology, 22(12):1649–1668,
2012.

[54] Vivienne Sze and Madhukar Budagavi. High Through-
put CABAC Entropy Coding in HEVC. IEEE Trans-
actions on Circuits and Systems for Video Technology,
22(12):1778–1791, 2012.

[55] George Toderici, Damien Vincent, Nick Johnston, Sung
Jin Hwang, David Minnen, Joel Shor, and Michele Cov-
ell. Full resolution image compression with recurrent
neural networks. In CVPR, pages 5306–5314, 2017.

[56] Zhou Wang, Eero P Simoncelli, and Alan C Bovik. Mul-
tiscale structural similarity for image quality assessment.
In The Thrity-Seventh Asilomar Conference on Signals,
Systems & Computers, 2003, volume 2, pages 1398–
1402. Ieee, 2003.

[57] Thomas Wiegand, Gary J Sullivan, Gisle Bjontegaard,
and Ajay Luthra. Overview of the H.264/AVC video
coding standard. IEEE Transactions on circuits and
systems for video technology, 13(7):560–576, 2003.

[58] Mathias Wien. Variable block-size transforms for
H.264/AVC. IEEE Transactions on Circuits and Sys-
tems for Video Technology, 13(7):604–613, 2003.

[59] Mathias Wien and Benjamin Bross. Versatile video
coding–algorithms and specification. In 2020 IEEE
International Conference on Visual Communications
and Image Processing (VCIP), pages 1–3. IEEE, 2020.

[60] Chao-Yuan Wu, Nayan Singhal, and Philipp Krahenbuhl.
Video compression through image interpolation. In
ECCV, pages 416–431, 2018.

[61] Feng Wu, Shipeng Li, and Ya-Qin Zhang. A framework
for efficient progressive fine granularity scalable video
coding. IEEE transactions on Circuits and Systems for
Video Technology, 11(3):332–344, 2001.

[62] Xiufeng Xie and Kyu-Han Kim. Source compression
with bounded dnn perception loss for iot edge computer
vision. In ACM MobiCom, pages 1–16, 2019.

[63] Francis Y Yan, Hudson Ayers, Chenzhi Zhu, Sadjad
Fouladi, James Hong, Keyi Zhang, Philip Levis, and
Keith Winstein. Learning in situ: a randomized ex-
periment in video streaming. In 17th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 20), pages 495–511, 2020.

[64] Jiheng Yang, Baocai Yin, Yanfeng Sun, and Nan Zhang.
A block-matching based intra frame prediction for
H.264/AVC. In 2006 IEEE International Conference on
Multimedia and Expo, pages 705–708. IEEE, 2006.

[65] Ren Yang, Fabian Mentzer, Luc Van Gool, and Radu
Timofte. Learning for video compression with hierarchi-
cal quality and recurrent enhancement. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 6628–6637, 2020.

[66] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno
Sinopoli. A Control-theoretic Approach for Dynamic
Adaptive Video Streaming over HTTP. In ACM SIG-
COMM Computer Communication Review, volume 45,
pages 325–338. ACM, 2015.

[67] Sangki Yun, Daehyeok Kim, Xiaofan Lu, and Lili Qiu.
Optimized layered integrated video encoding. In INFO-
COM, pages 19–27. IEEE, 2015.

[68] Alireza Zare, Alireza Aminlou, Miska M Hannuksela,
and Moncef Gabbouj. HEVC-compliant tile-based
streaming of panoramic video for virtual reality appli-
cations. In Proceedings of the 24th ACM international
conference on Multimedia, pages 601–605. ACM, 2016.

[69] Xu Zhang, Yiyang Ou, Siddhartha Sen, and Junchen
Jiang. Sensei: Aligning video streaming quality with
dynamic user sensitivity. In NSDI, pages 303–320, 2021.

[70] Shiping Zhu, Shupei Zhang, and Chenhao Ran. An im-
proved inter-frame prediction algorithm for video cod-
ing based on fractal and H.264. IEEE Access, 5:18715–
18724, 2017.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 117

Figure 20: An example of a base neural codec and its internal logic to encode and decode a video frame in a single iteration.

A Appendix. Example Neural Codec

Swift’s layered neural coding is designed as a generic ex-
tension that can be implemented on top of any neural codec,
and hence throughout the paper, we considered neural codec
as a blackbox without discussing the internal details of codec
logic. In this section, we present an example codec for a bet-
ter understanding of neural coding principles. This example
follows the design of VCII [60], the same design we also used
in our implementation.

In general, most of the existing neural codecs follow tra-
ditional concepts of I, P, and B frames when compressing
a video [22, 43, 60]. An I frame is compressed much like
an image with no reference, and P/B frames reference other
frames for reconstruction as they encode motion and residual
information relative to the reference frames. Swift adopts a
similar approach of compressing I frames and P/B frames sep-
arately by using i) a neural image codec [55] for compressing
I frames, and ii) a neural video codec [60] for compressing
P/B frames. The output for each of these frames after the en-
coding stage from the Autoencoder, is a neural representation,

i.e., code bits with floating point values. The code bits for I
frames represent directly the frame data, however, the code
bits P/B frames represent motion and residual information
with respect to the reference frames.

Figure 20 shows an example codec structure followed by
[55,60] as well as Swift. It contains three key parts: encoder,
binarizer, and decoder. The encoder takes the original video
frame as input and applies convolutions (along with an LSTM
block) to downscale the frame into a low dimensional vector.
In our example, we have four such blocks, each downscaling
the frame resolution by half. For example, when we encode
a 1280× 720 frame, the output of encoding stage contains
80×45×512 resolution with floating point representations.
After the encoding, a binarizer converts the floats to a binary
bitstream with the same resolution but packs each float in b
bits. Optionally, these bits can be further passed through an
entropy encoder [54] to compress the bitstream efficiently.
During the decoding process, a reverse process is learned by
upsampling the frame resolution at each stage in the network,
achieving the original resolution at the final stage.

118 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Ekya: Continuous Learning of Video Analytics Models on Edge Compute Servers

Romil Bhardwaj1,2, Zhengxu Xia3, Ganesh Ananthanarayanan1, Junchen Jiang3, Yuanchao Shu1, Nikolaos
Karianakis1, Kevin Hsieh1, Paramvir Bahl1, and Ion Stoica2

1Microsoft, 2UC Berkeley, 3University of Chicago

Abstract
Video analytics applications use edge compute servers for
processing videos. Compressed models that are deployed on
the edge servers for inference suffer from data drift where the
live video data diverges from the training data. Continuous
learning handles data drift by periodically retraining the mod-
els on new data. Our work addresses the challenge of jointly
supporting inference and retraining tasks on edge servers,
which requires navigating the fundamental tradeoff between
the retrained model’s accuracy and the inference accuracy.
Our solution Ekya balances this tradeoff across multiple mod-
els and uses a micro-profiler to identify the models most in
need of retraining. Ekya’s accuracy gain compared to a base-
line scheduler is 29% higher, and the baseline requires 4×
more GPU resources to achieve the same accuracy as Ekya.

1 Introduction
Video analytics applications, such as for urban mobility [2, 5]
and smart cars [27], are being powered by deep neural network
(DNN) models for object detection and classification, e.g.,
Yolo [36], ResNet [39] and EfficientNet [61]. Video analytics
deployments stream the videos to edge servers [14, 15] placed
on-premise [13, 38, 81, 84]. Edge computation is preferred
for video analytics as it does not require expensive network
links to stream videos to the cloud [81], while also ensuring
privacy of the videos (e.g., many European cities mandate
against streaming their videos to the cloud [11, 87]).

Edge compute is provisioned with limited resources (e.g.,
with weak GPUs [14, 15]). This limitation is worsened by the
mismatch between the growth rate of the compute demands
of models and the compute cycles of processors [12, 90].
As a result, edge deployments rely on model compression
[67, 86, 94]. The compressed DNNs are initially trained on
representative data from each video stream, but while in the
field, they are affected by data drift, i.e., the live video data
diverges significantly from the data that was used for training
[23, 52, 77, 79]. Cameras in streets and smart cars encounter
varying scenes over time, e.g., lighting, crowd densities, and
changing object mixes. It is difficult to exhaustively cover all

these variations in the training, especially since even subtle
variations affect the accuracy. As a result, there is a sizable
drop in the accuracy of edge DNNs due to data drift (by 22%;
§2.3). In fact, the fewer weights and shallower architectures
of compressed DNNs often make them unsuited to provide
high accuracy when trained with large variations in the data.
Continuous model retraining. A promising approach to
address data drift is continuous learning. The edge DNNs are
incrementally retrained on new video samples even as some
earlier knowledge is retained [28, 83]. Continuous learning
techniques retrain the DNNs periodically [72, 93]; we refer to
the period between two retrainings as the “retraining window”
and use a sample of the data that is accumulated during each
window for retraining. Such ongoing learning [42, 89, 96]
helps the compressed models maintain high accuracy.

Edge servers use their GPUs [15] for DNN inference on
many live video streams (e.g., traffic cameras in a city).
Adding continuous training to edge servers presents a tradeoff
between the live inference accuracy and drop in accuracy due
to data drift. Allocating more resources to the retraining job
allows it to finish faster and provide a more accurate model
sooner. At the same time, during the retraining, taking away
resources from the inference job lowers its accuracy (because
it may have to sample the frames of the video to be analyzed).

Central to the resource demand and accuracy of the jobs
are their configurations. For retraining jobs, configurations
refer to the hyperparameters, e.g., number of training epochs,
that substantially impact the resource demand and accuracies
(§3.1). The improvement in accuracy due to retraining also
depends on how much the characteristics of the live videos
have changed. For inference jobs, configurations like frame
sampling and resolution impact the accuracy and resources
needed to keep up with analyzing the live video [22, 37].
Problem statement. We make the following decisions for
retraining. (1) in each retraining window, decide which of the
edge models to retrain; (2) allocate the edge server’s GPU
resources among the retraining and inference jobs, and (3)
select the configurations of the retraining and inference jobs.
We also constraint our decisions such that the inference ac-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 119

curacy at any point in time does not drop below a minimum
value (so that the outputs continue to remain useful to the
application). Our objective in making the above three deci-
sions is to maximize the inference accuracy averaged over
the retraining window (aggregating the accuracies during and
after the retrainings). Maximizing inference accuracy over
the retraining window creates new challenges as it is different
from (i) video inference systems that optimize only the instan-
taneous accuracy [22, 32, 37], (ii) model training systems that
optimize only the eventual accuracy [8, 17, 69, 85, 88, 95].

Addressing the fundamental tradeoff between the retrained
model’s accuracy and the inference accuracy is computation-
ally complex. First, the decision space is multi-dimensional
consisting of a diverse set of retraining and inference configu-
rations, and choices of resource allocations over time. Second,
it is difficult to know the performance of different configura-
tions (in resource usage and accuracy) as it requires actually
retraining using different configurations. Data drift exacer-
bates these challenges because a decision that works well in a
retraining window may not do so in the future.
Solution components. Our solution Ekya has two main com-
ponents: a resource scheduler and a performance estimator.

In each retraining window, the resource scheduler makes
the three decisions listed above in our problem statement. In
its decisions, Ekya’s scheduler prioritizes retraining the mod-
els of those video streams whose characteristics have changed
the most because these models have been most affected by
data drift. The scheduler decides against retraining the models
which do not improve our target metric. To prune the large
decision space, the scheduler uses the following techniques.
First, it simplifies the spatial complexity by considering GPU
allocations only in coarse fractions (e.g., 10%) that are ac-
curate enough for the scheduling decisions, while also being
mindful of the granularity achievable in modern GPUs [4].
Second, it does not change allocations to jobs during the re-
training, thus largely sidestepping the temporal complexity.
Finally, our micro-profiler (described below) prunes the list
of configurations to only the promising options.

To make efficient choices of configurations, the resource
scheduler relies on estimates of accuracy after the retraining
and the resource demands. We have designed a micro-profiler
that observes the accuracy of the retraining configurations on a
small subset of the training data in the retraining window with
just a few epochs. It uses these observations to extrapolate the
accuracies when retrained on a larger dataset for many more
epochs. Further, we restrict the micro-profiling to only a small
set of promising retraining configurations. These techniques
result in Ekya’s micro-profiler being 100× more efficient
than exhaustive profiling while still estimating accuracies
with an error of 5.8%. To estimate the resource demands,
the micro-profiler measures the retraining duration per epoch
when 100% of the GPU is allocated, and scales for different
allocations, epochs, and training data sizes.
Implementation and Evaluation. We have evaluated Ekya

Edge Server
Cameras

Local
network

Retraining & Inference
Containers

(GPUs)

Figure 1: Cameras connect to the edge server, with consumer-
grade GPUs for DNN inference and retraining containers.

using a system implementation and trace-driven simulation.
We used video workloads from dashboard cameras of smart
cars (Waymo [68] and Cityscapes [57]) as well as from traffic
and building cameras over 24 hours. Ekya’s accuracy com-
pared to competing baselines is 29% higher. As a measure of
Ekya’s efficiency, attaining the same accuracy as Ekya will
require 4× more GPU resources on the edge for the baseline.
Contributions: Our work makes the following contributions.
1) We introduce the metric of inference accuracy averaged
over the retraining window for continuous training systems.
2) We design an efficient micro-profiler to estimate the benefits
and costs of retraining edge DNN models.
3) We design a scalable resource scheduler for joint retraining
and inference on edge servers.
4) We release Ekya’s source code and video datasets with
135 hours of videos and corresponding labels to spur future
research in continuous learning at the edge. See aka.ms/ekya.

2 Continuous training on edge compute
2.1 Edge Computing for Video Analytics

Video analytics deployments commonly analyze videos on
edge servers placed on-premise (e.g., from AWS [14] or Azure
[15]). A typical edge server supports tens of video streams
[19], e.g., on the cameras in a building, with customized mod-
els for each stream [59] (see Figure 1).Video analytics ap-
plications adopt edge computing for the following reasons
[13, 38, 81].

1) Edge deployments are often in locations where the up-
link network to the cloud is expensive for shipping continuous
video streams, e.g., in oil rigs with expensive satellite network
or smart cars with data-limited cellular network. 1

2) Network links out of the edge locations experience out-
ages [76, 81]. Edge compute provides robustness against
disconnection to the cloud [26] and prevents disruptions [20].

3) Videos often contain sensitive and private data that users
do not want sent to the cloud (e.g., many EU cities legally
mandate that traffic videos be processed on-premise [11, 87]).

Thus, due to reasons of network cost and video privacy, it
is preferred to run both inference and retraining on the edge
compute device itself without relying on the cloud. In fact,
with bandwidths typical in edge deployments, cloud-based
solutions are slower and result in lower accuracies (§6.4).

1The uplinks of LTE cellular or satellite links is 3− 10Mb/s [58, 65],
which can only support a couple of 1080p 30 fps HD video streams whereas
a typical deployment has many more cameras [81].

120 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://aka.ms/ekya

2.2 Compressed DNN Models and Data drift

Advances in computer vision research have led to high-
accuracy DNN models that achieve high accuracy with a large
number of weights, deep architectures, and copious training
data. While highly accurate, using these heavy and general
DNNs for video analytics is both expensive and slow [22, 34],
which make them unfit for resource-constrained edge comput-
ing. The most common approach to addressing the resource
constraints on the edge is to train and deploy specialized
and compressed DNNs [53, 60, 64, 67, 86, 94], which con-
sist of far fewer weights and shallower architectures. For in-
stance, Microsoft’s edge video analytics platform [5] uses
a compressed DNN (TinyYOLO [75]) for efficiency. Simi-
larly, Google released Learn2Compress[2] for edge devices
to automate the generation of compressed models from pro-
prietary models. These compressed DNNs are trained to only
recognize the limited objects and scenes specific to each video
stream. In other words, to maintain high accuracy, they forego
generality for improved compute efficiency [22, 34, 72].

Data drift. As specialized edge DNNs have shallower archi-
tectures than general DNNs, they can only memorize limited
amount of object appearances, object classes, and scenes. As
a result, specialized edge DNNs are particularly vulnerable
to data drift [23, 52, 77, 79], where live video data diverges
significantly from the initial training data. For example, varia-
tions in the object pose, scene density (e.g. rush hours), and
lighting (e.g., sunny vs. rainy days) over time make it difficult
for traffic cameras to accurately identify the objects of interest
(cars, bicycles, road signs). Cameras in modern cars observe
vastly varying scenes (e.g., building types, crowd sizes) as
they move through different neighborhoods and cities. Fur-
ther, the distribution of the objects change over time, which
reduces the edge model’s accuracy [93, 99]. Due to their abil-
ity to memorize limited amount of object variations, edge
DNNs have to be continuously updated with recent data and
changing object distributions to maintain a high accuracy.

Continuous training. The preferred approach, that has
gained significant attention, is for edge DNNs to continu-
ously learn as they incrementally observe new samples over
time [42, 89, 96]. The high temporal locality of videos allows
the edge DNNs to focus their learning on the most recent
object appearances and object classes [72, 82]. In Ekya, we
use a modified version of iCaRL[89] learning algorithm to
on-board new classes, as well as adapt to the changing char-
acteristics of the existing classes. Since manual labeling is
not feasible for continuous training systems on the edge, the
labels for the retraining are obtained from a “golden model” -
a highly accurate (87% and 84% accuracy on Cityscapes and
Waymo datasets, respectively) but expensive model (deeper
architecture with large number of weights). The golden model
cannot keep up with inference on the live videos and we use
it to label only a small fraction of the videos in the retrain-
ing window. Our approach is essentially that of supervising a

(a) Class Distribution (b) Accuracy

(c) Accuracy vs data drift (d) Person class variations

Figure 2: Continuous learning in the Cityscapes dataset. Shift
in class distributions (a) across windows necessitates continuous
learning (b). Model accuracy is not only affected by class distri-
bution shifts (c), but also by changes in object appearances (d).

low-cost “student” model with a high-cost “teacher” model
(or knowledge distillation [33]), and this has been broadly
applied in computer vision literature [42, 72, 93, 96].

2.3 Accuracy benefits of continuous learning

To show the benefits of continuous learning, we use the video
stream from one example city in the Cityscapes dataset [57]
that consists of videos from dashboard cameras in many cities.
In our evaluation in §6, we use both moving dashboard cam-
eras as well as static cameras over long time periods. We
divide the video data in our example city into ten fixed re-
training windows (200s in this example).
Understanding sources of data drift. Figure 2a shows the
change of object class distributions across windows. The ini-
tial five windows see a fair amount of persons and bicycles,
but bicycles rarely show up in windows 6 and 7, while the
share of persons varies considerably across windows 6−10.
Figure 2c summarizes the effect of this data drift on model
accuracy in five independent video streams, C1-C5. For each
stream, we train a baseline model on the first five windows,
and test it against five windows in the future and use cosine
similarity to measure the class distribution shift for each win-
dow. Though accuracy generally improves when the model is
used on windows with similar class distributions (high cosine
similarity), the relationship is not guaranteed (C2, C3). This
is because class distribution shift is not the only form of data
drift. Illumination, pose and appearance differences also af-
fect model performance (e.g. clothing and angles for objects
in the person class vary significantly; Figure 2d).
Improving accuracy with continuous learning. Figure 2b
plots inference accuracy of an edge DNN (a compressed
ResNet18 classifier) in the last five windows using different
training options. (1) Training a compressed ResNet18 with
video data on all other cities of the Cityscapes dataset does not

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 121

(a) Effect of Hyperparameters (b) Resource-accuracy

Figure 3: Measuring retraining configurations. GPU seconds
refers to the duration taken for retraining with 100% GPU allo-
cation. (a) varies two example hyperparameters, keeping others
constant. Note the Pareto boundary of configurations in (b); for
every non-Pareto configuration, there is at least one Pareto con-
figuration that is better than it in both accuracy and GPU cost.

result in good performance. (2) Unsurprisingly, we observe
that training the edge DNN once using data from the first
five windows of this example city improves the accuracy. (3)
Continuous retraining using the most recent data for training
achieves the highest accuracy consistently. Its accuracy is
higher than the other options by up to 22%.

Interestingly, using the data from the first five windows
to train the larger ResNet101 DNN (not graphed) achieves
better accuracy than the continuously retrained ResNet18.
The substantially better accuracy of ResNet101 compared
to ResNet18 when trained on the same data of the first five
windows also shows that this training data was indeed fairly
representative. But the lightweight ResNet18’s weights and
architecture limits its ability to learn and is a key contributor
to its lower accuracy. Nonetheless, ResNet101 is 13× slower
than the compressed ResNet18 [21]. This makes the efficient
ResNet18 more suited for edge deployments and continuous
learning enables it to maintain high accuracy even with data
drift. Therefore, the need for continuous training of edge
DNNs is ongoing and not just during a “ramp-up” phase.

3 Scheduling retraining and inference jointly
We propose joint retraining and inference on edge servers.
The joint approach utilizes resources better than statically pro-
visioning compute for retraining. Since retraining is periodic
[72, 93] with far higher compute demands than inference,
static provisioning causes idling. Compared to uploading
videos to the cloud for retraining, our approach has advan-
tages in privacy (§2.1), and network costs and accuracy (§6.4).

3.1 Configuration diversity of retraining and inference

Tradeoffs in retraining configurations. The hyperparame-
ters for retraining, or “retraining configurations”, influence
the resource demands and accuracy. Retraining fewer layers
of the DNN (or, “freezing” more layers) consumes lesser GPU
resources, as does training on fewer data samples, but they
also produce a model with lower accuracy; Figure 3a.

Figure 3b illustrates the resource-accuracy trade-offs for an
edge DNN (ResNet18) with various hyperparameters: number
of training epochs, batch sizes, number of neurons in the last

Configuration Retraining Window 1 Retraining Window 2

End
Accuracy

GPU
seconds

End
Accuracy

GPU
seconds

Video A Cfg1A 75 85 95 90

Video A Cfg2A (*) 70 65 90 40

Video B Cfg1B 90 80 98 80

Video B Cfg2B (*) 85 50 90 70

Table 1: Hyperparameter configurations for retraining jobs in
Figure 4’s example. At the start of retraining window 1, camera
A’s inference model has an accuracy of 65% and camera B’s
inference model has an accuracy of 50%. Asterisk (*) denotes
the configurations picked in Figures 4b and 4d.

layer, number of frozen layers, and fraction of training data.
We make two observations. First, there is a wide spread in the
resource usage (measured in GPU seconds), by upto a factor
of 200×. Second, higher resource usage does not always yield
higher accuracy. For the two configurations circled in Figure
3b, their GPU demands vary by 6× even though their accu-
racies are the same (∼ 76%). Thus, careful selection of the
configurations considerably impacts the resource efficiency.
Moreover, the accuracy spread across configurations is depen-
dent on the extent of data-drift. Retraining on visually similar
data with little drift results in a narrower spread. With the
changing characteristics of videos, it is challenging to effi-
ciently obtain the resource-accuracy profiles for retraining.
Tradeoffs in inference configurations. Inference pipelines
also allow for flexibility in their resource demands at the cost
of accuracy through configurations to downsize and sample
frames [59]. Reducing the resource allocation to inference
pipelines increases the processing latency per frame, which
then calls for sub-sampling the incoming frames to match
the processing rate, that in turn reduces inference accuracy
[32]. Prior work has made dramatic advancements in profilers
that efficiently obtain the resource-accuracy relationship for
inference configurations [37]. We use these efficient inference
profilers in our solution, and also to ensure that the inference
pipelines keep up with analyzing the live video streams.

3.2 Illustrative scheduling example

We use an example with 3 GPUs and two video streams, A
and B, to show the considerations in scheduling inference
and retraining tasks jointly. Each retraining uses data samples
accumulated since the beginning of the last retraining (referred
to as the “retraining window”).2 To simplify the example, we
assume the scheduler has knowledge of the resource-accuracy
profiles, but these are expensive to get in practice (we describe
our efficient solution for profiling in §4.3). Table 1 shows the
retraining configurations (Cfg1A, Cfg2A, Cgf1B, and Cgf2B),
their respective accuracies after the retraining, and GPU cost.

2Continuous learning targets retraining windows of tens of seconds to
few minutes [72, 93]. We use 120 seconds in this example. Our solution is
robust to and works with any given window duration for its decisions (See
§6.2).

122 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Uniform scheduler (b) Accuracy-optimal sched.

(c) Uniform scheduler (d) Accuracy-optimal sched.

Figure 4: Resource allocations (top) and inference accuracies
(bottom) over time for two retraining windows (each of 120s).
The left figures show a uniform scheduler which evenly splits the
3 GPUs, and picks configurations resulting in the most accurate
models. The right figures show the accuracy-optimized scheduler
that prioritizes resources and optimizes for inference accuracy
averaged over the retraining window (73% compared to the uni-
form scheduler’s 56%). The accuracy-optimized scheduler also
ensures that inference accuracy never drops below a minimum
(set to 40% in this example, denoted as aMIN).

The scheduler is responsible for selecting configurations and
allocating resources for inference and retraining jobs.
Uniform scheduling: Building upon prior work in cluster
schedulers [9, 80] and video analytics systems [32], a base-
line solution for resource allocation evenly splits the GPUs
between video streams, and each stream evenly partitions its
allocated GPUs for retraining and inference tasks; see Figure
4a. Just like model training systems [29, 44, 45], the baseline
always picks the configuration for retraining that results in
the highest accuracy (Cfg1A, Cfg1B for both windows).

Figure 4c shows the inference accuracies of the two live
streams. We see that when the retraining tasks take resources
away from the inference tasks, the inference accuracy drops
significantly (65%→ 49% for video A and 50%→ 37.5% for
video B in Window 1). While the inference accuracy increases
after retraining, it leaves too little time in the window to
reap the benefit of retraining. Averaged across both retraining
windows, the inference accuracy across the two video streams
is only 56% because the gains due to the improved accuracy
of the retrained model are undercut by the time taken for
retraining (during which inference accuracy suffered).
Accuracy-optimized scheduling: Figures 4b and 4d illustrate
an accuracy-optimized scheduler, which by taking a holistic
view on the multi-dimensional tradeoffs, provides an an aver-
age inference accuracy of 73%. In fact, to match the accura-

cies, the above uniform scheduler would require nearly twice
the GPUs (i.e., 6 GPUs instead of 3 GPUs).

This scheduler makes three key improvements. First, the
scheduler selects the hyperparameter configurations based
on their accuracy improvements relative to their GPU cost.
It selects lower accuracy options (Cfg2A/Cfg2B) instead of
the higher accuracy ones (Cfg1A/Cfg1B) because these con-
figurations are substantially cheaper (Table 1). Second, the
scheduler prioritizes retraining tasks that yield higher accu-
racy, so there is more time to reap the benefit from retraining.
For example, the scheduler prioritizes B’s retraining in Win-
dow 1 as its inference accuracy after retraining increases by
35% (compared to 5% for video A). Third, the scheduler con-
trols the accuracy drops during retraining by balancing the
retraining time and the resources taken away from inference.

4 Ekya: Solution Description
Continuous training on limited edge resources requires
smartly deciding when to retrain each video stream’s model,
how much resources to allocate, and what configurations to
use. Making these decisions presents two challenges.

First, the decision space of multi-dimensional configura-
tions and resource allocations is computationally more com-
plex than two fundamentally challenging problems of multi-
dimensional knapsack and multi-armed bandits (§4.1). Hence,
we design a thief scheduler (§4.2), a heuristic that makes the
joint retraining-inference scheduling tractable in practice.

Second, the scheduler requires the model’s exact perfor-
mance (in resource usage and inference accuracy), but this
requires retraining using all the configurations. We address
this challenge with our micro-profiler (§4.3), which retrains
only a few select configurations on a fraction of the data.
Figure 5 presents an overview of Ekya’s components.

4.1 Formulation of joint inference and retraining

The problem of joint inference and retraining aims to max-
imize overall inference accuracy for all video streams V in
a retraining window T with duration ∥T∥. All work must be
done in G GPUs. Thus, the total compute capability is G∥T∥
GPU-time. Without loss of generality, let δ be the smallest
granularity of GPU allocation. Each video v ∈V has a set of
retraining configurations Γ and a set of inference configura-
tions Λ (§3.1). Table 4 (§A) lists the notations.
Decisions. For each video v ∈ V in a window T , we decide:
(1) the retraining configuration γ ∈ Γ (γ = /0 means no retrain-
ing); (2) the inference configuration λ ∈ Λ; and (3) how many
GPUs (in multiples of δ) to allocate for retraining (R) and
inference (I). We use binary variables φvγλR I ∈ {0,1} to de-
note these decisions (see Table 4 §A for the definition). These
decisions require CT (v,γ,λ) GPU-time and yields overall ac-
curacy of AT (v,γ,λ,R ,I). AT (v,γ,λ,R ,I) is averaged across
the window T (§3.2), and the above decisions determine the
inference accuracy at each point in time.
Optimization. Maximize the inference accuracy averaged

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 123

Retraining
profiles

Execution
(retraining)

Error
Correction

(§5) Allocate
resources

 Choose
configurations

 Retraining &
inference

Thief Scheduler
(§4.2)

Execution
(inference)

Checkpointed
models (§5)

Observed
accuracy

Corrected
profiles

Performance
profiles

(retraining &
inference)

Retraining job
Inference job

Retraining job
Inference job

.

.

.

Video
jobs

Video stream 1

Video stream n

Edge Server

Configuration
Profiles
(§3.1)

Micro-profiling
(§4.3)

 Accuracy of
configs.

 Resource
demands

Figure 5: Ekya’s components and their interactions.

across all videos in a retraining window within the GPU limit.

argmax
φvγλR I

1
∥V ∥ ∑

∀v∈V ,∀γ∈Γ,∀λ∈Λ,

∀R ,∀I∈{0,1,..., G
δ
}

φvγλR I ·AT (v,γ,λ,R ,I)

subject to

1. ∑
∀v∈V ,∀γ∈Γ,∀λ∈Λ,

∀R ,∀I

φvγλR I ·CT (v,γ,λ)≤ G∥T∥

2. ∑
∀v∈V ,∀γ∈Γ,∀λ∈Λ,

∀R ,∀I

φvγλR I · (R + I)≤ G
δ

3. ∑
∀γ∈Γ,∀λ∈Λ,
∀R ,∀I

φvγλR I ≤ 1,∀v ∈ V

(1)

The first constraint ensures that the GPU allocation does
not exceed the available GPU-time G∥T∥ in the retraining
window. The second constraint limits the instantaneous allo-
cation (in multiples of δ) to never exceed the available GPUs.
The third constraint ensures that at most one configuration is
picked for retraining and inference each for a video v.

Our analysis in §A.1 shows that the above optimization
problem is harder than the multi-dimensional binary knapsack
problem and modeling the uncertainty of AT (v,γ,λ,R ,I) is
more challenging than the multi-armed bandit problem.

4.2 Thief Scheduler

Our scheduling heuristic makes the scheduling problem
tractable by decoupling resource allocation (i.e., R and I) and
configuration selection (i.e., γ and λ) (Algorithm 1). We refer
to Ekya’s scheduler as the “thief” scheduler and it iterates
among all inference and retraining jobs as follows.

(1) It starts with a fair allocation for all video streams v∈V
(line 2 in Algorithm 1). In each step, it iterates over all the
inference and retraining jobs of each video stream (lines 5-6),
and steals a tiny quantum ∆ of resources (in multiples of δ;
see Table 4, §A) from each of the other jobs (lines 10-11).

(2) With the new resource allocations (temp_alloc[]), it then
selects configurations for the jobs using the PickConfigs method
(line 14 and Algorithm 2, §A) that iterates over all the configu-
rations for inference and retraining for each video stream. For
inference jobs, among all the configurations whose accuracy
is ≥ aMIN, PickConfigs picks the configuration with the highest

accuracy that can keep up with the inference of the live video
stream given current allocation (line 3-4, Algorithm 2, §A).

For retraining jobs, PickConfigs picks the configuration that
maximizes the accuracy AT (v,γ,λ,R ,I) over the retraining
window for each video v (lines 6-12, Algorithm 2, §A). Esti-

mateAccuracy (line 7, Algorithm 2, §A) aggregates the instanta-
neous accuracies over the retraining window for a given pair
of inference configuration (chosen above) and retraining con-
figuration. Ekya’s micro-profiler (§4.3) provides the estimate
of the accuracy and the time to retrain for a retraining config-
uration when 100% of GPU is allocated, and EstimateAccuracy

proportionately scales the GPU-time for the current allocation
(in temp_alloc[]) and training data size. In doing so, it avoids
configurations whose retraining durations exceed ∥T∥ with
the current allocation (first constraint in Eq. 1).

(3) After reassigning the configurations, Ekya uses the
estimated average inference accuracy (accuracy_avg) over the
retraining window (line 14 in Algorithm 1) and keeps the new
allocations only if it improves up on the accuracy from prior
to stealing the resources (line 15 in Algorithm 1).

The thief scheduler repeats the process till the accuracy
stops increasing (lines 15-20 in Algorithm 1) and until all
the jobs have played the “thief”. Algorithm 1 is invoked at
the beginning of each retraining window, as well as on the
completion of every training job during the window.
Design rationale: We call out the key aspects that makes the
scheduler’s decision efficient by pruning the search space.
• Coarse allocations: The thief scheduler allocates GPU re-

sources in quantums of ∆. Intuitively, ∆ is the step size for
allocation used by the scheduler. Thus, the final resource
allocation from the thief scheduler is within ∆ of the opti-
mal allocation. We empirically pick a ∆ that is coarse yet
accurate enough in practice, while being mindful of mod-
ern GPUs[4]; see §6.2. Algorithm 1 ensures that the total
allocation is within the limit (second constraint in Eq 1).
• Reallocating resources only when a retraining job com-

pletes: Although one can reallocate GPU resource among
jobs at finer temporal granularity (e.g., whenever a retrain-
ing job has reached a high accuracy), we empirically find
that the gains from such complexity is marginal.
• Pruned configuration list: Our micro-profiler (described

next) speeds up the thief scheduler by giving it only the
more promising configurations. Thus, the list Γ used in
Algorithm 1 is significantly smaller than the exhaustive set.

4.3 Performance estimation with micro-profiling

Ekya’s scheduling decisions in §4.2 rely on estimations of
post-retraining accuracy and resource demand of the retrain-
ing configurations. Specifically, at the beginning of each re-
training window T , we need to profile for each video v and
each configuration γ ∈ Γ, the accuracy after retraining using γ

and the corresponding time taken to retrain.
Profiling in Ekya vs. hyperparameter tuning: While
Ekya’s profiling may look similar to hyperparameter tuning

124 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 1: Thief Scheduler.
Data: Training (Γ) and inference (Λ) configurations
Result: GPU allocations R and I , chosen configurations

(γ ∈ Γ, λ ∈ Λ) ∀v ∈V
1 all_jobs[] = Union of inference and training jobs of videos V ;
/* Initialize with fair allocation */

2 best_alloc[] = fair_allocation(all_jobs);
3 best_configs[], best_accuracy_avg = PickConfigs(best_alloc);
/* Thief resource stealing */

4 for thief_job in all_jobs[] do
5 for victim_job in all_jobs[] do
6 if thief_job == victim_job then continue;
7 temp_alloc[]← best_alloc[];
8 while true do

/* ∆ is the increment of stealing */
9 temp_alloc[victim_job] −= ∆;

10 temp_alloc[thief_job] += ∆;
11 if temp_alloc[victim_job] < 0 then break ;

/* Calculate accuracy over retraining
window and pick configurations. */

12 temp_configs[], accuracy_avg =
PickConfigs(temp_alloc[]);

13 if accuracy_avg > best_accuracy_avg then
14 best_alloc[] = temp_alloc[];
15 best_accuracy_avg = accuracy_avg;
16 best_configs[] = temp_configs[];

17 else
18 break;

19 return best_alloc[], best_configs[];

(e.g., [46, 48, 62, 85]) at first blush, there are two key differ-
ences. First, Ekya needs the performance estimates of a broad
set of candidate configurations for the thief scheduler, not just
of the single best configuration, because the best configuration
is jointly decided across the many retraining and inference
jobs. Second, in contrast to hyperparameter tuning which runs
separately of the eventual inference/training, Ekya’s profiling
must share compute resource with all retraining and inference.

Opportunities: Ekya leverages three empirical observations
for efficient profiling of the retraining configurations. (i)
Resource demands of the configurations are deterministic.
Hence, we measure the GPU-time taken to retrain for each
epoch in the current retraining window when 100% of the
GPU is allocated to the retraining. This GPU-time must then
be re-scaled for varying number of epochs, GPU allocations,
and training data sizes in Algorithm 1. For re-scaling num-
ber of epochs and training data sizes, we linearly scale the
GPU-time. For re-scaling GPU allocations, we use an offline
computed profile of the model throughput for different re-
source allocations to account for sub-linear scaling. Our real
testbed-based evaluation shows that these rescaling functions
works well in practice. (ii) Post-retraining accuracy can be
roughly estimated by training on a small subset of training
data for a handful of epochs. (iii) The thief scheduler’s deci-

sions are not impacted by small errors in the estimations.
Micro-profiling design: The above insights inspired our
approach, called micro-profiling, where for each video, we
test the retraining configurations on a small subset of the
retraining data and only for a small number of epochs (well
before models converge). Our micro-profiler is 100× more
efficient than exhaustive profiling (of all configurations on the
entire training data), while predicting accuracies with an error
of 5.8%, which is low enough in practice to mostly ensure
that the thief scheduler makes the same decisions as it would
with a fully accurate prediction. We use these insights to
now explain the techniques that make Ekya’s micro-profiling
efficient.
1) Training data sampling: Ekya’s micro-profiling works on
only a small fraction (say, 5%−10%) of the training data in
the retraining window (which is already a subset of all the
videos accumulated in the retraining window). While we con-
sidered weighted sampling techniques for the micro-profiling,
we find that uniform random sampling is the most indicative
of the configuration’s performance on the full training data,
since it preserves all the data distributions and variations.
2) Early termination: Similar to data sampling, Ekya’s micro-
profiling only tests each configuration for a small number (say,
5) of training epochs. Compared to a full fledged profiling that
needs few tens of epochs to converge, such early termination
greatly speeds up the micro-profiling process.

After early termination on the sampled training data, we
obtain the (validation) accuracy of each configuration at each
epoch it was trained. We then fit the accuracy-epoch points to
the a non-linear curve model from [70] using a non-negative
least squares solver [6]. This model is then used to extrapolate
the accuracy that would be obtained by retraining with all the
data for larger number of epochs. The use of this extrapolation
is consistent with similar work in this space [55, 70].
3) Pruning bad configurations: Finally, Ekya’s micro-
profiling also prunes out those configurations for micro-
profiling (and hence, for retraining) that have historically not
been useful. These are configurations that are significantly
distant from the configurations on the Pareto curve of the
resource-accuracy profile (see Figure 3b), and thus unlikely
to be picked by the thief scheduler. To bootstrap pruning, all
configurations are evaluated in the first window. After every
2 windows, a fixed fraction of the worst performing configu-
rations are dropped. While first few retraining windows must
explore a big space of configurations, the search space size
drops exponentially over time. Avoiding these configurations
improves the efficiency of the micro-profiling.
Annotating training data: For both the micro-profiling as
well as the retraining, Ekya acquires labels using a “golden
model” (§2.2). This is a high-cost but high-accuracy model
trained on a large dataset. As explained in §2, the golden
model cannot keep up with inference on the live videos and we
use it to label only a small subset of the videos for retraining.
The delay of annotating training data with the golden model

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 125

is accounted by the scheduler as follows: we subtract the data
annotation delay from the retraining window and only pass
the remaining time of the window to Algorithm 2 (§A).

5 Implementation and Experimental Setup

Implementation: Ekya uses PyTorch [66] for running and
training ML models, and each component is implemented as
a collection of long-running processes with the Ray[63] actor
model. The micro-profiler and training/inference jobs run as
independent actors which are controlled by the thief scheduler
actor. Ekya achieves fine-grained and dynamic reallocation of
GPU between training and inference processes using Nvidia
MPS [4], which provides resource isolation within a GPU
by intercepting CUDA calls and rescheduling them. Our im-
plementation also adapts to errors in profiling by reactively
adjusting its allocations if the actual model performance di-
verges from the predictions of the micro-profiler. Ekya’s code
and datasets are available at the project page: aka.ms/ekya

Datasets: We use both on-road videos captured by dashboard
cameras as well as urban videos captured by mounted cameras.
The dashboard camera videos are from cars driving through
cities in the US and Europe, Waymo Open [68] (1000 video
segments with in total 200K frames) and Cityscapes [57] (5K
frames captured by 27 cameras) videos. The urban videos
are from stationary cameras mounted in a building (“Urban
Building”) as well as from five traffic intersections (“Urban
Traffic”), both collected over 24-hour durations. We use a
retraining window of 200 seconds in our experiments, and
split each of the videos into 200 second segments. Since the
Waymo and Cityscapes dataset do not contain continuous
timestamps, we create retraining windows by concatenating
images from the same camera in chronological order to form
a long video stream and split it into 200 second segments.

DNNs: We demonstrate Ekya’s effectiveness on two
machine learning tasks – object classification and object
detection – using multiple compressed edge DNNs for
each task: (i) object classification using ResNet18[39],
MobileNetV2[53] and ShuffleNet[98], and (ii) object detec-
tion using TinyYOLOv3[75] and SSD[49]. As explained in
§2.2, we use an expensive golden model (ResNeXt 101 [91]
for object classification and YOLOv3 [75] for object detec-
tion) to get ground truth labels for training and testing.

Testbed and trace-driven simulator: We run Ekya’s im-
plementation on AWS EC2 p3.2xlarge instances for 1 GPU
experiments and p3.8xlarge for 2 GPU experiments. Each
instance has Nvidia V100 GPUs with NVLink interconnects.

We also built a simulator to test Ekya under a wide range
of resource constraints, workloads, and longer durations. The
simulator takes as input the accuracy and resource usage (in
GPU time) of training/inference configurations logged from
our testbed. For each training job, we log the accuracy over
GPU-time. We also log the inference accuracy on the real
videos. This exhaustive trace allows us to mimic the jobs with

high fidelity under different scheduling policies.
Retraining configurations: Our retraining configurations
combine the number of epochs to train, batch size, number
of neurons in the last layer, number of layers to retrain, and
the fraction of data between retraining windows to use for
retraining (§3.1). For the object detection models (TinyYOLO
and SSDLite), we set the batch size to 8 and the fraction of
layers frozen between 0.7 and 0.9. The resource requirements
of the configurations for the detection models vary by 153×.
Baselines: Our baseline, called uniform scheduler, uses (a)
a fixed retraining configuration, and (b) a static retraining/in-
ference resource allocation (these are adopted by prior sched-
ulers [9, 32, 80]). For each dataset, we test all retraining con-
figurations on a hold-out dataset 3 (i.e., two video streams that
were never used in later tests) to produce the Pareto frontier of
the accuracy-resource tradeoffs (e.g., Figure 3). The uniform
scheduler then picks two points on the Pareto frontier as the
fixed retraining configurations to represent “high” (Config 1)
and “low” (Config 2) resource usage, and uses one of them
for all retraining windows in a test.

We also consider two alternatives in §6.4. (1) offloading re-
training to the cloud, and (2) caching and re-using a retrained
model from history based on various similarity metrics.

6 Evaluation
We evaluate Ekya’s performance, and the key findings are:
1) Compared to static retraining baselines, Ekya achieves upto
29% higher accuracy for compressed vision models in both
classification and detection. For the baseline to match Ekya’s
accuracy, it would need 4× additional GPU resources. (§6.1)
2) Both micro-profiling and thief scheduler contribute siz-
ably to Ekya’s gains. (§6.2) In particular, the micro-profiler
estimates accuracy with low median errors of 5.8%. (§6.3)
3) The thief scheduler efficiently makes its decisions in 9.4s
when deciding for 10 video streams across 8 GPUs with 18
configurations per model for a 200s retraining window. (§6.2)
4) Compared to alternate designs, including reusing cached
history models trained on similar data/scenarios as well as
retraining the models in the cloud, Ekya achieves significantly
higher accuracy without the network costs (§6.4).

6.1 Overall improvements

We evaluate Ekya and the baselines along three dimensions—
inference accuracy (% of images correctly classified for ob-
ject classification, F1 score (measured at a 0.3 threshold for
the Intersection-over-Union of the bounding box) for detec-
tion), resource consumption (in GPU time), and capacity (the
number of concurrently processed video streams). Note that
the evaluation always keeps up with the video frame rate (i.e.,
no indefinite frame queueing). By default we evaluate the
performance of Ekya on ResNet18 models, but we also show
that it generalizes to other model types and vision tasks.

3The same hold-out dataset is used to customize the off-the-shelf DNN
inference model. This is a common strategy in prior work (e.g., [22]).

126 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://aka.ms/ekya

(a) Cityscapes

(b) Waymo

Figure 6: Effect of adding video streams on accuracy with dif-
ferent schedulers. When more video streams share resources,
Ekya’s accuracy gracefully degrades while the baselines’ accu-
racy drops faster. (“Uniform (Cfg 1, 90%)” means the uniform
scheduler allocates 90% GPU to inference, 10% to retraining)

Accuracy vs. Number of concurrent video streams: Fig-
ure 6 shows the ResNet18 model’s accuracy with Ekya and
the baselines when analyzing a growing number of concur-
rent video streams under a fixed number of provisioned GPUs
for Waymo and Cityscapes datasets. The uniform baselines
use different combinations of pre-determined retraining con-
figurations and resource partitionings. For consistency, the
video streams are shuffled and assigned an id (0-10), and are
then introduced in the same increasing order of id in all ex-
periments. This ensures that different schedulers tested for k
parallel streams use the same k streams, and these k streams
are always a part of any k′ streams (k′ > k) used for testing.

As the number of video streams increases, Ekya enjoys a
growing advantage (upto 29% under 1 GPU and 23% under
2 GPU) in accuracy over the uniform baselines. This is be-
cause Ekya gradually shifts more resource from retraining
to inference and uses cheaper retraining configurations. In
contrast, increasing the number of streams forces the uniform
baseline to allocate less GPU cycles to each inference job,
while retraining jobs, which use fixed configurations, slow
down and take the bulk of each window.
Generalizing to other ML models: Ekya’s thief scheduler
can be readily applied to any ML model and task (e.g., classi-
fication or detection) that needs to be fine-tuned continuously
on newer data. To demonstrate this, we evaluate Ekya with:
• Other object classifiers: Figure 7a shows the performance

of Ekya when running MobileNetV2 and ShuffleNet as the
edge models in two independent setups for object classifica-
tion at the edge. Continuing the trend that we observed for
ResNet18 (in Figure 6), Figure 7a shows that Ekya leads

Scheduler Capacity Scaling factor1 GPU 2 GPUs
Ekya 2 8 4x

Uniform (Config 1, 50%) 2 2 1x
Uniform (Config 2, 90%) 2 4 2x
Uniform (Config 2, 50%) 2 4 2x
Uniform (Config 2, 30%) 0 2 -

Table 2: Capacity (number of video streams that can be concur-
rently supported subject to accuracy target 0.75) vs. number of
provisioned GPUs. Ekya scales better than the uniform baselines
with more available compute resource.

(a) Generalize across object classification models

(b) Object Detection Models

Figure 7: Improvement of Ekya extends to two more com-
pressed DNN classifiers and two popular object detectors.

to up to 22% better accuracy than uniform baselines.
• Object detection models: In addition to object classifica-

tion, we also evaluate using object detection tasks which
detect the bounding boxes of objects in the video stream.
Figure 7b shows Ekya outperforms the uniform baseline’s
F1 score by 19% when processing same number of con-
current video streams. Importantly, Ekya’s design broadly
applies to new tasks without any systemic changes.

These gains stem from Ekya’s ability to navigate the rich
resource-accuracy space of models by carefully selecting
training and inference hyperparameters (e.g., the width mul-
tiplier in MobileNetV2, convolution sparsity in ShuffleNet).
For the rest of our evaluation, we only present results with
ResNet18 though the observations hold for other models.
Number of video streams vs. provisioned resource: We
compare Ekya’s capacity (defined by the maximum number
of concurrent video streams subject to an accuracy threshold)
with that of uniform baseline, as more GPUs are available.
Setting an accuracy threshold is common in practice, since
applications usually require accuracy to be above a threshold
for the inference to be usable. Table 2 uses the Cityscapes
results (Figure 6) to derive the scaling factor of capacity vs.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 127

(a) Cityscapes (b) Waymo

(c) Urban Building (d) Urban Traffic

Figure 8: Inference accuracy of different schedulers when pro-
cessing 10 video streams under varying GPU provisionings.

(a) Video stream #1
(Inference accuracy = 0.82)

(b) Video stream #2
(Inference accuracy = 0.83)

Figure 9: Ekya’s resource allocation to two video streams over
time. Ekya adapts when to retrain each stream’s model and
allocates resource based on the retraining benefit to each stream.

the number of provisioned GPUs and shows that with more
provisioned GPUs, Ekya scales faster than uniform baselines.
Accuracy vs. provisioned resource: Finally, Figure 8 stress-
tests Ekya and the uniform baselines to process 10 concurrent
video streams and shows their average inference accuracy
under different number of GPUs. To scale to more GPUs, we
use the simulator (§5), which uses profiles recorded from real
tests and we verified that it produced similar results as the
implementation at small-scale. As we increase the number
of provisioned GPUs, we see that Ekya consistently outper-
forms the best of the two baselines by a considerable margin
and more importantly, with 4 GPUs Ekya achieves higher
accuracy (marked with the dotted horizontal line) than the
baselines at 16 GPUs (i.e., 4× resource saving).

The above results show that Ekya is more beneficial when
there is high contention for the GPU on the edge. Under low
contention, the room for improvement shrinks. Contention is,
however, common in the edge since the resources are tightly
provisioned to minimize their idling.

6.2 Understanding Ekya’s improvements

Resource allocation across streams: Figure 9 shows Ekya’s
resource allocation across two example video streams over

several retraining windows. In contrast to the uniform base-
lines that use the same retraining configuration and allocate
equal resource to retraining and inference (when retraining
takes place), Ekya retrains the model only when it benefits
and allocates different amounts of GPUs to the retraining jobs
of video streams, depending on how much accuracy gain is
expected from retraining on each stream. In this case, more
resource is diverted to video stream #1 (#1 can benefit more
from retraining than #2) and both video streams achieve much
higher accuracies (0.82 and 0.83) than the uniform baseline.

Component-wise contribution: Figure 10a understands the
contributions of resource allocation and configuration selec-
tion (on 10 video streams with 4 GPUs provisioned). We
construct two variants from Ekya: Ekya-FixedRes, which re-
moves the smart resource allocation in Ekya (i.e., using the
inference/training resource partition of the uniform baseline),
and Ekya-FixedConfig removes the microprofiling-based con-
figuration selection in Ekya (i.e., using the fixed configuration
of the uniform baseline). Figure 10a shows that both adaptive
resource allocation and configuration selection has a substan-
tial contribution to Ekya’s gains in accuracy, especially when
constrained (i.e., fewer resources are provisioned).

Retraining window sensitivity analysis: Figure 10b eval-
uates the sensitivity of Ekya to the retraining window size.
Ekya is robust to different retraining window sizes. When
the retraining window size is too small (10 seconds), the ac-
curacy of Ekya is equivalent to no retraining accuracy due
to insufficient time and resources for retraining. As the win-
dow increases, Ekya’s performance quickly ramps up because
the thief scheduler is able to allocate resources to retraining.
As the retraining window size further increases Ekya’s per-
formance slowly starts moderately degrading because of the
inherent limitation in capacity of compressed models (§2.3).

Impact of scheduling granularity: A key parameter in
Ekya’s scheduling algorithm (§4.2) is the allocation quan-
tum ∆: it controls the runtime of the scheduling algorithm
and the granularity of resource allocation. In our sensitivity
analysis with 10 video streams, we see that increasing ∆ from
1.0 (coarse-grained; one full GPU) to 0.1 (fine-grained; frac-
tion of a GPU), increases the accuracy substantially by ∼ 8%.
Though the runtime also increases to 9.5 seconds, it is still a
tiny fraction (4.7%) of the retraining window (200s).

6.3 Effectiveness of micro-profiling

The absolute cost of micro-profiling is small; for our experi-
ments, micro-profiling takes 4.4 seconds for a 200s window.

Errors of microprofiled accuracy estimates: Ekya’s micro-
profiler estimates the accuracy of each configuration (§4.3) by
training it on a subset of the data for a small number of epochs.
To evaluate the micro-profiler’s estimates, we run it on all
configurations for 5 epochs and on 10% of the retraining data
from all streams of the Cityscapes dataset, and calculate the
estimation error against the retrained accuracies when trained

128 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Factor analysis (b) Sensitivity to retraining
window size.

Figure 10: (a) Component-wise impact of removing dynamic
resource allocation (50% allocation) or removing retraining con-
figuration adaptation (fixed Cfg 2). (b) Robustness of Ekya to a
wide range of retraining window values.

(a) Distribution of accuracy
estimation errors.

(b) Impact of an controlled error
ε to accuracy estimates.

Figure 11: Evaluation of microprofiling performance. (a) shows
the distribution of microprofiling’s actual estimation errors, and
(b) shows the robustness of Ekya’s performance against micro-
profiling’s estimation errors.

on 100% of the data for 5, 15 and 30 epochs. Figure 11a plots
the distribution of the errors in accuracy estimation and and
show that the micro-profiled estimates are largely unbiased
with an median absolute error of 5.8%.
Sensitivity to microprofiling estimation errors: Finally, we
test the impact of accuracy estimation errors (§4.3) on Ekya.
We add gaussian noise on top of the predicted retraining
accuracy when the microprofiler is queried. Figure 11b shows
that Ekya is robust to accuracy estimate errors: with upto 20%
error (which covers all errors in Figure 11a) in the profiler
prediction, the maximum accuracy drop is 3%.

6.4 Comparison with alternative designs

Ekya vs. Cloud-based retraining: One may upload a sub-
sampled video stream to the cloud, retrain the model, and
download the model back to the edge [40]. While this solution
is not an option for many deployments due to legal and privacy
stipulations [11, 87], we still evaluate this option as it lets
the edge servers focus on inference. Cloud-based solutions,
however, results in lower accuracy due to significant network
delays on the constrained networks typical of edges [81].

For example, consider 8 video streams running ResNet18
and a retraining window of 400 seconds. A HD (720p) video
stream at 4Mbps and 10% data sub-sampling (typical in our
experiments) amounts to 160Mb of training data per camera
per window. Uploading 160Mb for each of the 8 cameras over

Bandwidth (Mbps) Acc. Bandwidth Gap
Uplink Downlink Uplink Downlink

Cellular 5.1 17.5 68.5% 10.2× 3.8×
Satellite 8.5 15 69.2% 5.9× 4.4×

Cellular (2×) 10.2 35 71.2% 5.1× 1.9×
Ekya - - 77.8% - -

Table 3: Retraining in the cloud under different networks [58,
65, 81] versus using Ekya at the edge. Ekya achieves better accu-
racy without using expensive satellite and cellular links.

(a) Ekya vs. re-using cached
models over time

(b) Average gains in accuracy
across video streams

Figure 12: Ekya vs. re-using cached models. Compared to
cached-model selection techniques, models retrained with Ekya
maintain a consistently high accuracy, since it fully leverages the
latest training data and is thus more robust to data-drift.

a 4G uplink (5.1 Mbps [65]) and downloading the trained
ResNet18 models (398 Mb each [7]) over the 17.5 Mbps
downlink [65] takes 432 seconds (even excluding the model
retraining time), which already exceeds the retraining window.

To test on the Cityscapes dataset, we extend our simula-
tor (§5) to account for network delays during retraining, and
test with 8 videos and 4 GPUs. We use the conservative as-
sumption that retraining in the cloud is “instantaneous” (cloud
GPUs are powerful than edge GPUs). Table 3 lists the accura-
cies with cellular 4G links (both one and two subscriptions to
meet the 400s retraining window) and a satellite link, which
are both indicative of edge deployments [81].

For the cloud alternatives to match Ekya’s accuracy, we
will need to provision additional uplink capacity of 5×-10×
and downlink capacity of 2×-4× (of the already expensive
links). In summary, Ekya’s edge-based solution is better than
a cloud alternate for retraining in both accuracy and network
usage (Ekya sends no data out of the edge), all while provid-
ing privacy for the videos. However, when the edge-cloud
network has sufficient bandwidth, e.g., in an enterprise that is
provisioned with a private leased connection, then using the
cloud to retrain the models can be a viable design choice.
Ekya vs. Re-using pretrained models: An alternative to
continuous retraining is to cache pretrained models and reuse
them. We pre-train and cache a few tens of DNNs from ear-
lier windows of the Waymo dataset and test four heuristics
for selecting cached models. Class-distribution-based selec-
tion picks the cached DNN whose training data class distri-
bution has the closest Euclidean distance with the current
window’s data. Time-of-day-based selection picks the cached

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 129

DNN whose training data time matches the current window.
Object-count-based selection picks the cached DNN based on
similar count of objects. Location-based selection picks the
cached DNNs trained on the same city as the current window.

Figure 12a highlights the advantages of Ekya over differ-
ent model selection schemes. We find that since time-of-day-
based, object-count-based, and location-based model selection
techniques are agnostic to the class distributions of training
data of cached models, the selected cached models sometimes
do not cover all classes in the current window. Even if we take
class distribution into account when picking cached models,
there are still substantial discrepancies in the appearances
of objects between the current window and the history train-
ing data. For instance, object appearance can vary due to
pose variations, occlusion or different lighting conditions. In
Window 3 (Figure 12a), not only are certain classes underrep-
resented in the training data, but the lighting conditions are
also adverse. Figure 12b presents a box plot of the accuracy
difference between Ekya and model selection schemes, where
the edges of the box represent the first and third quartiles, the
waist is the median, the whiskers represent the maximum and
minimum values and the circles represent any outliers. Ekya’s
continuous retraining of models is robust to scene specific
data-drifts and achieves upto 26% higher mean accuracy.

7 Limitations and Discussion
Edge hierarchy with heterogeneous hardware. While
Ekya’s allocates GPU resources on a single edge, in practice,
deployments typically consist of a hierarchy of edge devices
[19]. For instance, 5G settings include an on-premise edge
cluster, followed by edge compute at cellular towers, and then
in the core network of the operator. The compute resources,
hardware (e.g., GPUs, Intel VPUs [1], and CPUs) and net-
work bandwidths change along the hierarchy. Thus, Ekya will
have to be extended along two aspects: (a) multi-resource
allocation to include both compute and the network in the
edge hierarchy; and (b) heterogeneity in edge hardware.

Privacy of video data. As explained in §2.1, privacy of
videos is important in real-world deployments, and Ekya’s
decision to retrain only on the edge device is well-suited
to achieving privacy. However, when we extend Ekya to a
hierarchy of edge clusters, care has to be taken to decide the
portions of the retraining that can happen on edge devices
that are not owned by the enterprise. Balancing the need for
privacy with resource efficiency is a subject for future work.

Generality beyond vision workloads. Ekya’s thief sched-
uler is generally applicable to DNN models since it only
requires that the resource-accuracy function be strictly in-
creasing wherein allocation of more resources to training
results in increasing accuracy. This property holds true for
most workloads (vision and language DNNs). However, when
this property does not hold, further work is needed to prevent
Ekya’s microprofiler from making erroneous estimations and
its thief scheduler from making sub-optimal allocations.

8 Related Work
1) ML training systems. For large scale scheduling of
training in the cloud, model and data parallel frameworks
[3, 10, 24, 50] and various resource schedulers [30, 31, 56, 69,
95, 97] have been developed. These systems, however, target
different objectives than Ekya, like maximizing parallelism,
fairness, or minimizing average job completion. Collaborative
training systems [18, 51] work on decentralized data on mo-
bile phones. They focus on coordinating the training between
edge and the cloud, and not on training alongside inference.
2) Video processing systems. Prior work has built low-cost,
high-accuracy and scalable video processing systems for
the edge and cloud [22, 32, 37]. VideoStorm investigates
quality-lag requirements in video queries [32]. NoScope ex-
ploits difference detectors and cascaded models to speedup
queries [22]. Focus uses low-cost models to index videos [34].
Chameleon exploits correlations in camera content to amor-
tize profiling costs [37]. Reducto [47] and DDS [25] seek
to reduce edge-to-cloud traffic by intelligent frame sampling
and video encoding. All of these works optimize only the
inference accuracy or the system/network costs of DNN in-
ference, unlike Ekya’s focus on retraining. More recently,
LiveNAS[41] deploys continuous retraining to update video
upscaling models, but focuses on efficiently allocating client-
server bandwidth to different subsamples of a single video
stream. Instead, Ekya focuses on GPU allocation for maxi-
mizing retrained accuracy across multiple video streams.
3) Hyper-parameter optimization. Efficient exploration of
hyper-parameters is crucial in training systems to find the
model with the best accuracy. Techniques range from simple
grid or random search [17], to more sophisticated approaches
using random forests [35], Bayesian optimization [85, 88],
probabilistic modelling [71], or non-stochastic infinite-armed
bandits [46]. Unlike the focus of these techniques on finding
the hyper-parameters with the highest accuracy, our focus is
on resource allocation. Further, we are focused on the infer-
ence accuracy over the retrained window, where producing
the best retrained model often turns out to be sub-optimal.
4) Continuous learning. Machine learning literature on con-
tinuous learning adapts models as new data comes in. A com-
mon approach used is transfer learning [33, 51, 72, 74]. Re-
search has also been conducted on handling catastrophic for-
getting [43, 79], using limited amount of training data [73, 89],
and dealing with class imbalance [16, 92]. Ekya builds atop
continuous learning techniques for its scheduling and imple-
mentation, to enable them in edge deployments.

9 Acknowledgements
We thank the NSDI reviewers and our shepherd, Minlan Yu,
for their invaluable feedback. This research is partly supported
by NSF (CCF-1730628, CNS-1901466), UChicago CERES
Center, a Google Faculty Research Award and gifts from
Amazon, Ant Group, Ericsson, Facebook, Futurewei, Google,
Intel, Microsoft, Nvidia, Scotiabank, Splunk and VMware.

130 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Azure percept. https://azure.microsoft.com/en

-us/services/azure-percept/.

[2] Google ai blog: Custom on-device ml models with
learn2compress. https://ai.googleblog.com/
2018/05/custom-on-device-ml-models.html.
(Accessed on 03/09/2021).

[3] MxNet: a flexible and efficient library for deep learning.
https://mxnet.apache.org/.

[4] Nvidia multi-process service. https://docs.nvidi
a.com/deploy/pdf/CUDA_Multi_Process_Servi
ce_Overview.pdf. (Accessed on 09/16/2020).

[5] Reducing edge compute cost for live video analytics.
https://techcommunity.microsoft.com/t5/i
nternet-of-things/live-video-analytics-w
ith-microsoft-rocket-for-reducing-edge/b
a-p/1522305. (Accessed on 03/09/2021).

[6] scipy.optimize.nnls — scipy v1.5.2 reference guide.
https://docs.scipy.org/doc/scipy/refer
ence/generated/scipy.optimize.nnls.html.
(Accessed on 09/17/2020).

[7] torchvision.models — pytorch 1.6.0 documentation. ht
tps://pytorch.org/docs/stable/torchvisio
n/models.html. (Accessed on 09/16/2020).

[8] A Comprehensive List of Hyperparameter Optimization
& Tuning Solutions. https://medium.com/@mikko
kotila/a-comprehensive-list-of-hyperpara
meter-optimization-tuning-solutions-88e0
67f19d9, 2018.

[9] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,
S. Shenker, and I. Stoica. Fair allocation of multiple
resource types. In USENIX NSDI, 2011.

[10] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,
J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard,
M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G.
Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng. TensorFlow: A System
for Large-Scale Machine Learning. In USENIX OSDI,
2016.

[11] Achieving Compliant Data Residency and Security with
Azure.

[12] AI and Compute. https://openai.com/blog/ai-and-
compute/, 2018.

[13] G. Ananthanarayanan, V. Bahl, P. Bodík, K. Chintala-
pudi, M. Philipose, L. R. Sivalingam, and S. Sinha. Real-
time Video Analytics – the killer app for edge computing.
IEEE Computer, 2017.

[14] AWS Outposts. https://aws.amazon.com/outposts/.

[15] Azure Stack Edge. https://azure.microsoft.com/en-
us/services/databox/edge/.

[16] E. Belouadah and A. Popescu. IL2M: Class Incremental
Learning With Dual Memory. In IEEE ICCV, 2019.

[17] J. Bergstra and Y. Bengio. Random Search for Hyper-
Parameter Optimization. J. Mach. Learn. Res., 13:281–
305, 2012.

[18] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. In-
german, V. Ivanov, C. Kiddon, J. Konecný, S. Mazzoc-
chi, H. B. McMahan, T. V. Overveldt, D. Petrou, D. Ra-
mage, and J. Roselander. Towards Federated Learning
at Scale: System Design. In SysML, 2019.

[19] Chien-Chun Hung, Ganesh Ananthanarayanan, Peter
Bodik, Leana Golubchik, Minlan Yu, Paramvir Bahl,
Matthai Philipose. Videoedge: Processing camera
streams using hierarchical clusters. In ACM/IEEE SEC,
2018.

[20] CLIFFORD, M. J., PERRONS, R. K., ALI, S.
H.,ANDGRICE, T. A. Extracting Innovations: Mining,
Energy, and Technological Changein the Digital Age.
In CRC Press, 2018.

[21] cnn-benchmarks. https://github.com/jcjohnson/cnn-
benchmarks#resnet-101, 2017.

[22] D. Kang, J. Emmons, F. Abuzaid, P. Bailis and M. Za-
haria. Noscope: Optimizing neural network queries over
video at scale. In VLDB, 2017.

[23] D Maltoni, V Lomonaco. Continuous learning in single-
incremental-task scenarios. In Neural Networks, 2019.

[24] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin,
Q. V. Le, M. Z. Mao, M. Ranzato, A. W. Senior, P. A.
Tucker, K. Yang, and A. Y. Ng. Large Scale Distributed
Deep Networks. In NeurIPS, 2012.

[25] K. Du, A. Pervaiz, X. Yuan, A. Chowdhery, Q. Zhang,
H. Hoffmann, and J. Jiang. Server-driven video stream-
ing for deep learning inference. In Proceedings of the
Annual conference of the ACM Special Interest Group on
Data Communication on the applications, technologies,
architectures, and protocols for computer communica-
tion, pages 557–570, 2020.

[26] Edge Computing at Chick-fil-A.
https://medium.com/@cfatechblog/edge-computing-at-
chick-fil-a-7d67242675e2. 2019.

[27] Ganesh Ananthanarayanan, Victor Bahl, Yuanchao Shu,
Franz Loewenherz, Daniel Lai, Darcy Akers, Peiwei
Cao, Fan Xia, Jiangbo Zhang, Ashley Song. Traffic
Video Analytics – Case Study Report. 2019.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 131

https://azure.microsoft.com/en-us/services/azure-percept/
https://azure.microsoft.com/en-us/services/azure-percept/
https://ai.googleblog.com/2018/05/custom-on-device-ml-models.html
https://ai.googleblog.com/2018/05/custom-on-device-ml-models.html
https://mxnet.apache.org/
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://techcommunity.microsoft.com/t5/internet-of-things/live-video-analytics-with-microsoft-rocket-for-reducing-edge/ba-p/1522305
https://techcommunity.microsoft.com/t5/internet-of-things/live-video-analytics-with-microsoft-rocket-for-reducing-edge/ba-p/1522305
https://techcommunity.microsoft.com/t5/internet-of-things/live-video-analytics-with-microsoft-rocket-for-reducing-edge/ba-p/1522305
https://techcommunity.microsoft.com/t5/internet-of-things/live-video-analytics-with-microsoft-rocket-for-reducing-edge/ba-p/1522305
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.nnls.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.nnls.html
https://pytorch.org/docs/stable/torchvision/models.html
https://pytorch.org/docs/stable/torchvision/models.html
https://pytorch.org/docs/stable/torchvision/models.html
https://medium.com/@mikkokotila/a-comprehensive-list-of-hyperparameter-optimization-tuning-solutions-88e067f19d9
https://medium.com/@mikkokotila/a-comprehensive-list-of-hyperparameter-optimization-tuning-solutions-88e067f19d9
https://medium.com/@mikkokotila/a-comprehensive-list-of-hyperparameter-optimization-tuning-solutions-88e067f19d9
https://medium.com/@mikkokotila/a-comprehensive-list-of-hyperparameter-optimization-tuning-solutions-88e067f19d9

[28] GI Parisi, R Kemker, JL Part, C Kanan, S Wermter .
Continual lifelong learning with neural networks: A
review. In Neural Networks, 2019.

[29] D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro,
and D. Sculley. Google vizier: A service for black-box
optimization. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, KDD ’17, page 1487–1495, New York,
NY, USA, 2017. Association for Computing Machinery.

[30] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao,
and A. Akella. Multi-resource packing for cluster sched-
ulers. In ACM SIGCOMM, 2014.

[31] J. Gu, M. Chowdhury, K. G. Shin, Y. Zhu, M. Jeon,
J. Qian, H. H. Liu, and C. Guo. Tiresias: A GPU cluster
manager for distributed deep learning. In USENIX NSDI,
2019.

[32] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodík,
Matthai Philipose, Victor Bahl, Michael Freedman. Live
video analytics at scale with approximation and delay-
tolerance. In USENIX NSDI, 2017.

[33] G. Hinton, O. Vinyals, and J. Dean. Distilling the Knowl-
edge in a Neural Network. In NeurIPS Deep Learning
and Representation Learning Workshop, 2015.

[34] K. Hsieh, G. Ananthanarayanan, P. Bodík, S. Venkatara-
man, P. Bahl, M. Philipose, P. B. Gibbons, and O. Mutlu.
Focus: Querying Large Video Datasets with Low La-
tency and Low Cost. In USENIX OSDI, 2018.

[35] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential
Model-Based Optimization for General Algorithm Con-
figuration. In Learning and Intelligent Optimization,
2011.

[36] Joseph Redmon, Ali Farhadi . Yolo9000: Better, faster,
stronger. In CVPR, 2017.

[37] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodík,
Siddhartha Sen, Ion Stoica. Chameleon: Scalable adap-
tation of video analytics. In ACM SIGCOMM, 2018.

[38] Junjue Wang, Ziqiang Feng, Shilpa George, Roger Iyen-
gar, Pillai Padmanabhan, Mahadev Satyanarayanan. To-
wards scalable edge-native applications. In ACM/IEEE
Symposium on Edge Computing, 2019.

[39] K He, X Zhang, S Ren, J Sun . Deep residual learning
for image recognition. In CVPR, 2016.

[40] M. Khani, P. Hamadanian, A. Nasr-Esfahany, and M. Al-
izadeh. Real-time video inference on edge de-
vices via adaptive model streaming. arXiv preprint
arXiv:2006.06628, 2020.

[41] J. Kim, Y. Jung, H. Yeo, J. Ye, and D. Han. Neural-
enhanced live streaming: Improving live video ingest
via online learning. In Proceedings of the Annual Con-
ference of the ACM Special Interest Group on Data
Communication on the Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communica-
tion, SIGCOMM ’20, page 107–125, New York, NY,
USA, 2020. Association for Computing Machinery.

[42] Konstantin Shmelkov, Cordelia Schmid, Karteek Ala-
hari . Incremental learning of object detectors without
catastrophic forgetting. In ICCV, 2017.

[43] J. Lee, J. Yoon, E. Yang, and S. J. Hwang. Lifelong
Learning with Dynamically Expandable Networks. In
ICLR, 2018.

[44] A. Li, O. Spyra, S. Perel, V. Dalibard, M. Jaderberg,
C. Gu, D. Budden, T. Harley, and P. Gupta. A gen-
eralized framework for population based training. In
Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
KDD ’19, page 1791–1799, New York, NY, USA, 2019.
Association for Computing Machinery.

[45] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and
A. Talwalkar. Hyperband: A novel bandit-based ap-
proach to hyperparameter optimization. J. Mach. Learn.
Res., 18(1):6765–6816, Jan. 2017.

[46] L. Li, K. G. Jamieson, G. DeSalvo, A. Rostamizadeh,
and A. Talwalkar. Hyperband: A novel bandit-based ap-
proach to hyperparameter optimization. J. Mach. Learn.
Res., 18:185:1–185:52, 2017.

[47] Y. Li, A. Padmanabhan, P. Zhao, Y. Wang, G. H. Xu, and
R. Netravali. Reducto: On-camera filtering for resource-
efficient real-time video analytics. In Proceedings of the
Annual conference of the ACM Special Interest Group on
Data Communication on the applications, technologies,
architectures, and protocols for computer communica-
tion, pages 359–376, 2020.

[48] R. Liaw, R. Bhardwaj, L. Dunlap, Y. Zou, J. E. Gonzalez,
I. Stoica, and A. Tumanov. Hypersched: Dynamic re-
source reallocation for model development on a deadline.
In Proceedings of the ACM Symposium on Cloud Com-
puting, SoCC ’19, page 61–73, New York, NY, USA,
2019. Association for Computing Machinery.

[49] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed,
C.-Y. Fu, and A. C. Berg. Ssd: Single shot multibox
detector. In European Conference on Computer Vision,
pages 21–37. Springer, 2016.

132 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[50] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin,
and J. M. Hellerstein. Distributed graphlab: A frame-
work for machine learning in the cloud. PVLDB,
5(8):716–727, 2012.

[51] Y. Lu, Y. Shu, X. Tan, Y. Liu, M. Zhou, Q. Chen, and
D. Pei. Collaborative learning between cloud and end
devices: an empirical study on location prediction. In
ACM/IEEE SEC, 2019.

[52] M McCloskey, NJ Cohen. Catastrophic interference in
connectionist networks: The sequential learning prob-
lem. In Psychology of learning and motivation, 1989.

[53] M Sandler, A Howard, Menglong Zhu, Andrey Zhmogi-
nov, Liang-Chieh Chen . Mobilenetv2: Inverted residu-
als and linear bottlenecks. In CVPR, 2018.

[54] M. J. Magazine and M. Chern. A note on approxima-
tion schemes for multidimensional knapsack problems.
Math. Oper. Res., 9(2), 1984.

[55] K. Mahajan, A. Balasubramanian, A. Singhvi,
S. Venkataraman, A. Akella, A. Phanishayee, and
S. Chawla. Themis: Fair and efficient GPU cluster
scheduling. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pages
289–304, Santa Clara, CA, Feb. 2020. USENIX
Association.

[56] K. Mahajan, A. Singhvi, A. Balasubramanian,
S. Venkataraman, A. Akella, A. Phanishayee, and
S. Chawla. Themis: Fair and efficient GPU cluster
scheduling for machine learning workloads. In USENIX
NSDI, 2020.

[57] Marius Cordts, Mohamed Omran, Sebastian Ramos,
Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson,
Uwe Franke, Stefan Roth, and Bernt Schiele . The
cityscapes dataset for semantic urban scene understand-
ing. In CVPR, 2016.

[58] Measuring Fixed Broadband - Eighth Report,
FEDERAL COMMUNICATIONS COMMIS-
SION OFFICE OF ENGINEERING AND
TECHNOLOGY. https://www.fcc.gov/reports-
research/reports/measuring-broadband-
america/measuring-fixed-broadband-eighth-report.
2018.

[59] Microsoft-Rocket-Video-Analytics-Platform.
https://github.com/microsoft/Microsoft-Rocket-
Video-Analytics-Platform.

[60] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasude-
van, Mark Sandler, Andrew Howard, Quoc V. Le. Mnas-
net: Platform-aware neural architecture search for mo-
bile. In CVPR, 2019.

[61] Mingxing Tan, Quoc V. Le . Efficientnet: Rethinking
model scaling for convolutional neural networks. In
ICML, 2019.

[62] U. Misra, R. Liaw, L. Dunlap, R. Bhardwaj, K. Kan-
dasamy, J. E. Gonzalez, I. Stoica, and A. Tumanov. Rub-
berBand: Cloud-Based Hyperparameter Tuning, page
327–342. Association for Computing Machinery, New
York, NY, USA, 2021.

[63] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw,
E. Liang, M. Elibol, Z. Yang, W. Paul, M. I. Jordan, and
I. Stoica. Ray: A distributed framework for emerging ai
applications. In Proceedings of the 13th USENIX Con-
ference on Operating Systems Design and Implemen-
tation, OSDI’18, page 561–577, USA, 2018. USENIX
Association.

[64] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian
Sun . Shufflenet v2: Practical guidelines for efficient
cnn architecture design. In ECCV, 2018.

[65] OPENSIGNAL. Mobile Network Experience Report .
https://www.opensignal.com/reports/2019/01/usa/mobile-
network-experience. 2019.

[66] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Rai-
son, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang,
J. Bai, and S. Chintala. Pytorch: An imperative style,
high-performance deep learning library. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 32, pages 8024–8035. Curran
Associates, Inc., 2019.

[67] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo
Aila, Jan Kautz. Pruning convolutional neural networks
for resource efficient inference. In ICLR, 2017.

[68] Pei Sun and Henrik Kretzschmar and Xerxes Dotiwalla
and Aurelien Chouard and Vijaysai Patnaik and Paul
Tsui and James Guo and Yin Zhou and Yuning Chai and
Benjamin Caine and Vijay Vasudevan and Wei Han and
Jiquan Ngiam and Hang Zhao and Aleksei Timofeev
and Scott Ettinger and Maxim Krivokon and Amy Gao
and Aditya Joshi and Yu Zhang and Jonathon Shlens
and Zhifeng Chen and Dragomir Anguelov. Scalability
in perception for autonomous driving: Waymo open
dataset, 2019.

[69] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo. Opti-
mus: an efficient dynamic resource scheduler for deep
learning clusters. In ACM EuroSys, 2018.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 133

[70] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo. Optimus:
An efficient dynamic resource scheduler for deep learn-
ing clusters. In Proceedings of the Thirteenth EuroSys
Conference, EuroSys ’18, New York, NY, USA, 2018.
Association for Computing Machinery.

[71] J. Rasley, Y. He, F. Yan, O. Ruwase, and R. Fonseca. Hy-
perDrive: exploring hyperparameters with POP schedul-
ing. In ACM/IFIP/USENIX Middleware, 2017.

[72] Ravi Teja Mullapudi, Steven Chen, Keyi Zhang, Deva
Ramanan, Kayvon Fatahalian. Online model distillation
for efficient video inference. In ICCV, 2019.

[73] S. V. Ravuri and O. Vinyals. Classification accuracy
score for conditional generative models. 2019.

[74] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson.
CNN features off-the-shelf: an astounding baseline for
recognition. In IEEE CVPR Workshop, 2014.

[75] J. Redmon and A. Farhadi. Yolov3: An incremental
improvement, 2018.

[76] Residential landline and fixed broadband services .
https://www.ofcom.org.uk/__data/assets/pdf_file/0015/113640/landline-
broadband.pdf. 2019.

[77] RM French. Catastrophic forgetting in connectionist
networks. In Trends in cognitive sciences, 1999.

[78] H. Robbins. Some aspects of the sequential design of
experiments. Bulletin of the American Mathematical
Society, 58(5), 1952.

[79] Ronald Kemker, Marc McClure, Angelina Abitino, Tyler
L. Hayes, and Christopher Kanan. Measuring catas-
trophic forgetting in neural networks. In AAAI, 2018.

[80] H. F. Scheduler. https://hadoop.apache.org/docs/r2.4.1/hadoop-
yarn/hadoop-yarn-site/FairScheduler.html.

[81] Shadi Noghabi, Landon Cox, Sharad Agarwal, Ganesh
Ananthanarayanan. The emerging landscape of edge-
computing. In ACM SIGMOBILE GetMobile, 2020.

[82] H. Shen, S. Han, M. Philipose, and A. Krishnamurthy.
Fast video classification via adaptive cascading of deep
models. In CVPR, 2017.

[83] Shivangi Srivastava, Maxim Berman, Matthew B.
Blaschko, Devis Tuia . Adaptive compression-based
lifelong learning. In BMVC, 2019.

[84] Si Young Jang, Yoonhyung Lee, Byoungheon Shin,
Dongman Lee, Dionisio Vendrell Jacinto . Application-
aware iot camera virtualization for video analytics edge
computing. In ACM/IEEE SEC, 2018.

[85] J. Snoek, H. Larochelle, and R. P. Adams. Practical
bayesian optimization of machine learning algorithms.
In NIPS, 2012.

[86] Song Han, Huizi Mao, William J. Dally . Accelerating
very deep convolutional networks for classification and
detection. In ICLR, 2017.

[87] Sweden Data Collection & Processing.

[88] K. Swersky, R. Kiros, N. Satish, N. Sundaram, M. M. A.
Patwary, and R. P. Adams. Scalable Bayesian Optimiza-
tion Using Deep Neural Networks. In ICML, 2015.

[89] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg
Sperl, Christoph H. Lampert. icarl: Incremental classi-
fier and representation learning. In CVPR, 2017.

[90] The Future of Computing is Distributed.
https://www.datanami.com/2020/02/26/the-future-
of-computing-is-distributed/, 2020.

[91] H. Wang, A. Kembhavi, A. Farhadi, A. L. Yuille, and
M. Rastegari. Elastic: Improving cnns with dynamic
scaling policies. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
2258–2267, 2019.

[92] Y. Wu, Y. Chen, L. Wang, Y. Ye, Z. Liu, Y. Guo, and
Y. Fu. Large scale incremental learning. In IEEE CVPR,
2019.

[93] Xi Yin, Xiang Yu, Kihyuk Sohn, Xiaoming Liu and
Manmohan Chandraker. Feature transfer learning for
face recognition with under-represented data. In IEEE
CVPR, 2019.

[94] Xiangyu Zhang, Jianhua Zou, Kaiming He, and Jian Sun.
Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding.
In IEEE PAMI, 2016.

[95] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu,
N. Kwatra, Z. Han, P. Patel, X. Peng, H. Zhao, Q. Zhang,
F. Yang, and L. Zhou. Gandiva: Introspective Cluster
Scheduling for Deep Learning. In USENIX OSDI, 2018.

[96] Z. Li and D. Hoiem . Learning without forgetting. In
ECCV, 2016.

[97] H. Zhang, L. Stafman, A. Or, and M. J. Freedman.
SLAQ: quality-driven scheduling for distributed ma-
chine learning. In SoCC, 2017.

[98] X. Zhang, X. Zhou, M. Lin, and J. Sun. Shufflenet:
An extremely efficient convolutional neural network for
mobile devices. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 6848–
6856, 2018.

134 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Notation Description
V Set of video streams
v A video stream (v ∈ V)
T A retraining window with duration ∥T∥
Γ Set of all retraining configurations
γ A retraining configuration (γ ∈ Γ)
Λ Set of all inference configurations
λ An inference configuration (λ ∈ Λ)
G Total number of GPUs
δ The unit for GPU resource allocation

AT (v,γ,λ,R ,I) Inference accuracy for video v for
given configurations and allocations

CT (v,γ,λ) Compute cost in GPU-time for video v for
given configurations and allocations

φvγλR I A set of binary variables (φvγλR I ∈ {0,1}).
φvγλR I = 1 iff we use retraining config γ,
inference config λ, R δ GPUs for retraining,
I δ GPUs for inference for video v

Table 4: Notations used in Ekya’s description.
[99] Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang,

Boqing Gong, Stella X. Yu . Large-scale long-tailed
recognition in an open world. In CVPR, 2019.

A Thief Scheduler
A.1 Complexity Analysis.

Assuming all the AT (v,γ,λ,R ,I) values are known, the above
optimization problem can be reduced to a multi-dimensional
binary knapsack problem, a NP-hard problem [54]. Specif-
ically, the optimization problem is to pick binary options
(φvγλR I) to maximize overall accuracy while satisfying two
capacity constraints (the first and second constraints in Eq 1).
In practice, however, getting all the AT (v,γ,λ,R ,I) is infea-
sible because this requires training the edge DNN using all
retraining configurations and running inference using all the
retrained DNNs with all possible GPU allocations and infer-
ence configurations.

The uncertainty of AT (v,γ,λ,R ,I) resembles the multi-
armed bandits (MAB) problem [78] to maximize the expected

rewards given a limited number of trials for a set of options.
Our optimization problem is more challenging than MAB
for two reasons. First, unlike the MAB problem, the cost of
trials (CT (v,γ,λ)) varies significantly, and the optimal solution
may need to choose cheaper yet less rewarding options to
maximize the overall accuracy. Second, getting the reward
AT (v,γ,λ,R ,I) after each trial requires "ground truth" labels
that are obtained using the large golden model, which can
only be used judiciously on resource-scarce edges (§2.2).

In summary, our optimization problem is computationally
more complex than two fundamentally challenging problems
(multi-dimensional knapsack and multi-armed bandits).

Algorithm 2: PickConfigs
Data: Resource allocations in temp_alloc[], configurations

(Γ and Λ), retraining window T , videos V
Result: Chosen configs ∀v ∈V , average accuracy over T

1 chosen_accuracies[]←{}; chosen_configs[]←{};
2 for v in V [] do
3 infer_config_pool[] = Λ.where(resource_cost <

temp_alloc[v.inference_job] && accuracy ≥ aMIN);
4 infer_config = max(infer_config_pool, key=accuracy);
5 best_accuracy = 0;
6 for train_config in Γ do

/* Estimate accuracy of inference/training
config pair over retraining window */

7 accuracy = EstimateAccuracy(train_config,
infer_config, temp_alloc[v.training_job], T);

8 if accuracy > best_accuracy then
9 best_accuracy = accuracy;

10 best_train_config = train_config;

11 chosen_accuracies[v] = best_accuracy;
12 chosen_configs[v] = {infer_config, best_train_config};

13 return chosen_configs[], mean(chosen_accuracies[]);

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 135

YuZu: Neural-Enhanced Volumetric Video Streaming

Anlan Zhang1 Chendong Wang1∗ Bo Han2 Feng Qian1

1University of Minnesota, Twin Cities 2George Mason University

Abstract

Differing from traditional 2D videos, volumetric videos pro-

vide true 3D immersive viewing experiences and allow view-

ers to exercise six degree-of-freedom (6DoF) motion. How-

ever, streaming high-quality volumetric videos over the In-

ternet is extremely bandwidth-consuming. In this paper, we

propose to leverage 3D super resolution (SR) to drastically

increase the visual quality of volumetric video streaming. To

accomplish this goal, we conduct deep intra- and inter-frame

optimizations for off-the-shelf 3D SR models, and achieve

up to 542× speedup on SR inference without accuracy degra-

dation. We also derive a first Quality of Experience (QoE)

model for SR-enhanced volumetric video streaming, and vali-

date it through extensive user studies involving 1,446 subjects,

achieving a median QoE estimation error of 12.49%. We then

integrate the above components, together with important fea-

tures such as QoE-driven network/compute resource adapta-

tion, into a holistic system called YuZu that performs line-rate

(at 30+ FPS) adaptive SR for volumetric video streaming. Our

evaluations show that YuZu can boost the QoE of volumetric

video streaming by 37% to 178% compared to no SR, and

outperform existing viewport-adaptive solutions by 101% to

175% on QoE.

1 Introduction

Volumetric video is an emerging type of multimedia con-

tent. Unlike traditional videos and 360° panoramic videos [28,

53] that are 2D, every frame in a volumetric video consists of

a 3D scene represented by a point cloud or a polygon mesh.

The 3D nature of volumetric video enables viewers to ex-

ercise six degree-of-freedom (6DoF) movement: a viewer

can not only “look around” by changing the yaw, pitch, and

roll of the viewing direction, but also “walk” in the video by

changing the translational position in 3D space. This leads to

a truly immersive viewing experience. As the key technology

of realizing telepresence [49], volumetric video has registered

numerous applications. They can be viewed in multiple ways:

through VR/MR (virtual/mixed reality) headsets or directly

on PCs (similar to how we play 3D games).

Despite the potentials, streaming volumetric videos over the

Internet faces a key challenge of high bandwidth consumption.

High-quality volumetric content requires hundreds of Mbps

bandwidth [27, 71]. To improve the Quality of Experience

* Current affiliation: University of Wisconsin, Madison.

(QoE) under limited bandwidth, prior work has mostly fo-

cused on viewport-adaptive streaming (i.e., mainly streaming

content that will appear in the viewport) [27, 41, 50]. How-

ever, they are ineffective when the entire scene falls inside the

viewport. They also require 6DoF motion prediction that is

unlikely to be accurate for fast motion. Some other proposals

explored remote rendering [26,52] (e.g., having an edge node

transcode 3D scenes into regular 2D frames). However, they

require not only 6DoF motion prediction, but also edge/cloud-

side transcoding that is difficult to scale, as summarized in

Table 1.

In this paper, we employ a different and orthogonal ap-

proach toward improving the QoE of volumetric video stream-

ing through 3D super resolution (3D SR). SR was initially de-

signed for improving the visual quality of 2D images [21, 65].

Recently, researchers in the computer vision community de-

veloped SR models for point clouds [43, 61, 63, 70]. This

inspires us to employ SR for volumetric video streaming, as

each frame of a volumetric video is typically either a point

cloud or a 3D mesh.1 Although there have been recent success-

ful attempts on applying SR to 2D video streaming [22,39,68],

3D-SR-enhanced volumetric video streaming is unique and

challenging due to the following reasons.

● There is a fundamental difference between pixel-based 2D

frames and volumetric frames consisting of unstructured 3D

points, making processing volumetric videos (even without

SR) vastly different from 2D videos.

● Due to its 3D nature, the computation overhead of 3D SR is

very high. We apply off-the-shelf 3D SR models to volumetric

videos [1], and find that the runtime performance of 3D SR is

unacceptably poor – achieving only ∼0.1 frames per second

(FPS) on a PC with a powerful GPU. In contrast, 2D SR

can achieve line-rate upsampling by simply downscaling the

model [68], but we find that only doing model downscaling is

far from being adequate for line-rate 3D SR (i.e., at 30+ FPS).

● Given its recent debut, there lacks research on basic in-

frastructures such as tools and models supporting volumetric

video streaming. For example, there is no QoE model for

volumetric videos that can guide bitrate adaptation or critical

SR parameter selection; the wide range of factors affecting

the QoE make constructing such a model quite challenging.

● There are other practical challenges to overcome, such as a

lack of color produced by today’s 3D SR models.

To address the above challenges, we begin by developing to

1We focus on point-cloud-based volumetric videos in this work, but the

key concepts of YuZu also apply to mesh-based volumetric videos.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 137

Schemes Refs Advantages (⊕⊕⊕) and Disadvantages (⊖⊖⊖)

Direct Streaming N/A ⊕⊕⊕ Easy to implement, best QoE (if bandwidth is sufficient).⊖⊖⊖ Highest network bandwidth (BW) usage.

Direct + VA [27, 41] ⊕⊕⊕ Lower BW usage.⊖⊖⊖ BW saving depends on user’s motion, QoE depends on motion prediction.

Direct + SR YuZu ⊕⊕⊕ Good QoE, further lower BW usage, adaptively trades compute resource for BW.⊖⊖⊖ Requires training.

Remote Rendering [26, 52] ⊕⊕⊕ Lowest BW usage.⊖⊖⊖ QoE depends on motion prediction, need edge support (poor scalability).

Table 1: Four categories of volumetric video streaming approaches (VA = Viewport Adaptation; SR = Super Resolution).

our knowledge a first QoE model for assessing SR-enhanced

volumetric video streaming. The model takes into account

a variety of factors that may affect the QoE, such as video

resolution (i.e., point density)2, viewing distance, upsampling

ratio, SR-incurred distortion, and QoE metrics from tradi-

tional video streaming. We validate our model by conducting

two IRB-approved user studies involving 1,446 voluntary par-

ticipants from 40 countries, using a major genre of volumetric

content, i.e., portraits of single/multiple people. The validation

results confirm its accuracy, with a median QoE estimation

error of 12.49%. Our user studies offer definitive evidence

that 3D SR can significantly boost the QoE of volumetric

video streaming.

Next, we design, implement, and evaluate YuZu, which

is to our knowledge a first SR-enhanced volumetric video

streaming system. At its core, YuZu deeply optimizes the

end-to-end upsampling pipeline in three aspects: intra-frame

SR, inter-frame SR, and network-compute resource manage-

ment, whose synergy helps drastically improve the runtime

performance of SR while retaining the inference accuracy.

For intra-frame SR, our approaches are not limited to

generic optimizations for deep learning models such as modi-

fying SR models’ structures for fast-paced SR. More impor-

tantly, we consider the factors that are unique to 3D SR and

its data representation: we design a mechanism that leverages

the low-resolution content (i.e., the input to the SR model,

which is typically discarded after being fed into the model)

to reduce the SR model complexity; we also trim the pre-

processing and post-processing stages of 3D SR and tailor

them to volumetric video streaming. Note that these optimiza-

tions are generic, applicable to all the 3D SR models we have

investigated [43, 61, 63, 70].

For inter-frame SR, YuZu speeds up SR by caching and

reusing 3D SR results across consecutive frames. Realizing

that none of the 2D inter-frame encoding techniques can be

directly applied to volumetric videos, we design an effec-

tive inter-frame content reference scheme for SR-enhanced

point cloud streams, followed by robust criteria determining

whether SR results can be reused between two frames. We

then extend reusing SR results from two to multiple con-

secutive frames through a dynamic-programming-based op-

timization. The synergy of the above intra- and inter-frame

acceleration schemes fills the huge gap between off-the-shelf

3D SR models’ performance and what is required for line-rate

upsampling of point cloud streams.

YuZu further performs network-compute resource man-

2The resolution of a point cloud is defined as its point density; the resolu-

tion of a volumetric video is the avg. resolution of its point cloud frames.

agement through making judicious decisions about the qual-

ity level of the to-be-fetched content and its upsampling ratio.

These two decision dimensions are subject to the dynamic net-

work bandwidth and limited compute resources, respectively,

which need to be jointly considered given their complex trade-

offs – a unique challenge compared to traditional adaptive

bitrate (ABR) video streaming. YuZu takes a QoE-driven ap-

proach by maximizing the utility function derived from our

QoE model. To solve the underlying optimization problem

in real time, we develop a hybrid, two-stage algorithm that

employs coarse-grained and fine-grained search at different

time to efficiently find a good approximate solution. In addi-

tion, YuZu performs fast colorization of SR results through

efficient nearest point search.

We implement the above components and integrate them

into YuZu in 10,848 lines of code. Our extensive evalua-

tions indicate that YuZu can achieve line-rate, adaptive, high-

quality 3D SR. We highlight key evaluation results as follows.

●Our user study suggests that 3D SR can boost the volumetric

video QoE by 37% to 178% compared to no SR.

● Our optimizations speed up 3D SR by 140× to 542× and

reduce GPU memory usage by 68% to 90% with no accuracy

degradation, compared to the vanilla SR models [43, 61].

● Compared to a recently proposed viewport-adaptive volu-

metric video streaming system [27], YuZu improves the QoE

by 100.6% to 174.9%.

To summarize, we make the following contributions.

●We build an empirical QoE model for SR-enhanced volu-

metric videos, and validate it through large-scale user studies

involving 1,446 participants. We build our models using volu-

metric content of single/multiple human portraits, a major ap-

plication of volumetric video streaming. Note that the model

can be applied to non-SR volumetric videos belonging to the

same genre, with an SR ratio of 1.

●We propose and design YuZu, an SR-enhanced, QoE-aware

volumetric video streaming system.

●We implement YuZu, and conduct extensive evaluations for

its QoE improvement and runtime performance.

2 Background and Motivation

Recently, the computer vision community extended SR to

static point clouds [43, 61, 63, 70]. When applied to a video v,

SR trains offline a deep neural network (DNN) model M that

upsamples low-resolution frames L(v) to high-resolution ones

H(v), using the original (high-resolution) frames F(v) for

training. In the online inference, the server sends M and L(v)
to the client, which infers H(v) =M(L(v)). SR leverages the

overfitting property of DNN to ensure that H(v) is highly

138 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

similar to F(v). It achieves bandwidth reduction (or QoE

improvement when bandwidth remains the same) since the

combined size of M and L(v) is much smaller than F(v).
We start with a straightforward approach: applying PU-

GAN [43], a state-of-the-art 3D SR model, to upsample every

point cloud frame of a volumetric video. PU-GAN operates

by dividing the entire point cloud of a frame into smaller

patches, each consisting of a subset of points. Both SR train-

ing and inference are performed on a per-patch (as opposed to

a per-frame) basis, i.e., each patch is upsampled individually.

Its DNN model is based on a generative adversarial network

(GAN) and realizes three key stages: feature extraction, fea-

ture expansion, and point set generation.

We next describe a case study using PU-GAN to motivate

YuZu. Our testing video was captured by three depth cameras.

It has 3,622 frames, each consisting of ∼100K points depicting

a performing actor. We use all its frames to train a PU-GAN

model. We set the SR ratio (i.e., upsampling ratio) to 4, mak-

ing the input and output point clouds consist of roughly 25K

and 100K points, respectively. We have both positive and neg-

ative findings from this case study. On the positive side, the

model can accurately reconstruct each individual frame, i.e.,

each upsampled point cloud is highly similar to the original

one in terms of the geometric structure, as quantified by the

Earth Mover’s Distance (EMD [54]):

LEMD(I,G) = min
φ∶I→G

1

∣I∣
∑

x∈I

∣∣x−φ(x)∣∣2 (1)

where I and G are the upsampled point cloud and the ground

truth, respectively; φ ∶ I→G is a bijection from the points in

I to those in G. The average EMD value across all frames is

1.47cm, which confirms good upsampling accuracy [43]; it is

also verified by our IRB-approved user studies (§4.2). Also

encouragingly, we find that SR indeed achieves significant

bandwidth savings. For this 2-minute video, the compressed

sizes of F(v), M, and L(v) are 1.40 GB, 560 KB, and 0.36

GB, respectively, leading to a bandwidth reduction of 74.2%.

Despite the above encouraging results, we notice three

major issues from the above case study.

● A Lack of Quality-of-Experience (QoE) Model. For tra-

ditional 2D video streaming, there exist numerous studies on

modeling the viewer’s QoE [15, 18, 69]. In contrast, volumet-

ric videos are still in their infancy. There is a lack of generic

QoE models that researchers can leverage, not to mention a

lack of understanding of how SR impacts QoE.

●Unacceptably Poor Runtime Performance. 3D SR models

are computationally much more heavyweight than 2D SR

models. When applying PU-GAN to the above video, the

runtime performance is extremely poor. On a machine with

an NVIDIA 2080Ti GPU, the upsampling FPS is only 0.1,

far below the desired FPS of at least 30. Besides, the GPU

memory usage of PU-GAN is 7GB (out of the 11GB available

memory of 2080Ti). This is one reason why all the off-the-

shelf 3D SR models operate on a per-patch basis, as this saves

memory compared to processing a full frame.

● No Color Support. We find that no existing 3D SR model

can restore the color information of upsampled point cloud.

Note that the last two limitations are common in that they

also apply to all other 3D SR models for point clouds that we

have examined, such as MPU [61] and PU-Net [70].

3 YuZu Overview

YuZu is to our knowledge the first SR-enhanced volumetric

video streaming system. It streams video-on-demand volumet-

ric content stored on an Internet server to client hosts. On the

server side, the volumetric video is divided into chunks each

consisting of a fixed number of frames (i.e., point clouds en-

coded by schemes such as Octree [34,46] and k-d tree [35,44]).

Each chunk is encoded into multiple versions with different

resolutions (i.e., point densities). The SR model training and

volumetric content preprocessing (e.g., patch reuse computa-

tion, see §5.2) are performed offline on the server side. Similar

to a typical DASH server, the YuZu server is stateless (and

thus scalable), and all the streaming logic runs on the client

side. As shown in Figure 1, the client fetches from the server

the video chunks, which can possibly be at a low resolution.

Since 3D SR models typically operate on a per-patch basis,

the client segments each frame into patches, upsamples them

through 3D SR, efficiently colors them (§5.4), and renders

them to the viewer.

To achieve line rate SR, YuZu employs novel optimizations

tailored to SR-enhanced volumetric video streaming. Regard-

ing intra-frame optimizations, off-the-shelf 3D SR models

are strategically adapted; low-resolution patches before SR

are properly leveraged instead of being discarded; and the

patch generation is accelerated (§5.1). For inter-frame opti-

mizations, previous SR results are judiciously reused (§5.2).

A crucial decision that YuZu must make is to determine

what resolution (quality level) to fetch for each chunk, as well

as which SR ratio to apply for upsampling each patch, subject

to the resource constraints jointly imposed by the network

and computation. YuZu addresses this through a principled,

efficient, and QoE-driven discrete optimization framework

(§5.3). The framework utilizes a first-of-its-kind QoE model

that we derive from ratings of 1,446 real users (§4).

4 QoE Model for Volumetric Videos

For SR-enhanced volumetric video streaming, its QoE is af-

fected by a wide range of factors. The large space formed

by these factors and their interplay make constructing QoE

models much more challenging than conventional videos.

4.1 An Empirical QoE Model

We first enumerate factors that may affect the QoE for SR-

enhanced volumetric video streaming. They are derived based

on the domain knowledge of SR and our communication with

other volumetric video viewers.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 139

Chunk Downloader
and Decompressor

Patch Generation (§5.1.2)

Cache for Reusing
SR Results (§5.2)

Merge (§5.1.1)
and Render

Network/
Compute
Resource
Adaptation

(§5.3)

Offline QoE
Model

Generation (§4)

Offline Training

SR Model
Optimization

(§5.1.1)

Server

6-DoF Motion

Cached
SR Results

Optimized
SR Models

QoE
Model

Upsampling
Decision

Download
Decision

Viewer

Low-res Chunks

High-res
Patches

Low-res
Patches

Upsampled Patches

Point Cloud Data

Control Data

Off-the-shelf
3D SR Model

3D SR Upsampling and
Colorization (§5.4)

Low-res Patches

Human Users’ Ratings

Figure 1: The system architecture of YuZu.

Age
18-25: 21.8%, 26-30: 29.0%,

31-35: 20.4%, 35+: 28.8%

Gender
Male: 60.3%, Female: 39.2%,

Other: 0.5%

US: 55.0%, IN: 28.1%,

Country BR: 5.0%, IT: 2.7%,

(40 Total) UK: 1.2%, DE: 1.0%,

CA: 0.9%, Other: 6.1%

Education
Bachelor: 59.1%,

Master: 23.8%, Other: 17.1%

Table 2: Demographics of the 1,446 subjects

in our user studies.

● Point Density. Similar to 2D image resolution, a 3D object

with a higher point density (resolution) contains more details

and thus offers a better QoE.

● Viewing Distance. As the viewing distance increases, a

rendered 3D object becomes smaller in the displayed view,

and is thus less sensitive to quality degradation.

● SR Ratio and Distortion. A higher SR ratio leads to a

higher point density (and thus more QoE gain), but also po-

tentially higher distortions (and thus more QoE loss).

● Artifacts caused by Patches. As described in §2, a typical

3D SR model operates by upsampling individual point subsets

called patches. If patches within a frame have non-uniform

qualities (caused by different SR ratios), the perceived QoE

will be affected.

● Invisibility due to Finite Viewport and Occlusion. Due

to the 3D nature of volumetric videos, a viewer can see only

content that is inside the viewport and not occluded. Outside-

viewport or occluded content brings no impact on the QoE.

● QoE Metrics for Regular Video Streaming. They include

factors such as stall and inter-frame quality switches [69].

Next, we develop an empirical QoE model that considers

the above factors. Since SR is performed on a per-patch basis,

we first model the QoE for each individual patch as:

qi, j = g(di, j,ri, j,δi, j)−h(EMD,δi, j) (2)

where qi, j is the quality of patch j in frame i; di, j is the

patch’s original point density before SR; δi, j is the viewing

distance to the patch; ri, j is the SR ratio of the patch. Eq. 2 has

two terms: g(⋅) considers the patch’s perceived density after

SR, and h(⋅) accounts for the QoE penalty incurred by SR

distortion, quantified by the viewing distance and the EMD

(Eq. 1) between the upsampled patch and the high-quality

patch (ground truth). We empirically define g(⋅) and h(⋅) as:

g(di, j,ri, j,δi, j) =w1(δi, j)×di, j × ri, j (3)

h(EMD,δi, j) =w2(δi, j)×EMD (4)

where w1(δi, j) and w2(δi, j) are weights parameterized on

δi, j. Intuitively, in Eq. 3, after SR, the perceived point density

improves by a factor of ri, j; the QoE gain brought by a higher

point density after SR (Eq. 3) and the QoE penalty caused by

SR distortion (Eq. 4) depend on the viewing distance.

Now given a single frame i, we define its quality Qi as the

average of all its visible patches’ quality values:

Qi =
∑ j vi, jqi, j

∑ j vi, j

(5)

where vi, j ∈ {0,1} is 1 iff the patch is visible, i.e., it falls

inside the viewport and is not occluded by other patches. To

account for the artifacts caused by patches, we define inter-

patch quality switch I
patch
i as the quality variation across the

visible patches within frame i. To account for inter-frame

quality switches, we define inter-frame quality switch I
f rame

i

as the quality change from frame i−1 to frame i:

I
patch
i = StdDev({qi, j ∣∀ j,vi, j > 0}) (6)

I
f rame

i = ∥Qi−Qi−1∥ (7)

For a volumetric video playback, a possible way to model

its overall QoE is a linear combination of Qi, I
patch
i , I

f rame
i ,

and Istall
i (the stall of frame i). We choose a linear form that

is widely used in 2D Internet videos [69]. Thus, we have

QoE =∑
i

Qi−∑

i

µp(δi)I
patch
i

−∑

i

µ f (δi)I
f rame
i

−∑

i

µs(δi)I
stall
i

(8)

Note that depending on the viewing distance, the weights

µp, µ f , and µs may differ (e.g., viewers may be more sensitive

to stalls when watching a scene at a closer distance), so we

parameterize the weights with the viewing distance. In Eq. 8,

δi summarizes the viewing distances to all the patches in

frame i. We empirically choose δi = (∑ j vi, jδi, j)/(∑ j vi, j).
Also note that the above model is generic and applicable to

non-SR-enhanced and non-patch-based volumetric videos as

it encompasses special cases without using SR (ri, j=1) or

patches (I
patch
i =0).

4.2 Model Validation through User Studies

We next conduct user studies with two purposes: validating

our QoE model and deriving the model parameters. Our QoE

model considers many factors as described in §4.1. The high-

level approach of the user study is to let participants sub-

jectively rate the QoE for all the combinations of the above

factors’ different degrees of impairments, and then use the

140 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Scheme 1×1 1×2 1×3 1×4 2×1 2×2 3×1 4×1

Pt. density 25% 25% 25% 25% 50% 50% 75% 100%

SR ratio - ×2 ×3 ×4 - ×2 - -

Table 3: 8 impaired versions (except 4×1) of a video segment. In

scheme m×n, m is the point density level and n is SR ratio.

Videos: {Long Dress, Loot [1]; Band, Haggle [36]}

Avg. frame quality Qi: 7 values uniformly selected from Table 3

Avg. distance disti, j: {1m, 2m, 3m, 4m}

Avg. inter-patch switch I
patch
i

: {0.00,0.45,0.90}

Avg. inter-frame switch I
f rame
i

: {0.00,0.45,0.90}

Avg. stall Istall
i : {0.00,0.01,0.03}

Table 4: The factors and their values selected for model validation.

subjects’ ratings to train/validate our QoE model. We obtained

IRB approvals for our studies. Instead of performing in-person

studies, we conduct both studies online by letting users watch

pre-generated videos capturing the rendered viewports (with

impairments). We take this approach because: (1) it allows

vastly scaling up the study, (2) it helps get diverse users world-

wide, and (3) the IRB forbids in-person user studies during

COVID-19. We have collected responses from 1,446 subjects,

whose demographics are shown in Table 2.

We start by studying the QoE gain brought by SR. We

have collected 512 subjects’ responses with a total number

of 57,344 ratings. The key finding is that SR can effectively

boost the QoE. For example, at 1m, compared to 1×1, the

(user-rated) QoE increases by 37%, 75%, 150% for 1×2, 1×3,

and 1×4, respectively; 2×2 improves the QoE by 178% com-

pared to 2×1. The details can be found in Appendix A.

Next, we validate the overall QoE model (Eq. 8). We choose

four videos: Long Dress showing a dancing female, Loot

showing a speaking male, Band showing three people play-

ing instruments, and Haggle showing three people debating.

Long Dress and Loot are obtained from the 8i dataset [1], each

consisting of 800K points per frame for 10 seconds. Band

and Haggle are from the CMU Panoptic dataset [36], each

consisting of 300K and 100K points per frame, respectively;

we select 10-second segments for our study. For each video,

we create 8 versions listed in Table 3. Note that since the par-

ticipants need to watch a large number of impaired copies, the

video length (10 seconds) has to be short. Also note that the

videos have different point densities, as we want to make the

QoE model generic, applicable to different resolutions. We

will experimentally verify this shortly. We use our optimized

PU-GAN algorithm (details in §5.1) to perform upsampling

and create video clips at 4K resolution for four viewing dis-

tances: 1m, 2m, 3m, and 4m, which are determined from a

separate IRB-approved user study whose details are described

in Appendix B. To maintain a fixed viewing distance d, we

display the viewport at d meters in front of and facing the

viewer. We design a survey using Qualtrics [11] and publish

it on Amazon Mechanical Turk (AMT) [2].

We study the impact of all the factors in Eq. 8 on the QoE.

Table 4 lists them and their impairment levels. They lead to

a total of 756 combinations for each video segment. Since

letting subjects perform (756
2
) pairwise comparisons is infea-

sible, for each combination, we generate one video clip by

putting the impaired version and the high-quality “ground

truth” version (4×1, I
patch
i = I

f rame
i = Istall

i = 0, same viewing

distance) side by side, in a random order. To generate the im-

paired version, we randomly add perturbations to the patches’

quality levels to match the corresponding I
patch
i and I

f rame
i

values, and randomly inject stalls to match Istall
i . We then ask

each subject to watch 100 randomly selected video clips from

the 756 clips of a randomly selected video segment. After

watching each clip, the subject is asked to rate which side

provides a better QoE through 7 choices (“left looks {much

better, better, slightly better, similar to, slightly worse, worse,

much worse} than right”) If the impaired version is {similar

to, slightly worse, worse, much worse} than the ground truth,

we give the impaired version a score of {3,2,1,0}, respectively.

We have collected 934 subjects’ responses with a total num-

ber of 93,400 ratings for the above survey published on AMT.

For each viewing distance, we use the subjects’ ratings to cal-

culate the average score of each of the 756 impaired clips on a

scale from 0 to 3, and use it as the QoE ground truth. We then

perform 10-fold cross-validation to validate our QoE model

(Eq. 8, trained using multi-variable linear regression) for each

viewing distance. Figure 2 plots the CDF of the QoE predic-

tion errors at each viewing distance. The median prediction

error for 1m, 2m, 3m, 4m is 11.4%, 12.2%, 12.8%, and 12.9%,

respectively. The (Person, Spearman) correlation coefficients

between the ground-truth QoE score and the predicted QoE

score are also high: (0.89, 0.89) at 1m, (0.87, 0.88) at 2m,

(0.87, 0.88) at 3m, and (0.85, 0.85) at 4m.

The above QoE models are trained from all four videos.

Table 5 shows the Spearman correlation coefficients between

the ground-truth QoE and cross-video prediction results. We

use the data of three videos to train a QoE model and use it to

predict the QoE for the remaining video. The results indicate

that the same QoE model and its parameters are applicable to

volumetric content of the same genre (portraits of people – a

major application of volumetric streaming – in our case). We

also confirm that most parameters trained from different video

segments are indeed quite similar, in spite of the segments’

different point densities. When applied to other genres, the

model’s parameters may differ, as to be explored in our future

work (the same happens to 2D videos [68]). Table 6 lists our

final model’s parameters trained using the entire dataset. The

model will be used by YuZu.

5 System Design of YuZu

We now detail the system design of YuZu (Figure 1) that

addresses the challenges we identified in §2.

5.1 Accelerating SR Upsampling

To accelerate 3D upsampling, we take a principled approach

by exploring three orthogonal directions:

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 141

0% 20% 40% 60% 80%

Prediction Error

0

0.2

0.4

0.6

0.8

1

C
D

F

1m

2m

3m

4m

δ
D: Long Dress; L: Loot; B:Band; H:Haggle

DBH⇒ L LBH⇒D DLB⇒H DLH⇒ B

1m 0.80 0.74 0.86 0.85

2m 0.76 0.71 0.87 0.87

3m 0.80 0.73 0.83 0.87

4m 0.78 0.71 0.76 0.80

δ
Long Dress + Loot + Band + Haggle

w1 w2 µp µ f µs

1m 0.55 27.80 0.52 0.40 170.5

2m 0.42 39.83 1.05 0.91 149.8

3m 0.27 26.63 1.23 1.04 176.7

4m 0.16 17.17 0.47 0.06 304.1

Figure 2: QoE prediction er-

ror using our model.

Table 5: Spearman correlation coefficient between QoE ground

truth and cross-video prediction. XY Z ⇒W means using the

model trained from videos X , Y , and Z to predict video W ’s QoE.

Table 6: Parameters of the

final model used in YuZu.

25K Pts/

Frame

75K Pts/

Frame

100K Pts/

Frame

3X SR

Figure 3: Using a 3× SR model to realize 4× SR.

● Model Optimization. How to simplify the upsampling

logic while retaining the inference accuracy? (§5.1.1)

● Data Reduction. How to strategically feed less data to SR

models with negligible impact on QoE? (§5.2)

● Pre-processing and Post-processing Trimming. How to

simplify the sophisticated pre- and post-processing stages

without incurring side effects on inferences? (§5.1.2)

Our optimizations can apply to all 3D SR models we have

investigated [43,61,63,70] and they are video-agnostic. In §7,

we demonstrate the optimization results for two SR models:

PU-GAN [43] and MPU [61].

5.1.1 SR Model Optimization

We take a “top-down” approach by first optimizing the model

as a whole and then fine-tuning its detailed structure. For most

machine learning models (including 2D SR), after performing

an inference, the input is no longer needed and will be dis-

carded. Our investigated 3D SR models [43, 61, 63, 70] make

no exception. We instead make a fundamental observation

regarding 3D point clouds. Different from a 2D image, a point

cloud is a set of unstructured points, which means that point

clouds can be merged via a simple set union operation. We

also note that 3D SR’s output points refine and differ from

the input. Based on this key insight, we propose a simple yet

effective optimization: YuZu merges the input low-density

point cloud with the SR output in order to improve the visual

quality, or to reduce the computation overhead while main-

taining the same upsampling ratio. For example, as shown

in Figure 3, to achieve 4× upsampling, instead of using a 4×

SR model, we can use a (computationally more efficient) 3×

SR model and merge the input with the output. Since SR ex-

ploits the overfitting nature of DNN, the spatial distributions

of upsampled points and the ground truth are expected to be

highly similar. By leveraging the input data and downgrading

the SR ratio from 4× to 3×, we can achieve an acceleration

of up to ∼35% without hurting the SR accuracy (Figure 6).

Note that in offline training, the loss function is computed

after merging the input low-density point cloud with the SR

output. This makes the trained models aware of and adaptive

to the merging process, improving the upsampling accuracy

compared to computing the loss function before that.

Next, we explore modifying 3D SR model’s DNN structure

for inference acceleration. By profiling the inference time of

PU-GAN, we find that its three stages, feature extraction, fea-

ture expansion, and point set generation, take 78.3%, 19.3%,

and 2.4% of execution time, respectively (4× SR). Within the

feature extraction stage that dominates the runtime overhead,

most operations are convolutions. We make the same observa-

tion for other 3D SR models that we investigated [61, 63, 70].

To accelerate convolutions, we replace the original feature

extraction, which (e.g., in the case of PU-GAN) enhances

the solution in PointNet++ [51] through dynamic graph con-

volution [56], with a recent proposal called spherical kernel

function (SKF) [42]. SKF partitions a 3D space into multiple

volumetric bins and specifies a learnable parameter to con-

volve the points in each bin. In contrast to continuous filter

approaches (e.g., multilayer perceptron) used in existing SR

models, SKF is a discrete metric-based spherical convolu-

tional kernel, and is thus computationally attractive for dense

point clouds. Moreover, it is applicable to all the 3D SR mod-

els we examined. We find that SKF brings no degradation to

the upsampling accuracy (§7.3). One reason may be that the

kernel asymmetry of SKF facilitates learning fine geometric

details of point clouds [42].

In addition to utilizing SKF, we conduct layer-by-layer

profiling [22, 66] to fine-tune the SR model’s performance-

accuracy tradeoff. Take PU-GAN as an example. We remove

the last two dense layers of feature extraction and several

heavyweight convolution layers in the feature expansion stage,

as they make limited contributions to the upsampling accu-

racy. We also judiciously remove a small number of expanded

features to reduce the GPU memory footprint. For other 3D

SR models, their model tuning follows a similar approach.

5.1.2 Trimming Pre- and Post-Processing

Recall from §2 that to ensure a manageable model complexity,

a 3D SR model divides a point cloud into small patches as

basic units for upsampling. We discover that as an important

pre-processing step, the patch generation process incurs a high

overhead. For example, PU-GAN generates the patches by

applying kNN to the seeds created by downsampling. Since

the generated patches may overlap, after upsampling, PU-

142 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

GAN needs to perform post-processing: it applies the furthest

point sampling [48] to remove duplicated points.

To mitigate the above overhead, YuZu adopts a simple

patch generation method. It divides the space into cubic cells,

and assigns each non-empty cell (i.e., a cell that contains

points) to a patch. Compared to the default patch genera-

tion approaches used by PU-GAN and other 3D SR frame-

works [43, 61], our approach runs very fast; it also brings no

overlap among patches, thus eliminating the post-processing

step (i.e., overlap removal). In addition, the patches now

have a simple geometry shape, so that they can be indexed,

searched, and manipulated at runtime. Meanwhile, We find

that our patch generation approach does not sacrifice the up-

sampling accuracy and may even improve the accuracy com-

pared to vanilla PU-GAN and MPU (§7.3). This is likely

because cubic cells provide a more consistent structure for

the patches, making it easier to perform SR. We also investi-

gate several other patch generation methods based on Voronoi

diagram [24] and 3D SIFT [55], but none outperforms our

cubic-cell-based approach from either the performance or the

accuracy perspective.

5.2 Caching and Reusing SR Results

Videos usually exhibit similarities across frames. We find that

volumetric videos make no exceptions. This indicates rich

opportunities for caching and reusing SR results.

At a high level,YuZu reuses SR results based on the similar-

ity between patches, which is the basis of inter-frame encod-

ing. Inter-frame similarity has been extensively studied and

exploited in 2D videos. However, none of the 2D inter-frame

encoding techniques can be directly applied to volumetric

videos due to the fundamental difference between pixel-based

2D frames and volumetric frames consisting of unstructured

points. There are very few studies on 3D inter-frame encod-

ing [37, 46]; they are incompatible with YuZu’s patch-based

upsampling, and incur high complexity hindering line-rate

decoding. Due to the above reasons, we design our own SR

caching/reusing algorithm. Our algorithm is agnostic of and

orthogonal to a specific SR model.

YuZu reuses 3D SR results on a per-patch basis to match

the patch-based upsampling procedure. Recall from §5.1.2

that YuZu generates patches using 3D cubic cells. Let p(i, j)
denote patch j of frame i, and let N(i, j) denote the num-

ber of points in p(i, j). YuZu allows reusing the SR result

of p(i, j) for subsequent consecutive patches at the same lo-

cation, i.e., p(i+1, j), p(i+2, j), and so on. YuZu restricts

reusing patches only at the same location due to two con-

siderations. First, we empirically observe that most patch

similarities indeed occur at the same cell location; this makes

the benefits (in terms of reduced SR overhead) of reusing a

patch belonging to a different cell marginal. Second, allowing

reusing a patch at a different cell will drastically increase the

overhead of pre-computing the caching/reusing decisions.

We now describe YuZu’s SR reuse algorithm. YuZu first

determines offline the similarity of two patches. For each

patch pair (p(i, j), p(i+1, j)), YuZu computes a Weighted

Complete Bipartite Graph [17] B ∶ p(i, j)→ p(i+1, j), which

we find to be suitable for dealing with unstructured points. In

the bipartite graph, there is a directed edge from every point in

p(i, j) to every point in p(i+1, j), and the weight of the edge

is their Euclidean distance. We then calculate the minimum-

weight matching (MWM) [57] for the graph, i.e., finding

N(i, j) edges such that (1) these edges share no common

vertices (points), and (2) the sum of their weights is minimized.

Intuitively, the MWM identifies a transformation from p(i, j)
to p(i+1, j) with a minimum moving distance for the points.

The Hungarian algorithm [17] that computes the MWM has

a complexity of O(N4) where N =max{N(i, j),N(i+1, j)}.
We instead employ a faster O(N2) approximation algorithm

that is found to work well in practice.3

We call every edge in the MWM a point motion vector

(PMV). A PMV differs from a 2D video’s motion vector,

which represents a macroblock in a frame based on the posi-

tion of the same or a similar macroblock in another reference

frame. Leveraging the PMVs, we determine that p(i+1, j)
and p(i, j) are similar if three criteria are satisfied. (1) N(i, j)
and N(i+1, j) differ by no more than ηn%; (2) the average

length of all the PMVs is smaller than ηa; (3) the top 90-

percentile of the shortest PMV is smaller than ηv. These three

criteria dictate that p(i, j) and p(i+1, j) have a similar num-

ber of points, and the points’ collective motions are small.

Figure 4 shows how ηa impacts EMD and the patch reuse

ratio (% of patches that can reuse a previous SR result). As

shown, increasing ηa increases the reuse ratio, but meanwhile

decreases the accuracy. According to Figure 4, we set ηa to

0.01m to balance the performance and accuracy. Using similar

methods, we empirically set ηn=10 and ηv=0.01m.

Next, we consider how to reuse an SR result across mul-

tiple patches belonging to consecutive frames. We define

sim j(i1, i2) ∈ {0,1} to be 1 if and only if p(i1, j) and p(i2, j)
are similar, i.e., satisfying the above three criteria where

i2 > i1. Figure 5 shows an example of 6 consecutive patches

at location j where ∀1 ≤ x < y ≤ 6 ∶ sim j(x,y) = 0 except that

sim j(1,2), sim j(2,3), sim j(2,4), and sim j(2,6) are 1. YuZu

allows a patch’s SR result to be reused across consecutive

patches if they are all similar to the first patch. For example,

Patches 3 and 4 can reuse Patch 2’s SR result. However, YuZu

does not let Patch 6 reuse Patch 2 because sim j(2,5) = 0. We

make this design decision for two reasons. First, we observe

that non-consecutive patches are unlikely to be similar in real

volumetric videos. Second, supporting non-consecutive reuse

requires computing sim j(x,y)∀x < y, making offline video

processing slow.

We develop an algorithm that minimizes the number of

3The approximation algorithm sorts all the edges by their weights in

ascending order. It then adds the edges to the MWM in that order and skips

edges that share points with an existing edge in the matching, until every

point in p(i, j) or every point in p(i+1, j) is in the MWM.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 143

0.6

0.65

0.7

0.75

0.8

0.85

0.005 0.01 0.015 0.02
 40

 50

 60

 70

80

 90

E
M

D
 (

c
m

)

R
e

u
s
e

 R
a

ti
o

 (
%

)
ηa (m)

EMD
Reuse Ratio

6

5

4

3

2

1

F
r
a
m
e
s

Figure 4: Impact of ηa (using the

video in §2, 1×4 SR).

Figure 5: Reusing SR results

across consecutive frames.

patches to be upsampled, to boost the online SR performance.

For example, in Figure 5, the minimum number of patches to

be upsampled is 4: Patches 1, 2, 5, and 6. YuZu efficiently and

optimally solves this through dynamic programming (DP).

Given n patches p(1, j), ..., p(n, j) and their sim j information,

let u(i, j) be the minimum number of patches that need to be

upsampled in {p(i, j), ..., p(n, j)} if we decide to upsample

p(i, j). Then u(i, j) can be derived through DP as:

u(i, j) =min{u(i+1, j), min
i<k≤n∶∀i<t≤k∶sim j(i,t)=1

{u(k+1, j)}}+1

(9)

The RHS of Eq. 9 examines each patch following p(i, j) and

updates u(i, j) if stopping reusing p(i, j) at p(k+1, j) yields

a better u(i, j). The search continues until hitting a patch

that is not similar to p(i, j). Eq. 9 can be solved backwards

starting from u(n+1, j) = 0. The solution is u(1, j).
Since YuZu streams VoD volumetric content, all the above

logic (calculating MWM, sim j, and DP) is performed offline

for each patch location j. Thus, there is no runtime overhead.

The SR reuse decisions are sent to the client as meta data,

which is only 0.5KB per frame for our testing video in §2.

5.3 Network/Compute Resource Adaptation

YuZu adapts to not only the fluctuating network condition

(similar to the job of traditional bitrate adaptation algo-

rithms [45, 64, 69]), but also the available compute resource,

due to the high computation overhead of 3D SR. More impor-

tantly, these two dimensions incur a tradeoff: given a fixed

playback deadline, should YuZu download high-resolution

content, or download lower-resolution content and spend time

upsampling it? Fortunately, our QoE model (§4.1) dictates

how to quantitatively balance this tradeoff.

We first formulate an online network/compute adaptation

problem. The video is divided into n chunks each consist-

ing of f frames. To achieve fine-grained adaptation, each

chunk is further spatially segmented into b blocks (e.g., b=53),

which are the atomic scheduling units in YuZu’s adaptation

algorithm. Each block consists of multiple patches (recall

from §5.1.2 that each patch occupies a cubic cell). At runtime,

YuZu considers all the blocks belonging to a finite horizon

of the next w chunks, and searches for their quality and SR

ratio assignments that maximize the QoE defined in Eq. 8.

This formulation extends the model predictive control (MPC)

scheme [69] that proves to be effective for traditional 2D

video streaming. The solution space is O(8wb) (the 8 possible

assignments are listed in Table 3).

We consider how to efficiently solve the above discrete op-

timization problem. An exhaustive search is clearly infeasible.

Due to the large solution space, even the memorization ap-

proach (FastMPC [69]) is not practical. Another possibility is

a learning-based approach such as Pensieve [45]. However, it

requires offline training and may incur a non-trivial inference

overhead. Moreover, a recent work [64] indicates that rein-

forcement learning based bitrate adaptation solutions do not

necessarily outperform simple buffer-based approaches [33].

To overcome the above challenges, we develop a

lightweight approximation algorithm. It executes in two

stages: first determine the quality and SR ratios of to-be-

downloaded chunks, and then fine-tune the SR ratios before

upsampling. Specifically, in the first stage, before download-

ing each chunk, YuZu performs a coarse-grained search by

assuming that all the blocks in each chunk have the same

quality/SR-ratio assignment. The rationale is that, at this

moment, the playback deadline is still far away (compared

to Stage 2), and thus the network/computation-load uncer-

tainty diminishes the benefits brought by a block-level, fine-

grained search. Meanwhile, this reduces the solution space

from O(8wb) to O(8w). Specifically, we (1) start with a quasi-

optimal solution obtained from an even coarser-grained search

at the granularity of every two consecutive chunks, and (2)

perform pruning by bounding [19]. After the above two opti-

mizations, for a practical w (e.g., w=10), the search time (for

maximizing the QoE in Eq. 8) becomes negligible compared

to the downloading and upsampling time. To estimate Istall
i

in Eq. 8, at runtime, YuZu continuously estimates (1) the net-

work bandwidth using the method in [29] and (2) the local

processing time of a frame using EWMA-based estimation.

The second stage takes place before upsampling each frame.

At this stage, the playback deadline gets closer and thus a

block-level, fine-grained search would be beneficial. To re-

duce the search complexity, YuZu employs Simulated Anneal-

ing (SA) [40] – a probabilistic, greedy approach that approxi-

mates the global optimum. Our algorithm begins with setting

all the blocks’ SR ratios to the lowest (no SR). For each block,

the algorithm tries to increase its SR ratio by one level. If the

resulting QoE of the finite horizon increases, this change is

always accepted; otherwise, we may still accept this change

with a probability of exp(−∆
t
), where ∆ is the decrease of

the QoE and t is the current number of iterations, to avoid a

potential local maximum. To speed up the SA algorithm, we

reduce the finite horizon to two frames: the previous frame

and the current (to be upsampled) frame – we empirically find

that conducting frequent adaptations with a short horizon at

a per-frame basis outperforms infrequent adaptations with a

long horizon at a per-chunk basis in terms of the QoE.

144 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

5.4 Coloring SR Results

As described in §2, none of the 3D SR models we investigated

performs colorization. There are two high-level approaches

for colorization. One is augmenting the SR models by adding

the color component. This may yield good colorization results,

but at the cost of significantly increasing the SR workload.

Given this concern, YuZu takes a much more lightweight

approach: approximating each upsampled point’s color using

the color of the nearest point in the low-density point cloud

(i.e., the input to the SR model). In Appendix C, we present

the details of our method and experimentally confirm that it

can indeed produce good visual quality (with a PSNR >38).

6 Implementation

We integrate all the components in §5 into YuZu, a holistic

system as shown in Figure 1. Our implementation consists of

10,848 lines of code (LoC), with 8,326 LoC for the client.

For offline SR model training, we modify the source code of

PU-GAN [10] and MPU [8] using TensorFlow 1.14 [13] and

custom TensorFlow operators from SPH3D-GCN [12]. Our

pre-trained models are saved in the ProtoBuf format [9] that is

language- and platform-neutral, facilitating future reuse. For

online streaming, we implement the client player on Linux in

C++. We use the Draco Library [4] for encoding and decoding

the point cloud data. We employ Bazel [3] to compile the Ten-

sorFlow 1.14 C/C++ library and use the compiled library to

load and execute the SR models. The client pipelines content

fetching (network-bound), point cloud decoding & patch gen-

eration (CPU-bound), 3D SR (GPU-bound), and colorization

(CPU-bound) of different frames for better performance. The

server is also built in C++, with a custom DASH-like protocol

over TCP for client-server communication.

7 Evaluation

7.1 Experimental Setup

Volumetric Videos. We use four point-cloud-based volumet-

ric videos throughout our evaluations. (1) Our own video. We

capture a volumetric video by ourselves using 3 synchronized

depth cameras. It has 3,622 frames (2 min) each consisting

of ∼100K points. We refer to this video as Lab. We have

used it to motivate YuZu in §2. (2) The Long Dress (Dress)

and Loot videos (§4.2). They have 300 frames (10 sec) each

consisting of ∼100K points. Since they are short, we loop

them (with cold caches) 10 times in our evaluations. (3) The

Haggle video (§4.2). It has 7,800 frames (4’20”) each consist-

ing of ∼100K points. For all four videos, the eight possible

resolution/SR-ratio assignments are listed in Table 3. For each

video, we train their SR models separately. All the videos are

at 30 FPS, encoded by Draco [4]. Unless otherwise mentioned,

the results reported in the remainder of this section are gen-

erated using all four videos. The average encoded bitrate of

Lab, Dress, Loot, and Haggle (4×1) are 96, 108, 118, and 118

Mbps, respectively.

M1 The vanilla 3D SR model (PU-GAN and MPU)

M2 M1 and optimizing patch generation

M3 M2 and layer profiling & pruning

M4 M3 and applying the spherical kernal function (SKF)

M5 M4 and merging SR input with SR output

M6 M5 and caching/reusing SR results

Table 7: SR acceleration methods (cumulative).

3D SR Models. We apply our developed model acceler-

ation techniques to two recently proposed 3D SR models:

PU-GAN [43] and MPU [61]. The two models usually yield

qualitatively similar results, so we show the results of PU-

GAN by default. For certain SR-specific experiments (e.g.,

SR acceleration), we show both models’ results. The models

are trained on a per-video basis. For each video, the total size

of all its models (×2, ×3, and ×4) is around 1.25 MB.

Metrics and Roadmap. We thoroughly evaluate YuZu in

terms of performance, QoE, and resource utilization. §7.2

evaluates the QoE improvement brought by our 3D SR opti-

mizations using both subjective (i.e., real-user ratings) and

objective (e.g., PSNR [30]) metrics. §7.3 focuses on the per-

formance gain of our 3D SR optimizations, from the per-

spectives of resource usage, inference time, and upsampling

accuracy. §7.4 and §7.5 evaluate the end-to-end performance

(e.g., QoE and data usage) of YuZu. §7.6 provides additional

micro benchmarks.

Network Conditions. We consider the following network

conditions that are readily available in today’s wired and

wireless networks. (1) Wired network with stable bandwidth

(e.g., 50, 75, and 100 Mbps) and ∼10ms RTT. (2) Fluctuating

bandwidth captured from real LTE networks. We collect 12

bandwidth traces from a major LTE carrier in multiple U.S.

states at diverse locations (campus, malls, streets, etc.). Across

the traces, their average bandwidth varies from 33.7 to 176.5

Mbps, and the standard deviation ranges from 13.5 to 26.8

Mbps. We use tc [6] to replay these traces (with a 50ms base

RTT typically observed in LTE [38]). (3) We also conduct live

LTE experiments at 9 diverse locations in a U.S. city where

the average bandwidth varies from 41.1 to 52.4 Mbps and the

standard deviation is between 16.6 and 20.7 Mbps.

Devices. We use a commodity machine with an Intel Core

i7-9800X CPU @ 3.80GHz and 32GB memory as the YuZu

server. We use three client hosts: (1) a desktop with an Intel

Core i9-10900X CPU @ 3.70GHz, an NVIDIA GeForce

RTX 2080Ti GPU, and 32GB memory (the default client used

in our evaluations); (2) a desktop with the same CPU, an

NVIDIA GeForce GTX 1660Ti GPU, and 32GB memory;

(3) an NVIDIA Jetson TX2 embedded system board with a

Pascal-architecture GPU of 256 CUDA Cores, 8GB memory,

and a quad-core CPU. They represent a typical high-end PC,

a medium-class PC, and a mobile device, respectively.

User Motion Traces. We collect 32 users’ 6DoF motion

traces when watching the four videos, and replay them in

some experiments. The details about how we collect the mo-

tion traces can be found in Appendix B.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 145

 0

 2

 4

 6

 8

M1 M2 M3 M4 M5 M6G
P

U
 M

e
m

 U
s
a
g
e
 (

G
B

)

PU-GAN
MPU

 0

 10

 20

 30

 40

 50

M1 M2 M3 M4 M5 M6

F
P

S

 0

 1

 2

 3

M1 M2 M3 M4 M5 M6

(lower is better)

A
c
c
u
ra

c
y
 (

c
m

)

 0

 1

 2

 3

M1 M2 M3 M4 M5 M6

(lower is better)

C
o
n
s
is

te
n
c
y
 (

c
m

)

Figure 6: Memory usage, upsampling FPS, upsampling accuracy, and visual consistency of M1 to M6 (2080Ti desktop).

 0

 1

 2

 3

 4

 5

M1 M2 M3 M4 M5 M6

M
e
m

 U
s
a
g
e
 (

G
B

)

PU-GAN
MPU

 0

 10

 20

 30

 40

 50

M1 M2 M3 M4 M5 M6

F
P

S

 0

 1

 2

 3

 4

M1 M2 M3 M4 M5 M6

A
c
c
u
ra

c
y
 (

c
m

)

 0

 1

 2

 3

 4

M1 M2 M3 M4 M5 M6

C
o
n
s
is

te
n
c
y
 (

c
m

)

Figure 7: Memory usage, upsampling FPS, upsampling accuracy, and visual consistency of M1 to M6 (Jetson TX2 board).

 24

 26

 28

 30

 32

 34

 36

1x1 1x2 1x3 2x2 1x41x4D

P
S

N
R

Dress
Loot

Haggle

 24

 26

 28

 30

 32

 34

 36

1x1 1x2 1x3 2x2 1x4

P
S

N
R

Dress
Loot

Haggle

Figure 8: PSNR of YuZu (left) and vanilla PU-GAN (right).

7.2 SR Quality

Subjective Ratings. Recall that in our user studies, we ask our

participants to rate the SR results generated by our optimized

SR scheme (§5.1). Figure 15 shows that SR brings a signif-

icant boost to the user-perceived QoE. For example, at 1m,

compared to 1×1, the user-rated QoE increases by 37%, 75%,

and 150% for 1×2, 1×3, and 1×4, respectively; 2×2 improves

the QoE by 178% compared to 2×1 (§4.2).

Objective Metric. We also examine how SR improves

PSNR [30], an objective metric of image quality. The method-

ology is as follows. We replay the 32 users’ 6DoF motion

traces of watching the videos under different SR settings, and

save the rendered viewports as images {ISR}. We then repeat

the above process using the original videos (4×1), and capture

the viewport images {I4×1}. We compute the PSNR values

by comparing each image in {ISR} with its corresponding im-

age in {I4×1}. Figure 8 (left) shows the PSNR values for 1×1,

1×2, 1×3, 2×2, 1×4, and 1×4 with reusing SR results (denoted

as “1×4D”) across all the captured viewports. We notice a

significant increase of PSNR from 1×1 to 1×2. The PSNR

also increases marginally from 1×2 to 1×4. Meanwhile, the

PSNR change between 1×4 and 1×4D is negligible, indicat-

ing that caching and reusing SR results brings little impact

on the perceived video quality (but drastic performance gain

as shown in §7.3). The results of Lab are similar. Note that

a PSNR value over 30 typically indicates good visual qual-

ity [22, 58]. Figure 8 (right) shows the PSNR values for the

unmodified PU-GAN model. The qualitatively similar results

between the left and right plots of Figure 8 indicate that our

SR acceleration modifications sacrifice little visual quality.

Note the above results include the colorization step, which is

described and separately evaluated in Appendix C.

Comparing Figure 15 and Figure 8, we notice disparities

between users’ QoE ratings and PSNR values. This indicates

that image qualities of rendered 2D content do not directly

reflect the perceived QoE of volumetric content. This is a key

reason for developing the QoE model for volumetric videos.

7.3 SR Performance Breakdown

We now take a closer look at the effectiveness of each of our

proposed methods for accelerating SR. As listed in Table 7,

M1 denotes the vanilla 3D SR model as the comparison base-

line; M2 to M6 are our proposed SR acceleration methods

in §5.1 and §5.2. They are presented in a cumulative fashion,

i.e., Mi includes every feature of Mi−1 plus some new feature.

The experiments are conducted using two 3D SR models (PU-

GAN [43] and MPU [61]), 100Mbps wired network, 4× SR,

with network/compute resource adaptation (§5.3) disabled.

Figures 6 and 7 show the results of PU-GAN and MPU

on the PC (2080Ti) and Jetson TX2 board, respectively. On

the Jetson board, due to its low compute power (and mobile

devices’ small screen size), we reduce the original video’s

resolution from 100K to 20K points per frame (i.e., the SR

is from 5K to 20K points per frame). We consider four met-

rics: (1) maximum GPU memory usage (on Jetson TX2 we

measure the system memory shared by GPU and CPU), (2)

average upsampling speed (in FPS), (3) inference accuracy

measured in EMD between each upsampled frame and the

ground truth (4×1), and (4) visual consistency measured in

EMD between each consecutive pair of upsampled frames.

As shown, on 2080Ti, for PU-GAN (MPU), compared to

M1, M6 reduces the GPU memory usage by 87% (90%), accel-

erates the upsampling by 307× (542×), improves the average

upsampling accuracy by 24% (14%), and slightly improves

the consistency. Also, each optimization (M2 to M6) indi-

146 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

-140

4x
1

4x
1D 2x

2

2x
2D 1x

4

1x
4D Ful

l

0

20

40

60

80

100

120

N
o

rm
o

liz
e

d
 Q

o
E 75Mbps

50Mbps

0

20

40

60

80

100

4x
1

4x
1D 2x

2

2x
2D 1x

4

1x
4D Ful

l

D
a
ta

 U
s
a
g
e
 (

%
) 75Mbps

50Mbps

0 20 40 60 80 100

Normalized Data Usage (%)

-5

15

35

55

75

95

N
o

rm
a

liz
e

d
 Q

o
E

4x1

4x1D

2x2

2x2D

1x4

1x4D

Full Simple

Figure 9: Frame processing time breakdown. D&P:

decoding and patch generation; SR: upsampling;

Color: colorization, M&R: merging and rendering.

Figure 10: QoE over stable

bandwidth (“D”=caching &

reusing SR results).

Figure 11: Data us-

age over stable

bandwidth.

Figure 12: QoE vs. Data us-

age over fluctuating

bandwidth (LTE traces).

vidually improves the upsampling speed and possibly other

metric(s). The Jetson setup shows a similar trend. The two

models (PU-GAN and MPU) we studied exhibit similar per-

formance gains as we progressively apply our optimizations,

except that MPU is less sensitive to M5. This is because of

the network structure difference between PU-GAN and MPU.

Note that we do not apply M3 to MPU because our layer-

by-layer profiling (§5.1.1) reveals there is no layer that only

makes a marginal contribution to the overall upsampling ac-

curacy in the MPU model.

Latency Breakdown. Figure 9 shows the latency break-

down of processing an average frame using PU-GAN (Lab

video, wired 100Mbps, 2080Ti desktop) under two set-

tings: 2×2 and 1×4. As shown, SR remains the most time-

consuming component. The breakdown for MPU is similar.

The above results indicate the importance of SR acceleration.

7.4 Diverse Network Conditions

We evaluate the QoE of YuZu under different network condi-

tions, using the four videos and the associated motion traces.

Stable Bandwidth. We first consider two stable bandwidth:

50Mbps and 75Mbps. Under each bandwidth profile, we run

the full-fledged YuZu (“Full”) and six statically configured

YuZu instances: 4×1, 2×2, and 1×4 with and without SR re-

sult reusing. The QoE results are shown in Figure 10. We

make several observations. First, when the bandwidth is low

(50Mbps), 4×1 (without SR) gives the lowest (and even nega-

tive) QoE. This is because the limited bandwidth leads to high

network-incurred stall when fetching high-resolution content;

SR can effectively improve the QoE by using computation to

compensate for the low bandwidth. Second, when the band-

width increases to 75Mbps, 1×4 gives the lowest QoE due to

the distortion and computation-incurred stall due to the high

SR ratio. Instead, when the bandwidth is sufficient, the player

should fetch the content with a higher quality (e.g., 4×1D).

Third, caching and reusing (C&R) the SR results improves the

QoE when either the bandwidth is low (e.g., 4×1 at 50Mbps),

or the SR ratio is high (e.g., 1×4). Under these two scenarios,

C&R reduces the network and compute resource usage, re-

spectively. The saved resources can be used to improve the

content quality for other frames with more heterogeneity.

Figure 11 compares the (normalized) data usage, which

is defined as the total downloaded bytes including the SR

-160
4x1 2x2 1x4 Full

0

20

40

60

80

100

N
o
rm

a
liz

e
d

Q
o
E

/D
a
ta

 U
s
a
g
e

Normalized QoE
Normalized Data Usage

100Mbps 75Mbps 50Mbps
0

50

100

150

200

Im
p
ro

v
e
m

e
n
t
(%

)

I
i

patch
I
i

frame Q
i QoE

Figure 13: QoE and data usage

over live LTE networks. Figure 14: YuZu over ViVo.

models and meta data. Compared to 4×1, applying C&R re-

duces the data usage by 40.5%. Also, increasing the SR ratio

reduces the data usage, e.g., 1×4D consumes only 18.3% of

the data compared to 4×1. The full-fledged YuZu with adap-

tation gives the overall best QoE (Figure 10) and low data

usage (Figure 11) by balancing the compute and network re-

source consumption. Compared to 4×1, full YuZu reduces the

data usage by 52.3% (50Mbps) and 41.9% (75Mbps) while

boosting the QoE by 214% (50Mbps) and 78.3% (75Mbps).

Fluctuating Bandwidth. We repeat the above experiment

over fluctuating bandwidth emulated using our collected LTE

traces (§7.1). The results are shown in Figure 12, which con-

siders both the data usage (x-axis) and the QoE (y-axis). 4×1

yields the highest data usage; further applying C&R (4×1D)

not only reduces the data usage by 40.5%, but also increases

the QoE by 61.8% due to reduced stall. The full YuZu fur-

ther improves the QoE by 21.0% and reduces the average

data usage by 8.2%. This is achieved through strategically

fetching lower-quality blocks and using higher SR ratios. In

addition, the full YuZu improves the QoE by 10.4% to 93.7%,

compared to 1×4 and 2×2 with and without C&R.

Live LTE. We conduct live LTE experiments at 9 locations

in a major U.S. city. As shown in Figure 13, the results are

largely aligned with those in Figure 12, except for the lower

QoE of 4×1. This is because of the lower bandwidth of live

LTE throughout the test locations compared to the LTE traces

used in Figure 12. Compared to 4×1, the full YuZu improves

the QoE by 210.3% and reduces the data usage by 50.8%.

7.5 YuZu vs. Existing Approaches

YuZu vs. Viewport-Adaptive Streaming. We compare YuZu

with ViVo [27], a recently proposed viewport-adaptive ap-

proach. Leveraging 6DoF motion prediction, ViVo determines

what content to fetch and which quality to fetch based on

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 147

predicted viewport and viewing distance. Similar viewport-

adaptive approaches are used in the other systems [41, 50].

We develop a custom replication of ViVo on Linux in 7,101

LoC with the same set of configuration parameters. Figure 14

shows the improvement brought by YuZu compared to ViVo

in terms of the overall QoE and its three components (Qi,

I
patch
i , and I

f rame
i , see Eq. 8), using all four videos and the

users’ motion traces.4 Note that both systems exhibit negligi-

ble stall so Istall
i is not plotted. As shown, YuZu brings signifi-

cant improvement on the average QoE (by 100.6% to 174.9%)

and on each QoE component. YuZu outperforms ViVo due to

three reasons. First, ViVo does not support SR, which YuZu

leverages to boost the QoE. Second, ViVo’s viewport adapta-

tion approach becomes less effective when the whole scene

appears inside the viewport (which oftentimes appears in our

motion traces). SR does not suffer from this limitation. Third,

to realize viewport adaptive streaming, ViVo has to perform

6DoF motion prediction, which is error-prone. In contrast,

YuZu does not require motion prediction, and therefore ex-

hibits more stable performance in particular when the motion

is fast. Note that viewport-adaptation and SR are orthogonal

approaches and can be jointly applied.

YuZu vs. Simple SR Adaptation. To demonstrate the ef-

ficacy of our network/compute resource adaptation design

(§5.3), we compare it with a simple adaptation approach that

differs in two aspects. First, unlike YuZu’s two-stage adapta-

tion, it only performs single-stage adaptation before down-

loading each chunk. Second, it employs a deterministic greedy

algorithm that increases the SR ratio of each block within the

finite horizon (in chronological order) until the QoE does not

further improve. In contrast, YuZu employs a probabilistic

greedy approach that is less vulnerable to a local maximum.

We evaluate the simple adaptation algorithm using our LTE

traces (§7.4) and plot its result as “Simple” in Figure 12. Com-

pared to it, the full YuZu increases the average QoE by 11.4%

and reduces the average data usage by 7.9%.

7.6 Micro Benchmarks and Resource Usage

We conduct experiments to show the following. (1) YuZu

can work adaptively with different hardware (we compare

the results on 2080Ti and 1660Ti; we also ported YuZu to

an embedded system, see Figure 7). (2) The main memory

(∼5GB) and GPU memory (∼2GB) usage of YuZu is accept-

able. (3) The (one-time) offline training time is non-trivial but

acceptable, and the sizes of SR models are negligible (<0.2%

of the video size). The details can be found in Appendix D.

8 Related Work

Volumetric Video Streaming. There exist only a few studies

on point-cloud-based volumetric video streaming [25–27, 31,

4ViVo does not have the notion of patch; instead its basic adaptation unit

is a cubic cell. To ensure fair comparisons, we further divide ViVo’s cells into

virtual “patches” with the same size as YuZu and assign to them its parent

cell’s corresponding quality level when calculating I
patch

i
.

41,50,52,59]. For example, DASH-PC [31] extends DASH to

volumetric videos. PCC-DASH [59] is another DASH-based

streaming scheme of compressed point clouds with bitrate

adaptation support. ViVo [27] introduces visibility-aware op-

timizations for volumetric video streaming. GROOT [41] op-

timizes point cloud compression for volumetric videos. To the

best of our knowledge, there is no existing work on applying

3D SR to volumetric video streaming.

Point Cloud SR. We can classify existing work on point

cloud SR into two categories: optimization-based [16, 32]

and learning-based [43, 61, 63, 70]. Most learning-based ap-

proaches follow the workflow established in PU-Net [70],

which divides a point cloud into patches, learns multi-level

point features of each patch, expands the features, and recon-

structs the points from the features. All the above methods are

designed for a single point cloud; they suffer from numerous

limitations when applied to volumetric videos (§2).

Visual Quality Assessment of Point Clouds. The state-

of-the-art visual quality assessment focuses on static, non-SR

point clouds [23, 47, 60]. For example, using a data-driven

approach, Meynet et al. [47] present a full-reference visual

quality metric for colored point clouds. Different from the

above studies, we model the QoE of SR-enhanced volumetric

video streaming. We address new challenges on modeling

the impact of various factors such as the viewing distance,

upsampling ratio, and SR incurred distortion (§4).

SR for Regular 2D Videos. NAS [67, 68] is one of the

first proposals that apply 2D SR to Internet video streaming.

Other recent efforts on 2D SR include PARSEC [22] for

360° panoramic video streaming, LiveNAS [39] for live video

streaming, and NEMO [66] for mobile video streaming. In

contrast, YuZu addresses numerous unique challenges (§1)

on applying 3D SR to volumetric video streaming.

9 Concluding Remarks

In this paper, we conduct an in-depth investigation on apply-

ing 3D SR to streaming volumetric content. Our proposed

QoE model and the YuZu system take a first and important

step toward making SR-enhanced volumetric video streaming

principled, practical, and affordable. YuZu demonstrates how

a series of novel optimizations, which fill a 500× performance

gap, as well as judicious network/compute resource adapta-

tion can help significantly improve the QoE for volumetric

video streaming.

Acknowledgments

We thank the anonymous reviewers and our shepherd Anirudh

Badam for their insightful comments. The research of Feng

Qian was supported in part by a Cisco research award. The re-

search of Bo Han was funded in part by 4-VA, a collaborative

partnership for advancing the Commonwealth of Virginia.

148 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] 8i Voxelized Full Bodies (8iVFB v2) - Dynamic Vox-

elized Point Cloud Dataset. http://plenodb.jpeg.

org/pc/8ilabs.

[2] Amazon Mechanical Turk. https://www.mturk.

com/.

[3] Bazel. https://bazel.build/.

[4] Draco 3D Data Compression. https://google.

github.io/draco/.

[5] ITU-P.913: Methods for the subjective assessment of

video quality, audio quality and audiovisual quality of

Internet video and distribution quality television in any

environment. https://www.itu.int/rec/T-REC-P.

913.

[6] Linux TC Man Page. https://linux.die.net/man/

8/tc.

[7] Magic Leap One. https://www.magicleap.com/

en-us/magic-leap-1.

[8] MPU. https://github.com/yifita/3PU.

[9] Protocol Buffers. https://developers.google.

com/protocol-buffers.

[10] PU-GAN. https://github.com/liruihui/PU-GAN.

[11] Qualtrics experience management platform. https:

//www.qualtrics.com/.

[12] SPH3D-GCN. https://github.com/hlei-ziyan/

SPH3D-GCN.

[13] TensorFlow 1.14. https://github.com/

tensorflow/tensorflow/tree/r1.14.

[14] The Octree Data Structure. https://en.wikipedia.

org/wiki/Octree.

[15] Video Multimethod Assessment Fusion. https:

//en.wikipedia.org/wiki/Video_Multimethod_

Assessment_Fusion, 2016.

[16] Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar

Fleishman, David Levin, and Claudio T. Silva. Comput-

ing and Rendering Point Set Surfaces. IEEE Trans. on

Visualization and Computer Graphics, 9(1):3–15, 2003.

[17] Armen S Asratian, Tristan MJ Denley, and Roland Häg-

gkvist. Bipartite graphs and their applications, volume

131. Cambridge university press, 1998.

[18] Athula Balachandran, Vyas Sekar, Aditya Akella, Srini-

vasan Seshan, Ion Stoica, and Hui Zhang. Developing a

Predictive Model of Quality of Experience for Internet

Video. In Proceedings of ACM SIGCOMM, 2013.

[19] Egon Balas and Paolo Toth. Branch and bound methods

for the traveling salesman problem. 1983.

[20] Sergey Brin and Lawrence Page. The anatomy of a

large-scale hypertextual web search engine. Computer

networks and ISDN systems, 30(1-7):107–117, 1998.

[21] Hong Chang, Dit-Yan Yeung, and Yimin Xiong. Super-

Resolution through Neighbor Embedding. In Proceed-

ings of CVPR, 2004.

[22] Mallesham Dasari, Arani Bhattacharya, Santiago Vargas,

Pranjul Sahu, Aruna Balasubramanian, and Samir Das.

Streaming 360 degree Videos using Super-resolution. In

Proceedings of IEEE INFOCOM, 2020.

[23] Rafael Diniz, Pedro Garcia Freitas, and Mylène C.Q.

Farias. Towards a Point Cloud Quality Assessment

Model Using Local Binary Patterns. In Proceedings of

the 12th International Conference on Quality of Multi-

media Experience (QoMEX), 2020.

[24] Steven Fortune. Voronoi diagrams and delaunay tri-

angulations. In Comp. in Euclidean Geometry, pages

225–265. World Sci., 1995.

[25] Serhan Gül, Dimitri Podborski, Thomas Buchholz,

Thomas Schierl, and Cornelius Hellge. Low-latency

cloud-based volumetric video streaming using head mo-

tion prediction. In Proceedings of the 30th ACM Work-

shop on Network and Operating Systems Support for

Digital Audio and Video, pages 27–33, 2020.

[26] Serhan Gül, Dimitri Podborski, Jangwoo Son, Gur-

deep Singh Bhullar, Thomas Buchholz, Thomas Schierl,

and Cornelius Hellge. Cloud Rendering-based Volumet-

ric Video Streaming System for Mixed Reality Services.

In Proceedings of ACM MMSys, 2020.

[27] Bo Han, Yu Liu, and Feng Qian. ViVo: Visibility-Aware

Mobile Volumetric Video Streaming. In Proceedings of

ACM MobiCom, 2020.

[28] Jian He, Mubashir Adnan Qureshi, Lili Qiu, Jin Li, Feng

Li, and Lei Han. Rubiks: Practical 360° Streaming for

Smartphones. In Proceedings of ACM MobiSys, 2018.

[29] Qi He, Constantine Dovrolis, and Mostafa Ammar.

On the predictability of large transfer tcp throughput.

ACM SIGCOMM Computer Communication Review,

35(4):145–156, 2005.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 149

http://plenodb.jpeg.org/pc/8ilabs
http://plenodb.jpeg.org/pc/8ilabs
https://www.mturk.com/
https://www.mturk.com/
https://bazel.build/
https://google.github.io/draco/
https://google.github.io/draco/
https://www.itu.int/rec/T-REC-P.913
https://www.itu.int/rec/T-REC-P.913
https://linux.die.net/man/8/tc
https://linux.die.net/man/8/tc
https://www.magicleap.com/en-us/magic-leap-1
https://www.magicleap.com/en-us/magic-leap-1
https://github.com/yifita/3PU
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://github.com/liruihui/PU-GAN
https://www.qualtrics.com/
https://www.qualtrics.com/
https://github.com/hlei-ziyan/SPH3D-GCN
https://github.com/hlei-ziyan/SPH3D-GCN
https://github.com/tensorflow/tensorflow/tree/r1.14
https://github.com/tensorflow/tensorflow/tree/r1.14
https://en.wikipedia.org/wiki/Octree
https://en.wikipedia.org/wiki/Octree
https://en.wikipedia.org/wiki/Video_Multimethod_Assessment_Fusion
https://en.wikipedia.org/wiki/Video_Multimethod_Assessment_Fusion
https://en.wikipedia.org/wiki/Video_Multimethod_Assessment_Fusion

[30] Alain Hore and Djemel Ziou. Image quality metrics:

PSNR vs. SSIM. In Proceedings of the 20th Interna-

tional Conference on Pattern Recognition, pages 2366–

2369. IEEE, 2010.

[31] Mohammad Hosseini and Christian Timmerer. Dynamic

Adaptive Point Cloud Streaming. In Proceedings of

ACM Packet Video, 2018.

[32] Hui Huang, Shihao Wu, Minglun Gong, Daniel Cohen-

Or, Uri Ascher, and Hao Zhang. Edge-Aware Point Set

Resampling. ACM Transactions on Graphics, 32(1):9:1–

9:12, 2013.

[33] Te-Yuan Huang, Ramesh Johari, Nick McKeown,

Matthew Trunnell, and Mark Watson. A Buffer-Based

Approach to Rate Adaptation: Evidence from a Large

Video Streaming Service. In Proceedings of ACM SIG-

COMM, 2014.

[34] Yan Huang, Jingliang Peng, C.-C. Jay Kuo, and M. Gopi.

A Generic Scheme for Progressive Point Cloud Coding.

IEEE Trans. on Vis. and Computer Graphics, 14(2):440–

453, 2008.

[35] Erik Hubo, Tom Mertens, Tom Haber, and Philippe

Bekaert. The Quantized kd-Tree: Efficient Ray Tracing

of Compressed Point Clouds. In Proceedings of IEEE

Symposium on Interactive Ray Tracing, 2006.

[36] Hanbyul Joo, Tomas Simon, Xulong Li, Hao Liu, Lei

Tan, Lin Gui, Sean Banerjee, Timothy Scott Godis-

art, Bart Nabbe, Iain Matthews, Takeo Kanade, Shohei

Nobuhara, and Yaser Sheikh. Panoptic studio: A mas-

sively multiview system for social interaction capture.

IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2017.

[37] Julius Kammerl, Nico Blodow, Radu Bogdan Rusu, Suat

Gedikli, Michael Beetz, and Eckehard Steinbach. Real-

time Compression of Point Cloud Streams. In Pro-

ceedings of International Conference on Robotics and

Automation, 2012.

[38] Ali Safari Khatouni, Marco Mellia, Marco Ajmone

Marsan, Stefan Alfredsson, Jonas Karlsson, Anna Brun-

strom, Ozgu Alay, Andra Lutu, Cise Midoglu, and Vin-

cenzo Mancuso. Speedtest-like measurements in 3g/4g

networks: The monroe experience. In Proceedings of

the 29th International Teletraffic Congress (ITC 29),

pages 169–177, 2017.

[39] Jaehong Kim, Youngmok Jung, Hyunho Yeo, Juncheol

Ye, and Dongsu Han. Neural-Enhanced Live Streaming:

Improving Live Video Ingest via Online Learning. In

Proceedings of ACM SIGCOMM, 2020.

[40] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vec-

chi. Optimization by Simulated Annealing. Science,

220(4598):671–680, 1983.

[41] Kyungjin Lee, Juheon Yi, Youngki Lee, Sunghyun Choi,

and Young Min Kim. GROOT: A Real-Time Streaming

System of High-Fidelity Volumetric Videos. In Proceed-

ings of ACM MobiCom, 2020.

[42] Huan Lei, Naveed Akhtar, and Ajmal Mian. Spherical

Kernel for Efficient Graph Convolution on 3D Point

Clouds. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 2020.

[43] Ruihui Li, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or,

and Pheng-Ann Heng. PU-GAN: A Point Cloud Upsam-

pling Adversarial Network. In Proceedings of ICCV,

2019.

[44] Jyh-Ming Lien, Gregorij Kurillo, and Ruzena Bajcsy.

Multi-camera tele-immersion system with real-time

model driven data compression. The Visual Computer,

26(3):3–15, 2010.

[45] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh.

Neural Adaptive Video Streaming with Pensieve. In

Proceedings of ACM SIGCOMM, 2017.

[46] Rufael Mekuria, Kees Blom, and Pablo Cesar. Design,

Implementation and Evaluation of a Point Cloud Codec

for Tele-Immersive Video. IEEE Trans. on Circuits and

Systems for Video Technology, 27(4):828–842, 2017.

[47] Gabriel Meynet, Yana Nehmé, Julie Digne, and Guil-

laume Lavoué. PCQM: A Full-Reference Quality Met-

ric for Colored 3D Point Clouds. In Proceedings of the

12th International Conference on Quality of Multimedia

Experience (QoMEX), 2020.

[48] Carsten Moenning and Neil A Dodgson. Fast marching

farthest point sampling. Technical report, University of

Cambridge, 2003.

[49] Sergio Orts-Escolano, Christoph Rhemann, Sean

Fanello, Wayne Chang, Adarsh Kowdle, Yury Degt-

yarev, David Kim, Philip Davidson, Sameh Khamis,

Mingsong Dou, Vladimir Tankovich, Charles Loop, Qin

Cai, Philip Chou, Sarah Mennicken, Julien Valentin,

Vivek Pradeep, Shenlong Wang, Sing Bing Kang,

Pushmeet Kohli, Yuliya Lutchyn, Cem Keskin, and

Shahram Izadi. Holoportation: Virtual 3D Teleportation

in Real-time. In Proceedings of ACM UIST, 2016.

[50] Jounsup Park, Philip A Chou, and Jenq-Neng Hwang.

Volumetric media streaming for augmented reality.

In 2018 IEEE Global communications conference

(GLOBECOM), pages 1–6. IEEE, 2018.

150 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[51] Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas.

PointNet++: Deep Hierarchical Feature Learning on

Point Sets in a Metric Space. In Proceedings of

Conference on Neural Information Processing Systems

(NeurIPS), 2017.

[52] Feng Qian, Bo Han, Jarrell Pair, and Vijay Gopalakr-

ishnan. Toward Practical Volumetric Video Streaming

On Commodity Smartphones. In Proceedings of ACM

HotMobile, 2019.

[53] Feng Qian, Bo Han, Qingyang Xiao, and Vijay Gopalakr-

ishnan. Flare: Practical Viewport-Adaptive 360-Degree

Video Streaming for Mobile Devices. In Proceedings of

ACM MobiCom, 2018.

[54] Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas.

The earth mover’s distance as a metric for image

retrieval. International journal of computer vision,

40(2):99–121, 2000.

[55] Paul Scovanner, Saad Ali, and Mubarak Shah. A 3-

dimensional SIFT descriptor and its application to action

recognition. In Proceedings of the 15th ACM Interna-

tional Conference on Multimedia, pages 357–360, 2007.

[56] Yiru Shen, Chen Feng, Yaoqing Yang, and Dong Tian.

Mining Point Cloud Local Structures by Kernel Cor-

relation and Graph Pooling. In Proceedings of CVPR,

2018.

[57] Steven L Tanimoto, Alon Itai, and Michael Rodeh. Some

matching problems for bipartite graphs. Journal of the

ACM (JACM), 25(4):517–525, 1978.

[58] Nikolaos Thomos, Nikolaos V Boulgouris, and

Michael G Strintzis. Optimized transmission of

jpeg2000 streams over wireless channels. IEEE

Transactions on image processing, 15(1):54–67, 2005.

[59] Jeroen van der Hooft, Tim Wauters, Filip De Turck,

Christian Timmerer, and Hermann Hellwagner. To-

wards 6DoF HTTP Adaptive Streaming Through Point

Cloud Compression. In Proceedings of ACM Multime-

dia, 2019.

[60] Irene Viola, Shishir Subramanyam, and Pablo Cesar. A

color-based objective quality metric for point cloud con-

tents. In Proceedings of the 12th International Confer-

ence on Quality of Multimedia Experience (QoMEX),

2020.

[61] Yifan Wang, Shihao Wu, Hui Huang, Daniel Cohen-Or,

and Olga Sorkine-Hornung. Patch-based Progressive

3D Point Set Upsampling. In Proceedings of CVPR,

2019.

[62] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P

Simoncelli. Image quality assessment: From error vis-

ibility to structural similarity. IEEE Transactions on

Image Processing, 13(4):600–612, 2004.

[63] Huikai Wu, Junge Zhang, and Kaiqi Huang. Point

cloud super resolution with adversarial residual graph

networks. In arXiv preprint arXiv:1908.02111, 2019.

[64] Francis Y. Yan, Hudson Ayers, Chenzhi Zhu, Sadjad

Fouladi, James Hong, Keyi Zhang, Philip Levis, and

Keith Winstein. Learning in situ: a randomized exper-

iment in video streaming. In Proceedings of USENIX

NSDI, 2020.

[65] Jianchao Yang, John Wright, Thomas S. Huang, and

Yi Ma. Image Super-Resolution Via Sparse Repre-

sentation. IEEE Transactions on Image Processing,

19(11):2861–2873, 2010.

[66] Hyunho Yeo, Chan Ju Chong, Youngmok Jung, Jun-

cheol Ye, and Dongsu Han. NEMO: Enabling Neural-

enhanced Video Streaming on Commodity Mobile De-

vices. In Proceedings of ACM MobiCom, 2020.

[67] Hyunho Yeo, Sunghyun Do, and Dongsu Han. How

will Deep Learning Change Internet Video Delivery? In

Proceedings of ACM HotNets, 2017.

[68] Hyunho Yeo, Youngmok Jung, Jaehong Kim, Jinwoo

Shin, and Dongsu Han. Neural Adaptive Content-aware

Internet Video Delivery. In Proceedings of USENIX

OSDI, 2018.

[69] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno

Sinopoli. A Control-Theoretic Approach for Dynamic

Adaptive Video Streaming over HTTP. In Proceedings

of ACM SIGCOMM, 2015.

[70] Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or,

and Pheng-Ann Heng. PU-Net: Point Cloud Upsam-

pling Network. In Proceedings of CVPR, 2018.

[71] Anlan Zhang, Chendong Wang, Bo Han, and Feng Qian.

Efficient volumetric video streaming through super res-

olution. In Proceedings of the 22nd International Work-

shop on Mobile Computing Systems and Applications,

pages 106–111, 2021.

Appendices

A Evaluation of QoE Gain Brought by SR

We study the QoE model for qi, j (Eq. 2) while keeping I
patch
i ,

I
f rame

i , and Istall
i as zero. This allows us to measure the impact

of SR without interference from other factors.

We use the four videos introduced in §4.2 for the experi-

ment. We apply our optimized PU-GAN algorithm (details

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 151

in §5.1) to perform upsampling, and create (8
2
) = 28 video

clips where each clip contains 2 out of 8 versions in Table 3

side by side (in a random order). This approach is known as

the double stimulus comparison scale (DSCS) method [5]

as recommended by ITU (International Telecommunication

Union). We repeat the above process for four viewing dis-

tances: 1m, 2m, 3m, and 4m, which are determined from a

separate IRB-approved user study whose details are described

in Appendix B. To maintain a fixed viewing distance d, we

display the viewport at d meters in front of and facing the

viewer. We generate 112 video clips at 4K resolution for each

video segment.

Next, we design a survey using Qualtrics [11] and publish

it on Amazon Mechanical Turk (AMT) [2]. In the survey,

we invite each paid AMT subject to view the 112 clips of

a random video segment (out of the 4 videos) in a random

order. After watching each clip, the subject is asked to rate

which side provides a better QoE through 7 choices (“left

looks {much better, better, slightly better, similar to, slightly

worse, worse, much worse} than right”). We have collected

512 subjects’ responses with a total number of 57,344 ratings.

We show the demographics of the participants in Table 2.

Figure 15 shows the average ratings of the 8 versions across

all the users. The four subplots correspond to the four viewing

distances. We make four observations. First, when the viewing

distance is short, SR can effectively boost the QoE. For exam-

ple, at 1m, compared to 1×1, the (user-rated) QoE increases

by 37%, 75%, 150% for 1×2, 1×3, and 1×4, respectively; 2×2

improves the QoE by 178% compared to 2×1. Second, un-

der the same point density, the upsampled version’s QoE is

usually lower than the original content’s QoE, in particular

when the SR ratio is large. This is caused by SR’s distortion.

However, the gap tends to reduce as the SR ratio decreases.

Third, SR’s gain diminishes as the distance increases, because

the rendered object becomes smaller in the view. Note that

the scores for different distances are not directly comparable.

Fourth, the four video segments exhibit similar trends (figure

not shown).

Converting User Ratings to Numerical Scores. For a

given tuple of (user, viewing distance, video segment), we

construct a weighted directed graph for the user based on

his/her ratings, where the nodes are the 8 schemes. Assume

a video clip contains schemes A (on the left) and B (on the

right). If the user thinks that the left (right) is much better,

better, or slightly better than the right (left), we add an edge

from B to A (A to B) with a weight of 3, 2, and 1, respec-

tively. If the user thinks that the left is similar to the right, we

add two edges between A and B, one from A to B and the

other from B to A, with both edges’ weights set to 0. We then

normalize the weights of all the edges to ∥0,1∥ and apply the

PageRank algorithm [20] to each graph to compute the weight

of every node. We then use the weights (multiplied by 10 for

easy interpretation) as the numerical scores of the 8 schemes

for the corresponding (user, viewing distance, video segment)

tuple. Finally, for each of the 8 schemes under a given view-

ing distance, we average the numerical scores across all the

tuples (of that viewing distance) to obtain the results shown

in Figure 15. Note that for each viewing distance, the weights

of all the schemes (in each of the graphs) add up to 1. As a

result, the numerical scores of the same scheme for different

viewing distances are not directly comparable.

B User Study for Collecting

6DoF Motion Traces

We conducted a separate IRB-approved user study for collect-

ing 6DoF motion traces of volumetric videos. Specifically, it

captured the viewport trajectories of 32 users who watched

the four video segments (Lab, Dress, Loot, Haggle) intro-

duced in §2 and §4.2 through either a mixed reality headset

(Magic Leap One [7]) or an Android smartphone. We devel-

oped custom volumetric video players for both device types.

The 6DoF motion data (yaw, pitch, roll, X, Y, Z) was captured

at the granularity of 30 Hz. The participants are diverse in

terms of their education level (from freshman to Ph.D.), gen-

der (16 females), and age (from 22 to 57). We determine the

viewing distances used in §4.2 by analyzing the above traces.

As shown in Figure 16, about 70% of the viewing distances

are less than 4m. Therefore, we set the maximum viewing

distance to be 4m for our user studies, and select the other

three distances by evenly dividing this maximum distance

into four ranges (i.e., at 1, 2, and 3m).

C Colorization Algorithm of YuZu and

its Evaluation

Recall from §5.4 that YuZu takes a lightweight approach to

color the SR results: it approximates each upsampled point’s

color using the color of the nearest point in the low-density

point cloud (i.e., the input to the SR model).

YuZu employs two mechanisms to speed up the nearest

point search. First, the search is performed on an octree [14],

which recursively divides a point cloud (as the root node) into

eight octants, each associated with a child node. The levels

of detail of the point cloud are controlled by the height of the

tree. Performing nearest point search on an octree has a low

complexity of O(logN) where N is the number of nodes in

the tree.

Second, YuZu caches and reuses the results of previously

searched points. The cache is indexed by a point’s discretized

coordinates, and the cached value is the color looked up from

the octree. When coloring an upsampled point, YuZu first

performs cache lookup in O(1); upon a hit, the cached color

will be directly used as the color of the point; otherwise, YuZu

performs a full octree search and adds the search result to the

cache. The discretization granularity incurs a tradeoff between

colorization performance and quality. We empirically observe

that a discretization granularity of 1cm3 can yield good visual

152 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1x1 1x2 1x3 1x4 2x1 2x2 3x1 4x1

Distance=1m

0

1

2

3

S
c
o
re

1x1 1x2 1x3 1x4 2x1 2x2 3x1 4x1

Distance=2m

0

1

2

3

S
c
o
re

1x1 1x2 1x3 1x4 2x1 2x2 3x1 4x1

Distance=3m

0

1

2

3

S
c
o
re

1x1 1x2 1x3 1x4 2x1 2x2 3x1 4x1

Distance=4m

0

1

2

3

S
c
o
re

Figure 15: The average ratings of the 8 versions across all the users watching all the four video segments (Long Dress, Loot, Band, and

Haggle).

0 2 4 6 8 10

Viewing Distance (m)

0

0.2

0.4

0.6

0.8

1

C
D

F

Figure 16: Distribution of viewing distance in our motion traces.

quality under typical viewing distances (≥ 1m).

We also notice opportunities for further improving the col-

orization quality. For example, the nearest point approach can

be generalized into interpolating the nearest k points’ colors;

it can also be used in conjunction with DNN-based coloriza-

tion, which may be more suitable for patches with complex,

heterogeneous colors. Nevertheless, these enhancements in-

evitably increase the runtime overhead. We will explore them

in future work.

Evaluation of Quality of Colorization. To evaluate the

quality of the colorization step alone, we employ the approach

in §7.2 where we use PSNR to objectively assess the image

quality of rendered viewports. Specifically, we calculate the

PSNR values by comparing {INP−Color
4×1 } (defined below) with

{I4×1} (defined in §7.2), using the Dress and Loot videos and

the real users’ motion traces (Appendix B). The viewport

images of {INP−Color
4×1 } are obtained as follows: (1) remove

the color from the original (4×1) video; (2) apply the above

nearest-point (NP) colorization method to the video generated

in Step (1), using the 1×1 video as the low-resolution point

cloud stream from which the colors are picked; (3) replay

the same motion traces to render the viewport images for the

video colored in Step (2). The PSNR values of {INP−Color
4×1 } are

38.09±2.44 and 44.15±2.59 for Dress and Loot, respectively,

indicating the high fidelity of colors produced by our method.

The above numbers are much higher than the PSNR values

in Figure 8 (which also includes the colorization step) due

to the following reason. PSNR and many other 2D image

metrics such as SSIM [62] perform a pixel-wise comparison

between two images. In the case of Figure 8, a tiny position

shift of a 3D point may result in an also tiny position shift of

its projected 2D pixel, leading to a pixel mismatch and thus a

decreased PSNR score. This problem does not appear in the

20

40

60

80

100

75Mbps 50Mbps

N
o

rm
o

liz
e

d
 Q

o
E

2080Ti,Full
2080Ti,Basic

1660Ti,Full
1660Ti,Basic

Figure 17: Impact of hardware and computation-aware adaptation.

colorization step.

D Additional Micro Benchmarks

The following micro benchmark results are generated using

the PU-GAN model. The results for the MPU model are

qualitatively similar.

Impact of Computation-aware Adaptation. 3D SR de-

mands considerable compute resources. Figure 17 demon-

strates the impact of hardware and computation-aware adap-

tation, using the Lab video. Figure 17 considers two GPUs:

a more powerful 2080Ti GPU and a less powerful 1060Ti

GPU. It also considers two adaptation schemes: the full net-

work/compute adaptation scheme described in §5.3 (“Full”)

and a computation-agnostic scheme that only adapts accord-

ing to the network bandwidth (“Basic”). The Basic scheme

works as follows. (1) It assumes that SR takes no time to com-

plete; (2) it disables 2×2 and 1×4 (otherwise the QoE will

degrade too much due to excessive stalls). Under the above

setup, each bandwidth setting in Figure 17 has four schemes:

{2080Ti, 1660Ti} × {Full, Basic}. As shown, when there is

sufficient bandwidth, the QoE differences among the four

schemes are small, because the player is more likely to fetch

3×1 and 4×1 blocks that do not require SR. However, when

the bandwidth becomes low, the difference between 2080Ti

and 1060Ti becomes noticeable, and the gap between Full

and Basic is even larger. The Basic scheme yields much lower

QoE scores because it ignores SR’s computation overhead,

leading to excessive stalls.

Memory Usage. We measure the client-side memory us-

age when streaming the Lab video over 50Mbps bandwidth

(which leads to extensive invocations of SR). On the 2080Ti

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 153

(1660Ti) desktop, the peak main memory usage is 5.03GB

(5.33 GB); the peak GPU memory usage is 1.97 GB (1.83

GB). YuZu’s GPU memory usage on 2080Ti is higher than

the numbers reported in Figure 6 because YuZu loads multi-

ple SR models at runtime. When the available bandwidth is

higher, the CPU/GPU memory will reduce because of fewer

SR operations.

Offline Training Time and Model Size. YuZu incurs

non-trivial model training time. For example, on the 2080Ti

desktop, it takes about 88 minutes to train the 1×2, 1×3, and

1×4 models altogether for the Lab video consisting of 3,622

frames. However, note that (1) this is a one-time overhead; (2)

we did not conduct any performance optimization for train-

ing; for a large-scale deployment, the training overhead could

potentially be reduced by training one generic model and fine-

tuning it for each specific video [68] (left as future work). The

SR model size is negligible (< 0.2%) compared to the video

size.

154 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

NetVRM: Virtual Register Memory for Programmable Networks

Hang Zhu

Johns Hopkins University

Tao Wang

New York University

Yi Hong

Johns Hopkins University

Dan R. K. Ports

Microsoft Research

Anirudh Sivaraman

New York University

Xin Jin

Peking University

Abstract

Programmable networks are enabling a new class of appli-

cations that leverage the line-rate processing capability and

on-chip register memory of the switch data plane. Yet the

status quo is focused on developing approaches that share the

register memory statically. We present NetVRM, a network

management system that supports dynamic register memory

sharing between multiple concurrent applications on a pro-

grammable network and is readily deployable on commodity

programmable switches. NetVRM provides a virtual register

memory abstraction that enables applications to share the

register memory in the data plane, and abstracts away the

underlying details. In principle, NetVRM supports any mem-

ory allocation algorithm given the virtual register memory

abstraction. It also provides a default memory allocation

algorithm that exploits the observation that applications have

diminishing returns on additional memory. NetVRM provides

an extension of P4, P4VRM, for developing applications with

virtual register memory, and a compiler to generate data plane

programs and control plane APIs. Testbed experiments show

that NetVRM generalizes to a diverse variety of applications,

and that its utility-based dynamic allocation policy outper-

forms static resource allocation. Specifically, it improves the

mean satisfaction ratio (i.e., the fraction of a network appli-

cation’s lifetime that it meets its utility target) by 1.6–2.2×
under a range of workloads.

1 Introduction

Programmable networks are a new paradigm that changes

how we design, build and manage computer networks. Com-

pared to traditional fixed-function switches, programmable

switches allow developers to flexibly change how packets are

processed in the switch data plane. The programming model

of programmable switches are based on a multi-stage packet

processing pipeline [8, 9].

Programmable switches provide different types of stateful

objects that preserve states between packets, such as tables,

counters, meters and registers. Among them, registers allow

packets to read and write various states at line rate, which

then affects how the following packets are processed. Such

data-plane-accessible register memory is one of the defining

features of programmable switches, and enables a new class

of reg-stateful applications which utilize the on-chip register

memory to realize various functionalities. These reg-stateful

applications include not only the innovations in traditional

network functions like congestion control [45], load balanc-

ing [25, 35] and network telemetry [1, 18], but also novel use

cases beyond traditional networking, such as caching [23, 32],

consensus [13, 14, 22] and machine learning [42, 43].

Given the rise of reg-stateful applications, an important

open problem is how to support multiple concurent reg-

stateful applications running efficiently on a programmable

network [51]. The utility of reg-stateful applications is usu-

ally decided by the amount of allocated register memory and

the real-time network traffic [18, 23, 34, 47, 54, 58]. Thus, it

is essential to dynamically allocate the limited register mem-

ory between multiple applictions to optimize the multiplexing

benefits. Yet existing approaches of running multiple concur-

rent applications on programmable networks allocate register

memory statically [19, 44, 49, 56, 57]. Changing the amount

of register memory for one application would require recom-

piling and reloading the switch program, which would disrupt

the operation of the switch.

In this paper, we propose NetVRM, a network manage-

ment system that supports dynamic register memory sharing

between multiple concurrent applications on a programmable

network. NetVRM advances the status quo with three major

features: The first one is a novel virtual register memory ab-

straction, which allows the register memory in the switch data

plane to be dynamically allocated between multiple concur-

rent applications at runtime, without recompiling and reload-

ing the data plane program. The second one is a dynamic

memory allocation algorithm, which efficiently arbitrates the

memory usage between concurrent applications based on the

real-time utility measurements. The third one is a language

extension and a compiler to generate data plane programs

with the virtual register memory abstraction and efficient C++

control plane APIs for high-speed virtual register memory

configuration.

The virtualization of register memory allows its dynamic

allocation. Our approach is inspired by traditional virtual

memory designs in operating systems, but programmable

switches introduce two new challenges. First, register mem-

ory is distributed over multiple pipeline stages, and each

register can be accessed only from one stage. Second, switch

applications can access register memory from both the data

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 155

plane and control plane. NetVRM’s memory system design

is tailored to these characteristics. It places a page table at

the front of the virtual register memory’s processing pipeline,

using it for memory translation in the data plane. The page

table indexes the register memory regions allocated to each

application in every stage. The switch control plane manages

memory allocation. NetVRM also mediates application ac-

cesses to register memory from the control plane to ensure

addresses are correctly translated.

NetVRM’s dynamic memory allocation policy exploits

the fundamental tradeoff between memory consumption and

application utility. In particular, it leverages diminishing re-

turns: the observation that, for most reg-stateful applications,

the benefit of additional memory decreases with the amount

of allocated memory [18, 23, 34, 47, 58]. For example, af-

ter a certain point, NetCache [23] cannot further improve

the throughput significantly. More importantly, the memory-

utility relationship changes both in the temporal and spatial

dimensions based on application characteristics and traffic

conditions. For example, the amount of register memory

needed by NetCache depends on the request pattern, which

can change over time and even vary across different switches.

We design an online algorithm that does global memory al-

location between applications in the network to maximize

multiplexing benefits.

To make it easy to develop applications with NetVRM, we

propose P4VRM, an extension to P4 [8]. P4VRM allows

developers to virtualize register memory with a few simple

modifications to existing P4 code: they mark register arrays to

be virtualized and add online utility measurement primitives

provided by P4VRM. The compiler takes multiple P4VRM

programs as input and outputs a single P4 program with the

virtual register memory abstraction and all the applications’

functionalities, and generates the control plane APIs for high-

speed virtual memory configuration.

In summary, we make the following contributions.

• We propose NetVRM, a network management system that

exposes a virtual register memory abstraction to enable

dynamic register memory sharing between multiple concur-

rent applications on a programmable network at runtime

without recompiling and reloading.

• We design a dynamic memory allocation algorithm to ef-

ficiently allocate register memory between applications to

maximize multiplexing benefits.

• We propose P4VRM, a data plane program extension, and

provide a compiler to easily equip the data plane programs

with virtual register memory and generate control plane

APIs for efficient virtual memory configurations.

• We implement a NetVRM prototype. Testbed experiments

on a variety of applications show that compared to static

memory allocation, NetVRM improves the mean satisfac-

tion ratio (i.e., the fraction of a network application’s life-

time that it meets its utility target) by 1.6–2.2× under a

range of workloads.

2 Motivation and Related Work

2.1 The Case of Dynamic Register Memory Allocation

Concurrent reg-stateful network applications. There

are two broad types of objects provided by commodity

programmable switches on the data plane—stateless ob-

jects, such as metadata, packet headers, and stateful ob-

jects, such as match-action tables, counters, meters, registers.

Among them, registers, as one of the defining features of

new-generation programmable switches, provide data-plane-

accessible register memory for packets to read and write vari-

ous states at line rate and enable much of the latest exciting

research [14, 22, 25, 35, 42, 43, 45]. Register memory is

implemented with standard SRAM blocks and can be read

and written by both the control plane and data plane. Stateful

Arithmetic and Logic Unit (ALU) performs register memory

access and modification by executing a short program that

involves register data, metadata and constant. The register

memory is usually organized as register arrays. Each register

array consists of several register slots with the same width

and can be addressed by index (direct mapping) and hash

(hash mapping). We refer to the network applications that use

the register memory as reg-stateful applications.

Besides the rise and evolution of reg-stateful applications,

modern cloud service providers usually serve multiple ten-

ants concurrently [6, 30]. They allow tenants to run differ-

ent network applications dynamically. For example, Azure

and AWS provide a variety of network applications [5, 7]

to their tenants, such as network address translation (NAT),

load balancer, and network monitoring. We anticipate that the

reg-stateful applications will be provided to tenants as pro-

grammable switches are being integrated in cloud networks,

including both the datacenter networks and the wide area

networks that connect the datacenter networks.

Necessity and potential benefits of network-wide dynamic

allocation. The register memory on programmable switches

is fundamentally limited by the hardware. For example, the

maximal size of register memory on each stage is only a

few Mb on the Intel Tofino switch [50]. Besides the limited

register memory, there is a fundamental trade-off between

memory consumption and application utility (e.g., its per-

formance or accuracy) in many reg-stateful network appli-

cations [18, 23, 34, 47, 58]. Although some applications

have a fixed memory requirement, most can operate with

different amounts of available memory. Notably, our key

observation is that applications generally exhibit diminish-

ing returns [18, 23, 34, 47, 58]. The utility improvement

decreases with more memory, and for many applications, ad-

ditional memory has no utility after a point. We demonstrate

the diminishing returns for four applications in Appendix A,

including heavy hitter detection (HH) [54], newly opened

TCP connection detection (NO) [55], superspreader detection

(SS) [54] and NetCache [23]. The utility is measured using

memory hit ratio (§5.1).

156 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

In all cases, the amount of memory affects the applica-

tion utility, and such effects depend heavily on the work-

load. For example, NetCache [23] needs different amount of

register memory with different skewed workload to deliver

the same utility (Appendix A). Without dynamic allocation,

this presents a formidable deployment challenge because the

workload can vary in both temporal and spatial dimensions:

different storage clusters see radically different workloads,

and even a single cluster’s request pattern changes over time

(e.g., on a diurnal cycle) [4].

The diminishing returns and the temporally and spatially

dynamic workload together also provide the opportunity to

maximize resource multiplexing benefits by efficiently arbi-

trating the memory usage between concurrent applications.

2.2 Target and Scope of NetVRM

Target applications. The reg-stateful applications that can

benefit from NetVRM must have the following properties.

• They are elastic (§5). An inelastic application (e.g.,

NetChain [22]) that has fixed virtual memory requirement

can be supported by NetVRM, but cannot benefit from

dynamic memory allocation.

• The data plane programs have to meet the constraints in

P4VRM (§6), such as stateful ALUs since each operation

of one register array must be associated with a specific

stateful ALU.

• The application utility should be obtained instanta-

neously (§5.1). It can be computed on the switch (e.g.,

hit ratio as the default utility) or reported by applications.

We remark that there are a wide range of applications with

the above properties, such as measurement applications [18,

39, 47], applications with approximate data structures [20, 34,

54], and caching applications [23, 33].

Register memory as the scope. There are a variety of re-

source types on a programmable switch, such as register

memory, SRAM used for tables, TCAM and action units [51].

NetVRM focuses on dynamic allocation for register memory

for three reasons. First, we observe that many reg-stateful

applications are bottlenecked by register memory. Second, dy-

namic allocation of other resource types (e.g., match-action ta-

bles, TCAM) has been well-studied in the context of Software-

Defined Networking (SDN) with traditional fixed-function

switches [17, 21, 36, 46]. Third, current switch hardware

cannot dynamically reallocate other resource types without

rebooting the entire switch [51]. NetVRM is readily deploy-

able on existing programmable switches.

Switch memory available that can be used as virtual reg-

ister memory could be limited because a certain amount of

memory has to be set aside for basic networking functionality,

such as L3 routing, and inelastic applications (see §5). The

evaluation in §8 shows that NetVRM outperforms the alterna-

tives, regardless of how much physical memory is available

for virtualization and dynamic allocation. Thus, NetVRM

continues to be effective even as the memory for basic net-

working functionality and inelastic applications grows in size,

leaving behind less memory for dynamic allocation.

2.3 Existing Solutions and Limitations

Recently, several existing works have explored how to support

multiple applications on a programmable switch [19, 44, 48,

49, 56, 57]. At a high level, these solutions fail to meet the

requirement of dynamic register memory allocation because

of at least one of three limitations as follows.

• Static binding of register memory. Some of the exist-

ing work combine or merge multiple applications into one

monolithic data plane program [19, 48, 56, 57] in com-

pilation time. And the binding between register memory

allocation and applications is static. Changing the alloca-

tion requires the data plane program to be recompiled and

reloaded, during which the switch has to be stopped and

restarted. This interrupts the operation of all applications

on the switch, even the basic ones such as L3 routing.

• Lack of a real switch environment. Most of the exist-

ing solutions ignore the practical hardware constraints and

are not applicable on a real ASIC-based switch (e.g., Intel

Tofino [50]). For example, P4VBox [44] provides par-

allel execution of virtual switch instances on NetFPGA.

MTPSA [49] realizes a multi-tenant portable switch archi-

tecture on NetFPGA and BMv2, a reference P4 software

switch [3]. HyPer4 [19] and HyperV [56] realize the virtu-

alization on software switches (e.g., BMv2, DPDK).

• Not doing network-wide dynamic allocation. Network

resource allocation has been well studied for SDN with

traditional fixed-function switches [16, 17, 21, 36, 37, 46].

For example, DREAM [36] does dynamic allocation for

TCAM between measurement applications. However, none

of the existing work has disclosed the potential benefit of a

network-wide dynamic allocation for the register memory

on programmable networks.

There are other related works that have explored how to man-

age and improve network applications on programmable net-

works. TEA [27] provides external DRAM for storing table

entries, not register memory. Dejavu [52] utilizes the multiple

pipelines and resubmission to fit a service chaining in one

single switch. RedPlane [28] enables fault-tolerant stateful

applications by designing a practical, provably correct replica-

tion protocol. NetVRM targets register memory and provides

a new system for sharing it between multiple concurrent reg-

stateful applications dynamically.

3 NetVRM Overview

NetVRM is a network management system that supports dy-

namic register memory sharing between multiple concurrent

applications on a programmable network. Figure 1 shows an

overview of NetVRM. NetVRM includes three critical com-

ponents: virtual register memory, dynamic memory allocation

and the P4VRM compiler. It abstracts away the complexities

of allocating physical memory in each application, increases

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 157

xx.p4vrm

Run-time API

App 1

Virtual Register Memory

App 3

…

zoom in

Dynamic Memory

Allocation

NetVRM

App 2

Network

Data

Plane

Control

Plane

P4VRM

Compiler

xx.p4vrm

Figure 1: NetVRM overview.

memory utilization via statistical multiplexing, and provides

P4VRM as an extension of P4 for developing applications

with such virtual register memory.

Virtual register memory (§4). NetVRM exposes a virtual

register memory abstraction to applications. The virtual regis-

ter memory component in every switch hides the underlying

details of the physical register memory that may span multiple

stages and be shared with multiple applications. We design

a custom data plane layout and an address translation mech-

anism to realize the virtual memory. The data plane layout

composes the register arrays in multiple stages to one large

register array, and allocates the large array to applications.

Memory translation contains two page tables. One page table

is in the data plane that translates the memory addresses com-

puted from packet headers for memory access during packet

processing, and the other is in the control plane for NetVRM

to query and update the virtual memory of applications. The

two tables are synchronized and managed by NetVRM.

Dynamic memory allocation (§5). In principle, NetVRM

can support any memory allocation algorithm built on top

of the virtual register memory. NetVRM also provides a

default network-wide memory allocation algorithm for appli-

cations without knowing the utility functions. The algorithm

exploits the diminishing returns between memory usage and

application utility to maximize resource multiplexing benefits.

We leverage the observation that many applications use the

switch as a performance accelerator and deal with insufficient

switch memory by having some kind of fallback path, either

through the switch control plane or the servers [23, 29, 47].

As such, we cast the resource allocation problem as satis-

fying as many application’s requirements as possible with

respect to available memory size. This allows operators to

specify application-specific utility metric and target for each

application, avoiding the need to compare different utility

functions across applications. NetVRM also provides a de-

fault, application-agnostic metric—the memory hit ratio—for

applications that do not define their own.

Language extension and autogeneration (§6). NetVRM

provides P4VRM, an extension to P4 [8] for developers

to develop P4 programs with virtual register memory, and

a P4VRM compiler to compose and compile individual

P4VRM programs of different applications to one single P4

program with virtual register memory abstraction. The com-

piler also generates C++ APIs for efficient virtual register

memory configuration in the control plane.

App 1 App 2 App 3

Virtual Register Memory
Page
Table

App

Virtual

Array

NetVRM

Data

Plane

Match Action

app=1 offset=0,
size=16k

app=2 offset=16k,
size=16k

app=3 offset=32k,
size=32k

0

…

16k

…

32k

…

…

…

0

…

16k

…

32k

…

…

…

0

…

16k

…

32k

…

…

…

0

…

16k

…

32k

…

…

…

Control

Plane

Page Table Multi-stage Physical

Register Arrays

Counter
Record

total_cnt

hit_cnt

total_cnt

hit_cnt

total_cnt

hit_cnt

…

…

Counter

Record

Figure 2: Virtual register memory design.

4 Virtual Register Memory

The register memory in the switch data plane is abstracted as

register arrays for developers. The main problem of dynami-

cally allocating memory is the coordination between multiple

reg-stateful applications. Because register array definitions

are hardwired in P4 programs, the code of an application has

to be modified when other applications on the switch change,

even if the application itself stays the same. NetVRM exposes

a virtual register memory space to each application, which

eliminates the coordination between applications. Each ap-

plication is implemented with a virtual register array, without

explicitly binding the register array to specific stages. As

such, the application code does not need to be modified when

the memory allocation changes. NetVRM is designed to man-

age the register memory and does not scarifice the support of

recirculation.

Page table and counter record. A key challenge for memory

virtualization on a switch, as opposed to a traditional CPU, is

that the register memory can be accessed from both the data

plane and the control plane (Figure 2). It is straightforward

to implement the page table in the control plane. NetVRM

simply does the translation in software. Specifically, it in-

tercepts application memory accesses, uses the page table to

perform the address translation, and then calls the memory ac-

cess APIs of the switch driver to update the register memory

configuration.

The page table in the data plane is more complicated, be-

cause it needs to be implemented using the programmable

processing elements in the data plane. Figure 2 shows the

design. The page table is implemented with a match-action

table, and is placed at the stage before the physical register

arrays to be virtualized. The match-action table matches on

the application ID and identifies the location and size of the

application’s memory region (offset and size). These

parameters are configured by the control plane at runtime as

memory is allocated. We remark that the page table does not

introduce register memory overhead in common cases (§7).

158 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

The counter record maintains two counters for each appli-

cation, which only takes a small amount of memory. One is

total_cnt, which tracks the total number of packets for

an application. The other is hit_cnt, which tracks the num-

ber of packets that hit the switch register memory for each

application. These counters are polled and reset periodically

by the control plane to compute real-time memory hit ratios.

Memory layout. The memory layout partitions the physical

register arrays horizontally across the stages. A virtual reg-

ister array for an application is mapped to multiple blocks

with the same start index (offset in the page table) and

size (size in the page table) in each physical array. For

example, in Figure 2 application 1 has a virtual array with

64K slots, which is mapped to [0,16K) in each physical array,

and application 3 has a virtual array with 128K slots, which

is mapped to [32K,64K) in each physical array.

This horizontal memory layout has three principal bene-

fits. First, it decouples memory allocation from application

code, and eliminates their static binding. The size of a vir-

tual register array and its mapping to the physical arrays

are represented by offset and size in action parameters,

which can be dynamically changed at runtime, without re-

compiling and reloading the code in the data plane. Second,

it enables fine-grained memory allocation. Because there

are only a few stages (e.g., 10-20 stages) on commodity pro-

grammable switches [11, 50], our design can allocate the

memory at row granularity (e.g., 8-slot granularity), which is

fine-grained enough, compared with the total available slots

on the switch (e.g., 512K). Third, it represents the memory

layout using a small fixed-sized representation: only two

variables (offset and size) per application. Although a

more sophisticated memory layout might be able to achieve

better space efficiency, more complex representations such as

variable-length block lists would be challenging to implement

efficiently in the data plane.

Address translation. Let the size of a virtual register array

for an application be N. A virtual address VA ∈ [0,N) is the

index of the register slot in the virtual array. The physical

address PA is computed by PA= (VA/size, VA%size+offset)
after the page table, where VA/size denotes the physical array

index and VA%size+offset denotes the physical slot index in

the corresponding stage. Division and modulo on arbitrary

integers may not be supported in all switches. In such cases,

we allocate virtual arrays with size to be a power of two, and

implement these two operations with bit operations.

The above translation is sufficient for applications that di-

rectly access memory by VA. Besides these direct accesses,

reg-stateful applications on programmable switches often

use a lookup table or a hash function to access a register

slot. Lookup tables use match-action tables to identify the

address corresponding to a key (e.g., to find the memory

location of an object in NetCache). We adapt the match-

action table to hold a virtual address, then apply the VA to

PA translation described above. Other applications use a

hash function to map a subset of header fields to a register

slot (e.g., hashing the source IP in heavy hitter detection).

While in principle the same translation approach can be used,

hardware constraints on the Tofino platform mean that hash

functions need to be associated with a particular address

range, and adding a variable offset to the output requires

an additional stage. NetVRM uses a hash function h size,

selected during the page table lookup stage, which has out-

put in [0,size). Hash lookups first compute h size(pkt.hdr),
then, in a subsequent stage, translate that to the physical slot

location: PA = (h(pkt.hdr)%k, h size(pkt.hdr)+ o f f set),
where k is the number of physical arrays.

Some applications may need large virtual slots, each of

which may be larger than a physical slot. In such cases, we

combine multiple physical slots to implement a virtual slot.

5 Dynamic Memory Allocation

We classify reg-stateful applications on a programmable net-

work into elastic and inelastic applications based on whether

an application can work with a variable amount of reg-

ister memory. An inelastic application requires a fixed

amount of register memory; it cannot work with less (e.g.,

NetChain [22]). An elastic application does not have a fixed

register memory requirement. Our key observation is that

most elastic applications overcome insufficient register mem-

ory with a fallback mechanism to the network control plane

or the servers [23, 47]. The amount of memory typically af-

fects application-level performance metrics (e.g., the system

throughout in NetCache [23]). Although it may be possible to

transform inelastic applications to elastic ones [29], we leave

that to application developers. NetVRM supports both types,

while only elastic applications can benefit from NetVRM’s

dynamic memory allocation.

Each application is specified with four parameters: the ap-

plication type (e.g., HH); the subnet in which the application

will run (e.g., 10.0.0.0/8); the utility metric, which is either

the default metric (i.e., memory hit ratio) or an application-

specific one; and the utility target (e.g., 0.98 for memory hit

ratio). For an inelastic application, the amount of required

memory is specified instead of the utility metric and target.

NetVRM allocates the memory to it if the requirement can be

satisfied, and rejects the application otherwise.

Dynamic memory allocation is only performed for elastic

applications. NetVRM periodically polls the counters from

the data plane, obtains the utility of each application, and

dynamically allocates the register memory between the ap-

plications based on their utilities. There is a long line of

work related to network utility maximization [26, 38, 40].

NetVRM presents three particular challenges for network

utility maximization, including how to define the application

utility properly, how to approximate the utility functions, and

how to allocate the register memory in the network, which

will be demonstrated in detail as follows.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 159

(a) Estimate over_mem. (b) Estimate under_mem.

Memory

Utility

target

current

current

over_mem

actual

approximate

with cf=1

Memory

Utility

target

current

current

under_mem

actual

approximate

with cf=1

Figure 3: Utility function estimation.

5.1 Definition of Application Utility

Finding a proper definition of application utility is challeng-

ing, because different applications have their own application-

level objectives that cannot be directly compared with each

other (e.g., accuracy for a heavy-hitter detector or through-

put for NetCache). NetVRM allows applications to compute

their own utility metrics and report them to the allocator. Be-

cause not all the application-level metrics can be reported

online (e.g., accuracy for a heavy-hitter detector), NetVRM

also provides a default, generic utility definition. It is based

on the observation that for many elastic applications, a reg-

ister memory miss in packet processing usually affects the

application-level performance, e.g., extra latency to process a

packet with the fallback mechanism. Therefore, one effective

utility definition is the memory hit ratio, which is the ratio

of packets directly processed by the register memory in the

switch. Besides being application-agnostic, this utility can be

computed by tracking counters for memory hits in the data

plane by NetVRM itself (§4). Moreover, the memory hit ratio

is also a widely-used metric to evaluate the workload reduc-

tion for the fallback mechanism in many elastic applications

on programmable networks [18, 39, 47].

5.2 Problem Formulation

We denote the available virtual register memory size of c

switches in the network as M1,M2, ...,Mc, respectively. There

are l applications running in the network. Let i.target be the

utility target of application i, and i.utility(i.m1, ..., i.mc, i.T)
be the utility function of application i where i.m j is the mem-

ory usage of application i on switch j and i.T is the real-time

traffic of application i. The network resource allocation prob-

lem is formulated as follows.

max
l

∑
i=1

1(i.utility(i.m1, ..., i.mc, i.T)≥ i.target)

s.t.
l

∑
i=1

i.m j ≤M j,∀ j = 1, ...,c

The objective is to maximize the number of applications

of which the utility targets can be satisfied, and the constraint

is to ensure the sum of allocated memory on each switch

does not exceed its memory size. We remark that this is one

objective that is provided by default and has been used in sev-

(a) Wide area network. (b) Datacenter network.

Client
Rack

Client
Rack

Key-Value
Rack

O0

O1

D0

D1

S0

S1

S0 S1 S2

S3 S4

Figure 4: Examples for network-wide allocation.

eral network management scenarios [36, 37]. NetVRM also

supports other objectives and memory allocation algorithms.

Main challenge: unknown and dynamic utility functions.

The main challenge to solve the allocation problem is that the

utility functions of the applications are unknown and change

over time. It is true that some utility functions can be known

as a priori, e.g., the worst-case accuracy and the memory

requirement for sketch-based heavy hitter detection (SHH)

using count-min sketch [12] can be calculated mathemati-

cally [54]. But utility functions for many applications such

as HH, NO and SS (§2) are hard to know in advance. More

importantly, the solution needs to adapt to real-time traffic

and as the applications are started and stopped dynamically.

Solution: online utility curve estimation without appli-

cation knowledge. In order to adapt memory allocation

for the applications without knowing their utility function,

NetVRM leverages the observation that the utility func-

tion follows diminishing returns, i.e., that it is concave,

which holds for a wide range of reg-stateful network ap-

plications [18, 23, 34, 47, 58], and approximates the mem-

ory requirement for each application. Let i.util, i.target and

i.mem be the current utility, the utility target and the current

memory for application i, respectively. The utility function

is approximated by a polynomial function that intersects the

origin. For an application i above its utility target, we use

i.over mem← i.mem− (
i.target

i.util
)c f ∗ i.mem (1)

to estimate the amount of memory that can be moved from i

to other applications (i.over mem). Because of diminishing

returns, the utility function is concave and a linear function

(when c f = 1) may underestimate i.over mem (Figure 3(a)).

We use a compensation factor c f which is set to be larger than

1 to compensate this. For an application i below its utility

target, we use

i.under mem← (
i.target

i.util
)c f ∗ i.mem− i.mem (2)

to estimate the amount of memory to be added to i

(i.under mem). We use a c f larger than 1 for faster con-

vergence (Figure 3(b)).

5.3 Network-Wide Register Memory Allocation

Based on the approximation in §5.2, NetVRM uses an online

algorithm to move memory from over-provisioned applica-

tions (those above their utility targets) to under-provisioned

applications (those below their utility targets) to maximize

160 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 1 Network-wide memory allocation

1: new plan← cur plan.copy()
2: for application i in applications do

3: if i.util ≥ i.target then

4: satis f ied list.append(i)
5: i.over mem← i.mem− (i.target/i.util)c f ∗ i.mem

6: distributed i.over mem to i.paths proportionally

7: else

8: unsatis f ied list.append(i)
9: i.under mem← (i.target/i.util)c f ∗ i.mem− i.mem

10: distributed i.under mem to i.paths inverse proportionally

11: sort satis f ied list by over mem in decreasing order

12: sort unsatis f ied list by i.under mem in increasing order

13: for application i in unsatis f ied list do

14: for path p in i.paths do

15: sort p.switches based on i’s existence and s.over mem

16: for switch s in p.switches do

17: allocate memory from satis f ied list to p.under mem

18: if all paths are satisfied then

19: update new plan

20: else

21: move memory back to satis f ied list

22: return new plan

the objective. The allocation are performed periodically to

handle real-time traffic dynamics and application changes.

Main challenge: multiple and overlapped paths of an ap-

plication. Besides the unknown and dynamic utility functions,

the network-wide allocation problem is further complicated

by the following two challenges. First, an application may

need to handle traffic between multiple origin-destination

(OD) pairs, and the traffic between each OD pair may use

multiple paths. For example, in a wide area network, the

operator may want to detect heavy hitters for flows between

multiple OD pairs, e.g., O0-D0 and O1-D1 in Figure 4(a).

In a datacenter network, the operator may want to provide

in-network caching for traffic from multiple client racks to

a key-value store rack, e.g., S0-S2 and S1-S2 in Figure 4(b).

Datacenter networks typically use multi-path routing, e.g.,

path S0-S3-S2 and path S0-S4-S2 for traffic between S0 and

S2. Second, different paths of an application may overlap,

and thus can share their allocated memory. For example, in

Figure 4(b), NetCache can be placed in S2 to save memory

instead of in both S3 and S4.

Solution: network-wide memory allocation. At a high level,

NetVRM performs network-wide memory allocation in two

steps. First, NetVRM uses the utility estimation mechanism

in §5.2 to estimate the required memory for each application,

and decomposes over mem or under mem of each applica-

tion to multiple paths. Second, it moves the memory from

over-provisioned applications to under-provisioned applica-

tions. The pseudocode is shown in Algorithm 1.

The first step is to compute and decompose over mem or

under mem of each application to multiple paths (line 2-10).

NetVRM measures the utility (i.e., the memory hit ratio by

default) and the traffic on each path. With the memory hit

ratio as the utility, the utility (memory) of application i is

the weighted average of its utilities (memories) by the traffic

p4vrm

compiler

.p4 with VRM

.cpp for

updates

developers

…

heavy_hitter

.p4vrm

netcache

.p4vrm

…

heavy_hitter

.p4

netcache

.p4

Figure 5: P4VRM compiler compiles P4VRM programs.

volume on its paths. We use the utility estimation mechanism

in §5.2 to estimate i.over mem and i.under mem. Then

i.over mem is distributed to each path in proportional to their

traffic (line 6) and i.under mem is distributed to each path in

inverse proportional to their traffic (line 10). We remark that

NetVRM also allows disproportional memory allocation.

The second step is to move memory from over-provisioned

applications to under-provisioned applications (line 11-21).

We use a heuristic that reduces the memory for applications

that are more over-provisioned first, and allocates the mem-

ory to the applications that are more likely to be satisfied first

(line 11-12). For each unsatisfied application, it tries to satisfy

the estimated memory requirement on each path (line 13-21).

Because each path contains several switches, the algorithm

needs to decide which switch to allocate memory from to sat-

isfy the application (line 15-17). Two factors are considered

in the decision, which are whether the application already has

memory allocated on a switch (i.e., i’s existence) and how

much extra memory a switch has (i.e., s.over mem). These

factors aim to avoid small amounts of memory scattering in

many switches. If the application’s requirement can be satis-

fied, the plan is updated (line 18-19). Otherwise, the memory

is moved back to the satisfied applications (line 20-21).

To accommodate path overlapping, two extensions are re-

quired to the algorithm. First, in the utility estimation, the

memory on overlapping switches is counted once for each

overlapping path. Second, in memory allocation, the memory

allocated to an application on overlapping switches is also

counted once for each overlapping path.

Admission control, drop and priority. Admission control

is critical when the total memory requirement exceeds the

register memory size in the network. NetVRM admits one

application into the network only if there is more available

memory on each path than a predefined fraction of the total

memory. NetVRM drops one application if it cannot meet

the utility target in multiple consecutive allocation epochs.

NetVRM targets elastic applications which can work even

with no register memory. Thus, if one application is rejected

or dropped, it can turn to the fallback mechanism. A mali-

cious application with a tough utility target to satisfy would

likely be dropped after a few allocation epochs. The operator

can also assign custom priorities for the applications. For

example, an application can be configured to not be dropped,

or be assigned with a minimal amount of memory to avoid

starvation when it is under-provisioned.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 161

〈p4 declaration〉 ::= 〈vrm reg declaration〉 | 〈vrm blb declaration〉 | ...

〈vrm reg declaration〉 ::= ‘vrmReg’ 〈virt stage〉 〈register declaration〉

〈vrm blb declaration〉 ::= ‘vrmMergeable’ 〈blackbox declaration〉
| ‘vrmNonMergeable’ 〈blackbox declaration〉

〈table declaration〉 ::= ...

| ‘vrmMergeable’ 〈virt stage〉 〈table declaration〉
| ‘vrmNonMergeable’ 〈table declaration〉

〈action function declaration〉 ::= ...

| ‘vrmMergeable’ 〈action function declaration〉
| ‘vrmNonMergeable’ 〈action function declaration〉

〈control statement〉 ::= ...

| ‘HIT COUNTER;’

| ‘PKT COUNTER;’

〈virt stage〉 ::= 〈decimal value〉

Figure 6: The P4VRM extensions to the P4-14. Gray non-

terminal nodes refer to legacy rules in P4-14.

Memory reallocation process. At the end of each alloca-

tion epoch, NetVRM fetches the counters from the control

plane, and computes the online utilities and the new memory

allocation plan. Updating the memory allocation plan results

in remapping from virtual addresses to physical addresses

and moving existing entries because of the remapping. There

are general solutions that can be applied to ensure the consis-

tency of memory allocation updates [24, 53]. We apply two

optimizations for particular cases in NetVRM. First, network

measurement applications periodically reset the state such as

counters maintained by the register memory. We align the

memory allocation updates with the resetting operations, so

that the memory allocation can be updated without moving

existing entries and does not scarifice application correctness.

Second, network applications that use lookup-table-based

address translation can simply use a delta update when the

memory size decreases, and allow more entries when the

memory size increases. This ensures consistency because a

lookup table is used for maintaining each address mapping.

6 Language Extension and Autogeneration

NetVRM provides P4VRM, an extension to the basic syntax

and semantics of the P4 programming language [8] that sup-

ports virtual register memory abstraction and online utility

measurement. Our implementation is based on P4-14, as more

existing implementations are implemented in this version, but

the same extensions could be applied to P4-16 as well. As

shown in Figure 5, to port existing .p4 programs, developers

extend them to .p4vrm programs by marking which register

arrays are to be virtualized and adding the online utility mea-

surement primitives (HIT_COUNTER and PKT_COUNTER)

correctly according to the applications. The P4VRM com-

piler takes multiple .p4vrm programs as input and outputs one

merged P4 program (for the data plane) with virtual mem-

ory abstraction and online utility measurement, together with

the C++ APIs (for the control plane) to configure the virtual

register memory efficiently.

✞ ☎
+ #include "params.p4"

- vrmReg 1 register stg1 {

+ register virtual_stg1 {

width:32;

- instance_count:8192;

+ instance_count:65536;

}

- vrmNonMergeable blackbox stateful_alu salu_stg1 {

+ blackbox stateful_alu salu_stg1 {

- .reg: stg1;

+ .reg: virtual_stg1;

...

}

- vrmNonMergeable action act_stg1() {

+ action act_stg1() {

- salu_stg1.execute_stateful_alu_from_hash(hash_1);

+ salu_stg1.execute_stateful_alu(params_md.slot_idx);

}

- vrmNonMergeable table tbl_stg1 {

+ table tbl_stg1 {

+ actions {act_stg1;};

+ default_action:act_stg1();

+ }

control ingress {

if (valid(tcp) or valid(udp)) {

+ apply(set_app_id);

+ apply(set_offset_hf);

+ apply(add_offset);

+ if (params_md.app_type==0) {

apply(tbl_stg1);

...

- HIT_COUNTER;

+ apply(hit_counter);

...

- PKT_COUNTER;

+ apply(pkt_counter);

+ }

}

}
✝ ✆
Figure 7: An example of P4VRM code transformation by

P4VRM compiler. ‘-’ and ‘+’ annotate the change before and

after the transformation, respectively.

Grammar. As shown in Figure 6, P4VRM extends the P4-

14 language specification [2] by introducing new keywords

(vrmReg, vrmMergeable and vrmNonMergeable) to

tag declarations related to a register array (register,

blackbox, action, and table). It marks the regis-

ter array as virtualized, and marks the related blackboxes,

actions and tables that have the same logic as mergeable.

It also specifies the stages at which the mergeable tables

should be placed (virt_stage). The two primitive state-

ments (i.e., HIT_COUNTER and PKT_COUNTER) are used

for online utility measurement. HIT_COUNTER tracks the

number of packets processed by the register memory, and

PKT_COUNTER tracks the total number of packets of the

application.

Generating merged P4 programs and C++ APIs. To merge

parsers, P4VRM compiler abstracts the packet parser of each

application as a Finite State Machine (FSM) and merges

the identical states into a single FSM. Then, the P4VRM

compiler transforms P4VRM-introduced declarations (i.e.,

vrmReg, vrmMergeable and vrmNonMergeable) to

P4-14 declarations (i.e., register, blackbox, action

and table), and adds the additional logic for address trans-

162 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

32 64 128 256
Number of concurrent applications

100

200

300

400

500

D
el

ay
 (m

s)

Tofino (default)
Vanilla C++

C++ w/ batching
NetVRM

(a) Total control loop delay vs. differ-

ent implementations.

32 64 128 256
Number of concurrent applications

0

5

10

15

D
el

ay
 (m

s)

Fetch
Calc

Reconfig
Runtime

(b) Delay breakdown for NetVRM.

Figure 8: Analysis of control loop delay.

lation, as shown in Figure 7. The compiler also loads a P4

library (params.p4) provided by P4VRM, containing ad-

ditional metadata and logic (e.g., to perform the page table

lookup) and adds the appropriate invocations at the begin-

ning of the pipeline. Finally, the compiler generates control

plane APIs for resetting counters, fetching counters, resetting

virtual memory and configuring the virtual memory.

Requirement for merge. Merging multiple reg-stateful ap-

plications needs to comply with the same resource constraints

as in existing work [19, 56, 57], most notably those related

to register memory (e.g., total register memory size per stage,

stateful ALUs per stage). If merging violates hardware con-

straints, the P4VRM compiler would fail and produce no

output.

7 Implementation

We have implemented a NetVRM prototype on a 6.5 Tbps

Intel Tofino switch [50], and used commodity servers to re-

play traces and generate traffic. The P4 library we provide

for virtual register memory support is around 500 lines of

P4-14 code. The virtual register memory spans eight physical

stages. Other stages are used for necessary functionalities

(e.g., routing and enabling concurrent applications). We em-

ulate four switches with the four independent pipelines of

the Tofino switch. The data plane program decides which

emulated switch one packet enters by checking the ingress

port. The implementation batches the data plane updates, and

uses multithreading to update the four pipelines simultane-

ously. The NetVRM control plane implementation consists

of around 2200 lines of C++ code. The P4VRM compiler is

built on Flex/Bison [31] and parses the .p4vrm files to build

an AST. It consists of around 2000 lines of C++ and 900 lines

of grammar.

Overhead of NetVRM. The address translation needs to

be done in two stages (§4), which is realized with two ta-

bles to adjust the slot_idx (Figure 7). The first table

(set offset hf) can be placed in the same stage with

other tables (e.g., set_app_id) that are necessary and in-

evitable for concurrent applications running. The register

memory in the second stage where add offset is placed

cannot be virtualized, which can be used for basic networking

functionality and inelastic applications. In some cases, the

register memory in some stages cannot be used even without

0 20 40 60 80
Time (s)

0.00

0.25

0.50

0.75

U
til

ity
 (h

it
ra

tio
)

NetVRM
MIMD

AIAD
AIMD

MIAD
Target

(a) Application utility over time.

0 20 40 60 80
Time (s)

0

5000

10000

15000

N
um

be
r o

f s
lo

ts

NetVRM
MIMD

AIAD
AIMD

MIAD
Target

(b) Register memory consumption over time.

Figure 9: Comparison of different algorithms to update mem-

ory allocation.

NetVRM because of the indivisibility between the virtual slot

size and the number of stages. For example, if there are three

physical stages available for virtualization, an application

with 2-stage virtual slots can use two stages at most. Then the

page table placed in the first stage does not introduce extra

register memory overhead. We remark that this is a common

case for many applications [18, 23, 34, 47, 54]. The extra

resource needed by each application in NetVRM is only one

table entry in the page table and two counters for the online

utility measurement, without extra stage overhead.

8 Evaluation

We evaluate our NetVRM prototype in two scales. We first

use microbenchmarks to examine the control loop delay and

the properties of the resource allocation algorithm (i.e., sta-

bility and convergence speed). With macrobenchmarks, we

demonstrate the benefits of NetVRM in combination with a

variety of network applications, workload parameters, com-

parisons with alternative approaches and network topologies.

8.1 Microbenchmark

Control loop delay. We emulate four switches by the four

independent pipelines of the Tofino switch. First, we compare

the total control loop delay, i.e., the time to complete a virtual

memory reallocation (§5.3), with different implementations,

including the default implementation on Tofino switches

which uses Python Thrift APIs, a vanilla C++ implementation,

a C++ implementation with batching, and NetVRM, which

incorporates both batching and multithreading. As shown in

Figure 8(a), the C++ implementations are an order of magni-

tude more efficient than the default implementation of Tofino

control plane APIs. NetVRM’s optimizations further reduce

the delay by a factor of ∼ 3.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 163

256 512 1024 2048
Register memory (KB) per logical switch

0.00

0.25

0.50

0.75

1.00

S
at

is
fa

ct
io

n
ra

tio

mean

5% tail

NetVRM Equal-Active Equal-All

(a) Heavy hitter detection (HH).

256 512 1024 2048
Register memory (KB) per logical switch

0.00

0.25

0.50

0.75

1.00

S
at

is
fa

ct
io

n
ra

tio

NetVRM Equal-Active Equal-All

(b) Newly opened TCP (NO).

256 512 1024 2048
Register memory (KB) per logical switch

0.00

0.25

0.50

0.75

1.00

S
at

is
fa

ct
io

n
ra

tio

NetVRM Equal-Active Equal-All

(c) Superspreader detection (SS).

256 512 1024 2048
Register memory (KB) per logical switch

0.00

0.25

0.50

0.75

1.00

S
at

is
fa

ct
io

n
ra

tio

NetVRM Equal-Active Equal-All

(d) Mix of HH, NO, SS.

Figure 10: Satisfaction for flow-based applications in the WAN scenario.

256 512 1024 2048
Register memory (KB) per logical switch

0

0.1

0.2

0.3

0.4

0.5

D
ro

p/
re

je
ct

 ra
tio

HH drop
NO drop
SS drop
Mix drop

HH reject
NO reject
SS reject
Mix reject

Figure 11: Drop/reject ratio of NetVRM for flow-based appli-

cations in the WAN scenario.

We further break down the control loop delay of NetVRM

into four parts, i.e., Fetch, Calc, Reconfig and Runtime, and

measure the latencies with different number of concurrent

applications. Fetch, Calc, Reconfig and Runtime represent the

time of fetching counters, calculating online utility and new

memory allocation plan, configuring the page table, and the

runtime overhead for resetting the state (e.g., the counters),

respectively. As shown in Figure 8(b), the time of Fetch

remains relatively constant since we use batching to fetch all

the counters together where the data size does not influence

the latency significantly. The time of Calc increases with

more applications, due to the heavier overhead to compute

the online utility and memory allocation plans. The time

of Reconfig dominates the control loop delay because of the

intensive updates to the data plane for four pipelines.

Due to the limit of our testbed, we only emulate four

switches with one Tofino switch in our experiment. We re-

mark that NetVRM can maintain the low control loop delay

and scale in real wide area networks and datacenters with

a larger number of switches for two reasons. First, Fetch,

Reconfig and Runtime, which do not need coordination be-

tween multiple switches, can be done in different switches

locally and simultaneously. Second, Calc needs to compute

the online network-wide utility and memory allocation plans

for each application which has to be done in a centralized

location. Instead of doing it on the switch OS with limited

computation capability in our experiment, the time of Calc

can be reduced easily by running it in a more powerful server.

Stability and fast convergence of NetVRM. In this experi-

ment, we compare NetVRM with other alternative approaches

which are commonly used in network resource allocation, in-

cluding AIAD, MIAD, MIMD and AIMD. Those approaches

estimate the memory requirements by increasing (decreasing)

the step size additively (A) or multiplicatively (M) when the

satisfaction status remains the same (changes) compared with

the previous epoch. We run one NetCache [23] application

on the switch and set its memory hit ratio target to be 0.5.

The workload skewness is Zipf-0.99 at the beginning, then

changes to Zipf-0.9 at 18 seconds, and finally changes to

Zipf-0.95 at 38 seconds. Figure 9(a) and Figure 9(b) show

the utility and memory usage over time, respectively. AIAD

and AIMD fail to meet the utility target when the skewness

becomes Zipf-0.9 because increasing the memory additively

is too slow. MIAD converges slower after 38 seconds because

decreasing the step size additively from a large step size is

slow. MIMD has the closest performance to NetVRM, but the

utility fluctuates around the utility target after convergence.

NetVRM estimates the memory requirements based on the

online utility (§5.2). Thus, it can react fast and more accu-

rately to the traffic dynamics and maintain the utility above

its target most of the time.

8.2 Macrobenchmark

NetVRM configuration and network topology. The default

allocation epoch and measurement epoch are both one second.

The default network topology is the Wide Area Network

(WAN), where each application has traffic from 4 switches

independently. NetVRM drops an application if it cannot

meet the utility target in four consecutive epochs and rejects

an application if the available memory on the switch is smaller

than 1/128 of the total memory.

Network applications. NetVRM supports a wide range of

network applications. We use five applications in the evalu-

ation, i.e., heavy hitter detection (HH) [47], newly opened

TCP connection detection (NO) [55], superspreader detection

(SS) [47], sketch-based heavy hitter detection (SHH) [54]

and NetCache [23]. HH, NO and SS are flow-based appli-

cations which store precise flow records on the data plane,

and evict the existing entries to the control plane upon hash

collisions, following the eviction policy in TurboFlow [47].

SHH is a sketch-based application that uses approximate data

structures (i.e., count-min sketch [12]) to approximate flow

records. NetCache maintains hot key-value pairs on the data

plane to serve a request upon a cache hit. For each application

type, there can be multiple instances of this application, e.g.,

belonging to different clients/tenants. Each client/tenant owns

164 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

256 512 1024 2048
Register memory (KB) per logical switch

0.00

0.25

0.50

0.75

1.00

S
at

is
fa

ct
io

n
ra

tio

NetVRM Equal-Active Equal-All

(a) Satisfaction.

256 512 1024 2048
Register memory (KB) per logical switch

0

0.2

0.4

0.6

0.8

1.0

D
ro

p/
re

je
ct

 ra
tio

Drop ratio Reject ratio

(b) Drop/reject ratio.

Figure 12: Experimental results for sketch-based applications

(SHH) in the WAN scenario.

a /8 subnet of source IP, and can dynamically start or stop

application instances within its subnet.

Traffic traces. The traces for measurement applications on

WAN are the 2019 passive CAIDA traces [10]. The data-

center traces are from Facebook’s production clusters [41].

We replay the traces via MoonGen [15]. The NetCache traf-

fic is generated by our DPDK client according to the Zipf

distribution with different skewness parameters.

Alternative approaches. We compare NetVRM with two

alternative approaches. (i) One is Equal-All, which statically

assigns an equal amount of register memory to all applica-

tions, active or not. For example, if each application instance

runs within a /8 subnet, then there are at most 256 concurrent

application instances. Thus, Equal-All assigns 1/256 of to-

tal memory to each instance. (ii) The other is Equal-Active,

which only assigns an equal amount of register memory to

active instances. We emphasize that Equal-Active is enabled

by the ability of NetVRM to dynamically allocate register

memory at runtime. NetVRM further improves Equal-Active

with the network-wide memory allocation algorithm in §5.

Performance metric. We use satisfaction ratio as the perfor-

mance metric for these network applications. Each applica-

tion instance has a utility target. The satisfaction ratio of an

instance is the fraction of time the utility target is met during

its lifetime. For each experiment, we compute the satisfaction

ratio for every instance, and show the mean and 5th percentile

of the satisfaction ratios across all instances. Considering the

number of instances is only a few hundreds (i.e., 256), the

5th percentile catches the tail pattern in the last ten instances,

while other options (e.g., 1th, 0.1th) are too limited which

only show the satisfaction of the last one or two instances.

8.2.1 Generality

We show that NetVRM is general to a wide range of network

application types in the WAN scenario.

Setup. We replay the CAIDA traffic on the four emulated

switches as in §8.1. We deploy four types of applications

including HH, NO, SS and SHH. We omit NetCache as it is

not a good use case for the WAN scenario. HH maintains the

flow records of the source IP and the corresponding number

of packets for all the IP traffic. NO maintains the flow records

of the source IP and the corresponding number of packets

only for TCP SYN packets. SS records the distinct IP address

0.96 0.97 0.98 0.99
Utility target (hit ratio)

0.00

0.25

0.50

0.75

1.00

S
at

is
fa

ct
io

n
ra

tio

NetVRM Equal-Active Equal-All

(a) Satisfaction vs. utility target.

128 192 256 320
Number of application instances

0.00

0.25

0.50

0.75

1.00

S
at

is
fa

ct
io

n
ra

tio

NetVRM Equal-Active Equal-All

(b) Satisfaction vs. number of appli-

cation instances.

0.96 0.97 0.98 0.99
Utility target (hit ratio)

0

0.1

0.2

0.3

0.4

0.5

D
ro

p/
re

je
ct

 ra
tio

Drop ratio Reject ratio

(c) Drop/reject ratio vs. utility target.

128 192 256 320
Number of application instances

0

0.1

0.2

0.3

0.4

0.5

D
ro

p/
re

je
ct

 ra
tio

Drop ratio Reject ratio

(d) Drop/reject ratio vs. number of

application instances.

Figure 13: Impact of workload parameters.

pair (source IP and destination IP) for all the IP traffic. SHH

maintains the flow records of the source IP and the threshold

to be identified as a heavy hitter is set to 200. We do the

following extension for a network-wide SHH: one SHH’s

utility is defined as the smallest worst-case accuracy across

its switches. Since each stage only supports 32-bit read and

write from register memory on the data plane, each virtual slot

of the three applications spans two physical stages and there

are up to 256K virtual slots (i.e., 2048 KB register memory)

on each switch.

By default, there are 256 application instances started in 20

minutes based on a Poisson Process and the running time of

the instances follows a uniform distribution from 6 minutes

to 14 minutes. The utility targets are specified by the operator

based on operational requirements. The default utility target

for HH, NO, SS, i.e., the memory hit ratio, is 0.98, and the

default utility target for SHH, i.e., the worst-case accuracy,

is 0.98. On each switch, we use a /8 instance filter and a /2

switch filter to identify the traffic to be processed by each

instance. We feed the CAIDA traces into four switches si-

multaneously and measure the mean and 5th percentile of

satisfaction across the 256 instances.

We remark that this is only one setup of a demanding

workload to stress the system, following the similar workload

pattern in [36, 37]. We show that NetVRM outperforms the

alternatives with different workload parameters in §8.2.2.

Results. Figure 10 shows the satisfaction ratios for flow-

based applications (i.e., HH, NO, SS) under different amounts

of register memory. For each vertical line, the upper square

end is the mean satisfaction ratio, and the lower round end

is the 5th percentile satisfaction ratio, among the 256 appli-

cation instances. Figure 10(a), (b) and (c) show the cases

that the instances are from the same application type, and (d)

shows the case that the instances are from all the three types.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 165

2 4 8 16
Allocation epoch (s)

0

0.2

0.4

0.6

0.8

1.0
Mean 5% tail Drop ratio Reject ratio

Figure 14: Impact of allocation epochs on NetVRM.

When the register memory is limited (e.g., 256 KB), NetVRM

significantly outperforms Equal-All and Equal-Active on both

the mean and the tail. When the register memory is abundant

(e.g., 2048 KB), NetVRM is able to maintain both high mean

and 5th percentile satisfaction ratios. In contrast, Equal-All

and Equal-Active have comparable mean satisfaction ratios,

but suffer from the tail behavior. The advantage of NetVRM

over Equal-All and Equal-Active is consistent across different

application types. SS uses src IP and dst IP as the hash key.

Thus, it has fewer hash collisions than HH and NO, leading

to a higher satisfaction ratio. Figure 11 shows the drop ratios

and rejection ratios of NetVRM under the four workloads.

Similarly, SS drops and rejects fewer application instances

than HH and NO, because it has fewer hash collisions and

less memory requirement.

Figure 12 shows that NetVRM outperforms Equal-All and

Equal-Active with the sketch-based applications (i.e., SHH)

as well. Compared with flow-based applications, the alterna-

tives have lower satisfaction ratios and NetVRM drops more

application instances because SHH needs more memory to

guarantee the worst-case accuracy bounds.

The alternatives, Equal-All and Equal-Active, have close

performance for all the applications, which means only hav-

ing the mechanism of virtual register memory to allocate

resources to active applications is not sufficient. The allo-

cation algorithm that decides the memory allocation plan is

critical to the performance.

8.2.2 Analysis of NetVRM

We analyze NetVRM by showing the impact of workload pa-

rameters and the allocation epoch. We use the same setup in

§8.2.1 and show the results for the workload of HH. The find-

ings for other application types are similar. We demonstrate

the benefits of NetVRM over the local memory allocation

approach in Appendix B.

Impact of workload parameters. Figure 13(a) shows that

NetVRM is able to manage the register memory efficiently

with different utility targets. With more strict targets, the

three approaches have worse performance as the application

instances have higher memory requirements. Figure 13(c)

shows the drop ratio and reject ratio increase with more strict

targets. Figure 13(b) studies the impact of the number of

application instances arriving in each experiment. Fewer

instances mean less resource contention, leading to higher

satisfaction. NetVRM consistently outperforms the alterna-

tives. Interestingly, Figure 13(d) shows that the drop ratio and

256 512 1024 2048
Register memory (KB) per logical switch

0.00

0.25

0.50

0.75

1.00

S
at

is
fa

ct
io

n
ra

tio

NetVRM Equal-Active Equal-All

(a) Satisfaction.

256 512 1024 2048
Register memory (KB) per logical switch

0

0.1

0.2

0.3

0.4

0.5

D
ro

p/
re

je
ct

 ra
tio

Drop ratio Reject ratio

(b) Drop/reject ratio.

Figure 15: Experimental results in the datacenter scenario.

reject ratio are not significantly influenced by the number of

instances in the evaluated range.

Impact of the allocation epoch. Figure 14 shows that a

shorter allocation epoch leads to a slightly better performance,

both in mean and tail. A longer allocation epoch can get a

comparable satisfaction ratio but it comes with rejecting more

applications. For example, when the allocation epoch is 16

seconds, NetVRM drops and rejects about 40% application

instances, while the sum of drop ratio and reject ratio is 25%

when the allocation epoch is 2 seconds.

8.2.3 NetVRM in Datacenter Network

Setup. We use the four independent pipelines of the Tofino

switch to emulate four switches, and wire the four switches to

build a datacenter network topology (shown in Appendix C).

S0, S1 and S2 are ToR switches for client rack 1, client rack

2 and the key-value rack respectively. S3 is a spine switch

connecting to them. We run two types of applications, which

are HH and NetCache. HH records the number of packets

of distinct four tuples (source IP, destination IP, source port,

destination port). We use the Cluster-C traffic trace from Face-

book’s production datacenters [41]. The trace is anonymized

by hashing. The IP addresses are hashed to 64 bits and the

port numbers are hashed to 32 bits in the trace. The HH appli-

cation uses six physical stages to store the four tuples and one

extra stage to store the number of packets. We generate pcap

files from the Facebook trace, and assign the timestamps of

the packets uniformly in one second as the original timestamp

is at second granularity. Each application instance owns a

/8 subnet. There are 318 HH instances arriving in 20 min-

utes based on a Poisson process, and the running time of the

instances follows a uniform distribution from 6 minutes to

14 minutes. The HH instances use two paths, S0-S3-S2 and

S1-S3-S2. The utility target of HH is set to 0.96.

We run two NetCache instances. NetCache1 (NC1) uses

path S0-S3-S2, and NetCache2 (NC2) uses path S1-S3-S2.

The tenants of NC1 and NC2 are in client rack 1 and client

rack 2, respectively, which access different key-value items

in the key-value rack, so they cannot share the memory on

S2 and S3. NC1 and NC2 run throughout the 30-minute

experiment time. The workload skewness changes between

Zipf-0.99 and Zipf-0.95 every 6 minutes. The utility target

is 0.5. Each virtual slot of NetCache spans 8 physical stages,

166 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

resulting in up to 64K virtual slots per switch. The NetCache

instances are set to not be dropped.

Results. Figure 15(a) shows the satisfaction ratios of the three

approaches, and Figure 15(b) shows the drop ratios and reject

ratios of NetVRM. Similarly, NetVRM outperforms Equal-

All and Equal-Active consistently under different amounts of

register memory. It indicates that NetVRM can multiplex

the register memory between different switches in a compli-

cated scenario where applications have multiple paths and

measurement applications run along with datacenter-specific

applications such as NetCache.

9 Conclusion

We present NetVRM, a network management system to sup-

port dynamic register memory sharing between multiple con-

current applications on a programmable network. NetVRM

provides a virtual register memory abstraction that enables

register memory sharing in the switch data plane, and dy-

namically allocates memory for better resource efficiency and

application utility. NetVRM also provides P4VRM as an ex-

tension of P4 for developing applications with virtual register

memory, and a compiler to generate data plane programs and

control plane APIs.

Acknowledgments. We thank our shepherd Laurent Van-

bever and the anonymous reviewers for their valuable feed-

back on this paper. Xin Jin (xinjinpku@pku.edu.cn) is the

corresponding author. Xin Jin is with the Key Laboratory of

High Confidence Software Technologies (Peking University),

Ministry of Education. This work is supported in part by NSF

grants CNS-1813487, CCF-1918757 and CNS-2008048, and

the National Natural Science Foundation of China under the

grant number 62172008.

References

[1] In-band Network Telemetry (INT) Dataplane Spec-

ification. https://github.com/p4lang/

p4-applications/blob/master/docs/INT.

pdf.

[2] P4-14 Language Specification. https://p4.org/

p4-spec/p4-14/v1.0.5/tex/p4.pdf.

[3] P4 Behavioral Model Repository. https://github.

com/p4lang/behavioral-model.

[4] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and

M. Paleczny. Workload analysis of a large-scale key-

value store. In ACM SIGMETRICS, June 2012.

[5] Networking and Content Delivery on AWS. https://

aws.amazon.com/products/networking/.

[6] Multitenant SaaS on Azure. https:

//docs.microsoft.com/en-us/azure/

architecture/example-scenario/

multi-saas/multitenant-saas.

[7] Azure networking services overview.

https://docs.microsoft.com/en-us/

azure/networking/fundamentals/

networking-overview.

[8] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKe-

own, J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat,

G. Varghese, and D. Walker. P4: Programming protocol-

independent packet processors. SIGCOMM CCR, July

2014.

[9] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McK-

eown, M. Izzard, F. Mujica, and M. Horowitz. Forward-

ing metamorphosis: Fast programmable match-action

processing in hardware for SDN. In ACM SIGCOMM,

August 2013.

[10] The CAIDA Anonymized Internet Traces 2019 Dataset.

https://data.caida.org/datasets/

passive-2019/.

[11] Cavium XPliant. https://www.cavium.com/.

[12] G. Cormode and S. Muthukrishnan. An improved data

stream summary: the count-min sketch and its applica-

tions. Journal of Algorithms, 2005.

[13] H. T. Dang, M. Canini, F. Pedone, and R. Soulé. Paxos

made switch-y. SIGCOMM CCR, April 2016.

[14] H. T. Dang, D. Sciascia, M. Canini, F. Pedone, and

R. Soulé. NetPaxos: Consensus at network speed. In

ACM SOSR, June 2015.

[15] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart,

and G. Carle. Moongen: A scriptable high-speed packet

generator. In ACM SIGCOMM Conference on Internet

Measurement Conference, 2015.

[16] S. K. Fayaz, Y. Tobioka, V. Sekar, and M. Bailey. Bo-

hatei: Flexible and elastic ddos defense. In {USENIX}
Security, 2015.

[17] A. Ferguson, A. Guha, C. Liang, R. Fonseca, and S. Kr-

ishnamurthi. Participatory networking: An API for ap-

plication control of SDNs. In ACM SIGCOMM, August

2013.

[18] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rex-

ford, and W. Willinger. Sonata: Query-driven streaming

network telemetry. In ACM SIGCOMM, 2018.

[19] D. Hancock and J. Van der Merwe. Hyper4: Using p4 to

virtualize the programmable data plane. In Proceedings

of the 12th International on Conference on emerging

Networking EXperiments and Technologies, 2016.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 167

https://github.com/p4lang/p4-applications/blob/master/docs/INT.pdf
https://github.com/p4lang/p4-applications/blob/master/docs/INT.pdf
https://github.com/p4lang/p4-applications/blob/master/docs/INT.pdf
https://p4.org/p4-spec/p4-14/v1.0.5/tex/p4.pdf
https://p4.org/p4-spec/p4-14/v1.0.5/tex/p4.pdf
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
https://aws.amazon.com/products/networking/
https://aws.amazon.com/products/networking/
https://docs.microsoft.com/en-us/azure/architecture/example-scenario/multi-saas/multitenant-saas
https://docs.microsoft.com/en-us/azure/architecture/example-scenario/multi-saas/multitenant-saas
https://docs.microsoft.com/en-us/azure/architecture/example-scenario/multi-saas/multitenant-saas
https://docs.microsoft.com/en-us/azure/architecture/example-scenario/multi-saas/multitenant-saas
https://docs.microsoft.com/en-us/azure/networking/fundamentals/networking-overview
https://docs.microsoft.com/en-us/azure/networking/fundamentals/networking-overview
https://docs.microsoft.com/en-us/azure/networking/fundamentals/networking-overview
https://data.caida.org/datasets/passive-2019/
https://data.caida.org/datasets/passive-2019/
https://www.cavium.com/

[20] Q. Huang, P. P. Lee, and Y. Bao. Sketchlearn: Relieving

user burdens in approximate measurement with auto-

mated statistical inference. In ACM SIGCOMM, 2018.

[21] X. Jin, J. Gossels, J. Rexford, and D. Walker. CoVi-

sor: A compositional hypervisor for software-defined

networks. In USENIX NSDI, May 2015.

[22] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé,

C. Kim, and I. Stoica. NetChain: Scale-free sub-RTT

coordination. In USENIX NSDI, April 2018.

[23] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster,

C. Kim, and I. Stoica. NetCache: Balancing key-value

stores with fast in-network caching. In ACM SOSP,

October 2017.

[24] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan,

M. Zhang, J. Rexford, and R. Wattenhofer. Dynamic

scheduling of network updates. In ACM SIGCOMM,

August 2014.

[25] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford.

Hula: Scalable load balancing using programmable data

planes. In ACM SOSR, March 2016.

[26] F. Kelly and T. Voice. Stability of end-to-end algorithms

for joint routing and rate control. SIGCOMM CCR,

2005.

[27] D. Kim, Z. Liu, Y. Zhu, C. Kim, J. Lee, V. Sekar, and

S. Seshan. Tea: Enabling state-intensive network func-

tions on programmable switches. In ACM SIGCOMM,

2020.

[28] D. Kim, J. Nelson, D. R. Ports, V. Sekar, and S. Seshan.

Redplane: enabling fault-tolerant stateful in-switch ap-

plications. In ACM SIGCOMM, 2021.

[29] D. Kim, Y. Zhu, C. Kim, J. Lee, and S. Seshan. Generic

external memory for switch data planes. In ACM Hot-

Nets Workshop, 2018.

[30] T. Koponen, K. Amidon, P. Balland, M. Casado,

A. Chanda, B. Fulton, I. Ganichev, J. Gross, N. Gude,

P. Ingram, et al. Network virtualization in multi-tenant

datacenters. In USENIX NSDI, April 2014.

[31] J. Levine. Flex & Bison: Text Processing Tools. ”

O’Reilly Media, Inc.”, 2009.

[32] M. Liu, L. Luo, J. Nelson, L. Ceze, A. Krishnamurthy,

and K. Atreya. IncBricks: Toward in-network computa-

tion with an in-network cache. In ACM ASPLOS, April

2017.

[33] Z. Liu, Z. Bai, Z. Liu, X. Li, C. Kim, V. Braverman,

X. Jin, and I. Stoica. Distcache: Provable load balancing

for large-scale storage systems with distributed caching.

In USENIX FAST, 2019.

[34] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and

V. Braverman. One sketch to rule them all: Rethink-

ing network flow monitoring with univmon. In ACM

SIGCOMM, 2016.

[35] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu. Silkroad:

Making stateful layer-4 load balancing fast and cheap

using switching asics. In ACM SIGCOMM, 2017.

[36] M. Moshref, M. Yu, R. Govindan, and A. Vahdat.

DREAM: Dynamic resource allocation for software-

defined measurement. In ACM SIGCOMM, August

2014.

[37] M. Moshref, M. Yu, R. Govindan, and A. Vahdat.

Scream: Sketch resource allocation for software-defined

measurement. In ACM CoNEXT, 2015.

[38] K. Nagaraj, D. Bharadia, H. Mao, S. Chinchali, M. Al-

izadeh, and S. Katti. Numfabric: Fast and flexible band-

width allocation in datacenters. In ACM SIGCOMM,

2016.

[39] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal,

V. Arun, M. Alizadeh, V. Jeyakumar, and C. Kim.

Language-directed hardware design for network per-

formance monitoring. In ACM SIGCOMM, August

2017.

[40] V. Nathan, V. Sivaraman, R. Addanki, M. Khani,

P. Goyal, and M. Alizadeh. End-to-end transport for

video qoe fairness. In ACM SIGCOMM, 2019.

[41] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren.

Inside the social network’s (datacenter) network. In

ACM SIGCOMM, 2015.

[42] A. Sapio, I. Abdelaziz, M. Canini, and P. Kalnis. Daiet:

a system for data aggregation inside the network. In

ACM Symposium on Cloud Computing, 2017.

[43] A. Sapio, M. Canini, C.-Y. Ho, J. Nelson, P. Kalnis,

C. Kim, A. Krishnamurthy, M. Moshref, D. R. K. Ports,

and P. Richtárik. Scaling distributed machine learning

with in-network aggregation, 2019.

[44] M. Saquetti, G. Bueno, W. Cordeiro, and J. R. Azambuja.

P4vbox: Enabling p4-based switch virtualization. IEEE

Communications Letters, 2019.

[45] N. K. Sharma, A. Kaufmann, T. E. Anderson, A. Krish-

namurthy, J. Nelson, and S. Peter. Evaluating the power

of flexible packet processing for network resource allo-

cation. In USENIX NSDI, March 2017.

[46] R. Sherwood, G. Gibb, K. Yap, G. Appenzeller,

M. Casado, N. McKeown, and G. Parulkar. Can the

production network be the testbed? In USENIX OSDI,

October 2010.

168 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[47] J. Sonchack, A. J. Aviv, E. Keller, and J. M. Smith.

Turboflow: Information rich flow record generation on

commodity switches. In EuroSys, 2018.

[48] H. Soni, T. Turletti, and W. Dabbous. P4Bricks: En-

abling multiprocessing using linker-based network data

plane architecture. 2018.

[49] R. Stoyanov and N. Zilberman. Mtpsa: Multi-tenant

programmable switches. In Proceedings of the 3rd P4

Workshop in Europe, 2020.

[50] Intel Tofino. https://www.

intel.com/content/www/us/

en/products/network-io/

programmable-ethernet-switch/

tofino-series.html.

[51] T. Wang, H. Zhu, F. Ruffy, X. Jin, A. Sivaraman, D. R. K.

Ports, and A. Panda. Multitenancy for fast and pro-

grammable networks in the cloud. In USENIX HotCloud

Workshop, 2020.

[52] D. Wu, A. Chen, T. E. Ng, G. Wang, and H. Wang.

Accelerated service chaining on a single switch asic. In

ACM HotNets Workshop, 2019.

[53] L. Yu, J. Sonchack, and V. Liu. Mantis: Reactive pro-

grammable switches. In ACM SIGCOMM, August 2020.

[54] M. Yu, L. Jose, and R. Miao. Software defined traffic

measurement with opensketch. In USENIX NSDI, 2013.

[55] Y. Yuan, D. Lin, A. Mishra, S. Marwaha, R. Alur, and

B. T. Loo. Quantitative network monitoring with netqre.

In ACM SIGCOMM, 2017.

[56] C. Zhang, J. Bi, Y. Zhou, A. B. Dogar, and J. Wu. Hy-

perv: A high performance hypervisor for virtualization

of the programmable data plane. In 2017 26th Inter-

national Conference on Computer Communication and

Networks (ICCCN), 2017.

[57] P. Zheng, T. Benson, and C. Hu. P4visor: Lightweight

virtualization and composition primitives for building

and testing modular programs. In ACM CoNEXT, 2018.

[58] H. Zhu, Z. Bai, J. Li, E. Michael, D. Ports, I. Stoica, and

X. Jin. Harmonia: Near-linear scalability for replicated

storage with in-network conflict detection. In Proceed-

ings of the VLDB Endowment, November 2019.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 169

https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html

A Diminishing Return Examples

Figure 16 demonstrates the diminishing returns for four appli-

cations. The first three are measurement applications: heavy

hitter detection (HH) [54], newly opened TCP connection de-

tection (NO) [55], superspreader detection (SS) [54]. These

applications store flow records in the data plane; hash colli-

sions caused by inadequate memory require additional control

plane processing. The fourth, NetCache [23] caches hot ob-

jects in the switch data plane to improve the throughput of

a key-value store. The utility is measured using memory

hit ratio. We evaluate the measurement applications (Fig-

ure 16(a–c)) on traffic from different subnets of the 2019

passive CAIDA trace [10], and NetCache on a synthetic Zipf

workload with different skewness parameters (Figure 16(d)).

0 1024 2048 3072 4096
Number of slots

0.00

0.25

0.50

0.75

1.00

U
til

ity
 (h

it
ra

tio
)

subnet0
subnet1
subnet2
subnet3

(a) Heavy hitter detection.

0 1024 2048 3072 4096
Number of slots

0.00

0.25

0.50

0.75

1.00

U
til

ity
 (h

it
ra

tio
)

subnet0
subnet1
subnet2
subnet3

(b) Newly opened TCP connections.

0 1024 2048 3072 4096
Number of slots

0.00

0.25

0.50

0.75

1.00

U
til

ity
 (h

it
ra

tio
)

subnet0
subnet1
subnet2
subnet3

(c) Superspreader detection.

0 1024 2048 3072 4096
Number of slots

0.00

0.25

0.50

0.75

1.00

U
til

ity
 (h

it
ra

tio
) zipf-0.99

zipf-0.95
zipf-0.9

(d) NetCache.

Figure 16: Examples for the diminishing returns of the utility

curves in reg-stateful network applications.

B Additional Evaluation Results

256 512 1024 2048
Register memory (KB) per logical switch

0.00

0.25

0.50

0.75

1.00

S
at

is
fa

ct
io

n
ra

tio

NetVRM
Equal-Active

Equal-All
Local-Alloc

(a) Satisfaction.

256 512 1024 2048
Register memory (KB) per logical switch

0

0.1

0.2

0.3

0.4

0.5

D
ro

p/
re

je
ct

 ra
tio

NetVRM drop
NetVRM reject

Local-Alloc reject
Local-Alloc drop

(b) Drop/reject ratios of NetVRM and

Local-Alloc.

Figure 17: Comparison with Local-Alloc.

Comparison with local memory allocation. Besides the

Equal-all and Equal-Active, we also compare NetVRM with

Local-Alloc which only does memory allocation and makes

drop/reject decisions on individual switches locally. One

application is counted as drop/reject only after all the four

switches have decided to drop/reject it. We report the results

for HH workload. The findings for other application types

are similar. Figure 17 shows that Local-Alloc has better per-

formance than Equal-all and Equal-Active, but is still worse

than NetVRM because it fails to capture network-wide in-

formation and makes sub-optimal allocation and drop/reject

decisions.

C Network Topology in Datacenter Scenario

We wire the four emulated switches to build a datacenter

network topology, as shown in Figure 18, to evaluate the

performance of NetVRM in the datacenter scenario.

Client
Rack1

Client
Rack2

Key-Value
Rack

S0 S1 S2

S3

Figure 18: Datacenter topology for evaluation.

170 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

SwiSh: Distributed Shared State Abstractions for Programmable Switches

Lior Zeno★ Dan R. K. Ports† Jacob Nelson† Daehyeok Kim† Shir Landau Feibish‡ Idit Keidar★

Arik Rinberg★ Alon Rashelbach★ Igor De-Paula★ Mark Silberstein★

★Technion †Microsoft Research ‡The Open University of Israel

Abstract
We design and evaluate SwiSh, a distributed shared state man-
agement layer for data-plane P4 programs. SwiSh enables
running scalable stateful distributed network functions on pro-
grammable switches entirely in the data-plane. We explore
several schemes to build a shared variable abstraction, which
differ in consistency, performance, and in-switch implemen-
tation complexity. We introduce the novel Strong Delayed-
Writes (SDW) protocol which offers consistent snapshots of
shared data-plane objects with semantics known as A-relaxed
strong linearizability, enabling implementation of distributed
concurrent sketches with precise error bounds.

We implement strong, eventual, and SDW consistency pro-
tocols in Tofino switches, and compare their performance in
microbenchmarks and three realistic network functions, NAT,
DDoS detector, and rate limiter. Our results show that the
distributed state management in the data plane is practical,
and outperforms centralized solutions by up to four orders of
magnitude in update throughput and replication latency.

1 Introduction

In recent years, programmable data-plane switches such
as Intel’s Tofino, Broadcom’s Trident, and NVIDIA’s Spec-
trum [9, 33, 60] have emerged as a powerful platform for
packet processing, capable of running complex user-defined
functionality at Tbps rates. Recent research has shown that
these switches can run sophisticated network functions (NFs)
that power modern cloud networks, such as NATs, load bal-
ancers [40, 57], and DDoS detectors [45]. Such data-plane
implementations show great promise for cloud operators, as
programmable switches can operate at orders of magnitude
higher throughput levels than the server-based implementa-
tions used today, enabling a massive efficiency improvement.

A key challenge remains largely unaddressed: realistic data
center deployments require NFs to be distributed over multi-
ple switches. Multi-switch execution is essential to correctly
process traffic that passes through multiple network paths,

to tolerate switch failures, and to handle higher throughput.
Yet, building distributed NFs for programmable switches is
challenging because most of today’s NFs are stateful and need
their state to be consistent and reliable. For example, a DDoS
detector may need to monitor traffic coming from multiple
locations via several switches. However, it cannot be imple-
mented by routing all traffic through a single switch since it
is inherently not scalable. Instead, it must be implemented in
a distributed manner. Furthermore, in order to detect and mit-
igate an attack, a DDoS detector must aggregate per-packet
source statistics across all switches in order to correctly iden-
tify super-spreaders sending to too many destinations. Sim-
ilarly, in multi-tenant clouds, per-user policies, such as rate
limiting, cannot be implemented in a single switch because
user’s VMs are often scattered across multiple racks, so the
inter-VM traffic passes through multiple switches.

Distributed state management is, in general, a hard prob-
lem, and it becomes even harder in the context of pro-
grammable data-plane switches. In the “traditional” host-
based NF realm, several methods have been proposed to deal
with distributed state. These include remote access to central-
ized state storage [39] and distributed object abstractions [77],
along with checkpoints and replication mechanisms for fault
tolerance [64, 71]. Unfortunately, few of these techniques
transfer directly to the programmable switch environment.
These switches have the capability to modify state on every
packet, allowing them to effectively implement stateful NFs.
However, distributing the NF logic across multiple switches
is extremely challenging as it requires synchronizing these
frequent changes under harsh restrictions on computation,
memory and communication.

Existing systems that implement NFs over multiple
switches do so by designing ad hoc, application-specific pro-
tocols. Recent work on data-plane defense against link flood-
ing [36], argues for data-plane state synchronization among
the switches, but provides no consistency guarantees. While
applicable in this scenario, it would not be enough in other
applications, as we discuss in our analysis (§4). A more com-
mon solution, usually applied in network telemetry systems,

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 171

is to periodically report the per-switch state to a central con-
troller [1,6,18,25,26,29,49,78]. Such systems need to manage
the state kept on each switch and to determine when and how
the central controller is updated – navigating complex trade-
offs between frequent updates leading to controller load and
communication overhead versus stale data leading to measure-
ment error. In contrast to these approaches, we seek a solution
that supports general application scenarios without relying on
a central controller in failure-free runs, while allowing all
switches to take a consistent action as a function of the global
state, e.g., to block a suspicious source in the DDoS detector.

We describe the design of such a general distributed shared
state mechanism for data-plane programs, SwiSh. Inspired
by distributed shared memory abstractions for distributed sys-
tems [41, 48], SwiSh provides several replicated shared vari-
able abstractions with different consistency guarantees. At
the same time, SwiSh is tailored to the needs of NFs and
co-designed to work in a constrained programmable switch
environment.

Our analysis reveals three families of NFs that lend them-
selves to efficient in-switch implementation, with distinct
consistency requirements. For each family we explore the
triple tradeoff between consistency, performance, and com-
plexity. We design (1) Strong Read-Optimized (SRO): a
strongly consistent variable for read-intensive applications
with low update rates, (2) Eventual Write-Optimized (EWO):
an eventually-consistent variable for applications that can tol-
erate inconsistent reads but require frequent writes, and (3)
Strong Delayed-Writes (SDW): a novel consistency proto-
col which efficiently synchronizes multi-variable snapshots
across switches while providing a consistency and correctness
guarantee known as A-relaxed strong linearizability [27].

SDW is ideal for implementing concurrent sketches, which
are popular in data-plane programs [12, 13, 24, 30, 35, 38,
51–54, 78, 83]. Unlike eventually consistent semantics, the
A-relaxed strong linearizability offered by SDW enables prin-
cipled analysis of concurrent sketches. This property enables
the derivation of precise error bounds and generalizes to dif-
ferent sketch types, such as non-commutative sketches [67].

Implementing these abstractions efficiently in a switch is
a challenge, and it involves judicious choice of hardware
mechanisms and optimization targets. Our main ideas are: (1)
minimizing the buffer space due to the scarcity of switch mem-
ory, even at the expense of higher bandwidth; (2) using the
in-switch packet generator for implementing reliable packet
delivery and synchronization in the data-plane.

We fully implement all the protocols in Tofino switches
and devise reusable APIs for data-plane replication. We eval-
uate the protocols both in micro-benchmarks and in three
real-world distributed NFs: a rate limiter, a network address
translator (NAT) and a DDoS detector. Our novel SDW proto-
col achieves micro-second synchronization latency and offers
about four orders of magnitude higher update rates compared
to a central controller or SRO. We show that SDW (1) achieves

stable 99th percentile replication latency of 6`sec when run-
ning on four programmable pipes (two per switch), thus shar-
ing state both among local and remote pipes; (2) scales to
32 switches when executed in a large-scale emulation and
fits switch resources even for 4K switches; (3) requires lin-
ear number of replication messages in state size which is
independent from the number of actual updates to the state.

We show that SDW is instrumental to achieving high per-
formance in applications: the centralized controller fails to
scale under growing application load, whereas SDW-based
versions show no signs of performance degradation.

This paper extends our workshop paper [82] by introducing
the SDW protocol, as well as providing an implementation
and evaluation of SRO and EWO.

In summary, this work makes the following contributions:
• Analysis of memory consistency requirements and access

patterns of common NFs suitable for in-switch execution,
• Design and implementation of strongly- and eventually con-

sistent shared variables, as well as a new SDW consistency
protocol specifically tailored for in-switch implementation,
which guarantees consistent snapshots and provably pro-
vides A-relaxed strong linearizability which facilitates im-
plementation of concurrent sketches,

• An implementation and evaluation of three distributed NFs
on Tofino switches demonstrating the practicality and utility
of the new abstractions.

2 Background: Programmable Switches

The protocol independent switch architecture (PISA) [8] de-
fines two main parts to packet processing. The first is the
parser which parses relevant packet headers, and the second
is a pipeline of match-and-action stages. Parsed headers and
metadata are then processed by the pipeline. The small (∼10
MB) switch memory is shared by all pipeline stages. Often,
switches are divided into multiple independent pipes [34],
each serving a subset of switch ports. From the perspective of
in-switch applications, the pipes appear as different switches,
so stateful objects are not shared between them.

PISA-compliant devices can be programmed using the P4
language [73]. P4 defines a set of high-level objects that con-
sume switch memory: tables, registers, meters, and counters.
While tables updates require control-plane involvement, all
other objects can be modified directly from the data-plane.

A data-plane program processes packets, and then can send
them to remote destinations to the control-plane processor on
the switch, or to the switch itself (called recirculation).

Switches process packets atomically: a packet may gener-
ate several local writes to different locations, and these up-
dates are atomic in the sense that the next processed packet
will not see partial updates. Single-row control-plane table
updates are atomic w.r.t. data-plane [74]. These properties
allow us to implement complex distributed protocols with
concurrent state updates without locks.

172 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Although not a part of PISA, some switches add packet
generation support. Packet generators can generate packets
directly into the data-plane. For example, the Tofino Native
Architecture (TNA) [34] allows generation of up to 8 streams
of packets based on templates in switch memory. The packet
generator can be triggered by a timer or by matching certain
keys in recirculated packets.

3 Motivation

The Case for Programmable Switches as NF Processors.
The modern data center network incorporates a diverse array
of NFs beyond simple packet forwarding. Features like NAT,
firewalls, load balancers, and intrusion detection systems are
central to the functionality of today’s cloud platforms. These
functions are stateful packet processing operations, and today
are generally implemented using software middleboxes that
run on commodity servers, often at significant cost.

Consider an incoming connection to a data center service.
It may pass through a DDoS detection NF [3, 58], which
blocks suspicious patterns. This service is stateful; it collects
global traffic statistics, e.g., to identify “super-spreader” IPs
that attempt to flood multiple targets. Subsequently, traffic
may pass through a load balancer, which routes incoming
TCP connections to multiple destination hosts. These are
stateful too: because subsequent packets in the same TCP
connection must be routed to the same server (a property
dubbed per-connection consistency), the load balancer must
track the connection-to-server mapping. Both DDoS detectors
and load balancers are in use at major cloud providers [19,61],
and handle a significant fraction of a data center’s incoming
traffic. Implemented on commodity servers, they require large
clusters to support massive workload.

Programmable data-plane switches offer an appealing alter-
native to commodity servers for implementing NFs at lower
cost. Researchers have shown that they can be used to imple-
ment many types of NFs. For data center operators, the benefit
is a major reduction in the cost of NF processing. Whereas a
software-based load balancer can process approximately 15
million packets per second on a single server [19], a single
switch can process 5 billion packets per second [33]. Put an-
other way, a programmable switch has a price, energy usage,
and physical footprint on par with a single server, but can
process several hundred times as many packets.
Distributed Switch Deployments. Prior research focused on
showing that NFs can be implemented on a single switch [45,
57]. However, realistic data center deployments universally
require multiple switches. We see two possible deployment
scenarios. The NF can be placed in switches in the network
fabric. For example, in order to capture all traffic, the load
balancer would need to run on all possible paths, e.g., by being
deployed on every core switch or every aggregation switch.
Alternatively, a cluster of switches (perhaps located near the
ingress point) could be used to serve as NF accelerators. Both

are inherently distributed deployments: they require multiple
switches in order to (1) scale out, (2) tolerate switch failures,
and (3) capture traffic across multiple paths.

The challenge of a distributed NF deployment stems from
the need to manage the global state shared among the NF
instances, which is inherent to distributed stateful applica-
tions. Specifically, packet processing at one switch may re-
quire reading or updating variables that are also accessed by
other switches. For example, the connection-to-server map-
ping recorded by the load balancer must be available when
later packets for that connection are processed – even if they
are processed by a different switch, or the original switch fails.
Similarly, a rate limiter would need to track and record the
total incoming traffic from a given IP, regardless of which
switch is processing it.

SwiSh provides a shared state mechanism capable of sup-
porting global state: any global variable can be read or written
from any switch. SwiSh transparently replicates state updates
to other switches for fault tolerance and remote access. In case
of state locality, only a subset of the switches would replicate
that state [82].
The Case for Data-Plane Replication. Control-plane mech-
anisms are commonly used for replicating the switch state [7,
11, 43, 56]. However, the scalability limitations of this ap-
proach have been well recognized, and several recent works
focus on improving it by distributing the control-plane logic
across a cluster of machines or switches [43, 81]. SwiSh pro-
poses instead to replicate the state in the data plane.

Data plane replication enables supporting distributed NFs
that read or modify switch state on every packet. This new
capability of programmable data-plane switches allows im-
plementations of more sophisticated data-plane logic than
traditional control-plane SDN.

As we will see in §4, applications use state in diverse ways.
Some are read-mostly; others update state on every packet.
Some require strong consistency among switches to avoid
exposing inconsistent states to applications (e.g., a distributed
NAT must maintain correct mappings to avoid packet loss),
while others can tolerate weak consistency (e.g., rate limiters
that already provide approximate results [63]). SwiSh pro-
vides replication mechanisms for different classes of data that
operate at the speed of the switch data-plane.

At the same time, data-plane replication offers an oppor-
tunity to build a more efficient replication mechanism with-
out additional control-plane processing servers. Furthermore,
data-plane replication can take advantage of unique pro-
grammable hardware characteristics that are not available
in a traditional control-plane. For example, the atomic packet
processing property enables a multi-location atomic write
to the shared state. We leverage this feature to enable fast
processing of acknowledgments entirely in the data-plane for
our strongly-consistent replication protocol (§6.1).
Control-plane replication is not enough. Managing a glob-
ally shared state in a programmable data-plane switch requires

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 173

controller
process + merge

read

switch

switch
write

(a) Control-plane replication

send
update

merge

(b) Data-plane replication

read

write

Figure 1: Data-plane vs. control-plane replication

a new approach: replication protocols that run in the control-
plane cannot operate at this rate at scale.

Figure 1 shows the cycle performed by a controller to syn-
chronize between switches, and contrasts that with data-plane
replication. The controller periodically queries the switches,
collects information, processes it, and sends the updates back.
Merely reading and updating the register states in switches
is quite slow. We measured an average latency of 507msec
to read a sketch with 3 rows each with 64K 4-byte registers
from the on-switch control-plane;1 updates are similar. This
latency limits the rate at which the data can be retrieved from
switches.

Moreover, the central controller may become the bottleneck
quite quickly. For example, recent work on DDoS detection
that used a central controller to query switches reported a
maximum update rate of once in 5 seconds [53] because it
could not accommodate faster updates.

In contrast, data-plane replication reads from and writes to
registers much faster: we measured 486`seconds to read the
same sketch from the data-plane, which is over three orders-
of-magnitude faster than the control-plane access. Further,
in-switch processing time is negligible as well.

These properties make data-plane replication an obvious
choice for building stateful distributed NFs.

4 Application Consistency Requirements

We study the access patterns and consistency requirements of
a few typical NF applications that have been built on PISA
switches. Table 1 summarizes the results.

We identify three families of consistency requirements:
1. Strong consistency: Workloads cannot tolerate inconsis-

tency between switches – a read must see a previous write.
These are usually read-intensive workloads that can toler-
ate infrequent, but expensive writes;

2. Weak (eventual) consistency: Mixed read/write work-
loads tolerate arbitrary inconsistency;

3. Bounded-delay consistent snapshots: Mixed read/write
workloads that tolerate inconsistency for a bounded time
– a read must see all but a bounded number of previous
writes, yet require that all switches read from a consistent
state. These requirements are typical for sketches.

Below, we describe how these consistency requirements arise
in several in-switch applications.

1We use BfRt API (C++) and average over 100 iterations.

4.1 Strong Consistency

Network Address Translators (NATs) share the connection
table among the NF instances. The table is queried on ev-
ery packet, but updated when a new connection is opened;
table rows require strong consistency, or it may lead to broken
client connections in case of multi-path routing or switch fail-
ure. Also, NATs usually manage a pool of unassigned ports;
however, the pool can be partitioned among the switches into
non-overlapping ranges to avoid sharing.
Stateful firewalls monitor connection states to enforce
context-based rules. These states are stored in a shared table,
updated as connections are opened and closed, and accessed
for each packet to make filtering decisions. Like the NAT,
the firewall NF requires strong consistency to avoid incorrect
forwarding behavior.
L4 load balancers [57] assign incoming connections to a
particular destination IP, then forward subsequent packets to
the appropriate destination IP. Per-connection consistency
requires that once an IP is assigned to a connection, it does
not change, implying a need for strong state consistency.
Observation 1. These workloads require strong consistency,
but they update state infrequently, making a costly replication
protocol more tolerable. Moreover, most of these examples
use switch tables that should be modified through the control-
plane, naturally limiting their update rate. For example, the
NAT NF uses control-plane to update the connection table.
We leverage this observation when designing the replication
protocol for this class of NFs.

4.2 Weak (Eventual) Consistency

Rate limiters restrict the aggregated bandwidth of flows that
belong to a given user. The application maintains a per-user
meter that is updated on every packet. The meters are syn-
chronized periodically to identify users exceeding their band-
width limit and to enforce restrictions. Maintaining an exact
network-wide rate across all switches would incur a very high
overhead and is therefore unrealistic. So rate limiters can tol-
erate inconsistencies, but the meters must be synchronized
often enough [63] to minimize discrepancy.
Intrusion prevention systems (IPS) [47] monitor traffic
by continuously computing packet signatures and matching
against known suspicious signatures. If the number of matches
is above a threshold, traffic is dropped to prevent the intru-
sion. This application can tolerate transient inconsistencies:
it is acceptable for a few malicious packets to go through
immediately after signatures are updated.
Observation 2. Some NFs tolerate weakly consistent data,
potentially affording simpler and more efficient replication
protocols. However, as we will describe next, other functions
may defer the writes to be once in a window, but do require to
have a consistent view of prior writes among all the switches.

174 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Application State Write frequency Read frequency

Strong consistency
NAT Translation table New connection Every packet
Firewall Connection states table New connection Every packet
L4 load-balancer Connection-to-DIP mapping New connection Every packet

Weak consistency Intrusion prevention system Signatures Low Every packet
Rate limiter Per-user meter Every packet Every window

Bounded delay consistent snapshot DDoS detection Sketch Every sampled packet Every packet
Microburst detection Sketch Every packet Every window

Table 1: NFs classified by their access pattern to shared data and their consistency requirements.

4.3 Bounded-Delay Consistent Snapshots

We assign mixed read/write applications that use data sketches
to this class. Data sketches are commonly used in data-plane
programs [12, 13, 24, 30, 35, 51, 52, 54, 78]. They are prob-
abilistic data structures that efficiently collect approximate
statistics about elements of a data stream.

Below we consider two examples of sketch-based NFs.
Microburst detection identifies flows that send a lot of data
in a short time period. ConQuest [13] is a recent sketch-based
system for a single switch, which uses a sliding window mech-
anism composed of a group of Count-Min sketches (CMS)
[14]. At most one sketch is updated on every packet.
DDoS detection [45] requires tracking the frequency of
source and destination IPs using a CMS with bitsets [80]. The
sketch is updated on every packet, but sampled periodically
to trigger an alarm when IP frequencies cross a threshold.

Strongly consistent read-optimized protocols are too costly
for such workloads due to their write-intensive nature. For-
tunately, because a data sketch is inherently approximate, it
does not require strong consistency – it is acceptable for a
query to miss some updates. Moreover, sketches are typically
stream-order invariant [67], meaning that the quantity they
estimate (such as number of unique sources, heavy hitters,
and quantiles) does not depend on the packet order.

At the same time, sketches generally cannot tolerate weak
consistency either. With no guarantee of timeliness, sketches
might be useless. A DDoS attack might be over by the time
it is detected. Moreover, the attack might be detected at one
location much earlier than it is detected at another, leading to
an inconsistent response. Furthermore, sketches have known
error bounds (see [15] and others). These bounds are violated
if updates are arbitrarily delayed [27, 66], making it hard to
reason about the impact of sketch errors on the application.
Observation 3. Sketches require a bounded-delay consistent
snapshot consistency level. Formally, it provides A-relaxed
strong linearizability (Appendix A), which supports sketch ap-
plications with provably bounded error. Intuitively, A-relaxed
strong linearizability guarantees that accesses to shared data
are equivalent to a sequential execution, except that each query
may “miss” up to A updates. SwiSh supports this consistency
level using its novel Strong Delayed-Write (SDW) protocol,

which provides a consistent snapshot of the sketch at all the
replicas, while delaying reads until such a snapshot is con-
structed.

5 SwiSh Abstractions

SwiSh provides the abstraction of shared variables to pro-
grammable switches. This section describes the interface and
the types of semantics it offers for shared data.
System model. We consider a system of many switches, each
acting as a replica of shared state. Switches communicate via
the network, and we assume a standard failure model: packets
can be dropped, duplicated and arbitrarily re-ordered, and
links and switches may fail. Since switches are comprised
of multiple independent pipes with per-pipe state (§2), we
consider a pipe rather than a switch, a node in the protocol.
We use the terms pipe and switch interchangeably.
Data model. The basic unit of shared state is a variable,
associated with a unique key, which exposes an API for updat-
ing the variable (potentially using general read-modify-write
functions), and reading it. The API is thus available on all
switches, and variables are read and updated through a dis-
tributed protocol. SwiSh supports three types of variables
which have different semantics and are accessed through dif-
ferent protocols:

1. Strong Read-Optimized (SRO) variables provide strong
consistency (linearizability);

2. Eventual Write-Optimized (EWO) variables have low
cost for both reads and writes, but provide only eventual
consistency;

3. Strong Delayed-Writes (SDW) variables provide strong
consistency (linearizability), but expose writes (even to
the local replica) only after their values have been syn-
chronized across the replicas.

We require that, no matter which semantics are used, all
variables eventually converge to a common state. To this end,
we require that variables be mergeable. We consider two merg-
ing policies: LWW as a general method, and Conflict-Free
Replicated Data Types (CRDTs) as specialized mergeable
data types that implement common data structures that are
used in NFs. A general way to merge variables is to assign

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 175

an order to updates and apply a last-writer-wins (LWW) pol-
icy. The merge function applies an update if and only if its
version number is larger than the local one. Unique version
numbers can be obtained by using a switch ID as a tie breaker
in addition to a timestamp attached to each write request.

In some cases, updates can be merged systematically. These
are discussed in the literature of Conflict-Free Replicated Data
Types (CRDTs), which offer strong eventual consistency and
monotonicity [69]. Monotonicity prevents counter-intuitive
scenarios such as an increment-only counter decreasing.

Counters are a natural application for this technique, as they
are common in NFs (§4) and have a straightforward CRDT
design. An increment-only counter can be implemented by
maintaining a vector of counter values, one per switch. To
update a counter, a switch increments its own element; to
read the result, it sums all elements. To merge updates from
another switch, a switch takes the largest of the local and
received values for each element. Further extensions support
decrement operations [69].

Variables may be used to store different data types, such
as array entries, read/write variables, sets, and counters. They
are implemented using appropriate stateful P4 objects.

6 In-Switch Replication Protocols

Below we assume that switches do not fail; we relax this
assumption in §6.4.

6.1 Strong-Read Optimized (SRO)
The SRO protocol is based on chain replication [76], as shown
in Figure 2a, adapted to an in-switch implementation with the
following key difference: instead of contacting the tail for its
latest version and keeping multiple versions per variable, we
forward reads to pending writes to the tail.

SRO provides per-variable linearizability [28], because
writes are blocking and reads concurrent to writes are pro-
cessed by the tail node. Its write throughput is limited by the
need to send packets through the control plane.2 Note, how-
ever, that many read-intensive NFs already require control
plane involvement for their updates, such as NATs, firewall
and load balancers [57].

A variation of this protocol, used in many systems, includ-
ing CRAQ [72] and ZooKeeper [31], reduces the read latency
by performing local reads, yet offers weaker semantics [46].

6.2 Eventual Write-Optimized (EWO)
Both variants of the read-optimized protocol have a high write
cost. Because supporting both strong consistency and fre-

2NetChain [37] implements chain replication entirely in the data plane.
The difference is that NetChain is a service and clients are responsible for
retrying operations. Our switches are effectively the “clients” and must buffer
output packets and retry requests.

quent updates is fundamentally challenging, we offer relaxed-
consistency variables. This is acceptable for many write-
intensive applications, as discussed in §4.

Reads from EWO variables are performed locally, and
writes are applied asynchronously. That is, when a switch re-
ceives a packet % that modifies state, it modifies its local state,
emits any output packet %′ immediately, and asynchronously
sends a write request to all other switches (Figure 2b). A more
sophisticated version can employ batching to avoid flooding
the network with updates, and instead send the write request
after accumulating several updates.

Unlike SRO, we do not delegate the problem of reliable
write delivery to the control plane because it does not scale
for write-intensive workloads. Instead, switches periodically
synchronize each EWO variable from the data plane. This
design choice avoids expensive buffering and re-transmission
logic in the data-plane.

Periodic synchronization overcomes the issue of lost pack-
ets. As updates to EWO variables are idempotent, packets
can be arbitrarily duplicated with no effect. Finally, due to
updates being commutative, packet reordering has no effect.

We note that this protocol is simple, but it leads to incon-
sistent replicas and would incur high bandwidth overheads.
With over-subscribed links [23], excessive replication traffic
would only worsen the congestion. The following protocol
overcomes these limitations.

6.3 Strong Delayed-Writes (SDW)

As explained in §4, certain NFs tolerate inconsistencies
among switches, but require state convergence within a
bounded time. For such NFs, SwiSh offers strong delayed-
writes (SDW) variables, ensuring semantics known as A-
relaxed strong linearizability [27]. These semantics guarantee
that every read of a variable observes all but a bounded num-
ber of updates. If the variable is used to store a data sketch,
then A-relaxed strong linearizability often directly implies
error bounds on the sketch’s estimate [67].

SwiSh batches updates into windows, and synchronizes
window advancement (Figure 2c). The complete protocol and
its analysis appear in Algorithm 1 in Appendix A; below is
an informal overview.

To distribute a variable ', each switch maintains three
objects holding copies of ': 'D , 'A and 'B. At any given
time, 'D is updated, 'A is queried, and 'B is synchronized
(merged) across switches. The objects’ roles are switched in
a round-robin manner on window advancement.

All switches run the same protocol. At the start of a window,
all switches send the contents of 'B to all the others. Any
(local) update is applied to 'D , and any query is executed on
'A . Once a switch receives 'B from all other switches, and
furthermore receives ACKs from all other switches that they
received its 'B , it advances to the next window.

176 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Data
Plane

SRO
variable

Head switch Tail switch

Control
Plane

Packet
buffer

Write

Write
request

ACK

Data
Plane

SRO
variable

Control
Plane

Packet
buffer

Write
request

ACK
Write

request

(a) SRO: Based on chain replication. Relies
on control-plane for packet buffering.

Multicast
update

Periodic
synchronization

Data
Plane

EWO
variable

Data
Plane

EWO
variable

(b) EWO: Updates are broadcast. Switches
periodically send their state for reliability.

Data
Plane

Multicast
update

ACK

Rr Ru Rs

SDW variable
Data
Plane

Rr Ru Rs

SDW variable

(c) SDW: Updates are sent in rounds. Switches
advance to the next round after receiving
ACKs and updates from others.

Figure 2: A high-level overview of in-switch replication protocols.

On window advancement, the objects are rotated, so 'D be-
comes the new synchronization variable '′B , 'A is merged into
'B and then cleared – it becomes the new update object '′D ,
and the synchronized buffer 'B becomes the new read buffer
'′A . Thus, after the synchronization of window F completes,
'′D is empty and ready to accumulate updates of window
F +1, '′A reflects all updates that occurred in all switches in
all windows up to F−1, and '′B reflects all updates done in
windows up to F−1 in all switches, as well as local updates
done in window F.

Crucially, as we prove in Appendix A, this protocol guaran-
tees that a query in some window F sees all updates occurring
in all windows ≤ F−2. We also prove that, by bounding the
number of updates in a window to �, every query sees all
but at most 2#� updates that occur before it, where # is the
number of switches.
Multi-variable snapshots. Another advantage of the window
protocol is that it allows applications to take consistent snap-
shots [59] over a collection of SDW variables by advancing
the window simultaneously for all of them. This means that
we can support multi-variable queries (for instance, collecting
an array of counters as used in a CMS), and ensure that all
queries see update batches in a consistent order. Thus, given
two updates D1 and D2 occurring in different switches, it is
impossible for a query at one switch to see a state reflecting
only D1 (and not D2) while a query at another switch sees only
D2 (and not D1).

6.4 Handling Failures

We now consider fail-stop switch failures. We assume that
a central controller can detect which switches have failed.
SRO. When a switch fails, the chain becomes partitioned.
First, we reconnect the chain by bypassing the failed node;
if the failed switch is the head, the second node in the chain
assumes its responsibility. This follows the standard chain
replication protocol. A new switch is added to the end of the
chain. It starts to process writes, but does not replace the tail

until the data transfer to it is complete. This requires control
plane involvement.

The control plane on one of the switches takes a snap-
shot of its state, and then resends all pending write requests
through the normal data plane protocol. These writes contain
the sequence number at the time of the snapshot to prevent
overwriting newer values with old ones. Once the new switch
has acknowledged all writes, it replaces the tail.
EWO. Because live replicas regularly synchronize their entire
state, this synchronization protocol is inherently robust to
switch and link failures. The failed switch is removed from
the multicast group. Once a new switch replaces the faulty
one, it is added to the multicast group, and begins serving
reads after obtaining an initial view of the shared state.
SDW. The protocol inevitably stalls once a failure occurs (i.e.,
the local window ids stop increasing). Denote the maximum
window at a correct switch at the time of the failure by F<0G.
The difference between the local window ids at each pair
of switches is at most one. Thus, every stalled switch is in
window F<0G or F<0G−1.

We reconcile the states of the surviving switches as follows:
a controller reads the states of all switches. It collects the state
of 'A in some switch that is in window F<0G and sends
it to all switches that are in window F<0G − 1 (if any), so
they advance to window F<0G. The controller merges all
the 'B objects to yield the most up-to-date state for window
F<0G+1 and broadcasts it to all switches, thus updating their
'B objects to the merged state. Then it removes the failed
switch from the multicast group and the switches resume the
protocol from window F<0G +1.

Adding a new replica is a two-stage process: increasing the
expected number of ACKs on correct switches and making
sure that all switches are in the same window, which stalls
window progression, followed by adding the new replica to
the multicast group of each correct switch. The new switch
begins serving reads after the current window completes.

We note that during the recovery the updates to the live
switches are not lost, but rather accumulated in local switch

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 177

replicas 'D . These updates are then synchronized during the
recovery. Thus, this protocol is not time critical and can be
implemented in control-plane without adding code to the
resource-constrained data-plane.

7 Design

We explain the messaging mechanism shared by all protocols,
and then describe the SDW design. SRO and EWO closely
follow their descriptions in §6.

7.1 Replication Message Exchange

Packet format. Switches exchange replication packets, up-
dates, and acknowledgments with each other to replicate state.
Replication packets are IP packets; therefore, by assigning
an IP per switch, these packets can be routed using standard
L3 routing protocols. Besides Ethernet and IP headers, each
packet includes a single bit indicating whether the packet is
an update/write request or an ACK, the keys and values ac-
cessed by the write, and, in SRO, also a sequence number. For
example, in an SRO NAT implementation, the keys are the
source IP and source port, and the values are the translated IP
and port. In an SDW DDoS application, the keys are sketch
indices and the values are counter increments.
Reliable delivery. A major challenge in data-plane repli-
cation is ensuring delivery of replication packets. Current
switches do not provide enough control over internal switch
buffers to store and retransmit a packet from the data-plane.

We identify two cases that require buffering. First, there
are replication packets generated by each switch as part of the
replication protocol. Such packets must be reliably delivered
in SDW. Second, there are write packets that are received
from external sources (not from a switch) and update the NF
state in a switch. In SRO these packets cannot be externalized
until the updated state is synchronized among the switches.

We handle these two cases separately. For SDW replication
packets we keep the state being replicated at the applica-
tion level until acknowledged, instead of buffering the packet.
Then an ACK-check packet is periodically generated by the
packet generator. If the sent replication packet has not yet
been acknowledged by other switches, the ACK-check trig-
gers its retransmission. Here we use the recirculation trigger
for the packet generator to initiate a batch of packets at once.

In SRO, the packets themselves must be buffered since
their content is not reproducible by the switch. Buffering in
the data-plane is an open problem and we leave it for future
work. However, since most NFs that use SRO would require
the updates to be performed via the control-plane anyway
(Observation 1, §4.1), we relay the reliable delivery to the
control-plane of the switch that receives the write packet. The
cost of buffering and retransmission is negligible, as we show
in §9.2. Future switches might enable table updates in the

Window
ID

Next
step

ACKs
Monitor

Updates
Monitor

Timeout
Monitor

Packet
in

Normal packet

Update

ACK

ACK check

Valid
update

Recirculate for
sync on timeout

Recirculate for
window slide

Send
ACK

Ru | Rr

Data

 | Rs-mergeRs-source

Figure 3: SDW high-level design. Blue boxes are reusable P4
control blocks, while the orange box is application-dependent.

data-plane, motivating data-plane buffering mechanisms to
avoid control-plane involvement in replication.
Packet duplication and reordering. SRO replication pack-
ets are shipped with a sequence number allowing each replica
to apply updates in order and to reject updates with sequence
numbers lower than those already processed. In EWO, up-
dates are idempotent and monotonic so detecting duplication
and reordering is already a part of the merging process. We
explain the SDW implementation in detail below.

7.2 Strong Delayed-Writes (SDW)
As presented in Figure 3, the data structure used in SDW is
organized as two register arrays, each of which holds a 32-bit
pair. At any given time, one window is designated for reading
and writing, namely, its register arrays used as the 'D and 'A
objects in the SDW protocol. The other window is used in the
sync operation. The sync object 'B is divided into two regis-
ter values, one, denoted 'B-merge, receives data from other
switches, while the other, called 'B-source, holds the local
state as sent to other switches at the beginning of the window.
This separation is important to allow retransmissions (§7.1).
Synchronization. The alternating window structure enables
SwiSh to ensure that the 'A in each window are consistent
across all switches. Each time synchronization is initiated, the
content of the 'B-source register is sent to all the switches,
and the content received from all of the switches is merged
in the 'B-merge register. Note that each switch also receives
(and hence merges) its own update. Once all the updates
are received, the content of 'B-merge is identical across the
switches, so the synchronization for that window is finished.

Unfortunately, a full sketch cannot be read while processing
a single packet, so we send the sketch column by column. For
simplicity, we first explain handling of a single-column sketch,
and then discuss the complete implementation.

Each switch maintains two bitmaps: one, to track ACKs
that other switches received its updates, and the other, that
it received all updates from them. If an update was lost, the
sketch is retransmitted.
Window advancement. The last update to complete the
bitmaps signifies the completion of the sync round for the

178 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

switch. The switch advances the window ID, swaps the roles
of the registers, and starts a new sync process again. During
this swap the following arrays are swapped: 'B-merge swaps
with 'A , and 'B-source swaps with 'D .
Ready phase. Because round advancement is a local event,
the switches do not advance their windows in lock-step. Thus,
a switch may receive an update for the next window, which
will be dropped and retransmitted later. Buffering such up-
dates would significantly increase the memory footprint. In-
stead, we introduce the ready phase. Once a switch advances
its local window it broadcasts a ready packet to all the rest.
A switch starts broadcasting its updates only after it receives
ready packets from all other switches (existing bitmap can be
reused for tracking). This phase ensures that an update will
not be sent to a switch that is not yet ready to merge it. Ready
packets are retransmitted upon timeout, though in the exper-
iments we did not encounter such cases. In our evaluation
(§9.2) we show that the ready phase is critical to achieving
predictable replication latency.
Multi-column sketches. Ideally, each switch should track
each column being synchronized separately, to filter dupli-
cates and retransmit lost updates. This solution would be too
memory-consuming and would limit the sketch size, however.
We make two optimizations. First, for 'B-merge, we retain
the original bit-per-switch tracking, so a switch sends an ACK
only when a full sketch was received. Thus, we always retrans-
mit a full sketch. Second, we maintain a counter per switch
which tracks the index of the next column to be updated. Only
updates that match this counter are accepted. This approach
is correct: it handles duplicates and packet reorders. However,
while it is efficient for duplicates, it would lead to sketch re-
transmission if packets are reordered. We assume that this
is a rare event, however, because IP routing in data centers
usually maintains the same path for a given flow.

We implement both approaches. The bitmap-per-column
implementation allows using sketches with 3 rows and 64K
entries per-row and can scale up to 32 switches. The counter-
per-switch implementation can scale to 4K switches for the
same sketch size.

Note that changing the communication pattern from an all-
to-all to an aggregation tree, e.g. as in SwitchML [68], may
also reduce the per-switch state but at the cost of increasing
replication latency.
Register initialization. There is no way to iterate over all the
registers and reset them. Instead, we piggyback initialization
on the first write and use a single bit in each register to deter-
mine whether the register is initialized. These bits are reset
during the processing of sync packets.
Reducing replication bandwidth. Recall that SDW is used
for a collection of variables, stored in register arrays, over
which queries can take consistent snapshots. Our current im-
plementation of the sync protocol exchanges a full state snap-
shot (including all variables) rather than only the ones that
were updated. The challenge for selective updates is that

the switches send a varying number of packets in each win-
dow (due to hardware limitations, the state does not fit in
one packet), and so the destination does not know when to
acknowledge the state receipt. To overcome this challenge,
switches count the number of updates that they send in a
window and piggyback this number on the last update.
Recovery. The recovery protocol follows the algorithm men-
tioned above (§6.4), but also considers the ready phase and
sends ready packets to allow switches to make progress be-
fore removing the faulty switch from the replica group. SDW
does not rely on a centralized controller in failure-free runs.
However, as writes are not lost upon switch failures, recovery
is kept off of the critical-path and is not time-sensitive. There-
fore, we chose to offload the recovery protocol to a centralized
controller which frees switch resources.

8 Implementation

We expound the implementation of SRO and EWO, and then
we describe the distributed NFs implemented on top of SwiSh.
Last, we provide additional implementation details and limi-
tations.

8.1 Strong Read-Optimized (SRO)
We run the replication protocol in the control-plane logic.
Write packets (packets that modify state) are forwarded to the
control plane, which subsequently generates a write request
forwards it to the head of the chain.

The way write requests are handled depends on the storage
type where the data is stored in the switch. If the data can
be modified only from the control-plane, then write requests
must be processed by the control-plane at each switch in the
chain. Otherwise, write requests can be processed directly in
the data-plane. We implement reading from tail by tunneling
the reading packets through the tail switch to its destination
with an outer IP header (similar to IP-in-IP). While a write
is pending, the key is flagged as “read-from-tail”, causing
subsequent reading packets to be sent to the tail.

8.2 Eventual Write-Optimized (EWO)
The EWO logic uses the following types of packets: (a) Reg-
ular packets from applications – read and write to the shared
state. (b) Update packets – sent when the local state changes.
The recipient merges these updates with its local state. (c)
Generated packets – for reliable message delivery. Because
each register array can only be accessed once per packet, if
the state consists of an array, we generate one packet per array
entry. If we maintain multiple register arrays, they can be
accessed by a single packet.

Reads are local, while writes require sending an update
to other switches. To broadcast updates, we use egress-to-
egress mirroring to create a truncated copy of the original

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 179

write packet. We use the multicast engine to create a copy of
the update packet for each switch in the replica group. Each
copy is then modified to carry the updated values.

The application state each switch maintains depends on the
particular data structure. For example, to implement a shared
counter, each switch maintains a vector of counters, one per
switch in the replica group. On the other hand, growing only
sets and LWW variables do not require sharding.

In order to ensure eventual consistency in the face of lost
update packets, a periodic background task is implemented
by using the switch’s packet generator that iterates over the
register array, forming write update packets consisting of the
indices and values for each register, and forwarding each one
to a randomly-selected switch in the replica group.

8.3 Distributed NFs
We prototype three multi-switch NFs. We also prototype a dis-
tributed version for all of these NFs built using the protocols
in SwiSh. In addition, for two of them we also implement a
version that uses a central controller for synchronization.
Network Address Translator (NAT). This application maps
internal source IPs to external source IPs. Each switch main-
tains two translation tables – one that maps (external source
IP, external source port) to (internal source IP, internal source
port) and another that performs the inverse mapping. We im-
plement a distributed NAT using the SRO protocol. It requires
no changes to the data-plane logic.
Super-spreaders detection (DDoS). This application detects
source IPs that communicate with more than 1000 unique
destination IPs. Inspired by OpenSketch [80], we implement
it using a CMS, with a bit set instead of counters. Packets
are first sampled based on the (source IP, destination IP) pair.
Sampled packets set a single bit in the bitset in each row of
the sketch. The bitset is used to estimate the number of unique
destinations. Our implementation uses a sketch with 3 rows
and 32K 32-bit wide bitsets per row.

We implement two designs based on a central controller.
In both, the controller obtains the list of suspicious IPs from
each switch, and decides to block IPs if the sum of different
destination IPs for that source from both switches exceeds
1000, in which case it inserts an entry to the block list of
each switch. However, there are two ways for the controller
to obtain this data: (a) pull-based: each switch maintains a
gradually growing list of potential IPs to block. The controller
periodically pulls the delta in the list since the previous pull;
(b) push-based: each switch sends a packet when it detects a
potential IP to block. For simplicity we mark an IP as suspi-
cious if it sends to more than 500 destinations, and construct
the workload to send half of the packets from each source to
one switch and another half to the other, thus the implementa-
tion works correctly for this case.

The distributed design replicates the sketch using the SDW
protocol, each switch unilaterally decides to block a desti-

nation according to the replicated sketch, which essentially
holds a global view of the network.
Rate limiter. We implement a rate limiter based on the token
bucket algorithm [70]. In the single switch design, the con-
troller periodically fetches rate estimations from each switch,
calculates the token limit per each user and each switch, and
writes it back to the switches. We implement two distributed
versions, with EWO and SDW respectively. Switches repli-
cate their own rate estimates for each user, and calculate their
limit according to global traffic ratios.

8.4 Implementation Details

We implement SwiSh using P416 [73] and Intel P4 Studio
9.6.0 [32] for Tofino switches. We implement all protocols as
described.
API. We expose the building blocks of each protocol’s design
as P4 control blocks [73]. We then use this API to implement
our NF applications (§8.3).
Control Plane. For applications that use SRO variables, we
implement the control-plane logic in C++ using the user space
packet DMA API (kpkt). For the other protocols, we initialize
the switch state using bfrt-python. We also utilize a simple
TCP server in C++ for reading register values from the switch
for the recovery protocol.
Limitations. Our current implementation does not include
the required recovery logic for SRO because it is well-known
and in-control plane, thus it does not challenge our design.
Although independent to the number of switches in the replica
group, the major limitation of replicated NFs is the increase
in SRAM usage (×4). We fully implement recovery for SDW.

9 Evaluation

We evaluate the protocols and applications on two Tofino
switches (each two pipes) and on 32 switches in an emulator.
Our key observations are:

• Control-plane replication is too slow.
• SRO has high latency and low throughput.
• SDW is scalable and replicates large sketches in mi-

croseconds.
• For a DDoS detector, SDW responds instantly to an at-

tack, blocking malicious packets, while central controller
allows almost 50% of the packets to go through.

• For a rate limiter, SDW and EWO respond instantly to
traffic changes, while central controller lags behind.

Setup. We use two machines with Intel Xeon Silver 4216 2.1
GHz CPUs, connected via two EdgeCore Wedge 100BF-32X
programmable switches. The server is dual socket with 192
GB RAM. Hyper-threading and power saving are disabled.
One machine acts as a traffic generator/consumer; it has two
100G Intel E800 NICs. The other acts as a central controller;
it has two 40G NVIDIA ConnectX-4 Lx EN NICs.

180 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Topology. We use the leaf-spine topology in which the
switches are connected as shown in Figure 4, and run ECMP
on one pipe and a NF on the second.

Nic 1

ECMP

NF
Pipe 0

Pipe 1

Pipe 0

Pipe 1

NF

ECMP

Nic 2Client

Switch 1 Switch 2

 Controller

Figure 4: Testbed topology.

Performance measurement methodology. We build a
DPDK-based packet generator. We evaluate SwiSh on a real
packet trace, CAIDA [10], as well as synthetic workloads.
Throughput is measured by the NIC and application-level
performance counters. Latency is measured in software.

To measure the performance of the in-switch NFs and pro-
tocol implementations, we create a line-rate load (100Gbps,
unless stated otherwise) on a single switch port. To validate
that the performance obtained via this approach is representa-
tive of the switch under load over all its ports, we also run one
experiment with a fully loaded switch running at 2.1 Gpps
(§9.2). We show that the performance is almost the same as
with a single port traffic, validating our methodology.

9.1 End-to-end benchmarks
NAT. We replay 10K packets from the CAIDA dataset and
measure the per packet latency with and without replication.
21% of the packets are processed by the control plane (update
packets), while the rest are processed in the data-plane. Figure
5d shows the latency distribution. SwiSh does not introduce
any overheads for read packets, while update packets are
taking about twice as long to get processed since they are
batched in the control plane until the update is acknowledged
by the other switch.

We also compare the throughput of the distributed version
with the one on a single switch, while sending 64-byte packets
at line rate to a single port. There are no updates during the
test, as we wait for the handshake to complete. Therefore,
both versions achieve line-rate throughput (112 Mpps).
Super-spreader detection. DDoS is configured to detect
sources (IPs) that communicate with more than 1K differ-
ent destinations. We create a trace where packets are sent
from different source IPs, each with thousands of different
destinations. Each source IP sends 10K packets.

In the experiment we replay a trace where we vary the
number of packets that have different source IPs sent per
second, while maintaining the absolute transfer rate from
each source IP constant. This is a reasonable scenario where

an attacker uses a botnet to generate malicious traffic while
maintaining the transfer rate of each bot constant.

We compare the number of packets sent by each source IP
relative to the number of packets received by the destination
IP. Ideally, each source IP should be blocked after the first
1000 packets, therefore the ratio should be about 10%.

We compare the push and pull baselines with the implemen-
tation that uses SDW replication. Figure 5b shows that both
versions of the centralized controller are quickly becoming
overwhelmed and cannot keep up with processing the updates,
failing to block packets. At 1.5K source IPs/second the push
baseline breaks down because the push requests to block cer-
tain IPs from the switch get dropped at the host, thus their
respective IPs are left unblocked. The results were obtained
after increasing the socket receive buffers to 25MB.

To validate this result, we run the same workload fixed
at 4K source IPs/sec. Figure 5a shows the distribution of
the ratio of packets received per source IP across all source
IPs. We observe that the pull design manages to block up to
30% of all the source IPs, but for each IP different number
of packets leaked. Effectively, the pull design was unable to
block traffic from 70% of the source IPs. That is because
the controller collects batches of requests and handles them
together, thus some source IPs manage to send more than
others. However, the push design blocks only 5% of all the
source IPs. The SDW-based design, shown as a vertical line
at 10%, passes the first 10% of each source (which is our
super-spreader detection threshold), and then blocks all the
packets as expected.
Per-user rate limiter. We set a limit of 2Mpps per-user and
configure the rate limiter to re-estimate rates every 1ms.

We create a trace where packets are sent from different
source IPs (each source defines a different user) with 40
unique users (sending rate is 2Mpps per user). The trace
is comprised of alternating phases with a period of 5s. In even
phases, all flows of a specific user are split equally between
the two switches. While in odd phases, 90% of each user’s
flows are routed to one of the spine nodes and the rest 10% are
forwarded to the other spine node. These alternations results
in immediate changes in the per-user rate estimator that each
switch maintains.

We compare our EWO and SDW protocols with a pull-
based baseline and measure the average throughput per user
over time. In the first 5 seconds of the experiment, the traffic is
balanced so each switch runs at 1Mpps and the controller sets
a per-user limit of 1Mpps on each switch. At the 5th second
of the experiment, we change phases, and now one switch
measures 1.8Mpps and the other switch measures 0.2Mpps.
Because each switch was set to limit each user to 1Mpps,
the first switch forwards only 1Mpps and the other switch
forwards 0.2Mpps resulting in 1.2Mpps aggregate throughput.
Figure 5c shows the average received throughput per-user over
time at a sampling period of 200 ms. The baseline misses the
phase changing point and allows the throughput to reduce to

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 181

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

RX / TX per Source IP (%)

C
D

F

Baseline (push) Baseline (pull) SDW

(a) The distribution of the ratio of packets
received per source IP across all 4K source
IPs.

0 500 1,000 1,500 2,000
0

20

40

60

80

100

Number of DDoS sources per second

R
ec

ei
ve

d
/S

en
t(

%
)

Baseline (push) Baseline (pull) SDW

(b) The ratio of received packets for differ-
ent number of DDoS sources per second.

5 10 15 20 25 30
0

0.5

1

1.5

2

Time (s)

A
vg

.T
hr

ou
gh

pu
t

pe
rU

se
r(

M
pp

s)

Baseline (pull) EWO SDW

(c) The impact of reaction time on a rate-
limiter when changing traffic distribution.

101 102 103
0%

20%

40%

60%

80%

100%

Latency (`s)

C
D

F

Baseline SRO

(d) NAT latency distribution with and with-
out replication.

10 100 1k 10k

1

10

100

1000

Update Rate (pps)

A
ve

ra
ge

L
at

en
cy

(m
s)

Baseline SRO

(e) NAT latency with and without replica-
tion when sending update packets at a vari-
able rate.

16 128 1K 8K 64K 512K

10

100

1000

Sketch Size (bytes)

L
at

en
cy

99
%

Pe
rc

en
til

e
(`

s)

local-2 (w/o ready) local-2 symmetric-4

(f) The window advancement period for
SDW replication for different state sizes.

Figure 5: End-to-end and analysis results.

below 1.5Mpps, slightly more than the expected value due to
sampling. SDW and EWO perform compareably. They both
react immediately to traffic changes without throughput drops.
EWO eagerly sends 40 updates every 1ms, allowing the other
switch to immediately change its limit. SDW replicates such
a small state (40 32bit values) under 10 microseconds (5f).

9.2 Analysis
SRO: Update rate. We measure the overhead introduced to
update packets with replication. For this experiment we run
NAT on spine switches and send update packets that are all
processed by the control plane. We measure the per packet
latency and report the average. Figure 5e shows that compared
to the single switch, in the replicated setting the update rate
is reduced by a factor of ×2.5. This is expected since each
update packet generates a write request and an ACK that has
to be processed on the other switch.

We observe that the update rate of SRO is limited by the
throughput of the control plane on a single switch. SRO
variables cannot sustain more than 20K updates per second
(160Kbps). Update latency increases with the update rate
because packets are buffered in the control-plane until ac-
knowledged.
SDW: Window advancement latency. We measure the time
each window absorbs updates before being advanced. We
vary the state size being replicated, so for the smallest sketch
the time to advance the window is the upper bound on the
replication rate, constrained by the latency of updates between
switches. There are no retransmissions in this experiment.

We replicate a sketch with 3 rows and vary each row size to
up to 64K counters (total of 768KB in each sketch). We store
the global timestamps of the first 10K window increments
and read them at the end of the run.

We use the following topologies: (a) local-2: two local
pipes on a single switch (we measure identical results com-
pared to two remote pipes); (b) symmetric-4 - four pipes, two
in each switch, with a dedicated link between each pipe.

Figure 5f shows the 99th percentile latency to advance
the window for each state size. As we see, the window can
be advanced as fast as every 3`sec for the skectch of 4
bytes. The current bottleneck is the packet sending rate which,
even within the switch (Recirculation), takes a few hundred
nanosecs. This window advancement rate implies that the up-
dates become visible after 6`sec (since 'D becomes 'A after
two window advancements). For the sketch larger than 1K, the
actual replication rate is about 13Gbps between each pair of
switches, which is about five orders of magnitude faster than
SRO. We note that this rate is limited by the maximum packet
rate (∼160Mpps) of a single port. This is because replication
packets hold only 12 bytes of data, which in turn is due to
limited per-packet memory accesses imposed by the hardware.
Optimizing the effective bandwidth is left for future work.

We observe negligible increase in the window advancement
latency when adding two additional switches. This is because
each switch updates all the others concurrently, hence no
additional delay. The ready phase adds a constant latency
overhead of 2`sec to each replication round.
SDW: Performance under full switch load. We generate

182 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

traffic on all switch ports as follows. We saturate a single port
using our packet generation machine and let that traffic travel
through each port in the switch by connecting ports in a chain
and forming a “snake” (a similar methodology was used in
NetCache [38]). We reserve ports that are used for replication.
We use the symmetric-2 topology. We saturate the switch with
130B packets, each updating the sketch. For a sketch with 64K
entries per-row we measure 486 `sec window advancement
latency, at a total packet rate of 1.8Gpps. For a sketch size of
1 entry per-row we measure 3.2 `sec window advancement
latency at a total packet rate of 2.1Gpps.3 In both extremes,
we could not measure any impact on window advancement
latency, which is expected as the switch logic is guaranteed
to perform packet processing at a switch line rate.
SDW: Retransmissions and the ready phase. The ready
phase ensures that the switches do not send updates after
advancing their window before all others advanced to that
same window. Without this guarantee, an update from the
consequent window that arrives too early will be dropped,
and later retransmitted after a timeout. We now show that this
phase is essential to avoid retransmissions and maintain low
latency when scaling to more switches.

We first run the protocol without the ready phase (Figure 5f,
local-2 no ready) on two pipes on the same switch. The proto-
col runs in lockstep on both of the pipes, so we do not see any
update retransmissions. However, with four pipes (symmetric-
4 topology) there are many retransmission (not shown in the
Figure). For example, we measure an average of 2934 update
retranmissions in the first 10K window advancements across
100 runs. We observe a similar behavior in an asymmetric
topology four pipes connected using the leaf-spine topology.
Adding the ready phase completely eliminates such retrans-
missions and allows the system to progress effectively as fast
as a two-pipes system, with stable latency guarantees.
SDW: Recovery. We measure the total recovery time of the
protocol from the time pipes fail to the time the system makes
progress, i.e. windows are advancing again. We run four pipes
in the 4-symmetric topology that replicate a sketch and shut
down random pipes. We disable the failed pipes’ ports to
other switches in a random order. We repeat this experiment
20 times for each data point, and vary sketch sizes and failure
counts. We report the average recovery time.

Figure 6 shows that recovery time is dominated by the
time it takes to synchronize the sketches of correct switches.
Therefore, recovery time increases as sketch size increases,
and decreases as the failure count increases. As expected, for
the 3 pipe failures setup, only a single correct switch remains
live, thus recovery time is independent from the sketch size.

As explained in §6.4, updates sent to live switches during
the recovery are not lost but accumulated, so the recovery time
minimization is a secondary goal. Nevertheless, recovery time
can be further reduced by applying additional optimizations,

31-entry per-row requires lower replication load and frees certain re-
sources affording higher packet rate.

16 128 1K 8K 64K 512K

100

1000

Sketch Size (bytes)

A
ve

ra
ge

R
ec

ov
er

y
Ti

m
e

(m
se

c)

1 pipe 2 pipes 3 pipes

Figure 6: The impact of number of failures and sketch size on
the total SDW recovery time.

e.g. parallelizing the currently serial controller-to-switch com-
munication and batching requests, and by writing the logic
using a more efficient programming language.
SDW: Scalability. We emulate a large replica group of
switches running the SDW protocol by connecting together
32 Tofino model instances running in Docker containers. The
switches are connected together via another switch that runs
L3 forwarding. We verify that the protocol runs correctly and
that there are no update retransmissions.

10 Related Work

In-switch NFs. Previous studies have shown that offloading
NFs to programmable switches, such as load balancers [57]
and DDoS detectors [45], enables very high performance.
However, these projects were designed for a single switch.
SwiSh aims to facilitate the deployment of these applications
in a distributed fashion. RedPlane [42] enables switch state
replication to servers for fault tolerance, but does not support
state modification on multiple switches concurrently, as our
work does.
In-switch acceleration. Previous works suggested in-switch
acceleration for general-purpose applications such as key-
value caches [38, 50], replicated key-value stores [37], query
processing [24] and aggregations [68, 75]. SwiSh can be use-
ful for such general-purpose applications too. For example,
SwiSh could be used to implement the cache invalidation
mechanism in DistCache. We note, however, that due to the
general-purpose nature of these applications, some of them
feature a complex state, and require strong semantics together
with frequent updates, which SwiSh does not provide. Such
requirements are less common in NFs; thus, we target SwiSh
to facilitate the development of distributed NFs.
State management for NFs. State management and fault-
tolerance for NFs on servers have been well studied [20,64,65,
71,77]. However, these techniques are infeasible in the context
of programmable switches. For example, FTMB [71] suggests
a rollback-recovery technique for fault-tolerance in which
packets are logged and replayed upon failures. However, due
to the high processing rate of the switch, it is impractical to log

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 183

every packet to external storage or through the control-plane.
In-switch coordination. NetChain [37] and P4xos [16] im-
plement coordination protocols running in the data plane to
provide reliable storage as a network service. We apply data
plane replication as an internal building block for NFs, a task
for which it is well suited as the data-plane properties (e.g.,
limitations to ∼100 byte objects) are better matched for repli-
cating NF state registers than arbitrary applications.
Distributed network state. Managing distributed network
state has been well studied. Onix [43] distributes network-
wide state among multiple controllers. DIFANE [81] offloads
forwarding decisions to authority switches to alleviate load
on the controller and to reduce per-flow memory usage in
network switches. Mahajan et al. [55] explore consistency se-
mantics during network state updates. While previous works
focus on control-plane managed state, SwiSh specifically tar-
gets replication of mutable state of data-plane programs.
Distributed network monitoring. Network-wide monitor-
ing requires coordinated, distributed computation across
switches [25, 26, 63]. Harrison et al. [25, 26] propose a dis-
tributed heavy-hitter detection algorithm that combines local
counters with a centralized controller. SwiSh can be used to
implement similar algorithms without a centralized controller,
potentially providing faster response. Ripple [36] replicates
state in data-plane for link-flooding defense but does not
provide consistency guarantees. Ripple can be implemented
using SwiSh. Distributed computation is also needed if the
resources of a single switch are insufficient, e.g. Demian-
iuk et al. [18] partition state across switches for flow metric
computation.
Relaxing consistency for availability. Many systems have
traded consistency for increased availability and performance
[4, 17, 21, 44, 62, 72, 79]. For example, TACT [79] aims to
provide a middle-ground between strong and eventual consis-
tency. However, TACT may block read and write operations
to enforce consistency bounds which is unsustainable in the
switch environment. Additionally, TACT maintains a single
version of the data while SDW maintains multiple versions
of the state and seamlessly switches to the up-to-date one
as soon as the previous synchronization round is completed.
Therefore, the protocol advances as fast as the network con-
ditions allow while providing consistent snapshots to every
replica. On the other hand, the combination of dynamic sys-
tem behavior and consistent snapshots cannot be expressed
using TACT’s consistency metrics.

11 Conclusions

SwiSh offers a systematic approach to state sharing among
programmable switches. We analyze the requirements of in-
switch stateful NFs and implement three protocols for data-
plane replication. We introduce a novel SDW protocol that
achieves high update rate and low update latency, while pro-
viding strong consistency guarantees, which are particularly

useful for implementing sketches. We show experimentally
that data-plane is practical and fast, and achieves orders of
magnitude higher performance than the traditional centralized
controller designs. We believe that this work will pave the way
for building distributed stateful NFs entirely in data-plane.

Acknowledgments

We would like to thank the anonymous reviewers and our
shepherd, Dejan Kostic, for their insightful comments and
constructive feedback. Lior Zeno was partially supported by
the HPI-Technion Research School. We gratefully acknowl-
edge support from Israel Science Foundation (grants 980/21
and 1027/18) and Technion Hiroshi Fujiwara Cyber Security
Research Center.

References

[1] Yehuda Afek, Anat Bremler-Barr, Shir Landau Feibish,
and Liron Schiff. Detecting heavy flows in the SDN
match and action model. Comput. Networks, 136:1–12,
2018.

[2] Pankaj K Agarwal, Graham Cormode, Zengfeng Huang,
Jeff M Phillips, Zhewei Wei, and Ke Yi. Mergeable
summaries. ACM Transactions on Database Systems
(TODS), 38(4):1–28, 2013.

[3] Amazon Web Services. AWS Shield. https://aws.
amazon.com/shield.

[4] Mary Baker and John Ousterhout. Availability in the
Sprite distributed file system. In Proceedings of the 4th
workshop on ACM SIGOPS European workshop, pages
1–4, 1990.

[5] Ziv Bar-Yossef, TS Jayram, Ravi Kumar, D Sivakumar,
and Luca Trevisan. Counting distinct elements in a data
stream. In International Workshop on Randomization
and Approximation Techniques in Computer Science,
pages 1–10. Springer, 2002.

[6] Ran Ben Basat, Xiaoqi Chen, Gil Einziger, Shir Landau
Feibish, Danny Raz, and Minlan Yu. Routing oblivious
measurement analytics. In IFIP Networking, pages 449–
457, 2020.

[7] Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta
Higuchi, Masayoshi Kobayashi, Toshio Koide, Bob
Lantz, Brian O’Connor, Pavlin Radoslavov, William
Snow, et al. ONOS: Towards an Open, Distributed SDN
OS. In Proceedings of the third workshop on Hot topics
in software defined networking, pages 1–6, 2014.

[8] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Vargh-
ese, Nick McKeown, Martin Izzard, Fernando Mujica,

184 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://aws.amazon.com/shield
https://aws.amazon.com/shield

and Mark Horowitz. Forwarding Metamorphosis: Fast
Programmable Match-Action Processing in Hardware
for SDN. ACM SIGCOMM Computer Communication
Review, 43(4):99–110, 2013.

[9] Broadcom. Trident 3. https://www.broadcom.com/
products/ethernet-connectivity/switching/
strataxgs/bcm56870-series/.

[10] CAIDA. The CAIDA UCSD Anonymized Internet
Traces - 2019. https://www.caida.org/catalog/
datasets/passive_dataset.

[11] Martin Casado, Michael J Freedman, Justin Pettit, Jiany-
ing Luo, Nick McKeown, and Scott Shenker. Ethane:
Taking Control of the Enterprise. ACM SIGCOMM
computer communication review, 37(4):1–12, 2007.

[12] Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jennifer
Rexford, and Ori Rottenstreich. Catching the Microburst
Culprits with Snappy. In Proceedings of the Afternoon
Workshop on Self-Driving Networks, SelfDN 2018, page
22–28, New York, NY, USA, 2018. Association for Com-
puting Machinery.

[13] Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jen-
nifer Rexford, Ori Rottenstreich, Steven A. Monetti, and
Tzuu-Yi Wang. Fine-grained queue measurement in the
data plane. In ACM SIGCOMM Conference on Emerg-
ing Networking EXperiments and Technologies, pages
15–29. ACM, 2019.

[14] Graham Cormode and S. Muthukrishnan. An improved
data stream summary: The count-min sketch and its
applications. Journal of Algorithms, 55(1):58–75, April
2005.

[15] Graham Cormode and S. Muthu Muthukrishnan. Ap-
proximating data with the count-min sketch. IEEE Soft-
ware, 29(1):64–69, 2012.

[16] H. T. Dang, P. Bressana, H. Wang, K. S. Lee, N. Zil-
berman, H. Weatherspoon, M. Canini, F. Pedone, and
R. Soulé. P4xos: Consensus as a Network Service.
IEEE/ACM Transactions on Networking, pages 1–13,
2020.

[17] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,
Gunavardhan Kakulapati, Avinash Lakshman, Alex
Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: Amazon’s Highly Avail-
able Key-Value Store. ACM SIGOPS operating systems
review, 41(6):205–220, 2007.

[18] V. Demianiuk, S. Gorinsky, S. Nikolenko, and K. Kogan.
Robust Distributed Monitoring of Traffic Flows. In
2019 IEEE 27th International Conference on Network
Protocols (ICNP), pages 1–11, 2019.

[19] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody
Smith, Roman Kononov, Eric Mann-Hielscher, Ardas
Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-
nah Dylan Hosein. Maglev: A Fast and Reliable Soft-
ware Network Load Balancer. In 13th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 16), pages 523–535, Santa Clara, CA, 2016.

[20] Aaron Gember-Jacobson, Raajay Viswanathan,
Chaithan Prakash, Robert Grandl, Junaid Khalid,
Sourav Das, and Aditya Akella. OpenNF: Enabling
Innovation in Network Function Control. In Proceed-
ings of the 2014 ACM Conference on SIGCOMM,
SIGCOMM ’14, page 163–174, New York, NY, USA,
2014. Association for Computing Machinery.

[21] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Le-
ung. The Google file system. In Proceedings of the
nineteenth ACM symposium on Operating systems prin-
ciples, pages 29–43, 2003.

[22] Wojciech Golab, Lisa Higham, and Philipp Woelfel. Lin-
earizable implementations do not suffice for randomized
distributed computation. In Proceedings of the forty-
third annual ACM symposium on Theory of computing,
pages 373–382, 2011.

[23] Albert Greenberg, James R. Hamilton, Navendu Jain,
Srikanth Kandula, Changhoon Kim, Parantap Lahiri,
David A. Maltz, Parveen Patel, and Sudipta Sengupta.
VL2: A scalable and flexible data center network. In Pro-
ceedings of ACM SIGCOMM 2009, Barcelona, Spain,
August 2009. ACM.

[24] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feam-
ster, Jennifer Rexford, and Walter Willinger. Sonata:
Query-Driven Streaming Network Telemetry. In Pro-
ceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM
’18, page 357–371, New York, NY, USA, 2018. Associ-
ation for Computing Machinery.

[25] Rob Harrison, Shir Landau Feibish, Arpit Gupta, Ross
Teixeira, S. Muthukrishnan, and Jennifer Rexford. Carpe
elephants: Seize the global heavy hitters. In Pro-
ceedings of the 2020 ACM SIGCOMM 2020 Work-
shop on Secure Programmable Network Infrastructure,
SPIN@SIGCOMM 2020, Virtual Event, USA, August 14,
2020, pages 15–21, 2020.

[26] Harrison, Rob and Cai, Qizhe and Gupta, Arpit and Rex-
ford, Jennifer. Network-Wide Heavy Hitter Detection
with Commodity Switches. In Proceedings of the Sym-
posium on SDN Research, SOSR ’18, New York, NY,
USA, 2018. Association for Computing Machinery.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 185

https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56870-series/
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56870-series/
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56870-series/
https://www.caida.org/catalog/datasets/passive_dataset
https://www.caida.org/catalog/datasets/passive_dataset

[27] Thomas A Henzinger, Christoph M Kirsch, Hannes
Payer, Ali Sezgin, and Ana Sokolova. Quantitative re-
laxation of concurrent data structures. In Proceedings of
the 40th annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 317–328,
2013.

[28] Maurice P. Herlihy and Jeannette M. Wing. Lineariz-
ability: A Correctness Condition for Concurrent Objects.
ACM Trans. Program. Lang. Syst., 12(3):463–492, July
1990.

[29] Qun Huang, Xin Jin, Patrick P. C. Lee, Runhui Li,
Lu Tang, Yi-Chao Chen, and Gong Zhang. SketchVi-
sor: Robust network measurement for software packet
processing. In ACM SIGCOMM, pages 113–126, 2017.

[30] Qun Huang, Patrick P. C. Lee, and Yungang Bao. Sketch-
learn: Relieving user burdens in approximate measure-
ment with automated statistical inference. In ACM SIG-
COMM, pages 576–590, 2018.

[31] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira,
and Benjamin Reed. Zookeeper: Wait-free coordination
for internet-scale systems. In USENIX annual technical
conference, volume 8, 2010.

[32] Intel. P4 Studio. https://www.intel.com/
content/www/us/en/products/network-io/
programmable-ethernet-switch/p4-suite/
p4-studio.html.

[33] Intel. Tofino. https://www.intel.
com/content/www/us/en/products/
network-io/programmable-ethernet-switch/
tofino-series/tofino.html.

[34] Intel. Tofino Native Architecture. https://github.
com/barefootnetworks/Open-Tofino.

[35] Nikita Ivkin, Zhuolong Yu, Vladimir Braverman, and
Xin Jin. Qpipe: Quantiles sketch fully in the data plane.
In Proceedings of the 15th International Conference on
Emerging Networking Experiments And Technologies,
pages 285–291, 2019.

[36] Jiarong Xing and Wenqing Wu and Ang Chen. Ripple:
A Programmable, Decentralized Link-Flooding Defense
Against Adaptive Adversaries. In 30th USENIX Security
Symposium (USENIX Security 21), pages 3865–3881.
USENIX Association, August 2021.

[37] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster,
Jeongkeun Lee, Robert Soulé, Changhoon Kim, and Ion
Stoica. NetChain: Scale-Free Sub-RTT Coordination. In
15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 18), pages 35–49, Renton,
WA, April 2018. USENIX Association.

[38] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé,
Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion
Stoica. NetCache: Balancing Key-Value Stores with
Fast In-Network Caching. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP ’17,
page 121–136, New York, NY, USA, 2017. Association
for Computing Machinery.

[39] Murad Kablan, Azzam Alsudais, Eric Keller, and Franck
Le. Stateless Network Functions: Breaking the Tight
Coupling of State and Processing. In 14th USENIX Sym-
posium on Networked Systems Design and Implemen-
tation (NSDI 17), pages 97–112, Boston, MA, March
2017. USENIX Association.

[40] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh
Sivaraman, and Jennifer Rexford. HULA: Scalable
Load Balancing Using Programmable Data Planes. In
Proceedings of the 2016 Symposium on SDN Research
(SOSR ’16), Santa Clara, CA, USA, March 2016. ACM.

[41] Pete Keleher, Alan L. Cox, Sandhya Dwarkadas, and
Willy Zwaenepoel. TreadMarks: Distributed Shared
Memory on Standard Workstations and Operating Sys-
tems. In Proceedings of the 1994 USENIX Winter Tech-
nical Conference, San Francisco, CA, USA, January
1994. USENIX.

[42] Daehyeok Kim, Jacob Nelson, Dan R. K. Ports, Vyas
Sekar, and Srinivasan Seshan. RedPlane: Enabling Fault-
Tolerant Stateful in-Switch Applications. In Proceed-
ings of the 2021 ACM SIGCOMM 2021 Conference,
SIGCOMM ’21, page 223–244, New York, NY, USA,
2021. Association for Computing Machinery.

[43] Teemu Koponen, Martin Casado, Natasha Gude, Jeremy
Stribling, Leon Poutievski, Min Zhu, Rajiv Ramanathan,
Yuichiro Iwata, Hiroaki Inoue, Takayuki Hama, et al.
Onix: A Distributed Control Platform for Large-Scale
Production Networks. In OSDI, volume 10, pages 1–6,
2010.

[44] Avinash Lakshman and Prashant Malik. Cassandra: a
decentralized structured storage system. ACM SIGOPS
Operating Systems Review, 44(2):35–40, 2010.

[45] A. C. Lapolli, J. Adilson Marques, and L. P. Gaspary.
Offloading Real-time DDoS Attack Detection to Pro-
grammable Data Planes. In 2019 IFIP/IEEE Symposium
on Integrated Network and Service Management (IM),
pages 19–27, 2019.

[46] Kfir Lev-Ari, Edward Bortnikov, Idit Keidar, and Alexan-
der Shraer. Composing ordered sequential consistency.
Information Processing Letters, 123:47–50, 2017.

186 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/p4-suite/p4-studio.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/p4-suite/p4-studio.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/p4-suite/p4-studio.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/p4-suite/p4-studio.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://github.com/barefootnetworks/Open-Tofino
https://github.com/barefootnetworks/Open-Tofino

[47] B. Lewis, M. Broadbent, and N. Race. P4ID: P4 En-
hanced Intrusion Detection. In 2019 IEEE Conference
on Network Function Virtualization and Software De-
fined Networks (NFV-SDN), pages 1–4, 2019.

[48] Kai Li and Paul Hudak. Memory coherence in shared
virtual memory systems. ACM Transactions on Com-
puter Systems, 7(4):321–359, November 1989.

[49] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan
Yu. FlowRadar: A better NetFlow for data centers.
In USENIX Symposium on Networked Systems Design
and Implementation, pages 311–324, Santa Clara, CA,
March 2016.

[50] Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li,
Changhoon Kim, Vladimir Braverman, Xin Jin, and Ion
Stoica. DistCache: Provable Load Balancing for Large-
Scale Storage Systems with Distributed Caching. In
Proceedings of the 17th USENIX Conference on File and
Storage Technologies, FAST’19, page 143–157, USA,
2019. USENIX Association.

[51] Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron Kass-
ner, Vladimir Braverman, Roy Friedman, and Vyas
Sekar. Nitrosketch: Robust and general sketch-based
monitoring in software switches. In ACM SIGCOMM,
pages 334–350, 2019.

[52] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger,
Vyas Sekar, and Vladimir Braverman. One sketch to
rule them all: Rethinking network flow monitoring with
UnivMon. In ACM SIGCOMM, pages 101–114, 2016.

[53] Zaoxing Liu, Hun Namkung, Georgios Nikolaidis,
Jeongkeun Lee, Changhoon Kim, Xin Jin, Vladimir
Braverman, MinlanYu, and Vyas Sekar. Jaqen: A high-
performance switch-native approach for detecting and
mitigating volumetric ddos attacks with programmable
switche. In Proc. USENIX Security, 2021.

[54] Zaoxing Liu, Samson Zhou, Ori Rottenstreich, Vladimir
Braverman, and Jennifer Rexford. Memory-efficient per-
formance monitoring on programmable switches with
lean algorithms. In Symposium on Algorithmic Princi-
ples of Computer Systems, APOCS, pages 31–44, 2020.

[55] Mahajan, Ratul and Wattenhofer, Roger. On Consistent
Updates in Software Defined Networks. In Proceed-
ings of the Twelfth ACM Workshop on Hot Topics in
Networks, HotNets-XII, New York, NY, USA, 2013. As-
sociation for Computing Machinery.

[56] McKeown, Nick and Anderson, Tom and Balakrish-
nan, Hari and Parulkar, Guru and Peterson, Larry
and Rexford, Jennifer and Shenker, Scott and Turner,
Jonathan. OpenFlow: Enabling Innovation in Cam-
pus Networks. SIGCOMM Comput. Commun. Rev.,
38(2):69–74, March 2008.

[57] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun
Lee, and Minlan Yu. Silkroad: Making Stateful Layer-4
Load Balancing Fast and Cheap Using Switching ASICs.
In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, pages 15–28,
2017.

[58] Microsoft Azure. Azure DDoS Protection.
https://azure.microsoft.com/en-us/services/
ddos-protection/.

[59] Robert HB Netzer and Jian Xu. Necessary and sufficient
conditions for consistent global snapshots. IEEE Trans-
actions on Parallel and distributed Systems, 6(2):165–
169, 1995.

[60] NVIDIA. Spectrum. https://www.nvidia.
com/en-us/networking/ethernet-switching/
spectrum-sn4000/.

[61] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin
Murthy, Albert Greenberg, David A. Maltz, Randy Kern,
Hemant Kumar, Marios Zikos, Hongyu Wu, Changhoon
Kim, and Naveen Karri. Ananta: Cloud Scale Load
Balancing. In Proceedings of the ACM SIGCOMM
2013 Conference on SIGCOMM, SIGCOMM ’13, page
207–218, New York, NY, USA, 2013. Association for
Computing Machinery.

[62] Karin Petersen, Mike J. Spreitzer, Douglas B. Terry,
Marvin M. Theimer, and Alan J. Demers. Flexible
Update Propagation for Weakly Consistent Replication.
SIGOPS Oper. Syst. Rev., 31(5):288–301, oct 1997.

[63] Raghavan, Barath and Vishwanath, Kashi and Ramab-
hadran, Sriram and Yocum, Kenneth and Snoeren, Alex
C. Cloud Control with Distributed Rate Limiting. In
Proceedings of the 2007 Conference on Applications,
Technologies, Architectures, and Protocols for Computer
Communications, SIGCOMM ’07, page 337–348, New
York, NY, USA, 2007. Association for Computing Ma-
chinery.

[64] Shriram Rajagopalan, Dan Williams, and Hani Jamjoom.
Pico Replication: A High Availability Framework for
Middleboxes. In Proceedings of the 4th Annual Sympo-
sium on Cloud Computing, SOCC ’13, New York, NY,
USA, 2013. Association for Computing Machinery.

[65] Shriram Rajagopalan, Dan Williams, Hani Jamjoom,
and Andrew Warfield. Split/Merge: System Support for
Elastic Execution in Virtual Middleboxes. In Presented
as part of the 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 13), pages
227–240, Lombard, IL, 2013. USENIX.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 187

https://azure.microsoft.com/en-us/services/ddos-protection/
https://azure.microsoft.com/en-us/services/ddos-protection/
https://www.nvidia.com/en-us/networking/ethernet-switching/spectrum-sn4000/
https://www.nvidia.com/en-us/networking/ethernet-switching/spectrum-sn4000/
https://www.nvidia.com/en-us/networking/ethernet-switching/spectrum-sn4000/

[66] Arik Rinberg and Idit Keidar. Intermediate value lin-
earizability: A quantitative correctness criterion. In
Hagit Attiya, editor, 34th International Symposium on
Distributed Computing, DISC 2020, October 12-16,
2020, Virtual Conference, volume 179 of LIPIcs, pages
2:1–2:17. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2020.

[67] Arik Rinberg, Alexander Spiegelman, Edward Bort-
nikov, Eshcar Hillel, Idit Keidar, Lee Rhodes, and Hadar
Serviansky. Fast concurrent data sketches. In Proceed-
ings of the 25th ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming, PPoPP ’20,
pages 117–129, 2020.

[68] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob
Nelson, Panos Kalnis, Changhoon Kim, Arvind Kr-
ishnamurthy, Masoud Moshref, Dan Ports, and Peter
Richtarik. Scaling distributed machine learning with In-
Network aggregation. In 18th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
21), pages 785–808. USENIX Association, April 2021.

[69] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and
Marek Zawirski. Conflict-Free Replicated Data Types.
In Proceedings of the 13th International Conference
on Stabilization, Safety, and Security of Distributed Sys-
tems, SSS’11, page 386–400, Berlin, Heidelberg, 2011.
Springer-Verlag.

[70] S. Shenker and J. Wroclawski. RFC2215: General Char-
acterization Parameters for Integrated Service Network
Elements, 1997.

[71] Justine Sherry, Peter Xiang Gao, Soumya Basu, Auro-
jit Panda, Arvind Krishnamurthy, Christian Maciocco,
Maziar Manesh, João Martins, Sylvia Ratnasamy, Luigi
Rizzo, and Scott Shenker. Rollback-Recovery for Mid-
dleboxes. In Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication, SIG-
COMM ’15, page 227–240, New York, NY, USA, 2015.
Association for Computing Machinery.

[72] Jeff Terrace and Michael J. Freedman. Object Stor-
age on CRAQ: High-Throughput Chain Replication for
Read-Mostly Workloads. In Proceedings of the 2009
Conference on USENIX Annual Technical Conference,
USENIX’09, page 11, USA, 2009. USENIX Associa-
tion.

[73] The P4 Language Consortium. P416 Language Specifi-
cation. https://p4.org/p4-spec/docs/P4-16-v1.
2.0.html.

[74] The P4.org Architecture Working Group. P416
Portable Switch Architecture (PSA). https://p4.org/
p4-spec/docs/PSA-v1.1.0.html.

[75] Muhammad Tirmazi, Ran Ben Basat, Jiaqi Gao, and
Minlan Yu. Cheetah: Accelerating Database Queries
with Switch Pruning. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’20, page 2407–2422, New York, NY,
USA, 2020. Association for Computing Machinery.

[76] Robbert van Renesse and Fred B. Schneider. Chain
Replication for Supporting High Throughput and Avail-
ability. In Proceedings of the 6th Conference on Sympo-
sium on Operating Systems Design and Implementation,
OSDI’04, page 7, USA, 2004. USENIX Association.

[77] Shinae Woo, Justine Sherry, Sangjin Han, Sue Moon,
Sylvia Ratnasamy, and Scott Shenker. Elastic Scaling
of Stateful Network Functions. In 15th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 18), pages 299–312, Renton, WA, April 2018.
USENIX Association.

[78] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi
Gong, Yang Zhou, Rui Miao, Xiaoming Li, and Steve
Uhlig. Elastic sketch: Adaptive and fast network-wide
measurements. In Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communi-
cation, pages 561–575, 2018.

[79] Haifeng Yu and Amin Vahdat. Design and Evaluation
of a Continuous Consistency Model for Replicated Ser-
vices. OSDI’00, USA, 2000. USENIX Association.

[80] Minlan Yu, Lavanya Jose, and Rui Miao. Software
defined traffic measurement with opensketch. In Nick
Feamster and Jeffrey C. Mogul, editors, Proceedings
of the 10th USENIX Symposium on Networked Systems
Design and Implementation, pages 29–42, April 2013.

[81] Minlan Yu, Jennifer Rexford, Michael J Freedman, and
Jia Wang. Scalable flow-based networking with DI-
FANE. ACM SIGCOMM Computer Communication
Review, 40(4):351–362, 2010.

[82] Zeno, Lior and Ports, Dan R. K. and Nelson, Jacob and
Silberstein, Mark. SwiShmem: Distributed Shared State
Abstractions for Programmable Switches. In Proceed-
ings of the 19th ACM Workshop on Hot Topics in Net-
works, HotNets ’20, page 160–167, New York, NY, USA,
2020. Association for Computing Machinery.

[83] Menghao Zhang, Guanyu Li, Shicheng Wang, Chang
Liu, Ang Chen, Hongxin Hu, Guofei Gu, Qianqian Li,
Mingwei Xu, and Jianping Wu. Poseidon: Mitigating
volumetric ddos attacks with programmable switches.
In the 27th Network and Distributed System Security
Symposium (NDSS 2020), 2020.

188 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://p4.org/p4-spec/docs/P4-16-v1.2.0. html
https://p4.org/p4-spec/docs/P4-16-v1.2.0. html
https://p4.org/p4-spec/docs/PSA-v1.1.0.html
https://p4.org/p4-spec/docs/PSA-v1.1.0.html

A Theoretical Analysis

The SDW protocol supports stream-order invariant data types
like sketches. Variables of this type support three API func-
tions: (1) UPDATE(E) – handling a single addition of element
E, (2) QUERY() – returns a value based on the internal state,
and MERGE('′) – merges the state of '′ with that of the cur-
rent variable. A requirement of any variable ' fitting this
model is that the QUERY result depends only on the set of
elements that were ingested before it (either by an UPDATE
or a MERGE), and not their order. We say that a query reflects
an update, if the update altered the state before the query
executed.

An execution of an algorithm renders a history �, which is
a series of invoke and response events of the three API func-
tions. In a sequential history each invocation is immediately
followed by its response. The sequential specificationH of a
variable is its set of allowed sequential histories.

A linearization of a concurrent execution f is a history
� ∈ H such that after adding responses to some pending in-
vocations and removing others, � and f consist of the same
invocations and responses and � preserves the order between
non-overlapping operations [28]. If every concurrent execu-
tion has a linearization, we say that the variable is lineariz-
able. For randomized variables we require a stronger property,
called strong linearizability. The qualifier “strong” means that
the linearization points are not determined post-facto, which
is necessary in randomized variables [22].

A relaxed property of a variable is an extension of its se-
quential specification to allow for more behaviors. We adopt
the notion of A-relaxed strong linearizability from [67], a vari-
ant of the relaxation defined by Henzinger et al. [27], brought
here for completeness. Intuitively, an A-relaxed variable al-
lows a query to return a result based on all but at most A
updates that happened before it.

Definition A.1. A sequential history � is an A-relaxation of a
sequential history � ′, if � is comprised of all but at most A of
the invocations in � ′ and their responses, and each invocation
in � is preceded by all but at most A of the invocation that
precede the same invocation in � ′. The A-relaxation ofH is
the set of histories that have A-relaxations inH , denotedH A .

Our SDW protocol is described in §6.3, and its pseudo-code
is presented in Algorithm 1. To prove that Algorithm 1 is A-
relaxed strongly linearizable, we first prove a helper lemma:

Lemma 1. Consider a history � arising from a concurrent
execution of Algorithm 1, and some completed update D ∈ �
executed by ?8 . Let F be the value of F8= during D. Update
D is reflected by every query @ on any ? 9 , in every window
F′ ≥ F +2.

Proof. Let � be a history arising from a concurrent execution
of Algorithm 1, and let D ∈ � be some completed update

executed by ?8 . Let F be the value of F8= during the update’s
execution on ?8 .

Update D is added to >1 9 B[F mod 3] on Line 12. On
Line 39, >1 9 B[(F +2) mod 3] is broadcast to all switches,
specifically to some switch ? 9 (as ?8 retains the update in the
same place that is merges received variables, this holds for
9 = 8).

The next time ? 9 advances on Line 35, it enters window
F′ = F + 2. Note that the variable that was queried in the
previous window (F′−1) is the same variable that reflected
D. This variable is the one queried in round F′, therefore
reflected in round F′ = F +2.

We now prove by induction that in round F′′ = F′+ : , D is
reflected by a query in round F′′ on ? 9 . The base is for : = 0,
and has been prove.

Assume the hypothesis holds forF′+ ;, we prove forF′+ ;+
1. In round F′+ ;, D is reflected by >1 9 [(F′+ ; +1) mod 3].
On Line 37, ? 9 merges this variable into >1 9 [((F′+ ;+1) +1)
mod 3], which is the variable queried in this round.

As this induction is true for all : ≥ 0, it holds for any
F′′ ≥ F′, proving the lemma. �

The following corollary follows directly from Lemma 1:

Corollary 1.1. Let � be a history arising from a concur-
rent execution of Algorithm 1, and let @ ∈ � be some query
completed by ?8 . Let F be the value of F8= during its execu-
tion. Query @ reflects all updates occurring in any window
F′ ≤ F−2.

Note: A system where linearizability holds for sub histo-
ries including a single query is sometimes called Ordered
Sequential Consistency (OSC) [46], this is commonly used in
systems, e.g., ZooKeeper [31].

Finally, we define the operation projection of a history
� and a set of operations $ as the same history containing
only invocations and responses of operations in $. We denote
this � |$ Using these formalisms we can prove the following
theorem:

Theorem 2. Consider a history � arising from a concurrent
execution of Algorithm 1, and some query @ ∈ �. Let * be
the set of updates in �. The history of � |*∪{@ } is A-relaxed
strongly linearizable.

Proof. Let � be a history arising from a concurrent execu-
tion of Algorithm 1, let @ ∈ � be some query by ?8 , and let
* be the set of all updates in �. Denote � |*∪{@ } as � ′. We
show that � ′ is A-relaxed strongly linearizable with respect
to H A , for A = 2#�. To prove this, we show the existing of
two mappings, 5 and 6, such that 5 maps operations in � ′

to visibility points, and 6 maps operations in � ′ to lineariza-
tion points. Intuitively, visibility points are the time in the
execution when an update is visible to a query, i.e., the query
reflects the update. Bounding the number of preceding but
not yet visible updates gives the relaxation.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 189

We show that (1) 5 (� ′) ∈ H , and (2) 6(� ′) is an A relax-
ation of 5 (� ′). Together, this implies the theorem.

The visibility points (5 (� ′)) are as follows:
• For the query, its visibility point is its return.
• For an update returning false at time C, its visibility point

is C.
• For an update returning true at time C, let F be ?8’s value

of F8= at time C. The visibility point is the first time after
C that ?8’s value of F8= is F8=+2.

Note that in the latter case, the visibility point is after the
update returns, so 5 does not preserve real-time order.

The linearization points (6(� ′)) are as follows:
• An update’s linearization point is its return, either true

or false.
• A query’s linearization point is its return.

By definition, the linearization points as defined by 6(� ′)
aren’t decided post-facto – rather the linearization is a pre-
determined point in the execution.

Consider some update D ∈ � ′ executed on some ? 9 that
returns true. Let F be ? 9 ’s value of F8= during its execution.
Let F′ be ?8’s value of F8= during @’s execution. We show
that if F ≤ F′−2, then @ observes D, and if F > F′−2, then
@ doesn’t observe D.

From the definition of Algorithm 1, for any F8=8 on ?8 and
F8= 9 on ? 9 , |F8=8 −F8= 9 | ≤ 1.

If F = F′ − 2, then when ? 9 added D to its local buffers,
it did so to >1 9 [F mod 3]. As |F8=8 − F8= 9 | ≤ 1, ? 9 ad-
vanced at least 1 window from F. When it did so, it sent
>1 9 [F mod 3] to ?8 . In window F′−1, ?8 merges the update
into >1 9 [F′+1 mod 3]. In window F′ this same variable is
queried, thus @ observes D. If F ≤ F′−3, then the update is
merged into some index of the variables array, and is copied
over until it is reflected in all 3 of them, and specifically re-
flected in >1 9 [F′+1 mod 3] in window F′.

If F ≥ F′−1, then when ? 9 added D into its local buffer
it did so to >1 9 [F mod 3]. This update is sent to ?8 only
in window F +1, and therefore isn’t reflected in >1 9 [F′ +1
mod 3] in window F′.

Therefore, @ reflects all updates that return true that hap-
pened during any window F ≤ F′−2. As there are at most
� updates that return true in any window, @ reflects all but at
most 2#� updates that precede it in �. Therefore, 6(� ′) is
an 2#�-relaxation of 5 (� ′).

As the query returns a value based on the updates that
happened before it, and each access to the process local state is
down sequentially, @ returns a value that reflects all successful
updates that happen before it in 5 (� ′). Therefore, 5 (� ′) ∈
H . �

Intuitively, every query returns a value reflecting a sub-
stream of its preceding and concurrent updates, consisting of
all but at most A successful ones. The upper bound A on the
number of “missing” updates is of vast importance, without it

the drift between one switch and another can grow in an un-
bounded fashion. For example, consider a counter distributed
among two switches running an eventually synchronous al-
gorithm. One switch can increment the counter an arbitrarily
large number of times, while the other returns 0 on every
query – the promise of eventual synchrony is too weak.

Theorem 2 ensures that every history consisting of a single
query and all updates is A-relaxed strongly linearizable, which
in many cases preserves some relaxation of the error bounds.
For example, Rinberg et al. [67] show that, under a weak ad-
versary, a K-Minimum Value (KMV) \ sketch [5] has an error
of at most twice that of the sequential one. Another example
is a relaxed Quantiles sketch [2], which has an additive error
of A/=− (An)/= with some tuning parameter n , where A is the
relaxation and = is the stream size. Thus, the impact of the
relaxation diminishes as the stream size grows.

190 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 1: Algorithm running on switch ?8 .

1 initialization:
2 win← 0
3 count← 0
4 objs← [>1 9 .8=8C (), >1 9 .8=8C (), >.8=8C ()]
5 buf← {}
6 rcvs← {}
7 acks← {}
8 Function Update(E):
9 if count == � then

// Write variable is full

10 return false
11 else
12 objs [win mod 3] .D?30C4(E) // Add to the write variable

13 count← count+1
14 return true

15

16 Function Query():
17 return objs [(win+1) mod 3] .@D4AH() // Serve query from read variable

18

19 on receive “(>′,F′)” from ? 9 :
// Sync

20 if F′ > win then
21 buf← buf∪ {(>′,F′)} // Buffer messages from future windows

22 else
23 rcvs← rcvs∪ { 9}
24 objs [(win+2) mod 3] .<4A64(>′) // Merge into sync buffer

25 send “ack” to ? 9

26 check_done()

27

28 on receive “ack” from ? 9 :
29 acks← acks∪ { 9}
30 check_done()

31

32 Function check_done():
33 if |rcvs| == = && |acks| == = then
34 count← 0
35 win← win+1 // Rotate right

36 >′← objs [win mod 3]
37 objs [(win+1) mod 3] .<4A64(>′) // Add the updates from window F to the current state

38 objs [win mod 3] ← >.8=8C () // Clear write variable

39 broadcast “(objs [(win+2) mod 3] ,win)” // Send sync message

40 rcvs← {8}
41 acks← {8}
42 forall (>′,F′) in buf do

// Handle buffered messages

43 rcvs← rcvs∪ { 9}
44 objs [(win+2) mod 3] .<4A64(>′)
45 send “ack” to ? 9

46 buf← {}

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 191

Modular Switch Programming Under Resource Constraints

Mary Hogan1, Shir Landau-Feibish2, Mina Tahmasbi Arashloo3, Jennifer Rexford1, and David Walker1

1Princeton University
2The Open University of Israel

3Cornell University

Abstract
Programmable networks support a wide variety of applica-
tions, including access control, routing, monitoring, caching,
and synchronization. As demand for applications grows, so
does resource contention within the switch data plane. Cram-
ming applications onto a switch is a challenging task that
often results in non-modular programming, frustrating “trial
and error” compile-debug cycles, and suboptimal use of re-
sources. In this paper, we present P4All, an extension of P4
that allows programmers to define elastic data structures that
stretch automatically to make optimal use of available switch
resources. These data structures are defined using symbolic
primitives (that parameterize the size and shape of the struc-
ture) and objective functions (that quantify the value gained or
lost as that shape changes). A top-level optimization function
specifies how to share resources amongst data structures or ap-
plications. We demonstrate the inherent modularity and effec-
tiveness of our design by building a range of reusable elastic
data structures including hash tables, Bloom filters, sketches,
and key-value stores, and using those structures within larger
applications. We show how to implement the P4All compiler
using a combination of dependency analysis, loop unrolling,
linear and non-linear constraint generation, and constraint
solving. We evaluate the compiler’s performance, showing
that a range of elastic programs can be compiled to P4 in few
minutes at most, but usually less.

1 Introduction

P4 has quickly become a key language for programming net-
work data planes. Using P4, operators can define their own
packet headers and specify how the data plane should parse
and process them [7]. In addition to implementing traditional
forwarding, routing, and load-balancing tasks, this flexibility
has enabled new kinds of in-network computing that can accel-
erate distributed applications [26, 27] and perform advanced
monitoring and telemetry [10, 11, 17, 30].

All of these applications place demands on switch re-
sources, but for many, the demands are somewhat flexible:

additional resources, typically memory or stages in the PISA
pipeline, improve application performance, but do not neces-
sarily make or break it. For instance, NetCache [27] improves
throughput and latency for key-value stores via in-network
computing. Internally, it uses two main data structures: a
count-min sketch (CMS) to keep track of popular keys, and
a compact key-value store (KVS) to maintain their corre-
sponding values. Increasing or decreasing the size of those
structures will have an impact on performance, but does not af-
fect the correctness of the system—a cache miss may increase
latency, but the correct values will always be returned for a
given key. Other applications, such as traffic-monitoring in-
frastructure, have similar properties. Increasing the size of the
underlying hash tables, Bloom filters, sketches, or key-value
stores may make network monitoring somewhat more precise
but does not typically result in all-or-nothing decisions.

Because resource constraints for these components are flex-
ible, network engineers can, in theory, squeeze multiple differ-
ent applications onto a single device. Unfortunately, however,
doing so using today’s programming language technology is
a challenging and error-prone task: P4 forces programmers
to hardcode their decisions about the size and shape of their
data structures. If the data structure is too large, the program
simply fails to compile and little feedback is provided; if it is
too small, it will compile but the resources will be used subop-
timally. Moreover, structures are not reuseable: a cache, that
fits just fine on a switch alongside a table for IP forwarding,
is suddenly too large when a firewall is added. To squeeze
the cache in, programmers may have to rewrite the internals
of their cache, manually adjusting the number or sizes of the
registers or match-action tables used. To test their work, they
resort to a tedious trial-and-error cycle of rewriting their ap-
plications, and invoking the compiler to see if it can succeed
in fitting the structures into the available hardware resources.

This manual process of tweaking the internal details of data
structures, and checking whether the resulting structures sat-
isfy global constraints, is inherently non-modular: Program-
mers tasked with implementing separate applications cannot
do so independently. Indeed, while the same data structures

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 193

Data Structure Used in
Key-value store/ hash table Precision [6], Sonata [17], Network-

Wide HH [19], Carpe [20], Sketchvi-
sor [23], LinearRoad [25], NetChain [26],
NetCache [27], FlowRadar [30], Hash-
Pipe [41], Elastic Sketch [46]

Hash-based matrix
(Sketch)

AROMA [4], Sketchvisor [23], Sketch-
learn [24], NetCache [27], Nitros-
ketch [31], UnivMon [32], Sharma et
al. [38], Fair Queueing [39], Elastic
Sketch [46]

Bloom filter NetCache [27], FlowRadar [30],
SilkRoad [34], Sharma et al. [38]

Multi-value table BeauCoup [10], Blink [22]
Sliding window sketch PINT [5], Conquest [11]
Ring buffer NetLock [47], Netseer [48]

Figure 1: PISA data structures

appear again and again (see Figure 1 for a selection), the
varying resource constraints makes it difficult to reuse these
structures for different targets or applications.

Elastic Switch Programming. We extend P4 with the abil-
ity to write elastic programs. An elastic program is a single,
compact program that can “stretch” to make use of available
hardware resources or “contract” to squeeze in beside other
applications. Elastic programs can be constructed from any
number of elastic components that each stretch arbitrarily to
fill available space. An elastic NetCache program, for exam-
ple, may be constructed from an elastic count-min sketch and
an elastic key-value store. The programmer can control the
relative stretch of these modules by specifying an objective
function that the compiler should maximize. For example, the
NetCache application could maximize the cache “hit rate” by
prioritizing memory allocation for the key-value store (to store
more of the “hot” keys) while ensuring that enough remains
for the count-min sketch to produce sufficiently accurate es-
timates of key popularity. In addition to memory, programs
could simultaneously maximize the use of other switch re-
sources such as available processing units and pipeline stages.

To implement these elastic programs, we present P4All,
a backward-compatible extension of the P4 language with
several additional features: (1) symbolic values, (2) symbolic
arrays, (3) bounded loops with iteration counts governed by
symbolic values, (4) local objective functions for data struc-
tures, and (5) global optimization criteria. Symbolic values
make the sizes of arrays and other state flexible, allowing
them to stretch as needed. Loops indexed by symbolic val-
ues make it possible to construct operations over elastic data
structures. Objective functions provide a principled way for
the programmer to describe the relative gain/loss from grow-
ing/shrinking individual data structures. Global optimization
criteria make it possible to weight the relative importance of
each structure or application residing on a shared device.

We have implemented a compiler for P4All that operates

M
at

ch
 A

ct
io

n
R

ul
es

Stateful
ALUs

Stateless
ALUs

Pipeline Stages

Pa
ck

et
 H

ea
de

r
Ve

ct
or

Register
Arrays

...

Pa
rs

er

D
ep

ar
se

r

Figure 2: Protocol Independent Switch Architecture (PISA)

in two main stages. First, it computes an upper bound on the
number of possible iterations of loops, so it can produce a
simpler optimization problem over unrolled, loop-free code.
This upper bound is computed by conservatively analyzing the
dependency structure of the loop bodies and their resource uti-
lization. Next, the compiler unrolls the loops to those bounds
and generates a constraint system that optimizes the resource
utilization of the loop-free code for a particular target. We use
the Intel Tofino chip as our target. We evaluate our system
by developing a number of reusable, elastic structures and
building several elastic applications using these structures.
Our experiments show that the P4All compiler runs in a mat-
ter of minutes (or less) and produces P4 programs that are
competitive with hand-optimized code. This paper builds on
our earlier workshop paper [21] by extending the language for
nonlinear objective functions over multiple variables. We also
implement the optimization problem and compiler outlined
in the workshop paper, along with evaluating it with a variety
of data structures.

In summary, we make the following contributions.

• The design of P4All, a backward-compatible extension to
P4 that enables elastic network programming.

• The implementation of an optimizing compiler for P4All.

• A library of reusable elastic data structures, including their
objective functions, and examples of combining them to
create sophisticated applications.

• An evaluation of our system on a range of applications.

2 P4 Programming Challenges

Programming PISA devices is difficult because the resources
available are limited and partitioned across pipeline stages.
The architecture forces programmers to keep track of implicit
dependencies between actions, lay out those actions across
stages, compute memory requirements of each task, and fit the
jigsaw pieces emerging from many independent tasks together
into the overall resource-constrained puzzle of the pipeline.

194 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2.1 Constrained Data-Plane Resources

P4 is designed to program a Protocol Independent Switch Ar-
chitecture (PISA) data plane (Figure 2). Such an architecture
contains a programmable packet parser, processing pipeline,
and deparser. When a packet enters the switch, the parser
extracts information from the packet and populates the Packet
Header Vector (PHV). The PHV contains information from
the packet’s various fields, such as the source IP, TCP port,
etc. that are relevant to the switch’s task, whether it be routing,
monitoring, or load balancing. The PHV also stores additional
per-packet data, or metadata. Metadata often holds temporary
values or intermediate results required by the application. Fi-
nally, the deparser reverses the function of the parser, using
the PHV to reconstitute a packet and send it on its way.

Between parser and deparser sits a packet-processing
pipeline. A program may recirculate a packet by sending
it back to the beginning, but too much recirculation decreases
throughput. Each stage contains a fixed set of resources.

• Pipeline stages. The processing pipeline is composed of a
fixed number (S) of stages.

• Packet header vector (PHV). The PHV that carries infor-
mation from packet fields and additional per-packet meta-
data through the pipeline has limited width (P bits).

• Registers. A stage is associated with M bits of registers (of
limited width) that serve as persistent memory.

• Match-action rules. Each stage stores match-action rules
in either TCAM or SRAM (T bits).

• ALUs. Actions are performed by ALUs associated with a
stage. Each stage has F stateful ALUs (that perform actions
requiring registers) and L stateless ALUs (that do not).

• Hash units. Each stage can perform N hashes at once.

The P4 language helps manage data-plane resources by
providing a layer of abstraction above PISA. A P4 compiler
maps these higher-level abstractions down to the PISA archi-
tecture and organizes the computation into stages. However,
experience with programming in P4 suggests, that while a
good start, the language is simply not abstract enough. It asks
programmers to make fixed choices ahead of time about the
size of data structures and the amount of computation the pro-
grammer believes the compiler can squeeze onto a particular
PISA switch. To do this well, programmers must recognize de-
pendencies between actions, estimate the stages available and
consider the memory layout and usage of their programs—in
short, they must redo many of the jobs of the compiler. These
are difficult jobs to do well, even for world-experts, and next
to impossible for novices. Inevitably, attempts at estimating
resource bounds leads to some amount of trial and error. In
summary, the current development environment requires a lot
of fiddly, low-level work and takes human time and energy
away from innovating at a high level of abstraction.

2.2 Example: Implementing NetCache in P4

To illustrate some of the difficulties of programming with P4,
consider an engineer in charge of upgrading their network to
include a new caching subsystem, based on NetCache [27],
which is designed to accelerate response times for web ser-
vices. NetCache contains two main data structures, a count-
min sketch (CMS) for keeping track of the popularity of the
keys, and a key-value store (KVS) to map popular keys to
values. Like any good programmer, our engineer constructs
these two data structures modularly, one at a time.

First, the engineer implements the CMS, a probabilistic
data structure that uses multiple hash functions to keep ap-
proximate frequencies for a stream of items in sub-linear
space. Intuitively, the CMS is a two-dimensional array of
w columns and r rows. For each packet (x) that enters the
switch, its flow ID (fx) is hashed using r different hash func-
tions ({hi}), one for each row, that range from (1 . . .w). In
each row, the output of the hash function determines which
column in the row is incremented for fx. For example, in the
second row of the CMS, hash function h2 determines that
column (h2(fx)) is incremented. To approximate the number
of times flow fx has been seen, one computes the minimum
of the values stored in columns hi(fx) for all r rows.

The CMS may overestimate the number of occurrences of a
packet x if there are hash collisions. Increasing the size of the
sketch in any dimension—either by adding more rows (i.e.,
additional, different hash functions) or by increasing the range
of the hash functions—can improve accuracy. Our engineer
must decide how to assign resources to the CMS, including
how much memory to allocate and how to divide memory into
rows. This allocation becomes even harder when grappling
with dividing resources between multiple structures.

Figure 3 presents a fragment of a P4 program that imple-
ments a CMS. Lines 1-7 declare the metadata used by the
CMS to store a count at a particular index (a hash of a flow
id). Lines 10-12 declare the low-level data structures (regis-
ters) that actually make up the CMS—four rows (r = 4) of
columns (w = 2048) that can each store values represented by
32 bits. Lines 14-16 and 18-20 declare the actions for hash-
ing/incrementing and for updating the metadata designed to
store the global minimum. Both actions use metadata, another
constrained resource that must be accounted for. The hashing
action is a complex action containing several atomic actions:
(1) an action to hash the key to an index into a register array,
(2) an action to increment the count found at the index, and (3)
an action to write the result to metadata for use later in finding
the global minimum. Such multi-part actions can demand a
number of resources, including several ALUs. As our engi-
neer adds more of these actions to the program, it becomes
increasingly difficult to estimate the resource requirements. In
the apply fragment of the P4 program (lines 22-30), the pro-
gram first executes all the hash actions, computing and storing
counts for each hash function, and then compares those counts

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 195

1 struct custom_metadata_t {
2 bit<32> min ;
3 bit<32> index0 ;
4 bit<32> count0 ;
5 . . .
6 bit<32> index3 ;
7 bit<32> count3 ; }
8 control Ingress (. . .) {
9 /* a register array for each hash table */

10 register<bit<32> >(2048) counter0 ;
11 . . .
12 register<bit<32> >(2048) counter3 ;
13 /* an action to update each hash table */
14 action incr_0 () { . . . }
15 . . .
16 action incr_3 () { . . . }
17 /* an action to set the minimum */
18 action min_0 () {meta . min = meta . count0 ; }
19 . . .
20 action min_3 () { . . . }
21 /* execute the following on each packet */
22 apply {
23 meta . min = 0 ; /*initialize global min*/
24 /* compute hashes */
25 incr_0 () ; . . . incr_3 () ;
26 /* compute minimum */
27 if (meta . count0 < meta . min) { min_0 () ; }
28 . . .
29 if (meta . count3 < meta . min) { min_3 () ; }
30 } }

Figure 3: Count-Min Sketch in P416

to each other looking for the minimal one.
Upon reviewing this code, some of the deficiencies of P4

should immediately be apparent. First, there is a great deal
of repeated code: Repeated data-structure definitions, action
definitions, and invocations of those action definitions in the
apply segment of the program. Good programming languages
make it possible to avoid repeated code by allowing program-
mers to craft reusable abstractions. Avoiding repetition in
programming has all sorts of good properties including the
fact that when errors occur or when changes need to be made,
they only need to be fixed/made in one place. Effective ab-
stractions also help programmers change the number or nature
of the repetitions easily. Unfortunately, P4 is missing such
abstractions. One might also notice that the programmer had
to choose magic constants (like 2048) and test whether such
constants lead to programs that can be compiled or not.

3 Elastic Programming in P4All

P4All improves upon P4 by making it possible to construct
and manipulate elastic data structures. These data structures
may be developed modularly and combined, off-the-shelf, to
build efficient new applications. In this section, we illustrate
language features by building an elastic count-min sketch and
using it in the NetCache application (see also Figure 4).

1 /* Count -min sketch module */
2 symbolic rows ;
3 symbolic cols ;
4 assume cols > 0 ;
5 assume 0 <= rows && rows < 4 ;
6 struct custom_metadata_t {
7 bit<32> min ;
8 bit<32 >[rows] index ;
9 bit<32 >[rows] count ; }

10 register<bit<32> >(cols) [rows] cms ;
11 action incr () [int index] { . . . }
12 action min () [int index] { . . . }
13 control hash_inc (. . .) {
14 apply {
15 for (i < rows) { incr () [i] ; } } }
16 control find_min (. . .) {
17 apply {
18 for (i < rows) {
19 if (meta . count [i] < meta . min) {
20 min () [i] ; } } } }
21 objective cms_obj {
22 function : scale (3 . 0 / cols) ;
23 step : 100 ; }
24
25 /* Key-value module */
26 symbolic k ; /* number of items */
27 assume k > 0 ;
28 control kv (. . .) { }
29 /* NetCache module */
30 control NetCache (. . .) {
31 apply {
32 hash_inc .apply () ;
33 find_min .apply () ;
34 kv .apply () ; } }
35 objective kvs_obj {
36 function : scale (sum (map (lambda y : 1 . 0 /

y,range (1,k+1)))) ;
37 step : 100 ; }
38 maximize 0 . 8*kvs_obj−0 . 2*cms_obj

Figure 4: NetCache and Count-Min Sketch in P4All

3.1 Declare the Elastic Parameters
The first step in defining an elastic data structure is to declare
the parameters that control the “stretch” of the structure. In the
case of the count-min sketch there are two such parameters:
(1) the number of rows in the sketch (i.e., the number of hash
functions), and (2) the number of columns (i.e., the range of
the hash). Such parameters are defined as symbolic values:

symbolic rows ;
symbolic cols ;

Symbolic integers like rows and cols should be thought of
as “some integer”—they are placeholders that are determined
(and optimized for) at compile time. In other words, as in other
general-purpose, solver-aided languages like Boogie [29],
Sketch [42], or Rosette [43], the programmer leaves the choice
of value up to the P4All compiler.

Often, programmers know constraints that are unknown
to the compiler. For instance, programmer experience might
suggest that count-min sketches with more than four hash

196 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

functions offer diminishing returns. Such constraints may be
written as assume statements as follows:

assume 0 <= rows && rows < 4 ;

An assume statement is related to the familiar assert statement
found in languages like C. However, an assert statement fails
(causing program termination) when its underlying condition
evaluates to false. An assume statement, in contrast, always
succeeds, but adds constraints to the system, guaranteeing the
execution can depend upon the conditions assumed.

3.2 Declare Elastic State
The next step in defining an elastic data structure is to declare
elastic state. P4 data structures are defined using a combina-
tion of the packet-header vector (metadata associated with
each packet), registers (updated within the data plane), or
match-action tables (rules installed by the control plane). The
same is true of P4All. However, rather than using constants
to define the extent of the state, one uses symbolic values, so
the compiler can optimize their extents for the programmer.

In the count-min sketch, each row may be implemented
as a register array (whose elements, in this case, are 32-bit
integers used as counters). The number of registers in each
register array is the number of columns in a row. In P4All, we
define this matrix as a symbolic array of register arrays:

register<bit<32> >(cols) [rows] cms ;

In this declaration, we have a symbolic array cms, which
contains rows instances of the register type. Each register
array holds cols instances of 32-bit values.

One can also define elastic metadata. For instance, for each
row of the CMS, we need metadata to record an index and
count for that row. To do so, we define symbolic arrays of
metadata as follows. Each element of each array is a 32-bit
field. The arrays each contain rows items.

bit<32 >[rows] index ;
bit<32 >[rows] count ;

3.3 Define Elastic Operations
Because elastic data structures can stretch or contract to fit
available resources, elastic operations over those data struc-
tures must do more or less work in a corresponding fashion.
To accommodate such variation, P4All extends P4 with loops
whose iteration count may be controlled by symbolic values.

The count-min sketch of our running example consists
of two operations. The first operation hashes the input rows
times, incrementing the result found in the CMS at that lo-
cation, and storing the result in the metadata. The second
iterates over this metadata to compute the overall minimum
found at all hash locations. Each operation is implemented
using symbolic loops and is encapsulated in its own control
block. The code below illustrates these operations.

/* actions used in control segments */
action incr () [int i] { . . . }
action min () [int i] { . . . }
/* hash and increment */
control hash_inc (. . .) {
apply {

for (i < rows) {
incr () [i] ; } } }

/* find global minimum */
control find_min (. . .) {
apply {
for (i < rows) {

if (meta . count [i] < meta . min) {
min () [i] ; } } } }

These simple symbolic iterations (for i < rows) iterate from
zero up to the symbolic bound (rows), incrementing the index
by one each time. The overarching NetCache algorithm can
now call each control block in the ingress pipeline.

control NetCache (. . .) {
apply {

hash_inc .apply (. . .) ;
find_min .apply (. . .) ;
. . . } }

3.4 Specify the Objective Function

Data structures written for programmable switches are valid
for a range of sizes. In the CMS example above, multiple
assignments to rows and cols might fit within the resources
of the switch. Finding the right parameters becomes even
harder when a program has multiple data structures. In the
case of NetCache, after defining a CMS, the programmer still
needs to define and optimize a key-value store.

To automate the process of selecting parameters, P4All
allows programmers to define an objective function that ex-
presses the relationship between the utility of the structure
and its size (as defined by symbolic values). For example, the
CMS gains utility as one increases the cols parameter, because
CMS error rate decreases. The P4All compiler should find
instances of the symbolic values that optimize the given user-
defined function subject to the constraint that the resulting
program can fit within the switch resources.

For example, we can define the hit ratio for the key-value
store as a function of its size for a workload with a Zipfian
distribution. Suppose the key-value store has k items. The
probability of a request to the ith most popular item is 1

iα [9]. In
this case, α is a workload-dependent parameter that captures
the amount of skew in the distribution. Then, for k items, the
probability of a cache hit is the sum of the probabilities for
each item in the key-value store: ∑

k
i=1

1
iα . Hence, in P4All, for

α = 1, we might define the following objective function.

sum (map (lambda y : 1 . 0 / y,range (1,k+1)))

In practice, we have found that non-linear optimization
functions that use division can generate poor quality solu-
tions, perhaps due to rounding errors (at least for the solver,

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 197

Gurobi [18], that we use). Hence, we scale such functions up,
which results in the following optimization function.

scale (sum (map (lambda y : 1 . 0 / y,range (1,k+1))))

Because we supply programmers with a library of reusable
structures and optimization functions for them, non-expert
programmers who use our libraries do not have to concern
themselves with such details.

Similarly, we can define CMS error, ε, in terms of the num-
ber of columns, w, in the sketch. For a workload with parame-
ter α, we can set w = 3(1/ε)1/α [13]. The number of rows in
the CMS does not affect ε, so we may choose to leave it out
of the objective function. However, we can incorporate con-
straints to guarantee a minimum number of rows. The number
of rows, d, in a CMS is used to determine a bound on the confi-
dence, δ, of the estimations in the sketch (d = 2.5ln1/δ) [13].
For α = 1, this objective function is 3.0/cols.

In NetCache, the programmer must decide if either data
structure should receive a higher proportion of the resources.
If the CMS is prioritized, it can more accurately identify heavy
hitters. However, the key-value store may not have sufficient
space to store the frequently requested items. Conversely, if
the CMS is too small, it cannot accurately measure which
keys are popular and should be stored in the cache.

To capture the balance between data structures, a program-
mer can combine the objectives of each data structure into
a weighted sum. For the NetCache application, this means
creating an objective function that slightly prioritizes the hit
rate of the key-value store over the error of the CMS:

maximize 0 . 8*kvs_obj−0 . 2*cms_obj

Figure 5 presents the symbolic values and possible objec-
tive functions for different data structures. Each structure has
symbolic values and an objective function derived from the
purpose of the structure, which may vary across applications.
For example, the key-value store used in NetCache [27] acts
as a cache, and the main goal of the algorithm is to maximize
the cache hits. In the case of a collision in the hash table used
in BeauCoup [10], only one of the values is kept , and the
other is discarded, resulting in possible errors. Therefore, the
main goal of the algorithm is to minimize collisions. The pro-
grammer can define the objective function of each structure
based on the specific needs of the system. Existing analyses of
common data structures can assist in defining these functions.
For example, for the Bloom filter, the probability for false
positives in Zipfian-distributed traffic has been analyzed by
Cohen and Matias [12].

Complex Objectives. Some objective functions (e.g.,
CMS) may only include a single symbolic variable, while
others are a function of multiple variables (e.g., Bloom fil-
ter in Figure 5). Because our compiler uses Gurobi [18] in
the back end to solve optimization problems, it is bound by

Gurobi’s constraints. In particular, Gurobi cannot solve com-
plex, non-linear objectives that are functions of multiple vari-
ables directly. As a consequence, we tackle these objectives in
two steps. First, we transform objectives in multiple variables
(say, x and y) into objectives in a single variable (say x), by
choosing a set of possible values of y to consider. We create
a different Gurobi instance for each value of y, solve all the
instances independently (a highly parallelizable task) and find
the global optimum afterwards. Second, we use Gurobi to
implement piece-wise linear approximations of the non-linear
functions. Both of these steps benefit from some user input,
and we have extended P4All to accommodate such input.

To reduce objectives with multiple variables to a single
variable, we allow users to provide a set of points at which
to consider evaluating certain symbolic values. Doing so pro-
vides users some control over the number of Gurobi instances
generated and hence the compilation costs of solving complex
optimization problems. Such sets can be generated via “range
notation” (optionally including a stride, not shown here). For
example, a possible objective function for a Bloom filter de-
pends on the number of bits in the filter as well as the number
of hash functions used. To eliminate the second variable from
the subsequent optimization objective, a programmer can de-
fine the symbolic variable hashes as follows.

symbolic hashes [1 . . 10]

On processing such a declaration, the compiler generates ten
separate optimization problems, one for each potential value
of the hash functions. The compiler chooses the solution
from the instance that generated the optimal objective, and
it outputs the program layout and the concrete values for the
number of hashes and number of bits in the filter.

To reduce non-linear functions to linear ones, piecewise
linear approximations are used. By default, the compiler will
use the simplest such approximation: a single line. Doing
so results in fast compile times, but can lead to suboptimal
solutions. To improve the quality of solution, we allow pro-
grammers to specify the number of linear pieces using a “step”
annotation on their objective function. For instance, on lines
21-23 of Figure 4, the objective for the CMS is defined with
a simple function and a “step” of 100, indicating that a linear
component is created between every 100th value. Increas-
ing the number of linear components in the approximation
can increase the cost of solving these optimization problems.
By providing programmers with optional control, we support
a “pay-as-you-go” model that allows programmers to trade
compile time for precision if they so choose.

4 Compiling Elastic Programs

Inputs to the P4All compiler include a P4All program and a
specification of the target’s resources (i.e., the PISA resource
parameters defined Section 2.1 and the capabilities of the
ALUs). The compiler outputs a P4 program with a concrete

198 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Module Symbolic values Intuition Objective Function
Key-value store/
hash table

Number of rows k NetCache [27]: Maximize cache hits maximize ∑
k
i=1

1
iα

Hash-based
matrix (Sketch)

Num rows d, num columns w NetCache [27] (CMS): Minimize heavy hitter
detection error

minimize ε = (3
w)

α

Bloom filter Num bits m, num hash functions k NetCache [27]: Minimize false positives. Ex-
pected number of items in stream n

minimize (1− e−
kn
m)k

Multi-value table Number of rows k BeauCoup [10]: Minimize collisions. BeauCoup
parameter set B; Probability to insert to table p =
f (α,B); Expected number of items in stream n

minimize (1
k)

n·p

Sliding window
sketch

Num rows d, num columns w, num
epochs t

ConQuest [11]: Maximize epochs and minimize
error

maximize t(1− (3
w)

α)

Ring buffer Buffer length b Netseer [48]: Maximize buffer capacity maximize b

Figure 5: Symbolic values and objective functions for Zipfian distributed traffic with (constant) parameter α.

assignment for each symbolic value, and a mapping of P4 pro-
gram elements to stages in the target’s pipeline. The output
program is a valid instance of the input when the concrete
values chosen to replace symbolic ones satisfy the user con-
straints (i.e., assume statements) as well as the constraints
of the PISA model that is targeted. In addition, loops are
unrolled as indicated given the chosen concrete values. The
output program is an optimal instance, when in addition to
being valid, it maximizes the given objective function.

The P4All compiler first analyzes the control and data de-
pendencies between actions in the program to compute an
upper bound on the number of times each loop can be un-
rolled without exhausting the target’s resources (§4.1). For
example, a for-loop with a dependency across successive it-
erations cannot run more times than the number of pipeline
stages (S). The unrolled program also cannot require more
ALUs than exist on the target ((F +L)∗S).

Next, the compiler generates an integer linear program
(ILP) with variables and constraints that govern the quantity
and placement of actions, registers, and metadata relative to
the target constraints (§4.2). The upper bound ensures this in-
teger linear program is “large enough” to consider all possible
placements of program elements that can maximize the use of
resources. However, the ILP is more accurate than the coarse
unrolling approximation we use. Hence, it may generate a
solution that excludes some of the unrolled iterations—some
of the later iterations may ultimately not “fit” in the data plane
or may not optimize the user’s preferred objective function
when other constraints are accounted for. The resulting ILP
solution is a layout of the program on the target, including
the stage placement and memory allocation, and optimal con-
crete assignments for the symbolic values. Throughout this
section, we use the CMS program in Figure 4 as a running
example. For the sake of the example, we assume that the
target has three pipeline stages (S = 3), 2048b memory per
stage (M = 2048), two stateful and two stateless ALUs per
stage (F = L = 2), and 4096 bits of PHV (P = 4096).

incr_1

incr_2

incr_3

min_1

min_2

min_3

Figure 6: An example dependency graph used for computing upper
bounds for loop unrolling (§4.1).

4.1 Upper Bounds for Loop Unrolling

In its first stage, the P4All compiler finds upper bounds for
symbolic values bounding the input program’s loops. To find
an upper bound for a symbolic value v governing the number
of iterations of some loop, the compiler first identifies all of
the loops bounded by v. It then generates a graph Gv that
captures the dependencies between the actions in each itera-
tion of each loop and between successive iterations. It uses
the information represented in Gv and the target’s resource
constraints to compute the upper bound.

Determining dependencies. When a loop is unrolled K
times, it is replaced by K repetitions of the code in its body
such that in repetition i, each action a in the original body of
the loop is renamed to ai. The compiler constructs the depen-
dency graph Gv based on the actions in the unrolled bodies
of for-loops bounded by v. Each node n in the dependency
graph Gv represents a set An of actions that access the same
register and thus must be placed in the same stage.

Dependency graphs can have (1) precedence edges, which
are one-way, directed edges, and (2) exclusion edges, which
are bidirectional. There is a precedence edge from node n1
to node n2 (indicated with the notation n1 −→ n2) if there
is a data or control dependency from any of the actions rep-
resented by n1 to any of the actions represented by n2. The
presence of the edge n1 −→ n2 forces all actions associated
with n1 to be placed in a stage that strictly precedes the stage
where actions of n2 are placed. In contrast, an exclusion edge
(n1←→ n2) indicates the actions of n1 must be placed in a

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 199

separate stage from the actions of n2 but n1 need not precede
n2. In general, when actions are commutative, but cannot
share a stage, they will be separated by exclusion edges. For
instance, if actions a1 and and a2 both add one to the same
metadata field, they cannot be placed in the same stage, but
they commute: a1 may precede a2 or a2 may precede a1.

Figure 6 shows the dependency graph for rows from our
CMS example. Only the incr_i actions access register arrays,
and they all access different arrays. Thus, each node represents
only one action. There is a precedence edge from incr_i to
min_i as the former writes to the same metadata variable read
by the latter. Thus, incr_i must be placed in a stage preceding
min_i. There are exclusion edges between each pair of min_i
and min_j because they are commutative but write to the same
metadata fields: min_i sets the metadata variable tracking the
global minimum meta.min to the minimum of its current value
and the ith row of the CMS (meta.count[i]).

Computing the upper bound. To compute an upper
bound for loops guarded by v, our compiler unrolls for-loops
bounded by v for increasing values of K, generating a graph
Gv until one of the following two criteria are satisfied:

1. the length of the longest simple path in Gv exceeds the
total number of stages S, or

2. the total number of ALUs required to implement actions
across all nodes in Gv exceeds the total number of ALUs
on the target (i.e., (F +L)∗S).

Once either of the above criteria are satisfied, the compiler can
use the current value of K, i.e., the number of times the loops
have been unrolled, as an upper bound for v. This is because
any simple path in Gv represents a sequence of actions that
must be laid out in disjoint stages. Hence, a simple path longer
than the total number of stages cannot be implemented on
the switch (i.e., criteria 1). Likewise, the switch has only
(F+L)∗S ALUs and a computation that requires more cannot
be implemented (i.e., criteria 2).

Figure 6 presents an analysis of a CMS loop bounded by
rows. Notice that the length of the longest simple path in
Grows will exceed the number of stages (S = 3) when three
iterations of the loop have been unrolled. On the other hand,
when only two iterations of the loop are unrolled, the longest
simple path has length 3 and will fit. Thus, the compiler com-
putes 2 as the upper bound for this loop.

Nested loops. To manage nested loops, we apply the algo-
rithm described above to each loop, making the most conser-
vative assumption about the other loops. For instance, suppose
the program has a loop with nesting depth 2 in which the outer
loop bounded by vout and the inner loop is bounded by vin.
Assume also the valid range of values for both vin and vout
is (1,∞]. The compiler sets vin to one, unrolls the inner loop,
and computes an upper bound for vout as described above.
Next, the compiler sets vout to one, unrolls the outer loop, and
proceeds to compute the upper bound for vin as described

Variables
Actions #1 {xai ,s | 0≤ s < S}
Registers #2 {mri ,s | 0≤ s < S}
Match-Action Tables #3 {tmti ,s | 0≤ s < S}
Metadata #4 {di | i≤Uv}

Constraints
Dependencies

Same-Stage #5 xai ,s = xbi ,ss < S
Exclusion #6 xai ,s ≤ 1− xbi ,s

s < S
Precedence #7 xbi ,y ≤ 1− xai ,z

y,z < S,y≤ z
Conditional #8 ∑0≤s<S xai ,s = ∑0≤s<S xbi,s

0≤ i≤Uv
Resources

Memory #9 ∑i mri ,s ·wri ≤M ∀s < S
#10 mri ,s ≤ xai ,s ·M 0≤ s < S
#11 mri ,s ·w0 = m0,s ·wri

∀s < S,r ≥ 1
TCAM #12 ∑i tmti ,s · twti ≤ T ∀s < S
Stateful ALUs #13 ∑i H f (ai) · xai ,s ≤ F

∀0≤ s < S
Stateless ALUs #14 ∑i Hl(ai) · xai ,s ≤ L

∀0≤ s < S
PHV #15 ∑i di ·bitsd ≤ P−Pfixed

#16 di = ∑0≤s<S xai ,s
if accesses(a,d)

Hash Functions #17 ∑i hhai ,s ≤ N ∀s < S
Others

At Most Once #18 ∑0≤s<S xai ,s ≤ 1
Inelastic Actions #19 ∑0≤s<S xane,s = 1

Figure 7: ILP Summary

above. In theory, heavily nested loops could lead to an explo-
sion in the complexity of our algorithm, but in practice, we
have not found nested loops common or problematic. Only
our SketchLearn application requires nested loops and the
nesting depth is just 2, which is easily handled by our system.

4.2 Optimizing Resource Constraints
After unrolling loops, the compiler has a loop-free program
it can use to generate an integer linear program (ILP) to opti-
mize. Figure 7 summarizes the ILP variables and constraints.
Below, we use the notation #k to refer to the ILP constraint or
variable labeled k in Figure 7.

Action Variables. To control placement of actions, the
compiler generates a set of ILP variables named xai,s (#1).
The variable xai,s is 1 when the action ai appears in stage s of
the pipeline and is 0 otherwise. For instance, in the count-min
sketch, there are two actions (incr and min). If we unroll a
loop containing those actions twice and there are three stages
in the pipeline, we generate the following action variable set.

{xai,s | a ∈ {incr,min}, 1≤ i≤ 2, 0≤ s < S}

Register Variables. In a PISA architecture, any register
accessed by an action must be placed within the same stage.
Thus placement (and size) of register arrays interact with
placement of actions. For each register array r and pipeline

200 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

stage s, the ILP variable mr,s contains the amount of memory
used to represent r in stage s (#2). This value will be zero in
any stage that does not contain r and its associated actions.
For instance, to allocate the cms registers, the compiler uses:

{mcmsi,s |1≤ i≤ 2, 0≤ s < S}

Match-Action Table Variables. These variables represent
the resources used by match-action tables. Similar to register
variables, the variable tmti,s represents the amount of TCAM
used by table ti in stage s (#3). Note that in our current ILP, we
assume that all tables, ones with and without ternary matches,
use TCAM. We plan to extend the ILP so that it can choose
to implement tables without ternary matches in SRAM.

Metadata Variables. The amount of metadata needed is
also governed by symbolic values. If Uv is the upper bound
on the symbolic value that governs the size of a metadata
array, then the compiler generates a set of metadata variables
di for 1≤ i≤Uv (#4). Each such variable will have value 1
in the ILP solution if that chunk of metadata is required and
constraints described later will bound the total metadata to
ensure it does not exceed the target size limits. In our running
example, the bound Uv corresponds to the number of iterations
of the loop that finds the global minimum value in the CMS.

Dependency Constraints. If a set of actions use the same
register, they must be placed on the same stage. To do so,
the compiler adds a same-stage constraint (#5). Similarly,
if an action has a data or control dependency on another
action, the two must be placed in separate stages. If there is
an exclusion edge between actions ai and bi, the compiler
creates a constraint to prevent these actions from being placed
in the same stage (#6). If there is a precedence edge between
actions ai and bi, the compiler creates a constraint forcing ai
to be placed in a stage before bi (#7).

Conditional Constraints. In some cases, as it happens
in our CMS example, multiple loops are governed by the
same symbolic values. Hence, iterations of one loop (and
the corresponding actions/metadata) exist if and only if the
corresponding iterations of the other loop exist. Moreover, if
any action within a loop iteration cannot fit in the data plane,
then the entire loop iteration should not be instantiated at all.
Conditional constraints (#8) enforce these invariants.

Resource Constraints. We generate ILP constraints for
each of the resources listed in §2.1. Our ILP constraints reflect
the memory limit per stage (#9) and the fact that memory and
corresponding actions must be co-located (#10). The compiler
also generates constraints to ensure that each register array in
an array of register arrays has the same size (#11). Moreover,
the ILP includes a constraint to guarantee that the TCAM
tables in a stage fit within a stage’s resources (#12).

To enforce limits on the number of stateful and stateless
ALUs used in each stage, we assume that the target provides
two functions H f (ai) and Hl(ai) as part of the target speci-
fication. These functions specify the number of stateful and
stateless ALUs, respectively, required to implement a given

action ai on the target. Given that information, the compiler
generates constraints to ensure that the total number of ALUs
used by actions in the same stage do not exceed the available
ALUs in a stage (#13, #14).

To track the use of PHV, constraint #15 ensures di is 1
whenever the action ai (which accesses data di) is used in
loop iteration i. To limit the total number of PHV bits, con-
straint #16 sums the size in bits (bitsd) of the metadata d
associated with iteration i and enforces it to be within the
PHV bits available to elastic program components (P−Pfixed,
where Pfixed is the amount of metadata not present in elastic
arrays). Finally, each stage in the PISA pipeline can perform
a limited number of hash functions. To capture that, the com-
piler generates constraint #17, which ensures that the number
of actions including a hash function h in each stage does not
exceed the available number of available hashing units N.

Other Constraints. The compiler generates a constraint so
that each action ai is placed at most once (#18). Moreover, the
compiler ensures that each inelastic action ane (i.e., an action
not encapsulated in a loop bounded by a symbolic value) must
be placed in the pipeline (#19). Finally, any assume statements
appearing in the P4All program are included in the ILP.

4.3 Limitations
Our current ILP formulation assumes each register array and
match-action table can be placed in at most one stage. How-
ever, a PISA target could conceivably spread a single array
or table across multiple pipeline stages. To accommodate
multi-stage arrays or tables, we can relax the ILP constraint
on placing actions in at most one stage (#18).

Moreover, some compilers further optimize the use of the
PHV. For example, after a metadata field has been accessed,
the PHV segment storing that field could be overwritten in
later stages if the metadata were never accessed again. Our
prototype does not yet capture PHV field reuse.

P4All optimizes with mostly static criteria. We do not con-
sider any dynamic components, unless a programmer incor-
porates a workload-dependent parameter in their objective
function. P4All also does not support elastic-width fields or
parameterized packet recirculation. We leave these features,
as well as PHV reuse, for future work.

5 Prototype P4All Compiler

In this section, we describe our prototype P4All compiler,
written in Python.

Target specification. We created a target specification for
the Intel Tofino switch, based on product documentation. The
specification captures the parameters in Section 2.1 and the
H f and Hl functions that specify the number of ALUs re-
quired to implement a given action. Since the Tofino design
is proprietary, our specification unquestionably omits some
low-level constraints not described in the documentation; with

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 201

Applications P4All Compile ILP
Code Time (sec) (Var, Constr)

Linear Objective
IPv4 Forwarding + 217 0.4 (192, 1026)
Stateful Firewall

BeauCoup 541 0.1 (672,7511)
Precision 166 25.7 (1316, 18969)
NetChain 242 27.9 (252, 3278)

Elastic Switch.p4 804 0.2 (1080, 21581)
Non-Linear Objective

Key-value 127 15.4 (168, 857)
store (KVS)
Count-min 82 1.8 (396, 1994)

sketch (CMS)
KVS + CMS 170 27.9 (586, 2815)
(Section §3)
Non-Elastic 853 17.5 (1498, 23575)

Switch.p4 + CMS
SketchLearn 445 2.4 (768, 880)

ConQuest 362 5.8 (612, 3734)
Multivariate Objective

Bloom filter 70 513.6 (longest) (240, 308)
170.0 (avg) (132, 191)

CMS + Bloom 223 67.3 (longest) (658, 2266)
38.1 (avg) (550, 2149)

Figure 8: P4All applications, showing the lines of code in the P4All
implementation. For structures with multiple instances, the last two
columns give statistics for the single instance with the longest com-
pile time and the average of all instances.

knowledge of such constraints, we could augment our target
specification and optimization framework to handle them.

Compute upper bounds for symbolic values. To com-
pute upper bounds and unroll loops, our prototype must an-
alyze P4 dependencies. To facilitate this, we use the Lark
toolkit [1] for parsing. We have also written a Python pro-
gram that finds dependencies between actions and tables and
outputs the information in a format our ILP can ingest. At
the moment, we only produce precedence edges. As a re-
sult, we do not process exclusion edges, treating all edges as
precedence edges. We plan to upgrade this in the future.

Generate and solve ILP. Our prototype generates the ILP
with variables and constraints in Figure 7, as well as the ob-
jective function. We then invoke the Gurobi Optimizer [18]
to compute a concrete assignment for each symbolic value.
We then use these values to generate the unrolled P4 code.

P4 compiler. After the compiler converts the P4All pro-
gram into a P4 program, we invoke the (black box) Tofino
compiler to compile the P4 program for execution on the
underlying Tofino switch. If our experiments initially fail
to compile to the Tofino switch because of proprietary con-
straints, we adjust our target specification and added assume

statements to further constrain the memory allocated to reg-
ister arrays. Ideally, the P4All compiler would be embedded
within a target-specific compiler to automatically incorporate
the proprietary constraints, without our needing to infer them.

Tofino sta
ges

1.25xTofino stg
s

1.67xTofino stg
s

2xTofino stg
s

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

IL
P

Co
m

po
ne

nt
s

Dependency Constraints
Other Constraints
Resource Constraints
Variables

(a) Number of ILP variables and constraints for CMS as stages increase.
Num Stages ILP Time (s)

Tofino 1.8
1.25xTofino 4.5
1.67xTofino 53.1

2xTofino 216.0

(b) ILP completion time for CMS as stages increase.

Figure 9: ILP performance as number of available stages increases.

6 Performance Evaluation

6.1 Compiler Performance

Figure 8 reports the sizes of the constraint systems, and the
compile times, for benchmark applications when compiled
against our Tofino resource specification. We choose appli-
cations with a variety of features, including elastic TCAM
tables (Switch.p4), multivariate objectives (Bloom filter), elas-
tic and non-elastic components (IPv4 forwarding and stateful
firewall), and multiple elastic components (KVS and CMS,
CMS and Bloom filter). In our experiments, we found that the
choice of objective function greatly impacts performance. For
example, a non-convex objective function results in a mixed
integer program (MIP) instead of an ILP, which significantly
increases solving time. On the other hand, our applications
with linear objective functions (e.g., Switch.p4, BeauCoup)
typically had smaller compile times. Additionally, increasing
the step size for an objective (i.e., reducing the number of
values provided to the ILP) decreases compile time.

For the data structures we evaluated with objective func-
tions with multiple variables (e.g., Bloom filter), our compiler
created multiple instances of the optimization problem. We
report the average compile time and the average number of
ILP variables and constraints for each instance, along with the
statistics for the largest instance. Our prototype compiler is
not parallelized, but could easily be in the future, allowing us
to solve many (possibly all) instances at the same time. Com-
pile times of each ILP instance for the Bloom filter application
range from roughly one second to 8.5 minutes.

Compile time increases as we increase the number of elastic
elements in a P4All program. We evaluate ILP performance
by observing the solving time as we increase the number of
elastic elements in a program. Compilation for a single elastic
sketch completed in about 10 seconds, while compilation for

202 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) CMS error rate as memory increases.

10000 20000 30000 40000 50000 60000 70000 80000
Registers per Stage (bits)

0

20

40

60

80

100

Da
ta

 st
ru

ct
ur

e
siz

e(
Kb

)

CMS (objective 1)
KV (objective 1)
CMS (objective 2)
KV (objective 2)

(b) CMS and KVS sizes for different objectives. (c) Bloom filter false positive vs. # hash functions.

Figure 10: Elasticity of P4All

four sketches took over 30 minutes.
The number of constraints also affects compile time. The

Bloom filter had the fewest ILP constraints, as it had no de-
pendent components, and it alone had the largest compilation
time. The reason for this is that the smaller number of con-
straints may lead to a more difficult optimization problem.

When we increase the available resources on the target, we
generate a larger optimization problem, with more variables
and constraints. Figure 9a the change in the number of con-
straints and variables as we increase the number of available
stages on the target. Most of the resource and other constraints
(e.g., TCAM size, hash units, at most once, etc.) are linearly
proportional to the stages. The dependency constraints are
the only constraints that do not increase linearly with the
stages. For a single P4All action, we create an ILP variable
for each stage. However, the variables for CMS are not lin-
early proportional to the stages because as we increase stages,
the upper bound on the actions also increases, resulting in
more variables. Similarly, the ILP completion time increases
super linearly with the number of stages (Figure 9b).

Some applications may have both elastic and non-elastic
components. In our evaluations, we found that this did not sig-
nificantly impact compile time. When we combined an elas-
tic CMS and Switch.p4 (with fixed-size TCAM tables), the
compile time was 17 seconds. Our compiler requires that all
non-elastic portions of the program get placed on the switch,
or the program will fail to compile.

Hand-written vs P4All-generated P4 To investigate
whether P4All-generated P4 was competitive with hand-
written P4, we examined a few P4 programs written by hand
by other programmers and compared those programs with
the P4 code generated from P4All. When we compare the
number of registers used by the manually-written BeauCoup
and the P4All-generated BeauCoup, we find they are exactly
the same. ConQuest is made up of sketches, so we use the
same objective function described in §3. With that function,
our compiler tries to allocate as many registers as possible,
and allocates all available space to sketches, as more registers
means lower error. Examining the ConQuest paper in more
depth, however, shows that the accuracy gains are minimal

after a certain point (2048 columns). To account for this, we
easily adjust the objective function, and as a result, the com-
piled code uses exactly 2048 columns as in the original. This
experiment illustrates the power of P4All beautifully. On one
hand, our first optimization function is highly effective—it
uses up all available resources. On the other hand, when new
information arrives, like the fact that empirically, there are
diminishing returns beyond a certain point, we need only ad-
just the objective function to reflect our new understanding of
the utility. None of the implementation details need change.
While this analysis is admittedly ad hoc, our findings here sug-
gest that P4All does not put programmers at a disadvantage
when it comes to producing resource-efficient P4.

6.2 Elasticity
In this section we measure how utility of data structures vary
as resources are made available. Figure 10a shows how the
error rate of a CMS decreases as we increase the available
registers in each stage. Figure 10b shows how the sizes of a
KVS and CMS change for different objective functions. We
use the objective functions for KVS hit rate and CMS error
rate as described in Figure 5. The first objective function 0.8∗
(kv_ob j)−0.2∗ (cms_ob j) gives a higher weight to the KVS
hit rate, while the second 0.2 ∗ (kv_ob j)− 0.8 ∗ (cms_ob j)
gives a higher weight to the CMS error rate.

For multi-variate functions, the compiler generates multiple
instances of the optimization problem, and chooses the solu-
tion to the instance with the best objective. In Figure 10c, we
show the objective (false positive rate) from the instances of
optimization for a Bloom filter. In each instance, the compiler
increases the number of hashes used. The objective decreases
for each instance, but not by much after the first instance.

6.3 Case Study
In a conversation with a major cloud provider, the researchers
expressed interest in hosting a multiple applications on the
same network device, which must include forwarding logic.
We designed P4All for exactly such scenarios—elastic struc-
tures allow new applications to fit onto a shared device. We
consider a simple case study oriented around this problem.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 203

Stage 1 Stage 2 Stage 11 Stage 12

CMS
find_min11

CMS
find_min10

CMS
find_min1

CMS incr1 CMS incr2 CMS incr11

. . .

Forwarding Forwarding Forwarding Forwarding

(a) Switch layout with forwarding tables and a CMS.

Stage 1 Stage 2 Stage 11 Stage 12

Forwarding

CMS
find_min11

CMS
find_min10

CMS
find_min1

CMS incr1 CMS incr2 CMS incr11
. . .

ACL

Forwarding Forwarding Forwarding

ACL ACL ACL

Bloom1

Bloom2

(b) Switch layout with forwarding tables, ACL tables, CMS, and Bloom filter
used in stateful firewall.

Figure 11: Switch program layouts.

To do so, we started with the IPv4 forwarding code from
switch.p4, but the size of the table is defined symbolically
in P4All. We then added a CMS for heavy hitter detection.
Figure 11a illustrates the layout: The forwarding tables utilize
all of the TCAM resources, and the CMS uses registers.

Next, to demonstrate the flexibility and modularity of our
framework, we add access control lists (ACLs), which use
match-action tables, and squeeze in a stateful firewall, using
Bloom filters, similar to the P4 tutorials [2]. Using P4, the
programmer would manually resize the CMS and forwarding
tables so the new applications could fit on the switch, but by
using P4All, we do not have to change our existing code at all.
To write ACLs with elastic TCAM tables, we modify the code
in switch.p4 to include symbolic table sizes. Our compiler
automatically resizes the elastic structures to fit on the switch,
resulting in the layout in Figure 11b. The forwarding tables
and ACLs now share the match-action table resources, and
the registers in the Bloom filter fit alongside the CMS.

7 Related Work

Languages for network programming. There has been a
large body of work on programming languages for soft-
ware defined networks [3, 14, 37, 44] targeted towards Open-
Flow [33], a predecessor to P4 [7, 36]. OpenFlow only allows
for a fixed set of actions and not control over registers in the
data plane, and so these abstractions are not sufficient for P4.
While P4 makes it possible to create applications over a vari-
ety of hardware targets, it does not make it easy. Domino [40]
and Chipmunk [16] use a high-level C-like language to aid in
programming switches. P4All also aims to simplify this pro-
cess, but we enhance P4 with elastic data structures. Domino
and Chipmunk optimize the data-plane layout for static, fixed-
sized data structures, and P4All optimizes the data structure
itself to make the most effective use of resources.

Using synthesis for compiling to PISA. The Domino
compiler extracts “codelets”, groups of statements that must
execute in the same stage. It then uses SKETCH [42] pro-
gram synthesis to map a codelet to ALUs (atoms in the paper’s
terminology) in each stage. If any codelet violates target con-
straints, the program is rejected. To improve Domino, Chip-
munk [16] uses syntax-guided synthesis to perform an exhaus-
tive search of all mappings of the program to the target. Thus,
it can find mappings that are sometimes missed by Domino.
Lyra [15], extends this notion to a one-big-pipeline abstrac-
tion, allowing the composition of multiple algorithms to be
placed across several heterogeneous ASICs. Nevertheless,
Domino, Chipmunk and Lyra map programs with fixed-size
data structures, while P4All enables elastic data structures.

Compiling to RMT. Jose et al. [28] use ILPs and greedy al-
gorithms to compile programs for RMT [8] and FlexPipe [35]
architectures. These ILPs are part of an all-or-nothing com-
piler which attempts to place actions on a switch based on the
dependencies and the sizes of match-action tables. In contrast,
the P4All compiler allows for elastic structures, which can
stretch or compress according to a target’s available resources.

Programmable Optimization. P2GO [45] uses profile-
guided optimization (i.e., a sample traffic trace, not a static
objective function) to reduce the resources required in a P4
program. P2GO can effectively prune components that are not
used in a given environment; however, if unexpected traffic
turns up later, P2GO may have pruned needed functionality!

8 Conclusion

In this paper, we introduce the concept of elastic data struc-
tures that can expand to use the resources on a hardware target.
Elastic switch programs are more modular than their inelastic
counterparts, as elastic pieces can adjust depending on the
resource needs of other components on the switch. They also
are portable, as they can be recompiled for different targets.

P4All is a backwards-compatible extension of P4 that in-
cludes symbolic values, arrays, loops and objective functions.
We have developed P4All code for a number of reusable mod-
ules and several applications from the recent literature. We
also implement and evaluate a compiler for P4All, demonstrat-
ing that compile times are reasonable and that auto-generated
programs make efficient use of switch resources. We believe
that P4All and our reusable modules will make it easier to im-
plement and deploy a range of future data-plane applications.

Acknowledgments

We thank the anonymous NSDI reviewers and our shepherd
Costin Raiciu for their valuable feedback. This work is sup-
ported by DARPA under Dispersed Computing HR0011-17-
C-0047, NSF under FMiTF-1837030 and CNS-1703493 and
the Israel Science Foundation under grant No. 980/21.

204 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Lark parser. https://github.com/lark-parser/
lark.

[2] Stateful firewall in P4. https://github.com/
p4lang/tutorials/tree/master/exercises/
firewall.

[3] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-
Baptiste Jeannin, Dexter Kozen, Cole Schlesinger, and
David Walker. NetKAT: Semantic foundations for net-
works. In ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 113–126.
ACM, 2014.

[4] Ran Ben Basat, Xiaoqi Chen, Gil Einziger, Shir Landau
Feibish, Danny Raz, and Minlan Yu. Routing oblivious
measurement analytics. In IFIP Networking, pages 449–
457, 2020.

[5] Ran Ben Basat, Sivaramakrishnan Ramanathan, Yuliang
Li, Gianni Antichi, Minlan Yu, and Michael Mitzen-
macher. PINT: Probabilistic in-band network telemetry.
In ACM SIGCOMM, pages 662–680, 2020.

[6] Ran Ben Basat, Xiaoqi Chen, Gil Einziger, and Ori Rot-
tenstreich. Efficient measurement on programmable
switches using probabilistic recirculation. In IEEE In-
ternational Conference on Network Protocols, pages
313–323, Sep. 2018.

[7] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick
McKeown, Jennifer Rexford, Cole Schlesinger, Dan
Talayco, Amin Vahdat, George Varghese, and David
Walker. P4: Programming protocol-independent packet
processors. ACM SIGCOMM Computer Communica-
tion Review, 44(3):87–95, 2014.

[8] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Vargh-
ese, Nick McKeown, Martin Izzard, Fernando Mujica,
and Mark Horowitz. Forwarding metamorphosis: Fast
programmable match-action processing in hardware for
SDN. In ACM SIGCOMM, pages 99–110, 2013.

[9] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott
Shenker. Web caching and Zipf-like distributions: Ev-
idence and implications. In IEEE INFOCOM, pages
126–134, 1999.

[10] Xiaoqi Chen, Shir Landau Feibish, Mark Braverman,
and Jennifer Rexford. BeauCoup: Answering many
network traffic queries, one memory update at a time.
In ACM SIGCOMM, pages 226–239, 2020.

[11] Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jen-
nifer Rexford, Ori Rottenstreich, Steven A. Monetti, and
Tzuu-Yi Wang. Fine-grained queue measurement in the

data plane. In ACM SIGCOMM Conference on Emerg-
ing Networking EXperiments and Technologies, pages
15–29. ACM, 2019.

[12] Saar Cohen and Yossi Matias. Spectral bloom filters. In
ACM SIGMOD, pages 241–252. ACM, 2003.

[13] Graham Cormode and S. Muthukrishnan. Summa-
rizing and mining skewed data streams. In Hillol
Kargupta, Jaideep Srivastava, Chandrika Kamath, and
Arnold Goodman, editors, SIAM International Confer-
ence on Data Mining, pages 44–55. SIAM, 2005.

[14] Nate Foster, Rob Harrison, Michael J. Freedman,
Christopher Monsanto, Jennifer Rexford, Alec Story,
and David Walker. Frenetic: A network programming
language. In ACM SIGPLAN International Conference
on Functional Programming, pages 279–291. ACM,
2011.

[15] Jiaqi Gao, Ennan Zhai, Hongqiang Harry Liu, Rui Miao,
Yu Zhou, Bingchuan Tian, Chen Sun, Dennis Cai, Ming
Zhang, and Minlan Yu. Lyra: A cross-platform language
and compiler for data plane programming on heteroge-
neous ASICs. In ACM SIGCOMM, pages 435–450,
2020.

[16] Xiangyu Gao, Taegyun Kim, Michael D. Wong, Divya
Raghunathan, Aatish Kishan Varma, Pravein Govindan
Kannan, Anirudh Sivaraman, Srinivas Narayana, and
Aarti Gupta. Switch code generation using program
synthesis. In ACM SIGCOMM, page 44–61, 2020.

[17] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feam-
ster, Jennifer Rexford, and Walter Willinger. Sonata:
Query-driven streaming network telemetry. In ACM
SIGCOMM, pages 357–371. ACM, 2018.

[18] Gurobi Optimization. Gurobi optimizer reference man-
ual. http://www.gurobi.com, 2019.

[19] Rob Harrison, Qizhe Cai, Arpit Gupta, and Jennifer Rex-
ford. Network-wide heavy hitter detection with com-
modity switches. In ACM Symposium on SDN Research,
2018.

[20] Rob Harrison, Shir Landau Feibish, Arpit Gupta, Ross
Teixeira, S. Muthukrishnan, and Jennifer Rexford. Carpe
elephants: Seize the global heavy hitters. In ACM SIG-
COMM Workshop on Secure Programmable Network
Infrastructure, pages 15–21, 2020.

[21] Mary Hogan, Shir Landau-Feibish, Mina Tah-
masbi Arashloo, Jennifer Rexford, David Walker, and
Rob Harrison. Elastic switch programming with P4All.
In ACM Workshop on Hot Topics in Networks, page
168–174, 2020.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 205

https://github.com/lark-parser/lark
https://github.com/lark-parser/lark
https://github.com/p4lang/tutorials/tree/master/exercises/firewall
https://github.com/p4lang/tutorials/tree/master/exercises/firewall
https://github.com/p4lang/tutorials/tree/master/exercises/firewall
http://www.gurobi.com

[22] Thomas Holterbach, Edgar Costa Molero, Maria Apos-
tolaki, Alberto Dainotti, Stefano Vissicchio, and Laurent
Vanbever. Blink: Fast connectivity recovery entirely in
the data plane. In USENIX Symposium on Networked
Systems Design and Implementation, pages 161–176,
Boston, MA, February 2019.

[23] Qun Huang, Xin Jin, Patrick P. C. Lee, Runhui Li,
Lu Tang, Yi-Chao Chen, and Gong Zhang. SketchVi-
sor: Robust network measurement for software packet
processing. In ACM SIGCOMM, pages 113–126, 2017.

[24] Qun Huang, Patrick P. C. Lee, and Yungang Bao. Sketch-
learn: Relieving user burdens in approximate measure-
ment with automated statistical inference. In ACM SIG-
COMM, pages 576–590, 2018.

[25] Theo Jepsen, Masoud Moshref, Antonio Carzaniga, Nate
Foster, and Robert Soulé. Life in the fast lane: A line-
rate linear road. In ACM Symposium on SDN Research,
2018.

[26] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster,
Jeongkeun Lee, Robert Soulé, Changhoon Kim, and Ion
Stoica. NetChain: Scale-free sub-RTT coordination. In
USENIX Symposium on Networked Systems Design and
Implementation, pages 35–49, Renton, WA, April 2018.

[27] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soule,
Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion
Stoica. NetCache: Balancing key-value stores with fast
in-network caching. In Symposium on Operating System
Principles, 2017.

[28] Lavanya Jose, Lisa Yan, George Varghese, and Nick
McKeown. Compiling packet programs to reconfig-
urable switches. In USENIX Conference on Networked
Systems Design and Implementation, pages 103–115,
2015.

[29] K. Rustan M. Leino and Philipp Rümmer. A polymor-
phic intermediate verification language: Design and log-
ical encoding. In Javier Esparza and Rupak Majumdar,
editors, International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems,
pages 312–327. Springer Berlin Heidelberg, 2010.

[30] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan
Yu. FlowRadar: A better NetFlow for data centers.
In USENIX Symposium on Networked Systems Design
and Implementation, pages 311–324, Santa Clara, CA,
March 2016.

[31] Zaoxing Liu, Ran Ben Basat, Gil Einziger, Yaron Kass-
ner, Vladimir Braverman, Roy Friedman, and Vyas
Sekar. Nitrosketch: Robust and general sketch-based
monitoring in software switches. In ACM SIGCOMM,
pages 334–350, 2019.

[32] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger,
Vyas Sekar, and Vladimir Braverman. One sketch to
rule them all: Rethinking network flow monitoring with
UnivMon. In ACM SIGCOMM, pages 101–114, 2016.

[33] Nick McKeown, Thomas E. Anderson, Hari Balakrish-
nan, Guru M. Parulkar, Larry L. Peterson, Jennifer Rex-
ford, Scott Shenker, and Jonathan S. Turner. OpenFlow:
Enabling innovation in campus networks. ACM SIG-
COMM Computer Communication Review, 38(2):69–74,
2008.

[34] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun
Lee, and Minlan Yu. SilkRoad: Making stateful layer-4
load balancing fast and cheap using switching ASICs.
In ACM SIGCOMM, pages 15–28, 2017.

[35] Recep Ozdag. Intel® Ethernet Switch FM6000 Series–
Software Defined Networking, 2012. goo.gl/AnvOvX.

[36] P4 Language Consortium. P416 language specifications,
2018. https://p4.org/p4-spec/docs/P4-16-v1.
0.0-spec.pdf.

[37] Cole Schlesinger, Michael Greenberg, and David Walker.
Concurrent NetCore: From policies to pipelines. In
ACM SIGPLAN International Conference on Functional
programming, pages 11–24, 2014.

[38] Naveen Kr. Sharma, Antoine Kaufmann, Thomas An-
derson, Arvind Krishnamurthy, Jacob Nelson, and Si-
mon Peter. Evaluating the power of flexible packet
processing for network resource allocation. In USENIX
Networked Systems Design and Implementation, pages
67–82, March 2017.

[39] Naveen Kr. Sharma, Ming Liu, Kishore Atreya, and
Arvind Krishnamurthy. Approximating fair queueing
on reconfigurable switches. In USENIX Symposium on
Networked Systems Design and Implementation, pages
1–16, Renton, WA, April 2018.

[40] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu,
Changhoon Kim, Mohammad Alizadeh, Hari Balakr-
ishnan, George Varghese, Nick McKeown, and Steve
Licking. Packet transactions: High-level programming
for line-rate switches. In ACM SIGCOMM, pages 15–28,
2016.

[41] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rot-
tenstreich, S. Muthukrishnan, and Jennifer Rexford.
Heavy-hitter detection entirely in the data plane. In
ACM SIGCOMM Symposium on SDN Research, pages
164–176, 2017.

[42] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik,
Sanjit Seshia, and Vijay Saraswat. Combinatorial sketch-
ing for finite programs. In Architectural Support for

206 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

goo.gl/AnvOvX
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.pdf
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.pdf

Programming Languages and Operating Systems, pages
404–415, 2006.

[43] Emina Torlak and Rastislav Bodik. A lightweight sym-
bolic virtual machine for solver-aided host languages. In
ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 530–541, 2014.

[44] Andreas Voellmy, Junchang Wang, Y Richard Yang,
Bryan Ford, and Paul Hudak. Maple: Simplifying SDN
programming using algorithmic policies. In ACM SIG-
COMM, volume 43, pages 87–98, August 2013.

[45] Patrick Wintermeyer, Maria Apostolaki, Alexander Diet-
müller, and Laurent Vanbever. P2GO: P4 profile-guided
optimizations. In ACM Workshop on Hot Topics in Net-
works, page 146–152, 2020.

[46] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi
Gong, Yang Zhou, Rui Miao, Xiaoming Li, and Steve
Uhlig. Elastic sketch: Adaptive and fast network-wide
measurements. In ACM SIGCOMM, pages 561–575,
2018.

[47] Zhuolong Yu, Yiwen Zhang, Vladimir Braverman,
Mosharaf Chowdhury, and Xin Jin. NetLock: Fast, cen-
tralized lock management using programmable switches.
In ACM SIGCOMM, pages 126–138, 2020.

[48] Yu Zhou, Chen Sun, Hongqiang Harry Liu, Rui Miao,
Shi Bai, Bo Li, Zhilong Zheng, Lingjun Zhu, Zhen Shen,
Yongqing Xi, Pengcheng Zhang, Dennis Cai, Ming
Zhang, and Mingwei Xu. Flow event telemetry on pro-
grammable data plane. In ACM SIGCOMM, pages 76–
89, 2020.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 207

Privid: Practical, Privacy-Preserving Video Analytics Queries
Frank Cangialosi , Neil Agarwal , Venkat Arun , Junchen Jiang , Srinivas Narayana , Anand Sarwate , Ravi Netravali

MIT CSAIL Princeton University University of Chicago Rutgers University

privid@csail.mit.edu

Abstract

Analytics on video recorded by cameras in public areas
have the potential to fuel many exciting applications, but
also pose the risk of intruding on individuals’ privacy.
Unfortunately, existing solutions fail to practically resolve
this tension between utility and privacy, relying on perfect
detection of all private information in each video frame—an
elusive requirement. This paper presents: (1) a new notion of
differential privacy (DP) for video analytics, (ρ,K,ǫ)-event-
duration privacy, which protects all private information
visible for less than a particular duration, rather than relying
on perfect detections of that information, and (2) a practical
system called Privid that enforces duration-based privacy
even with the (untrusted) analyst-provided deep neural
networks that are commonplace for video analytics today.
Across a variety of videos and queries, we show that Privid
increases error by 1-21% relative to a non-private system.

1 Introduction

High-resolution video cameras are now pervasive in public
settings [1,3–5,10],with deployments throughout city streets,
in our doctor’s offices and schools, and in the places we shop,
eat, or work. Traditionally, these cameras were monitored
manually, if at all, and used for security purposes, such as
providing evidence for a crime or locating a missing person.
However,steadyadvances in computervision [32,51,53,55,65]
have made it possible to automate video-content analytics
(both live and retrospective) at a massive scale across entire
networks of cameras. While these trends enable a variety of
important applications [2,11,13,14] and fuelmuchwork in the
systems community [26, 30, 40, 43, 44, 47, 48, 54, 73], they also
enable privacy intrusions at an unprecedented level [7, 64].

As a concrete example, consider the operator for a network
of city-owned cameras. Different organizations (i.e., “ana-
lysts”) want access to the camera feeds for a range of needs:
(1) health officials want to measure the fraction of people
wearing masks and following COVID-19 social distancing
orders [38], (2) the transportation department wants to mon-
itor the density and flow of vehicles, bikes, and pedestrians to
determine where to add sidewalks and bike lanes [21], and (3)
businesses are willing to pay the city to understand shopping
behaviors for better planning of promotions [19].
Unfortunately, freely sharing the video with these parties

may enable them to violate the privacy of individuals in the
scene by tracking where they are, andwhen. For example, the
“local business” may actually be a bank or insurance company
thatwants to track individuals’ private lives for their riskmod-
els,whilewell-knowncompanies [17]orgovernmentagencies
may succumb tomission creep [18,20]. Further, any organiza-

tions with good intentions could have employees with mali-
cious intent whowish to spy on a friend or co-worker [15,16].

There is an inherent tension between utility and privacy. In
this paper, we ask: is it possible to enable these (untrusted)
organizations to use the collected video for analytics,
while also guaranteeing citizens that their privacy will be
protected? Currently, the answer is no. As a consequence,
many cities have outright banned analytics on public videos,
even for law enforcement purposes [9, 12].

While a wide variety of solutions have been proposed
(§3), ranging from computer vision (CV)-based obfusca-
tion [23, 60, 68, 70] (e.g., blurring faces) to differential privacy
(DP)-based methods [66, 67], they all use some variant of the
same strategy: find all private information in the video, then
hide it. Unfortunately, the first step alone can be unrealistic
in practice (§3.1); it requires: (1) an explicit specification
of all private information that could be used to identify an
individual (e.g., their backpack), and then (2) the ability to
spatially locate all of that information in every frame of the
video—a near impossible task even with state-of-the-art
CV algorithms [6]. Further, if these approaches cannot find
some private information, they fundamentally cannot know
that they missed it. Taken together, they can provide, at
best, a conditional and brittle privacy guarantee such as
the following: if an individual is only identifiable by their
face, and their face is detectable in every frame of the video
by the implementation’s specific CV model in the specific
conditions of this video, then their privacy will be protected.

This paper takes a pragmatic stance and aims to provide
a definitively achievable privacy guarantee that captures
the aspiration of prior approaches (i.e., individuals cannot be
identified in any frame or tracked across frames) despite the
limitations that plague them. To do this, we leverage two key
observations: (1) a large body of video analytics queries are
aggregations [47, 49], and (2) they typically aggregate over
durations of video (e.g., hours or days) that far exceed the
duration of any one individual in the scene (e.g., seconds or
minutes) [47]. Building on these observations, we make three
contributions by jointly designing a new notion of duration-
based privacy for video analytics, a system implementation
to realize it, and a series of optimizations to improve utility.

Duration-based differential privacy. To remove the
dependence on spatially locating all private information in
each video frame, we reframe the approach to privacy to
instead focus on the temporal aspect of private information
in video data, i.e., how long something is visible to a camera.
More specifically, building on the differential privacy (DP)
framework [37], we propose a new notion of privacy for

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 209

video, (ρ,K,ǫ)-event-duration privacy (formalized in §4.1):
anything visible to a camera less thanK times for less than ρ
seconds each time (“(ρ,K)-bounded”) is protected with ǫ-DP.
The video owner expresses their privacy policy using (ρ,K),
whichwe argue is powerful enough to capturemany practical
privacy goals. For example, if they choose ρ= 5min, anyone
visible for less than 5minutes is protectedwith ǫ-DP,which in
turn prevents tracking them.We discuss other policies in §4.2.

This notion of privacy has three benefits. First, it decouples
the definition of privacy from its enforcement. The enforce-
ment mechanism does not need to make any decisions about
what is private or find private information to protect it; ev-
erything (private or not) captured by the bound is protected.
Second,a (ρ,K)boundthatcapturesa setof individuals implic-
itly captures and thus protects any information visible for the
same (or less) time without specifying it (e.g., an individual’s
backpack, or even their gait). Third, protecting all individuals
in a video scene requires only their maximum duration, and
estimating this value is farmore robust to the imperfections of
CV algorithms than precisely locating those individuals and
their associated objects in each frame. For example, even if a
CV algorithmmisses individuals in some frames (or entirely),
it can still capture a representative sample and piece together
trajectories well enough to estimate their duration (§4.2).

Privid: a differentially-private video analytics system.
Realizing (ρ, K, ǫ)-privacy (or more generally, any DP
mechanism) in today’s video analytics pipelines faces several
challenges. In traditional database settings, implementing
DP requires adding random noise proportional to the
sensitivity of a query, i.e., the maximum amount that any
one piece of private information could impact the query
output. However, bounding the sensitivity is difficult in video
analytics pipelines because (1) pipelines typically operate as
bring-your-own-query-implementation to support the wide-
ranging applications described earlier [22,25,26,28,29,39,41],
and (2) these implementations involve video processing algo-
rithms that increasingly relyondeepneuralnetworks (DNNs),
which are notoriously hard to inspect or vet (and thus, trust).

To bound the sensitivity necessary for (ρ,K,ǫ)-privacy
while supporting “black-box” analyst-provided query imple-
mentations (including DNNs), Privid only accepts analyst
queries structured in the following split-process-aggregate for-
mat (§5.2): (i) videos are split into temporally-contiguous
chunks, (ii) each chunk of video is processed by an arbi-
trary analyst-provided processing program to produce an
(untrusted) table, (iii) values in the table are aggregated (e.g.
averaged) to compute a result, and (iv) noise is added to the
result before release. The key in this pipeline is step (ii): we
treat the analyst-provided program as an arbitrary Turing
machinewith restricted inputs (a single chunkof video frames
and somemetadata) and restricted outputs (rows of a table).
As a result, only one chunk can contribute to the value of each
row, andwe knowwhich chunk generated each row. If an indi-
vidual is (ρ,K)-bounded, the number of chunks they appear

in is bounded, and thus the number of rows their presence can
affect is bounded aswell.With a boundon the numberof rows,
we can apply classic differential privacy techniques (§5.5).

Optimizations for improved utility. To further enhance
utility, Privid provides two video-specific optimizations to
lower the required noise while preserving an equivalent level
of privacy: (i) the ability to mask regions of the video frame,
(ii) the ability to split frames spatially into different regions,
andaggregate results from these regions. These optimizations
result in limiting the portion of the aggregate result that any
individual’s presence can impact, enabling a “tighter” (ρ,K)
bound and in turn a higher quality query result.

Evaluation. We evaluate Privid using a variety of public
videos and a diverse range of queries inspired by recent work
in this space. Privid increases error by 1-21% relative to
a non-private system, while satisfying an instantiation of
(ρ,K,ǫ)-privacy that protects all individuals in the video. We
discuss ethics in §9. Source code and datasets for Privid are
available at https://github.com/fcangialosi/privid.

2 Problem Statement

2.1 Video Analytics Background

Video analytics pipelines are employed to answer high-level
questions about segments of video captured from one or
more cameras and across a variety of time ranges. Example
questions include “how many people entered store X each
hour?” or “which roads suffered from the most accidents
in 2020?” (see §7.2 and Table 3 for more specific examples).
A question is expressed as a query, which encompasses all
of the computation necessary to answer that question.1

For example, to answer the question “what is the average
speed of red cars traveling along road Y?”, the “query” would
include an object detection algorithm to recognize cars, an
object tracking algorithm to group them into trajectories, an
algorithm for computing speed from a trajectory, and logic
to filter only the red cars and average their speeds.

2.2 ProblemDefinition

Video analytics pipelines broadly involve four logical roles
(though any combination may pertain to the same entity):

• Individuals, whose behavior and activity are observed
by the camera.

• Video Owner (VO), who operates the camera and thus
owns the video data it captures.

• Analyst, who wishes to run queries over the video.
• Compute Provider, who executes the analyst’s query.

In this work, we are concerned with the dilemma of a VO.
The VOwould like to enable a variety of (untrusted) analysts
to answer questions about its videos (such as those in §2.1),
as long as the results do not infringe on the privacy of the
individuals who appear in the videos. Informally, privacy

1Our definition is distinct from related work, which defines a query as
returning intermediate results (e.g., bounding boxes) rather than the final
answer to the high-level question.

210 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/fcangialosi/privid

“leakage” occurs when an analyst can learn something about
a specific individual that they did not know before executing
a query. To practically achieve these properties, a system
must meet three concrete goals:

1. Formal notion of privacy. The system’s privacy
policies should formally describe the type and amount
of privacy that could be lost through a query. Given
a privacy policy, the system should be able to provide
a guarantee that it will be enforced, regardless of
properties of the data or query implementation.

2. Maximize utility for analysts. The system should
support queries whose final result does not infringe on
the privacy of any individuals. Further, if accuracy loss
is introduced to achieve privacy for a given query, it
should be possible to bound that loss (relative to running
the same query over the original video, without any
privacy preservingmechanisms). Without such a bound,
analysts would be unable to rely on any provided results.

3. “Bring Your Own Model”. Computer vision models
are at the heart of modern video processing. However,
there is not one or even a discrete set of models for
all tasks and videos. Even the same task may require
different models, parameters, or post-processing steps
when applied to different videos. Inmany cases, analysts
will want to use models that they trained themselves,
especially when training involves proprietary data.
Thus, a systemmust allow analysts to provide their own
video-processing models.

It is important to note that the class of analytics queries
we seek to enable are distinct from security-oriented queries
(e.g., finding a stolen car or missing child), which require

identification of a particular individual, and are thus directly
at odds with individual privacy. In contrast, analytics queries
involve searching for patterns and trends in large amounts of
data; intermediate steps may operate over the data of specific
individuals, but they do not distinguish individuals in their
final aggregated result (§2.1).

2.3 Threat Model

The VO employs a privacy-preserving system to handle
queries about a set of cameras it manages; the system retains
full control over the video data, analysts can only interact
with it via the query interface. The VO does not trust the
analysts (or their query implementation code). Any number
of analysts may be malicious and may collude to violate the
privacy of the same individual. However, analysts trust the
VO to be honest. Analysts are also willing to share their query
implementation (so that the VO can execute it). The VO views
this code as an untrusted blackbox which it cannot vet.

Analysts pose queries adaptively (i.e., the full set of queries
is not known ahead of time, and analysts may utilize the
results of prior queries when posing a new one). A single
query may operate over video from multiple cameras. We
assume the VO has sufficient computing resources to execute

the query, either via resources that they own, or through the
secure use of third-party resources [62].

The system releases some per-camera metadata publicly
(§8.1), including a sample video clip. The resulting leak is
interpretable and can be minimized by the VO. The system
protects all other information with a formal guarantee of
(ρ,K,ǫ)-privacy (Def 4.3).

3 Limitations of RelatedWork

Before presenting our solution, we consider prior privacy-
preserving mechanisms (both for video and in general). Un-
fortunately, each fails to satisfy at least one of the goals in §2.2.

3.1 Denaturing

The predominant approach to privacy preservation with
video data is denaturing [23, 34, 60, 68, 70, 72], whereby
systems aim to obscure (e.g., via blurring [23] or blocking [68]
as in Fig. 1) any private information in the video before
releasing it for analysis. In principle, if nothing private is left
in the video, then privacy concerns are eliminated.

The fundamental issue is that denaturing approaches
require perfectly accurate and comprehensive knowledge of
the spatial locations of private information in every frame of
a video. Any private object that goes undetected, even in just
a single frame, will not be obscured and thus directly leads
to a leakage of private information.

To detect private information, one must first semantically
definewhat is private, i.e., what is the full set of information
linked, directly or indirectly, to the privacy of each individual?
While some information is obviously linked (e.g., an individ-
ual’s face), it is difficult to determine all such information
for all individuals in all scenarios. For instance, a malicious
analyst may have prior information that a VO does not, such
as knowledge that a particular individual carries a specific
bag or rides a unique bike (e.g., Fig. 1-B). Further, even with a
semantic definition, detecting private information is difficult.
State-of-the-art computer vision algorithms commonly miss
objects or produce erroneous classification labels in favorable
video conditions [74]; performance steeply degrades in more
challenging conditions such as poor lighting, distant objects,
and low resolution, all of which are common in public video.
Taken together, the problem is that denaturing systems
cannot guarantee whether or not a private object was left in
the video, and thus fail to provide a formal notion of privacy
(violating Goal 1).

Denaturing also falls short from the analyst’s perspective.
First, it inherently precludes (safe) queries that aggregate over
private information (violating Goal 2). For example, an urban
planner may wish to count the number of people that walk in
front of cameraA and then camera B. Doing so requires identi-
fying and cross-referencing individuals between the cameras
(which is not possible if they have been denatured), but the ag-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 211

A

B

A

B

C

Figure 1: A video clip after (silhouette) denaturing exemplifying

some of its shortcomings: (A) entirely missed detections, (B)

potentially-identifying objects not incorporated in privacy

definition, (C) silhouette may reveal gait.

gregate countmay be large and safe to release.2 Second, obfus-
cated objects are not naturally occurring and thus video pro-
cessing pipelines are not designed to handle them. If the ana-
lyst’sprocessingcodeandmodelshavenotbeen trainedexplic-
itly on the type of obfuscation the VO is employing, it may be-
have in unpredictable and unboundedways (violating Goal 2).

3.2 Differential Privacy

Differential Privacy (DP) is a strong formal definition of
privacy for traditional databases [37]. It enables analysts to
compute aggregate statistics over a database,while protecting
the presence of any individual entry in the database. DP is
not a privacy-preserving mechanism itself, but rather a goal
that an algorithm can aim to satisfy. Informally speaking, an
algorithm satisfies DP if adding or removing an individual
from the input database does not noticeably change the
output of computation, almost as if any given individual were
not present in the first place. More precisely,

Definition 3.1. Two databasesD andD′ are neighboring
if they differ in the data of only a single user (typically, a
single row in a table).

Definition 3.2. A randomized algorithm A is ǫ-
differentially private if, for all pairs of neighboring databases
(D,D′) and all S⊆Range(A):

Pr[A(D)∈S]≤eǫPr[A(D′)∈S] (3.1)

A non-private computation (e.g., computing a sum of bank
balances) is typically made differentially private by adding
random noise sampled from a Laplace distribution to the
final result of the computation [37]. The scale of noise is set
proportional to the sensitivity (∆) of the computation, or the
maximum amount by which the computation’s output could
change due to the presence/absence of any one individual. For
instance, suppose a database contains a value vi∈V for each
user i, where l≤vi≤u. If a query seeks to sum all values inV ,
any one individual’s vi can influence that sum by atmost∆=
u−l, and thus adding noise with scale u−lwould satisfy DP.

Challenges.Determining the sensitivity of a computation is
the key ingredient of satisfying DP. It requires understanding

2As a workaround, the VO could annotate denatured objects with
query-specific information, but this would conflict with Goal 3.

(a) how individuals are delineated in the data, and (b) how the
aggregation incorporates information about each individual.
In the tabular data structures that DP was designed for, these
are straightforward. Each row (or a set of rows sharing a
unique key) typically represents one individual, and queries
are expressed in relational algebra, which describes exactly
how it aggregates over these rows. However, these answers
do not translate to video data; we next discuss the challenges
in the context of several applications of DP to video analytics.

Regarding requirement (a), as described in §3.1, it is
difficult and error-prone to determine the full set of pixels in
a video that correspond to each user (including all potentially
identifying objects). Accordingly, prior attempts of applying
DP concepts to video analytics [66, 67] that rely on perfectly
defined and detected private information (via CV) fall short
in the same way as denaturing approaches (violating Goal 1).

Regarding requirement (b), typical video processing algo-
rithms (e.g., ML-based CVmodels) are not transparent about
how they incorporate private objects into their results. Thus,
without a specific query interface, the “tightest” possible
bound on the sensitivity of an arbitrary computation over
a video is simply the entire range of the output space. In this
case, satisfying DP would add noise greater than or equal to
any possible output, precluding any utility (violating Goal 2).

Given that DP is well understood for tables, a natural
idea would be for the VO to use their own (trusted) model
to first convert the video into a table (e.g., of objects in the
video), then provide a DP interface over that table3 (instead of
directly over the video itself). However, in order to provide a
guarantee of privacy, the VOwould need to completely trust
the model that creates the table. This entirely precludes using
a model created by the untrusted analyst (violating Goal 3).

4 Event Duration Privacy

We will first formalize (ρ,K, ǫ)-privacy, then provide the
intuition for what it protects and clarify its limitations.

4.1 Definition

We consider a video V to be an arbitrarily long sequence of
frames, sampled at f frames per second, recorded directly
from a camera (i.e., unedited). A “segment” v⊂V of video is
a contiguous subsequence of those frames. The “duration” of
a segment d(v) is measured in real time (seconds), as opposed
to frames. An “event” e is abstractly anything that is visible
within the camera’s field of view.

As a running example, consider a video segment v in
which individual x is visible for 30 seconds before they enter
a building, and then another 10 seconds when they leave
some time later. The “event” of x’s visit is comprised of one
30-second segment, and another 10-second segment.

3This would be equivalent to adding DP to an existing video analytics
interface, such as [30, 47], which treat the video as a table of objects.

212 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Definition 4.1 ((ρ,K)-bounded events). An event e is
(ρ,K)-bounded if there exists a set of≤K video segments
that completely contain4 the event, and each of these
segments individually have duration≤ρ.

(Ex). The tightest bound on x’s visit is (ρ=30s,K =2). To
be explicit, x’s visit is also (ρ,K)-bounded for any ρ≥ 30s
andK≥2.

Definition 4.2 ((ρ,K)-neighboring videos). Two video
segments v,v′ are (ρ,K)-neighboring if the set of frames in
which they differ is (ρ,K)-bounded.

(Ex). One potential v′ is a hypothetical video in which xwas
never present (but everything else observed in v remained
the same). Note this is purely to denote the strength of
the guarantee in the following definition, the VO does not
actually construct such a v′.

Definition 4.3 ((ρ, K, ǫ)-event-duration privacy). A
randomized mechanismM satisfies (ρ,K,ǫ)-event-duration
privacy 5 iff for all possible pairs of (ρ, K)-neighboring
videos v,v′, any finite set of queriesQ= {q1,q2,...} and all
Sq⊆Range(M(·,q)):

Pr[(M(v,q1),...,M(v,qn))∈Sq1×···×Sqn]≤

eǫPr[(M(v′,q1),...,M(v′,qn)))∈Sq1×···×Sqn]

Guarantee. (ρ,K, ǫ)-privacy protects all (ρ,K)-bounded
events (such asx’s visit to the building) with ǫ-DP: informally,
if an event is (ρ,K)-bounded, an adversary cannot increase
their knowledge of whether or not the event happened by
observing a query result from M. To be clear, (ρ, K, ǫ)-
privacy is not a departure from DP, but rather an extension
to explicitly specify what to protect in the context of video.

4.2 Choosing a Privacy Policy

The VO is responsible for choosing the parameter values
(ρ,K) (“policy”) that bound the class of events they wish
to protect. They may use domain knowledge, employ CV
algorithms to analyze durations in past video from the
camera, or a mix of both. Regardless, they express their goal
to Privid solely through their choice of (ρ,K).

Automatic setting of (ρ,K). The primary reason (ρ,K,ǫ)-
privacy is practical is that, despite their imperfections, today’s
CV algorithms are capable of producing good estimates of the
maximum duration any individuals are visible in a scene. We
provide some evidence of this intuition over three representa-
tive videos from our evaluation. For each video,we chose a 10-
minute segment and manually annotate the duration of each
individual (person orvehicle), i.e., “GroundTruth”, then use

4A set of segments is said to completely contain an event if the event
is not visible in any frames outside of those segments.

5We chose to use ǫ-DP rather than the more general (ǫ, δ)-DP for
simplicity, since the difference is not significant to our definition. Our
definition could be extended to (ǫ,δ)-DP without additional insights.

Figure 2: The results of a state-of-the-art object detection algorithm

(filtered to “person” class) on one frame of urban. The algorithm

misses76%of individuals in the frame,but is still able toproduceacon-

servativeboundon themaximumdurationofall individuals (Table 1).

Video
MaximumDuration % Objects

CVMissedGround Truth CV Estimate

campus 81 sec 83 sec 29%

highway* 316 sec 439 sec 5%

urban 270 sec 354 sec 76%

Table 1: Despite the imperfection of current CV algorithms

(exemplified by % objects they failed to detect), they still produce a

conservative estimate on the duration of any individual’s presence.

*For the purposes of this experiment, we ignored cars that were

parked for the entire duration of the segment.

state-of-the-art object detection and tracking to estimate the
durations and report the maximum (“CV”). Our results, sum-
marized in Table 1, show that, while object detection misses a
non-trivial fraction of bounding boxes, the tracking algorithm
is able to fill in the gaps for enough trajectories to capture
a conservative estimate of the maximum duration. In other
words, for our three videos, using these algorithms to param-
eterize a (ρ,K,ǫ)-private systemwould successfully capture
the duration of, and thus protect the privacy of,all individuals,
while using them to implement any prior approachwould not.

Relaxing the set of private individuals. Sometimes pro-
tecting all individuals is unnecessary. Consider a camera in a
store; employeeswill appear significantly longerandmore fre-
quently than customers (e.g., 8 hours every day vs. 30minutes
once a week), but if the fact that the employees work there
is public knowledge, the VO can pick a policy (with smaller
ρ andK) that only bounds the appearance of customers.

Generic policies.Alternatively, the VO can choose a policy
to place a generic limit on the (temporal) granularity of
queries. Consider a policy (ρ = 5min, K = 1). Suppose
individual x stops and talks to a few people on their way to
work each morning, but each conversation lasts less than 5
minutes. Although the policy does not protectx’s presence or
even the fact that they often stop to chat on theirway towork,
it does protect the timing and contents of each conversation.

4.3 Privacy Guarantees in Practice

In Privid’s implementation of (ρ,K,ǫ)-privacy (described in
the following section), the policy provides a relative reference
point: events that exactly match the policy (i.e., made up
of exactly K segments each of duration ρ) are protected

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 213

with ǫ-DP, while events that are visible for shorter or longer
durations are protected with a proportionally (w.r.t. the
duration) stronger or weaker guarantee, respectively.

Theorem4.1. Consider a camerawith a fixed policy (ρ,K,ǫ).
If an individual x’s appearance in front of the camera is
bound by some (ρ̂, K̂), then Privid effectively protects x

with ǫ̂-DP, where ǫ̂ is O(ρ̂K̂
ρK

)ǫ, which grows (degrades) as

(ρ̂,K̂) increase while (ρ,K,ǫ) are fixed, and the constants do
not depend on the query. We provide a formal proof in §A.1.

For example, given (ρ=1hr,K =1), Privid would protect
an a single 2-hour appearance with ∼ 2ǫ-DP (weaker) or a
single half-hour appearance with∼ 1

2ǫ-DP (stronger).

Graceful degradation. An important corollary of this
theorem is that privacy degrades “gracefully”. As an event’s
ρ̂ increases further from ρ (or K̂ from K), its effective ǫ̂
increases linearly, yielding a progressively weaker guarantee.
(The reverse is true, as ρ̂ and K̂ decrease, it yields a stronger
guarantee). Thus, if ρ̂ (or K̂) is onlymarginally greater than ρ
(orK), then the event is not immediately revealed in the clear,
but rather is protectedwith ǫ̂-DP,which is still aDPguarantee,
only marginally weaker: a malicious analyst has only a
marginally higher probability of detecting x in the worst
case. This in effect relaxes the requirement that (ρ,K) be set
strictly to the maximum duration an individual could appear
in the video to achieve useful levels of privacy. We generalize
and provide a visualization of this degradation in §A.2.

Repeated appearances. The larger the time window of
video a query analyzes, the more instances an individual
may appear within the window, even if each appearance
is itself bounded by ρ. Consider our example individual
x and policy (ρ = 30s, K = 2) from §4.1. In the query
window of a single day d, x appears twice; they are properly
(ρ,K)-bounded and thus the event “x appeared on day d” is
protected with ǫ-DP. Now, consider a query window of one
week; x appears 14 times (2 times per day), so the event “x
appeared sometime this week” is (ρ,7K)-bounded and thus
protected with (weaker) 7ǫ-DP. However, the more specific
event “x appeared on day d” (for any d in the week) is still
(ρ,K)-bounded, and thus still protected with the same ǫ-DP.
In other words, while an analyst may learn that an individual
appeared sometime in a given week, they cannot learn on
which day they appeared. Thus, in order to get greater
certainty, the analyst must give up temporal granularity.

Multiple cameras.When an individual appears in front of
multiple cameras, their privacy guarantees are analogous to
the previous case of repeated appearances in a single camera.
If they appear in front ofN different cameras,where the event
of their appearance in camera i is protected with ǫ̂i-DP, then
the event of their appearance across all the cameras is pro-

tectedwith
∑

iǫ̂i-DP. Suppose for 10 cameras,
∑N

i=1ǫ̂i is large
enough for the adversary to detect their appearancewith high

confidence. Then while the adversary can infer that a per-
son appeared somewhere across the 10 cameras, the adversary
cannot learnwhich cameras they appeared in orwhen; appear-
ances within individual cameras are still protected by ǫ-DP.

5 Privid

In this section,we present Privid, a privacy-preserving video
analytics system that satisfies (ρ,K,ǫ)-privacy (§2.2 Goals
1 and 2) and provides an expressive query interface which
allows analysts to supply their own (untrusted by Privid)
video-processing code (Goal 3).

5.1 Overview

Privid supports aggregation queries, which process a “large”
amount of video data (e.g., several hours/days of video)
and produce a “small” number of bits of output (e.g., a few
32-bit integers). Examples of such tasks include counting
the total number of individuals that passed by a camera in
one day, or computing the average speed of cars observed. In
contrast, Privid does not support a query such as reporting
the location (e.g., bounding box) of an individual or car
within the video frame. Privid can be used for one-off ad-hoc
queries or standing queries running over a long period, e.g.,
the total number of cars per day, each day over a year.

The VO decides the level of privacy provided by Privid.
The VO chooses a privacy policy (ρ,K) and privacy budget (ǫ)
for each camera theymanage. Given these parameters,Privid
provides a guarantee of (ρ,K,ǫ)-privacy (Theorem 5.2) for
all queries over all cameras it manages.

To satisfy the privacy guarantee, Privid utilizes the stan-
dard Laplacemechanism fromDP [37] to add randomnoise to
theaggregatequeryresultbefore returning the result to thean-
alyst. The key technical pieces of Privid are: (i) providing an-
alysts the ability to specify queries using arbitrary untrusted
code (§5.2), (ii) adding noise to results to guarantee (ρ,K,ǫ)-
privacy for a single query (§5.5), and (iii) extending the guar-
antee to handle multiple queries over the same cameras (§5.6).

5.2 PrividQuery Interface

Executionmodel. Privid requires queries to be expressed
using a split-process-aggregatemodel in order to tie the dura-
tion of an event to the amount it can impact the query output.
The target video is split temporally into chunks, then each
chunk is fed to a separate instance of the analyst’s processing
code, which outputs a set of rows. Together, these rows form
a traditional tabular database (untrusted by Privid since it
is generated by the analyst). The aggregation stage runs a
SQL query over this table to produce a raw result. Finally,
Privid adds noise (§5.5) and returns only the noisy result to
the analyst, not the raw result or the intermediate table.

Query contents.A Privid query must contain (1) a block of
statements in a SQL-like language, whichwe introduce below
and call PrividQL, and (2) video processing executables.

214 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(1) PrividQL statements. A valid query contains one or
more of each of the 3 following statements. We provide an
example in §5.7.1 and the full grammar in §E of [33].

• SPLIT statements choose a segment of video (camera, start
and end datetime) as input, and produce a set of video chunks
as output. They specify how the segment should be split into
chunks, i.e., the chunk duration and stride between chunks.

• PROCESS statements take a set of SPLIT chunks as input,
and produce a traditional (“intermediate”) table. They specify
the executable that should process the chunks, the schema of
the resulting table, and themaximumnumber of rows a chunk
can output (max_rows, necessary to bound the sensitivity,
§5.5). Any rows output beyond the max are dropped.

•SELECT statements resemble typical SQLSELECT statements
that operate over the tables resulting from PROCESS state-
ments and output a (ρ,K,ǫ)-private result. Theymust have an
aggregation as the final operation. Privid supports the stan-
dard aggregation functions (e.g.,COUNT,SUM,AVG) and the core
set of typical operators as internal relations. An aggregation
must specify the range of each column it aggregates (just as in
related work on DP for SQL [50]). Each SELECT constitutes at
least one data release: one for a single aggregation ormultiple
for a GROUPBY (one for each key). Each data release receives
its own sample of noise and consumes additional privacy
budget (§5.6). In order to aggregate across multiple video
sources (separate time windows and/or multiple cameras),
the query can use a SPLIT and PROCESS for each video source,
and then aggregate using a JOIN and GROUPBY in the SELECT.

(2) PROCESS executables. Executables take one chunk as
input, and produce a set of rows (e.g., one per object) as output.

5.3 Providing Privacy Despite Blackbox Executables

When running a Privid query, an analyst can observe only
two pieces of information: (1) the query result, and (2) the
time it takes to receive the result.

Query result. In order to link an event’s duration to its
impact on the output, Privid ensures that the output of
processing a chunk i can only be influenced by what is visible
in chunk i (not any other chunk j). Then, an individual can
only impact the outputs of chunks in which they appear, and
the duration of their appearance is directly proportional to
their contribution to the output table.

To achieve this, Privid processes each chunk using a
separate instance of the analyst’s executable, each running
in its own isolated environment. This environment enforces
that the executable can read only the video chunk, camera
metadata, and a random number generator, and can output
only values formatted according to the PROCESS schema.
However, the executable may use arbitrary operations (e.g.,
customMLmodels for CV tasks).

Execution time. To prevent the execution time from leaking
any information, we must add two additional constraints.
First, each chunk must complete and return a value within
a pre-determined time limit T , otherwise a default value is

returned for that chunk (both T and the default value are
provided by the analyst at query time).6 Second, Privid only
returns the final aggregated query result after |chunks| ·T .
By enforcing these constraints, the observed return time is
only a property of the query itself, not the data.

Implementation.Our prototype implementation (described
in §D of [33]) satisfies these requirements using standard
Linux tools. Alternatively, a deployment of Privid could use
related work [8, 24, 35] on strong isolation with low overhead.

5.4 Interface Limitations

Themain limitation ofPrivid’s query interface is the inability
to write queries that maintain state across separate chunks.
However, in most cases this does not preclude queries, it
simply requires them to be expressed in a particular way. One
broad class of such queries are those that operate over unique
objects. Consider a query that counts cars. A straightforward
implementation might detect car objects, output one row for
each object, and count the number of rows. However, if a car
enters the camera view in chunk i and is last visible in chunk
i+n, the PROCESS table will include n rows for the same car
instead of the expected 1. To minimize overcounting, the
executable can incorporate a license plate reader, output
a plate attribute for each car, and then count(DISTINCT

plate) in the SELECT (as in §5.7.1).

Suppose instead the query were counting people, who do
not have globally unique identifiers. To minimize overcount-
ing, thePROCESS executable could choose to output a rowonly
for people that enter the scene during that chunk (and ignore
any people that are already visible at the start of a chunk).

Privid’s aggregation interface imposes some limitations
beyond traditional SQL (detailed in §E of [33], e.g., the SELECT
must specify the range of each column), but these are equiv-
alent to the limitations of DP SQL interfaces in prior work.

5.5 Query Sensitivity

The sensitivity of a Privid query is the maximum amount
the final query output could differ given the presence or
absence of any (ρ,K)-bounded event in the video. This can
be broken down into two questions: (1) what is the maximum
number of rows a (ρ, K)-bounded event could impact in
the analyst-generated intermediate table, and (2) howmuch
could each of these rows contribute to the aggregate output.
We discuss each in turn.

Contribution of a (ρ,K) event to the table.An event that
is visible in even a single frame of a chunk can impact the
output of that chunk arbitrarily, but due to Privid’s isolated
execution environment, it can only impact the output of
that chunk, not any others. Thus, the number of rows a
(ρ, K)-bounded event could impact is dependent on the
number of chunks it spans (an event spans a set of chunks
if it is visible in at least one frame of each).

6Timeouts can impact query accuracy, hence analysts should first profile
their code to select a conservative limit T .

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 215

In the worst case, an event spans the most contiguous
chunks when it is first visible in the last frame of a chunk.
Given a chunk duration c (same units as ρ) a single event seg-
ment of duration ρ can span at mostmax_chunks(ρ) chunks:

max_chunks(ρ)=1+⌈
ρ

c
⌉ (5.1)

Definition 5.1 (Intermediate Table Sensitivity). Consider
a privacy policy (ρ,K), and an intermediate table t (created
with a chunk size of ct and maximum per-chunk rows
max_rowst). The sensitivity of tw.r.t (ρ,K), denoted∆(ρ,K),
is the maximum number of rows that could differ given the
presence or absence of any (ρ,K)-bounded event:

∆(ρ,K)(t)≤max_rowst ·K ·max_chunks(ρ) (5.2)

Proof. In theworst case, none of theK segments overlap, and
eachstarts at the last frameofa chunk. Thus,eachspans a sepa-
ratemax_chunks(ρ)chunks (Eq. 5.1). Foreachofthesechunks,
all of themax_rows output rows could be impacted.

Sensitivity propagation for (ρ,K)-bounded events. Prior
work [45, 50, 57] has shown how to compute the sensitivity
of a SQL query over traditional tables. Assuming that queries
are expressed in relational algebra, they define the sensitivity
recursively on the abstract syntax tree. Beginning with the
maximum number of rows an individual could influence in
the input table, they provide rules for how the influence of
an individual propagates through each relational operator
and ultimately impacts the aggregation function.

Unlike prior work on propagating sensitivity recursively,
the intermediate tables in Privid are untrusted, and thus
require careful consideration to ensure the privacy definition
is rigorously guaranteed. In this work, we determined the set
of operations that can be enabled over Privid’s intermediate
tables, derived the sensitivity for each, and proved their
correctness. Many rules end up being analogous or similar to
those in priorwork, butJOINs are different.Weprovide a brief
intuition for these differences below. Fig. 9 in §B contains
the complete definition for sensitivity of a Privid query.

Privacy semantics of untrusted tables. As an example,
consider a query that computes the size of the intersection
between two cameras, PROCESS’d into intermediate tables t1
and t2 respectively. If∆(t1)=x and∆(t2)=y, it is tempting
to assume ∆(t1 ∩ t2) = min(x, y), because a value needs
to appear in both t1 and t2 to appear in the intersection.
However, because the analyst’s executable can populate the
table arbitrarily, they can “prime” t1 with values that would
only appear in t2, and vice versa. As a result, a value need
only appear in either t1 or t2 to show up in the intersection,
and thus∆(t1∩t2)=x+y.
Theorem 5.1. Privid’s sensitivity definition (Fig. 9, §B)
provides (ρ,K,ǫ)-privacy for a queryQ over V .

We provide the formal proof in §B.

5.6 HandlingMultiple Queries

In traditional DP, the parameter ǫ is viewed as a “privacy
budget”. Informally, ǫ defines the total amount of information
that may be released about a database, and each query
consumes a portion of this budget. Once the budget is
depleted, no further queries can be answered.

Rather than assigning a single global budget to an entire
video, Privid allocates a separate budget of ǫ to each frame
of a video. When Privid receives a query Q over frames
[a,b] requesting budget ǫQ, it only accepts the query if all
frames in the interval [a− ρ,b+ ρ] have sufficient budget
≥ǫQ, otherwise the query is denied (Alg. 1 Lines 1-3). If the
query is accepted, Privid then subtracts ǫQ from each frame
in [a,b], but not the ρmargin (Alg. 1 Lines 4-5). We require
sufficient budget at the ρ margin to ensure that any single
segment of an event (which has duration at most ρ) cannot
span two temporally disjoint queries (§B).

Note thatsinceeachSELECT in aqueryrepresentsa separate
data release, the total budget ǫQ used by a query is the sum of
theǫi usedbyeachofthe iSELECTs. Theanalystcanspecify the
amount of budget theywould like to use for each release (via a
CONSUMING clause,defined in §Eof [33], see example in §5.7.1).

Putting it all together. Algorithm 1 presents a simplified
(single video) version of the Privid query execution process.
We provide the full algorithm in §G of [33].

Algorithm 1: PrividQuery Execution (simplified)

Input :QueryQ, video V , interval [a,b], policy (ρ,K,ǫ)
Output :Query answerA

1 foreach frame f ∈V [a−ρ :b+ρ] do
2 if f.budget<ǫQ then

3 return DENY

4 foreach frame f ∈V [a :b] do
5 f.budget -=Q.budget

6 chunks← Split V [a :b] into chunks of duration c
7 T←Table(schema)

8 foreach chunk∈chunks do
9 rows←F (chunk) // in isolated environment

10 T.append(rows)

11 r← execute PrividQL query S over table T

12 ∆(ρ,K)← compute recursively over the structure of S (§5.5)

13 η←Laplace(µ=0,b= ∆
ǫQ

)

14 A←r+η

Theorem 5.2. Consider an adaptive sequence (§2.3) of n
queriesQ1,...,Qn, each over the same camera C , a privacy
policy (ρC ,KC), and global budget ǫC . Privid (Algorithm 1)
provides (ρC ,KC ,ǫC)-privacy for allQ1,...,Qn.

We provide the formal proof in §B.

216 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

5.7 Example Queries

5.7.1 Benevolent Query

Suppose a VO provides access to camA via Privid, with a
policy (ρ=60s,K=2). The city transportation department
wishes to collect statistics about vehicles passing camA during
October 2021. We formulate two questions as a Privid query:

-- Select 1 month time window from camera, split into chunks

SPLIT camA

BEGIN 10-01-2021/12:00am END 11-01-2021/12:00am

BY TIME 10sec STRIDE 0sec

INTO chunksA;

-- Process chunks using analyst's code, store outputs in tableA

PROCESS chunksA USING traffic_flow.py TIMEOUT 1sec

PRODUCING 20 ROWS

WITH SCHEMA (plate:STRING="", type:STRING="", speed:NUMBER=0)

INTO vehiclesA;

-- S1: Number of unique cars per day

SELECT day,COUNT(DISTINCT plate) FROM vehiclesA WHERE type=="car"

GROUP BY day CONSUMING eps=0.5;

-- S2: Average speed of trucks

SELECT AVG(range(speed, 30, 60)) FROM vehiclesA WHERE type=="truck"

CONSUMING eps=0.5;

The SPLIT selects 1month of video from camA, then divides
the frames into a list of 10-second-long chunks (267k chunks
total). The PROCESS first creates an empty table based on the
SCHEMA (3 columns). Then, for each chunk, it starts a fresh
instance of traffic_flow.py inside a restricted container,
provides the chunkas input,andappends theoutputas rows to
vehiclesA. The executable traffic_flow.py contains off-
the-shelf object detection and trackingmodels, a license plate
reader, and a speed estimation algorithm (source in §F of [33]).

The first SELECT filters all cars, then counts the “distinct”
license plates to estimate the number of unique cars per
day. Each day is a separate data release with an independent
sample of noise. The second SELECT filters all trucks, then
computes the average speed across the entire month of
footage. Ituses the same inputvideoas thefirst select,and thus
draws from the same budget, so in aggregate the two SELECTs
consume ǫ=1.0 budget from all frames in October 2021.

5.7.2 Malicious Query Attempt

Now consider a malicious analyst Mal who wishes to
determine if individual x appeared in front of camA each day.
Assume x’s appearance is bound by the VO’s (ρ,K) policy.

To hide their intent, Mal disguises their query as a traffic
counter,mimickingS1 from the previous example. Theywrite
identical query statements, but their “traffic_flow.py”
instead includes specializedmodels to detectx. Ifx appears, it
outputs 20 rows (the maximum) with random values for each
of the columns, otherwise it outputs 0 rows. This adds 20 rows
to the corresponding daily count for each chunk x appears.

Amplification attempt. Due to the isolated environment
(§5.3), the PROCESS executable can only output rows for a
chunk if x truly appears. It has no way of saving state or com-
municating between executions in order to artificially output
rows for a chunk in which x does not appear. It could output
more than 20 rows for a single chunk, but Privid ignores any
rowsbeyondthePROCESS’s explicitmax (20),so thiswouldnot

increase the count. Increasing the rows per chunk parameter
would also be pointless: Prividwould compute a proportion-
ally higher sensitivity and add proportionally higher noise.

Side channel attempt. The executable could try to encode
the entire contents of a frame in a row of the table, either by
encoding it as a string, or a very large number of individual
integer columns. But in either case, the analyst cannot view
the table directly or even a single row directly, it can only
compute noisy aggregations over entire columns.

Summary. Privid would compute the sensitivity of S1

(identical in both the benevolent and malicious cases) as
∆(60,2)(Q)≤20·2·(1+⌈ 60

10⌉)=280 rows, meaning it would
add noise with scale 280 to each daily count. Regardless of
howMal changes her executable, it cannot output more than
280 rows based on x’s presence. Thus, even if she observed
a non-zero value∼ 280, she could not distinguish whether
it is a result of the noise or x’s appearance.
Mal’s query gets a useless result, because her target (x’s

appearance) was close in duration to the policy. In contrast,
the benevolent query can get a useful result because the
duration of its target (the set of all cars’ appearances) far
exceeds the policy. Privid’s noise will translate toL−1(p=
0.99,u=0,b= ∆

ǫ
= 280

0.5)≤2200 cars with 99% confidence. If,
for example, there are an average of 10 cars in each chunk (and
thus 86000 in one day), 2200 represents an error of±2.5%.

6 Query Utility Optimization

The noise that Privid adds to a query result is proportional to
both the privacy policy (ρ,K) and the range of the aggregated
values (the larger the range, the more noise Privid must
add to compensate for it). In this section we introduce two
optional optimizations that Privid offers analysts to improve
query accuracy while maintaining an equivalent level of
privacy: one reduces the ρ needed to preserve privacy (§6.1),
while the other reduces the range for aggregation (§6.2).

6.1 Spatial Masking

Observation. In certain settings, a few individuals may be
visible to a camera for far longer than others (e.g., those sitting
on a bench or in a car), creating a heavy-tailed distribution
of presence durations. Fig. 3 (top row) provides some
representative examples. Setting (ρ, K) to the maximum

(a) campus (b) highway (c) urban

Figure 3: (Top) Heatmap measuring the maximum time any object

spent in each pixel, noramlized to the max (yellow) per video. (Bot-

tom)The resultingmasksusedforourevaluation,chosen fromthe list

of masks automatically generated using the algorithm in §I of [33].

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 217

0 1 2 3 4 5 6 7 8 9 10 11
Persistence in log(seconds)

0.0

0.1

0.2

0.3

R
el

at
iv

e
Fr

eq
ue

nc
y

4.99x

Original (1.4k people) Masked (1.3k people)

(a) campus

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Persistence in log(seconds)

0.0

0.1

0.2

R
el

at
iv

e
Fr

eq
ue

nc
y

9.65x

Original (48.7k cars) Masked (47.7k cars)

(b) highway

0 1 2 3 4 5 6 7 8 9 10 11 12
Persistence in log(seconds)

0.0

0.1

0.2

R
el

at
iv

e
Fr

eq
ue

nc
y

1.71x

Original (43.3k people) Masked (40.5k people)

(c) urban
Figure 4: The distribution of private objects’ durations (persistence) is heavy tailed. Applying the mask from Fig. 3 significantly lowers

the maximum duration, while still allowing most private objects to be detected. The key denotes the total number of private objects detectable

before and after applying the mask. The dotted lines highlight the maximum persistence, and the arrow text denotes the relative reduction.

duration in such distributions would result in a large amount
of noise needed to protect just those few individuals; all
others could have been protected with a far lower amount of
noise. We observe that, in many cases, lingering individuals
tend to spend the majority of their time in one of a few fixed
regions in the scene, but a relatively short time in the rest of
the scene. For example, a carmay be parked in a spot for hours,
but only visible for 1 minute while entering/leaving the spot.

Opportunity.Maskingfixed regions (i.e., removing thosepix-
els fromall framesprior to running theanalyst’s videoprocess-
ing) in the scene that contain lingering individualswoulddras-
tically reduce the observablemaximum duration of individu-
als’ presence, e.g., the parked car from abovewould be observ-
able for1minute rather thanhours. This, in turn,wouldpermit
a policywith a smallerρ, but an equivalent level of privacy–all
appearances would still be bound by the policy. Of course,
this technique is only useful to an analyst when the remain-
ing (unmasked) part of the scene includes all the information
needed for the query at hand, e.g., if counting cars, masking
sidewalks would be reasonable but masking roads would not.

Optimization.At camera-registration time, instead of pro-
viding a single (ρ,K) policy per camera, the VO can provide a
(fixed) list of a few framemasks and, for each, a corresponding
(ρ,K)policy thatwouldprovide equivalent privacywhen that
mask is applied. At query time, the analyst can (optionally)
choose amask from the list thatwouldminimally impact their
query goal while maximizing the level of noise reduction (via
the tighter (ρ,K) bound). If a mask is chosen, Privid applies
it to all video frames before passing it to the analyst’s PROCESS
executable (theanalystonly“sees” themaskedvideo),anduses
the corresponding (ρ,K) in the sensitivity calculation (§5.5).

To aid the analyst in discovering a useful set of masks (i.e.,
those that reduce (ρ,K) as much as possible using the fewest
pixels), we provide an algorithm in §I.2 of [33]. Regardless
of how they are chosen, the masks themselves are static (i.e.,
the same pixels are masked in every frame regardless of its
contents), and the set of available masks is fixed. Neither
depend on the query or the target video. Further, the mask
itself does not reveal how the analyst generated it or which
specific objects contributed to it, it only tells the analyst that
some objects appear for a long duration in the masked region.

Noise reduction. We demonstrate the potential benefit
of masking on three queries (Q1-Q3) from our evaluation

Video Max(frame) Max(region) Reduction

campus 6 3 2.00×
highway 40 23 1.74×
urban 37 16 2.25×

Table 2: Reduction in max output range from splitting each video

into distinct regions. Reduction shows the factor by which the noise

could be reduced. 2× cuts the necessary privacy level in half.

(Table 3). Given the query tasks (counting unique people
and cars), we chose masks that would maximally reduce ρ
without impacting the object counts; the bottom row of Fig. 3
visualizes our masks. Fig. 4 shows that these masks reduce
maximum durations by 1.71-9.65×. In §I.1 of [33] we show
that masking provides similar benefits for 7 additional videos
evaluated by BlazeIt [47] andMIRIS [30].

Masking vs. denaturing.Although masking is a form of de-
naturing, Privid uses it differently than the prior approaches
in §3.1, in order to sidestep their issues. Rather than attempt-
ing to dynamically hide individuals as theymove through the
scene, Privid’s masks cover a fixed location in the scene and
are publicly available so analysts can account for them in their
query implementation. Also, masks are used as an optional
modification to the input video; the rest of thePrividpipeline,
and thus its formal privacy guarantees, remain the same.

6.2 Spatial Splitting

Observation. (1) At any point in time, each object typically
occupies a relatively small area of a video frame. (2) Many
common queries (e.g., object detections) do not need to
examine the entire contents of a frame at once, i.e., if the
video is split spatially into regions, they can compute the
same total result by processing each of the regions separately.

Opportunity. Privid already splits videos temporally into
chunks. If each chunk is further divided into spatial regions
and an individual can only appear in one of these chunks
at a time, then their presence occupies a relatively smaller
portion of the intermediate table (and thus requires less noise
to protect). Additionally, the maximum duration of each
individual region may be smaller than the frame as a whole.

Optimization.At camera-registration time, Privid allows
VOs to manually specify boundaries for dividing the scene
into regions. They must also specify whether the boundaries
are soft (individuals may cross them over time, e.g., between
two crosswalks) or hard (individuals will never cross them,
e.g., between opposite directions on a highway). At query

218 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

time, analysts can optionally choose to spatially split the
video using these boundaries. Note that this is in addition to,
rather than in replacement of, the temporal splitting. If the
boundaries are soft, tables created using that split must use a
chunk size of 1 frame to ensure that an individual can always
be in at most 1 chunk. If the boundaries are hard, there are
no restrictions on chunk size since the VO has stated the
constraint will always be true.

Noise reduction. We demonstrate the potential benefit
of spatial splitting on three videos from our evaluation
(Q1-Q3). For each video, we manually chose intuitive regions:
a separate region for each crosswalk in campus and urban (2
and 4, respectively), and a separate region for eachdirection of
the road in highway. Table 2 compares the range necessary to
capture all objects that appear within one chunk in the entire
framecomparedto the individual regions. Thedifference (1.74-
2.25×) represents the potential noise reductions from split-
ting: noise is proportional to max(frame) or max(region)
when splitting is disabled or enabled, respectively.

Grid split. To increase the applicability of spatial splitting,
Privid could allow analysts to divide each frame into a grid
and remove the restrictions on soft boundaries to allow any
chunk size. This would require additional estimates about the
max size of any private object (dictating themax number of re-
gions they could occupy at any time), and themaximum speed
of any object across the frame (dictating themaxnumber of re-
gions they couldmove between).We leave this to futurework.

7 Evaluation

The evaluation highlights of Privid are as follows:

1. Privid supports a diverse range of video analytics
queries, including object counting, duration queries, and
composite queries; for each, Privid increases error by
1-21% relative to a non-private system, while protecting
all individuals with (ρ,K,ǫ)-privacy (§7.2).

2. Privid enables VOs and analysts to flexibly and formally
trade utility loss and query granularity while preserving
the same privacy guarantee (§7.3).

7.1 Evaluation Setup

Datasets. We evaluated Privid primarily using three
representative video streams (campus, highway and urban,
screenshots in Fig. 3) that we collected from YouTube
spanning 12 hours each (6am-6pm). For one case study
(multi-camera), we use the Porto Taxi dataset [58] containing
1.7mil trajectories of all 442 taxis running in the city of Porto,
Portugal from Jan. 2013 to July 2014. We apply the same
processing as [42] to emulate a city-wide camera dataset;
the result is the set of timestamps each taxi would have been
visible to each of 105 cameras over the 1.5 year period.

Implementation. We implemented Privid in 4k lines of
Python. We used the Faster-RCNN [63] model in Detectron-
v2 [71] for object detection, and DeepSORT [69] for object
tracking. For these models to work reasonably given the di-

verse content of the videos, we chose hyperparameters for de-
tection and tracking on a per-video basis (details in §Hof [33]).

Privacy policies.We assume the VO’s underlying privacy
goal is to “protect the appearance of all individuals”. For each
camera, we use the strategy in §6.1, to create a map between
masks and (ρ,K) policies that achieve this goal.

Query parameters. For each query, we first chose a mask
that covered as much area as possible (to get the minimal ρ)
without disrupting the query. The resulting ρ values are in
Table 3. We use a budget of ǫ= 1 for each query. We chose
query windows sizes (W), chunk durations (c), and column
ranges to best approximate the analyst’s expectations for
each query (as opposed to picking optimal values based on
a parameter sweep, which the analyst is unable to do).

Baselines. For each query, we compute error by comparing
the output of Privid to running the same exact query imple-
mentationwithoutPrivid.We execute each query 1000 times,
and report the mean accuracy value± 1 standard deviation.

7.2 Query Case Studies

Weformulatefive typesofqueries to spanavarietyofaxes (tar-
get object class, number of cameras, aggregation type, query
duration, standing vs. one-offquery). Fig. 5 displays results for
Q1-Q3. Table 3 summarizes the remaining queries (Q4-Q13).

Case 1: Q1-Q3 (Counting private objects over time). To
demonstrate Privid’s support for standing queries and short
(1 hour) aggregation durations, we SUM the number of unique
objects observed each hour over the 12 hours.

Case 2: Q4-Q6 (Aggregating overmultiple cameras with
complex operators). We utilize UNION, JOIN, and ARGMAX

to aggregate over cameras in the Porto Taxi Dataset. Due
to the large aggregation window (1 year), Privid’s noise
addition is small (relative to the other queries using a window
on the order of hours) and accuracy is high.

Case 3: Q7-Q9 (Counting non-private objects, large win-
dow). We measure the fraction of trees (non-private objects)
that have bloomed in each video. Executed over an entire net-
work of cameras, such a query could be used to identify the
regions with the best foliage in Spring. Relative to Case 1, we
achieve high accuracy by using a longer query window of 12
hours (the status of a tree does not change on that time scale),
andminimal chunksize (1 frame,no temporal contextneeded).

Case 4: Q10-Q12 (Fine-grained results using aggressive
masking). We measure the average amount of time a traffic
signal stays red. Since this only requires observing the light
itself, we can mask everything else, resulting in a ρ bound
of 0 (no private objects overlap these pixels), enabling high
accuracy and fine temporal granularity.

Case 5: Q13 (Stateful query). We count only the individuals
that enter from the south and exit at the north. It requires
a larger chunk size (relative to Q1-Q3) to maintain enough
state within a single chunk to understand trajectory.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 219

Case # Q# Query Description Query Parameters Video ρ Query Output Error

Case 2 Q4
Average Taxi DriverWorking Hours

(union across 2 cameras)

|W |=365 days, c=15 sec,
Agg = avg, range=(0,16)

porto10, porto27 [45, 195] sec 5.87 hrs 5.86%±0.18%

Case 2 Q5
Average # Taxis Traversing 2 Locations on

Same Day (intersection across 2 cameras)

|W |=365 days, c=15 sec,
Agg = avg, range=(0,300)

porto10, porto27 [45, 195] sec 131 taxis 0.20%±0.13%

Case 2 Q6
Identifying Camera with Highest Daily Traffic

(argmax across all 105 cameras)

|W |=365 days, c=15 sec,
Agg = argmax

porto0, ..., porto104 [15, 525] sec porto20 0%

Case 3

Q7

Fraction of trees with leaves (%)
|W |=12 hrs, c=1 frame,

Agg = avg, range=(0,100)

campus 49 sec 15/15 = 1.00 0.10%±0.11%
Q8 highway 6.21 min 3/7 = 0.43 1.76%±1.90%
Q9 urban 3.34 min 4/6 = 0.67 0.61%±0.66%

Case 4

Q10

Duration of Red Light (seconds)
|W |=12 hrs, c=30min,

Agg = avg, range=(0,300)

campus 1 frame 75 sec 0%±1.4×10−4%

Q11 highway 1 frame 50 sec 0%±2.1×10−4%

Q12 urban 1 frame 100 sec 0%±1.0×10−4%

Case 5 Q13
Unique People (Filter: trajectory

moving towards campus)

|W |=12 hrs, c=10 sec,
Agg = sum, range=(0,5)

campus 49 sec 576 people 20.31%±2.60%

Table 3: Summary of query results for Q4-Q13. For Case 3 and 5, we use the same masks (and thus ρ) from Fig. 3. For Case 4, we mask all

pixels except the traffic light to attain ρ=0. For Case 2 we do not use any masks.

6a 8a 10a 12p 2p 4p
0

200

400

Un

iq
ue

 P
eo

pl
e Q1 (campus)

6a 8a 10a 12p 2p 4p
Time (Hours)

0

2000

4000

Un

iq
ue

 C
ar

s Q2 (highway)

Original
Privid (No Noise)
Privid

6a 8a 10a 12p 2p 4p
0

2000

Un

iq
ue

 P
eo

pl
e

In
 C

ro
ss

wa
lk

s Q3 (urban)

Figure 5: Time series of Privid’s output for Case 1 queries. “Original” is the baseline query output without using Privid. “Privid (No Noise)”

shows the raw output of Privid before noise is added. The final noisy output will fall within the range of the red ribbon 99% of the time.

0 10 20 30 40 50
Queries Sharing Budget (=1)

0

100

200

300

400

Qu
er

y
Gr

an
ul

ar
ity

 (H
rs

)

1 day

1 week

Query 1
Query 2
Query 3

Figure 6: Given a fixed query and accuracy target, decreasing the

amount of budget used by each query allows more queries to be

executed over the same video segment, but requires a proportionally

coarser granularity. The x-axis plots the number of queries evenly

sharing a budget of ǫ=1, thusx=10means 10 instances of the same

exact query over the same video segment, each using a budget of 1
10
.

We fix the accuracy target to be 99% of values having error≤5%.

0 10 20 30 40 50
Queries Sharing Budget (=1)

0
2
4
6
8

10

Er
ro

r (
%

 o
f M

ax
) Granularity

Daily
Weekly
Monthly

Figure 7: Given a fixed query and granularity, decreasing the

amount of budget used by each query allows more queries to be

executed over the same video segment, but results in proportionally

higher error. Thex-axis is the same as Fig. 6. Each line corresponds to

Q1 using a different granularity. The y-axis plots the error for 99% of

values. Error is the amount of noise added relative to the maximum

query output. For example, in Q4, the final output is the average

number of working hours in the range [0,16]. Thus an error of 1%

would mean the noisy result is within 0.16 hours of the true result.

7.3 Budget-Granularity Tradeoff

Analysts have two main knobs for each queryQ to navigate
the utility space: (1) the fraction ǫQ of the total budget ǫ used
by that query, and (2) the duration (granularity) of each aggre-
gation (i.e., “one value per day for a month” has a granularity
ofoneday). Thequerybudget is inverselyproportional toboth
the query granularity and error (the expected value of noise
Privid adds relative to the output range). Thus, to decrease
the amount of budget per query (or equivalently, increase the
numberofqueries sharing thebudget),an analystmust choose
a (temporally) coarser result, a larger expected error bound,
or both. Fig. 6 shows that, for example, 5 instances of Query
3 could release results daily or 40 instances of Query 3 could
release results weekly, while achieving the same expected
accuracy. Fig. 7 shows that, for example, 20 separate instances
of Query 1 (x=20) executed over the same target video could
each expect 4.8% error if they release one result daily, 0.7% er-
ror if they release oneweekly,or 0.16% error if they release one
monthly. Importantly, this tradeoff is transparent to analysts:
Figs. 6 and 7 rely only on information that is publicly available
to analysts and did not require executing any queries.

7.4 Analyzing Sources of Inaccuracy

Privid introduces two sources of inaccuracy to a query result:
(1) intentional noise to satisfy (ρ,K,ǫ)-privacy, and (2) (unin-
tentional) inaccuracies caused by the impact of splitting and
masking videos before executing the video processing. Fig. 5
shows these two sources separately for queries Q1-Q3 (Case
1): the discrepancy between the two curves demonstrates the
impact of (2), while the shaded belt shows the relative scale of
noiseadded(1). In summary,the scaleofnoiseaddedbyPrivid
allows the final result to preserve the trend of the original.

220 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

8 Using Privid

In this section,we summarize the set of decisions that both the
VO and analyst need to make when interacting with Privid.

8.1 Video Owner

First, the VOmust register a set of cameras with Privid. For
each camera, they must supply: (1) a (ρ,K) bound (or more
generallyamapofmasks tobounds),(2) aprivacybudgetǫ,and
(3) somemetadatadescribing the scene toanalysts (e.g.,a short
videoclip,since theycannotviewthecamera feeddirectly). All
of this is public to analysts. Belowwe provide general sugges-
tions for the VO, but ultimately they are responsible for choos-
ing these values. Privid only handles enforcing a given policy.

(1) (ρ,K) bounds. In most cases, we expect the VO will
record a sample of video, measure durations of objects of
interest using off-the-shelf tracking algorithms, and then set
the bound to the longest duration.

To provide better utility for analysts, the VO can offer
a menu of static masks that remove some of the scene in
exchange for tighter noise bounds than the original policy
(which is itself mapped to the empty mask). Note that the
VO must explicitly choose a (ρ,K) policy for each mask.
A mask is only useful if it reduces the amount of time the
longest objects are visible, which enables a tighter bound
while protecting the same set of individuals.

The VO may draw masks manually or generate them
automatically, e.g., by analyzing past trends from the camera.
In general, we expect masks to be static properties of each
scene, dependent only on dynamics of the scene type, rather
than behaviors of any individuals. However, it is ultimately
the VO’s responsibility to ensure anymasks it provides do not
reveal anything private, such as a person’s silhouette. Privid
focuses on preventing the leakage of privacywhen answering
queries. It does notmake any guarantees about themask itself.

(2) Budget ǫ.As in any deployment of DP, the choice of ǫ is
subjective. Academic papers commonly use ǫ≈1 [52] while
recent industry deployments have used 1<ǫ<10 [27, 36, 56].
Note that in Privid, this budget is per-frame (§5.6); two
queries aggregating over disjoint time ranges of the same
video draw from separate budgets. The only Privid-specific
consideration for choosing ǫ is that cameraswith overlapping
fields of view should share the same budget.

(3) Metadata. The VO should release a sample video clip7

representative of the scene so that analysts can calibrate
their executable8 and query9 accordingly. Any privacy loss
resulting from the one-time release of this single clip is
limited, and can bemanually vetted by theVO. Optionally, the
VO can release additional information to aid analysts, such as
the camera’s GPS coordinates, make, or focal length settings.

7While a clip is not needed in principle, without it, the analyst “runs
blind” and will not have confidence in the correctness of their results.

8MLmodels may perform better when retrained on a particular scene.
9For example, queries must specify bounds on the amount of output per

chunk, which depend on the amount of activity in the scene.

8.2 Analyst

In order to formulate a Privid query the analyst must make
the following decisions. For each decision, we provide an
example for the query in §5.7.1 (counting cars crossing a
virtual line on a highway).

Choose amask (from the list provided by the VO) based on
the query goal. For example, they should select a mask that
covers as much of the scene as possible without covering the
area near the virtual line. This would significantly reduce the
bound by removing parking spots and intersections where
objects linger.

Choose a chunk size based on the amount of context
needed. A larger chunk size permits more context for each
execution of the PROCESS, but results in more noise (§5.5).
Thus, the analyst should choose the smallest chunk size that
captures their events of interest. For example, 1 second is
likely sufficient to capture cars driving past a line. If they
instead wanted to calculate car speed, they would need a
larger chunk size (e.g., 10 seconds) and less restrictive mask
to capture more of the car’s trajectory.

Choose upper bound on number of output rows per
chunk based on the expected (via the video sample) level of
activity in each chunk. For counting cars over a short chunk,
especially in less busy scenes, each chunk may see 1-2 cars
and thus need 1-2 rows. For calculating speed over a larger
chunk, especially in more busy scenes, each chunk will see
more cars and may need 10 or 100 rows.

Create a PROCESS executable. This involves tuning their
CV models based on the scene (via the sample video), and
combining all tasks into a single executable. For example,
their executable may include an object detector to find cars,
an object tracker to link them to trajectories, a license plate
reader to link cars across cameras or prevent double counting,
and an algorithm to compute speed or determine car model.

Choose query granularity and budget. The query granu-
larity and budget are directly proportional to accuracy. Given
a fixed value for each, improving one requires worsening an-
other proportionally. We elaborate upon this tradeoff in §7.3.

9 Ethics

In building Privid, we do not advocate for the increase of
public video surveillance and analysis. Instead, we observe
that it is already prevalent and seek to improve the privacy
landscape. Privid’s accuracy and expressiveness makes it
palatable to add formal privacy to existing analytics, and
lowers the barrier to deployment. If privacy legislation is
introduced, Privid could be one way to ensure compliance.

Acknowledgements. We thank Hari Balakrishnan, Matt
Lentz, Dave Levin, Amy Ousterhout, Jennifer Rexford,
EugeneWu, the NSDI reviewers, and our shepherd, Jonathan
Mace, for their helpful feedback and suggestions. This work
was partially supported by a Sloan fellowship and NSF grants
CNS-2153449, CNS-2152313, CNS-2140552, and CNS-2151630.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 221

References

[1] Absolutely everywhere in beijing is now covered by
police video surveillance. https://qz.com/518874/.

[2] Are we ready for ai-powered security cameras?
https://thenewstack.io/are-we-ready-for-ai-
powered-security-cameras/.

[3] British transport police: Cctv. http://

www.btp.police.uk/advice_and_information/
safety_on_and_near_the_railway/cctv.aspx.

[4] Can 30,000 cameras help solve chicago’s crime prob-
lem? https://www.nytimes.com/2018/05/26/us/
chicago-police-surveillance.html.

[5] Data generated by new surveillance cameras to
increase exponentially in the coming years. http:

//www.securityinfowatch.com/news/12160483/.

[6] Detection leaderboard. https://cocodataset.org/
#detection-leaderboard.

[7] Epic domestic surveillance project. https:

//epic.org/privacy/surveillance/.

[8] nsjail. https://github.com/google/nsjail.

[9] Oakland bans use of facial recognition. https://

www.sfchronicle.com/bayarea/article/Oakland-
bans-use-of-facial-recognition-14101253.php.

[10] Paris hospitals to get 1,500 cctv cameras to combat
violence against staff. https://bit.ly/2OYiBz2.

[11] Powering the edge with ai in an iot world. https:

//www.forbes.com/sites/forbestechcouncil/
2020/04/06/powering-the-edge-with-ai-in-an-

iot-world/.

[12] San francisco is first us city to ban facial recognition.
https://www.bbc.com/news/technology-48276660.

[13] Video analytics applications in retail - beyond security.
https://www.securityinformed.com/insights/co-
2603-ga-co-2214-ga-co-1880-ga.16620.html/.

[14] The vision zero initiative. http://

www.visionzeroinitiative.com/.

[15] What’s wrong with public video surveillance?
https://www.aclu.org/other/whats-wrong-
public-video-surveillance, 2002.

[16] Abuses of surveillance cameras. http:

//www.notbored.org/camera-abuses.html, 2010.

[17] Mission creep-y: Google is quietly becoming one
of the nation’s most powerful political forces while
expanding its information-collection empire. https:

//www.citizen.org/wp-content/uploads/google-
political-spending-mission-creepy.pdf, 2014.

[18] Mission creep. https://www.aclu.org/other/whats-
wrong-public-video-surveillance, 2017.

[19] How retail stores can streamline operations with video
content analytics. https://www.briefcam.com/
resources/blog/how-retail-stores-can-

streamline-operations-with-video-content-

analytics/, 2020.

[20] The mission creep of smart streetlights.
https://www.voiceofsandiego.org/topics/
public-safety/the-mission-creep-of-smart-

streetlights/, 2020.

[21] Video analytics traffic study creates baseline for change.
https://www.govtech.com/analytics/Video-
Analytics-Traffic-Study-Creates-Baseline-

for-Change.html, 2020.

[22] What is computer vision? ai for images and video.
https://www.infoworld.com/article/3572553/
what-is-computer-vision-ai-for-images-and-

video.html, 2020.

[23] P. Aditya, R. Sen, P. Druschel, S. Joon Oh, R. Benenson,
M. Fritz, B. Schiele, B. Bhattacharjee, and T. T. Wu. I-pic:
A platform for privacy-compliant image capture. In
Proceedings of the 14th Annual International Conference

on Mobile Systems, Applications, and Services, MobiSys
’16, page 235–248,NewYork,NY,USA, 2016. Association
for Computing Machinery.

[24] A. Agache, M. Brooker, A. Iordache, A. Liguori,
R. Neugebauer, P. Piwonka, andD.-M. Popa. Firecracker:
Lightweight virtualization for serverless applications.
In 17th {usenix} symposium on networked systems design

and implementation ({nsdi} 20), pages 419–434, 2020.

[25] Amazon. Rekognition. https://aws.amazon.com/
rekognition/.

[26] G.Ananthanarayanan,Y.Shu,M.Kasap,A.Kewalramani,
M.Gada,andV.Bahl. Live video analyticswithmicrosoft
rocket for reducing edge compute costs, July 2020.

[27] Apple Differential Privacy Team. Learning with privacy
at scale. Apple Machine Learning Journal, 1(8), 2017.

[28] M. Azure. Computer vision api. https:

//azure.microsoft.com/en-us/services/
cognitive-services/computer-vision/, 2021.

[29] M. Azure. Face api. https://azure.microsoft.com/
en-us/services/cognitive-services/face/, 2021.

[30] F. Bastani, S. He, A. Balasingam, K. Gopalakrishnan,
M. Alizadeh, H. Balakrishnan, M. Cafarella, T. Kraska,
and S. Madden. Miris: Fast object track queries in video.
In Proceedings of the 2020 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’20, page
1907–1921, New York, NY, USA, 2020. Association for
Computing Machinery.

222 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://qz.com/518874/
https://thenewstack.io/are-we-ready-for-ai-powered-security-cameras/
https://thenewstack.io/are-we-ready-for-ai-powered-security-cameras/
http://www.btp.police.uk/advice_and_information/safety_on_and_near_the_railway/cctv.aspx
http://www.btp.police.uk/advice_and_information/safety_on_and_near_the_railway/cctv.aspx
http://www.btp.police.uk/advice_and_information/safety_on_and_near_the_railway/cctv.aspx
https://www.nytimes.com/2018/05/26/us/chicago-police-surveillance.html
https://www.nytimes.com/2018/05/26/us/chicago-police-surveillance.html
http://www.securityinfowatch.com/news/12160483/
http://www.securityinfowatch.com/news/12160483/
https://cocodataset.org/#detection-leaderboard
https://cocodataset.org/#detection-leaderboard
https://epic.org/privacy/surveillance/
https://epic.org/privacy/surveillance/
https://github.com/google/nsjail
https://www.sfchronicle.com/bayarea/article/Oakland-bans-use-of-facial-recognition-14101253.php
https://www.sfchronicle.com/bayarea/article/Oakland-bans-use-of-facial-recognition-14101253.php
https://www.sfchronicle.com/bayarea/article/Oakland-bans-use-of-facial-recognition-14101253.php
https://bit.ly/2OYiBz2
https://www.forbes.com/sites/forbestechcouncil/2020/04/06/powering-the-edge-with-ai-in-an-iot-world/
https://www.forbes.com/sites/forbestechcouncil/2020/04/06/powering-the-edge-with-ai-in-an-iot-world/
https://www.forbes.com/sites/forbestechcouncil/2020/04/06/powering-the-edge-with-ai-in-an-iot-world/
https://www.forbes.com/sites/forbestechcouncil/2020/04/06/powering-the-edge-with-ai-in-an-iot-world/
https://www.bbc.com/news/technology-48276660
https://www.securityinformed.com/insights/co-2603-ga-co-2214-ga-co-1880-ga.16620.html/
https://www.securityinformed.com/insights/co-2603-ga-co-2214-ga-co-1880-ga.16620.html/
http://www.visionzeroinitiative.com/
http://www.visionzeroinitiative.com/
https://www.aclu.org/other/whats-wrong-public-video-surveillance
https://www.aclu.org/other/whats-wrong-public-video-surveillance
http://www.notbored.org/camera-abuses.html
http://www.notbored.org/camera-abuses.html
https://www.citizen.org/wp-content/uploads/google-political-spending-mission-creepy.pdf
https://www.citizen.org/wp-content/uploads/google-political-spending-mission-creepy.pdf
https://www.citizen.org/wp-content/uploads/google-political-spending-mission-creepy.pdf
https://www.aclu.org/other/whats-wrong-public-video-surveillance
https://www.aclu.org/other/whats-wrong-public-video-surveillance
https://www.briefcam.com/resources/blog/how-retail-stores-can-streamline-operations-with-video-content-analytics/
https://www.briefcam.com/resources/blog/how-retail-stores-can-streamline-operations-with-video-content-analytics/
https://www.briefcam.com/resources/blog/how-retail-stores-can-streamline-operations-with-video-content-analytics/
https://www.briefcam.com/resources/blog/how-retail-stores-can-streamline-operations-with-video-content-analytics/
https://www.voiceofsandiego.org/topics/public-safety/the-mission-creep-of-smart-streetlights/
https://www.voiceofsandiego.org/topics/public-safety/the-mission-creep-of-smart-streetlights/
https://www.voiceofsandiego.org/topics/public-safety/the-mission-creep-of-smart-streetlights/
https://www.govtech.com/analytics/Video-Analytics-Traffic-Study-Creates-Baseline-for-Change.html
https://www.govtech.com/analytics/Video-Analytics-Traffic-Study-Creates-Baseline-for-Change.html
https://www.govtech.com/analytics/Video-Analytics-Traffic-Study-Creates-Baseline-for-Change.html
https://www.infoworld.com/article/3572553/what-is-computer-vision-ai-for-images-and-video.html
https://www.infoworld.com/article/3572553/what-is-computer-vision-ai-for-images-and-video.html
https://www.infoworld.com/article/3572553/what-is-computer-vision-ai-for-images-and-video.html
https://aws.amazon.com/rekognition/
https://aws.amazon.com/rekognition/
https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/
https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/
https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/

[31] A. Bewley, Z. Ge, L. Ott, F. Ramos, andB. Upcroft. Simple
online and realtime tracking. In 2016 IEEE International
Conference on Image Processing (ICIP), pages 3464–3468,
2016.

[32] Z. Cai, M. Saberian, and N. Vasconcelos. Learning
complexity-aware cascades for deep pedestrian
detection. In Proceedings of the 2015 IEEE International
Conference on Computer Vision (ICCV), ICCV ’15, pages
3361–3369,Washington,DC,USA, 2015. IEEEComputer
Society.

[33] F. Cangialosi, N. Agarwal, V. Arun, J. Jiang, S. Narayana,
A. Saarwate, and R. Netravali. Privid: Practical,
privacy-preserving video analytics queries (extended
version). https://arxiv.org/abs/2106.12083.

[34] A. Chattopadhyay and T. E. Boult. Privacycam: a
privacy preserving camera using uclinux on the blackfin
dsp. In 2007 IEEE Conference on Computer Vision and

Pattern Recognition, pages 1–8. IEEE, 2007.

[35] G. Chrome. minijail0. https://google.github.io/
minijail/.

[36] B. Ding, J. Kulkarni, and S. Yekhanin. Collecting teleme-
try data privately. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors,Advances in Neural Information Processing Sys-

tems 30, pages 3571–3580. Curran Associates, Inc., 2017.

[37] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Cal-
ibrating noise to sensitivity in private data analysis. In
S. Halevi and T. Rabin, editors, Theory of Cryptography,
volume 3876 of Lecture Notes in Computer Science, pages
265–284, Berlin, Heidelberg, Mar. 2006. Springer.

[38] I. Ghodgaonkar, S. Chakraborty, V. Banna, S. Allcroft,
M. Metwaly, F. Bordwell, K. Kimura, X. Zhao, A. Goel,
C. Tung, et al. Analyzing worldwide social distancing
through large-scale computer vision. arXiv preprint

arXiv:2008.12363, 2020.

[39] Google. Cloudvision api. https://cloud.google.com/
vision, 2021.

[40] K. Hsieh, G. Ananthanarayanan, P. Bodik, S. Venkatara-
man, P. Bahl, M. Philipose, P. B. Gibbons, and O. Mutlu.
Focus: Querying large video datasets with low latency
and low cost. In 13th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 18), pages
269–286, 2018.

[41] IBM. Maximo remote monitoring. https:

//www.ibm.com/products/maximo/remote-
monitoring, 2021.

[42] S. Jain, G. Ananthanarayanan, J. Jiang, Y. Shu, and J. E.
Gonzalez. Scaling Video Analytics Systems to Large
Camera Deployments. InACMHotMobile, 2019.

[43] S. Jain, X. Zhang, Y. Zhou, G. Ananthanarayanan,
J. Jiang, Y. Shu, V. Bahl, and J. Gonzalez. Spatula:
Efficient cross-camera video analytics on large camera
networks. In ACM/IEEE Symposium on Edge Computing

(SEC 2020), November 2020.

[44] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and
I. Stoica. Chameleon: scalable adaptation of video
analytics. In Proceedings of the 2018 Conference of the

ACM Special Interest Group on Data Communication,
pages 253–266. ACM, 2018.

[45] N. Johnson, J. P. Near, and D. Song. Towards practical
differential privacy for sql queries. Proceedings of the
VLDB Endowment, 11(5):526–539, 2018.

[46] P. Kairouz, S. Oh, and P. Viswanath. The composition
theorem for differential privacy. IEEE Transactions on
Information Theory, 63(6):4037–4049, 2017.

[47] D. Kang, P. Bailis, and M. Zaharia. Blazeit: optimizing
declarative aggregation and limit queries for neural
network-based video analytics. Proceedings of the VLDB
Endowment, 13(4):533–546, 2019.

[48] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, andM. Zaharia.
Noscope: optimizing neural network queries over
video at scale. Proceedings of the VLDB Endowment,
10(11):1586–1597, 2017.

[49] D.Kang,J.Guibas,P.Bailis,T.Hashimoto,andM.Zaharia.
Task-agnostic indexes for deep learning-based queries
over unstructured data. arXiv preprint arXiv:2009.04540,
2020.

[50] I. Kotsogiannis, Y. Tao, X. He, M. Fanaeepour,
A. Machanavajjhala, M. Hay, and G. Miklau. Privatesql:
A differentially private sql query engine. Proc. VLDB
Endow., 12(11):1371–1384, July 2019.

[51] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks.
Commun. ACM, 60(6):84–90, May 2017.

[52] Y.-H. Kuo, C.-C. Chiu, D. Kifer, M. Hay, and
A. Machanavajjhala. Differentially private hier-
archical count-of-counts histograms. Proceedings of the
VLDB Endowment, 11.11:1509—1521, 2018.

[53] H. Li, Z. Lin, X. Shen, J. Brandt, and G. Hua. A convo-
lutional neural network cascade for face detection. In
2015 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 5325–5334, June 2015.

[54] Y. Li, A. Padmanabhan, P. Zhao, Y. Wang, G. H. Xu,
and R. Netravali. Reducto: On-Camera Filtering
for Resource-Efficient Real-Time Video Analytics.
SIGCOMM ’20, page 359–376, New York, NY, USA, 2020.
Association for Computing Machinery.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 223

https://arxiv.org/abs/2106.12083
https://google.github.io/minijail/
https://google.github.io/minijail/
https://cloud.google.com/vision
https://cloud.google.com/vision
https://www.ibm.com/products/maximo/remote-monitoring
https://www.ibm.com/products/maximo/remote-monitoring
https://www.ibm.com/products/maximo/remote-monitoring

[55] T. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and
S. Belongie. Feature pyramid networks for object de-
tection. In 2017 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 936–944, July 2017.

[56] A. Machanavajjhala, D. Kifer, J. M. Abowd, J. Gehrke,
and L. Vilhuber. Privacy: Theory meets practice on the
map. In ICDE, 2008.

[57] F. D. McSherry. Privacy integrated queries: An exten-
sible platform for privacy-preserving data analysis.
In Proceedings of the 2009 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’09,
page 19–30, New York, NY, USA, 2009. Association for
Computing Machinery.

[58] L. Moreira-Matias, J. Gama, M. Ferreira, J. Mendes-
Moreira, and L. Damas. Predicting taxi–passenger
demand using streaming data. IEEE Transactions on In-
telligent Transportation Systems, 14(3):1393–1402, 2013.

[59] D.A. Osvik,A. Shamir, andE. Tromer. Cache attacks and
countermeasures: the case of aes. In Cryptographers’

track at the RSA conference, pages 1–20. Springer, 2006.

[60] J. R. Padilla-López, A. A. Chaaraoui, and F. Flórez-
Revuelta. Visual privacy protection methods: A survey.
Expert Systems with Applications, 42(9):4177–4195, 2015.

[61] C. Percival. Cache missing for fun and profit, 2005.

[62] R. Poddar, G. Ananthanarayanan, S. Setty, S. Volos, and
R. A. Popa. Visor: Privacy-preserving video analytics as
a cloud service. In 29th {USENIX} Security Symposium

({USENIX} Security 20), pages 1039–1056, 2020.

[63] S. Ren, K. He, R. B. Girshick, and J. Sun. Faster R-CNN:
towards real-time object detection with region proposal
networks. CoRR, abs/1506.01497, 2015.

[64] J. Stanley and A. C. L. Union. The Dawn of Robot

Surveillance: AI, Video Analytics, and Privacy. American
Civil Liberties Union, 2019.

[65] Y. Sun, X. Wang, and X. Tang. Deep convolutional net-
work cascade for facial point detection. In Proceedings of
the 2013 IEEE Conference on Computer Vision and Pattern

Recognition, CVPR ’13, pages 3476–3483, Washington,
DC, USA, 2013. IEEE Computer Society.

[66] H. Wang, Y. Hong, Y. Kong, and J. Vaidya. Publishing
video data with indistinguishable objects. Advances

in database technology : proceedings. International

Conference on Extending Database Technology, 2020:323
– 334, 2020.

[67] H. Wang, S. Xie, and Y. Hong. Videodp: A universal
platform for video analytics with differential privacy.
arXiv preprint arXiv:1909.08729, 2019.

[68] J.Wang,B.Amos,A.Das,P. Pillai,N. Sadeh,andM. Satya-
narayanan. A scalable and privacy-aware iot service for
live video analytics. In Proceedings of the 8th ACM on

Multimedia SystemsConference, pages 38–49. ACM,2017.

[69] N.Wojke, A. Bewley, and D. Paulus. Simple online and
realtime tracking with a deep association metric. In
2017 IEEE International Conference on Image Processing

(ICIP), pages 3645–3649. IEEE, 2017.

[70] H. Wu, X. Tian, M. Li, Y. Liu, G. Ananthanarayanan,
F. Xu, and S. Zhong. Pecam: Privacy-enhanced
video streaming and analytics via securely-reversible
transformation. InACMMobiCom, October 2021.

[71] Y.Wu,A. Kirillov, F.Massa,W.-Y. Lo, andR.Girshick. De-
tectron2. https://github.com/facebookresearch/
detectron2, 2019.

[72] X. Yu, K. Chinomi, T. Koshimizu, N. Nitta, Y. Ito, and
N. Babaguchi. Privacy protecting visual processing
for secure video surveillance. In 2008 15th IEEE

International Conference on Image Processing, pages
1672–1675. IEEE, 2008.

[73] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose,
P. Bahl, and M. J. Freedman. Live video analytics at
scale with approximation and delay-tolerance. In NSDI,
volume 9, page 1, 2017.

[74] X. Zhu, Y.Wang, J. Dai, L. Yuan, and Y.Wei. Flow-guided
feature aggregation for video object detection. In
Proceedings of the IEEE International Conference on

Computer Vision, pages 408–417, 2017.

224 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

A Relative Privacy Guarantees

A.1 Proof

In this section, we provide a proof for Theorem 4.1. We begin
with a lemma that will be helpful for the proof:

Lemma A.1. Consider an individual x whose appearance
is bound by (ρ̂, K̂) in front of a camera whose policy is
(ρ,K,ǫ). For every query Q there exists α,β ∈ R such that
αK(1+βρ)≤∆(ρ,K)(Q)≤αK(2+βρ).

Proof. Any Privid query must contain some aggregation
agg as the outer-most relation, and thus we can write
Q := Πagg(R). ∆(ρ,K)(Q) is defined in Figure 9 for five
possible aggregation operators, which are each a function
of∆(ρ,K)(R) (the sensitivity of their inner relationR).

First,wewill prove these bounds are true for the inner relation
∆(ρ,K)(R) by induction onR (all rules for∆(ρ,K)(R) given
by Figure 9):

Case (Base):R := tWhenR is an intermediate Privid table
t, its sensitivity is given directly by Equation 5.2, where
α=max_rowst and β =1/c. Note, the (1+ ···) and (2+ ···)
in the lemma inequalities bound ⌈ρ

c
⌉.

Case (Selection): R := σ(R′). When R is a selection from
R′,∆(ρ,K)(R)=∆(ρ,K)(R

′). If∆(ρ,K)(R
′) is bound by the

inequalities in the lemma statement, then∆(ρ,K)(R) is too.
Case (Projection):R :=Π(R′). Same as selection.

Case (GroupBy and Join): R := γ(R1 ⋊⋉ ...⋊⋉Ri) When
R is a join of relations Ri proceeded by a GroupBy,

∆(ρ,K)(R) =
∑N

i=1∆(ρ,K)(Ri). Let ∆(ρ,K)Ri be parame-
terized by αi and βi. If each of∆(ρ,K)(Ri) are bound by the
inequalities in the lemma, then

∑
i∆(ρ,K)(Ri) is as well, but

with α=
∑N

i=1αi and β=
∑N

i=1βi.

Finally, each of the supported aggregation operators only
involvemultiplying∆(ρ,K)(R)byconstants (withrespect toρ
andK), and thus these constants can be subsumed intoα.

We now restate Theorem 4.1 for the reader’s convenience:

Theorem A.2. Consider a camera with a fixed policy
(ρ,K,ǫ). If an individualx’s appearance in front of the camera
is bound by some (ρ̂, K̂), then Privid effectively protects

xwith ǫ̂-DP, where ǫ̂ isO(ρ̂K̂
ρK

)ǫ, which grows (degrades) as

(ρ̂,K̂) increase while (ρ,K,ǫ) are fixed, and the constants do
not depend on the query.

Proof. Recall from §5 that Privid uses the Laplace mecha-
nism: it returnsQ(V)+η to the analyst, whereQ(V) is the

raw query result, and η ∼ Laplace(0,b), b =
∆(ρ,K)(Q)

ǫ
and

∆(ρ,K)(Q) is the global sensitivity of the query over any
(ρ,K)-neighboring videos. Note that the sensitivity is purely
a function of the query, and thus Privid samples noise using
the same scale b regardless of how long any individual is
actually visible in the video.

10
1

10
0

10
1

0.00

0.25

0.50

0.75

1.00

m
ax

 p
ro

ba
bi

lit
y

of
de

te
ct

in
g

an
 in

di
vi

du
al

< >=1

0.1% false detection
1% false detection
10% false detection
20% false detection

Figure 8: Plot of Equation A.4 for a few different levels of α. Note

that the x-axis is plotted for absolute values of ǫ and is using a log

scale. The y-axis is the maximum probability that an adversary

with a given confidence level could detect whether or not x was

present. If one draws a vertical line at the value of ǫ being enforced

(e.g., we mark ǫ=1 here), the trend to the left shows how privacy

is improved for individuals who are visible for less time, and the

right shows how it degrades for those who are visible for more.

By Theorem B.2, this mechanism provides ǫ-DP for all
(ρ,K)-bounded events. If we rearrange the equation for b

so that ǫ =
∆(ρ,K)(Q)

b
, we can equivalently say that Privid

guarantees
∆(ρ,K)(Q)

b
-DP for all (ρ,K)-bounded events. Or,

more generally, that a particular instantiation of Prividwith
policy p= (ρ,K,ǫ) guarantees ǫ̂-DP for all (ρ̂,K̂)-bounded
events in queryQ, where 10

ǫ̂p(ρ̂,K̂,Q)=
∆(ρ̂,K̂)(Q)

b
=

∆(ρ̂,K̂)(Q)

∆(ρ,K)(Q)/ǫ
=

∆(ρ̂,K̂)(Q)

∆(ρ,K)(Q)
ǫ

In other words, for a fixed policy, ǫ̂ defines the effective level
of protection provided to an event as a function of the event’s
(not policy’s) (ρ̂,K̂) bound.

From Lemma A.1, we can bound ǫ̂ as αK̂(1+βρ̂)
αK(2+βρ)ǫ ≤ ǫ̂ ≤

αK̂(2+βρ̂)
αK(1+βρ)ǫ. To see where this comes from, note that ǫ̂ is

minimized when the numerator is minimized (the lower
bound from Lemma A.1) and the denominator is maximized
(the upper bound from Lemma A.1). The same logic applies
to the upper bound on ǫ̂.

We can simplify both bounds by first canceling α and then
picking units of time such that β = 1 (β has dimensions of
chunks per unit time). Thus,

ǫ̂≈
ρ̂K̂

ρK
ǫ (A.1)

A.2 Degradation of Privacy

Although ǫ̂ provides a way to quantify the level of privacy
provided to each individual, it can be difficult to reason
about relative values of ǫ and what they ultimately mean
for privacy in practice. We can use the framework of binary
hypothesis testing to develop a more intuitive understanding
and ultimately visualize the degradation of privacy as a
function of ǫ̂ relative to ǫ.

10Note the difference in subscript in the numerator and denominator.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 225

Consider an adversary who wishes to determine whether
or not some individual x appeared in a given video V . They
submit a queryQ to the system, and observe only the final
result,A, which Privid computed asA=Q(V)+η, where η
is a sample of Laplace noise as defined in the previous section.
Based on this value, the adversary must distinguish between
one of two hypotheses:

H0 : x does not appear in V

H1 : x appears in V

We write the false positive PFP and false negative PFN

probabilities as:
PFP =P(x∈V |H0)

PFN =P(x /∈V |H1)

From Kairouz [46, Theorem 2.1], if an algorithm guarantees
ǫ-differential privacy (δ = 0), then these probabilities are
related as follows:

PFP +eǫPFN ≥1 (A.2)

PFN+eǫPFP ≥1 (A.3)

Suppose the adversary is willing to accept a false positive
threshold of PFP ≤ α. In ther words, they will only accept
H1 (x is present) if there is less than α probability that x is
not actually present.
Rearranging equations A.2 andA.3 in terms of the probability
of correctly detetecting x is present (1−PFN), we have:

1−PFN ≤ eǫPFP ≤ eǫα

1−PFN ≤ e−ǫ(PFP −(1−eǫ))≤ e−ǫ(α−(1−eǫ))

Then, for a given threshold α, the probability that the
adversary correctly decides x is present is at most the
minimum of these:

P(x∈V |H1)≤min{eǫα,e−ǫ(α−(1−eǫ))} (A.4)

In Fig. 8, we visualize A.4 as a function of ǫ for 4 different
adversarial confidence levels (α=0.1%,1%,10%,20%). As an
example of how to read this graph, suppose Privid uses a
(ρ=60s,K=1,ǫ=1) policy (ǫ=1marked with the dotted
line). An individual who appears 3 times for < 60s each is
(ρ = 60s,K = 3)-bounded, and thus has an effective ǫ̂ = 3
relative to the actual policy for most queries (Eq. A.1). If an
adversary has a α= 1% confidence level, then they would
have at most a ∼ 20% chance of correctly detecting the
individual appeared, even though they appeared for far more
than the policy allowed. We can also see that, for sufficiently
small values of ǫ (e.g., ǫ<1), even if the adversary has a very
liberal confidence level (say, 20%), a marginal increase in
ǫ̂ relative to ǫ only gives the adversary a marginally larger
probability of detection than they would have had otherwise.

An important takeaway is that,when an individual exceeds
the (ρ,K) bound protected by Privid, their presence is not
immediately revealed. Rather, as it exceeds the bound further,
ǫ̂ increases, and it becomes more likely an adversary could
detect the event.

B Privid Sensitivity Definition

Figure 9 provides the complete definition of sensitivity for
a Privid query.

Lemma B.1. Given a relation R, the rules in Figure 9 are
an upper bound on the global sensitivity of a (ρ,K)-bounded
event in an intermediate table t.

Proof. Proof by induction on the structure of the query.
Case: t.∆P (t) is given directly by Equation 5.2.
Case:R′ :=σθ(R). A selection may remove some rows from
R, but it does not add any, or modify any existing ones, so in
the worst case an individual can be in just as many rows inR′

as inR and thus∆P (R
′)≤∆P (R) and the constraints remain

the same. If θ includes a limit = x condition, then R′ will
contain atmostx rows, regardless of the number of rows inR.
Case: R′ := Πa,...(R). A projection never changes the
number of rows, nor does it allow the data in one row to
influence another row, so in the worst case an individual
can be in at most the same number of rows in R′ as in R
(∆P (R

′)≤∆P (R)) and the size constraint C̃s(R) remains the
same. If the projection transforms an attribute by applying
a stateless function f to it, then we can no longer many
assumptions about the range of values in a (C̃r(R

′,a)=∅),
but nothing else changes because the stateless nature of the
function ensures that data in row cannot influence any others.
Case: GroupBy. A GROUP BY over a fixed set of a n keys
is equivalent to n separate queries that use the same
aggregation function over a σWHEREcol=key(R). If the column
being grouped is a user-defined column, Privid requires that
the analyst provide the keys directly. If the column being
grouped is one of the two implicit columns (chunk or region),
then the set of keys is not dependent on the contents of the
data (only its length) and thus are fixed regardless.
Case: Join. Consider a query that computes the size of
the intersection between two cameras, PROCESS’d into
intermediate tables t1 and t2 respectively. If∆(t1)=x and
∆(t2) = y, it is tempting to assume∆(t1∩ t2) = min(x,y),
because a value needs to appear in both t1 and t2 to appear in
the intersection. However, because the analyst’s executable
can populate the table arbitrarily, they can “prime” t1 with
values that would only appear in t2, and vice versa. As a
result, a value need only appear in either t1 or t2 to show up
in the intersection, and thus∆(t1∩ t2) = x+y (the sum of
the sensitivities of the tables).

Theorem B.2. Consider an adaptive sequence (§2.3) of n
queriesQ1,...,Qn, each over the same camera C , a privacy
policy (ρC ,KC), and global budget ǫC . Privid (Algorithm 1)
provides (ρC ,KC ,ǫC)-privacy for allQ1,...,Qn.

Proof. Consider two queriesQ1 (over time interval I1, using
chunk size c1 and budget ǫ1) andQ2 (over I2, using c2 and
ǫ2). Let v1=V [I1] be the segment of videoQ1 analyzes and
v2=V [I2] forQ2. LetE be a (ρ,K)-bounded event.

226 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

N
o
t
a
t
io
n

P Privacy policy for each camera:{(ρ,K)c ∀ c ∈ cameras}

∆P (R) Maximum number of rows in relationR that could differ by the addition
or removal of any (ρ,K)-bounded event.

C̃r(R,a) Range constraint: range of attributea inR

C̃s(R) Size constraint: upper bound on total number of rows inR

∅ Indicates that a relational operator leaves a constraint unbound. If this
constraint is required for the aggregation, it must be bound by a predecessor.
If it is not required, it can be left unbound.

A
g
g
r
e
g
a
t
io
n
F
u
n
c
t
io
n
s

Function Definition Constraints Sensitivity (∆(Q))

Count Q :=Πcount(∗)(R) ∆ 1·∆(R)

Sum Q :=Πsum(a)(R) ∆,C̃r ∆(R)·C̃r(R,a)

Average Q :=Πavg(a)(R) ∆,C̃r,C̃s
∆(R)·C̃r(R,a)

C̃s(R)

Std. Dev Q :=Πstddev(a)(R) ∆,C̃r,C̃s ∆(R)·C̃r(R,a)/
√

C̃s(R)

Argmax Q :=Πargmax(a)(R) ∆,a∈K maxk∈K∆(σa=k(R))

R
e
l
a
t
io
n
a
l
O
p
e
r
a
t
o
r
s

Operator Type Definition ∆P (R′) C̃r(R
′,ai) C̃s(R

′)

Base Case Base Table R mr·K ·(1+⌈
ρ
c
⌉) ∅ ∅

Selection

(σ)
Standard selection: rows fromR that matchWHERE condition R′ :=σ

where(...)(R) ∆P (R) C̃r(R,ai) C̃s(R)

Limit: firstx rows fromR R′ :=σlimit=x(R) ∆P (R) C̃r(R,ai) min(x,C̃s(R))

Projection

(Π)

Standard projection: select attributesai,... fromR R′ :=Πai,...
∆P (R) C̃r(R,ai) C̃s(R)

Apply (user-provided, but stateless)f to columnai R′ :=Πf(ai),...
∆P (R) ∅ C̃s(R)

Add range constraint to columnai R′ :=Πai∈[li,ui],...
∆P (R)

[li,ui] ifai 6=∅

C̃r(R,ai) otherwise
C̃s(R)

GroupBy

(γ)

Group attribute(s) (gi) are chunk (or binned chunk) or region
R′ :=gj,...

γagg(ai),...

gj := chunk|bin(chunk)
Equation 5.2 ∆(agg(ai))

C̃s(R)
(bin size)

Group attribute(s) (gj) are not chunk or region R′ :=gj,...
γagg(ai),...

∆P (R) ∅ ∅

... discrete set of keys provided for each group (constrains size) R′ :=gj∈Kj,...
γagg(ai),...

... ... Πj |Kj |

... aggregation constrains range:agg(ai)∈ [li,ui] R′ :=gj,...
γagg(ai)∈[li,ui],...

...
[li,ui] ifai 6=∅

C̃r(R,ai) otherwise
...

Joins*

(⋊⋉)

*When immediately preceeded by GroupBy over the same key(s) R′ :=gγagg(a)(R1 ⋊⋉g ...⋊⋉g Rn)

R′ :=gγagg(a)(R1⋊⋉g ...⋊⋉gRn)

∑n
i=1∆P (Ri)

(GroupBy

rules)

(GroupBy

rules)... equijoin ongj (intersection ongj)

... outer join ongj (union ongj)

Figure 9: Full set of rules for Privid’s sensitivity calculation.

Case 1: I1 and I2 are not ρ-disjoint The budget check
(lines 1-3 in Algorithm 1) ensures that these two queries must
draw from the same privacy budget, because their effective
ranges overlap by at least one frame (but may overlap up
to all frames). By Theorem 5.1, Privid is (ρ,K,ǫ1)-private
forQ1 and (ρ,K,ǫ2)-private forQ2. By Dwork [37, Theorem
3.14], the combination ofQ1 andQ2 is (ρ,K,ǫ1+ǫ2)-private.

Case 2: I1 and I2 are ρ-disjoint In other words,
I1+ρ<I2−ρ, thus the budget check (lines 1-3) allows these
two queries to draw from entirely separate privacy budgets.
Since the intervals are ρ-disjoint, and all segments inE must
have duration≤ρ, it is not possible for the same segment to
appear in even a single frame of both intervals.

LetK1 be the number of segments contained in I1, each of
duration≤ρ, andK2 be the remaining segments contained in
I2, each of duration≤ρ. In otherwords,E is (ρ,K1)-bounded
in v1 and (ρ,K2)-bounded in v2. SinceE has at mostK seg-
ments,K1+K2≤K . We need to show that the probability of
observingbothA1 andA2 if the inputs are the actual segments
v1 and v2 is close (e

ǫ) to the probability of observing those
values if the inputs are the neighboring segments v′1 and v

′
2:

Pr[A1=Q1(v1),A2=Q2(v2)]

Pr[A1=Q1(v′1),A2=Q2(v′2)]
≤exp(e)

Since theprobabilityofobservingA1 is independentofobserv-
ingA2 (randomness is purely over the noise added byPrivid):

Pr[A1=Q1(v1),A2=Q2(v2)]

Pr[A1=Q1(v′1),A2=Q2(v′2)]

≤
Pr[A1=Q1(v1)]Pr[A2=Q2(v2)]

Pr[A1=Q1(v′1)]Pr[A2=Q2(v′2)]

≤
1

2b1
exp(− |A1−Q1(v1)|

b1
) 1
2b2

exp(− |A2−Q2(v2)|
b2

)

1
2b1

exp(− |A1−Q1(v1
′)|

b1
) 1
2b2

exp(− |A2−Q2(v2′)|
b2

)

(By Algorithm 1, Line 13)

= exp(
|A1−Q1(v′

1)|−|A1−Q1(v1)|

b1
+

|A2−Q2(v′
2)|−|A2−Q2(v2)|

b2
)

If K1 segments are in v1 and K2 segments are in v2, the
numerator of each fraction above is the sensitivity of
a (ρ, K1)-bounded event and a (ρ, K2)-bounded event,
respectively. b1 and b2 are the amount of noise actually added
to the query, which are both based onK :

≤exp(
∆(ρ,K1)(Q1)

∆(ρ,K)(Q1)/ǫ
+

∆(ρ,K2)(Q2)

∆(ρ,K)(Q2)/ǫ
)

=exp(ǫ·(
K1(⌈

ρ
c1
⌉+1)

K(⌈ ρ
c1
⌉+1)

+
K2(⌈

ρ
c2
⌉+1)

K(⌈ ρ
c2
⌉+1)

))

(by Equation 5.2)

=exp(ǫ·(
K1

K
+
K2

K
)) (recallK≥K1+K2)

≤exp(ǫ)

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 227

C Query Details

C.1 Case 1 Query Statements

Case 1: Query 1

SPLIT campus

BEGIN 06-01-2019/06:00am END 06-01-2019/06:00pm

BY TIME 30sec STRIDE 0sec

BY REGION

WITH MASK C1

INTO campusChunks;

PROCESS campusChunks USING count_ppl_campus.py TIMEOUT 1sec

PRODUCING 1 ROWS

WITH SCHEMA (ppl:NUMBER=0)

INTO campusTable;

SELECT hour,sum(RANGE(ppl,0,6)) from campusTable

GROUP BY hour

CONSUMING eps=1.0;

Case 1: Query 2

SPLIT highway

BEGIN 06-01-2019/06:00am END 06-01-2019/06:00pm

BY TIME 30sec STRIDE 0sec

BY REGION

WITH MASK H2

INTO highwayChunks;

PROCESS highwayChunks USING count_cars.py TIMEOUT 1sec

PRODUCING 1 ROWS

WITH SCHEMA (cars:NUMBER=0)

INTO highwayTable;

SELECT hour, sum(RANGE(cars,0,100)) from highwayTable

GROUP BY hour

CONSUMING eps=1.0;

Case 1: Query 3

SPLIT urban

BEGIN 06-01-2019/06:00am END 06-01-2019/06:00pm

BY TIME 30sec STRIDE 0sec

BY REGION

WITH MASK U2

INTO urbanChunks;

PROCESS campusChunks USING count_ppl_urban.py TIMEOUT 1sec

PRODUCING 1 ROWS

WITH SCHEMA (ppl:NUMBER=0)

INTO campusTable;

SELECT hour, sum(RANGE(ppl,0,23)) from campusTable

GROUP BY hour

CONSUMING eps=1.0;

C.2 Case 2: Complex Sensitivity Example

The code block for Case 2 contains Queries 4-6, which are
computed over the same set of intermediate tables.

To demonstrate the sensitivity computation for a complex
Privid query, we focus on Query 4. This query aims to
estimate the typical working hours of taxis in the city of
Porto, Portugal; it first computes the difference between the
first and last time each taxi (identified by plate) was seen (by
either camera 10 or 27) on a given day, then averages across
all taxis and days (over a year).

In order to ensure all variables needed for the aggregation
are properly constrained, we make two assumptions: most
taxis will not work more than 16 hours in a day, and there are
roughly300public taxis inPorto (basedonpublic information).
We can express this query in relational algebra as follows:

ΠAvg(hrs)(σlimit(plates)=300(plate,dayγrange(chunks)∈[0,16](t1∪t2)))

Case 2: Queries 4-6

-- Repeat for portoCam1...portoCam127:

SPLIT portoCam1

BEGIN 07-01-2013/12:00am END 07-01-2014/12:00am

BY TIME 15sec STRIDE 0sec

INTO chunks1;

-- Repeat for chunks1...chunks127:

PROCESS chunks1 USING porto.py TIMEOUT 1sec

PRODUCING 3 ROWS

WITH SCHEMA (plate:STRING="")

INTO table1;

-- Query 4: Average Taxi Working Hours

SELECT avg(avg_shift) FROM

(SELECT plate,avg(RANGE(shift, [0,16])) FROM

(SELECT plate,day,(max(chunk)-min(chunk) as shift) FROM

table10 UNION table27 GROUP BY plate,day(chunk))

GROUP BY plate LIMIT 300)

CONSUMING eps=0.33;

-- Query 5: # Taxis Traversing Both Locations On Same Day

SELECT day,count(DISTINCT plate) FROM

(SELECT day,plate FROM

table10 INNER JOIN table27 ON

(table10.plate=table27.plate AND table10.day=table27.day)

)

GROUP BY day

CONSUMING eps=0.33;

-- Query 6: Camera with highest daily traffic

SELECT argmax(arg=cam, target=avg_daily) FROM

(SELECT "cam1" as cam, avg(daily) as avg_daily FROM

(SELECT day,count(DISTINCT plate) as daily FROM

table1 GROUP BY day))

UNION

// ...

UNION

(SELECT "cam127" as cam, avg(daily) as avg_daily FROM ...)

CONSUMING eps=0.33;

We use the policy P = {(ρ = 45s,K = 1)c1 , (195s,1)c2}
(the max observed persistence over historical data for each
camera) and an ǫ of 1.
First, we compute the base sensitivity of each table.

The SPLIT statement specifies the video will be split
into 15 second chunks with 0 stride, and that each
chunk will produce a maximum of 3 rows. With this we

can compute: ∆P (t1) = ⌈ (45∗fps−1
15∗fps ⌉ + 1 = 4 · 3 = 12

and ∆P (t2) = ⌈ 195∗fps−1
15∗fps ⌉ + 1 = 14 · 3 = 42. When

we combine them with a union, their sensitivities add:
∆P (t1 ∪ t2) = 12 + 42 = 54. The GROUP BY creates a new
table with a row per plate per day, and constrains the range
of the aggregate value shift to [0,16] (range(a,b) returns
|b− a|, i.e., the time between the first and last appearance
of a taxi on a given day), but we don’t know how many
unique plates there might be, so the size C̃s(γ(...)) is
unconstrained.We add σlimit to manually enforce amaximum
of 300 plates per day,which gives us a constraint C̃s(σ(...))=
300plates ∗ 365days = 109,500. We now have all the con-
straints necessary to compute the sensitivity of the average

aggregation:∆AVG
P

(R)= ∆P (R)C̃r(R,shift,)

C̃s(R)
= 54·16

109,500 =0.0079.

Since Privid uses the Laplace mechanism to add noise, we
can use the inverse CDF of the Laplace distribution to bound
the expected error based on∆with a given confidence level.
For example, L−1(p= 0.999,u= 0,b= ∆

ǫ
= 0.0079

0.33)≤ 0.15
hours with 99.9% confidence.

228 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Spectrum: High-bandwidth Anonymous Broadcast

Zachary Newman
MIT CSAIL

zjn@mit.edu

Sacha Servan-Schreiber
MIT CSAIL
3s@mit.edu

Srinivas Devadas
MIT CSAIL

devadas@csail.mit.edu

Abstract
We present Spectrum, a high-bandwidth, metadata-private

file broadcasting system. In Spectrum, a small number of
broadcasters share a file with many subscribers via two or
more non-colluding broadcast servers. Subscribers generate
cover traffic by sending dummy files, hiding which users are
broadcasters and which users are only consumers.

Spectrum optimizes for a setting with few broadcasters
and many subscribers—as is common to many real-world
applications—to drastically improve throughput over prior
work. Malicious clients are prevented from disrupting broad-
casts using a novel blind access control technique that allows
servers to reject malformed requests. Spectrum also prevents
deanonymization of broadcasters by malicious servers devi-
ating from protocol. Our techniques for providing malicious
security are applicable to other systems for anonymous broad-
cast and may be of independent interest.

We implement and evaluate Spectrum. Compared to the
state-of-the-art in cryptographic anonymous communication
systems, Spectrum’s peak throughput is 4–120,000× faster
(and commensurately cheaper) in a broadcast setting. De-
ployed on two commodity servers, Spectrum allows broad-
casters to share 1 GB (two full-length 720p documentary
movies) in 13h 20m with an anonymity set of 10,000 (for
a total cost of about $6.84). These costs scale roughly linearly
in the size of the file and total number of users, and Spectrum
parallelizes trivially with more hardware.

1 Introduction

An informed public often depends on whistleblowers, who ex-
pose misdeeds and corruption. Over the last century, whistle-
blowers have exposed financial crimes, government corrup-
tion [61, 69, 75], risks to public health [43, 52], Russian
interference in the 2016 U.S. presidential election [61, 70],
presidential misconduct [17, 45, 67, 79], war and human
rights crimes [5, 38, 87], and digital mass surveillance by U.S.
government agencies [18]. Philosophers debate whistleblow-
ing ethics [3, 35], but agree it often has positive effects.

Motivation for this work. Whistleblowers take on great
personal risks in bringing misdeeds to light. The luckiest
enjoy legal protections [88] or financial reward [89]. But
many face exile [18], incarceration [50, 70, 74], or risk their
lives [87]. More recently, political activist Alexei Navalny
was detained and sentenced to prison following the release
of documents accusing Russian president Vladimir Putin of
corruption and embezzlement [80].

To mitigate these risks, many whistleblowers turn to tech-
nology to protect themselves [47]. Secure messaging apps
Signal [26] and SecureDrop [8] have proven to be an im-
portant resource to whistleblowers and journalists [44, 84].
Encryption does its job, even against the NSA [92]—but it
may not be enough to protect from powerful adversaries.

Since the Snowden revelations, governments and the press
have focused on metadata. The source, destination, and tim-
ing of encrypted data can leak information about its contents.
For instance, prosecutors used SFTP metadata in the case
against Chelsea Manning [96]. Newer technology is still vul-
nerable: a federal judge found Natalie Edwards guilty on the
evidence of metadata from an encrypted messaging app [50].
To protect whistleblowers and protect against powerful ad-
versaries (e.g., corrupted internet service providers), systems
must be designed with metadata privacy in mind.

Many academic and practical metadata-hiding systems pro-
vide solutions to this problem for some applications. Tor [37]
boasts a distributed network of 6,000 nodes and 2 million
daily active users (the only such system with wide usage).
Tor is fast enough for web browsing, but deanonymization at-
tacks identify users with a high success rate based on observed
traffic [9, 14, 42, 48, 53, 65, 68]. Moreover, the effectiveness
of deanonymization attacks increases with the size of the traf-
fic pattern. Whistleblowers using Tor to upload large files can
be more easily deanonymized for this reason.

Some recent academic research systems [2, 30, 41, 54–
56, 58, 86, 90] address the problem of hiding metadata in
anonymous communication, providing precise security guar-
antees for both direct messaging and “Twitter”-like broadcast
applications. However, a limitation of all existing systems is

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 229

that they are designed for low-bandwidth content, incurring
impractical latencies with large messages (see Section 8).

Contributions. Motivated by the lack of anonymous broad-
cast systems suitable for high-throughput data dumps, we
design and build Spectrum: a system for high-bandwidth
metadata-private anonymous broadcasting. Spectrum is the
first anonymous broadcast system supporting high-bandwidth,
many-user settings. It optimizes for the many-subscriber and
few-broadcaster setting, which reflects the real-world usage
of broadcast platforms. Per-request, Spectrum’s server-side
processing costs grow with the number of broadcasters rather
than the total number of users, significantly improving perfor-
mance over prior work when only a subset are broadcasting.

This paper contributes:

1. Design and security analysis of Spectrum, a system for
high-bandwidth broadcasting with strong robustness and
privacy guarantees against malicious adversaries,

2. A notion of blind access control for anonymous communi-
cation, along with a construction and a black-box transfor-
mation to efficiently support large (1 GB) messages,

3. Identification of an “audit attack” that allows malicious
servers to deanonymize users, and BlameGame, a black-
box blame protocol to “upgrade” Spectrum and similar
systems to defend against this attack.

4. An open-source implementation of Spectrum, evaluated
in comparison to other anonymous communication sys-
tems. We show that Spectrum supports high-bandwidth,
latency-sensitive applications such as real-time anony-
mous podcasting, video streaming, and large file leaks.

Limitations. Like other metadata-private systems, Spectrum
provides anonymity among honest online users and requires
all users to contribute cover messages to a broadcast (to
perfectly hide network metadata). Additionally, Spectrum
achieves peak performance with exactly two servers (simi-
larly to Riposte and Express [30, 41]). Instantiating with more
than two servers requires using a less (concretely) efficient
cryptographic primitive: a seed-homomorphic pseudoran-
dom generator [12]. Finally, Spectrum requires a one-time
“bootstrapping” process at setup time (similar to other sys-
tems [4, 29, 41, 58, 90, 95]); see Section 2.3.

2 Anonymous broadcast

In this section, we describe anonymous broadcast and its
challenges, along with our system design and techniques.

Setting and terminology. In anonymous broadcast, one or
more users/clients (broadcasters) share a message (e.g., file)
while preventing network observers from learning its source.
In Spectrum, passive users generate cover traffic (dummy
messages) to increase the size of the anonymity set (the set of
users who could have plausibly sent the broadcast message).

These passive users are subscribers, consuming broadcasts.
Because the message sources are anonymous, the servers
publish distinct messages to different channels or slots. Every
broadcaster has exactly one channel, which they anonymously
publish to in every iteration of the protocol. The servers
cannot distinguish between a subscriber sending cover traffic
and a broadcaster writing to a channel.

The primary challenge in anonymous broadcasting is pre-
venting disruption by malicious clients: in simple broadcast-
ing systems, users can clobber other users’ messages via
undetectable deviations from the protocol [2, 30, 41]. We first
begin by explaining the standard building-block for achieving
anonymous broadcasting [2, 30]. In subsequent sections, we
build off of this basic scheme to achieve disruption resistance.

2.1 DC-nets
Chaum [23] presents DC-nets, which enable a rudimentary
form of anonymous broadcast. DC-nets use secret-sharing to
obscure the source of data in the network. Like prior work [2,
30, 41, 95], we instantiate a DC-net with two or more servers
and many clients. One client (the broadcaster) wishes to share
a file; all other clients (subscribers) provide cover traffic. In a
two-server DC-net, the 8th client samples a random bit string
A8 and sends A8 ⊕<8 to ServerA and A8 to ServerB. Servers
can recover <8 by combining their respective shares:

<8 = (<8 ⊕ A8) ⊕ (A8).

If exactly one of # clients shares a message <8 = <̂ while all
other clients share <8 = 0, the servers can recover <̂ (without
learning which client sent <8 = <̂) by first locally aggregating
all received shares as agg� =

⊕
8 (A8 ⊕<8) and agg� =

⊕
8 A8

and then revealing the aggregation to the other server.
Because all subscribers send shares of zero, combining the

local aggregations recovers the broadcaster’s message:

<̂ = agg�⊕ agg� .

The above scheme protects client anonymity, as each server
sees a uniformly random share from each client.

DC-net challenges. While DC-nets allow fast anonymous
broadcast, users can undetectably disrupt the broadcast by
sending non-zero shares. Preventing such disruptions is a
major challenge and primary source of latency in prior DC-
net-based systems [2, 29, 30, 41, 54, 55, 95] (see related work;
Section 8). Also, while DC-nets enable one broadcaster to
transmit a message, many clients may wish to broadcast. Re-
peating the protocol in parallel is inefficient, requiring band-
width linear in the number of broadcasters. Even prior works
which overcome the linear (in the number of broadcasters)
bandwidth overhead of naïve protocol repetition suffer from
linear server-side work per client, regardless of whether or
not all clients are broadcasters. In Spectrum, the bandwidth

230 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 �0 � + = 0

���������������������
������������

0 + + 0
�

�����������

� �

+ = � �

Subscribers send secret shares of zero as cover traffic.
Broadcasters send secret shares shares of their files.

Servers blindly verify broadcasting permission for each
received share and locally aggregate all valid shares.

Servers reveal their aggregated secret shares
to recover the public broadcast.

�
������� ������� ������� �������

�����������

������� �������
�

� �00

��������� �����������

 	 �

�

���������

� �00

00

0 + + 0
�

Figure 1: High-level overview of Spectrum when instantiated with two servers (and one broadcaster).

overhead grows logarithmically in the number of broadcast-
ers. Additionally, the server-side work only grows linearly
in the number of broadcasters, rather than the total number
of clients. We compare this work and other DC-net-based
anonymous broadcasting systems in Table 1.

2.2 Main ideas in realizing Spectrum
Spectrum builds on top of DC-nets, improving efficiency and
preventing disruption by malicious clients.

Practical efficiency. Spectrum capitalizes on the asymmetry
of real-world broadcasting: there are typically fewer broad-
casters than there are subscribers. While some prior works
repeat many executions of the DC-net protocol more effi-
ciently than the naïve scheme, they still reserve space (i.e.,
channels) for every client [2, 30]. As a consequence, the per-
request computation on each server is linear in the number of
clients, leading to high latency and “wasted” work. Spectrum
derives anonymity from all clients, but only the total num-
ber of broadcasters influences the per-request work on each
server (rather than the total number of clients in the system).

Preventing disruption. In Spectrum, we prevent broadcast
disruption by developing a new idea: anonymous access con-
trol (Section 3.1), which we realize from the Carter-Wegman
MAC [94]. We check access to each “channel” to ensure that
only a user with a “broadcast key” can write to that channel.

Preventing “audit” attacks. Anonymous broadcast servers
can covertly exclude a client in order to deanonymize the
corresponding user. While vanilla DC-nets do not have this
problem, prior anonymous broadcast systems leave out a
client’s share if they are found to be ill-formed. This is done to
defend against disruption. However, it also makes it possible
for a malicious server to exclude a user by framing them
as malicious. In the broadcast setting, excluding a user can
effectively deanonymize them. Abraham et al. [2] make the
same observation and defend against the attack by requiring
an honest-majority out of five or more servers. In Dissent [29],
deanonymization is prevented with an expensive, after-the-
fact blame protocol. Other systems [30, 41] are vulnerable
to this attack (see Appendix A for details). Spectrum is the
first system to efficiently defend against this attack while still
preventing disruption per request (rather than assigning blame

after-the-fact). We achieve this by introducing BlameGame
(Section 4.3), a lightweight blame protocol which can also be
applied to other systems (e.g., Riposte [30] and Express [41]).

2.3 System overview
Spectrum is built using two or more broadcast servers (only
one must be honest to guarantee anonymity; see Section 2.4)
and many clients consisting of broadcasters and subscribers.
One or more broadcaster(s) wish to share a message (as in
the DC-net example). The subscribers generate cover traffic
to increase the anonymity set. Each broadcaster has a private
channel—or slot—for their message. Subscribers do not have
channels. At the end of each round, Spectrum publishes the
contents of each channel, hiding which client wrote to which
channel (if any). Spectrum has three phases.

Setup. During setup, all broadcasters register with the servers.
All users perform a setup-free anonymous broadcast protocol
to establish a channel in Spectrum. Specifically, each broad-
caster shares a public authentication key with the servers,
which will be used to enforce anonymous access to write to
a channel. At the end of the setup phase, the servers pub-
lish all parameters, including the number of channels and the
maximum size of each broadcast message per round.

Main protocol. The protocol proceeds in one or more rounds
(overview in Figure 1; details in Section 4.2). In each round,
every client sends request shares to each server. The broad-
casters send shares of their messages while the subscribers
send empty shares. To enforce access control, the servers
perform an efficient audit over the received shares: they obliv-
iously check that each writer to a channel knows the secret
channel broadcast key, or their message is zero. If the mes-
sage shares pass the audit, the servers aggregate them as in a
DC-net (Section 2.1). Otherwise, the servers perform a blame
protocol (see BlameGame, summarized below). Finally, the
servers combine aggregated shares to recover the messages.

BlameGame. If any client’s request fails the audit, the servers
perform BlameGame, a simple blame protocol (detailed in
Section 4.3). BlameGame determines whether a client failed
the access control check or if a server tampered with the client
request in an attempt to frame a client as malicious. If the
client is blamed, the servers drop the client’s request and

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 231

proceed with the main Spectrum protocol. Otherwise, if a
server is blamed, the honest server(s) abort. This protocol
is much faster than fully aggregating a client’s request, so a
malicious client cannot use this to cause significant delays.

2.4 Threat model and security guarantees

Spectrum is instantiated with two (or more) broadcast servers
and many clients (broadcasters and subscribers). Clients send
shares of a message to the servers for aggregation.

Threat model
• No client is trusted by any honest server.
• Clients may deviate from the protocol, collude with other

clients, or collude with a subset of malicious servers.
• At least one server must be honest to guarantee anonymity

for clients (it does not matter which server is honest).
• Any subset of servers may deviate from the protocol and

collude with malicious clients or the network adversary.

Assumptions. We make black-box use of public key infras-
tructure (e.g., TLS [73]) to encrypt data between clients and
servers. We make the following cryptographic assumptions:
(1) the hardness of the discrete logarithm problem [11], (2)
the hardness of the decision Diffie-Hellman problem [10, 40]
(when instantiated with more than two servers), and (3)
the existence of hash functions and pseudorandom gener-
ators. We also assume a setup-free anonymous broadcast
system [2, 30, 55, 95] for bootstrapping. As with prior
work [2, 29, 30, 41, 55], we assume all communication be-
tween parties is observed by the network adversary.

Guarantees. Under the above threat model and assumptions,
we obtain the following guarantees.

• Anonymity. An adversary controlling the network and a
strict subset of servers and clients cannot distinguish be-
tween honest clients: broadcasters and subscribers are cryp-
tographically indistinguishable in Spectrum. That is, no
adversary observing the network and controlling a subset
of servers and clients can distinguish between an honest
subscriber and an honest broadcaster.

• Availability. If all servers follow the protocol, the system re-
mains available (even if many clients are malicious). If any
server halts or deviates from the protocol, then availability
is not guaranteed and the protocol may abort.

Non-goals. We do not protect against denial-of-service at-
tacks by a large number of clients (but we note that standard
techniques, such as CAPTCHA [91], anonymous one-time-use
tokens [33], or proof-of-work [39, 51] apply). Like all anony-
mous broadcast systems, intersection attacks on participation
in the protocol can identify users, so Spectrum requires that
users stay online for the duration of the protocol.

3 Spectrum with one channel

In this section, we introduce Spectrum with a single broad-
caster (and therefore a single channel), two servers, and many
subscribers. Figure 1 depicts an example. This setup mirrors
the simplest DC-net protocol of Section 2.1. In Section 4, we
extend Spectrum to many broadcasters and many servers.

3.1 Preventing disruption
We denote by F any finite field of prime order (e.g., integers
mod ?). We assume that all messages are elements in F.
(Section 5.1 shows how to efficiently support large binary
messages in F2ℓ .) Each server receives secret-shares of a mes-
sage <8 , where <8 = 0 ∈ F for subscribers and <8 = <̂ ∈ F for
the broadcaster. To prevent disruption, we enforce the follow-
ing rule: for each channel, the broadcaster (with knowledge of
a pre-established broadcast key) can send a non-zero message;
all subscribers (who do not have the broadcast key) can only
share a zero message. We give a new technique enabling the
servers to verify the rule efficiently without learning anything
except for the validity of the provided secret-shares.

New tool: anonymous access control. We adapt the Carter-
Wegman MAC [21, 94] to provide a secret-shared “access
proof” accompanying the message shares. Each client sends
a secret-shared proof that it is either: (1) sending a share of a
broadcast message with knowledge of the broadcast key; or
(2) sending a cover message (i.e., <8 = 0) that does not affect
the final aggregate computed by the servers.

Carter-Wegman MAC. Let F be any finite field of suffi-
ciently large size for security. Sample a random authentication
key (U,W) ∈ F×F and define MAC(U,W) (<) = U ·< + W ∈ F.
Observe that MAC(U,W) is a linear function of the message,
which makes it possible to verify a secret-shared tag for a
secret-shared message. We demonstrate this with two servers
ServerA and ServerB. Let C = MAC(U,W) (<). If < is addi-
tively secret-shared as < =<�+<� ∈ F, and C is secret shared
as C = C� + C� ∈ F, the servers (knowing U and W) can verify
that the tag corresponds to the secret-shared message:
• ServerA computes V�← (U ·<�− C�) ∈ F.
• ServerB computes V�← (U ·<� − C�) ∈ F.
• Servers swap V� and V� and check if V�+ V� = W ∈ F.
The final condition only holds for a valid tag. Neither server
learns anything about the message < in the process (apart
from the tag validity) since both the message and tag remain
secret-shared between servers.

If both the servers and the broadcaster know the key (U,W),
the broadcaster can compute a tag C which the servers can
check for correctness as above. However, there are two imme-
diate problems to resolve. First, subscribers cannot generate
valid tags on zero messages without knowledge of (U,W).
Second, an honest-but-curious (or compromised) server can
share (U,W) with a malicious client who can then covertly

232 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Request
Size

Audit
Size

Audit
Rounds

Server
Work

Malicious
Security

Disruption
Handling

Blame
Protocol Comments

Blinder [2] |< | ·
√
_ · |< | log# # · |< | 3 Prevent N/A Requires 5+ servers and MPC

Dissent [29] |< | · ! +# N/A N/A ! · |< | 3 Detect Expensive Blame quadratic in #

PriFi [6] |< | · ! +# N/A N/A ! · |< | 3 Detect Expensive Similar to Dissent

Riposte [30] |< | +
√
#

√
1 # · |< | 7 Prevent None Requires a separate audit server

Express [41] |< | + log! _ 1 ! · |< | 7 Prevent None Exactly 2 servers

Two-Server |< | + log! _ 1 ! · |< | 3 Prevent Lightweight With tree-based DPF [15]

Multi-Server |< | +
√
! _ 1 ! · |< | 3 Prevent Lightweight With seed-homomorphic DPF [12, 30]

Table 1: Per-request asymptotic efficiency of Spectrum (highlighted) and prior anonymous broadcasting systems for ! broadcasters, # total
users, |< |-sized messages, and global security parameter _. O(·) notation suppressed for clarity. Spectrum’s advantages include: a request
size that is sublinear in ! (Section 5.1) and independent of # (Section 3.3), a protocol for lightweight auditing of client requests to prevent
disruption (Section 3.1), and a fast blame protocol for security against malicious servers (Section 4.3).

disrupt a broadcast. (A malicious server can always overtly
disrupt the broadcast by refusing to participate in Spectrum.)

Allowing forgeries on zero messages. To allow subscribers
to send the zero message without knowing the secret MAC
key, we leverage the following insight from the SPDZ [31]
multi-party computation protocol. The W value acts solely
as a “nonce” to prevent forgeries on the message 0 ∈ F [93].
Because of this, we can eliminate W while still having the
desired unforgeability property of the original MAC for
all non-zero messages. When evaluated over secret shares,
MACU (<) = U ·< ∈ F maintains security for all < ≠ 0. This
satisfies our requirement: Subscribers can send < = 0 and a
valid tag C = 0 without knowing U (i.e., subscribers can “forge”
a valid tag but only for < = 0).

Preventing client-server collusion. To prevent an honest-
but-curious server from collaborating with a malicious client
to disrupt a broadcast, we must prevent the servers from
knowing the broadcast key U while still allowing them to
check the MAC tag. To achieve this, we shift the entire
verification procedure “to the exponent” of a group G of
prime order ? (so that the exponent constitutes a field F?). For
security, we also require that the discrete logarithm problem is
computationally intractable in the groupG [85]. Then, instead
of U, the servers obtain a public verification key 6U (here 6
is a generator of G) from each broadcaster. All verification
proceeds as before. Each client generates secret-shares (C�,
C�) of a tag C and shares (<�,<�) of the message <, which
are distributed to the servers.

• ServerA computes 6V�← (6U)<�/6C� .
• ServerB computes V�← (6U)<�/6C� .
• Servers swap 6V� and 6V� and check if 6V� ·6V� = 60 = 1G.

Security. The unforgeability properties are inherited from
the Carter-Wegman MAC. Client anonymity (i.e., secrecy
of the message <8) follows from the additive secret-sharing.

Client-server collusion is prevented by only the broadcaster
knowing the broadcast key U. See Section 6 for full analysis.

3.2 Putting things together
In this section, we combine DC-nets for broadcast with anony-
mous access control to realize Spectrum with a single channel,
generalizing to multiple channels in Section 4.

Setup: broadcast key distribution. The setup in Spectrum
involves the broadcaster anonymously “registering” with the
servers by giving them the authentication public key 6U. The
servers must not learn the identity of the broadcaster when
receiving this key, which leads us to a somewhat circular
problem: broadcasters need to anonymously broadcast a key
in order to broadcast anonymously. We solve this one-time
setup problem as follows. All clients use a slower anony-
mous broadcast system suitable for low-bandwidth content
at system setup time [2, 30, 55, 95]. The broadcaster shares
an authentication key while subscribers share nothing. Keys
are small (e.g., 64 bytes) and therefore practical to share with
existing anonymity systems. Moreover, once the keys for the
broadcaster are established, they may be used indefinitely.
This process is similar to a “bootstrapping” setup found in
related work [4, 29, 41, 58, 90, 95]. Spectrum is agnostic
to how this setup takes place: one possibility is to use Ri-
poste [27, 30], which shares a similar threat model.

Step 1: Sharing a message. As in the DC-net scheme, the
broadcaster generates secret-shares of the broadcast message
<̂ in the field F. All other clients (subscribers) generate
secret-shares of the message 0. The only difference is that in
Spectrum, the broadcaster knows the broadcast key U while
subscribers do not. Let H = U, if the client is the broadcaster
and H = 0 otherwise. Each client proceeds as follows.
1.1: Sample random <�,<� ∈ F such that < = <�+<� ∈ F.
1.2: Compute C← H ·< ∈ F. // MAC tag (Section 3.1)

1.3: Sample random C�, C� ∈ F such that C = C�+ C� ∈ F.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 233

1.4: Send (<�, C�) to ServerA and (<�, C�) to ServerB.
The above amounts to secret-sharing the message and access
control MAC tag between both servers.

Step 2: Auditing shares. Servers collectively verify access
control using the shares of the message and tag.
2.1: ServerA computes 6V�← (6U)<�/6C� .
2.2: ServerB computes 6V� ← (6U)<�/6C� .
2.3: The servers swap audit tokens 6V� and 6V� and verify

that 6V� · 6V� = 60 = 1G.
The above follows the access control verification (Section 3.1).
All shares that fail the audit are discarded by both servers.
In Section 4, we discuss how we prevent “audit attacks” in
which a server tampers with a client request so the check fails.

Step 3: Recovering the broadcast. Servers collectively
recover the broadcast message by aggregating all received
shares that pass the audit.
3.1: ServerA computes agg�←

∑
8 (<�[8]) ∈ F.

3.2: ServerB computes agg�←
∑
8 (<� [8]) ∈ F.

3.3: Servers swap agg� and agg�.
3.4: Servers compute <̂← agg�+agg� ∈ F.
This recovers the broadcast message as in the vanilla DC-net
scheme. The recovered message is then made public to all
clients (e.g., via a public bulletin board [7, 25]).

3.3 Towards the full protocol
The single-channel scheme presented in Section 3.2 achieves
anonymous broadcast while also preventing broadcast dis-
ruption by malicious clients. Two problems remain how-
ever. First, while the single-channel scheme is fast and robust
against malicious clients, it does not efficiently extend to mul-
tiple broadcasters. Second, a malicious server can tamper with
the audit to make it fail for one or more clients—and learn
whether one of them was a broadcaster (see Appendix A).

Supporting multiple channels. To support multiple chan-
nels, we use distributed point functions (DPFs) [15, 16, 46]
to “compress” secret-shares across multiple instances of the
DC-net scheme. DPFs avoid the linear bandwidth over-
head of repeating DC-nets for each broadcaster and have
been successfully used for anonymous broadcast in other
systems [2, 30, 41]. However, without access control, the
DPFs must expand to a large space to prevent collisions. We
show that our construction for single-channel access control
extends to the multi-channel setting, where each broadcaster
has a key associated with their allocated channel.

Preventing audit attacks. At a high level, our approach is
to commit each server to the shares they receive from a client.
In the case of an audit failure, each server efficiently proves
that it adhered to protocol to blame the client; if it can’t, any
honest server aborts Spectrum.

4 Many channels and malicious servers

In this section, we extend the single-channel protocol of Sec-
tion 3.2 to the multi-channel setting. We first show how to use
a DPF to support many broadcast channels with little increase
in bandwidth overhead (compared to the one-channel setting),
an idea introduced in Riposte [30]. We prevent disruption by
augmenting DPFs with the anonymous access control tech-
nique from Section 3.1. Prior works [13, 16, 30, 34, 41]
describe techniques to verify that a DPF is well-formed, but
do not allow for access control. Spectrum does both.

4.1 Tool: distributed point functions
A point function % is a function that evaluates to a message
< on a single input 9 in its domain {1, . . . , !} and evalu-
ates to zero on all other inputs 8 ≠ 9 (equivalently, a vector
(0,0, . . . ,<, . . . ,0)). We define a distributed point function: a
point function encoded and secret-shared among = keys:

Definition 1 (Distributed Point Function (DPF) [30, 46]).
Fix integers !, = ≥ 2, a security parameter _, and a message
spaceM. Let e 9 ∈ {0,1}! be the 9 th row of the !×! identity
matrix. An =-DPF consists of (randomized) algorithms:

• Gen(1_,< ∈M, 9 ∈ {1, . . . , !}) → (:1, . . . , :=),
• Eval(:8) → (<1,<2, . . . ,<!).

These algorithms must satisfy the following properties:

- Correctness. A DPF is correct if expanding the output
of Gen into the space of ! messagesM! and combining
gives the corresponding point function:

Pr
[
(:1, . . . , :=) ← Gen(1_,<, 9)
s.t.

∑=
8=1 Eval(:8) = < · e 9

]
= 1,

where the probability is over the randomness of Gen

- Privacy. A DPF is private if any subset of evaluation keys
reveals nothing about the inputs. That is, there exists an
efficient simulator Sim which generates output computa-
tionally indistinguishable from strict subsets of the keys
output by Gen.

We use a DPF with domain {1, . . . , !}, where each broad-
caster/channel has an index 9 ∈ {1, . . . , !}. Each broadcaster
must write a message < to channel 9 , but not elsewhere: we
can think of this as a point function % with %(9) = <. Then,
we can encode secret-shares of % using a DPF more efficiently
than secret-sharing its vector representation (as in repeated
DC-nets). Evaluated DPF shares can still be aggregated lo-
cally, and our access control protocol supports DPFs with a
slight modification (Section 4.2).

DPFs are concretely efficient. The key size for state-of-
the-art 2-DPFs [16] is O(log! + |< |) (assuming PRGs); for
the general case [15], when = > 2, the key size is O(

√
! +

|< |) under the decisional Diffie-Hellman assumption [10].

234 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

�����

Each server expands the DPF
key to obtain a secret share
to write to each channel.

All servers swap audit
shares and locally check
write permission.

� �

α1

α2

α3
α4

�

��������

t ���������k � � +=

��������

Servers combine their
aggregated channel shares
to recover the broadcasts.

β 	

Each server uses the expanded
secret shares and channel keys
to compute an audit of the MAC tag.

� Each server aggregates
valid write requests into
the shared channels.

�

i i i Σ
i ����

n

βi Σ =
i ����

n

i
i
i
i

i
i
i
i

i
i
i
i

i
i
i
i

��������

i
i
i
i

i

Figure 2: Overview of the server-side pipeline when processing a client’s request. Steps � , � and � are computed over the field F. Steps � and
� are computed “in the exponent” of the group G when using the technique described in “Preventing client-server collusion” of Section 3.1.

Server-side work to expand each DPF uses fast symmetric-
key operations in the two-server case [15, 16] and group
operations in the multi-server case [30]. With ! = 220, the
DPF key size for the two-server construction is 325 B and for
the = > 2 construction 64 kB (excluding the message size).

4.2 Spectrum with many channels
In this section, we present the full Spectrum protocol with !
channels and = ≥ 2 servers. Broadcasters reserve a channel in
the setup phase. Clients encode their message at their channel
(if any) using a DPF; the servers anonymously audit access to
all channels before recovering messages.

Setup. The setup in this setting is similar to the setup de-
scribed in Section 3.2. Each broadcaster anonymously pro-
vides a public verification key 6U8 to the servers, to be as-
sociated with a channel. In addition to their key, any user
with content to broadcast might upload a brief description or
“teaser” of their content; the servers can choose which to pub-
lish, or users could perform a privacy-preserving vote [28].
We leave detailed exploration of the fair allocation of broad-
cast slots to users to future work. Post-setup, all servers
hold a vector of ! verification keys (6U1 , . . . , 6U!). Each key
corresponds to one channel.

Step 1: Sharing a message. Let H = U 9 and 9 ′ = 9 if the
client is a broadcaster for the 9 th channel (H = 0 and 9 ′ = 0
otherwise). Only broadcasters have < ≠ 0. Each client runs:
1.1: (:1, . . . , :=) ← DPF.Gen(1_,<, 9 ′). // gen DPF keys

1.2: Compute C← < · H ∈ F.
1.3: Sample (C1, . . . , C=)

'← F such that
∑=
8=1 C8 = C ∈ F.

1.4: Send share (:8 , C8) to the 8th server, for 8 ∈ {1, . . . , =}.

Step 2: Auditing shares. Upon receiving a request share
(:8 , C8) from a client, each server computes:
2.1: mi ← DPF.Eval(:8) ∈ F! .
2.2: �←∏!

9=1 (6U9)mi [9] . // � = 6 〈mi , (U1 ,...,U!) 〉

2.3: 6V8 ← �/6C8 .
2.4: Send 6V8 to all other servers.

All servers check that
∏=
8 6

V8 = 60 = 1G. If this condition does
not hold, then the client’s request is dropped by all servers.
In Section 4.3, we show how to detect a malicious server that
tampers with a client’s request so that it fails this audit.

Step 3: Recovering the broadcast. Each server keeps an
accumulator mi of ! entries (i.e., the channels), initialized
to 0 ∈ F! . Let (=

{
(: 9 , C 9) | 9 ≤ #

}
be the set of all valid

requests that pass the audit of Step 2. Each server:
3.1: Computes mi ←

∑
(:,C) ∈(DPF.Eval(:) ∈ F! .

3.2: Publicly reveals mi . // shares of the aggregate.

Using the publicly revealed shares, anyone can recover the !
broadcast messages as m̂ =

∑=
8 mi ∈ F! .

4.3 BlameGame: preventing audit attacks
BlameGame is a network overlay protocol that verifies who
received what during protocol execution.

We use a verifiable encryption scheme [11, 20] where a
party with a secret key can prove that a ciphertext decrypts
to a certain message (DecProof makes a proof, and VerProof
verifies it; see definition in Appendix C.1). Verifiable en-
cryption reveals the plaintext request shares of a client to all
servers if the client or the server is malicious (a malicious
server may do this once, but will be immediately eliminated).
BlameGame also uses a Byzantine broadcast protocol [19] so
that all servers get the (encrypted) shares of all other servers.

BlameGame. BlameGame commits clients and servers to
specific requests used in the audit. If the audit fails, honest
servers reveal (with a publicly verifiable proof) the share they
were given, which allows other servers to verify the results of
the audit locally, which indicts the client. Dishonest servers
cannot give valid proofs for their shares.

Setup. All servers make a key pair (pk8 ,sk8) and publish pk8 .

Step 1: Generating commitments. Let g8 be the client’s
request secret-share for server 8. The client runs:
1.1: �8← Enc(pk8 , g8). // Encryption under pk8.

1.2: Byzantine broadcast all �8 to all servers.
Server 8 recovers g8← Dec(sk8 ,�8); clients may go offline at
this point. All servers are committed to the encryption of their
secret-shares. We describe an optimization in Section 5.1 that
makes the size of each �8 constant.

Step 2: Proving innocence. Each server publishes their
share of the request g8 and a proof of correct decryption:
2.1: (c8 , g8) ← DecProof(sk8 ,�8).
2.2: Send (c8 , g8) to all servers.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 235

Step 3: Assigning blame. Using the posted shares and
proofs, each server assigns blame:
3.1: Collect (c8 , g8) from servers 8 ∈ {1, . . . , =} and all �8 .
3.2: Check that VerProof(pk8 , c8 ,�8 , g8) = yes, for 1 ≤ 8 ≤ =.
3.3: Check the audit using all the shares (g1, . . . , g=).
3.4: Assign blame:

if 3.2 fails for any 8: abort; // bad server

else if 3.3 passes: abort; // bad server

else if 3.3 fails: drop the client request. // bad client

5 Optimizations and extensions

Here, we describe extensions and optimizations to Spectrum.
We show how to (1) broadcast large messages efficiently and
(2) privately fetch published broadcasts as a subscriber.

5.1 Handling large messages efficiently

We described Spectrum in Section 4.2 with messages as ele-
ments of a field F, which we check to perform access control.
While a 16 B field suffices for audit security, large messages
require much larger fields (or repeating the protocol many
times). These approaches require proportionally greater band-
width and computation to audit. Instead, we give a black-box
transformation from a 2-server DPF over F to a DPF over
ℓ-bit strings, preserving security (see Section 6.2). We use a
pseudorandom generator (PRG). Clients create DPF keys en-
coding a short PRG seed, rather than a message. The servers
efficiently audit this seed as before to enforce access control.
Then, they expand it to a much longer message with the guar-
antee that the DPF is still non-zero at an index for which the
client knows the broadcast key (if the message is non-zero).

The transformation. Let DPF be a DPF over the field F and
let DPFbit be a DPF over {0,1}. Let � : F→ {0,1}ℓ be a
PRG. To write to channel 9 , a user computes:

1. B̄
'← F. // random nonzero PRG seed

2. (:�, :�) ← DPF.Gen(B̄, 9).
3. B∗

�
← DPF.Eval(:�) [9], B∗�← DPF.Eval(:�) [9].

4. <̄← � (B∗
�
) ⊕� (B∗

�
) ⊕<.

5. (:bit
�
, :bit
�
) ← DPFbit.Gen(1, 9).

6. Send (<̄, :�, :bit
�
) to ServerA, (<̄, :�, :bit

�
) to ServerB.

Every server evaluates the DPF keys to a vector s, of PRG
seeds, and a vector b of bits. Each seed and bit other than the
9 th is identical on both servers (a secret-share of zero); at 9 ,
we get B∗

�
≠ B∗

�
. Servers evaluate the DPF by expanding each

s[8] to an ℓ-bit string and XORing <̄ only when b[9] = 1. If
we define multiplication of a binary string by a bit as 1 · <̄ = <̄

and 0 · <̄ = 0, ServerA computes:

mG := (� (s�[1]) ⊕ b�[1] · <̄, . . . ,� (s�[!]) ⊕ b�[!] · <̄) .

ServerB does the same. Then, we get that:

m�[8] ⊕m� [8] =
{
� (s[8]) ⊕� (s[8]) = 0ℓ 8 ≠ 9

� (B∗
�
) ⊕� (B∗

�
) ⊕ <̄ = < 8 = 9 .

Servers perform the audit (in F) over the expanded PRG seeds
and bits as in Section 3.2. Observe that the final output is
non-zero only if: (1) some PRG seed, (2) some bit, or (3)
the masked message <̄ is different on each server. The s and
b audit checks (1) and (2); servers check (3) by comparing
hashes of <̄. As before, the 0 MAC tag passes the audit for an
empty message, and broadcasters can provide a correct tag.

Many servers. The above transformation generalizes to the
=-server setting. The intuition is the same: only “non-zero”
PRG seeds should expand to write non-zero messages. How-
ever, we need a PRG with special properties for this to hold
with = > 2. We give the full transformation in Appendix B.
Applying this transformation to a square-root DPF yields the
=-server DPF of Corrigan-Gibbs et al. [30], but now with
access control.

BlameGame optimization. The masked message <̄, given
to all servers, constitutes the bulk of data in each DPF key, so
clients can omit it in their request commitments (Section 4.3)
when using the above transformation because servers do not
need it to verify access control. (The verification performed
by the servers only depends on the DPF seeds and checking
equality of the masked message <̄.)

5.2 Private broadcast downloads

Content published using an anonymous broadcast system is
likely to be sensitive and subscribers might want to have
plausible deniability when it comes to which broadcasts they
are interested in. In a setting with many channels, we might
allow the subscribers to download one channel while hiding
which channel they download: the exact setting of private in-
formation retrieval (PIR) [24]. In (multi-server) PIR, a client
submits queries to two or more servers, receiving responses
which they combine to recover one document in a “database.”
The queries hide which document was requested. In Spec-
trum, clients can use any PIR protocol to hide which channel
they download. Modern PIR schemes based on DPFs have
minimal bandwidth overhead for queries [15, 16]. However,
the processing time on each server is always linear [24]. We
evaluate the overhead of using PIR for subscriber anonymity
in Section 7.1.

6 Security and efficiency analysis

In this section, we analyze the theoretical efficiency and secu-
rity of Spectrum with respect to the threat model and required
guarantees outlined in Section 2.4.

236 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

6.1 Efficiency analysis

We briefly analyze the efficiency of Spectrum (Section 4.2)
and BlameGame (Section 4.3) with the above optimizations.

Communication efficiency in Spectrum. Spectrum can use
any DPF construction with outputs in a finite field using the
transformation of Section 5.1 to support ℓ-bit messages with
only an additive O(ℓ) overhead to the DPF key size. Using
optimized two-server DPF constructions [15, 16], clients send
requests of size O(log! + |< |) (for ! channels). With more
than two servers, the communication is O

(√
! + |< |

)
using

the seed-homomorphic PRG based DPF construction [30].
For the audit, inter-server communication is constant.

Computational efficiency in Spectrum. Each server per-
forms O(! · |< |) work per client when aggregating the shares
and performing the audit (O(# · ! · |< |) total for # clients).
The work on each client is O(log! + |< |) when using two-
server DPFs and O(

√
! + |< |) otherwise [15].

6.2 Security of Spectrum

We first describe the ideal functionality of the anonymous
broadcast system which Spectrum instantiates.

Ideal functionality. Ideal Spectrum is defined as follows:
• Receive message < = 0 from each subscriber, < = <̂ from

the broadcaster, and no input from the servers.
• Output <̂ to both the clients and servers.

Client anonymity. We argue that Spectrum provides client
anonymity by constructing a simulator for the view of a net-
work adversary corrupting any strict subset of servers.

Claim 1. If at least one server is honest, then no probabilistic
polynomial time (PPT) adversary A observing the entire
network and corrupting any strict subset of the servers and
an arbitrary subset of clients, can distinguish between an
honest broadcaster and an honest subscriber.

Proof. We construct a simulator Sim for the view of A when
interacting with an honest client. Let Ŝim be the DPF simula-
tor (see Definition 1). Sim proceeds as follows:
1. Take as input (G, 6), (6U1 , . . . , 6U!), F, and subset of cor-

rupted server indices � ⊂ {1, . . . , =}.
2. Sample C8

'← F for 8 ∈ {1, . . . , =} such that
∑
8 C8 = 0.

3. {:8 | 8 ∈ �} ← Ŝim(�). // see Definition 1

4. Output View =
({
(C ′
8
, :8) | 8 ∈ �

}
, {6C 9 | 9 ∈ {1, . . . , =} \ �}

)
.

Analysis. The view includes:
• Each DPF key :8 for corrupted server 8.
• Each MAC tag share C ′

8
for corrupted server 8.

• Audit shares 6C 9 from every honest server 9 .

The DPF keys are computationally indistinguishable from real
DPF keys by the security of the DPF simulator. Therefore, it
remains to argue that the tag and audit shares are distributed
identically to the real view. Recall that during an audit, server
8 publishes 6V8 = 6 〈mi , (U1 ,...,U!) 〉−C8 where mi is the output
of DPF.Eval(:8) and C8 is a secret-share of the MAC tag C.
For a subscriber, 〈mi , (U1, . . . , U!)〉 (the inner product) gives
a random secret share of 0 and C8 is a secret share of 0, so
6V8 is a random (multiplicative) secret share of 60. For a
broadcaster publishing to channel 9 , 〈mi , (U1, . . . , U!)〉 is a
random secret share of < ·U 9 = C, so 6V8 as computed by the
8th server is a random multiplicative secret share of 60 as well.
Therefore, the distribution of the audit and tag shares (6V8 and
C8 , respectively) is identical to the real view. Finally, because
the connection between clients and servers is encrypted (and
of fixed-size), we can efficiently simulate network traffic as
random encrypted data. �

Disruption resistance in Spectrum. We prove that a client
cannot disrupt a broadcast on the 9 th channel without know-
ing the channel broadcast key U 9 .

Claim 2. Assuming the hardness of the discrete logarithm
problem [11, 40] inG, no probabilistic polynomial time (PPT)
client can write to channel 9 and pass the audit performed by
the servers without knowledge of U 9 .

Proof. Assume towards contradiction that some adversarial
client can generate (potentially ill-formed) DPF keys that
result in a non-zero vector (WLOG, assume that index ! is
non-zero) and pass the audit for a given access tag with non-
negligible probability. We can use the client to extract the
discrete logarithm for any element ofG as follows. Given 6U

∗
,

choose random U8 ∈ F for 8 ∈ {1, . . . , ! −1}. Give the client(
6U1 , . . . , 6U!−1 , 6U

∗)
and get in return DPF keys (:1, . . . :=)

and MAC tag C. Given these DPF keys, we can compute
m = (<1, . . . ,<!) by evaluating the DPF. If the shares pass
the audit, it must be that 〈m,"〉 = C. However, " includes U∗

so we can solve for U∗ (C and all U8 except for U∗ are known).
We conclude that the client has knowledge of U∗. �

Security of the DPF transformation. The construction
from Section 5.1 maintains security. This construction trans-
forms a DPF DPF into a DPF DPF′ over ℓ-bit messages.

Claim 3. If Spectrum with DPF preserves client anonymity,
Spectrum with DPF′ preserves client anonymity.

Proof. We build a simulator Sim′ for DPF′ from the simulator
Sim for DPF. Sim′ simply runs Sim twice (once to generate
the seed-DPF keys and once for the bit-DPF keys) and picks
an ℓ-bit message uniformly at random for <̄. The simula-
tor’s <̄ is computationally indistinguishable from the real <̄
(otherwise, the PRG used to mask the message is not secure).
Therefore, if there exists an efficient distinguisher, it can also

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 237

distinguish between the keys output by Sim and the real DPF
keys, a contradiction. �

Claim 4. If Spectrum with DPF has disruption resistance,
Spectrum with DPF′ has disruption resistance.

Proof. Assume, towards contradiction, that there exists a
computationally bounded adversaryA which does not obtain
the broadcast key U as input, and outputs a set of DPF′ keys
along with MAC tag shares. If the set of DPF′ keys write to
at least one channel and the tag shares output by A pass the
server MAC audit, then we can produce a non-zero message
and tag for DPF as follows. WLOG, we fix the number of
servers to = = 2. Run A to get two DPF′ keys : ′1, :

′
2 and tag

C = (C1, C2). By construction, : ′
8
= (:8 , :bit

8
,<′), where :8 and

:bit
8

are DPF keys with range F? and F2, respectively, and
<′ ∈ F2ℓ is a masked message (identical in each DPF′ key).
If these keys and tags pass the audit, the masked message
in each key is the same (by the collision resistance of the
audit hash function). Then, because the key for DPF′ writes a
non-zero message, at least one of the two DPF keys (either
: or :bit) must write a non-zero message (otherwise the keys
would be writing zero). If follows that (:1, :2) or (:bit

1 , :
bit
2)

encode a non-zero message, which contradicts Claim 2. �

6.3 Security of BlameGame
We must show that in BlameGame: (1) an honest client will
never be blamed, (2) a malicious client will always be blamed,
(3) an honest server will never be blamed, and (4) a malicious
server will always be blamed. Incorrect blame attribution
indicates a failure of the verifiable encryption scheme or audit
security; see Appendix C.2 for full proof.

Overhead of BlameGame. BlameGame requires some ex-
tra bandwidth and computation time. Clients send a shared
message mask once to each server; DPF keys add about 100
bytes per client request (details in Section 5.1). The servers
must run BlameGame for each malicious client. However,
verifying decryption takes tens of microseconds, and running
the audit is similarly quick (see Section 7.1). Because the
servers delay the work of aggregating messages until after
the audit, a malicious client often requires fewer cycles than
an honest one (but extra network communication).

7 Evaluation

We build and evaluate Spectrum, comparing it to state-of-
the-art anonymous broadcasting works: Riposte, Blinder,
Express, and Dissent (see related work; Section 8).

Riposte [30] is designed for anonymous broadcasting where
all users broadcast at all times. Riposte uses three servers
(one trusted for audits) but generalizes to many servers (one
honest). Riposte was designed for smaller messages and the
source code fails to run with messages of size 5 kB or greater.

Blinder [2] builds on Riposte but requires an honest majority
of at least 5 servers. Like Riposte, Blinder also assumes that
all users are broadcasting. Blinder supports using a server-
side GPU to increase throughput.

Express [41] is an anonymous communication system de-
signed for anonymous “dropbox”-like applications. It does
not support broadcast as-is, but can be easily modified to do
so. We include Express in our comparison as a recent, high-
performance system decoupling broadcasters and subscribers.

Dissent [29, 95] has a setup phase (like Spectrum’s), a DC-
net phase, and a blame protocol. We give measurements
both with and without the blame protocol and exclude the
setup phase. Without the blame protocol, the system runs a
plain DC-net without any disruption resistance and is quite
fast. If any user sends an invalid message, Dissent runs the
(expensive) blame protocol (up to once per malicious user).

We use data from the Blinder paper [2, Fig. 4] as the source
did not compile. The Dissent code (last modified in 2014)
ran with up to 1000 users and 10 kB messages, but hung in-
definitely after increasing either (though the authors report
128 kB messages with 5000 users). Linearly scaling our mea-
surements, we find them broadly consistent (3× faster) with
the authors’ reported measurements for 128 kB messages with
the same number of users in a similar setting [95, Fig. 7].

Implementation. We build Spectrum in ∼8000 lines of open-
source [1] Rust code, using AES-128 (CTR) as a PRG and
BLAKE3 [66] as a hash. Because our DPF has relatively
few “channels” !, a DPF with O(!)-sized keys (adapted
from Corrigan-Gibbs et al. [30]) gives the best concrete per-
formance. For the multi-server extension (Section 5.1 and
Appendix B), we use a seed-homomorphic PRG [12] with the
Jubjub [49] curve. We encrypt traffic with TLS 1.3 [73].

Environment. We run VMs on Amazon EC2 to simulate
a WAN deployment. Each c5.4xlarge 8-core instance has
32 GiB RAM [76], running Ubuntu 20.04 ($0.68 per hour
in September 2021). We run clients in us-east-2 (Ohio)
and servers in us-east-1 (Virginia) and us-west-1 (Cali-
fornia). Network round trip times (RTTs) were 11 ms between
Virginia and Ohio, 50 ms between Ohio and California, and
61 ms between Virginia and California. Inter-region band-
width was 524 Mbit/s (shared between many clients simu-
lated on the same machine).

7.1 Results
In our experiments, we find Spectrum is 4–7× faster than
Express for 5 MB to 100 kB messages, 2× / 13–17× slower
than Blinder (CPU/GPU, resp.) in unfavorable settings, 500–
7500× / 250–520× faster than Blinder (CPU/GPU) in favor-
able settings, and 16–12,500× faster than Riposte. We run 5
trials per setting, shading the 95% confidence interval (occa-
sionally too small to be seen).

238 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 1 2 3 4 5
Message Size (MB)

100

200

Th
ro

ug
hp

ut
(c

lie
nt

s p
er

 se
c)

Spectrum
Express

Figure 3: Throughput (client requests per second; higher is better) for
a one channel deployment (one broadcaster and many subscribers).

100 101 102 103 104 105

101

103

Th
ro

ug
hp

ut
(c

lie
nt

s p
er

 se
c)

1 kB messages

100 101 102 103 104 105

100

101

102

Th
ro

ug
hp

ut
(c

lie
nt

s p
er

 se
c)

5 kB messages

100 101 102 103 104 105

Channels

100

101

102

Th
ro

ug
hp

ut
(c

lie
nt

s p
er

 se
c)

10 kB messages

Spectrum (sk)
Spectrum

Express
Riposte

Blinder (CPU)
Blinder (GPU)

Figure 4: Throughput (requests per second; higher is better) for
broadcasts with 100,000 users with varying numbers of broadcast-
ing users (“channels”): Express and Spectrum benefit from fewer
channels. (Blinder numbers as reported by the authors [2].)

One channel. In Figure 3, we report the throughput (client
requests per second) for both Spectrum and Express in the
one-channel setting. As expected, performance is worse with
larger messages for both systems. However, we find that
Spectrum, compared to Express, is 4–7× faster on messages
between 100 kB and 5 MB. Riposte and Blinder have no
analog for the single-channel setting. (Dissent does support a
one-channel setting, but did not run with large messages.)

Many channels. Unlike Riposte and Blinder, Spectrum is
faster with fewer broadcasters. To compare, we fix 100,000
users and vary the number of channels from 1 (best-case for
Spectrum) to 100,000 (worst-case). We evaluate Spectrum
with and without the change described in “Preventing client-
server collusion” (Section 3.1). Without the change, which
we call “Spectrum (sk)”, servers obtain the MAC secret key
for each channel. This mirrors the threat model of e.g., Ex-

Request Size Request Audit Aggregation
per client per client once per server

|< |+ 70 bytes 70 bytes |< |+ 3 bytes

BlameGame Backup Request Audit Decryption
(per failed audit) per client per client once per client

140 bytes 200 bytes 10 µs

Table 2: Upper bound on request size for one channel and |< |-bit
messages. BlameGame only runs if the first request audit fails.

2 4 6 8 10
Number of Servers

0

200

Th
ro

ug
hp

ut
(c

lie
nt

s p
er

 se
c)

Spectrum (2-server)
Spectrum (n-server)

Figure 5: Spectrum can generalize to = > 2 servers (shown for 10 kB
messages). This uses an expensive PRG and is therefore slower, but
adding more servers causes no additional slowdown.

press [41]. With the change, servers only get MAC public
keys which prevents covert client-server collusion. However,
there is a modest price in terms of performance due to the
elliptic curve operations (see Figure 4). We find that Spec-
trum (both variants) outperform all other systems with 10 kB
messages for relatively few channels (up to hundreds), but
performs relatively worse with smaller messages or more
channels. For “Twitter-like” settings, another system (e.g.,
Blinder or Riposte) may be appropriate.

Overhead. In any anonymous broadcast scheme, every
client (even subscribers) must upload data corresponding to
the message length |< | to ensure privacy. For DC-net based
schemes, the client sends a size-|< | request to each server.
We measure the concrete request sizes of Spectrum and com-
pare to this baseline in Table 2. Client request overhead
is small: about 70 B, roughly 75× smaller than in Express.
Moreover, in Spectrum, request audits are under 16 B, a 120×
improvement over Express [41]. BlameGame imposes little
overhead (both in terms of bandwidth and computation). Be-
cause BlameGame runs only when a request audit fails, these
overheads occur for few requests in most settings.

Many servers. In Section 5.1 and Appendix B, we note that
our construction of Spectrum generalizes from 2 to = servers
(with one honest) in a manner similar to Riposte [30]. The =-
server construction uses a seed-homomorphic pseudorandom
generator (PRG) [12]. On one core of an AMD Ryzen 4650G
CPU, we measured the maximum throughput of our seed-
homomorphic PRG at 300 kB/s, 20,000 times slower than
an AES-based PRG. For 10,000 kB messages, Spectrum was
5× slower with the seed-homomorphic PRG (Figure 5); with

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 239

2 4 6 8 10
Virtual Machines per Logical Server

250

500

750

Th
ro

ug
hp

ut
(c

lie
nt

s p
er

 se
c) Spectrum

Linear scaling

Figure 6: Spectrum is highly parallelizable: for 500 channels of
100 kB messages, 10 VMs per “server” gives a 10× speedup.

larger messages, the relative difference increases. We find no
additional slowdown between 2 to 10 servers. An interesting
direction for future work would to evaluate Spectrum with
LWE-based seed-homomorphic PRG constructions [12], as
they are likely to have better concrete performance.

Scalability. We may trust machines administered by the
same organization equally, viewing several worker servers as
one logical server. Client requests trivially parallelize across
such workers: running 10 workers per logical server leads to
a 10× increase in overall throughput (Figure 6). In a cloud
deployment, Spectrum handles the same workload in less time
for negligible additional cost by parallelizing the servers.

Latency. In Figure 7, we measure the time to broadcast a
single document for these systems with varying numbers of
users. For Spectrum, we use a 1 MB message. For Blinder, we
use numbers reported by the authors [2, Fig. 4], multiplied
to the same message size (the authors explicitly state that
repeating the scheme many times is the most efficient way
to send large messages). We benchmark Dissent both with
and without the blame protocol invoked during a round. The
former (blame) is the performance of Dissent if any client
misbehaves. The latter (no blame) assumes that no client
misbehaves. Express doesn’t have a notion of “rounds” so we
omit it here. We find that for one channel of large messages,
Spectrum is much faster than other systems (except Dissent
with no blame protocol; i.e., when all clients are honest).

Client privacy. In Section 5.2, we outlined how private
information retrieval (PIR) [24] techniques provide client
privacy for multiple channels. Figure 8 shows the server-side
CPU capacity to process these requests for 1 kB, 10 kB, and
100 kB messages and 1–100,000 channels. We measure one
core of an AMD Ryzen 4650G CPU for a simple 2-server
PIR construction [24], finding good concrete performance.

7.2 Discussion
Our evaluations showcase the use of Spectrum for a real-
world anonymous broadcasting deployment using commodity
servers. Compared to the state-of-the-art in anonymous broad-
casting, Spectrum achieves speedups in settings with a large
ratio of passive subscribers to broadcasters. Based on our
evaluation, with 10,000 users, Spectrum could publish: a

103 104 105

Clients

100

102

104

106

Ti
m

e
(s

)

Spectrum 1 MB
Dissent (honest) 10 kB
Dissent (blame) 10 kB

Blinder (CPU) 1 MB
Blinder (GPU) 1 MB
Riposte 1 kB

Figure 7: Latency for uploading a single document with varying
numbers of users. Blinder numbers as reported by the authors [2,
Fig. 4] and linearly scaled to 1 MB messages.

! up down

101 1.25 B |< |
102 12.5 B |< |
103 125 B |< |
104 1.25 kB |< |
105 12.5 kB |< | 101 103 105

Channels

102

105

Th
ro

ug
hp

ut
(c

lie
nt

s p
er

 se
c) Message size

1 kB
10 kB
100 kB

Figure 8: Left: Bandwidth usage of a PIR query with varying
number of channels !. Right: Server capacity (one core) to answer
PIR queries for private client downloads. For ! channels, the client
requests one out of ! documents, where channels have size |< |.

PDF document (1 MB) in 50s, a podcast (50 MB) in 40m, or
a documentary movie (500 MB, the size of Alexei Navalny’s
documentary on Putin’s Palace at 720p [80]) in 6h40m.

Operational costs. We estimate costs for a cloud deployment
of Spectrum using current Amazon EC2 prices, reported in
US dollars. Servers upload about 100 bytes per query (in
the above settings, at most 1 GB per day) and inbound traffic
is free on EC2. We focus on compute costs: $6.84 per GB
published through Spectrum (with 10,000 users). Table 3
compares costs to publish 1 GB among 10,000 users.

8 Related work

Existing systems for anonymous broadcast are suitable for
140 B to 40 kB [2, 30, 41] broadcasts, orders of magnitude
smaller than large data dumps [69, 75, 77] common today.

Mix Networks and Onion Routing. In a mix net [22], users
send an encrypted message to a proxy server, which collects
and forwards these messages to their destinations in a random
order. Chaining several such hops protects users from com-
promised proxy servers and a passive network adversary. Mix

240 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

System Cost (USD)

Blinder (GPU) $2,000,000.00
Blinder (CPU) $250,000.00
Riposte $218,000.00
Dissent (with blame protocol; one round)* $76,000.00
Dissent (honest clients) $134.00
Express $30.22
Spectrum $6.84

Table 3: Cost to upload one 1 GB document anonymously with
10,000 users, based on the best observed rate for each system with
that many users (that is, the maximum throughput over all settings
we measured; for Blinder, we use the best reported rate). We multiply
the total time at the maximum throughput by hourly rate to get the
cost. *Extrapolated from 1000 users.

nets and their variations [32, 56, 57, 59, 60, 63, 64, 71, 72, 81,
82, 90] scale to many servers. However, because messages are
exchanged and shuffled between many servers, mix nets are
poorly suited to high-bandwidth applications. Atom [55] uses
mix nets with zero-knowledge proofs to horizontally scale
anonymous broadcast to millions of users (Spectrum achieves
about 12,500× the throughput [55, Fig. 9]). Riffle [54] uses
a hybrid verifiable shuffle; in the broadcast setting, it shares
a 300 MB file with 500 users in 3 hours (Spectrum supports
about 10,000 users in that time).

Some systems use onion routing for better performance
than a mix net. In onion routing, users encrypt their mes-
sages several times (in onion-like layers) and send them to
a chain of servers. Tor [37], the most popular onion routing
system, has millions of daily users [83]. Tor provides secu-
rity in many real-world settings, but is vulnerable to traffic
analysis [53, 62, 78]. If only one user sends large volumes of
data, an adversary can identify them—Tor discourages high
bandwidth applications for this and other reasons [36].

DC-nets. Another group of anonymous communications
systems use dining cryptographer networks (DC-nets) [23]
(Section 2). DC-nets are vulnerable to disruption: any mali-
cious participant can clobber a broadcast by sending a “bad”
share. Dissent [29, 95] augments the DC-nets technique with
a system for accountability. Like Spectrum, Dissent performs
best if relatively few users are broadcasting. The core data
sharing protocol is a standard DC-net, which is very fast and
supports larger messages. Further, it supports many servers
at little additional cost. However, Dissent is not suitable for
many-user applications where disruption is a concern. If any
user misbehaves, Dissent must undergo an expensive blame
protocol (quadratic in the total number of users). This ap-
proach detects, rather than prevents, disruption. The user is
evicted after this protocol, but an adversary controlling many
users can cause many iterations of the blame protocol.

PriFi [6] builds on the techniques in Dissent to create in-
distinguishability among clients in a LAN. Outside servers

help disguise traffic using low-latency, precomputed DC-nets.
Like Dissent, PriFi catches disruption after-the-fact using a
blame protocol (as often as once per malicious user). The
PriFi blame algorithm is much faster, but still scales with all
users in the system (in Spectrum, each malicious user incurs
constant server-side work).

Riposte [30] enables anonymous Twitter-style broadcast
with many users using a DC-net based on DPFs and an audit-
ing server to prevent disruptors. We find that Riposte is 16×
slower than Spectrum with 10,000 users. Further, Riposte
assumes that all users are broadcasting and therefore gets
quadratically slower in the total number of users.

A more recent work, Blinder [2] uses multi-party compu-
tation to prevent disruption. Blinder’s threat model requires
at least five servers with an honest majority. Like Spectrum,
Blinder is resilient to active attacks by a malicious server. It
is fast for small messages when most users have messages to
share, but much slower for large messages. Blinder allows
trading money for speed with a GPU.

Express [41] is a system for “mailbox” anonymous com-
munication (writing anonymously to a designated mailbox).
Express also uses DPFs for efficient write requests. How-
ever, it only runs in a two-server deployment. Express is
not a broadcasting system, and while it is possible to adapt
it to work in a broadcast setting, it is not designed to with-
stand active attacks by the servers and is insecure for such an
application (see Appendix A for details).

9 Conclusions

Spectrum supports high-bandwidth, low-latency broadcasts
from a small set of broadcasters to a large number of sub-
scribers by applying new tools to the classic DC-net archi-
tecture. We prevent disruption by malicious clients with an
efficient blind access control mechanism that prevents clients
from writing to a channel they do not have access to.

Additionally, we introduce optimizations to decouple
server-side overhead from the message size, which allows
Spectrum to scale to large messages and many broadcasters.
To prevent malicious servers from deanonymizing clients, we
develop a lightweight blame protocol to abort Spectrum if a
server deviates from the protocol. Our experimental results
show that Spectrum can be used for uploading gigabyte-sized
documents anonymously among 10,000 users in 14 hours.

10 Acknowledgments

We thank Henry Corrigan-Gibbs, Kyle Hogan, Albert Kwon,
and Derek Leung, for helpful feedback and discussion on
early drafts of this paper. We would also like to thank our
shepherd Alan Liu and the anonymous NSDI reviewers for
their insightful feedback and many suggestions that helped to
significantly improve this paper.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 241

References

[1] Spectrum implementation. https://www.github.
com/znewman01/spectrum-impl, 2021.

[2] Ittai Abraham, Benny Pinkas, and Avishay Yanai. Blin-
der: Scalable, robust anonymous committed broad-
cast. In Proceedings of the 2020 ACM SIGSAC Con-
ference on Computer and Communications Security,
CCS ’20, pages 1233–1252, New York, NY, USA,
2020. Association for Computing Machinery. ISBN
9781450370899. doi: 10.1145/3372297.3417261. URL
https://doi.org/10.1145/3372297.3417261.

[3] C. Fred Alford. Whistleblowers and the narrative of
ethics. Journal of social philosophy, 32(3):402–418,
2001.

[4] Sebastian Angel and Srinath Setty. Unobservable com-
munication over fully untrusted infrastructure. In 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pages 551–569, 2016.

[5] Raymond Walter Apple Jr. 25 years later; lessons
from the Pentagon Papers. The New York Times, 23
June 1996. URL https://www.nytimes.com/1996/
06/23/weekinreview/25-years-later-lessons-
from-the-pentagon-papers.html. Accessed March
2022.

[6] Ludovic Barman, Italo Dacosta, Mahdi Zamani, En-
nan Zhai, Apostolos Pyrgelis, Bryan Ford, Joan Feigen-
baum, and Jean-Pierre Hubaux. Prifi: Low-latency
anonymity for organizational networks. Proc. Priv.
Enhancing Technol., 2020(4):24–47, 2020. doi: 10.
2478/popets-2020-0061. URL https://doi.org/10.
2478/popets-2020-0061.

[7] Josh Daniel Cohen Benaloh. Verifiable secret-ballot
elections. PhD thesis, Yale University, 1987.

[8] Charles Berret. Guide to SecureDrop, 2016. URL
https://www.cjr.org/tow_center_reports/
guide_to_securedrop.php.

[9] Sanjit Bhat, David Lu, Albert Kwon, and Srinivas De-
vadas. Var-CNN: A data-efficient website fingerprinting
attack based on deep learning. Proceedings on Privacy
Enhancing Technologies, 2019(4):292–310, 2019.

[10] Dan Boneh. The decision Diffie-Hellman problem.
In Algorithmic Number Theory, Third International
Symposium, ANTS-III, Portland, Oregon, USA, June
21-25, 1998, Proceedings, pages 48–63, 1998. doi:
10.1007/BFb0054851. URL https://doi.org/10.
1007/BFb0054851.

[11] Dan Boneh and Victor Shoup. A graduate course in
applied cryptography. Recuperado de https://crypto.
stanford. edu/˜ dabo/cryptobook/BonehShoup_0_4. pdf,
2017.

[12] Dan Boneh, Kevin Lewi, Hart Montgomery, and Ananth
Raghunathan. Key homomorphic PRFs and their ap-
plications. In Annual Cryptology Conference, pages
410–428. Springer, 2013.

[13] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv
Gilboa, and Yuval Ishai. Lightweight techniques for
private heavy hitters. In 2021 IEEE Symposium on
Security and Privacy (SP), pages 762–776. IEEE, 2021.

[14] Nikita Borisov, George Danezis, Prateek Mittal, and
Parisa Tabriz. Denial of service or denial of security? In
Proceedings of the 14th ACM Conference on Computer
and Communications Security, pages 92–102, 2007.

[15] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function
secret sharing. In Elisabeth Oswald and Marc Fischlin,
editors, Advances in Cryptology – EUROCRYPT 2015,
pages 337–367, Berlin, Heidelberg, 2015. Springer.
ISBN 978-3-662-46803-6.

[16] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function se-
cret sharing: Improvements and extensions. In Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pages 1292–1303, 2016.

[17] Russ Buettner, Susanne Craig, and Mike McIntire.
Long-concealed records show Trump’s chronic losses
and years of tax avoidance. The New York Times, 2020.
URL https://www.nytimes.com/interactive/
2020/09/27/us/donald-trump-taxes.html. Ac-
cessed March 2022.

[18] Bryan Burrough, Sarah Ellison, and Suzanna
Andrews. The Snowden saga: A shadowland
of secrets and light. Vanity Fair, 2014. URL
https://www.vanityfair.com/news/politics/
2014/05/edward-snowden-politics-interview.
Accessed March 2022.

[19] Christian Cachin, Klaus Kursawe, Frank Petzold, and
Victor Shoup. Secure and efficient asynchronous broad-
cast protocols. In Joe Kilian, editor, Advances in Cryp-
tology - CRYPTO 2001, 21st Annual International Cryp-
tology Conference, Santa Barbara, California, USA,
August 19-23, 2001, Proceedings, volume 2139 of
Lecture Notes in Computer Science, pages 524–541.
Springer, 2001. doi: 10.1007/3-540-44647-8_31. URL
https://doi.org/10.1007/3-540-44647-8_31.

[20] Jan Camenisch and Victor Shoup. Practical verifiable
encryption and decryption of discrete logarithms. In

242 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.github.com/znewman01/spectrum-impl
https://www.github.com/znewman01/spectrum-impl
https://doi.org/10.1145/3372297.3417261
https://www.nytimes.com/1996/06/23/weekinreview/25-years-later-lessons-from-the-pentagon-papers.html
https://www.nytimes.com/1996/06/23/weekinreview/25-years-later-lessons-from-the-pentagon-papers.html
https://www.nytimes.com/1996/06/23/weekinreview/25-years-later-lessons-from-the-pentagon-papers.html
https://doi.org/10.2478/popets-2020-0061
https://doi.org/10.2478/popets-2020-0061
https://www.cjr.org/tow_center_reports/guide_to_securedrop.php
https://www.cjr.org/tow_center_reports/guide_to_securedrop.php
https://doi.org/10.1007/BFb0054851
https://doi.org/10.1007/BFb0054851
https://www.nytimes.com/interactive/2020/09/27/us/donald-trump-taxes.html
https://www.nytimes.com/interactive/2020/09/27/us/donald-trump-taxes.html
https://www.vanityfair.com/news/politics/2014/05/edward-snowden-politics-interview
https://www.vanityfair.com/news/politics/2014/05/edward-snowden-politics-interview
https://doi.org/10.1007/3-540-44647-8_31

Dan Boneh, editor, Advances in Cryptology - CRYPTO
2003, 23rd Annual International Cryptology Confer-
ence, Santa Barbara, California, USA, August 17-21,
2003, Proceedings, volume 2729 of Lecture Notes in
Computer Science, pages 126–144. Springer, 2003.
doi: 10.1007/978-3-540-45146-4_8. URL https:
//doi.org/10.1007/978-3-540-45146-4_8.

[21] J Lawrence Carter and Mark N Wegman. Universal
classes of hash functions. Journal of Computer and
System Sciences, 18(2):143–154, 1979.

[22] David Chaum. Untraceable electronic mail, return ad-
dresses, and digital pseudonyms. Communications of
the ACM, 24(2):84–90, 1981.

[23] David Chaum. The dining cryptographers problem: Un-
conditional sender and recipient untraceability. Journal
of Cryptology, 1(1):65–75, 1988.

[24] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and
Madhu Sudan. Private information retrieval. In Pro-
ceedings of IEEE 36th Annual Foundations of Computer
Science, pages 41–50. IEEE, 1995.

[25] Arka Rai Choudhuri, Matthew Green, Abhishek Jain,
Gabriel Kaptchuk, and Ian Miers. Fairness in an unfair
world: Fair multiparty computation from public bul-
letin boards. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security,
pages 719–728, 2017.

[26] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling,
Luke Garratt, and Douglas Stebila. A formal security
analysis of the Signal messaging protocol. In 2017
IEEE European Symposium on Security and Privacy
(EuroS&P), pages 451–466. IEEE, 2017.

[27] Henry Corrigan-Gibbs. Protecting Privacy by Splitting
Trust. PhD thesis, Stanford University, 2019.

[28] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private,
robust, and scalable computation of aggregate statistics.
In 14th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 17), pages 259–282,
2017.

[29] Henry Corrigan-Gibbs and Bryan Ford. Dissent: Ac-
countable anonymous group messaging. In Proceedings
of the 17th ACM Conference on Computer and Commu-
nications Security, pages 340–350. ACM, 2010.

[30] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières.
Riposte: An anonymous messaging system handling
millions of users. In 2015 IEEE Symposium on Security
and Privacy, pages 321–338. IEEE, 2015.

[31] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah
Zakarias. Multiparty computation from somewhat ho-
momorphic encryption. In Annual Cryptology Confer-
ence, pages 643–662. Springer, 2012.

[32] George Danezis, Roger Dingledine, and Nick Math-
ewson. Mixminion: Design of a Type III anonymous
remailer protocol. In 2003 Symposium on Security and
Privacy, 2003., pages 2–15. IEEE, 2003.

[33] Alex Davidson, Ian Goldberg, Nick Sullivan, George
Tankersley, and Filippo Valsorda. Privacy Pass: By-
passing internet challenges anonymously. Proc. Priv.
Enhancing Technol., 2018(3):164–180, 2018.

[34] Leo de Castro and Antigoni Polychroniadou.
Lightweight, maliciously secure verifiable func-
tion secret sharing. Cryptology ePrint Archive,
2021.

[35] Candice Delmas. The ethics of government whistle-
blowing. Social Theory and Practice, pages 77–105,
2015.

[36] Roger Dingledine. BitTorrent over Tor isn’t a good
idea, Apr 2010. URL https://blog.torproject.
org/bittorrent-over-tor-isnt-good-idea.

[37] Roger Dingledine, Nick Mathewson, and Paul Syverson.
Tor: The second-generation onion router. Technical
report, Naval Research Lab Washington DC, 2004.

[38] Emily Dreyfuss. Chelsea Manning walks back
into a world she helped transform, 2017. URL
https://www.wired.com/2017/05/chelsea-
manning-free-leaks-changed/.

[39] Cynthia Dwork and Moni Naor. Pricing via processing
or combatting junk mail. In Advances in Cryptology
- CRYPTO ’92, 12th Annual International Cryptology
Conference, Santa Barbara, California, USA, August
16-20, 1992, Proceedings, pages 139–147, 1992. doi:
10.1007/3-540-48071-4_10. URL https://doi.org/
10.1007/3-540-48071-4_10.

[40] Taher ElGamal. A public key cryptosystem and a signa-
ture scheme based on discrete logarithms. IEEE Trans-
actions on Information Theory, 31(4):469–472, 1985.

[41] Saba Eskandarian, Henry Corrigan-Gibbs, Matei
Zaharia, and Dan Boneh. Express: Lower-
ing the cost of metadata-hiding communication
with cryptographic privacy. In 30th USENIX
Security Symposium (USENIX Security 21), Van-
couver, B.C., August 2021. USENIX Associa-
tion. URL https://www.usenix.org/conference/
usenixsecurity21/presentation/eskandarian.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 243

https://doi.org/10.1007/978-3-540-45146-4_8
https://doi.org/10.1007/978-3-540-45146-4_8
https://blog.torproject.org/bittorrent-over-tor-isnt-good-idea
https://blog.torproject.org/bittorrent-over-tor-isnt-good-idea
https://www.wired.com/2017/05/chelsea-manning-free-leaks-changed/
https://www.wired.com/2017/05/chelsea-manning-free-leaks-changed/
https://doi.org/10.1007/3-540-48071-4_10
https://doi.org/10.1007/3-540-48071-4_10
https://www.usenix.org/conference/usenixsecurity21/presentation/eskandarian
https://www.usenix.org/conference/usenixsecurity21/presentation/eskandarian

[42] Nathan S Evans, Roger Dingledine, and Christian
Grothoff. A practical congestion attack on Tor using
long paths. In USENIX Security Symposium, pages 33–
50, 2009.

[43] Cassi Feldman. 60 Minutes’ most famous
whistleblower. CBS News, 2016. URL
https://www.theguardian.com/world/2010/
nov/28/how-us-embassy-cables-leaked. Ac-
cessed March 2022.

[44] Lorenzo Franceschi-Bicchierai. Snowden’s favorite
chat app is coming to your computer. Vice, 2015.
URL https://www.vice.com/en/article/signal-
snowdens-favorite-chat-app-is-coming-to-
your-computer. Accessed March 2022.

[45] Anita Gates and Katharine Q. Seelye. Linda
Tripp, key figure in Clinton impeachment,
dies. The New York Times, 2020. URL
https://www.nytimes.com/2020/04/08/us/
politics/linda-tripp-dead.html. Accessed
March 2022.

[46] Niv Gilboa and Yuval Ishai. Distributed point func-
tions and their applications. In Phong Q. Nguyen and
Elisabeth Oswald, editors, Advances in Cryptology –
EUROCRYPT 2014, pages 640–658, Berlin, Heidelberg,
2014. Springer. ISBN 978-3-642-55220-5.

[47] Robert D’A Henderson. Operation Vula against
apartheid. International Journal of Intelligence and
Counter Intelligence, 10(4):418–455, 1997.

[48] Nicholas Hopper, Eugene Y Vasserman, and Eric Chan-
Tin. How much anonymity does network latency leak?
ACM Transactions on Information and System Security
(TISSEC), 13(2):1–28, 2010.

[49] Daira Hopwood. Jubjub supporting evidence. https://
github.com/daira/jubjub, 2017. Accessed March
2022.

[50] Bastien Inzaurralde. The Cybersecurity 202: Leak
charges against Treasury official show encrypted apps
only as secure as you make them. The Washington Post,
2018.

[51] Markus Jakobsson and Ari Juels. Proofs of work and
bread pudding protocols. In Secure Information Net-
works: Communications and Multimedia Security, IFIP
TC6/TC11 Joint Working Conference on Communica-
tions and Multimedia Security (CMS ’99), September
20-21, 1999, Leuven, Belgium, pages 258–272, 1999.

[52] Laurie Kazan-Allen. In memory of Henri Pez-
erat. http://ibasecretariat.org/mem_henri_
pezerat.php, 2009. Accessed March 2022.

[53] Albert Kwon, Mashael AlSabah, David Lazar, Marc
Dacier, and Srinivas Devadas. Circuit fingerprinting
attacks: Passive deanonymization of Tor hidden services.
In 24th USENIX Security Symposium (USENIX Security
15), pages 287–302, 2015.

[54] Albert Kwon, David Lazar, Srinivas Devadas, and Bryan
Ford. Riffle. Proceedings on Privacy Enhancing Tech-
nologies, 2016(2):115–134, 2016.

[55] Albert Kwon, Henry Corrigan-Gibbs, Srinivas Devadas,
and Bryan Ford. Atom: Horizontally scaling strong
anonymity. In Proceedings of the 26th Symposium on
Operating Systems Principles, pages 406–422. ACM,
2017.

[56] Albert Kwon, David Lu, and Srinivas Devadas.
XRD: Scalable messaging system with cryptographic
privacy. In 17th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI
20), pages 759–776, Santa Clara, CA, February
2020. USENIX Association. ISBN 978-1-939133-
13-7. URL https://www.usenix.org/conference/
nsdi20/presentation/kwon.

[57] David Lazar, Yossi Gilad, and Nickolai Zeldovich.
Karaoke: Distributed private messaging immune to pas-
sive traffic analysis. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
18), pages 711–725, 2018.

[58] David Lazar, Yossi Gilad, and Nickolai Zeldovich. Yo-
del: strong metadata security for voice calls. In Proceed-
ings of the 27th ACM Symposium on Operating Systems
Principles, pages 211–224, 2019.

[59] Stevens Le Blond, David Choffnes, Wenxuan Zhou, Pe-
ter Druschel, Hitesh Ballani, and Paul Francis. Towards
efficient traffic-analysis resistant anonymity networks.
ACM SIGCOMM Computer Communication Review, 43
(4):303–314, 2013.

[60] Stevens Le Blond, David Choffnes, William Caldwell,
Peter Druschel, and Nicholas Merritt. Herd: A scal-
able, traffic analysis resistant anonymity network for
VoIP systems. In Proceedings of the 2015 ACM Confer-
ence on Special Interest Group on Data Communication,
pages 639–652, 2015.

[61] Jason Leopold, Anthony Cormier, John Templon,
Tom Warren, Jeremy Singer-Vine, Scott Pham,
Richard Holmes, Azeen Ghorayshi, Michael Sal-
lah, Tanya Kozyreva, and Emma Loop. The
FinCEN Files. BuzzFeed News, 2020. URL
https://www.buzzfeednews.com/article/
jasonleopold/fincen-files-financial-
scandal-criminal-networks. Accessed March
2022.

244 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.theguardian.com/world/2010/nov/28/how-us-embassy-cables-leaked
https://www.theguardian.com/world/2010/nov/28/how-us-embassy-cables-leaked
https://www.vice.com/en/article/signal-snowdens-favorite-chat-app-is-coming-to-your-computer
https://www.vice.com/en/article/signal-snowdens-favorite-chat-app-is-coming-to-your-computer
https://www.vice.com/en/article/signal-snowdens-favorite-chat-app-is-coming-to-your-computer
https://www.nytimes.com/2020/04/08/us/politics/linda-tripp-dead.html
https://www.nytimes.com/2020/04/08/us/politics/linda-tripp-dead.html
https://github.com/daira/jubjub
https://github.com/daira/jubjub
http://ibasecretariat.org/mem_henri_pezerat.php
http://ibasecretariat.org/mem_henri_pezerat.php
https://www.usenix.org/conference/nsdi20/presentation/kwon
https://www.usenix.org/conference/nsdi20/presentation/kwon
https://www.buzzfeednews.com/article/jasonleopold/fincen-files-financial-scandal-criminal-networks
https://www.buzzfeednews.com/article/jasonleopold/fincen-files-financial-scandal-criminal-networks
https://www.buzzfeednews.com/article/jasonleopold/fincen-files-financial-scandal-criminal-networks

[62] Shuai Li, Huajun Guo, and Nicholas Hopper. Measuring
information leakage in website fingerprinting attacks
and defenses. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security,
pages 1977–1992, 2018.

[63] Donghang Lu, Thomas Yurek, Samarth Kulshreshtha,
Rahul Govind, Aniket Kate, and Andrew Miller. Honey-
BadgerMPC and AsynchroMix: Practical asynchronous
MPC and its application to anonymous communication.
In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, pages 887–
903, 2019.

[64] Prateek Mittal and Nikita Borisov. ShadowWalker: Peer-
to-peer anonymous communication using redundant
structured topologies. In Proceedings of the 16th ACM
conference on Computer and communications security,
pages 161–172, 2009.

[65] Prateek Mittal, Ahmed Khurshid, Joshua Juen, Matthew
Caesar, and Nikita Borisov. Stealthy traffic analysis of
low-latency anonymous communication using through-
put fingerprinting. In Proceedings of the 18th ACM
conference on Computer and communications security,
pages 215–226, 2011.

[66] Jack O’Connor, Samuel Neves, Jean-Philippe Au-
masson, and Zooko Wilcox-O’Hearn. BLAKE3:
One function, fast everywhere, 2020. URL
https://github.com/BLAKE3-team/BLAKE3-
specs/blob/master/blake3.pdf. Accessed March
2022.

[67] John O’Connor. “I’m the guy they called Deep Throat”.
Vanity Fair, 2006. URL https://www.vanityfair.
com/news/politics/2005/07/deepthroat200507.
Accessed March 2022.

[68] Lasse Overlier and Paul Syverson. Locating hidden
servers. In 2006 IEEE Symposium on Security and
Privacy (S&P’06), pages 15–114. IEEE, 2006.

[69] Paradise Papers reporting team. Paradise Papers: Tax
haven secrets of ultra-rich exposed. BBC News, 2017.
Accessed March 2022.

[70] D. Phillips. Reality Winner, former NSA translator, gets
more than 5 years in leak of Russian hacking report. The
New York Times, 8, 2019.

[71] Ania M Piotrowska, Jamie Hayes, Tariq Elahi, Sebastian
Meiser, and George Danezis. The Loopix anonymity
system. In 26th USENIX Security Symposium USENIX
Security 17), pages 1199–1216, 2017.

[72] Michael K Reiter and Aviel D Rubin. Crowds:
Anonymity for web transactions. ACM transactions on
information and system security (TISSEC), 1(1):66–92,
1998.

[73] Eric Rescorla and Tim Dierks. The Transport Layer
Security (TLS) protocol version 1.3. RFC 1654, RFC
Editor, July 1995. URL https://www.rfc-editor.
org/rfc/rfc1654.txt.

[74] Charlie Savage. Chelsea Manning to be released early
as Obama commutes sentence. The New York Times, 17,
2017.

[75] Michael S Schmidt and LM Steven. Panama law firm’s
leaked files detail offshore accounts tied to world leaders.
The New York Times, 3, 2016.

[76] Amazon Web Services. Amazon EC2 instance
types. https://aws.amazon.com/ec2/instance-
types/, 2022. Accessed March 2022.

[77] Scott Shane. WikiLeaks leaves names of diplomatic
sources in cables. The New York Times, 29:2011, 2011.

[78] Payap Sirinam, Mohsen Imani, Marc Juarez, and
Matthew Wright. Deep fingerprinting: Undermining
website fingerprinting defenses with deep learning. In
Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pages 1928–
1943, 2018.

[79] David Smith. Trump condemned for tweets pointing to
name of Ukraine whistleblower. The Guardian, 2019.
URL https://www.theguardian.com/us-news/
2019/dec/27/trump-ukraine-whistleblower-
president. Accessed March 2022.

[80] The BBC. Putin critic Navalny jailed in Russia despite
protests. URL https://www.bbc.com/news/world-
europe-55910974. Accessed March 2022.

[81] The Freenet Project. Freenet, 2020. URL https://
freenetproject.org/.

[82] The Invisible Internet Project. I2P anonymous network,
2020. URL https://geti2p.net/en/.

[83] The Tor Project. Tor metrics, 2019. URL https://
metrics.torproject.org/.

[84] The Wall Street Journal. Got a tip? https://www.wsj.
com/tips, 2020. Accessed March 2022.

[85] Yiannis Tsiounis and Moti Yung. On the security of
ElGamal based encryption. In International Workshop
on Public Key Cryptography, pages 117–134. Springer,
1998.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 245

https://github.com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf
https://github.com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf
https://www.vanityfair.com/news/politics/2005/07/deepthroat200507
https://www.vanityfair.com/news/politics/2005/07/deepthroat200507
https://www.rfc-editor.org/rfc/rfc1654.txt
https://www.rfc-editor.org/rfc/rfc1654.txt
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://www.theguardian.com/us-news/2019/dec/27/trump-ukraine-whistleblower-president
https://www.theguardian.com/us-news/2019/dec/27/trump-ukraine-whistleblower-president
https://www.theguardian.com/us-news/2019/dec/27/trump-ukraine-whistleblower-president
https://www.bbc.com/news/world-europe-55910974
https://www.bbc.com/news/world-europe-55910974
https://freenetproject.org/
https://freenetproject.org/
https://geti2p.net/en/
https://metrics.torproject.org/
https://metrics.torproject.org/
https://www.wsj.com/tips
https://www.wsj.com/tips

[86] Nirvan Tyagi, Yossi Gilad, Derek Leung, Matei Za-
haria, and Nickolai Zeldovich. Stadium: A distributed
metadata-private messaging system. In Proceedings of
the 26th Symposium on Operating Systems Principles,
pages 423–440, 2017.

[87] US Holocaust Memorial Museum. Röhm
purge. Holocaust Encyclopedia, 2020. URL
https://encyclopedia.ushmm.org/content/en/
article/roehm-purge. Accessed March 2022.

[88] US Occupational Safety and Health Administration.
The whistleblower protection program. https://www.
whistleblowers.gov/, 2020. Accessed March 2022.

[89] US Securities and Exchange Commission. Of-
fice of the whistleblower. https://www.sec.gov/
whistleblower, 2020. Accessed March 2022.

[90] Jelle Van Den Hooff, David Lazar, Matei Zaharia, and
Nickolai Zeldovich. Vuvuzela: Scalable private mes-
saging resistant to traffic analysis. In Proceedings of
the 25th Symposium on Operating Systems Principles,
pages 137–152. ACM, 2015.

[91] Luis von Ahn, Manuel Blum, Nicholas J. Hopper, and
John Langford. CAPTCHA: using hard AI problems
for security. In Advances in Cryptology - EURO-
CRYPT 2003, International Conference on the Theory
and Applications of Cryptographic Techniques, War-
saw, Poland, May 4-8, 2003, Proceedings, pages 294–
311, 2003. doi: 10.1007/3-540-39200-9_18. URL
https://doi.org/10.1007/3-540-39200-9_18.

[92] Von Spiegel Staff. Inside the NSA’s war on internet secu-
rity. Der Spiegel, 2014. URL https://www.spiegel.
de/international/germany/inside-the-nsa-
s-war-on-internet-security-a-1010361.html.
Accessed March 2022.

[93] Lei Wang, Kazuo Ohta, and Noboru Kunihiro. New key-
recovery attacks on HMAC/NMAC-MD4 and NMAC-
MD5. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques,
pages 237–253. Springer, 2008.

[94] Mark N Wegman and J Lawrence Carter. New hash
functions and their use in authentication and set equality.
Journal of Computer and System Sciences, 22(3):265–
279, 1981.

[95] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan
Ford, and Aaron Johnson. Dissent in numbers: Making
strong anonymity scale. In 10th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
12), pages 179–182, 2012.

[96] Kim Zetter. Jolt in WikiLeaks case: Feds found
Manning-Assange chat logs on laptop. Wired, 19 De-
cember 2011. URL https://www.wired.com/2011/
12/manning-assange-laptop/. Accessed March
2022.

A The audit attack

While many broadcast systems claim privacy with a malicious
server, they trade robustness to do so. When a message is
expected, a server can act as if a user was malicious to prevent
aggregation of their request, learning whether that user was
responsible for the expected message. If a system aborts in
such circumstances, it no longer has the claimed disruption-
resistance property. Some systems such as Atom [55] and
Blinder [2] solve this by using verifiable secret-sharing in
an honest-majority setting; however, this can be costly in
practice; others do not prevent this attack.

Express. Express is designed for private readers, but it can be
trivially adapted for broadcast (see Sections 7 and 8). How-
ever, a malicious server can then exploit the verification pro-
cedure [41, Section 4.1] to exclude a user, changing their
request to an invalid distributed point function. This excludes
the message from the final aggregation, deanonymizing a
broadcaster with probability at least 1

(1−n)# per round (where
n is the fraction of corrupted clients). Even with a few rounds,
this can lead to a successful deanonymization of a broadcaster
without detection (honest servers cannot tell if a server is
cheating and therefore cannot abort the protocol).

Riposte. The threat model of Riposte does not consider at-
tacks in which servers deny a write request. As a result, a
malicious server can eliminate clients undetectably by simply
computing a bad input to the audit protocol which causes the
request to be discarded by both servers. While this attack
can be mitigated by using multiple servers and assuming an
honest majority (as in Blinder [2]), this weakens the threat
model and reduces performance.

Application of BlameGame. The BlameGame protocol ap-
plies immediately to both Riposte and Express to address this
audit attack by allowing (honest) servers to assign blame to
either a client or a server if an audit fails. The only cost (as
in Spectrum) is a slight increase in communication overhead
which, importantly, is independent of the encoded message in
the request (see Section 5.1).

B Large message optimization (multi-server)

In Section 5.1, we give a transformation from a 2-server DPF
over a field F to a 2-server DPF over ℓ-bit bitstrings that pre-
serves the auditability of the first DPF without increasing the
bandwidth overhead proportionally. Here, we show a more

246 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://encyclopedia.ushmm.org/content/en/article/roehm-purge
https://encyclopedia.ushmm.org/content/en/article/roehm-purge
https://www.whistleblowers.gov/
https://www.whistleblowers.gov/
https://www.sec.gov/whistleblower
https://www.sec.gov/whistleblower
https://doi.org/10.1007/3-540-39200-9_18
https://www.spiegel.de/international/germany/inside-the-nsa-s-war-on-internet-security-a-1010361.html
https://www.spiegel.de/international/germany/inside-the-nsa-s-war-on-internet-security-a-1010361.html
https://www.spiegel.de/international/germany/inside-the-nsa-s-war-on-internet-security-a-1010361.html
https://www.wired.com/2011/12/manning-assange-laptop/
https://www.wired.com/2011/12/manning-assange-laptop/

general transformation from =-server DPFs over a field F to
=-server DPFs over a group GH of a polynomially larger order.
Our transformation uses a seed-homomorphic pseudorandom
generator (PRG) [12].

Definition 2 (Seed-homomorphic Pseudorandom Generator).
Fix groups GB ,GH with respective operations ◦B and ◦H . A
seed-homomorphic pseudorandom generator is a polynomial-
time algorithm � : GB→ GH with the following properties:

- Pseudorandom. � is a PRG: |GB | <
��GH ��, with output

computationally indistinguishable from random.
- Seed-homomorphic. For all B1, B2 ∈ GG , we have � (B1 ◦B
B2) = � (B1) ◦H � (B2).

Let G be a group over a field F and in which the decisional
Diffie-Hellman (DDH) problem [10, 11, 40] is assumed to
be hard. Fix some DPF with messages in F. We saw in
Section 4.2 how to implement anonymous access control for
such DPFs. Let � : F→ GH be a seed homomorphic PRG
where GH is over F. Boneh et al. [12] give a construction of
such a PRG for GH = (G)! from the DDH assumption in G.

Then, the larger DPF key for a message < is a DPF key
:1 for a random value B ∈ F, a DPF key :2 for 1 ∈ F, and a
“correction message” <̄ =<◦H� (B)−1 (each key has the same
correction message). For a zero message, the larger DPF key
is two DPF keys :1, :2 for 0 ∈ F and a random correction
message <̄.

To evaluate the DPF key, the server computes B ←
DPF.Eval(:1), 1 ← DPF.Eval(:2), and (<̄)1 ◦H � (B). If
B = 0, then combining the DPF keys gives (<̄)0 ◦H� (0) = 1GH .
Otherwise, we get (<̄)1 ◦H � (B) = <.

To perform access control for the larger DPF, perform
access control for :1 and :2 and then also check for the
equality of the hashes of <̄. We note this construction does
not yield a new DPF, but does add authorization to a large
class of existing DPFs.

C BlameGame

C.1 Verifiable Encryption

BlameGame (Section 4.3) uses a verifiable encryption
scheme [20], which allows a prover to decrypt a ciphertext 2
and create a proof that 2 is an encryption of a message <. We
formalize these schemes below:

Definition 3 (Verifiable Encryption). A verifiable public-
key encryption scheme E consists of (possibly random-
ized) algorithms Gen, Enc, Dec, DecProof, VerProof where
Gen,Enc,Dec satisfy IND-CPA security and DecProof,
VerProof satisfy the following properties:

- Completeness. For all messages < ∈M,

Pr

(pk,sk) ← Gen(1_);
2← Enc(pk,<);
(c,<) ← DecProof(sk, 2);
VerProof(pk, c, 2,<) = yes

 = 1,

where the probability is over the randomness of Enc.
- Soundness. For all PPT adversaries A and for all mes-

sages < ∈M,

Pr

(pk,sk) ← Gen(1_);
2← Enc(pk,<);
(c,<′) ← A(1_,pk,sk, 2);
VerProof(pk, c, 2,<′) = yes

 ≤ negl(_)

for negligible function negl(_), where the probability is
over the randomness of Enc and A.

We note that many public key encryption schemes (e.g., El-
Gamal [40]) satisfy Definition 3 out-of-the-box and can be
used to instantiate BlameGame.

C.2 BlameGame security
The BlameGame protocol must be sound and private.

Soundness. BlameGame is sound if no honest client or
server will ever be blamed:

1. For all honest commitments �8 , no probabilistic
polynomial-time (PPT) adversary can create a request
share g8 and proof of decryption c8 such that the
BlameGame “Assigning blame” step (Section 4.3) blames
the client when run with (c8 , g8 ,�8).

2. No PPT adversary can create commitments �8 such that
an honestly-created request share g8 and proof of decryp-
tion c8 will result in blaming the server after running the
BlameGame “Assigning blame” step.

Privacy. The privacy requirement of BlameGame is similar
to that of Spectrum. Specifically, the commitments �8 must
not reveal any information about the request to any subset
of servers. Formally: for randomly sampled pairs of keys
pk8 and sk8 (for 8 ∈ {1, . . . , =}), and all proper subsets � ⊂
{1, . . . , =}, the following distributions are computationally
indistinguishable:

{(pk8 ,sk8) ∀8 ∈ �, �8 ∀8 ∈ {1, . . . , =}} ≈2
{(pk8 ,sk8) ∀8 ∈ �, � ′8 ∀8 ∈ {1, . . . , =}}

where the�8 are created by honestly encrypting request shares
corresponding to a cover request by a subscriber and the � ′

8

are created by honestly encrypting shares corresponding to
any valid write generated by a broadcaster.
We note that BlameGame does not require any privacy prop-
erties during blame assignment, as it may reveal the request
for the purpose of assigning blame.

We now show that BlameGame achieves these properties:

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 247

Proof. We prove each property in turn.

Soundness (honest client). Suppose, toward contradic-
tion, that there exists a PPT adversary A that generates
some request shares g8 and proof of decryption c8 such that
BlameGame blames the client. This means that (1) the de-
cryption proof verification succeeds, and (2) running the audit
with the request shares failed. By property (1), we can as-
sume that g8 is a correct decryption of �8 and c8 is a valid
proof of decryption; otherwise,A breaks the soundness prop-
erty of the verifiable encryption scheme. However, we know
that running the audit with the given request shares will pass,
because (by assumption) they were created honestly by the
client. This is a contradiction.

Soundness (honest server). Let g8 be a set of request tokens
such that the Spectrum audit fails when run with g8 . Suppose,
toward contradiction, that some client creates commitments
�1, . . . ,�= for g1, . . . g= such that the BlameGame “Assigning
blame” step blames some server (instead of the client, as
required). Then, it holds that either (1) the proof of decryp-
tion failed, or (2) the audit performed by the servers over
the decrypted requests passes. However, if (1) is true (the
proof of decryption failed), then the completeness property
of the verifiable encryption scheme does not hold (because
the request share and proof of decryption are generated hon-
estly by the server). Therefore, we are left with (2); the audit
performed by the servers over the decrypted request shares

passes. However, this isn’t true (by assumption) if the client
is malicious. Hence, we have a contradiction.

Privacy. For all honest broadcasters, privacy is guaranteed
with probability !

· (1−n) where n is the fraction of corrupted
clients. If the first audit fails but the second audit (generated
from the decrypted requests) passes, then privacy follows
from the analysis of Spectrum and privacy of the audit therein.
If the second audit fails, then the request is revealed to both
servers for inspection (in order to adequately assign blame).
However, predicated on the revealed request being generated
correctly (since we are interested in when an honest broad-
caster gets deanonymized), the protocol aborts if the second
audit fails (an honest broadcaster would have encrypted the re-
quest correctly). In this case, all servers see the request which
deanonymizes the client. Thus, for a fraction of corrupted
clients n , the probability that the malicious server chooses
the correct request to tamper with before being aborted is

!
· (1−n) . �

Spectrum (with BlameGame) achieves our desired security
properties: a malicious client cannot cause disruption, and a
malicious server cannot deanonymize a broadcaster. Because
BlameGame is sound, if all servers are honest then Spectrum
does not abort (because either the audit passes, or BlameGame
blames the client); this prevents disruption due to audit failure.
The second property follows from the privacy of BlameGame.

248 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Donar: Anonymous VoIP over Tor

Yérom-David Bromberg, Quentin Dufour, Davide Frey
Univ. Rennes - Inria - CNRS - IRISA, France

Etienne Rivière
UCLouvain, Belgium

Abstract
We present DONAR, a system enabling anonymous VoIP

with good quality-of-experience (QoE) over Tor. No indi-
vidual Tor link can match VoIP networking requirements.
DONAR bridges this gap by spreading VoIP traffic over several
links. It combines active performance monitoring, dynamic
link selection, adaptive traffic scheduling, and redundancy at
no extra bandwidth cost. DONAR enables high QoE: latency
remains under 360 ms for 99% of VoIP packets during most
(86%) 5-minute and 90-minute calls.

1 Introduction

Tor [20] is by far the largest anonymization network with
over 6,000 relay nodes distributed worldwide. Tor has been
very successful for applications such as web browsing with,
e.g., TorBrowser, but is generally considered inadequate for
latency-sensitive applications [31,66]. Voice-over-IP (VoIP) is
one such application that has become the de facto solution for
global voice calls. Being able to deploy VoIP over Tor would
immediately benefit privacy-conscious users by enabling sim-
ple, efficient, and safe voice communication answering two
objectives: (i) protecting the content of the communication
from adversaries, i.e., using end-to-end encryption, and (ii)
hiding metadata and in particular the identity of communicat-
ing partners. Metadata may, indeed, be used to infer private
information, e.g., uncovering a journalist’s sources [27] or
illegally gathering information about employees [60].

Providing good-quality interaction between VoIP users, i.e.,
a good Quality-of-Experience (QoE), requires good network
Quality-of-Service (QoS) and in particular low and stable
latency [28, 35, 68], as we detail in Section 2. This comes in
tension with the way Tor is designed [31,66]: Tor links1 imple-
ment multi-hop communication for TCP traffic using onion
routing over pre-established circuits formed of several re-
lays, which leads to high and unstable latencies. Surprisingly,
Sharma et al. [70] recently posited that using Tor as is would

1We use in this paper the generic term link to denote the unidirectional
TCP channel that is exposed to applications by the Tor client.

be sufficient to obtain the stable and low latencies required by
high-QoE VoIP. This statement is, unfortunately, incorrectly
grounded. Three biases in their analysis led to this conclusion:
(1) they only consider average latencies, while VoIP QoE is
primarily determined by tail latency (99th percentile with a
standard codec) [57], (2) they measure performance for only
30 seconds, a much shorter duration than an average call [33],
and (3) they only consider the case of one-way anonymity, i.e.,
when the callee is not anonymous. We present in Section 3
our analysis of Tor links’ performance considering these ele-
ments and conclude that the use of a Tor link as is does not,
in fact, allow VoIP with sufficient QoE.

TorFone [24] attempts to overcome Tor latency issues by
duplicating VoIP traffic over two statically chosen links. How-
ever, even if going in the right direction, TorFone’s strategy
turns out to be ineffective due to the large variability of link
performance over time, as we demonstrate in Section 6.

Alternative anonymization networks targeting voice com-
munication were also proposed recently, e.g., Herd [50]
and Yodel [49]. These systems, however, are yet to be de-
ployed and need to reach a sufficient scale to be efficient,
i.e., to provide sufficient bandwidth for a large number of
geographically-distributed users.
Motivations. We are interested in providing VoIP support
over a readily-available anonymization network. More specif-
ically, we target a deployment using (1) legacy VoIP applica-
tions and (2) the existing, unmodified Tor network. We do not
wish to propose design changes to Tor, or a novel anonymity
network [49, 50, 64, 73, 76], and neither do we want to over-
come Tor’s existing security flaws. We believe that these lines
of work are, in fact, orthogonal to our own.

While our observation of the performance of Tor (presented
in Section 3) confirms that a single Tor link cannot provide
the stable and low latency required by high-QoE VoIP, it also
allows us to make a case for dispatching traffic over multiple
links. Unlike TorFone, our strategy multiplexes traffic over a
dynamically selected set of Tor links using a smart scheduling
mechanism. Our motivation is that the use of multiple dynam-
ically and adequately chosen links, together with controlled

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 249

and smart content redundancy, can mask the transient faults
and latency spikes experienced by individual links.
Contributions. We present the design and implementation of
DONAR, a user-side proxy interfacing a legacy VoIP applica-
tion to the existing Tor network (Section 4).

DONAR enforces diversity in the paths used for transmitting
VoIP packets, i.e., using distinct Tor links. In addition, it lever-
ages redundancy by sending the same VoIP packet several
times using different links. This redundancy does not, in fact,
add additional bandwidth costs for the Tor network beyond
those incurred by the setup and maintenance of these multiple
links. We leverage, indeed, the fact that Tor only transmits
514-Byte cells over the network to protect users against traffic
analysis [53, 59]. DONAR takes advantage of the available
padding space to re-transmit previous VoIP packets. Diversity
and redundancy mask the impact of the head-of-line blocking
implied by the TCP semantics of Tor links, whereby an entire
stream of packets may get delayed by a single belated one.

DONAR builds on the following key technical components:

• The piggybacking of VoIP packets in the padding space
of Tor cells enables redundancy without incurring addi-
tional bandwidth costs on the Tor network.

• A link monitoring mechanism observes and selects ap-
propriate links, switching rapidly between them when
detecting performance degradation.

• Two scheduling strategies for selecting links when trans-
mitting VoIP packets enable different tradeoffs between
cost and robustness.

We further analyze in Section 5 how attacks on Tor can
affect the security properties of DONAR. In particular, we
discuss how different DONAR configurations implement dif-
ferent tradeoffs between Quality-of-Experience and security.

We evaluate DONAR over the Tor network and present
our findings in Section 6. We use VoIP-traffic emulation as
well as the off-the-shelf gstreamer [26] VoIP client using
the OPUS [14] audio codec. We assess the performance of
DONAR against the VoIP requirements detailed in Section 2
and compare it with the approach followed by TorFone [24].
Our results show that DONAR, using alternatively 6 out of
12 carefully monitored and dynamically selected onion links,
achieves high QoE with latency under 360 ms and less than
1% of VoIP frame loss for the entire duration of a large number
(86%+) of 5-minute and 90-minute calls, with no bandwidth
overhead for its optimized configuration (i.e., alternate send-
ing over different links) and an overhead similar to that of
TorFone for its default configuration.

We detail related work and conclude in Sections 7 and 8.

2 VoIP networking requirements

DONAR aims at Providing good Quality-of-Experience (QoE)
for anonymous VoIP while limiting the costs imposed on the

Metric Objective

Dropped calls rate ≤ 2% for 90-minute calls
Packet loss rate ≤ 1%
Bandwidth ≥ 32 kbps (4.3 kB/s)
One way delay (99th perc. ideal) ≤ 150 ms - Tframe - Tbuffer
One way delay (99th perc. max) ≤ 400 ms - Tframe - Tbuffer

Table 1: VoIP network performance requirements, following
the recommendations of the International Telecommunication
Union [35] and applying them to the OPUS codec [74, 75].

Tor infrastructure. We base our analysis of QoE requirements
on recommendations by the International Telecommunication
Union (ITU) [35–37]. The ITU defines good QoE as the
combination of the following guarantees: (1) uninterrupted
calls, (2) good voice quality, and (3) support for interactive
conversations. We analyze these requirements and derive our
network QoS objectives, summarized in Table 1.

VoIP protocols. VoIP requires two types of protocols. A
signaling protocol such as the Session Initiation Protocol
(SIP) [67] makes it possible to locate a correspondent and
negotiate parameters for the communication. The signaling
protocol only impacts QoE with delays upon the establish-
ment of the call. When the call is established, a protocol such
as the UDP-based Real-time Transport Protocol (RTP) [69] is
used to transmit VoIP audio frames encoded using a codec,
whose configuration is negotiated by the signaling protocol.
QoE is primarily impacted by this codec and its ability to deal
with hazards in network QoS, as we detail next.

Impact and choice of the audio codec. Bandwidth, latency,
or maximum packet loss requirements depend on the audio
codec used by the VoIP application. We base our analysis
on the state-of-the-art open audio codec OPUS, which we
also use in our evaluations. OPUS is a widely-used, loss-
tolerant audio codec developed by the Xiph.Org Foundation
and standardized by the IETF [74, 75]. It targets interac-
tive, low-delay communication and computational efficiency.
OPUS has been consistently ranked in comparative studies
as the highest-quality audio format for low and medium bit
rates [32, 41]. We emphasize that our analysis would be sim-
ilar for other open codecs, e.g., the Internet Low Bit Rate
Codec (iLBC) [4] or Xiph.Org Foundation’s former codecs
Vorbis [7] and Speex [30].

First guarantee: no call interruption. A call interruption is
the most impacting event on user-perceived QoE. The ITU
does not provide a recommendation for general networks but
recommends at most 2% dropped calls for VoIP over 4G [37].
We adopt the same goal but need to define a time span on
which to evaluate this metric. Holub et al. [33] provided us
with a dataset of more than 4M call durations (Figure 1). Its
analysis confirms that call duration follows a log-normal dis-
tribution considered as standard for voice calls. We observe
an average call duration slightly above 3 minutes, with 90% of

250 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 1: Call Duration ECDF on a 4M calls dataset provided
by Holub et al. [33] zoomed on the first 10 minutes.

calls lasting less than 10 minutes. However, we still observe
1,040 calls lasting for 90 minutes or more which is character-
istic of the long tail of the distribution. As this value matches
the limitation set by major representative carriers [34, 77], we
evaluate reliability for calls over this duration.

Second guarantee: good voice quality. Users want to clearly
hear their communication partners. Voice quality depends
both on the bitrate being used and the amount of packet loss:
(1) Listening tests with OPUS [14,32] concluded that a bitrate
of 32 kbps is sufficient to offer a sound quality that test users
cannot distinguish from a reference unencoded version of
the recording. We set, therefore, this bitrate as the minimum
required bandwidth that we must offer to the VoIP application.
(2) OPUS provides two mechanisms to mask the impact of
lost packets: a domain-specific one, named Packet Loss Con-
cealment (PLC) and a generic one, via redundancy, named
Forward Erasure Coding (FEC)2 [72]. Han et al. [28] studied
the perceived quality of a call on various packet rates. This
study shows that while PLC compensates for packet loss, the
perceived voice quality nonetheless decreases quickly: a 1%
packet loss is essentially unnoticed, while 10% packet loss
results in usable but degraded call conditions. Based on these
results, we set as a requirement a packet loss of at most 1%.

Third guarantee: interactive conversations. In addition to
an uninterrupted and good-quality voice signal, users of voice
calls expect to be able to exchange information interactively,
e.g., be able to seamlessly synchronize on when to stop and
start talking in a conversation.

Interactivity primarily depends on latency [68]. The ITU
published recommendation G.114 [35] on mouth-to-ear la-
tency in voice calls. This recommendation indicates that a
delay below 150 ms is unnoticeable for users, compared to
a direct voice conversation. We set, therefore, this value as
our ideal latency. On the other hand, the recommendation
stipulates that delays must remain below 400 ms to make
an interactive call possible under good conditions. Higher la-
tencies result in synchronization difficulties and significantly
reduce user-perceived QoE. We set this threshold of 400 ms
as our maximum acceptable mouth-to-ear latency.

We emphasize that the actual network latency for trans-
mitting VoIP frames is only a subset of mouth-to-ear latency.

2We configure OPUS to use only the former, as DONAR already enables
redundancy mechanisms that are specific to the Tor network.

Figure 2: Structure of a Tor link with onion services.

Additional latency is introduced by (1) audio capture and
playing, (2) packetization, and (3) buffering. Once digitized,
audio is encapsulated, every Tframe ms, into frames that will
form a packet. OPUS enables configurable values for Tframe
from 2.5 to 60 ms.

We consider an ideal jitter-buffer model similar to the one
by Moon et al. [57]. This model delays all frames by the max-
imum or nth percentile of the observed latency and allows
frame drops. Moon et al. [57] and others [44, 52] have pro-
posed jitter-buffer implementations performing close to this
theoretical optimum. Therefore, we consider Tbuffer, the unnec-
essary delay added by a wrong jitter-buffer configuration as
negligible. Finally, as we allow a 1% frame drop, we consider
the 99th latency for our mouth-to-ear delay constraints.

3 VoIP over Tor: How bad is it?

Tor [20] is a large-scale network that enables users to access
remote resources anonymously. Tor relies on onion routing: it
relays traffic through circuits consisting of at least two relays
(three by default) chosen from more than 6,000 dedicated
nodes. The first relay in a circuit is known as the Guard. The
Tor client chooses a small set of n (by default3, n= 2) possible
guards. Thereafter, it builds circuits by using one guard from
this set, choosing the remaining relays randomly from the list
of all available relay nodes.

Tor enables both connections to the regular Internet (re-
ferred to as Exit) and to other Tor users (referred to as Onion
Services). In contrast to the Exit mode, Onion Services pro-
vide two-way anonymity by default. The Tor client on the
caller’s side connects to an anonymous onion service (set up
by the callee’s Tor client). In doing so, it creates a Tor route,
i.e., the concatenation of two Tor circuits, one from the caller
to a rendezvous relay, and another from the callee to the same
rendezvous relay. In this paper, we use the term link to refer to
the TCP connection over this route that the Tor client exposes
to the application. Figure 2 illustrates a Tor link based on an
onion service used for transmitting VoIP frames.

Tor seeks to prevent adversaries from inferring commu-
nicating parties. To this end, at least one relay in the route
should lie in an administrative domain that the adversary can-
not observe. Furthermore, to prevent traffic analysis attacks,
Tor only sends fixed-sized messages between relays, in the

3While Tor advertises using n= 1 by default, it effectively uses n= 2 [62].

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 251

Figure 3: VoIP over a single Tor link: Evolution of the one-
way delay’s 99th percentile according to connection-link type
and call duration.

form of 514-Byte cells [53, 59]. When a packet being trans-
mitted over a Tor link is less than 514 Bytes in size, the Tor
client pads it with random data.

3.1 Evaluation of Tor links’ QoS

Tor is often described as a low-latency anonymization net-
work. Its TCP streams over pre-established circuits enable,
indeed, lower latency than anonymization networks where
the relays for each message in a stream are chosen indepen-
dently [12, 73, 76]. The latency of links in Tor, and in par-
ticular their stability, is however known to be unpredictable,
which made several authors doubt Tor’s ability to support
low-latency applications such as VoIP [31, 66].

In this section, we report on our own experimental evalua-
tion of the network QoS of Tor links. We confirm the observa-
tion made by other authors that a single Tor link is unsuitable
for VoIP networking requirements as defined in the previous
section. However, these measurements allow us to make the
case for the foundational design choice in DONAR: using
several, dynamically selected links.

We consider the following metrics: the connection stability,
the variability of one-way latency, and the predictability of
high latency from prior measurements. We use a load injector
with varying packet-sending rates and, in order to measure
one-way latency, a stub communication endpoint located on
the same machine. The injector and the stub use two separate
instances of the Tor client in its default configuration and
create circuits independently. All reported experiments were
conducted in January 2021.

Connection links. We start by analyzing how the two Tor
modes, Exit and Onion Services, perform in terms of tail la-
tency. Each of these modes can be declined in links providing
either one-way or two-way anonymity. Exit links provide
one-way anonymity by default but we can mimic two-way
anonymity by making both caller and callee access the same

public VoIP server. Onion-Service links provide two-way
anonymity by default but we can reduce the number of relays
and keep only one-way anonymity. We use the HIDDENSER-
VICESINGLEHOPMODE feature in the Tor daemon to achieve
one-way anonymity over Onion Services.

Considering these 4 configurations, we simulated VoIP
calls lasting 30 seconds, 5 minutes, and 90 minutes. The simu-
lation strictly follows the requirements presented in Section 2.
For each combination of configuration and call duration, we
made 64 calls and present the results in Figure 3.

We start our analysis by focusing on Figure 3.A as it fea-
tures the configuration on which Sharma et al. [70] base their
claim that Tor links are suitable as is to support VoIP. With
37% of unacceptable calls (resp. 50%) for 5-minute (resp. 90-
minute) calls, we argue the opposite. We identified three rea-
sons explaining why our analysis differs. (1) They do not ac-
count for Tframe in their analysis. Since we use Tframe = 40 ms,
our max acceptable latency is 360 ms. (2) They consider
average latencies instead of the 99th percentile of their distri-
bution. While we obtain similar average latencies, considering
tail latency shows that 20% of calls suffer from unacceptable
delays, even for short 30-second calls. (3) They consider only
such 30-second calls when the average call duration is 3 min-
utes and when a significant share of calls last up to 90 minutes.
Measuring links over a longer timespan shows, in fact, that
latencies tend to increase with call duration.

Comparing the different configurations we observe that,
in fact, no link type offers acceptable delays. We note (Fig-
ure 3.{B,D}) that the latency benefits from using the Exit
mode mostly vanish when considering 2-way anonymity. Us-
ing one-way anonymity with the Onion Service mode (Fig-
ure 3.C) does not seem to improve tail latency; we presume
this is because this feature is still experimental.

Moreover, not all link types are equal: using Exit links
has two drawbacks. First, it requires the last relay of the
circuit to hold the Exit tag. As Exit links can send data on the
regular Internet, the last relay is particularly sensitive: only
25% of the relays accept to have this position. From the user’s
perspective, this situation eases de-anonymization attacks
and, by limiting the scalability of the network, also harms
performances. Moreover, using Exit links requires relaying
traffic through an ad-hoc public server that must be trusted
(e.g., Sharma et al. [70] use Mumble and Freeswitch PBX).

Considering that (i) no link type over Tor enables VoIP,
and (ii) the Exit mode has severe limitations, we choose to
focus solely on leveraging Onion-Service links to provide
anonymous voice calls in the rest of this paper.

Connection stability. We evaluate the reliability of each Tor
link type over our longest considered call duration (90 min-
utes). Figure 4 reports the cumulative rate of failed links (i.e.,
for which packets are no longer transmitted) as a function
of time. After 10 minutes, all link types exhibit failure rates
of at least 4%. The rate rises to between 7% and 16% after
one hour. The failure difference between link types seems

252 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 4: Failed Tor links over time.

Figure 5: Tor links’ latency distribution at 25 packet/sec
ordered by median (top) and max (bottom) latency.

to be correlated with their number of relays: the more there
are relays, the more likely failures are. None of the avail-
able links satisfies our QoS requirements: we need a solution
that overcomes link breakage and allows calls to continue
seamlessly.

Predictability of high latencies. The previous experiment
shows that the distribution of latency across multiple links is
highly skewed. We now evaluate if this skew results from a
large number of poorly performing links with a few, identifi-
able, good links, or if any link can experience periodic latency
bursts. Figure 5 presents the one-way-latency distribution for
each of the 64 links, ranked by median latency (top) or max
latency (bottom). There is no clear relationship between the
general performance of a link and the occurrence of latency
spikes. The maximal latency does not seem to depend much
on the rest of the distribution and can reach very high values
in all cases (often 3 times higher than the 75th percentile)4.
We refer to these high latency periods as latency spikes in the
rest of this paper.

Discussion. Our experiments confirm the general unpre-
dictability of the performance of Tor links. Due to Tor’s ex-

4This unpredictable performance is confirmed, in fact, by a blog post by
the Tor project [63]. We quote: “While adding more relays to the network
will increase average-case Tor performance, it will not solve Tor’s core
performance problem, which is actually performance variance.”.

clusive support for TCP5, latency spikes for a single packet
result in high latency for all following packets, delayed to be
delivered in order—a phenomenon referred to as head-of-line
blocking.

We observe, however, that the number of relays correlates
with the probability of networking problems: larger numbers
of relays are associated with higher failure rates or with la-
tency spikes. We also note that most links provide good per-
formance for a fraction of their use time, and failures across
links do not seem to be correlated. As a result, we make the
case for using multiple links, benefiting from periods of good
performance, and quickly switching links when experiencing
latency spikes.

Icons by RROOK and Juan Pablo Bravo from the Noun Project

Tor network (relays)

Tor
clientDonar

multiple TCP links
unique UDP socket

VoIP
client

link monitoring and selection
scheduling policies

D

Unmodified systems

Figure 6: DONAR plays the role of a proxy between an un-
modified VoIP application and the unmodified Tor client.

4 Donar: Enabling VoIP over Tor

DONAR operates as a proxy between a VoIP application and
the Tor client, as illustrated in Figure 6. It does not require
modifying either of the two systems. DONAR runs without any
specific privileges; it only offers a UDP socket to the VoIP
application’s RTP protocol and opens TCP sockets (links)
with the local Tor client. In conformance with our objective
to make anonymous VoIP available with readily-available
systems, we do not require the deployment of external sup-
port services. In particular, DONAR does not rely on the SIP
signaling protocol but leverages instead Tor onion addresses
to establish communication without leaking metadata about
communicating parties.

Redundancy by piggybacking. DONAR leverages the fact
that Tor only transmits data in the form of fixed-sized cells.
Setting OPUS to the target bitrate of 32 kbps and using a
sending period of 40 ms results in 172-Byte frames. The Tor
client pads the remaining space with random data to reach a
cell size of 514 Bytes. DONAR leverages, instead, this space
to re-send the previous frame without changing the necessary
bandwidth requirements6. Naturally, a redundant frame must

5TCP maps well to an efficient implementation of onion routing, i.e., it
makes it possible to know when to create and dispose of circuits and it avoids
the presence of packets that are untied to an existing circuit. UDP would also
pose security challenges, e.g., enable DDoS attacks. The designers of Tor
have clearly dismissed any support of UDP in Tor in the future [56].

6We are not limited to this configuration, and only require that the size of
the frames emitted by the codec be less than half the available space minus
the Tor headers (8 Bytes) and DONAR metadata (38 Bytes in the default
configuration), i.e., less than 233 Bytes.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 253

be sent on a different link than the first copy, to avoid head-of-
line blocking between replicas. While redundant frames are
subject to an additional Tframe latency (40 ms in the presented
configuration), our rationale is that this latency combined
with that of the link itself will still be lower than that of a
link experiencing a latency spike. We detail next how we
effectively enable link diversity.

Link Diversity. DONAR leverages multiple Tor Onion-
Service links to multiplex traffic in two complementary ways.
First, it spreads frame copies onto different links. This pre-
vents packets containing subsequent frames from being sub-
ject to the same latency spike thereby arriving too late in a
burst at the destination. This also lowers the load on each
individual link (resulting, as shown in Section 3, in better
availability). Second, DONAR ensures that the first and the
second (redundant) copy of a given frame always travel on
different links.

Enabling diversity requires (1) maintaining a set of open
links and monitoring their performance; and (2) implementing
a scheduling policy for selecting appropriate links for new
packets. In the following, we detail these two aspects (§4.1
and §4.2) and complete the description of DONAR by detailing
how calls are established (§4.3).

4.1 Link monitoring and selection

DONAR opens and monitors a set of Tor links and associates
them with scores reflecting their relative latency performance.
We start by detailing how latency scores are collected at the
local client’s side, and why they must also be collected from
the remote client. We motivate our choice to classify links in
performance groups, and how we dynamically select links in
these groups throughout a call.

Measuring latency. Measuring transmission delays for pack-
ets sent over Tor is not straightforward. The RTP protocol
uses UDP and does not send acknowledgments. We do not
wish to add additional acknowledgment packets over Tor to
measure round-trip times, as their padding in 514-Byte cells
would double bandwidth consumption.

Rather than attempting to measure the absolute latencies
of links, we leverage the use of multiple links to approximate
their relative latency performance. Measures of performance
are continuously collected on both sides of the communica-
tion, which we denote as node A and node B in the following.
Local aggregate measures are then computed over a time
window of duration w. We explore the impact of durations
ranging from 0.2 to 32 seconds in our evaluation.

We base our measurements on an out-of-order metric for
VoIP frames. This metric denotes, for an incoming frame f
with sequence number i, the number of frames received before
f with a higher sequence number than i. As TCP delivers
packets in order, these frames necessarily travel on different
links. For instance, if node A receives frame f with sequence
number i from node B on link l after receiving frames with

sequence numbers i+ 1, i+ 2, and i+ 3 on other links, we
associate an out-of-order metric of 3 to frame f .

The local calculation of the out-of-order metric also applies
to missing frames. Node A is aware of any missing frame
fm with a sequence number im < ic where ic is the largest
sequence number among all the frames received from node
B. However, since the decision on which link a packet is sent
is made by node B, it is not possible for node A to assign
fm’s measurement to a specific link. To solve this problem,
we include, in the DONAR headers in each packet, the list
of links used for sending the latest n frames, where n is the
maximum number of used links.

Nodes A and B must share their local aggregate measures
to enable fast detection of latency spikes. Node A’s local in-
formation about a link l approximates, indeed, the one-way
latency from B to A, but not from A to B. Our experimen-
tal evaluation has shown that one-way latencies are highly
consistent in both directions of a link, making node A’s local
estimation a good approximation also for the latency from A
to B. However, this local approximation may be missing if
the link has not been used recently by B to send packets to
A. We alleviate this problem by embedding, in the DONAR
metadata sent with each packet, the local aggregate measures
for links that have been measured recently. Node A computes
a final array of measures that include, for each link, either
(1) the local aggregate measure only, if no remote aggregate
was received; (2) the remote aggregate only, if the link was
not recently used by B to send data to A; or (3) the average
of these two measures if the link was used in both directions.
Link selection. Every w seconds, DONAR sorts links in de-
creasing order of aggregated scores over the last period and
assigns links to three groups. The L1ST (first-class) group con-
tains the n1ST fastest links. The L2ND (second-class) group
contains the n2ND following links. Typically, we use the same
number of links in the two groups, i.e., n1ST = n2ND. Finally,
the remaining nINACTIVE = nLINKS −n1ST −n2ND slowest links
are assigned to the LINACTIVE group.

The rationale for this classification is as follows. Links in
the LINACTIVE group experience sub-par performance and must
remain idle. Links in the L1ST group have good performance
and are invaluable in allowing fast delivery of VoIP packets.
However, the number of good-performing links is limited at a
given point in time, and using them systematically bears the
risk of overloading them, resulting in lower performance and
reliability (§3). Links in the L2ND group are less performant,
but remain usable, and can reduce this risk of overload.
Links opening and maintenance. DONAR uses standard op-
erations of the Tor client to open links. It lets the client select
relays according to Tor rules. The client allows users to pa-
rameterize the number of used guard relays, as well as the
length of the links (number of relays). DONAR leverages these
parameters to enable different security/performance tradeoffs.
We defer the discussion of strategies for setting these values
and their security implications, to Section 5.

254 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

When starting a call, DONAR opens nLINKS = n1ST +n2ND +
nINACTIVE links and assigns them randomly to the three groups.
When the Tor client notifies a link failure, DONAR simply
requests a new link and assigns it to the LINACTIVE group.

Links in the LINACTIVE group will not be monitored locally.
Some of these links may be associated with a remote score,
but others will not be monitored on either side of the call. To
enable all links to be monitored periodically, we implement a
promotion and demotion mechanism between the L2ND and
LINACTIVE groups. When assigning links to groups at the end
of a period of w seconds, DONAR picks the worst-performing
link from the L2ND group and demotes it to the LINACTIVE group.
In return, it promotes to L2ND the link from the LINACTIVE group
that has been unused for the longest time.

4.2 Scheduling policies
The DONAR scheduler receives UDP RTP packets containing
a single frame from the VoIP application. It first implements
redundancy by using the pad space to piggyback packets
that were previously sent on different links, then adds the
necessary metadata, and finally creates a TCP packet to be
sent onto one or two links from the L1ST and/or L2ND groups.

DONAR’s default scheduling policy is named ALTERNATE.
It sends each new packet to a single link. In doing so, it al-
ternates between links from the L1ST and L2ND groups. This
complies with the requirement to send the first and redun-
dant copies of a frame on different links. DONAR picks the
links from each group using a round-robin policy, thereby
complying with the requirement of maximizing diversity.

We implement a second policy named DOUBLE-SEND. As
the name implies, this policy selects two links—one from
L1ST and one from L2ND—for sending each new packet. Each
frame is received four times: two as a primary copy, and two
as a duplicate. This policy doubles the required bandwidth but
has a higher chance to select a fast link for the primary copy
of a frame, thereby reducing the risk of delivering the frame
with an additional delay of Tframe. We note that the resulting
bandwidth is the same as for TorFone [24]’s Duplication
mode, which systematically sends VoIP packets onto the same
two links.

4.3 Establishing communication
DONAR leverages Tor’s mechanisms to allow callers and
callees to establish a connection anonymously. Following our
design goal of using only readily-available systems, we do
not require the deployment of an existing or novel signaling
protocol and, in particular, we do not use a SIP deployment.
SIP requires, in fact, the use of trusted proxies and has been
documented as leaking metadata to network observers [21,43].
Furthermore, with the exception of the audio codec negotia-
tion, SIP functionalities largely overlap mechanisms already
offered by Tor [21, 43].

A caller can discover a callee by looking up a specific onion
service identifier using the Tor DHT. This onion service iden-
tifier is obtained by other means, e.g., by using an anonymous
chat service. The identifier can also be public while still pre-
serving anonymity, as Tor prevents an external observer from
determining that a specific client opens a circuit to a specific
onion service. For instance, journalists could advertise an
anonymous onion service for whistleblowers to use. We note
that client-side authorization, as defined in the Tor rendezvous
specification [54], could enable a callee to only allow calls
from a whitelist of callers, but we leave the integration of this
functionality to future work.

In the current DONAR implementation, the codec and its
configuration are hardcoded. Codec and configuration negoti-
ation require, unlike discovery, only communication between
the two parties, and could employ a protocol similar to the
subset of SIP dedicated to this task. We also leave this imple-
mentation to future work.

5 Security

DONAR leverages Tor without deploying additional infrastruc-
ture or modifying Tor itself. As a result, DONAR inherits the
security assumptions and shortcomings of Tor. For instance,
like Tor, DONAR does not provide protection from adver-
saries that can control the entire network [20, 59] to perform
traffic-correlation attacks [40, 82]. Nevertheless, in terms of
guarantees, it is reasonable to wonder whether DONAR wors-
ens the security properties of Tor and to what extent.

In the definition of the so-called predecessor attack,
Wright [82] observed that repeatedly creating new circuits
causes clients to continuously degrade their security while
increasing the probability that they will eventually choose a
malicious relay as the first node of a circuit. Wright [81] pro-
posed to address this problem by using what is now known as
guards. Specifically, each Tor client chooses a small number
of guards and uses them for all the circuits it ever creates. This
suggests that DONAR’s impact on security depends mainly on
the fact that it can use a larger number of guards than the stan-
dard Tor implementation. We evaluate this impact from the
perspective of three threats: (1) one endpoint deanonymizing
the other, (2) an attacker that controls some relays or ASes and
that tries to identify DONAR users, and (3) the same attacker
deanonymizing both endpoints of a call and finally breaking
anonymity.

Deanonymizing the other endpoint. According to the AnoA
classification [6], sender/recipient anonymity refers to the
ability to hide one endpoint’s identity from the other. As dis-
cussed by Wright et al. [81], in a system with c corrupted
relay nodes out of n and 1 guard per user, the probability of an
endpoint’s de-anonymizing the other is c

n . If we increase the
number of guards to g, this probability becomes 1− (1− c

n)
g,

which, for small values of c
n , can be approximated from above

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 255

by its first-order Taylor/Maclaurin expansion g c
n . Like most

previous work, this analysis focuses on a random distribution
of compromised guards. Adversaries can also leverage path
selection algorithms to strategically place malicious guards
and increase their probability of being selected although coun-
termeasures exist [78].

Identifying DONAR users. Identifying a DONAR endpoint is
equivalent to de-anonymizing any onion service, i.e., identi-
fying which client node is reachable through this service. An
adversary controlling a guard relay and knowing the onion
address of a callee may observe traffic and employ traffic fin-
gerprinting techniques [10,45,55,61,65] or use a fake DONAR
client and perform timing attacks [58] to identify that a spe-
cific client is accepting DONAR calls. The use of several (g)
guards in DONAR also increases the probability of this attack
to 1− (1− c

n)
g, and thus by a factor of g for small values of

c
n , like for the de-anonymization of one endpoint. This attack
can however be mitigated by using the client-authorization
feature offered by V3 Onion Services [54]. Finally, while
several authors have shown that an adversary could locate
onion service endpoints even when they were not publicly
advertised [9,45,55,61], they have also proposed solutions to
the Tor community.

De-anonymizing an ongoing call. To de-anonymize an on-
going call, an attacker needs to control guard nodes at both
endpoints and employ traffic-correlation techniques [40]. As
a result, like for the first two threats, the choice of the number
of guards used by DONAR identifies a tradeoff between the
likelihood of this attack and the performance of a call. In par-
ticular, since the attacker needs to control at least one guard
on each side of the call, the associated probability grows from
(c

n)
2 with one guard to (1− (1− c

n)
g)2 with g guards. This

implies that it grows even more slowly for small values of c
n

than the two previous probabilities.
Finally, we also observe that passive traffic correlation at-

tacks turn out to be more difficult to perform when multiple
calls are ongoing as DONAR’s traffic patterns do not vary
between different calls. In this case, a passive attack must
observe the start and/or the end of a call to be effective.

DONAR security configurations.
As discussed above, increasing the number of guards im-

proves performance but it also increases the attack surface.
For this reason, DONAR implements three security configura-
tions that strike different tradeoffs between privacy and per-
formance, as illustrated in Figure 7. We emphasize that each
configuration sets up the unmodified Tor client via its legacy
API. DONAR systematically uses 12 links, but link settings
are different in each configuration. The Default configuration
provides a security strength similar to the legacy Tor client
with default Tor link settings, i.e., each link has 6 relays, and
each client employs only 2 guards.7 The 2-hop configuration

7Even though Tor’s documentation discusses using only one guard, the
default client uses two.

Figure 7: Security configurations.

sets up the Tor client so that each created link has two fewer
Tor relays compared to Tor’s default link settings. Finally, the
1-way-anonymity configuration totally removes the anonymity
of the callee using a single Tor relay (without the guard pool
constraint) between the callee and the rendezvous point.

Security Discussion. Each of the threats we identified above
relies on the control of at least one guard relay per affected
endpoint. As discussed above, DONAR does not modify the
guard configuration when providing anonymity for a user.
Moreover, the use of guards decorrelates the number of links
and the de-anonimization probability: using 12 links at once
does not expose a user more than using only one. Additionally,
compared to the Default configuration, the 2-hop one reduces
the number of relays in links by two. Decreasing the number
of relays in links has been long debated in the Tor community.
The main rationale for using 3-relay circuits (and thus 6-relay
links) is that it makes it more difficult for an adversary that
controls the last relay to identify the entry guard. On the
other hand, an adversary can overcome this protection with
relatively low investment in additional relays, and 3-relay
circuits are more vulnerable to attacks based on denial of
service [8]. These observations motivate our choice of 2-
relay circuits with better latency in our 2-hop configuration.
Finally, the 1-way-anonymity configuration does not provide
anonymity to the callee but does not hamper the anonymity
of the caller. Moreover, this mode is a standard feature of the
Tor daemon that is used in production (e.g., by Facebook [1]).

Finally, we emphasize that DONAR users may also explore
entirely different security configurations, by changing the
number of Tor guards and/or relays for links, according to their
own expected tradeoffs between performance and security.

256 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

6 Evaluation
DONAR is available open-source at https://github.com/
CloudLargeScale-UCLouvain/Donar. The DONAR proxy
interfaces a VoIP application with the Tor client.8 We use two
applications: (1) a configurable RTP emulator allowing a fine-
grained control on the frames sent between parties, and run-
ning multiple occurrences of an experiment to study statistical
variations; and (2) the actual gstreamer VoIP application us-
ing the OPUS codec. We deploy two isolated instances of
either application on the same machine to accurately measure
one-way delays for packets sent over Tor.

Tor’s performance varies over time, with failures, discon-
nections, and latency spikes as identified in Section 3. Unless
mentioned otherwise, we run each experiment a total of 64
times and present the distribution of results. We run the same
configuration over a long time span, typically 5 hours, and
also compare different configurations running in parallel.

6.1 Performance & comparison to SOTA
We start with the evaluation of the global performance of
DONAR and its ability to meet the requirements summarized
in Table 1. We use an audio stream of 32 kbps with a rate of
25 frames per second. We configure DONAR as follows: The
window duration is w = 2s and we open a total of nLINKS = 12
links including n1ST = 3 links, n2ND = 3 links, and nINACTIVE =
6 links. We present a comprehensive analysis of the influence
of these parameters in Section 6.2.

We consider the six possible variants of DONAR using ei-
ther of the two scheduling policies ALTERNATE and DOUBLE-
SEND combined with one of the three security configurations
(Default, 2 hops, or 1-way anonymity). In addition, we imple-
ment two approaches representing the state of the art. SIMPLE
is the direct use of a single Tor link to transfer VoIP data. It
represents our reference in terms of bandwidth usage for the
ALTERNATE policy. TORFONE implements the duplication
strategy used in TorFone [24]: It sends each new packet on
two links, representing a reference for bandwidth usage for
the DOUBLE-SEND policy.
No call interruption. We start by studying the percentage of
dropped calls for all configurations. We run 96 instances of a
90-minute call for each combination and count the percentage
of dropped calls. For SIMPLE, a broken Tor link invariably
results in a dropped call. The DONAR variants and TORFONE,
instead, re-establish broken links and thus consider their calls
dropped whenever they miss 25 consecutive frames. Figure 8
presents the results. All DONAR variants perform better than
the previous approaches and meet the goal of less than 2% of
dropped calls. We only record, in fact, dropped calls for the
most conservative of our setups, i.e., combining the ALTER-
NATE policy with the default configuration, and even then not

8The Tor software is evolving quickly, especially considering v3 onions.
To benefit from latest bug fixes, we compiled Tor from branch maint-0.4.4
(commit 09a1a34ad1) and patch #256.

Figure 8: Dropped calls after 90 minutes for SIMPLE, TOR-
FONE, and DONAR setups.

Figure 9: Latency comparison between SIMPLE, TORFONE,
DONAR ALTERNATE and DONAR DOUBLE-SEND.

exceeding 2%. TORFONE only meets the goal in the 1-way
anonymity configuration.

Interactive conversations & good voice quality. These ob-
jectives require a sufficient bitrate—met by using a 32 kbps
bitrate in our experiments—and receiving at least 99% of
VoIP frames within the maximum acceptable latency. The
OPUS codec can, indeed, mask the loss of 1% of the frames
with no perceptible quality degradation.

We present the distributions of frame delivery latencies in
Figure 9. Our mouth-to-ear latency objective is 150 ms, and
our limit is 400 ms. As Tframe=40 ms, we wish network delays
for delivering frames to be of 110 to 360 ms. We use two
vertical lines to denote these boundaries.

For all security policies and call durations, the DONAR
DOUBLE-SEND algorithm provides at least 87% (Default, 90
minutes) of successful calls. Considering only our optimized
security policies, the ratio of successful calls is even higher at

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 257

https://github.com/CloudLargeScale-UCLouvain/Donar
https://github.com/CloudLargeScale-UCLouvain/Donar
https://gitlab.torproject.org/tpo/core/tor/-/merge_requests/256

95%. These results must be compared to TORFONE, as both
approaches send the same amount of data on the wire. TOR-
FONE enables as low as 23% (1-way anon., 90 minutes) and at
most 47% (Default, 5 minutes) of successful calls. Compared
to DONAR DOUBLE-SEND’s worst performance (Default, 90-
minute configuration), there is a 55-point difference with
TORFONE in favor of DONAR.

Conversely, we observe that DONAR ALTERNATE does not
fit all configurations: for its Default security policy, it enables
only 62% (resp. 57%) of successful calls for 5 minutes (resp.
90 minutes). Results are better with 1-way anon.: 78% (resp.
77%) for 5-minute (resp. 90-minute) calls. However, only
the 2-hop configuration seems to offer acceptable quality,
enabling at least 87% of successful calls. Compared to the
SIMPLE mode that sends the same amount of data, this is a 55-
point gain points compared to DONAR’s worst performance.
With the 2-hop configuration, it is a 43 points (resp. 65 points)
for 5-minute (resp. 90-minute) calls improvement on SIMPLE.

To conclude, DONAR DOUBLE-SEND is able to offer a high
ratio of successful calls in most situations (87%+ compared
to 23%+ for TORFONE); it is a versatile solution at the cost
of added redundancy on the wire. In comparison, DONAR
ALTERNATE has no overhead but is way more sensitive to the
configuration: it only works well with the 2-hop security pol-
icy (87%+ compared to 46%+ for SIMPLE). With a difference
of at most 4% between the 5-minute and 90-minute mea-
surements, DONAR adds a new interesting property: latency
stability over time. We argue that our two sending policies rep-
resent a significant improvement in terms of delay compared
to the state of the art.

Using the gstreamerVoIP client. We experiment with the
replay of an audio file using the gstreamer VoIP application.
We collect statistics about its jitter buffer. gstreamer only
allows a static-size jitter buffer. We configure this buffer based
on our previous experiments, so as to absorb latencies between
the minimum observed latency and the 99th-perc. latency, and
count the number of calls that systematically meet latency
requirements out of the 64 experiments done for each con-
figuration. Our results confirm that DONAR DOUBLE-SEND
is able to meet the 360 ms latency threshold for most exper-
iments in all configurations, while the ALTERNATE policy
works best under the 2-hop configuration. We also confirmed
empirically the results obtained under the 2-hop configuration
and the two scheduling policies by performing actual calls
between two laptops: we could not detect any degradation in
sound quality throughout any of the calls.

6.2 Microbenchmarks
In the following, we present an analysis of the influence of
each of DONAR’s parameters, and of the complementarity of
its mechanisms. We focus on the six possible DONAR variants
and, to factor out the impact of security configurations, we
also consider a version of DONAR using 4 relays per link and
an unlimited number of guards.

Figure 10: Impact of protocol parameters (w, nLINKS and
n1ST = n2ND) on frame delivery latencies.

Protocol parameters. DONAR has 3 main parameters: w,
nLINKS, n1ST (we use n1ST = n2ND). In the experiments reported
in the previous section, we employed the default values of
w = 2s, nLINKS = 12, and n1ST = n2ND = 3. We detail in the
following how we selected this default configuration.

We present, in Figure 10, an analysis of the influence of
each parameter on the distribution of frame delivery latencies.
Parameter w determines how far in the past we consider out-of-
order metrics when computing link scores. It also determines
how many times we need to probe a link before deciding to
stop using it. A lower value of w enables a fast reaction at the
risk of switching too many links with unreliable scores, while
a larger value promotes links that are stable over time. We
can observe on the left side of Figure 10 that the best value
of w for the DOUBLE-SEND policy is 5s, while the best for
ALTERNATE appears to be 2s. Additional benchmarks on the
[1,8] range with a smaller step led us to select the latter value
as the default.

The nLINKS parameter controls the total number of open
links and, therefore, both the level of achievable diversity and
the load of route maintenance on the Tor network. We evaluate
nLINKS values from 8 to 20. The ALTERNATE policy performs
best with 20 links, while the DOUBLE-SEND policy performs
best with 12 links. To limit the load on Tor, we select this
latter value as the default.

Finally, parameter n1ST = n2ND directly controls the number
of links that are actively used to send packets. On the one hand,
for a given value of nLINKS, a small value of n1ST increases the
likelihood of selecting only good-performing links. On the
other hand, a large value increases diversity and the frame rate
on each link, resulting in higher stability as we have shown

258 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 11: Impact of Tor guards number on latencies.

Figure 12: Diversity & redundancy complementarity.

in Section 3. Using n1ST = 1 yields high latencies with either
variant, while n1ST = 3 or n1ST = 4 offers a good compromise.
We choose n1ST = 3 as our default value.

Impact of the size of the guard pool. We considered using
different sizes for the guard pool for the different security
configurations detailed in Section 5. We further explore the
impact of this parameter on DONAR’s performance. Our re-
sults, shown in Figure 11, confirm that, in order to achieve
the best latency, it is preferable to have as many guards as
the number of links, in our case nLINKS = 12. This number is,
however, the result of a compromise with the attack surface.
In our performance evaluation, we chose to stay conservative
by not modifying the number of guards but we demonstrate
here this choice has a cost in terms of performance.

Complementarity of diversity and redundancy. We ana-
lyze to which extent the two enabling mechanisms of DONAR,
diversity and redundancy, contribute to its performance. We
present in Figure 12 latency when using only link selection
(diversity), using only redundancy by piggybacking, and us-
ing both. Activating both features is clearly beneficial for
both scheduling policies, but, unsurprisingly, the impact of
redundancy by piggybacking on high percentiles of the dis-
tribution is larger for the ALTERNATE strategy than for the
DOUBLE-SEND strategy, as the latter enables redundancy by
sending packets twice.

We further wish to understand how diversity and redun-
dancy interact when used simultaneously, by analyzing, for
each frame, which group of links delivers it for the first time,
and whether this first delivery concerns a primary or a dupli-
cate copy. The first delivery of a frame, indeed, results from
a race between two send operations (with the ALTERNATE
policy) and four send operations (with DOUBLE-SEND).

When using the ALTERNATE policy, 94% of the primary
frame copies sent on a link of the L1ST group arrive first. In
6% of the cases, the first copy that is received is the duplicate
sent 40 ms later over an L2ND link. When primary frame
copies are sent over L2ND links, however, only 48% arrive
before the duplicate copy sent over an L1ST link; 52% of the
frames arrive first as the duplicate copy, despite the latter
being sent 40 ms later. When using the DOUBLE-SEND policy,
73% of the frames are received first as a primary copy on
the L1ST link, 14% are received as a primary copy on an L1ST

link, and only 13% are received as a duplicate copy. Using
L2ND links remains useful. It provides more diversity, while
still leveraging the reliability of the best links. Moreover, it
decreases the load on each individual link, reducing the risk
of performance degradation on each of them.
Link monitoring effectiveness. Appendix A presents a sup-
plementary study of the effectiveness of link monitoring,
where we analyze a trace of link classification and selection.

7 Related Work
VoIP over anonymization networks poses significant chal-
lenges as it combines the need for strong security with low
and stable latency requirements. Three main families of
anonymization networks have emerged: onion-route-, mix-
net- and DC-net-based networks. The former do not pro-
tect from global adversaries that control the entire network
whereas the latter two do.

The objective of DONAR is to leverage a readily-available
system. Only two anonymity networks satisfy this require-
ment, Tor and Vuvuzela [76]. We discuss, nonetheless, the
practicability of VoIP over a larger set of existing approaches,
even if they are not effectively deployed.
Onion-route-based networks. Sharma et al. [70] called to
re-think the feasibility of voice calling over Tor and claim that
VoIP is feasible over Tor. However their analysis suffers from
several shortcomings: they consider average latency instead of
tail latency, they do their measurements only for 30 seconds,
they do not evaluate dropped calls, they only provide one-way
anonymity, etc. Karopoulos et al. [21, 43] explore the porting
of SIP infrastructures on Tor. The main principle of their work
is to preserve privacy in the SIP signaling protocol, in contrast
with DONAR that leverages Tor’s built-in mechanisms for es-
tablishing calls. The RTP stream is transmitted using a single
Tor onion link. This approach behaves like SIMPLE from our
experimental evaluation in this respect. TorFone [24] tries to
improve latency by duplicating traffic over only two onion

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 259

links without any scheduling and monitoring mechanisms.
As demonstrated in Section 6, the TORFONE policy is not
sufficient to meet VoIP requirements.

Mix-net-based networks. Mix networks [13] batch and shuf-
fle packets via mix nodes to prevent attackers from performing
global traffic analysis. However, in doing so, they inherently
incur high latency, which makes them unusable in latency-
sensitive applications. A key solution to reduce packet deliv-
ery times consists in using cover traffic to prevent the mixes
from having to wait too long before having enough packets to
send a batch. Accordingly, the challenge faced by the latest
research on mix-nets, such as Karaoke [48], Vuvuzela [76],
Riffle [46], Loopix [64], Aqua [51], and Stadium [73], con-
sists in designing an adequate mix-net with the best tradeoff
between minimizing the necessary cover traffic while guar-
anteeing good resilience to traffic analysis. In their best-case
usage scenario, these approaches drastically reduce latency
from several hundred seconds to a few seconds, but this re-
mains very far from VoIP requirements.

DC-net-based networks. Latency can be reduced by avoid-
ing batching. Instead of using mix nodes, Dining-Crypto-
grapher Networks (DC-nets) rely on anonymous broadcast
among all network participants [13]. DC-nets have two inher-
ent shortcomings: (i) they incur a high bandwidth overhead,
i.e., the number of messages exchanged to send one message
anonymously grows quadratically with the number of network
participants, and (ii) they are vulnerable to denial of service
attacks from malicious participants that can jam the whole
network. Being resistant to such attacks requires, for instance,
the use of zero-knowledge proofs to detect misbehavior but
this is very costly in computation and results in increased de-
livery latency [25]. Consequently, a number of research works
on DC-nets have emerged in recent years. Dissent [16, 80],
Riposte [15], and Verdict [17] resist jamming attacks while
trying to provide the best tradeoff between reducing the num-
ber of exchanged messages (e.g by splitting the network into
smaller parts) and the impact of computational cost on latency.
However, despite their efforts, their latency remains far too
high for VoIP and increases with the number of users.

Anonymization networks designed for VoIP. Herd [50] is
based on the mix-net principle. It was specifically designed
for VoIP. Its hybrid approach uses mix nodes along with super
peers organized in trust zones. Herd can provide VoIP on
its anonymity network with good resistance against global
adversaries. Its evaluation shows expected latency values of
400 ms. The recent work on Yodel [49] removes the concept
of trust zones and supports higher percentages of dishonest
nodes than Herd. However, this comes at the cost of latency
increasing with the probability of having dishonest mix nodes.
For instance, in a Tor-like environment (i.e., ∼ 20% of mali-
cious servers) latency already reaches ∼ 900 ms. To counter-
balance this latency, Yodel uses a codec with poorer quality
than OPUS. Even if both Herd and Yodel are promising de-

signs, neither is currently deployed. Today’s whistleblowers
are, therefore, unable to communicate using these systems.
Moreover, we point out that the evaluation of both systems
has been performed in optimal conditions, and their perfor-
mance in settings comparable to Tor’s deployment remains
unstudied. For instance, Yodel is evaluated on 100 powerful
Amazon EC2 servers with no external interference. DONAR,
on the other hand, satisfies VoIP latency requirements, even
if Tor constantly relays traffic generated by over 2 million
daily users. To summarize, Tor and Vuvuzela represent the
only anonymization networks that are readily available and
widely deployed today. Since Vuvuzela cannot support VoIP
due to its high latency, DONAR over Tor represents the only
solution that enables privacy-conscious users to communicate
anonymously using VoIP and with a good QoE.
Latency improvements on Tor. We also reviewed existing
proposals to improve latency in Tor. This latency depends
on two main factors: (i) queuing delays (time spent in a re-
lay), and (ii) transmission delays (time spent on the "wire",
between two Tor relays). Ting [11] and LASTor [2] both
reduce transmission delays by modifying the path selection
algorithm. However, latency spikes are due to queuing de-
lays [19], particularly because Tor does not perform any cen-
tralized load balancing of traffic. To reduce queuing delays,
improved traffic scheduling policies have been integrated in
the latests versions of Tor [38,39], but we still observe latency
spikes. Alternative path selection algorithms use historical
data on relay performance [71,79] or probe circuits upon their
creation [5]. They are inefficient for VoIP as latency spikes
are ephemeral; predictions are outdated after a few seconds.
Multipath. We are not the first to advocate for multipath.
MORE [47] proposes to route independently each cell,
but it is not designed to be used with circuits like in Tor.
MPTCP [22, 23, 29] aggregates TCP links over multiple net-
work interfaces. However, it makes assumptions (e.g., latency
is independent of traffic) that do not hold over Tor. In re-
sponse, dedicated multipath protocols specially tailored for
onion routing networks [3, 18, 42, 83] emerged. Nevertheless,
compared to DONAR, none of these approaches optimize tail
latency as required by all real-time protocols, including VoIP.

8 Conclusion
We presented DONAR, a solution for readily-available, anony-
mous, and high-quality VoIP calls using the challenging but
existing Tor network. DONAR circumvents Tor’s inability to
support the networking requirements of VoIP by sending au-
dio frames over a diversity of links and using redundancy. It
offers different tradeoffs between performance and security
and successfully enables high-quality VoIP calls, e.g., with
latency below 360ms during an entire 90-minute call.
Acknowledgments: We are thankful to the anonymous re-
viewers and to our shepherd, Harsha V. Madhyastha, for their
constructive feedback. This work was partially funded by the
O’Browser ANR grant (ANR-16-CE25-0005-03).

260 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Tor project issue trackers: Facebook’s onion site
is a single hop onion, but clicking on the Tor
onion icon shows that it is a 6 hop circuit (is-
sue #23875). https://gitlab.torproject.org/
legacy/trac/-/issues/23875.

[2] Masoud Akhoondi, Curtis Yu, and Harsha V Mad-
hyastha. LASTor: A low-latency AS-aware Tor client. In
IEEE Symposium on Security and Privacy, S&P, 2012.

[3] Mashael AlSabah, Kevin Bauer, Tariq Elahi, and Ian
Goldberg. The path less travelled: Overcoming Tor’s
bottlenecks with traffic splitting. In International Sym-
posium on Privacy Enhancing Technologies, PETS.
Springer, 2013.

[4] Soren Vang Andersen, Alan Duric, Henrik Astrom, Roar
Hagen, W. Bastiaan Kleijn, and Jan Linden. Internet
Low Bit Rate Codec (iLBC). Request for Comments
(RFC) 3951, Internet Engineering Task Force (IETF),
December 2004.

[5] Robert Annessi and Martin Schmiedecker. Navigator:
Finding faster paths to anonymity. In European Sympo-
sium on Security and Privacy, EuroS&P. IEEE, 2016.

[6] Michael Backes, Aniket Kate, Praveen Manoharan, Se-
bastian Meiser, and Esfandiar Mohammadi. AnoA: A
framework for analyzing anonymous communication
protocols. In 26th Computer Security Foundations Sym-
posium, CSF. IEEE, 2013.

[7] Luca Barbato. RTP payload format for Vorbis encoded
audio. Request for Comments (RFC) 5215, Internet
Engineering Task Force (IETF), August 2008.

[8] Kevin Bauer, Joshua Juen, Nikita Borisov, Dirk Grun-
wald, Douglas Sicker, and Damon McCoy. On the op-
timal path length for Tor. In 3rd Hot Topics in Privacy
Enhancing Technologie, HotPets, 2010.

[9] Alex Biryukov, Ivan Pustogarov, and Ralf-Philipp Wein-
mann. Trawling for tor hidden services: Detection, mea-
surement, deanonymization. In Symposium on Security
and Privacy, S&P. IEEE, 2013.

[10] Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob
Johnson. Touching from a distance: Website finger-
printing attacks and defenses. In ACM conference on
Computer and communications security, CCS, 2012.

[11] Frank Cangialosi, Dave Levin, and Neil Spring. Ting:
Measuring and exploiting latencies between all tor
nodes. In Internet Measurement Conference, IMC, 2015.

[12] David L. Chaum. Untraceable electronic mail, return
addresses, and digital pseudonyms. Communications of
the ACM, 24(2), 1981.

[13] David L. Chaum. The dining cryptographers problem:
Unconditional sender and recipient untraceability. Jour-
nal of cryptology, 1(1), 1988.

[14] Opus Codec. Codec landscape. https://opus-
codec.org/comparison/, 2020.

[15] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières.
Riposte: An anonymous messaging system handling mil-
lions of users. In Symposium on Security and Privacy,
S&P. IEEE, 2015.

[16] Henry Corrigan-Gibbs and Bryan Ford. Dissent: ac-
countable anonymous group messaging. In 17th ACM
conference on Computer and communications security,
CCS, 2010.

[17] Henry Corrigan-Gibbs, David Isaac Wolinsky, and
Bryan Ford. Proactively accountable anonymous mes-
saging in Verdict. In 22nd USENIX Security Symposium,
2013.

[18] Wladimir De la Cadena, Daniel Kaiser, Asya Mitseva,
Andriy Panchenko, and Thomas Engel. Analysis of
multi-path onion routing-based anonymization networks.
In IFIP Annual Conference on Data and Applications
Security and Privacy, DBSec. Springer, 2019.

[19] Prithula Dhungel, Moritz Steiner, Ivinko Rimac, Volker
Hilt, and Keith W Ross. Waiting for anonymity: Un-
derstanding delays in the Tor overlay. In 10th Inter-
national Conference on Peer-to-Peer Computing, P2P.
IEEE, 2010.

[20] Roger Dingledine, Nick Mathewson, and Paul Syverson.
Tor: The second-generation onion router. Technical
report, Naval Research Lab Washington DC, 2004.

[21] Alexandros Fakis, Georgios Karopoulos, and Georgios
Kambourakis. OnionSIP: Preserving privacy in SIP
with onion routing. J. Univers. Comput. Sci., 23(10),
2017.

[22] Alexander Froemmgen, Jens Heuschkel, and Boris Kold-
ehofe. Multipath TCP scheduling for thin streams: Ac-
tive probing and one-way delay-awareness. In Inter-
national Conference on Communications, ICC. IEEE,
2018.

[23] Alexander Frommgen, Tobias Erbshäußer, Alejandro
Buchmann, Torsten Zimmermann, and Klaus Wehrle.
ReMP TCP: Low latency multipath TCP. In Inter-
national Conference on Communications, ICC. IEEE,
2016.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 261

https://gitlab.torproject.org/legacy/trac/-/issues/23875
https://gitlab.torproject.org/legacy/trac/-/issues/23875
https://opus-codec.org/comparison/
https://opus-codec.org/comparison/

[24] Van Gegel. TORFone: secure VoIP tool. http://
torfone.org/, 2013.

[25] Philippe Golle and Ari Juels. Dining cryptographers
revisited. In International Conference on the Theory
and Applications of Cryptographic Techniques. Springer,
2004.

[26] GStreamer. Gstreamer: open source multimedia
framework. https://gstreamer.freedesktop.org/,
2020.

[27] Ben Doherty (The Guardian). Vodafone aus-
tralia admits hacking fairfax journalist’s phone.
https://www.theguardian.com/business/2015/
sep/13/vodafone-australia-admits-hacking-
fairfax-journalists-phone, 2015.

[28] Yi Han, Damien Magoni, Patrick Mcdonagh, and Liam
Murphy. Determination of bit-rate adaptation thresholds
for the opus codec for voip services. In Symposium on
Computers and Communications, ISCC. IEEE, 2014.

[29] Mark Handley, Olivier Bonaventure, Costin Raiciu, and
Alan Ford. TCP extensions for multipath operation with
multiple addresses. Request for Comments (RFC) 6824,
Internet Engineering Task Force (IETF), January 2013.

[30] G. Herlein, J. Valin, A. Heggestad, and A. Moizard. RTP
payload format for the Speex codec. Request for Com-
ments (RFC) 5574, Internet Engineering Task Force
(IETF), June 2009.

[31] Stephan Heuser, Bradley Reaves, Praveen Kumar
Pendyala, Henry Carter, Alexandra Dmitrienko, William
Enck, Negar Kiyavash, Ahmad-Reza Sadeghi, and
Patrick Traynor. Phonion: Practical protection of meta-
data in telephony networks. Proceedings on Privacy
Enhancing Technologies, 2017(1), 2017.

[32] Christian Hoene, Jean-Marc Valin, Koen Vos, and
Jan Skoglund. Summary of Opus listening test re-
sults. https://tools.ietf.org/html/draft-ietf-
codec-results-03, 2013.

[33] Jan Holub, Michael Wallbaum, Noah Smith, and Hakob
Avetisyan. Analysis of the dependency of call duration
on the quality of VoIP calls. IEEE Wireless Communi-
cations Letters, 7(4):638–641, 2018.

[34] Monty Icenogle. T-mobile does have a hard
4 hour single call duration limit. https://
kd6cae.livejournal.com/271120.html, 2015.

[35] ITU. ITU-T recommendation G.114, "one way transmis-
sion time". https://www.itu.int/rec/T-REC-G.114,
2003.

[36] ITU. E.800 : Definitions of terms related to quality of
service, 2008.

[37] ITU. G.1028: End-to-end quality of service for voice
over 4G mobile networks. https://www.itu.int/rec/
T-REC-G.1028, 2019.

[38] Rob Jansen, John Geddes, Chris Wacek, Micah Sherr,
and Paul Syverson. Never been KIST: Tor’s conges-
tion management blossoms with kernel-informed socket
transport. In 23rd USENIX Security Symposium, 2014.

[39] Rob Jansen, Matthew Traudt, John Geddes, Chris Wacek,
Micah Sherr, and Paul Syverson. Kist: Kernel-informed
socket transport for Tor. ACM Transactions on Privacy
and Security (TOPS), 22(1):1–37, 2018.

[40] Aaron Johnson, Chris Wacek, Rob Jansen, Micah Sherr,
and Paul Syverson. Users get routed: Traffic correlation
on Tor by realistic adversaries. In ACM SIGSAC con-
ference on Computer & communications security, CCS,
2013.

[41] kamedo2. Results of the public multiformat lis-
tening test. https://listening-test.coresv.net/
results.htm, 2014.

[42] Hasan T Karaoglu, Mehmet Burak Akgun,
Mehmet Hadi Gunes, and Murat Yuksel. Multi
path considerations for anonymized routing: Challenges
and opportunities. In 5th International Conference on
New Technologies, Mobility and Security, NTMS. IEEE,
2012.

[43] Georgios Karopoulos, Alexandros Fakis, and Georgios
Kambourakis. Complete SIP message obfuscation: Pri-
vaSIP over Tor. In 9th International Conference on
Availability, Reliability and Security. IEEE, 2014.

[44] Byeong Hoon Kim, Hyoung-Gook Kim, Jichai Jeong,
and Jin Young Kim. VoIP receiver-based adaptive play-
out scheduling and packet loss concealment technique.
IEEE Transactions on consumer Electronics, 59(1):250–
258, 2013.

[45] Albert Kwon, Mashael AlSabah, David Lazar, Marc
Dacier, and Srinivas Devadas. Circuit fingerprinting at-
tacks: Passive deanonymization of Tor hidden services.
In 24th USENIX Security Symposium, 2015.

[46] Albert Kwon, David Lazar, Srinivas Devadas, and Bryan
Ford. Riffle: An efficient communication system with
strong anonymity. Proceedings on Privacy Enhancing
Technologies, 2016(2):115–134, 2016.

[47] Olaf Landsiedel, Alexis Pimenidis, Klaus Wehrle, Heiko
Niedermayer, and Georg Carle. Dynamic multipath

262 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://torfone.org/
http://torfone.org/
https://gstreamer.freedesktop.org/
https://www.theguardian.com/business/2015/sep/13/vodafone-australia-admits-hacking-fairfax-journalists-phone
https://www.theguardian.com/business/2015/sep/13/vodafone-australia-admits-hacking-fairfax-journalists-phone
https://www.theguardian.com/business/2015/sep/13/vodafone-australia-admits-hacking-fairfax-journalists-phone
https://tools.ietf.org/html/draft-ietf-codec-results-03
https://tools.ietf.org/html/draft-ietf-codec-results-03
https://kd6cae.livejournal.com/271120.html
https://kd6cae.livejournal.com/271120.html
https://www.itu.int/rec/T-REC-G.114
https://www.itu.int/rec/T-REC-G.1028
https://www.itu.int/rec/T-REC-G.1028
https://listening-test.coresv.net/results.htm
https://listening-test.coresv.net/results.htm

onion routing in anonymous peer-to-peer overlay net-
works. In IEEE Global Telecommunications Conference,
GlobeCom, 2007.

[48] David Lazar, Yossi Gilad, and Nickolai Zeldovich.
Karaoke: Distributed private messaging immune to pas-
sive traffic analysis. In 13th USENIX Symposium on
Operating Systems Design and Implementation, OSDI,
2018.

[49] David Lazar, Yossi Gilad, and Nickolai Zeldovich. Yo-
del: strong metadata security for voice calls. In 27th
ACM Symposium on Operating Systems Principles,
SOSP, 2019.

[50] Stevens Le Blond, David Choffnes, William Caldwell,
Peter Druschel, and Nicholas Merritt. Herd: A scalable,
traffic analysis resistant anonymity network for voip
systems. In ACM Conference on Special Interest Group
on Data Communication, SIGCOMM, 2015.

[51] Stevens Le Blond, David Choffnes, Wenxuan Zhou, Pe-
ter Druschel, Hitesh Ballani, and Paul Francis. Towards
efficient traffic-analysis resistant anonymity networks.
ACM SIGCOMM Computer Communication Review,
43(4):303–314, 2013.

[52] Yi J Liang, Nikolaus Farber, and Bernd Girod. Adap-
tive playout scheduling and loss concealment for voice
communication over IP networks. IEEE Transactions
on Multimedia, 5(4):532–543, 2003.

[53] Zhen Ling, Junzhou Luo, Wei Yu, and Xinwen Fu.
Equal-sized cells mean equal-sized packets in Tor? In In-
ternational Conference on Communications, ICC. IEEE,
2011.

[54] Nick Mathewson, George Kadianakis, David Goulet,
Tim Wilson-Brown, Hans-Christoph Steiner, Filipo Val-
sorda, and Roger Dingledine. Tor rendezvous specifica-
tion - version 3, 2017.

[55] Prateek Mittal, Ahmed Khurshid, Joshua Juen, Matthew
Caesar, and Nikita Borisov. Stealthy traffic analysis of
low-latency anonymous communication using through-
put fingerprinting. In 18th ACM conference on Com-
puter and communications security, CCS, 2011.

[56] Nick Montfort, Arthur Edelstein, Robert Ran-
som, and Yawning Angel. Tor project feature
tracker: Closed enhancement, “UDP over Tor”.
https://trac.torproject.org/projects/tor/
ticket/7830, 2013.

[57] Sue B Moon, Jim Kurose, and Don Towsley. Packet
audio playout delay adjustment: performance bounds
and algorithms. Multimedia systems, 6(1):17–28, 1998.

[58] Steven J Murdoch and George Danezis. Low-cost traffic
analysis of Tor. In Symposium on Security and Privacy,
S&P. IEEE, 2005.

[59] Steven J Murdoch, Roger Dingledine, Nick Math-
ewson, and Paul Syverson. Tor: The second-
generation onion router (2013 DRAFT v1). https:
//gitweb.torproject.org/tor-design-2012.git/,
2014.

[60] David Kaplan (Newsweek). Suspicions and spies
in silicon valley. https://www.newsweek.com/
suspicions-and-spies-silicon-valley-109827,
2006.

[61] Andriy Panchenko, Asya Mitseva, Martin Henze, Fabian
Lanze, Klaus Wehrle, and Thomas Engel. Analysis of
fingerprinting techniques for Tor hidden services. In
Workshop on Privacy in the Electronic Society, 2017.

[62] Mike Perry. The move to two guard nodes.
https://gitweb.torproject.org/user/
mikeperry/torspec.git/tree/proposals/xxx-
two-guard-nodes.txt?h=twoguards, 2018.

[63] Mike Perry. Tor’s open research topics: 2018 edi-
tion | tor blog. https://blog.torproject.org/tors-
open-research-topics-2018-edition, 2018.

[64] Ania M Piotrowska, Jamie Hayes, Tariq Elahi, Sebastian
Meiser, and George Danezis. The Loopix anonymity
system. In 26th USENIX Security Symposium, 2017.

[65] Tobias Pulls and Rasmus Dahlberg. Website finger-
printing with website oracles. Proceedings on Privacy
Enhancing Technologies, 2020(1):235–255, 2020.

[66] Maimun Rizal. A Study of VoIP performance in anony-
mous network-The onion routing (Tor). PhD thesis,
Niedersächsische Staats-und Universitätsbibliothek Göt-
tingen, 2014.

[67] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston,
J. Peterson, R. Sparks, M. Handley, and E. Schooler.
SIP: Session Initiation Protocol. Request for Comments
(RFC) 3261, Internet Engineering Task Force (IETF),
June 2002.

[68] Katrin Schoenenberg, Alexander Raake, Sebastian Eg-
ger, and Raimund Schatz. On interaction behaviour
in telephone conversations under transmission delay.
Speech Communication, 63:1–14, 2014.

[69] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson.
RTP: A Transport Protocol for Real-Time Applications.
Request for Comments (RFC) 3550, Internet Engineer-
ing Task Force (IETF), July 2003.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 263

https://trac.torproject.org/projects/tor/ticket/7830
https://trac.torproject.org/projects/tor/ticket/7830
https://gitweb.torproject.org/tor-design-2012.git/
https://gitweb.torproject.org/tor-design-2012.git/
https://www.newsweek.com/suspicions-and-spies-silicon-valley-109827
https://www.newsweek.com/suspicions-and-spies-silicon-valley-109827
https://gitweb.torproject.org/user/mikeperry/torspec.git/tree/proposals/xxx-two-guard-nodes.txt?h=twoguards
https://gitweb.torproject.org/user/mikeperry/torspec.git/tree/proposals/xxx-two-guard-nodes.txt?h=twoguards
https://gitweb.torproject.org/user/mikeperry/torspec.git/tree/proposals/xxx-two-guard-nodes.txt?h=twoguards
https://blog.torproject.org/tors-open-research-topics-2018-edition
https://blog.torproject.org/tors-open-research-topics-2018-edition

[70] Piyush Kumar Sharma, Shashwat Chaudhary, Nikhil
Hassija, Mukulika Maity, and Sambuddho Chakravarty.
The road not taken: re-thinking the feasibility of voice
calling over Tor. Proceedings on Privacy Enhancing
Technologies, 2020(4):69–88, 2020.

[71] Robin Snader and Nikita Borisov. A tune-up for Tor:
Improving security and performance in the Tor network.
In 16th Annual Network & Distributed System Security
Symposium, NDSS, 2008.

[72] Tim Terriberry and Koen Vos. Definition of the Opus
audio codec, 2012.

[73] Nirvan Tyagi, Yossi Gilad, Derek Leung, Matei Za-
haria, and Nickolai Zeldovich. Stadium: A distributed
metadata-private messaging system. In 26th Symposium
on Operating Systems Principles, SOSP. ACM, 2017.

[74] JM. Valin and K. Vos. Updates to the Opus Audio Codec.
RFC 8251, October 2017.

[75] JM. Valin, K. Vos, and T. Terriberry. Definition of the
Opus Audio Codec. Request for Comments (RFC) 6716,
September 2012.

[76] Jelle Van Den Hooff, David Lazar, Matei Zaharia, and
Nickolai Zeldovich. Vuvuzela: Scalable private messag-
ing resistant to traffic analysis. In 25th Symposium on
Operating Systems Principles, SOSP, 2015.

[77] Voyced. Is there a maximum call length or dura-
tion. https://www.voyced.eu/clients/index.php/
knowledgebase/397/Is-there-a-maximum-Call-
length-or-duration.html, 2019.

[78] Gerry Wan, Aaron Johnson, Ryan Wails, Sameer Wagh,
and Prateek Mittal. Guard placement attacks on path
selection algorithms for Tor. Proceedings on Privacy
Enhancing Technologies, 2019(4):272–291, 2019.

[79] Tao Wang, Kevin Bauer, Clara Forero, and Ian Goldberg.
Congestion-aware path selection for tor. In International
Conference on Financial Cryptography and Data Secu-
rity, FC. Springer, 2012.

[80] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan
Ford, and Aaron Johnson. Dissent in numbers: Making
strong anonymity scale. In 10th USENIX Symposium on
Operating Systems Design and Implementation, OSDI,
2012.

[81] Matthew Wright, Micah Adler, Brian N. Levine, and
Clay Shields. Defending anonymous communications
against passive logging attacks. In IEEE Symposium on
Security and Privacy, S&P, page 28, USA, 2003. IEEE
Computer Society.

[82] Matthew K Wright, Micah Adler, Brian Neil Levine,
and Clay Shields. The predecessor attack: An analy-
sis of a threat to anonymous communications systems.
ACM Transactions on Information and System Security,
7(4):489–522, 2004.

[83] Lei Yang and Fengjun Li. mtor: A multipath Tor routing
beyond bandwidth throttling. In 2015 IEEE Conference
on Communications and Network Security, CNS. IEEE,
2015.

A Appendix: Link monitoring effectiveness

We provide in this appendix a supplementary study of the
effectiveness of link monitoring, dynamic link classification,
and link selection. In particular, we assess whether link clas-
sification and selection reflect the behaviors discussed in Sec-
tion 3.

We start by observing the distribution, over 64 calls, of
the number of links that were classified as L1ST at least once
through the duration of a 90-minute call. This distribution is
depicted in Figure 13. Note that we do not consider the first 40
seconds of each call, as DONAR has to bootstrap the process
with random scores, and poorly-performing links could be
assigned to the L1ST group during this bootstrap. Between 6
and 12 links per call have been considered at least once in
the L1ST group in every call, with a majority of 8 to 10 links
selected. This confirms our analysis that there is no single
link that is consistently performing well in Tor, and that link
performance varies significantly over time: Links that are
poorly performing at a given time may be the best ones a few
minutes later.

We study, in finer detail, the stability of links over time,
focusing on a single call using the ALTERNATE policy with
the Default configuration. We represent the latency of the
first delivery of each frame in the first plot of Figure 14. This
is the latency that is observed by the VoIP application. La-
tency remains low throughout the call. In the second plot, we
decompose the latency of frames received on the L1ST and
L2ND groups, including the first and second receptions. We
can clearly see that the latency of the links in the L1ST group
is generally lower, and that outlier values are compensated
by lower latency on a link in the L2ND group. The third plot
represents the assignment of the 12 links to link groups over

Figure 13: How many links were L1ST at least once?

264 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.voyced.eu/clients/index.php/knowledgebase/397/Is-there-a-maximum-Call-length-or-duration.html
https://www.voyced.eu/clients/index.php/knowledgebase/397/Is-there-a-maximum-Call-length-or-duration.html
https://www.voyced.eu/clients/index.php/knowledgebase/397/Is-there-a-maximum-Call-length-or-duration.html

Figure 14: Stability over time.

time. We note that there was no link failure (and therefore no
link replacement) in this experiment. Link 0 is, for instance,
classified in L1ST for a large part of the call, but suffers a la-
tency spike around frame 6,500 and is rapidly classified in the
LINACTIVE group. Link 2, initially in LINACTIVE, is promoted 3
times with no effect to the L2ND group, before being selected
as L1ST after its fourth promotion. Links 1, 5, 7 and 8 have
highly heterogeneous behaviors, while links 3, 4, 6, 11 and 12
have consistently bad behaviors, and only appear in the L2ND

group upon their promotion before being quickly deactivated.
While these links could be proactively replaced by opening
new links, we do not deem it necessary and choose not to
impose further link setup load on the Tor network.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 265

Closed-loop Network Performance Monitoring and Diagnosis with SpiderMon

Weitao Wang, Xinyu Crystal Wu, Praveen Tammana†, Ang Chen, T. S. Eugene Ng
Rice University †Indian Institute of Technology Hyderabad

Abstract
Performance monitoring and diagnosis are essential for data
centers. The emergence of programmable switches has led to
the development of a slew of monitoring systems, but most of
them do not explicitly target posterior diagnosis. On one hand,
“query-driven” monitoring systems must be pre-configured
with a static query, but it is difficult to achieve high coverage
because the right query for posterior diagnosis may not be
known in advance. On the other hand, “blanket” monitoring
systems have high coverage as they always collect telemetry
data from all switches, but they collect excessive data. Spi-
derMon is a system that co-designs monitoring and posterior
diagnosis in a closed loop to achieve low overhead and high
coverage simultaneously, by leveraging “wait-for” relations
to guide its operations. We evaluate SpiderMon in both Tofino
hardware and BMv2 software switches and show that Spider-
Mon diagnoses performance problems accurately and quickly
with low overhead.

1 Introduction
An efficient network monitoring and diagnosis system are
essential to meeting the performance requirements of modern
applications. Since production clouds have stringent SLAs,
even a small network performance degradation may lead to
significant application slowdown [13, 30]. Many network
performance problems, such as high end-to-end latency, low
throughput, and packet drops [38], can be attributed to traffic
contention of some kind [4], although across scenarios, the
root causes for the contention are diverse (e.g., bursty UDP
traffic, ECMP load imbalance, and routing loops).

The emergence of programmable switches has led to a slew
of monitoring systems being developed [12, 16, 32, 33, 39, 44,
48], but most of them do not explicitly target posterior diagno-
sis. For instance, “query-driven” monitoring systems [16, 32]
need to be pre-configured with a static query. Since root
causes for performance degradation could vary, and there
may be a wide variety of reasons for performance problems,
it is challenging to select the right query in advance. In princi-
ple, one could adaptively change the monitoring query based
on the observed symptom; but in practice, many transient
problems happen at fine timescales and their sporadic nature

requires always-on monitoring. On the other hand, “blanket”
monitoring systems always monitor and collect telemetry data
from the switches to achieve high coverage [10,14,22,26,27].
However, this would result in excessive data that may not be
needed by the diagnosis in the first place.

Therefore, having a monitoring and diagnosis system that
achieves either low overhead or high coverage is not hard,
but achieving both simultaneously is challenging. The key
question we explore is whether it is possible to design a
streamlined system that performs efficient monitoring but
achieves high coverage, achieving the “best of both worlds”.
We present SpiderMon, a system where the monitoring and
diagnosis operations are explicitly designed to work with
each other in a closed loop. It enables a suitable tradeoff be-
tween accuracy and overhead when debugging network-wide
performance problems. To achieve efficient and accurate mon-
itoring, SpiderMon leverages a concept called “wait-for” [46]
relations. Since many performance problems stem from in-
network contention, “wait-for” relations target such behaviors
in the telemetry collection in a precise manner. Moreover,
such information is also exactly what is needed in diagno-
sis. For instance, a victim flow with high latency may have
“waited for” many interfering events across multiple hops.
By capturing and analyzing such relations, SpiderMon can
achieve an effective diagnosis, with precise, targeted, but also
high-coverage operations.

Since the symptom of “wait-for” events is usually high
latency, SpiderMon uses timing information to trigger reac-
tive telemetry collection. Precisely, SpiderMon detects perfor-
mance problems when it encounters flows with excessively
high queuing delay. After a problem is detected, SpiderMon
uses the wait-for relations to track and collect other relevant in-
formation in the data plane across the network. For diagnosis,
SpiderMon also identifies the root causes of the performance
problem by summarizing the most significant wait-for rela-
tions from the collected telemetry data. It does so by jointly
analyzing wait-for patterns together with other types of net-
work knowledge (e.g., topology) and telemetry data (e.g.,
flow-level results). In this way, SpiderMon collects teleme-
try data only when the diagnosis process needs to analyze a
problem, and it performs targeted collection based on what

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 267

the diagnosis process would require.
To realize this idea, SpiderMon addresses three technical

challenges. The first challenge is to detect performance degra-
dation without interfering with actual packet processing. Spi-
derMon leverages programmable switches to record telemetry
data about network traffic. It piggybacks telemetry data in
packet headers and checks for performance anomalies. The
second challenge is to precisely collect the relevant telemetry
information across the network. Relying on wait-for relations,
SpiderMon notifies relevant switches and activates teleme-
try data collection from these locations. Finally, SpiderMon
identifies the root causes of the performance problem using
the telemetry information and the knowledge of the network
configuration. The wait-for relation again is critical for iden-
tifying abnormal network behaviors, and for matching those
behaviors to the signatures of root causes.
Contributions. Overall, SpiderMon is a closed-loop system
for monitoring and diagnosing performance problems in the
network. We have implemented a prototype of SpiderMon,
and our results show that SpiderMon can diagnose perfor-
mance problems accurately and quickly with low overhead.

2 Motivation
SpiderMon focuses on network performance problems that
arise due to contention, which are challenging for at least three
reasons. First, network contention may occur due to many
root causes, so its diagnosis requires a general mechanism.
Second, the root cause can be unpredictable both spatially and
temporally, requiring agile solutions that can capture transient
problems. A third practical challenge is that the solution must
have a sufficiently low overhead on the network. SpiderMon
does not target problems that happen because of silent packet
drops, packet corruptions, control plane misconfigurations,
slow servers, or other causes unrelated to network contention,
although it can be used in combination with other techniques
for these scenarios.

2.1 Root Causes Are Diverse

To illustrate the diversity of root causes of network perfor-
mance problems, consider some examples in a 3-layer Clos
network as shown in Figure 1.
Micro-bursts. Recent studies [10, 22, 45] found micro-
bursts—i.e. momentary surges in traffic volume—to be a
common root cause for sporadic excessive delays and packet
losses. Detecting and diagnosing a micro-burst requires
switch queuing delays to be monitored and the main contribu-
tor to queuing delays to be identified before the micro-burst
disappears.
Multiple flow contentions. A victim flow encounters multi-
ple contentions at different switches—flow 1 (e.g., a bursty
UDP flow) and flow 2 (e.g., a high-priority flow) contend
with the victim flow at switch 0 and switch 6, respectively
(Figure 1(a)). The end-to-end latency for the victim flow be-
comes very high. For detection, we need to monitor per-flow

0 1 2 3

4 5 6 7

8 9

h
0

h
1

h
2

h
3

h
4

h
5

h
6

h
7

0 1 2 3

4 5 6 7

8 9

h
0

h
1

h
2

h
3

h
4

h
5

h
6

h
7

0 1 2 3

4 5 6 7

8 9

h
0

h
1

h
2

h
3

h
4

h
5

h
6

h
7

Micro-burst
High priority
Victim

Path 1 (25%)
Path 2 (75%)
Victim

Wrong configuration
Normal flow

(a) Multiple contentions (b) ECMP load imbalance (c) Transient loops

10 11 10 11 10 11

0

0

1

2 3

1

2
3

0 1

2
3

0 1

2 3

Figure 1: Several performance degradation problems

latency; for diagnosis, information about all contending flows
is needed to identify the root causes.
ECMP load imbalance. Due to the skewed nature of flow
distributions or imperfect hash mechanisms, ECMP load im-
balance is a common problem in data centers [3]. Consider the
network in Figure 1(b), where all links are 40Gbps. Switch 0
assigns 25% of the total traffic (32Gbps) to path 1 and 75%
to path 2. The victim flow contends with the flows on path
2, which leads to high congestion at switch 7. This could be
avoided if switch 0 assigns the traffic for the two paths equally.
The root cause for this problem is the imbalanced assignment
at switch 0, but the performance degradation occurs at switch
7, which is 3 hops away from switch 0. Once high latency is
detected at switch 7, the previous hops’ information of the
flows involved in the congestion is required for debugging.
Transient/persistent loops. During network updates, the con-
figurations of different switches may not be synchronized.
Some switches may fail to execute the reconfiguration com-
mands silently. Under those circumstances, a forwarding loop
may form [28]. An example is shown in Figure 1(c), where
switches 6 and 9 are wrongly configured, which causes some
flows to be stuck in a loop, leading to congestion and packet
drops. The incompatible switch configurations should be
blamed for the loop in the network. However, to identify
the switches that need to be reconfigured, information from
all the switches along the loop, namely, switches 6, 9, 4, and
8, needs to be collected for analysis.

2.2 Root Causes Are Unpredictable

There are three key features that make network performance
problems challenging to detect or diagnose.
Sporadic. Performance degradation is usually sporadic, oc-
curring occasionally at different places and at an unpredictable
time [1]. Any flow may be affected, so detection algorithms
need to monitor every flow all the time.
Network-wide. The root causes may be network-wide, e.g.,
contention at different hops. The interfering flows may even
have normal performance [38], despite the fact that they cause
performance degradation to other flows. Thus root cause di-
agnosis requires network-wide monitoring.

268 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Transient. Traffic contentions sometimes are transient and
disappear quickly [21]. For instance, transient loops may only
form for a short time during network updates, but the perfor-
mance problem introduced by packet drops may need a much
longer time to fully recover. This feature requires the debug-
ging system to maintain fine-grained information about recent
events, in case the problems disappear quickly but happen in
the network frequently.

2.3 Existing Solutions Fall Short

Existing solutions all fall short in monitoring and diagnosing
network performance problems due to the above challenges.
Host-based solutions. Solutions like Trumpet [31] and Dap-
per [14] rely on end hosts to store telemetry data for diagnosis.
But they all use inference algorithms to reconstruct what may
have happened in the network from the collected data, which
may not be accurate. Instead, SpiderMon collects data from
the switches to achieve a better in-network view for diagnosis.
In-network solutions. Some existing solutions also collect
telemetry data from the switches. (i) Blanket telemetry sys-
tems like NetSight [17] and PINT [8] collect information
network-wide indiscriminately, even on network nodes un-
related to the problem. Those systems usually have high
overheads, and much of the collected data is unnecessary
for diagnosis. (ii) Query-based systems deploy queries into
switches for data collection, such as Sonata [16], Marple [32],
FlowRadar [26], and NetSeer [47]. They require that the op-
erators know the nature and location of the problems, but
problems could arise from sporadic congestion at random lo-
cations. Although in principle, queries can be changed based
on the monitoring results, this happens at coarse timescales
and cannot capture transient problems. SpiderMon can cover
problems that cannot be succinctly defined using static queries
and only capture events relevant to the problems.

3 SpiderMon Design
SpiderMon monitors and diagnoses performance problems
caused by in-network contention in three steps: 1) SpiderMon
encodes every packet’s accumulated latency in header fields,
and triggers telemetry collection once excessive latency is
detected (§3.1); 2) the switch that detects high latency initiates
“spider” packets and rapidly delivers them to relevant switches
using the wait-for relations; relevant switches receiving spider
packets report their telemetry data (§3.2); 3) the root cause
analyzer constructs wait-for relations from the evidence for
root cause analysis (§3.3).

3.1 Problem Monitoring

Goal: Detect excessive cumulative queuing delays. Rather
than wait for the occurrence of harmful events (e.g., packet
loss, TCP congestion window back-off), SpiderMon detects
the performance problems based on a much earlier sign—
abnormal cumulative queuing delays experienced by packets.
It reacts quickly to performance degradation.

Design: 1) Use cumulative latency for detection. Instead
of storing per-hop latency information in the header, Spider-
Mon uses cumulative latency to guarantee that the header
length stays constant regardless of hop count. The cumula-
tive latency L is updated at every hop based on the current
queuing delay and the cumulative latency experienced by the
packet so far, L = L+ queuing_delay. Every switch on the
path checks whether the cumulative delay exceeds the latency
threshold. To further reduce overhead, SpiderMon can com-
press the additional fields to less than 2 bytes by extracting the
most significant bits (more in §C.2). 2) Assign different la-
tency thresholds for different traffic types. Given that the
tolerable latency varies for different applications, SpiderMon
allows network operators to customize the latency thresholds
for different applications. 3) Detect problems and trigger
telemetry in the switch data plane. Unlike some monitor-
ing systems using a central controller to monitor network
problems [6, 31, 48], SpiderMon triggers fast reactions in
the data plane. The communication delay within the data
plane (tens of ns) is much lower than that between the data
plane and the control plane (hundreds of µs). 4) Monitor
every packet at every hop for target flows. Compared to
sampling-based detection [2, 34], SpiderMon achieves full
coverage without losing any important information. Also,
rather than detecting problems at the end hosts [9,24], Spider-
Mon detects performance problems inside the network and
reacts more quickly to the problem. 5) Be transparent to
end-hosts. The latency threshold and cumulative latency are
added at the edge switches when packets enter the network
and removed when packets leave the network. Hosts remain
unchanged.

Consider Figure 1(a) as an example. The victim flow suffers
from queuing delay at switches 0 and 6, but the cumulative
latency exceeds the threshold only at switch 6. Thus the prob-
lem is detected at switch 6, and switch 6 triggers the telemetry
collection procedure.

3.2 Telemetry Collection

Goal: Only collect evidence relevant to root cause analy-
sis. SpiderMon maintains a small amount of telemetry infor-
mation as evidence on the switches to facilitate subsequent
diagnosis; this information is not collected from the switches
unless needed. First, to minimize the amount of telemetry
data collected to the analyzer while maintaining the diagnosis
accuracy, SpiderMon only targets switches relevant to the
observed performance problem as detailed in §3.2.1. Second,
SpiderMon collects the relevant telemetry data within a short
time such that each switch only needs to keep a small amount
of historical telemetry data as detailed in §3.2.2.

3.2.1 Relevant Switches Notification

#1: Only collect data after problem detection. Compared
to other systems which collect data to a centralized collec-
tor all the time [6, 16, 32, 48], SpiderMon uses a default-off

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 269

collection strategy to minimize overhead. After the problem
is detected, a special ‘spider” packet is generated to notify
relevant switches and start the telemetry collection on those
switches. A “spider” packet carries: 1) an event_ID, which
concatenates the switch ID and the event index to uniquely
identify the problem, and 2) the 5-tuple of the victim flow.
Spider packets are generated by mirroring the packet that trig-
gered the diagnosis and recirculating it for transmission, while
the original packet transmits as normal. To prevent possible
packet drops during the transmission, all “spider” packets are
prioritized in the network for lossless transfer.
#2: Only collect data from relevant switches. Instead of
collecting telemetry from all switches, SpiderMon identifies
the switches that are relevant to the detected problem by track-
ing packet-level provenance; it only retrieves data from these
switches to minimize overhead. Packet-level provenance is
modeled as G := (V,E) for a detected event and the corre-
sponding causality relations. G is a directed acyclic graph,
where each node v represents an event, and each directed edge
e = (v1→ v2) represents that v1 leads to the event v2. For la-
tency problems in a network, all wait-for contentions in the
switch queues are considered events in the provenance data.
Since events at the upstream switches affect the events at the
downstream switch, such upstream events are also incorpo-
rated into the provenance model. In this way, we can construct
a provenance graph for a performance problem. By analyz-
ing the locations of events, SpiderMon can select switches
relevant to the specific problem.
#3: Track the provenance graph in the data plane. Unlike
the central controller that Trumpet uses to inform relevant
nodes, SpiderMon performs this procedure entirely in the data
plane to reduce the latency of notifying relevant switches. It
only requires switches to maintain telemetry data for a shorter
time for the recent interval without losing necessary data. To
achieve this, SpiderMon repeats the following two steps on
each switch that receives the “spider” packet: 1) sends a trace-
back “spider” packet along the historical path of the victim
flow, where the path is obtained using a bloom filter, 2) sends
branch-search “spider” packets to ports that sent traffic and
contended with the victim flow, where the ports are identified
by a per-port traffic meter. Switches drop spider packets with
duplicate IDs to avoid unnecessary processing (§C.1).
Timeout bloom filter. SpiderMon uses a timeout bloom fil-
ter (TBF) to track the victim flow’s historical path. Regular
bloom filters allow the insertion and the membership test of a
flow ID. However, they can only support insertions, and the
false positive rates increase with the number of inserted flows.
A rotating bloom filter, on the other hand, can instantiate one
instance per epoch, so that older data can be safely discarded;
however, this is very coarse-grained as it only supports per-
epoch deletion. To address those problems, SpiderMon adds
a timeout feature to remove unneeded data from the bloom
filter; this method provides a “sliding window” of histori-
cal flow information. For a switch with N ports, each egress

Algorithm 1: Timeout bloom filter data structure
Input: B: Timeout bloom filter, inPort: Incoming port index,

5− tuple: 5-tuple, curr_T S: Current timestamp, epoch:
Timeout epoch

1 Function updateBF(inPort, 5− tuple):
2 hashValues = HASH (5− tuple)
3 for hashValue ∈ hashValues do
4 B [hashValue] [inPort]← curr_T S

5 return

6 Function checkBF(inPort, 5− tuple):
7 hashValues← HASH (5− tuple)
8 for hashValue in hashValues do
9 stamps← B [hashValue] [inPort]

10 if curr_T S− stamp > epoch then
11 return False

12 return True

pipeline maintains a bloom filter group with M rows and
N cells per row, and each column represents a bloom filter
for the corresponding port. The TBF replaces the bit record
with a short timestamp, which can be used to recognize the
outdated records when querying the TBF. The details about
maintaining and querying the TBF are shown in Algorithm 1,
Figure 2(a) and Figure 2(b). The memory footprint of TBF
can be reduced by shrinking the size of stored timestamps
(§C.2).
Most recent, per-port traffic meter. SpiderMon identifies
the relevant ports that contribute to high latency. To distin-
guish an ingress port with low throughput, SpiderMon main-
tains a traffic meter for each ingress port’s traffic volume in
the most recent time. Normal traffic meters in the switch are
reset to 0 periodically, leading to information loss. Therefore,
SpiderMon divides the time window into several small win-
dows and associates those meters’ values to realize a sliding
window of the traffic amount within the most recent time
window (details in §B).
#4: Reduce the collected telemetry data by pruning the
provenance graph. Some causality relations are more im-
portant than others. SpiderMon leverages this to reduce over-
head without sacrificing diagnosis accuracy. Specifically, if
the traffic volume from some ingress ports is significantly
lower than others, it is excluded from the possible root causes;
so switches that contribute minimally to the problems are
ignored. SpiderMon provides a tunable threshold and only
sends spiders to the ports with high traffic rates. The robust-
ness of this threshold is shown in §4.3.

To illustrate the relevant switch notification procedure, we
use Figure 3 as an example of a multiple contention scenario.
The high latency is detected at switch 0. Then the traceback
“spider” is sent to the reverse path of the victim flow, namely,
switches 1, 2, and 3. At the same time, the branch-search “spi-
der” is sent to switches 4 and 6, with switch 5 being ignored
due to the small traffic volume. If the traffic from switch
4 came from two other switches has sufficient volume, the
branch-search “spider” packets will also be sent to those ports.

270 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Update timeout bloom filter (b) Test timeout bloom filter (c) Per-port Traffic Meter (d) Telemetry data structure

Figure 2: SpiderMon data structures

Figure 3: “Spider” packets propagation

3.2.2 Telemetry Data Collection

#1: Collect per-epoch per-flow information. Per-packet
telemetry incurs a very high overhead and usually is unnec-
essarily fine-grained for diagnosis. SpiderMon records the
history with a per-epoch flow-level log, which is stored in
the switches’ egress pipeline and each egress port has its
own log. Dividing into epochs this way allows SpiderMon to
observe changes among epochs. Each switch keeps a fixed
number of epochs on the data plane and keeps the most recent
ones in a circular buffer. When reporting the telemetry data,
information of all epochs will be sent to the analyzer.

SpiderMon collects 36 bytes of data per flow, including the
flow’s 5-tuple, sequence number range, total traffic volume,
total packet count, total queuing depth, the priority of the
flow, and the incoming port. The network operators can add
extra flow-level information in the telemetry data structure
for diagnosing other network problems. The total amount of
telemetry data varies with the flow arrival rate. To update,
SpiderMon first identifies the right telemetry table based on
the outgoing port, then hashes the flow ID to assign a slot in
the telemetry data structure for that flow. By doing a bit-wise
XOR between the packet’s 5-tuple and the 5-tuple in the slot,
we can determine whether this packet belongs to the existing
flow by checking whether the result is 0. If so, this packet will
be used to update this entry; otherwise, it will be considered
as a new flow and replace the old one. The old entry will be
packed and sent to the control plane for storage.

SpiderMon must maintain telemetry data for a minimum
duration to ensure that the needed evidence for diagnosis
is available, and this duration can be estimated as follows.
Denote the threshold for detecting an unacceptable cumulative
delay as T and the maximum round-trip propagation delay
across the network as RT T . The time it takes to propagate
spider packets from the initiator to relevant switches—recall
that spider packets have high transmission priority and do not

wait for normal traffic—is half RT T in the worst case. Since
the problem is detected after accumulated delay exceeds T ,
the time duration a switch must maintain telemetry data to
diagnose this problem is, therefore, T + RT T

2 . The common
RT T and T in the data center network is 0.5-2 ms and 10-15
ms respectively [15], so it would be more than enough for
SpiderMon to preserve history for 20 ms.
#2: Provide synchronization among switches using flows’
sequence number. The host-based solution cannot replay
accurately, one of the reasons is the various network delay
for packets, namely, the order of packets is not preserved at
switches. SpiderMon has a similar problem when choosing
the most relevant epoch on different switches for analysis.
The correct epoch for the switch that triggered the problem
is no doubt the most recent epoch, but for other switches on
the historical path, the delay from the queuing and propa-
gation may have caused the most relevant epoch to become
a historical epoch. To solve this, SpiderMon keeps track of
the [min_seq, max_seq] for each flow, and uses the victim
flow’s sequence numbers to find the correct epoch with the
maximum overlap with this sequence number interval for the
relevant switches.
#3: Trigger telemetry packet generation in the data plane.
Unlike NetSight that uses mirroring for collection, SpiderMon
uses the packet generator to report the per-epoch per-flow
log to the root causes analyzer. The packet generator can
be directly triggered in the data plane to minimize latency.
Compared to retrieving the data via the switch control plane
as in several previous works [27], SpiderMon is much more
agile because it bypasses the low bandwidth and high latency
connection between the data plane and the control plane.

The telemetry packet header contains 1) an event ID for
identifying the performance problem; 2) a switch ID; 3) a
partition index of the telemetry data; 4) a part of the teleme-
try data. The telemetry packets are generated by the packet
generator on a programmable switch. The generated packets
only have Ethernet and IPv4 headers without the payload for
bandwidth savings. The IPv4 destination address of telemetry
packets is set to the root cause analyzer so that the network
will forward the packets to the analyzer. There is a maximum
amount of telemetry data that can be inserted into a single
packet, which is around 200 bytes due to the limitation of
the PHV fields for the programmable switches. So the packet
generator will generate a fixed number of telemetry packets
according to the size of the telemetry tables.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 271

Algorithm 2: Replay the queue condition
Input: T : the epoch period; N: flow packets count, s: time for the

last packet
Output: time_list: time list for the packets

1 for t ∈ N do
2 t← s+ T

N
3 time_list← time_list + t

4 return time_list

#4: Only collect the telemetry data from relevant ports to
reduce overhead. When a switch receives a spider packet
from a certain port, usually only the telemetry data for that
port will be reported to the analyzer, which reduces the
amount of data collected.

3.3 Root Cause Analysis

SpiderMon develops a diagnosis strategy that is generalizable
to diverse root causes with high precision and recall.

Efficiently localizing network problems and accurately
identifying the root causes can be difficult, especially when
the network conditions are dynamic and complex. Firstly, a
good diagnosis algorithm needs to understand flow interac-
tions and find the corresponding flows that occupied the queue.
Secondly, once the problem has been localized, the diagnostic
algorithm needs to further identify each problematic scenario
with one or more root causes, such as micro-bursts or transient
loops. However, most existing diagnostic algorithms do not
have a clear boundary between those two steps. The identi-
fications of the root causes are based on the matching of the
problem patterns and observations, leading to slow diagnosis
time and reduced diagnosis accuracy.

SpiderMon addresses these challenges with a two-step di-
agnostic algorithm: 1) efficiently analyze the queuing infor-
mation at both flow level and aggregate level to recall all
the problematic flows using wait-for graphs (WFG), as dis-
cussed in §3.3.1; 2) apply signature matching between the
problematic flows and the root cause type, as described in
§3.3.2.

3.3.1 Find the Possible Root Causes

To find all possible root causes with a high recall rate, Spi-
derMon uses WFG at both flow-level and aggregate-level to
identify the abnormal behaviors from the telemetry data.
Wait-for relation. If a packet from flow A enters a queue
where the packets from flow B already exist in the queue, then
flow A waits for flow B at this queue.
Flow-level wait-for graph (WFG). Each vertex represents a
flow, and a directed edge from vertex A to vertex B represents
that flow A waits for flow B.
Wait-for weight. Each directed edge’s weight is calculated
as follows: for a packet pk from flow A, if xk packets from flow
B exist in the queue when pk enters, then flow B blocks flow A
with weight xk. For all n packets from flow A during a certain
period, the average weight 1

n ·∑k∈[1,n] xk is the wait-for weight
for the directed edge from vertex A to vertex B.

Figure 4: Identify the main contributors in WFG

Algorithm 3: Wait-for Graph Construction
Input: Seq: A sequence of packet, level: flow or port
Output: G: Wait-for graph for the given sequence

1 for i ∈ [0,Seq.length] do
2 if level=flow then
3 Seq[i].vertex← Seq[i]. f low

4 else if level=port then
5 Seq[i].vertex← Seq[i].port

6 if Seq[i].vertex /∈ G then
7 G.AddVertex(Seq[i].vertex)

8 for i ∈ [0,Seq.length] do
9 for j ∈ [0, pkt.qdepth] do

10 edge← (Seq[i].vertex⇒ Seq[i− j].vertex)
11 G.AddEdgeWeight(edge,1)

12 return G

Aggregated wait-for graph. SpiderMon also aggregates the
flow according to the source IP, incoming port, or other keys
to construct aggregated-level WFGs to find root causes other
than flows’ misbehavior. One typical example used in Spider-
Mon is the port-level WFG.

After receiving all the telemetry data from the switches,
SpiderMon uses the gap-based sampling strategy [25] to re-
play the queuing condition on the switch (Algorithm 2). The
actual sequence of the packets is not important since we only
need the generated wait-for graph to be similar.

To find the main contributors for the queuing, we rely on
the wait-for graphs to show the provenance relations between
contending flows. For each queue, SpiderMon will construct
flow-level WFGs and port-level WFGs as in Algorithm 3,
which will be used to determine the main contributors. Basi-
cally, to identify the main contributors of the queue is to divide
the flows in the queue into victims (suffer from queuing) and
main contributors (contribute to queuing) and maximize the
wait-for relations between those two groups. SpiderMon is
able to show that this division can be easily derived by the
following Theorem 1, and identify the main contributors as
in Algorithm 4. We prove Theorem 1 in Appendix §A.
Degree of the vertex. Sum of all incoming edge weights sub-
tracts the outgoing edge weights.

272 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 4: FindContributor
Input: G: Wait-for graph for the given sequence
Output: ctrs: A set of main contributors

1 for X ∈ G do
2 D(X) = ∑

e
e∈{<i, j>| j=A}we−∑

e
e∈{<i, j>|i=A}we

3 if D(X)>0 then
4 ctrs← ctrs+X

5 return ctrs

Theorem 1. The wait-for relation between two groups, di-
vided by one cut, is maximum, if and only if one group only
contains positive degree vertices while the other contains only
negative degree vertices.

Figure 4 is an example scenario of micro-burst with flows 0
and 1 as the burst flows, and both of them have been identified
by the algorithm as the main contributors.

3.3.2 Precisely Identify Root Causes

To precisely identify the reason behind the main contributors
determined in the first step, SpiderMon relies on signature
matching to recognize different root causes. We give four
signatures for four common root causes in Algorithm 5, using
both telemetry and network configuration information. The
signatures can be extended if more root causes are added.
For better illustration, we consider the scenarios in Figure 1
and show the signatures in Figure 5. A detailed signature
definition can be found at §G.

Micro-bursts. SpiderMon can identify all the main flow-level
contributors at different hops along the victim flow’s historical
path. As shown in Figure 5(a), the micro-burst flow has many
wait-for edges with large weights pointing to itself due to a
large amount of traffic during the problematic time.

Different priorities. For contention between flows with dif-
ferent priorities, SpiderMon checks the priority of the victim
flow and the main flow-level contributors. The contributor
flows with higher priority compared to the victim flow can be
identified as the root causes, as shown in Figure 5(b).

ECMP load imbalance. For the load imbalance problem
displayed in Figure 1(b), SpiderMon will find the flow-level
main contributors and check if they are routed by ECMP. Then
SpiderMon calculates the ECMP imbalance ratio with the
throughput of all flows routed by ECMP rules, using the traffic
volume provided by per-flow telemetry data. The problematic
ECMP groups can be identified when the calculated ratio is
largely imbalanced as in Figure 5(c).

Transient/persistent loops. For the latency problem caused
by transient or persistent loops as shown in Figure 1(c), Spider-
Mon searches the port-level contributors along the contributor
traffic’s path. If the same port is observed twice during the
search procedure, all those ports have a high possibility to
form a loop for specific traffic. Furthermore, the flow ID will
be checked to further confirm the transient/persistent loop.

Algorithm 5: Root Causes Diagnostic Algorithm
Input: f _WFG: flow-level WFG, p_WFG: port-level WFG, T :

Telemetry information, K: Network topology and
configuration

1 /* Diagnose flow-level problems */
2 for sw ∈ Switches on victim’s path do
3 f _CT Rsw← FindContributor(f _WFGsw)
4 for f ∈ f _CT Rsw do
5 // Is micro-burst?
6 check flow f throughput
7 // Is priority problem?
8 check flow f priority
9 // Is routed by ECMP rules?

10 check aggregated throughput for ECMP switches

11 /* Diagnose port-level problems */
12 for sw ∈ Switches on victim flow’s path do
13 p← victim flow’s outgoing port
14 CheckPort(p,{})
15 /* Recursive function for port-level */
16 Function CheckPort(p, p_set):
17 // Does routing contain loop?
18 check whether there is a loop
19 // Search dominant port contributors
20 p_CT Rsw← FindContributor(p_WFGsw)
21 for p′ ∈ p_CT Rsw do
22 // Check the related port
23 src_p← the port connect to port p′

24 CheckPort(src_p, p_set + p)

4 Evaluation
Next, we evaluate SpiderMon along several dimensions: diag-
nosis effectiveness, overheads, and robustness.
Setup. Our hardware testbed deploys SpiderMon to a Bare-
foot Tofino switch, written in 1147 lines of P4-Tofino code,
to evaluate the switch-level performance. The switch is logi-
cally partitioned to emulate a topology with multiple logical
switches; logical links are emulated by port-to-port connec-
tions using direct attach cables. The switch is also physically
connected to eight servers through 25 Gbps links. The switch
has 32× 100Gbps ports, and each can be configured as four
25Gbps ports with a breakout cable; each server has two six-
core 3.4GHz CPUs, 128GB RAM, and one 25Gbps NIC. In
addition, we have set up a simulation environment that uses
the BMv2 software switches in the NS3 simulator with 945
lines of P4 code running on CloudLab servers, evaluating
the network-level performance. Each server has an eight-core
2.0GHz CPU and 32GB RAM. A K=4 standard fat-tree topol-
ogy with 20 switches and 32 hosts is simulated with 1 Gbps
link bandwidth. We also implement the root causes analyzer
with 843 lines of Python code.
Workloads. We simulate empirical workloads from produc-
tion networks for our evaluation. The flow size distribution is
taken from three different traces: web search [5], cache [35],
and Hadoop [35]. The arrival time of different flows is based
on a Poisson process and the flow arrival rate is varied to
obtain different load utilizations in the network. The source
and destination for each flow are chosen uniformly at random.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 273

All flows are TCP.
Baseline systems. We compare SpiderMon against five base-
line solutions. 1) Trumpet [31]: a trigger-based reactive host
system. When it detects a problem requiring network-wide in-
formation on one host, the controller will collect data from re-
lated servers upon a trigger. This incurs a latency of at least an
RTT. 2) NetSight [17]: an in-network system that proactively
collects ‘postcards’ for each packet from the switches. 3)
Marple [32]: a query-based in-network system, which is de-
ployed to all switches using monitoring queries that a) detect
high latency, b) query packet counts, and c) perform ‘EWMA
over latencies’. 4) Pathdump [37] and SwitchPointer [38]:
two proactive, network+host solutions. Pathdump tracks paths
and performs diagnosis on end-hosts, and SwitchPointer fur-
ther tracks packet epochs in the network.

4.1 Diagnosis Effectiveness

We evaluate the diagnostic effectiveness of SpiderMon using
multiple scenarios.
1. Micro-bursts are created by injecting 5 short-lived (10-100
µs) UDP flows from SW0 to SW1 and from SW2 to SW3
as in Figure 1(a). The throughput of micro-burst flows is set
to 90%×line-rate. Diagnosis: Fig. 5(a) shows the combined
wait-for graph at two switch ports generated by SpiderMon,
which shows that the two micro-burst flows E and H domi-
nate the queues and are the only two main contributors with
positive degrees. The other 3 UDP flows are not included in
the WFG since they end before the victim flow starts or start
later than the 2 contending UDP flows.
2. Priority contentions inject 5 high-priority TCP flows with
priority queuing from SW0 to SW1 and from SW2 to SW3
as in Figure 1(a). Diagnosis: As Figure 5(b) shows, flow C
and D are the main contributors to the congestion with higher
priority and larger degrees. Other priority flows have no inter-
ference with the victim flow so the WFG excludes them.
3. ECMP imbalance scenarios randomly pick a switch (ex-
cept core switches) and split traffic to two uplink ports with
4:1 imbalanced load. The ECMP group imbalanced lasted
for hundreds of microseconds. Diagnosis: When we find
the main contributors to the queuing, SpiderMon will check
whether they are routed by ECMP policy. In Figure 5(c), both
main contributors (flow C and D) are routed by ECMP rules
on switch 0, so SpiderMon uses the telemetry information
for switch 0 and computes the number of flows and traffic
amount sent to each ECMP port. If the number of flows or
traffic amount within that epoch is largely imbalanced, then
there is an issue with the ECMP rules or hash functions.
4. Loops create a 4-hop routing loop with 2 aggregation
switches and 2 core switches as in Figure 1(c). The routing
loop only affects a small group of flows and the problem only
lasts for 100 µs. Diagnosis: Port-level WFGs identify a loop
as the root cause: the victim flow is reported on switch 8 port 1
so that the WFG leads us to the main contributor, port 0. Since
SW8-P0 receives traffic from SW4-P0, we further construct

a WFG for SW4-P0 and determine another main contributor.
With this recursive searching procedure, SpiderMon finds that
the port-level contributors form a loop and the traffic belongs
to the same group of flows.
5. Complex problem diagnosis. Next, we test a diagnostic
scenario with multiple problems. In Figure 6, the victim flow
contends with a micro-burst flow at switch 1, a high priority
flow at switch 7, and high-volume traffic caused by ECMP
imbalance at switch 5. First, SpiderMon constructs the WFG
with the collected information for the problem and identifies 5
flows (flow C, E, F, J, and L) with positive degrees. Next, Spi-
derMon checks the property of each such flow and identifies
flow C as a micro-burst flow without any congestion control,
while flow J is a flow with higher priority than any other flows
crossing those switches. Then it checks the amount of the
transmitted traffic in the same epoch and identifies flows E
and F to be related to an ECMP imbalance. However, flow L
is removed from the root causes; it is a normal TCP flow since
its degree is small and there is no further evidence from the
telemetry information to show that this flow is problematic.
6. Sporadic & transient problem diagnosis. We also evalu-
ate multiple diagnostic situations with sporadic and transient
problems. The traffic workloads are generated from random
sources and destinations, and the problems could happen at
different locations in the network randomly with short-lived
root causes. Take the micro-burst experiment as an example.
A high throughput UDP flow is introduced between a random
source and destination at a random time, lasting for 100 µs.
The experimental results shown in Section 4.2 are generated
with sporadic problems for each scenario.

4.2 Comparison with Baseline Systems

Precision and recall. We first show the precision and recall
rate for different solutions, by tuning the parameters of each
system so that it can achieve the best performance for each
scenario. Those include the maximum tolerable link load
imbalance ratio, link utilization, per-flow throughput, and so
on. Details about each scenario’s parameters are in §F. Here
we show the results for web trace only, the results for cache
and Hadoop traces are included in §E.2. For the web trace,
30% of the flows are 1–30MB, so that multiple large flows
can be concurrently active from/to one switch port.

As shown in Figure 7, Trumpet cannot achieve both high
recall and accuracy at the same time for the transient conges-
tion since it can only infer the in-network condition based on
the calculated link utilization and end-to-end delay. Due to
the different network delays and packet loss, the evidence for
the transient problems may be inaccurate and unreliable on
the host. Trumpet also fails to diagnose the ECMP imbalance
problem because it does not have path information for every
flow to identify the traffic split at the ECMP switches. Trum-
pet also fails to diagnose the loop problem because packets
involved in loops do not reach the hosts, leaving no evidence
for Trumpet to find out the root cause.

274 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

WFG for switch 4 port 0
SW4‐P1 is found => SW9‐P0

WFG for switch 6 port 1
SW6‐P0 is found => SW8‐P1

Both flow C, D routed by ECMP on SW 0
Check telemetry information on SW 0
SW0‐P1’s ECMP traffic amount >> SW0‐P0’s
SW0‐P1’s ECMP flow number >> SW0‐P0’s

(a) Micro-burst Contention (b) Priority Contention (c) ECMP Load Imbalance (d) Loop

WFG for switch 9 port 0
SW9‐P1 is found => SW6‐P1

WFG for switch 8 port 1
SW8‐P0 is found => SW4‐P0

Figure 5: Example wait-for graphs of several root causes. Each box (TCP flow/port), circle (UDP flow), and pentagon
(High priority flows) represent one flow or port, and the port name is described according to Figure 1(c). Bolder edges
represent heavier wait-for relations, edges with small weights are tailored. The number under the flow/port name shows
the node degree, and positive degrees will be identified as main contributors.

0 1 2 3

4 5 6 7

8 9

h
0

h
1

h
2

h
3

h
4

h
5

h
6

h
7

ECMP Path 1
ECMP Path 2
Victim

10 11

High priority
Micro-burst

Figure 6: The WFG for victim flow P, with a micro-burst,
a priority-related contention, and an ECMP imbalance
at different hops.

Marple falls short in diagnosing transient contention like
micro-bursts. This is because Marple enables queries only
when needed, so it collects data reactively, which incurs an
additional latency. The per-hop queuing information is only
collected when the accumulated queuing latency exceeds the
threshold. This control loop delay leads to information loss
for transient problems—when the system begins collecting
data from a switch near the destination, the transient bursty
flow at a previous hop may have already ended. Only Marple
and Trumpet are reactive systems in our evaluation.

PathDump and SwitchPointer both achieve relatively good
performance. PathDump carries path information along with
the packets, and SwitchPointer upgrades PathDump with
switch data that records the flows that travel the same switch
in the same epoch, which outperforms PathDump. However,
both of them failed to identify transient problems since they
lack queuing information—they instead recompute link uti-
lization using packets received at end hosts. If a large amount
of packets are dropped in the network due to congestion loss
or TTL expiration, it would be very hard to reconstruct the
transient network condition. Another interesting fact is that
both solutions add extra in-network mechanisms (path track-
ing [37]) to detect the routing loop, so they both achieve great
performance in detecting and diagnosing loops.

NetSight achieves the second-best performance since it

(a) Micro-burst (b) Priority contention

(c) ECMP imbalance (d) Loops (solutions except Marple and
Trumpet overlap at the top right corner)

Figure 7: Diagnostic effectiveness for different solutions

collects per-packet postcards. One drawback is that to keep
overhead down, NetSight omits important data like packet
priority or precise timestamps. Instead, it uses topology infor-
mation to place the postcards in order. However, information
that describes how flows interact cannot be obtained, which
is essential for diagnosing transient problems.

SpiderMon is able to achieve nearly 100% recall and pre-
cision for all tested scenarios. The reason is that SpiderMon
collects accurate packet-level information within a time inter-
val. For micro-burst and priority flow contention, each flow’s
throughput within the same epoch where congestion happens
will be recorded and reported in the telemetry data; for the
ECMP imbalance problem, the flow ID and output port will
be recorded, so that the ECMP imbalance ratio can be calcu-
lated; for the loop problem, the loop can be easily detected in
the procedure of WFG construction.

To summarize, host-based solutions (Trumpet, PathDump

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 275

(a) Diagnostic data complexity (b) Additional bandwidth overhead

Figure 8: Diagnostic data complexity for different sys-
tems; the additional per-packet header shows the band-
width overheads for Trumpet (TP), PathDump (PD),
SwitchPointer (SP), NetSight (NS), Marple (MP), and
SpiderMon (SMon).

and SwitchPointer) all lack accurate in-network information,
like accurate queuing information and the packet loss for traf-
fic other than TCP (they can only observe packet loss at the
sender with the help of TCP’s congestion control). As for
the proactive in-network approach in NetSight, it scarifies
the telemetry data granularity to keep overhead low. Only
the packet header, switch ID, output port, and a version num-
ber are included. It uses topology information to assemble
out-of-order postcards since the fine-grained timestamps and
queuing information are not included in the postcards. The
reactive in-network Marple system can potentially collect the
information at very fine granularity but it can only start this
reactive network-wide query after a half-RTT delay after the
problem has been detected. The experiments over Cache and
Hadoop traces have qualitatively similar results with the web
search trace; more details can be found in §E.2.

Diagnostic overhead. To evaluate the diagnosis complex-
ity and resource usage of different solutions, we measure
the amount of collected data and the extra bandwidth re-
quirements. We measure the diagnosis complexity using the
amount of telemetry data stored and used in the diagnostic
procedure, using (flow×port) as the unit to denote the com-
plexity of flow information collected at switch ports. Since the
host-based solutions collect information from the end hosts,
and they reconstruct the utilization of different links [37],
we multiply the average path length with the flow×host as
the overall complexity. Both switches and hosts have limited
storage spaces and may restrict the scalability of the solu-
tions. Under the same scenario for diagnosing micro-bursts,
we show the amount of telemetry data for different systems
in Figure 8(a). Reducing the diagnosis complexity not only
relieves the burden to process the collected information for
the central controller but also saves the storage space to store
the diagnostic data for future usages.

Trumpet processes packets and match triggers in real time
during the monitoring phase, so no packet is stored. But in
the reactive data gather-report phase, data from multiple hosts
will be reported. In order to construct every link utilization,
the throughput of all flows will be reported and stored for

(a) The resource usage on Tofino
switch is low. Per-port traffic meter is
too small to be visible in the figure.

(b) Relative memory usage under dif-
ferent controller latency with Spider-
Mon as the baseline.

Figure 9: Switch memory occupation

further analysis. Pathdump and SwitchPointer need to store
per-packet history, since the problem may be detected after
analysis. But both systems rely on the path information to
find out the flows that travel the same link with the victim
flow so that the data complexity can be reduced by filtering
out irrelevant flows. Marple stores the query results from
every switch to reproduce the scenarios, so such data will
be transmitted as well as stored on the hosts. But Marple
starts the collection after problem detection and stops after the
problem disappears, collecting less but potentially incomplete
data. NetSight stores all packet postcards and processes them
in real time. All flows from all the switch ports are collected
and stored, leading to a similar data complexity as Trumpet.
SpiderMon only collects data after a problem is detected and
only from relevant switches. Thus, the overhead for collecting
telemetry data is much lower than the other systems.

Monitoring bandwidth overhead. Next, we measure the
amount of extra bandwidth usage during monitoring. Trumpet
never collects in-network data; it only uses the network to
communicate with other servers, so it has a low overhead.
PathDump and SwitchPointer both use two VLAN tags of
24 bits for path and switch epoch information. NetSight al-
ways collects per-packet postcards to the host for analysis,
and the per-packet additional bandwidth occupation is 15
bytes/packet × average hop count because NetSight will gen-
erate a postcard for the packet at every hop. Marple introduces
a 16-bit header to carry the per-packet end-to-end latency, and
during the monitoring phase, it will group the packets with
their per-hop queuing latency and sent them to the controller.
SpiderMon adds a 16-bit monitor header to every packet when
it enters the network, and removes it before forwarding the
packet to the end-host as mentioned in §3.1.

Switch resource overhead. Figure 9(a) shows the switch
resource usage of SpiderMon, which fits comfortably in a
Tofino pipeline. It also shows how SpiderMon scales with the
number of flows seen during a collection period. Modern data
centers have millions of concurrent flows per switch, but since
SpiderMon only keeps tens of milliseconds of history, the
number of flows per epoch is much smaller. Switch memory
size increases steadily over time [29], so SpiderMon can scale
to even more flows with more recent hardware.

276 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Diagnosis time for root cause (b) Collected telemetry data size

(c) Diagnosis time with different num-
ber of switches

(d) The latencies for “spider” packets
and telemetry

Figure 10: Branch-search metrics for SpiderMon

To show the benefit of informing related switches in the
data plane in a distributed manner, we compare SpiderMon
with a centralized reactive strawman system, which uses a cen-
tralized node to receive the detected problems, identifies the
related switches, and retrieves data from them. We vary the
additional latency that this centralized controller introduces.
Figure 9(b) shows that this solution requires more memory to
store a larger amount of historical data to avoid the loss of rel-
evant evidence for diagnosis. In comparison, SpiderMon only
needs to preserve the history within the maximum queuing
latency + half RTT (§3.2.2).

4.3 Diagnostic Robustness

We finally evaluate the diagnostic robustness of SpiderMon us-
ing different metrics related to branch-search coverage, epoch
length, and cumulative latency. Within a range of adjustments,
SpiderMon can diagnose the performance problems with ideal
precision and recall. Network operators are allowed to adjust
the parameters of SpiderMon according to their requirements.
Overall methodology. SpiderMon empirically adjusts the pa-
rameters under different network loads. Given a particular
network traffic load, operators could systematically test the
precision and recall rates of SpiderMon with different met-
ric choices. Suitable choices should strike a good balance
between the recall rate and the size of collected telemetry
data for throughput metrics, switch memory consumption for
epoch metrics, and the sensitivity of problem detection for
latency metrics. The optimal parameters vary under different
network loads. We provide the results of parameter adjust-
ments using our experimental settings in the following, while
network operators could follow the same methodology to
obtain their preferred parameters.
Branch-search threshold. SpiderMon provides different op-
tions for spider packet propagation in terms of its reach (e.g.,

(a) Precision & recall rate for the root
causes with 30% load

(b) Upper-bound of throughput thresh-
old

Figure 11: Throughput metrics for SpiderMon

all or some branches). Figure 10(a) and Figure 10(b) provide
comparisons with different options on both the diagnosis time
of root cause analysis and the size of collected telemetry data.
Note that the number of relevant switches in SpiderMon is
generally much smaller than the total network size since Spi-
derMon uses the wait-for relation and provenance model to
precisely target only those relevant switches that contribute
to the observed performance problem. Therefore, even with
all-branches spider packets propagation (search all ports with
> 0 throughputs), SpiderMon is efficient compared to more
rudimentary diagnosis strategies that must comb through all
data from all switches. Even for relatively widespread perfor-
mance problems involving up to 30 relevant switches, it takes
under 4 seconds to run the root cause diagnosis algorithm
(Algorithm 5) on a 4.3GHz CPU, as shown in Figure 10(c).
In addition, we evaluate the latency for spider packets prop-
agation and the subsequent retrieval of the telemetry data,
using 50 Gbps link bandwidth and 20µs link delay. From the
results shown in Figure 10(d), we can see that a few microsec-
onds are enough to perform the entire retrieval operation with
arbitrary fat-tree topologies, no matter the choices of branch-
search options. This is because SpiderMon’s mechanisms run
in the data plane. As a result, network operators can send
“spider” packets without setting the branch-search threshold
if the overhead can be tolerated based on their requirements.

We further evaluate the precision and recall rates under
different branch-search coverage with different network loads.
Figure 11(a) shows the results under 30% network load, indi-
cating that the precision can always achieve 100% while the
recall rates decrease if the threshold is too high. To trade-off
the branch-search overhead and the recall rates, we suggest
using 70% as the threshold in this case since it strikes a good
balance. Following the same strategy, we summarize the up-
per bound of branch-search thresholds for operators to adjust
under different network loads, as shown in Figure 11(b).
Epoch length. SpiderMon can change the length of the
telemetry epoch to save memory but trade-off telemetry gran-
ularity. Network operators can adjust the telemetry epoch ac-
cording to their requirements. Under different network loads,
we provide the upper bound of the epoch length. For exam-
ple, Figure 12(a) shows the results with the network load at
30%. We evaluate the precision and recall rates under dif-
ferent epoch lengths. The precision is always 100%, while

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 277

(a) Precision & recall rate for the root
causes with 30% load

(b) Upper-bound of epoch length

Figure 12: Epoch metrics for SpiderMon

the recall rate decreases in some scenarios when the length
of epoch exceeds 30 ms. We further measure the precision
and recall rates under different network loads, and identify
the upper-bounds of epoch length, as shown in Figure 12(b).
The upper-bound epoch length used for telemetry collection
decreases with increasing network load.
Cumulative latency threshold. SpiderMon provides a tun-
able cumulative latency threshold for problem detection, al-
lowing network operators to customize problem trigger fre-
quency for different applications. Figure 13(a) shows the CDF
of different cumulative latency under different network loads
in the absence of problems, where the cumulative latency
is normalized by the maximum queuing latency of a single
switch. Under different loads, the choice of cumulative latency
threshold varies according to the trade-off between overhead
and recall rate. The higher the sensitivity of the network to
problem detection, the more switches are visited, and thus
higher overhead. We further evaluate the recall rates of Spi-
derMon under different loads and summarize the upper bound
of cumulative latency thresholds for reaching 100% recall in
all scenarios in Figure 13(b).

5 Related Work
Switch-based telemetry. Telemetry systems such as Sonata
[16], Marple [32], FlowRadar [26], *Flow [36], NetSeer [47]
and Dapper [14] leverage programmable switches for fine-
grained data collection. However, query-driven systems [16,
32] cannot dynamically change the targeted events at small
timescales, and blanket monitoring systems [17,36] incur high
collection overhead. SpiderMon aims to achieve lightweight
yet accurate telemetry information collection. Two recent
works, NetSeer [47] and PINT [8], share our high-level goal of
reducing telemetry overhead. NetSeer detects per-flow perfor-
mance events for compression, and PINT aggregates telemetry
information across hops or flows to save bandwidth. Com-
pared to these works, SpiderMon co-designs monitoring and
posterior diagnosis based on wait-for relations for closed-loop
diagnosis.
Diagnosis systems. SwitchPointer [38] and PathDump [37]
collect both in-network and host data for diagnosis. Trum-
pet [31] monitors every packet at hosts and reports triggered
events. SNAP [43] diagnoses network problems using logs
(e.g., TCP statistics, socket calls) collected at hosts. How-

(a) Cumulative latency under different
network loads

(b) Upper-bound of cumulative latency
threshold

Figure 13: Latency metrics for SpiderMon

ever, these systems rely on a central controller and perform
software-based monitoring. NetMedic [23], 007 [6], Net-
Poirot [7] use statistical methods and/or machine learning
to identify root causes. Network provenance [42] tracks how
packets flow through a network and apply formal reasoning
to identify root causes. Deter [25] can process and replay a
TCP trace to diagnose performance degradation. Compared to
these works, SpiderMon leverages the telemetry information
from programmable switches, and it uses wait-for relations to
reason about performance contention in-network. Our recent
workshop paper sketches a similar roadmap [41], but it does
not contain a concrete design, implementation, or evaluation.
Monitoring. Another line of recent work focuses on design-
ing compact data structures [11, 18, 19, 27, 44] with tradeoffs
between accuracy and resource footprints. OmniMon [19] di-
vides flow-level monitoring across different network entities
to satisfy resource constraints. BeauCoup [11] supports mul-
tiple distinct counting queries simultaneously while requiring
a small number of memory accesses. These data structures
complement SpiderMon by reducing switch resource usage.

6 Conclusion
SpiderMon is a system that achieves high coverage and low
overhead in monitoring and diagnosing network performance
problems. It monitors every flow in the data plane and triggers
diagnostic events upon problem detection. It precisely collects
diagnostic information in an as-needed fashion. We prototype
SpiderMon on Tofino hardware and BMv2 software switches
and show that it can leverage wait-for relations to accurately
pinpoint root causes for complex problems. SpiderMon also
has low overheads for telemetry collection, switch resources,
and network bandwidths.

Acknowledgment
We thank our shepherd Theophilus A. Benson and the anony-
mous reviewers for their valuable feedback. This research is
sponsored by the NSF under CNS-1718980, CNS-1801884,
and CNS-1815525.

278 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Network Congestion Management: Considerations and

Techniques. https://www.sandvine.com/hubfs/d
ownloads/archive/whitepaper-network-conge
stion-management.pdf.

[2] sFlow. http://www.sflow.org/.

[3] Solving the mystery of link imbalance: A
metastable failure state at scale. https:
//engineering.fb.com/production-enginee
ring/solving-the-mystery-of-link-imbalance
-a-metastable-failure-state-at-scale/.

[4] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang,
A. Vahdat, et al. Hedera: Dynamic flow scheduling for
data center networks. In USENIX NSDI, 2010.

[5] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,
P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan.
Data center TCP (DCTCP). In ACM SIGCOMM, 2010.

[6] B. Arzani, S. Ciraci, L. Chamon, Y. Zhu, H. H. Liu,
J. Padhye, B. T. Loo, and G. Outhred. 007: Democrat-
ically finding the cause of packet drops. In USENIX
NSDI, 2018.

[7] B. Arzani, S. Ciraci, B. T. Loo, A. Schuster, and
G. Outhred. Taking the blame game out of data centers
operations with NetPoirot. In ACM SIGCOMM, 2016.

[8] R. B. Basat, S. Ramanathan, Y. Li, G. Antichi, M. Yu,
and M. Mitzenmacher. PINT: Probabilistic in-band
network telemetry. In ACM SIGCOMM, 2020.

[9] H. Chen, N. Foster, J. Silverman, M. Whittaker,
B. Zhang, and R. Zhang. Felix: Implementing traffic
measurement on end hosts using program analysis. In
ACM SOSR, 2016.

[10] X. Chen, S. L. Feibish, Y. Koral, J. Rexford, and O. Rot-
tenstreich. Catching the microburst culprits with Snappy.
In SelfDN, 2018.

[11] X. Chen, S. Landau-Feibish, M. Braverman, and J. Rex-
ford. BeauCoup: Answering many network traffic
queries, one memory update at a time. In ACM SIG-
COMM, 2020.

[12] J. Cho, H. Chang, S. Mukherjee, T. Lakshman, and
J. Van der Merwe. Typhoon: An SDN enhanced real-
time big data streaming framework. In ACM CoNEXT,
2017.

[13] D. Firestone, A. Putnam, S. Mundkur, D. Chiou,
A. Dabagh, M. Andrewartha, H. Angepat, V. Bhanu,
A. Caulfield, E. Chung, et al. Azure accelerated net-
working: SmartNICs in the public cloud. In USENIX
NSDI, 2018.

[14] M. Ghasemi, T. Benson, and J. Rexford. Dapper: Data
plane performance diagnosis of TCP. In ACM SOSR,
2017.

[15] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz,
Z. Liu, V. Wang, B. Pang, H. Chen, Z.-W. Lin, and
V. Kurien. Pingmesh: A large-scale system for data
center network latency measurement and analysis. In
ACM SIGCOMM, 2015.

[16] A. Gupta, R. Birkner, M. Canini, N. Feamster, C. Mac-
Stoker, and W. Willinger. Network monitoring as a
streaming analytics problem. In ACM HotNets, 2016.

[17] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières, and
N. McKeown. I know what your packet did last hop:
Using packet histories to troubleshoot networks. In
USENIX NSDI, 2014.

[18] Q. Huang, X. Jin, P. P. C. Lee, R. Li, L. Tang, Y.-C.
Chen, and G. Zhang. SketchVisor: Robust network
measurement for software packet processing. In ACM
SIGCOMM, 2017.

[19] Q. Huang, H. Sun, P. P. C. Lee, W. Bai, F. Zhu, and
Y. Bao. OmniMon: Re-architecting network telemetry
with resource efficiency and full accuracy. In ACM
SIGCOMM, 2020.

[20] S. Ibanez, G. Brebner, N. McKeown, and N. Zilberman.
The P4-> NetFPGA workflow for line-rate packet pro-
cessing. In ACM FPGA, 2019.

[21] N. Jiang, D. U. Becker, G. Michelogiannakis, and W. J.
Dally. Network congestion avoidance through specula-
tive reservation. In IEEE HPCA, 2012.

[22] R. Joshi, T. Qu, M. C. Chan, B. Leong, and B. T. Loo.
BurstRadar: Practical real-time microburst monitoring
for datacenter networks. In ACM APSys, 2018.

[23] S. Kandula, R. Mahajan, P. Verkaik, S. Agarwal, J. Pad-
hye, and V. Bahl. Detailed diagnosis in enterprise net-
works. In ACM SIGCOMM, 2010.

[24] A. Khandelwal, R. Agarwal, and I. Stoica. Confluo:
Distributed monitoring and diagnosis stack for high-
speed networks. In USENIX NSDI, 2019.

[25] Y. Li, R. Miao, M. Alizadeh, and M. Yu. Deter: De-
terministic TCP replay for performance diagnosis. In
USENIX NSDI, 2019.

[26] Y. Li, R. Miao, C. Kim, and M. Yu. FlowRadar: A better
NetFlow for data centers. In USENIX NSDI, 2016.

[27] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and
V. Braverman. One sketch to rule them all: Rethink-
ing network flow monitoring with UnivMon. In ACM
SIGCOMM, 2016.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 279

https://www.sandvine.com/hubfs/downloads/archive/whitepaper-network-congestion-management.pdf
https://www.sandvine.com/hubfs/downloads/archive/whitepaper-network-congestion-management.pdf
https://www.sandvine.com/hubfs/downloads/archive/whitepaper-network-congestion-management.pdf
http://www.sflow.org/
https://engineering.fb.com/production-engineering/solving-the-mystery-of-link-imbalance-a-metastable-failure-state-at-scale/
https://engineering.fb.com/production-engineering/solving-the-mystery-of-link-imbalance-a-metastable-failure-state-at-scale/
https://engineering.fb.com/production-engineering/solving-the-mystery-of-link-imbalance-a-metastable-failure-state-at-scale/
https://engineering.fb.com/production-engineering/solving-the-mystery-of-link-imbalance-a-metastable-failure-state-at-scale/

[28] A. Ludwig, J. Marcinkowski, and S. Schmid. Scheduling
loop-free network updates: It’s good to relax! In ACM
PODC, 2015.

[29] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu. Silkroad:
Making stateful layer-4 load balancing fast and cheap
using switching ASICs. In ACM SIGCOMM, 2017.

[30] R. Mittal, N. Dukkipati, E. Blem, H. Wassel,
M. Ghobadi, A. Vahdat, Y. Wang, D. Wetherall,
D. Zats, et al. TIMELY: RTT-based congestion control
for the datacenter. In ACM SIGCOMM, 2015.

[31] M. Moshref, M. Yu, R. Govindan, and A. Vahdat. Trum-
pet: Timely and precise triggers in data centers. In ACM
SIGCOMM, 2016.

[32] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun,
M. Alizadeh, V. Jeyakumar, and C. Kim. Language-
directed hardware design for network performance mon-
itoring. In ACM SIGCOMM, 2017.

[33] Y. Ran, X. Wu, P. Li, C. Xu, Y. Luo, and L.-M. Wang.
EQuery: Enable event-driven declarative queries in pro-
grammable network measurement. In IEEE NOMS,
2018.

[34] J. Rasley, B. Stephens, C. Dixon, E. Rozner, W. Fel-
ter, K. Agarwal, J. Carter, and R. Fonseca. Planck:
Millisecond-scale monitoring and control for commod-
ity networks. In ACM SIGCOMM, 2014.

[35] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren.
Inside the social network’s (datacenter) network. In
ACM SIGCOMM, 2015.

[36] J. Sonchack, O. Michel, A. J. Aviv, E. Keller, and J. M.
Smith. Scaling hardware accelerated network monitor-
ing to concurrent and dynamic queries with *flow. In
USENIX ATC, 2018.

[37] P. Tammana, R. Agarwal, and M. Lee. Simplifying data-
center network debugging with PathDump. In USENIX
OSDI, 2016.

[38] P. Tammana, R. Agarwal, and M. Lee. Distributed net-
work monitoring and debugging with SwitchPointer. In
USENIX NSDI, 2018.

[39] Y. Tang, Y. Wu, G. Cheng, and Z. Xu. Intelligence
enabled SDN fault localization via programmable in-
band network telemetry. In IEEE HPSR, 2019.

[40] H. Wang, R. Soulé, H. T. Dang, K. S. Lee, V. Shrivastav,
N. Foster, and H. Weatherspoon. P4FPGA: A rapid
prototyping framework for P4. In ACM SOSR, 2017.

[41] W. Wang, P. Tammana, A. Chen, and T. S. E. Ng. Grasp
the root causes in the data plane: Diagnosing latency
problems with SpiderMon. In ACM SOSR, 2020.

[42] Y. Wu, A. Chen, and L. T. X. Phan. Zeno: Diagnosing
performance problems with temporal provenance. In
USENIX NSDI, 2019.

[43] M. Yu, A. Greenberg, D. Maltz, J. Rexford, L. Yuan,
S. Kandula, and C. Kim. Profiling network performance
for multi-tier data center applications. In USENIX NSDI,
2011.

[44] M. Yu, L. Jose, and R. Miao. Software defined traf-
fic measurement with OpenSketch. In USENIX NSDI,
2013.

[45] Q. Zhang, V. Liu, H. Zeng, and A. Krishnamurthy. High-
resolution measurement of data center microbursts. In
ACM IMC, 2017.

[46] F. Zhou, Y. Gan, S. Ma, and Y. Wang. wPerf: Generic
off-CPU analysis to identify critical waiting events. In
USENIX OSDI, 2018.

[47] Y. Zhou, C. Sun, H. H. Liu, R. Miao, S. Bai, B. Li,
Z. Zheng, L. Zhu, Z. Shen, Y. Xi, P. Zhang, D. Cai,
M. Zhang, and M. Xu. Flow event telemetry on pro-
grammable data plane. In ACM SIGCOMM, 2020.

[48] Y. Zhu, N. Kang, J. Cao, A. Greenberg, G. Lu, R. Ma-
hajan, D. Maltz, L. Yuan, M. Zhang, B. Y. Zhao, and
H. Zheng. Packet-level telemetry in large datacenter
networks. In ACM SIGCOMM, 2015.

280 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A Proof for Contributors Identification Algo-
rithm

Definition 6. Degree of vertex. In a WFG, the degree of vertex
A is the sum of all the adjacent edges’ weights we:

D(A) =
e

∑
{e=<i, j>|i=A‖ j=A}

αe ·we (1)

where αe is 1 when A is the sink of edge e and -1 when vertex
A is the source.
Lemma 1. For a WFG, the sum of all the vertex’s degree is 0:

X

∑
X∈V

D(X) = 0 (2)

Proof: the WFG is a directed graph where every edge is
pointing from a vertex to another vertex in the graph, so each
edge will add weight w to the sink vertex and weight −w to
the source vertex.
Definition 7. Flux of cut. For a cut in a WFG, the vertex will
be divided into two sets, S1 and S2. Given all edges in the
WFG has a positive weight according to the definition, we
denote the flux of this cut as:

Flux(cut) =

∣∣∣∣∣ e=<i, j>

∑
i∈S1, j/∈S1

we +
e=<i, j>

∑
i/∈S1, j∈S1

−we

∣∣∣∣∣ (3)

where e represents the edge from vertex i to vertex j
Though the sum of all vertex’s degree is 0, we can always

find a cut whose flux is maximum, representing the prove-
nance relation between vertexes from those two groups is the
strongest. The set with a positive degree considers as the main
contributor to the queue, while the other set contains victims
of the queue, like normal flows or small flows. To find this cut
efficiently, we have shown the hints by the following lemmas
and theorems.
Lemma 2. The flux of one cut is just the absolute value of the
sum of all vertices’ degrees in either set.

Proof: The absolute value of the sum of all vertices’ degrees
in one set (ASD) can be written as:

ASD =

∣∣∣∣∣ e=<i, j>

∑
i∈S1| j∈S1

αe ·we

∣∣∣∣∣
=

∣∣∣∣∣ e=<i, j>

∑
i∈S1& j∈S1

αewe +
e=<i, j>

∑
i∈S1& j/∈S1

αewe +
e=<i, j>

∑
i/∈S1& j∈S1

αewe

∣∣∣∣∣
=

∣∣∣∣∣0+ e=<i, j>

∑
i∈S1& j/∈S1

−we +
e=<i, j>

∑
i/∈S1& j∈S1

we

∣∣∣∣∣= Flux(cut)

(4)

Theorem 1*. The WFG cut with maximum flux will divide
the vertices with positive degrees into one set and negative
degrees into the other set.

Given the sum of all vertices’ degrees are 0, for any cut:
∑X∈S1 D(X) = −∑Y∈S2 D(Y), namely, the absolute sum of
degree for two sets are the same. Thus, for the cut that divide
all vertices with positive degrees into one set, by contradiction,
we can easily prove this is the cut with maximum flux.

The flux represents the wait-for relation between two
groups from a cut of the wait-for graph, and the degree repre-
sents the value of incoming edges weights subtracting outgo-
ing edges weights so that Theorem 1 is proofed.

B Fine-grained Sliding Window

During the telemetry collection process, SpiderMon main-
tains bloom filter and per-port per-epoch data structures to
trace back all the relevant switches. However, part of these
structures (e.g. traffic meter) needs to be reset to 0 at the be-
ginning of an epoch due to the limited resources of the switch
data plane. Therefore, there will be some information loss at
the beginning of an epoch, leading to the diagnosis algorithm
being inaccurate. SpiderMon employs a fine-grained sliding
window on the data plane to achieve high accuracy for the
used data structures.

The sliding window strategy slices each epoch into multiple
pieces, and it proceeds in two actions: an update action and a
decrease action. To explain simply, we take the traffic meter in
the per-port data structure as an example. Assume one epoch
T is divided into n small time slots. There will be n sub-traffic
meters and each of them aims at a single time slot. When a
switch receives a new packet during the update phase, the
switch will update the corresponding sub-traffic meter based
on the current time slot, as well as the total traffic meter. For
decrease action, when the oldest sub-traffic meter no longer
exists in the sliding window, the value of the corresponding
sub-traffic will be subtracted from the total traffic meter and
that sub-traffic meter will be reset to 0. Network operators are
able to tune the fine-grained sliding window according to their
demands. Basically, the more time slots an epoch is divided
into, the higher the accuracy that the system can achieve. On
the other hand, the overhead of telemetry data structures can
be reduced with fewer time slots.

C Resource Usage Optimization

C.1 Avoid Duplicate Detection

In the scenario of the performance problem, there are lots
of packets from the victim flow suffering from high latency
problems, but not all of them will generate a diagnostic event
independently. SpiderMon sets a limitation on the interval
between two diagnostic events generated by the same flow,
meaning that during one congestion, only the first packet
suffering from high accumulated latency will trigger the di-
agnostic event. To avoid receiving multiple audit requests for
the same diagnosis event, the switches will drop the duplicate
"spider" packets with the same event ID as well.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 281

C.2 Data Field Compression

For the applications like SpiderMon built on top of the pro-
grammable switches, keeping track of some data fields in the
packet header or on the switch memory is always required.
Compressing those data fields in order to reduce the extra
header size or switch memory occupation is critical to the
application performance. SpiderMon provides a method to
compress the size of the data by extracting the most signifi-
cant bits. This idea can be widely applied to many recorded
data in such systems, and here are two typical examples that
use this strategy:

The timeout bloomfilter in SpiderMon requires storing a
large number of timestamps for each slot in the bloom fil-
ter, which is very resource consuming and inefficient. The
timestamp is usually stored with 48 bits on the switch and
SpiderMon uses the timestamp to perform the timeout op-
eration. Given that the only operation on the timestamp is
the subtraction of two timestamps and compare the differ-
ence with the timeout period, we can easily observe that the
only significant bits in the timestamp are the bits around the
period. Take the timeout period as 1 ms as an example, the
most significant bits in the timestamp are the 10th, 11th, and
12th bits from the right, representing 0.512 ms, 1.024 ms, and
2.048 ms respectively. By extracting these three bits from the
original timestamps and comparing the difference with bit
array 010, we can get an approximation of the exact value
that is calculated with the original timestamp. Adding more
bits on the left (e.g. 13th and 14th) can prevent us from the
danger of overflow while adding more bits on the right (e.g.
9th and 8th) can help us obtain a more precise result of the
subtraction. With this method, SpiderMon only needs to store
6 bits for each timestamp and reduce the memory usage of
the timeout bloomfilter by 87.5%.

Another example is the queuing information carried by
the packets in SpiderMon, which is used to detect the perfor-
mance problem by comparing the accumulated delay with the
maximum delay threshold. For a certain application, the max-
imum delay threshold may be 1 ms. Then when we calculate
the accumulated delay, the most significant bits are 8th, 9th,
and 10th bits from the right, representing 0.128 ms, 0.256 ms,
and 0.512 ms respectively. If any bit on the left of the 10th
bit is not 0, SpiderMon will trigger the problem immediately,
since it exceeds the threshold with this single-hop delay. In
this way, SpiderMon only needs to add an extra header with
4 bits to carry each delay field instead of 19 bits, shrinking
the overhead from the extra header by 78.95%. Note that in
evaluation, we use 8 bits for each data field to provide better
accuracy.

D Implementation
We have implemented SpiderMon on a Barefoot Tofino switch
with 1147 lines of P4-Tofino code and also a BMv2 version
for NS3 and MiniNet environments with 945 lines of P4 code.
We also implement the root causes analyzer on the end-host

with 843 lines of Python code.
Figure 14 depicts different components in a switch and the

workflow for different packet types. The event record is used
for checking duplicate “spider” packets, and the telemetry
counter for guiding telemetry packet generation. Those two
data structures are placed in the ingress because they need
to make decisions on whether to mirror packets in the traffic
management unit. The per-port meter and timeout bloom filter
provide provenance data to guide the propagation of the “spi-
der” packets, and the telemetry data structure stores historical
flow information for diagnosis. Those two data structures,
along with the problem detection component, are placed in
the egress pipeline because they may require queuing infor-
mation, which is only available in the egress pipeline. Note
that the per-port telemetry information is stored separately
on the switch, but not necessarily one table per stage. One
stage in SpiderMon can store multiple egress ports’ telemetry
information.

To implement SpiderMon, the egress pipeline is required to
detect the problems, store telemetry information, and provide
temporary provenance hints for “spider” packet propagation.
For switch architectures like SimpleSumeSwitch [20] (NetF-
PGA), P4FPGA [40], and SmartNICs, SpiderMon can also
be implemented by taking the next switch’s pipeline as the
“egress pipeline” of former switches to detect congestion and
collect telemetry information. This design requires more com-
munication among switches, so both the latency for diagnos-
ing the problem and the link bandwidth used by SpiderMon
would also increase.

As for the hardware switch resource, modern switches have
increasing memory sizes [29], and more ports usually repre-
sent more on-chip memory, which, we shall demonstrate in
§4, is more than sufficient to support SpiderMon.

E Additional Experiment Results
E.1 Header Bandwidth Usage

Packet Size (B) 1480 1000 500 100
SpiderMon (Gbps) 23.51 23.5 22.84 20.51

Baseline (Gbps) 23.65 23.5 22.84 21.87

Table 1: SpiderMon’s maximum throughput is quite close
to the baseline switch with only forwarding rule.

As the monitor header added by SpiderMon is removed
before forwarding the packet to the end-host, the correspond-
ing overhead of the additional header is very trivial. We use
iPerf to show the maximum throughput of traffic with differ-
ent average packet sizes on the Tofino switch equipped with
SpiderMon in Table 1 and compare it with a baseline switch
program with only basic forwarding rules. As expected, Spi-
derMon ’s end-to-end throughput is nearly identical to the
baseline, meaning that the bandwidth overhead of the moni-
toring phase could be neglected.

282 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 14: The placement of SpiderMon components on the switch stages

E.2 Cache & Hadoop Workloads

Besides the Web search trace, we also run the same experi-
ments on the Cache trace and Hadoop Trace.

For the Cache trace, most of its flow sizes fall into 1KB
to 100KB. Thus, to reach the same link utilization, we have
to insert more number flows during the simulation. The re-
sults for Cache trace are similar to the Web search trace. The
only difference is that all algorithms have improved perfor-
mance. This is because the flow sizes are very small so that
the root-cause traffic (e.g. micro-burst) flow can be easily
distinguished from the normal flows; false positive and false
negative are reduced.

For the Hadoop trace, most of the flows have less than 10
KB flow size. Similar to the Cache trace, we also increase
the number of flows to keep the same link utilization. The
overall results for the Hadoop trace are also similar to the
Cache trace.

(a) Micro-burst (b) Priority contention

(c) ECMP imbalance (d) Loops (solutions except Trumpet
all overlap at the top right corner)

Figure 15: Diagnostic effectiveness with Cache trace

(a) Micro-burst (b) Priority contention

(c) ECMP imbalance (d) Loops (solutions except Marple
and Trumpet all overlap at the top right
corner)

Figure 16: Diagnostic effectiveness with Hadoop trace

F Tunable Parameters for Different Solutions
We vary the following parameters when using those systems
to diagnose problems of the four scenarios. The goal is to find
the parameter sets with the best precision and recall rate. We
do nested iterations over different parameters by fixing some
parameters and iterate the other parameters. The parameters
are different across systems, and for the same system, the
parameters vary according to the scenarios that we are trying
to diagnose. The details are shown in Table 2 and Table 3.

G Constructing Signatures for Root Causes
SpiderMon uses both the collected telemetry information and
the static network configuration information to recognize the
root causes. The telemetry information is collected by Spider-
Mon, and the configuration information is simply provided

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 283

Micro-burst-related Contention Priority-related contention

Trumpet
Tolerable per-flow throughput,
tolerable end-to-end latency difference,
tolerable TCP packet loss

Tolerable per-flow throughput,
tolerable end-to-end latency differences,
tolerable TCP packet loss

PathDump
Tolerable per-flow throughput,
tolerable link utilization

Tolerable per-flow throughput,
tolerable link utilization

SwitchPointer
Tolerable per-flow throughput,
tolerable link utilization

Tolerable per-flow throughput,
tolerable link utilization

NetSight
Related time intervel length,
tolerable link utilization

Related time intervel length,
tolerable link utilization,
postcard arrival sequences

Marple
Network-wide query lasting time,
tolerable per-flow throughput

Network-wide query lasting time,
tolerable per-flow throughput

SpiderMon Maximum allowed flow throughput /

Table 2: Parameters for micro-burst and priority

ECMP load imbalance Loop
Trumpet / /

PathDump
Tolerable link utilization,
tolerable link utilization imbalance ratio Maximum header size

SwitchPointer
Tolerable link utilization,
tolerable link utilization imbalance ratio Maximum header size

NetSight
Related time intervel length,
tolerable link utilization,
tolerable link utilization imbalance ratio

/

Marple
Network-wide query lasting time,
tolerable link utilization imbalance ratio Network-wide query lasting time

SpiderMon Tolerable link utilization imbalance ratio /

Table 3: Parameters for load imbalance and Loop

by the topology information and routing information, which
is known by the operator in advance.

To add a new signature for a new root cause, network opera-
tors could simply use the above information to construct their
own signatures. Here we provide some telemetry information
and static configuration information used in the 4 example
signatures in Table 4. This is not an exhaustive list and more
information could be added when new signatures are intro-
duced. To construct new signatures, we should know that any
signature consists of two parts: 1) the root cause’s pattern, like
a flow with large throughput for the micro-burst root cause;
2) the relation between the problematic flow and the victim
flow, namely, the problematic flow should be one of the main
contributors to the victim flow’s poor performance. Here we
also provide 4 different signatures as examples.

Telemetry Info

Edge weight from flow i to flow j:
E(f lowi, f low j)
Main contributors for a queue:
Contributors(SwitchiPort j)
Flows traveling a switch port:
Flows(SwitchiPort j)
Priority: P(flow)
Data volume: V(flow)

Config Info
Port mapping in Topology:
Topo(SwitchiPort j)=SwitchxPorty
Flows belonging to an ECMP group:
Flows(group)

Table 4: Selected telemetry information and static config-
uration information

Micro-bursts. SpiderMon can identify all the main flow-level
contributors at different hops along the victim flow’s histori-
cal path. As shown in Figure 5(a), the micro-burst flows have
many wait-for edges with large weights pointing to them-

selves due to a large amount of traffic during the problematic
time. For example, for the micro-burst problem, there must
exist one micro-burst node root which satisfies:

The root cause flow has the same priority as the victim
flow:

P(victim) = P(root) (5)

The root cause flow has similar edge weight to itself as to
other flows:

E(root,root)≈ E(victim,root) (6)

The victim flow contends with the root cause flow:

∃m,n,where
victim ∈ Flows(SwitchmPortn)

root ∈Contributors(SwitchmPortn)
(7)

The larger the weights of E(root,root) and E(victim,root),
the more confidence SpiderMon has on determining the micro-
burst flow.
Different priorities. For contention between flows with dif-
ferent priorities, SpiderMon checks the priority of the victim
flow and the main flow-level contributors. The contributor
flows with higher priority compared to the victim flow can
be identified as the root causes, as shown in Figure 5(b). The
high priority flow root should satisfy:

The root cause flow has higher priority than the victim
flow:

P(victim)< P(root) (8)

The root cause flow has smaller edge weight for the edge
pointing to itself than the edge pointing to the victim:

E(root,root)< E(victim,root) (9)

The victim flow contends with the high priority flow:

∃m,n,where
victim ∈ Flows(SwitchmPortn)

root ∈Contributors(SwitchmPortn)
(10)

ECMP load imbalance. For the load imbalance problem
displayed in Figure 1(b), SpiderMon will find the flow-level
main contributors and check if they are routed by ECMP. Then
SpiderMon calculates the ECMP imbalance ratio with the
throughput of all flows routed by ECMP rules, using the traffic
volume provided by per-flow telemetry data. The problematic
ECMP groups can be identified when the calculated ratio is
highly imbalanced as in Figure 5(c). Within the problematic
ECMP group ecmp on Switch Switchx, there must exist one
or more flows root, which satisfies:

284 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

The ECMP traffic split on some switches is not balanced:

T hroughput(SwitchxPorty) = ∑V (f lowi),

where f lowi ∈ Flows(SwitchxPorty)
(11)

∃x,y,∀i 6= y,

T hroughput(SwitchxPorty)

> T hroughput(SwitchxPorti)
(12)

The root cause flow is one of the flows from the ECMP
port that has larger throughput.

root ∈ Flows(ecmp)∩Flows(SwitchxPorty) (13)

On another switch, the victim flow contends with the root
cause flow:

∃m,n,where
victim ∈ Flows(SwitchmPortn)

root ∈Contributors(SwitchmPortn)
(14)

Transient/persistent loops. For the latency problem caused
by transient or persistent loops as shown in Figure 1(c), Spider-
Mon searches the port-level contributors along the contributor

traffic’s path. If the same port is observed twice during the
search procedure, all those ports are highly likely to have
formed a loop for specific traffic. Furthermore, the flow ID
will be checked to further confirm the transient/persistent loop.
The formal signature for a flow root with a transient/persistent
loop can be written as:

Exist a port list:[Switchm0Portn0 , ...,Switchmk Portnk] (15)

The port list forms a ring in the topology and the root cause
flow routed in a loop on that ring:

∀i,
Topo(SwitchmiPortni) == Switchmi+1Portni+1

root ∈ Flows(SwitchmiPortni)

(16)

The victim flow contends with the loop traffic on one of
the switches on that ring:

∃ j,where j ∈ [0,1, ...,k]
victim ∈ Flows(Switchm j Portn j)

root ∈Contributors(Switchm j Portn j)

(17)

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 285

Collie: Finding Performance Anomalies in RDMA Subsystems

Xinhao Kong1,2 Yibo Zhu2 Huaping Zhou2 Zhuo Jiang2

Jianxi Ye2 Chuanxiong Guo2 Danyang Zhuo1

1Duke University 2ByteDance Inc.

Abstract
High-speed RDMA networks are getting rapidly adopted in
the industry for their low latency and reduced CPU over-
heads. To verify that RDMA can be used in production, sys-
tem administrators need to understand the set of application
workloads that can potentially trigger abnormal performance
behaviors (e.g., unexpected low throughput, PFC pause frame
storm). We design and implement Collie, a tool for users
to systematically uncover performance anomalies in RDMA
subsystems without the need to access hardware internal de-
signs. Instead of individually testing each hardware device
(e.g., NIC, memory, PCIe), Collie is holistic, constructing a
comprehensive search space for application workloads. Collie
then uses simulated annealing to drive RDMA-related per-
formance and diagnostic counters to extreme value regions
to find workloads that can trigger performance anomalies.
We evaluate Collie on combinations of various RDMA NIC,
CPU, and other hardware components. Collie found 15 new
performance anomalies. All of them are acknowledged by
the hardware vendors. 7 of them are already fixed after we
reported them. We also present our experience in using Collie
to avoid performance anomalies for an RDMA RPC library
and an RDMA distributed machine learning framework.

1 Introduction
Data center applications relentlessly demand low packet la-
tency and high CPU efficiency. That makes Remote Direct
Memory Access (RDMA) an appealing solution for cloud
providers and other data center operators. Today, many top
companies have already adopted RDMA in their data cen-
ters [11, 20, 46]. RDMA has been integrated into many ap-
plication domains, such as graph processing [2, 41], data
stores [4, 16], and deep learning [14, 44].

To deploy RDMA in production, i.e., using RoCEv2 for
Ethernet-based data center network, we need to make sure
that the RDMA network performance can meet our expecta-
tions, free of performance anomalies like low throughput and
pause frame storm [11, 13, 32, 46]. This is important because
applications require high-performance RDMA networks to de-

liver their service-level objectives (SLO). Furthermore, some
abnormal behaviors, like pause frame storms, can cause catas-
trophic consequences including deadlocking the entire data
center network [8, 11, 13, 37].

We have encountered the following anomalies in our Ro-
CEv2 production environment:

• A particular application workload’s performance of the
same RDMA NIC (RNIC) varies substantially on servers
with only a slight difference in their PCIe specifications.

• A specific application workload only triggers pause
frame storms with certain NUMA settings on a particular
RNIC combined with particular server hardware.

• A particular application workload triggers pause frame
storms with only a single connection on a particular
RNIC from a particular vendor.

Although we collaborate with the most reliable vendors
and they have conducted extensive tests on individual devices,
the entire RDMA subsystem still has anomalies. The RDMA
subsystem consists of RNICs and other server hardware that
interacts with the RNICs. Our observation is that most of
the anomalies are highly related to the interactions between
RNICs and rest of the server hardware. Additional integration
tests are thus critical, and we usually conduct these tests on
our own because of two reasons. First, vendors cannot access
our highly customized hardware, system configurations, and
applications. Second, anomalies are too critical for the relia-
bility and performance of the entire data center network, and
we cannot completely rely on third parties for testing.

Currently, there are two approaches to conduct tests over
the entire subsystem. The first approach is to run simple test
benchmarks (e.g., Perftest [34]) to conduct basic through-
put and latency tests. The second approach is to run a set of
representative RDMA applications. Unfortunately, these two
approaches are not able to comprehensively uncover RDMA
subsystem anomalies. The fundamental problem is that these
approaches only test simple or existing workloads. They there-
fore fail to capture anomalies comprehensively because real

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 287

application workloads change over time. In addition, even if
an anomaly is found with an application workload, applica-
tion developers do not know how to modify the workload to
avoid the anomaly.

Our goal for this paper is to explore the possibility of sys-
tematic search for application workloads that can trigger
performance anomalies in RDMA subsystems. Finding these
anomalies for the vendors can help them improve their hard-
ware and thus improve the reliability and the performance
of the entire data center network. Besides, the systematic
approach can help developers understand the conditions to
trigger such anomalies and how to avoid them by changing
application workloads.

To realize this goal, the first question is how to formally de-
fine an anomaly? Having such a definition is difficult because
application performance highly depends on the workload and
the hardware. In this paper, we focus on two types of perfor-
mance anomalies that can be precisely defined: no PFC pause
frames if the network is not congested and throughput should
be bottlenecked either by bits/second or packets/second as in
RNIC specification.

Given this definition, we still need to address three chal-
lenges. The first challenge is how to build a comprehensive
workload search space. An ideal approach for testing with the
entire RDMA subsystem is to exactly modeling each com-
ponent and then construct the search space. However, this is
extremely hard for us, given the black-box nature of RNIC
and other hardware components. The second challenge is
even after we successfully construct a comprehensive enough
search space, how can we search efficiently? The search space
is inherently very large because RDMA subsystems are com-
plicated. For example, traffics within an RDMA subsystem
can be from/to different memory devices (e.g., main memory
and GPU memory) and the transportation setting for a given
workload is various (e.g., number and type of connections).
Conducting tests blindly in such a large space is inefficient.
The third challenge is how to find the complicated triggering
conditions of such anomalies? This is important both during
the search and after the search. During the search, we need
the triggering condition to avoid testing similar application
workloads for the same anomaly to speed up the search. After
the search, we need to use these conditions to help developers
avoid anomalies.

To this end, we design and implement Collie, the first tool
to systematically uncover RDMA subsystem performance
anomalies, with the following three ideas.

Our first idea is to construct the search space from a de-
veloper’s perspective. Though the underlying hardware is
various and opaque to us, the narrow-waist RDMA program-
ming abstractions (i.e., verbs) are clearly defined and stable.
All application workloads can be interpreted as a combina-
tion of verbs operations. We carefully analyze the standard
verbs library and the design decisions developers are allowed
to make (the request pattern, how RDMA buffers are allo-

cated, etc.). Moreover, to cover the entire RDMA subsystem,
we analyze all the potential data flows within a given server
configuration. In this way, Collie constructs a comprehen-
sive search space for application workloads in the domain
of RDMA subsystem, including the host of the network traf-
fic (e.g., GPU connected to a different PCIe bridge from the
RNIC, DRAM from a different CPU socket), message sizes,
number of connections, and memory region configurations.

Our second idea is that we can use two sets of counters
to guide the search. The first set is the performance coun-
ters (e.g., bits per second), which are provided by all com-
modity RNICs and other hardware components. In addition,
modern commodity RNICs and other hardware components
provide diagnostic counters (e.g., PCIe backpressure). Diag-
nostic counters are mapped to particular unexpected events
that happen to the hardware components. These counters are
currently only used for debugging and monitoring purposes.
Collie uses search algorithms based on simulated annealing
to maximize/minimize counter values to uncover anomalies.

Our third idea is to find the minimal area in the search
space that covers the found anomalies. We call this area (i.e.,
the conditions to trigger the anomaly) the minimal feature
set (MFS). Collie includes a MFS algorithm to test each
feature that an anomaly has (e.g., number of connections)
and generate the necessary conditions set. With the MFS
algorithm, Collie can further improve search efficiency by
avoiding redundant tests of the same area. Also, finding the
triggering conditions of an anomaly allows developers to
avoid the anomaly by breaking one of the provided conditions.

We evaluate Collie on 8 different RDMA subsystems, in-
cluding 6 types of RNICs from NVIDIA Mellanox and Broad-
com, with speeds between 25 Gbps and 200 Gbps. Before we
build Collie, we already know 3 existing performance anoma-
lies by testing with existing RDMA applications. Collie suc-
cessfully reproduces all of them and has found 15 new anoma-
lies. We report these anomalies to the vendors, and all of them
are acknowledged. 7 of them are already fixed by firmware
upgrade or detailed configuration following our vendors’ in-
structions. We also describe our experience in using Collie
to guide an RDMA RPC library and an RDMA distributed
machine learning framework to avoid these anomalies. These
experiences show Collie can help data center operators to
uncover anomalies and assist RDMA application developers
to implement better applications.

This work makes the following contributions:

• We design a developer-oriented approach to systemati-
cally construct a search space of application workloads
to find performance anomalies in RDMA subsystems.

• We propose the first work to leverage hardware counters
to guide the search for performance anomalies. These
counters do not have proprietary hardware knowledge.
This makes Collie general and useful for all types of
RDMA subsystems.

288 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

RNIC

NIC Cache

MMU

TX Buffer

RX Engine

RX Buffer

PCIe Interface

Ringing Doorbell

Memory Translation
and Authorization

Cache Miss

Packet DecapsulationPacket Encapsulation

Loopback Traffic

RX Data Processing and
Completion Generation

TX Engine

1

4

8

2

3

6

5

4 4

7

4 6

5 7

0 2

1 3

PCIe
switch

PCIe
switch

GPU0 GPU1 GPU2 GPU3

PCIe
switch

PCIe
switch

GPU4 GPU5 GPU6 GPU7

RNIC RNIC RNIC

NVSwitch

12

13

15
9 10

xGMI

Control Flow

PCIe
NVLink
Cross-Chiplet

Data Flow

Server

NIC

Socket 0 Socket 1

1

16

14

11

Figure 1: An example of an RDMA subsystem (RNIC internal design and its deployment environment in a server). Red circles mean potential
performance bottlenecks that can trigger performance anomalies.

• We develop a simulated annealing based search algo-
rithm and MFS algorithm. These algorithms speed up
search and help developers avoid anomalies.

• We implement Collie, the first tool to help data center
operators to uncover and avoid RDMA subsystem per-
formance anomalies. Collie has found 18 anomalies (3
known ones and 15 new ones). We present these anoma-
lies, their mitigation strategies, and their implications.

2 Background

2.1 RDMA Subsystem Performance Anomalies

RDMA is increasingly deployed in data centers for applica-
tions to achieve high throughput and high CPU efficiency.
An application process can directly communicate through an
RNIC with a remote process without involving either side’s
CPUs. RDMA requires a lossless network to achieve high
performance. The default technology to deploy RDMA for
Ethernet-based data centers is RoCEv2 [11, 46]. It relies on
Priority-based Flow Control (PFC) [35] mechanism to guaran-
tee a lossless network: once an ingress queue length exceeds
a threshold, the switch/NIC sends out a PFC pause frame to
the upstream egress queue, asking the egress queue to pause
for a duration to avoid ingress queue overflow.

RDMA subsystem performance does not always meet user
expectations and can have severe performance anomaly. Ac-
cording to our production experience, specific application
workloads can trigger hardware bottlenecks of a particular
type of RDMA subsystem and cause the entire subsystem
performance to drop drastically. Applications of the same
subsystem will be affected (e.g., throughput drop) and miss
the service level agreement. Worse still, an anomalous RDMA
subsystem can send out a large amount of PFC pause frames,
which pauses the priority queue of the corresponding switch

port and may threaten the entire data center network, such as
causing head-of-line blocking and PFC deadlocks [11,13,28]

Though the vendors of RNICs and other hardware com-
ponents (e.g., GPU, motherboard) have conducted extensive
tests on their products, we still find many anomalies in our
RoCEv2 production environment. The fundamental reason
is that RDMA performance is highly related to the entire
RDMA subsystem, consisting of both RNIC internals and
other hardware components. Figure 1 shows the complexity
of an RDMA subsystem. This figure is based on public
resources [24, 32, 42] and does not expose proprietary in-
formation. Our conversation with Mellanox indicates that
a real RNIC is much more complex than our figure shows.
To the best of our understanding, an RNIC has at least 6 com-
ponents: (1) a TX engine that receives doorbells (a signal
mechanism for the server to notify RNIC to send a request),
fetches and processes requests, and initiates transmission; (2)
an MMU that translates the virtual address to physical ad-
dress for RDMA memory regions; (3) an SRAM-based NIC
cache that caches per-connection metadata and memory trans-
lation table; (4) a RX engine that processes incoming data
and generates completion to notify server; (5)(6) buffers that
hold packets to transmit and received packets. An RNIC is
connected to a server via PCIe. The server has two CPU sock-
ets and each CPU socket has four CPU chiplets (Only AMD
CPUs and new-generation Intel CPUs have cross-chiplet com-
munication, otherwise all the cores inside a CPU socket share
the last-level cache.) RNICs and GPUs are all connected to
PCIe switches.

There are many potential performance bottlenecks inside
the RNIC and between the RNIC and other hardware com-
ponents within the RDMA subsystem. We use red circles to
show such potential bottlenecks (in Figure 1). When these
bottlenecks are triggered, the network performance may drop
and the RNIC can even send out pause frames to reduce

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 289

the amount of traffic going through the RNIC. We find that
many anomalies only occur when multiple bottlenecks or
the bottlenecks between different components are triggered.
For example, when the RNIC receives a packet, it will store
the packet in RX buffer, process the packet (circle 7), and
finally DMA the content to main memory or GPU memory
(circles 10, 12, 13 or circles 10, 12, 14). Normally, the RX
buffer won’t accumulate much because the PCIe bandwidth
is larger than RNIC’s line rate (circle 1). However, once there
exists loopback traffic (e.g., the client and server are collo-
cated on the same host), the loopback traffic (circle 11) may
drain the PCIe bandwidth and cause RX buffer accumulation.
It depends on both the RNIC and the PCIe slot. The worst
consequence is that the RNIC keeps sending a large amount
of PFC pause frame and threatens the entire data center net-
work. Vendors’ individual tests are not able to uncover this
anomaly because it depends on the combination of circles 1,
11, 12 (even more) from different components. Further, data
center operators like us may use highly customized hardware
or specific system configurations that are not accessible to
vendors. This makes it necessary and crucial for us to conduct
our own independent tests before deploying RDMA hardware
in production, especially for anomalies that can potentially
generate pause frame storms.

2.2 Existing Approaches

Data center operators’ tests are integration tests: instead
of testing individual hardware components, these tests fo-
cus on the performance of the entire RDMA subsystems.
There are two existing approaches. The first approach is
to run a set of test traffic, such as Perftest [34] and
OSU micro-benchmarks [33]. The second approach is to
run a representative set of real applications. However, these
two approaches can not uncover RDMA subsystem perfor-
mance anomalies comprehensively. For example, we deploy
200 Gbps RNICs in our clusters to support a performance-
critical distributed machine learning framework. We test the
machine learning framework on the cluster of these RNICs,
and there is no performance anomaly found. We also have
done extensive testing both with synthetic testing workloads
and other real applications before deployment. However,
months after deployment, our developers find that the per-
formance of the framework has reduced significantly, even
worse than just using 100 Gbps RNICs. At the same time, a
substantial amount of pause frames are generated from these
200 Gbps RNICs. This is strange because pause frames usu-
ally appear with hundreds of connections that trigger con-
gestion, but our machine learning framework only creates a
few connections between each server pair. We stopped the
machine learning framework and ran our performance tests
again, and everything is normal. After several weeks of care-
ful debugging, we finally realize that the case only happens
when the application (1) use one-sided RDMA operations
with Reliable Connection, (2) has bidirectional traffic, (3)

Workload Generator

Simulated
Annealing

Anomaly Monitor

Anomaly
Detection

MFS
Generation

Workload Engine

Workload Setup

Updated MFS Set

Counters
(Perf and

diagnostic)

Workload pattern

RDMA Subsystem

Set up workload

Throughput,
PFC pause frames

Figure 2: System Overview. The workload engine sets up RDMA
traffic. The anomaly monitor detects performance anomalies and
their minimal feature sets. The workload generator fetches hardware
counters and decides the workload pattern to test.

uses a particular workload including a mixture of small and
large messages, (4) with 200 Gbps RNIC on particular AMD
servers. We find that the developers for our machine learning
framework slightly modified their code after passing our appli-
cation tests. The new workload contains messages of mixed
lengths (i.e., a large message followed by a small message
followed by a large message in bidirectional traffic), which
triggers a performance bottleneck between the RNIC and the
PCIe switch. This is not a problem with 100 Gbps RNICs
from the same vendor or on other types of servers.

The fundamental reason why current approaches fail
to uncover such anomalies is that they only test existing
workloads and inherently are not able to capture anomalies
triggered by unknown workloads. However, real application
workloads are various and will change over time. Besides,
even current approaches have found such anomalies, it is
hard and time-consuming to locate the triggering conditions.
Capturing the triggering conditions of performance anoma-
lies allows data center operators to work with vendors to
fix potential hardware/firmware bugs, and improve the reli-
ability and performance of the data center network. When
fixes to the anomalies are not immediately available (e.g.,
firmware upgrade, hardware replacement), application devel-
opers can build high-performance RDMA applications by
avoiding workload that can trigger anomalies.

3 Overview
We build Collie, the first tool to help data center operators sys-
tematically search for application workloads that can trigger
performance anomalies.

The first question we need to answer is how to define an
anomaly? Unfortunately, today there does not exist such a
definition. Having such a definition is fundamentally hard
because application performance (e.g., latency) can be highly
dependent on the workload and the hardware. Instead of try-
ing to capture the entire set of anomalous behaviors, we fo-
cus on two types of performance anomalies that are of great
importance in production environment and can be precisely
defined: when applications keep injecting RDMA traffic into

290 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the network, (1) no PFC pause frames should be generated if
the network is not congested; (2) throughput should be bot-
tlenecked either by total bits/second or total packets/second
as in RNIC specifications. The first definition ensures that
an RDMA subsystem will not threaten the entire data center
network and the second ensures that an RDMA subsystem’s
capability matches user expectation. 1 We discussed this defi-
nition with several hardware vendors, and they all agree with
our definition. Even though some anomalies may be due to
system limitations rather than bugs, it is also important for
both vendors and us to be aware of them. We report all the
anomalies we found using this definition to the hardware
vendors, and they acknowledged all the reported anomalies.
We believe that this definition naturally matches the appli-
cation developer’s mental model of RDMA and thus allows
developers to roughly estimate the network performance.

Given this definition of anomaly, we still need to overcome
three major research challenges.

Challenge #1: How to design a comprehensive workloads
search space for a given RDMA subsystem? An ideal solution
is to carefully analyze and modeling the entire RDMA subsys-
tem, and then construct the search space from the perspective
of hardware. This complete white-box approach allows us to
test all bottlenecks and the combinations of them givens an
RDMA subsystem. However, it is impractical for data cen-
ter operators like us due to the black-box nature of RNICs
and other hardware components. Our key observation is that
though the components of RDMA subsystems are black boxes
and there are diverse RDMA applications, the abstractions
between the hardware and applications are clearly defined and
stable. All application workloads are essentially composed
of a series of basic verbs operations, a narrow waist of the
RDMA programming. With this observation, we carefully
analyze this RDMA programming abstraction and design a
general search space (§4).

Challenge #2: How to search efficiently? Due to the com-
plexity of RDMA subsystems and the variety of workloads,
the size of search space is very large. Unfortunately, none of
existing heuristic search algorithms can be directly applied
due to the lack of a search signal (e.g., direction for the next
workload to test). We observe that there are two sets of coun-
ters commodity RDMA subsystem provide can be leveraged
to guide the search. The first set is known as performance
counters. For example, all modern RNIC provide the counter
of bits sent per second for monitoring purpose. The second
is known as diagnostic counters. Modern RNICs and other
hardware components expose diagnostic counters for debug-
ging purpose (e.g., the counter indicates PCIe backpressure
and NIC internal cache miss) [22, 23]. Diagnostic counters

1We do not use latency as a metric to define anomalies. The only latency
specification for RNICs is the latency under zero load. We did not observe any
anomaly in this way, probably because the RNIC is not stressed. However,
when RNIC is stressed, it is hard to accurately define the correctness of
latency or tail latency due to queuing delay.

are more informative. For example, when some bottlenecks
of the RDMA subsystem are triggered, the performance may
not drop while the corresponding diagnostic counter has in-
creased. However, using diagnostic counters typically requires
vendor’s assistance, and the number of diagnostic counters
customers can access depends on vendors. For Collie to be
general, we use both performance counters and optionally
diagnostic counters as search signals. We conduct the effi-
cient search by using a simulated annealing based algorithm
to drive these counters to extreme value regions (§5.1).

Challenge #3: How to find the set of conditions to trigger
anomalies? Some anomalies are complicated and only occur
when many features co-exist, such as a certain type of trans-
portation, particular message pattern, lots of connections, and
specific batching operations. We invent a minimal feature set
(MFS) algorithm to detect each factor’s contribution to the
uncovered anomaly and construct the necessary conditions
set. To search efficiently, we use MFS to avoid testing similar
workloads that map to the same anomalies. After the search,
developers use the MFS to understand the triggering condi-
tions for each anomaly and bypass them accordingly when
the fixes are temporarily unavailable (§5.2).

Figure 2 shows our system design. Collie consists of three
core components: (1) a workload engine that conducts experi-
ments on RDMA subsystems by setting up RDMA traffic; (2)
an anomaly monitor that detects performance anomaly and
MFS to reproduce the observed anomaly; and (3) a workload
generator that decides the next workload pattern to experi-
ment based on the counters collected in the RDMA subsystem
and the current search space. All the experiments Collie does
are on the RDMA subsystem with two servers with RNICs,
connected with a commodity switch.

4 Search Space and Workload Engine
There are two types of factors that can affect an RDMA sub-
system performance in deployment. First, we need to consider
the application workloads. These include host topology (i.e.,
where does traffic come from inside a server), how many
memory regions the application registered, what transport
applications choose to use, and the message patterns. Second,
we need to consider the network behavior, for example, con-
gestion on switch and packet loss rate. Currently, our paper
focuses on constructing a comprehensive search space for the
first factor. For the network behavior, we consider a simplified
environment: two RNICs connected by a single switch, and
there is no packet drop on the switch. Collie can be easily
generalized to test more complicated environments.

We take the bottom-up approach to construct a compre-
hensive search space for various application workloads. We
decompose application workloads into combinations of basic
RDMA operations and construct the search space based on
these combinations. Figure 3 shows the key abstractions and
operations of RDMA programming. These are only high-level
software abstractions exposed by standard verbs API and we

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 291

Queue Pair
(QP)

Completion Queue
(CQ)

Memory Region
(MR)

ibv_create_qp(…)
ibv_modify_qp(…)
Dimension (3)

ibv_create_cq(…)
Dimension (3)

ibv_reg_mr(…)
Dimension (1)
Dimension (2)

ibv_post_send(…)
ibv_post_recv(…)
Dimension (4)

ibv_poll_cq(…)
Dimension (4)

Work Queue Element
(WQE)

Generate CQ element

Figure 3: RDMA programming abstractions

do not need to know how these high-level abstractions are im-
plemented in the RNIC. In this way, the search space is more
comprehensive and general because it does not rely on either
extra proprietary RDMA subsystem hardware knowledge or
specific application features. In addition, the combinations of
verbs operations are inherently able to describe workloads of
both single application and co-existing scenarios.

We examine the RDMA programming model at first and
extract four search dimensions that jointly describe the appli-
cation workloads of the entire subsystem. To send a message
through RDMA networks, applications first need to register
a set of memory regions (MRs), using ibv_reg_mr. Once
registered, an RNIC has the right to directly access these MRs
without CPU involvement. Second, applications create a set
of queue pairs (i.e., connections in traditional networking
terminology), using ibv_create_qp and ibv_modify_qp.
Applications need to choose a transport type for each queue-
pair (QP). There are three standard types of QPs: Reliable
Connection (RC), Unreliable Connection (UC), and Unreli-
able Datagram (UD). Applications can use ibv_post_send
or ibv_post_recv to post a list of Work Queue Element
(WQE). Each WQE represents a work request and has a
scatter-gather (SG) list. Each SG list contains a list of en-
tries and each entry designates a contiguous memory region
that is within the registered memory regions. A WQE can
notify the RNIC to READ/WRITE remote memory (1-sided
operation) or SEND/RECV local memory to/from a remote
server (2-sided operation). To know that a WQE is complete,
the application can register a completion queue (CQ) using
ibv_create_cq, and the application can call ibv_poll_cq
to poll on the CQ to get completion queue elements (CQE).
Given this RDMA programming model, we extract the fol-
lowing search dimensions.

Dimension 1. Host Topology. Host topology describes how
traffic flows to/from an RNIC to/from other server hardware
components. Individual component tests are hard to cover this
dimension while the topology has a huge impact on RDMA
subsystem performance. For example, traffic can be from
NUMA-affinitive DRAM or from a GPU that needs to traverse
both PCIe and SMP interconnect between NUMA nodes. The
latter will have a longer data path and therefore higher average
DMA latency. This will trigger PCIe backpressure to the
RNIC and may induce performance anomalies under some

specific application workloads. We list all accessible memory
devices for this dimension.

Dimension 2. Memory Allocation Settings. Traditional
RDMA testing is not comprehensive for this dimension, while
the memory allocation settings are crucial for RDMA subsys-
tem performance testing. First, the number of MRs affects
RDMA subsystem performance because RNIC has an MMU
that translates virtual addresses of memory regions to DMA-
capable physical addresses and handles memory protection
(e.g., authorization). RNIC only caches a fixed size of entries
of the memory address translation table. If too many MRs are
registered, it is then likely that the RNIC encounters cache
miss and needs to access memory address translation tables on
server DRAM via extra PCIe operations. These interactions
have an impact on the performance. Second, MRs can have
different sizes. This also affects RDMA performance because
the size also affects the number of translation table entries.
Moreover, many RNICs use Intel Data Direct IO (DDIO) to
directly access the CPU’s last-level cache. If the access range
of an MR is large, it can cause severe cache misses in the
CPU’s last-level cache [3]. This dimension is bounded be-
cause we can set a reasonable upper bound on the number of
MRs (200K), and the MR size is bounded by the total amount
of memory that can be registered (pinned) in the physical
server.

Dimension 3. Transport Setting. Transportation setting is
crucial for RNIC performance, and this is well known in the
research community [15,17,27]. We use the following factors
to compose the transport setting: (1) QP type (RC, UC, UD),
(2) the number of QPs, (3) the opcode type (SEND/RECV,
WRITE, READ), and (4) the usage of SG and WQE. Differ-
ent QP type with different opcode creates different pressure
for the RNIC. For example, UD does not require ACK for
each packet, which lessens the RNIC packet processing pres-
sure. However, the SEND/RECV requires pre-posted receive
buffers, which puts more pressure on the RNIC cache. The
number of QPs also has a great impact on RNIC performance
because of the limited RNIC cache. This is known as the
scalability problem [3, 15, 32]. How SG list and WQE affect
RNIC performance is a bit tricky. RNICs have to consume ex-
tra PCIe bandwidth to fetch WQE from the host DRAM [17].
The PCIe bandwidth consumed by WQE becomes substantial
under some particular application workloads and can even be
the performance bottleneck. We enumerate all the transport
types and the opcodes (e.g., RC WRITE, UD SEND). It is
practical and reasonable to set an upper bound (e.g., 20K) for
the number of QPs because data center operators will hardly
set up more connections. The SG list and WQE can be pa-
rameterized by this formula: ∑

n
i=1 mi = k, where k denotes

the number of messages to send, n denotes the number of
WQE and mi denotes the number of SG elements within the
ith WQE.

Dimension 4. Message Pattern. Existing RDMA test-
ing approaches lack flexibility and comprehensiveness, es-

292 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

pecially for this dimension. Perftest [34] only repeatedly
send messages of a fixed size and other collective communi-
cation benchmarks (e.g., OSU benchmark [33]) test RDMA
similarly. These simple benchmark traffic are inadequate for
RDMA subsystem testing because they ignore the interaction
among different requests (i.e., WQE) in a sequence.

Our ideal goal is to construct this dimension that can repre-
sent any application message pattern. However, it is impracti-
cal because application traffic can be very different and the
interaction among different requests is unknown given the
black-box nature of RNIC. We therefore construct this dimen-
sion in the following way. We build a request vector with n
elements, where each element describe the request attribute
(e.g., size of the message to send). We assume that the 1st

request affects the 2nd , the 3rd , ..., the nth requests but won’t
affect the request after the nth. The larger n we set the larger
search space we can cover, but we also need to consume more
time. This kind of trade-off is similar to the approach when
testing file systems [21], where researchers test fixed-length
file system operation sequences. Modern RNIC has limited
Processing Units (PU) and pipeline stages [39], restricting the
number of outstanding requests an RNIC can process. We thus
set n to be the product of the number of PUs and the pipeline
stages. We discretize request size into multiple discrete value
regions based on MTU and the burst size of the RNIC. The
RNIC splits a long request into multiple bursts and processes
each burst at one time to avoid Head-of-Line (HoL) blocking.
The granularity can be easily modified. With more search
time, we can discretize request size in a more fine-grained
way. Message inter-arrival time is usually considered as a
parameter for application workloads. However, adding the
inter-arrival time will substantially extend our search space,
so we temporarily only consider the pattern without such
inter-arrival time.

Workload engine. We build a flexible workload engine
to conduct tests in our search space. Compared to traditional
traffic generation tools, e.g., Perftest2, our workload engine
is more flexible and has a holistic view. It can send and re-
ceive traffic with particular pre-defined patterns (e.g., a large
WRITE request followed by a small SEND request). Besides,
it supports various memory and transport settings, which can
test the entire subsystem holistically. To test with a point in
our search space, Collie first translates a test point’s settings
into a set of input parameters of the workload engine. For
example, the setting of dimension 1 and 2 are translated into
memory allocation parameters (i.e., which GPU or NUMA
DRAM to use and how many MR to register) of the engine.
Then, the workload engine will take these input parameters
to set up connections and generate traffic.

2Existing tools, e.g., Perftest, are arguably not designed for this type of
testing. They are performance benchmark tools. However, we are not aware
of any other tools can that test RDMA subsystems.

Algorithm 1 Search for Performance Anomalies
Input: S: initial anomaly set; T0: a high enough initial temperature;

Tmin: the lowest limit of temperature; n: the number of times SA
runs for a certain temperature;

Output: S: An updated anomaly set;
1: Pold ,Mold = MeasureRandomPoint(); pick a random point,

setup traffic and collect metrics as M
2: while T > Tmin do
3: for i = 0; i < n; i++ do
4: mutate Pold for a new application workload Pnew;
5: if MatchMFS(S,Pnew) then continue;
6: Mnew = MeasurePoint(Pnew);
7: ∆E = CompareMetric(Mnew,Mold);
8: if ∆E < 0 then
9: Pold = Pnew

10: else
11: the probability prob = exp(−∆E/T(i));
12: if rand(0,1)< prob then Pold = Pnew;
13: end if
14: if IsAnomaly(Mnew) then
15: new_m f s =ConstructMFS(Pnew);
16: Put new_m f s into S;
17: Pold ,Mold = MeasureRandomPoint(); pick another

random point when a new anomaly is found
18: end if
19: end for
20: T = T ∗α; where α is decay factor
21: end while
22: return S

5 Search for Performance Anomalies
The total size of our search space (i.e., the combination of
parameters) is on the order of 1036. Each experiment we do
requires 20-60 seconds, mostly depending on the number of
QPs to create and the number of MRs to register. This means
we cannot exhaust the search space. One naive approach is to
generate random input in the search space. This approach is
already much better than existing tests because the design of
our search space is more comprehensive than that in existing
tools (§7). However, similar to typical black-box fuzz testing
on software, random inputs can only find few anomalies and
cannot efficiently uncover complicated anomalies that require
multiple conditions to hold simultaneously.

5.1 Workloads Generation

We leverage two types of counters to guide the search. The
high-level approach is to use an optimization algorithm to
drive counters to extreme value regions by keeping mutat-
ing the test workloads. For performance counters, we drive
the counters to low-value regions. For diagnostics counters
(which map to unexpected events), we drive the counters to
high-value regions.

Our algorithm is based on simulated annealing (SA). SA
is a probabilistic algorithm to find the global minimum of a
given function. The idea is to keep mutating the input in the
direction of minimizing a given function. SA calls the func-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 293

tion value energy. To avoid getting stuck at a local minimum,
SA maintains a temperature value. At the beginning of the
algorithm, the temperature is high and SA allows mutating
input in the direction of increasing the energy. As temperature
decreases during the search, SA is less likely to move the
input in the direction of increasing the energy. Finally, when
the temperature is below a certain threshold, every mutation
of the input must decrease energy. SA finishes when there is
no way to mutate the input to make the energy lower.

Algorithm 1 shows our algorithm that is based on SA. We
maintain a list of performance anomalies. Each anomaly is
an MFS (e.g., an area in the search space) that contains work-
loads to reproduce the performance anomaly. The search starts
from a random workload in the search space, and our algo-
rithm measures the counter values. In each iteration of SA,
we mutate the workload in one of our search dimensions (line
4). We test whether the new workload causes a performance
anomaly with our anomaly monitor. If so, we run our MFS
algorithm to determine the entire area in the search space
that belongs to this anomaly. We add the new anomaly to the
set and change the current workload to a random one. If the
new workload does not trigger a performance anomaly, we
measure the point by comparing counter values and decide
whether to move the current workload to the new one. We
always skip workloads that belong to an existing performance
anomaly for efficient search.

Our algorithm extends the standard SA algorithm in several
important ways to adapt it for our context. First, we compute
the energy in the following way: assuming the counter value
changes from A to B, we set the different in energy (∆E) to be
B−A

A for performance counters and A−B
B for diagnostic coun-

ters because we are minimizing performance counters and
maximizing diagnostic counters to trigger potential anomalies.
This also allows us to avoid value region problem (e.g., the
value regions of diagnostic counters are sometimes opaque).
Second, we do not require SA algorithm to find the actual
global optimum because we care about all potential anoma-
lies. We therefore always set a more relaxed temperature and
α that enable the algorithm to jump out of a certain stage
even when it has already run lots of iterations. In addition, we
maintain a set of performance anomalies (i.e., MFS). When
mutating the point, we compare the mutated point with our
existing MFS (line 5). Each MFS contains a list of parameters
ranges. If the mutated point matches all parameters ranges
of an MFS (i.e., the parameter value of this point is in the
MFS’s range), we claim this point belongs to the MFS and
skip testing it. This ensures that the future search does not
redundantly test workload already covered by the existing set
of anomalies.

5.2 Anomaly Monitor

Our anomaly monitor detects performance anomalies and
computes the MFS of them.

Anomaly Detection Condition. We use two conditions to

detect anomalies. First, if any pause frame is generated. Here
we use a metric called pause duration ratio. If the pause du-
ration ratio is 1%, this means for every second, transmission
is paused by 10 ms. We set our threshold to be 0.1%. The
reason is our experiment platform only has two servers and
our switch that connects the servers support line rate traffic,
so there is no network congestion to begin with. We set the
threshold to be above 0, because RNIC may generate a few
pause frames when the memory bus or PCIe bus is busy tem-
porarily, especially when connections are just set up. Second,
each RNIC has its maximum bits per second and maximum
packets per second in its specification that can be easily ver-
ified by running simple benchmarks. Without performance
anomalies, network traffic should be restricted by either one
of these upper bounds. If a workload’s throughput (in terms
of both metrics) is 20% lower than the upper bounds, it means
that the performance is likely to be restricted by some other
bottlenecks of the RDMA subsystem. Collie reports this and
runs the MFS algorithm below.

Minimal Feature Set (MFS). After we detect an anoma-
lous workload, we need to know what features of this work-
load actually trigger the anomaly. For example, if we currently
find a new anomaly that has 5 features. It may be the case that
3 features are already sufficient to reproduce this anomaly.
One approach is to use machine learning based algorithms to
generate decision trees or deep neural networks to locate the
area in the search space for the anomaly. However, machine
learning approaches usually require much more training data
and thus many more hardware experiments.

We instead use a heuristic approach. Since we only have
4 search dimensions with few factors, we just do a few tests
on each dimension to determine whether a factor belongs to
the MFS. For example, if our search algorithm finds a certain
workload using UD can cause a performance anomaly. We
test whether the same workload with RC and UC can cause
performance anomalies. If not, UD belongs to the MFS be-
cause it is necessary to reproduce the anomaly. To determine
the MFS of a dimension that is continuous (e.g., number of
connections), we discretize them manually into a set of value
regions and test each of them. Finer-granularity discretiza-
tion is acceptable because MFS algorithm only runs when
uncovering a new anomaly and the number of anomalies is
relatively small compared to the entire search space.

We report all the anomalies to RNIC vendors and we
can wait for their fixes. Unfortunately, the solutions to these
anomalies are case by case. Some anomalies require vendors
to spend a substantial amount of time on coming up with
solutions and the solutions may not be applicable for data
center operators immediately, such as hardware replacement.
Hence, developers need to avoid such anomalies instead of
waiting for a fix. Collie provides MFS to help developers
avoid such anomalies by changing application workload to
break the conditions in the MFS.

MFS helps developers to avoid anomalies in two areas.

294 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Type RNIC Speed CPU PCIe NPS Memory GPU BIOS Kernel
A CX-5 DX 25 Gbps Intel(R) Xeon(R) CPU 1 3.0 x 16 1 128 GB - INSYDE 4.19
B CX-5 DX 100 Gbps Intel(R) Xeon(R) CPU 2 3.0 x 16 1 768 GB - AMI 4.14
C CX-5 DX 100 Gbps Intel(R) Xeon(R) CPU 2 3.0 x 16 1 384 GB V100 AMI 5.4
D CX-6 DX 100 Gbps Intel(R) Xeon(R) CPU 2 3.0 x 16 1 768 GB - AMI 4.14
E CX-6 DX 200 Gbps AMD EPYC CPU 1 4.0 x 16 1 2 TB A100 AMI 5.4
F CX-6 DX 200 Gbps Intel(R) Xeon(R) CPU 3 4.0 x 16 1 2 TB A100 AMI 5.4
G CX-6 VPI 200 Gbps AMD EPYC CPU 1 4.0 x 16 2 2 TB - AMI 5.4
H P2100G 100 Gbps Intel(R) Xeon(R) CPU 2 3.0 x 16 1 384 GB - AMI 5.4

Table 1: Testbed RDMA subsystems configurations. We use numbers in the name of concrete CPU types for confidentiality.

The first one is anomaly prevention. Before an application is
implemented, Collie lets developers restrict the search space
using their knowledge of their applications to represent all
the possible workloads. Then, Collie outputs whether the
restricted search space contains performance anomalies. If not,
assuming the developers’ understanding of their applications
is correct, the application won’t encounter any performance
anomaly found by Collie. The second one is debugging. When
an existing application unfortunately encounters anomalies,
we can run Collie on the RDMA subsystem and generate
all the MFS. Comparing the application with the generated
MFS, Collie provides several suggestions that help to break
the triggering conditions. We present two real cases to show
how MFS helps developers in §7.3.

One caveat of our approach is that we are not able to know
the root causes of these anomalies given the black-box nature
of the RNICs and other hardware components in the RDMA
subsystem. This means it may be the case that multiple MFS
are actually due to the same anomaly (i.e., the same hardware
bug). This is acceptable because the goal of MFS is to ac-
celerate the search algorithm by eliminating redundant test
cases and help developers understand what features of the
workloads can trigger the anomaly. We anyway need to report
all the anomalies (i.e., all the MFS) we found to the vendors
and that is also the best we can do given the RNIC black-box
hardware nature.

6 Implementation
The workload generator and the anomaly monitor are written
in ~2100 lines of Python. The workload engine is imple-
mented with ~2000 lines of C/C++. We directly use monitor
tools from vendors to collect hardware counters (both perfor-
mance and diagnostic counters) from the RDMA subsystem.

The workload engine is implemented with the verbs API
and rdma-core-34.0 libraries [38]. In deployment, the Mel-
lanox RNIC uses mlx5 driver (OFED 5.2-1.0.4.0) and the
Broadcom RNIC uses bnxt driver (1.10.1.216.2.89.0). The
workload engine set up connections by TCP out-of-band trans-
mission. When all connections are set up, the engine starts to
generate workload.

The anomaly monitor collects primary metrics, such as
throughput and pause frame duration, four times per iteration.
It first decides whether the traffic is stable and then compares
the primary metrics (e.g., bits per second, packets per second)

with the pre-defined thresholds.
The workload generator collects counters using monitors

provided by vendors. These monitors provide counters every
second. Collie fetches these counters four times per iteration
and uses the average results.

7 Evaluation and Experience
We evaluate Collie on 8 different RDMA subsystems. Table 1
shows the hardware and related configurations. We use the
same anomaly detect conditions as described in §5.2

7.1 Performance Anomalies Found

Before we build Collie, we already know 3 existing anomalies.
Collie can find all the existing ones and find 15 new anomalies.
All of them are reported to our vendors and are acknowledged
by them. Table 2 shows the 18 anomalies. We only present
those found on subsystem F and H because anomalies found
on other subsystems are subsets of those found on F. Ap-
pendix A provides details about these anomalies, including
the exact workload, as well as the explanations and solutions
from vendors. Here we choose two tricky anomalies to show
the importance of Collie’s systematic search.

Anomaly #4: Bidirectional RC READ with large WQE
batch size, long SG list, and a few connections causes PFC
pause frames. Our vendors have successfully reproduced this
anomaly in their environment using Collie’s traffic genera-
tor and acknowledged it, but currently there is no fix. This
anomaly cannot be found by existing approaches such as
using Perftest to generate workloads, because Perftest
does not support flexible WQE and SG list batching strategies.
Though Perftest is not designed for this purpose, it is the
prevalent tool to uncover performance anomalies. To the best
of our knowledge, we don’t see any other state-of-the-art work
address this problem, which also shows that Collie is the first
work to fill this vacancy.

Anomaly #10: Bidirectional RC WRITE with large WQE
batch size, particular message pattern, and a few connections
causes PFC pause frames. This anomaly is not captured by
existing approaches (e.g., running current applications) but we
successfully reproduce it by slightly modifying our production
RDMA RPC library: when users call the library to send a
message, it will try to send as many messages as possible in a
WQE batch. The batch size is highly dependent on the timeout
value. If the application is throughput sensitive rather than

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 295

RNIC Direc. Transport MTU WQE SGE WQ depth Message Pattern # of QPs Symptom
#1 CX-6 - UD SEND - ≥64 - ≥ 256 - - pause frame
#2 CX-6 - UD SEND - ≤8 - ≥1024 ≤1KB ≥≈16 low throup.
#3 CX-6 - RC READ 1K - - - ≥16KB - pause frame
#4 CX-6 Bi- RC READ - ≥32 ≥4 - - ≥≈160 pause frame
#5 CX-6 - RC SEND 1K ≥64 - ≥1024 ≥2KB and ≤8KB - pause frame
#6 CX-6 - RC SEND 1K ≤16 ≥2 ≥1024 ≤1KB ≥≈32 low throup.
#7 CX-6 - RC WRITE - No - - ≤1KB and ≥≈12K MRs - low throup.
#8 CX-6 - RC WRITE - No - ≤16 ≤1KB ≥≈500 low throup.
#9 CX-6 Bi- - - - ≥3 - mix of ≤1KB & ≥64KB - pause frame

#10 CX-6 Bi- RC WRITE - ≥64 - - mix of ≤1KB & ≥64KB ≥≈320 pause frame
#11 CX-6 Bidirectional cross-socket traffic on particular AMD servers pause frame
#12 CX-6 Particular GPU-Direct RDMA traffic on particular servers pause frame
#13 CX-6 Co-existence of loop traffic and receiving traffic pause frame
#14 P2100 Bi- RC 4K - ≥4 - - ≥≈1300 low throup.
#15 P2100 - UD SEND - - - ≥64 - ≥≈32 pause frame
#16 P2100 - RC READ 1K ≥8 - - - ≥≈500 pause frame
#17 P2100 - RC SEND - ≤16 - ≥128 ≤1KB ≥≈64 pause frame
#18 P2100 Bi- RC 1K ≥32 - - ≤64KB ≥≈30 pause frame

Table 2: Performance anomalies found on subsystem F and H with the necessary conditions to trigger them. Anomalies marked with green
color are new anomalies found by Collie. Rest are the anomalies we know before building Collie.

latency sensitive, the timeout value can be set high, which
allows a larger batch size. Currently the timeout value is set
small because most applications supported by this library
are latency sensitive. However, by changing this value we
successfully enlarge the WQE batch size and the conditions of
#10 are all met. This shows the importance of the anomalies
found by Collie, as well as how Collie can capture those
anomalies missed by existing solutions.

We try our best to reproduce the anomalies found by Collie
using existing workload generators (e.g., Perftest), only 4
of them (#3, #8, #13, #15) can be reproduced with very careful
parameters tuning. Rest anomalies are all outside the search
space of existing approaches.

7.2 Running Time for Anomaly Search

To evaluate the efficiency of performance anomaly search, we
compare Collie with two baselines: (1) random input genera-
tion in our search space and (2) Bayesian Optimization (BO),
a widely used method in search problem [31]. We implement
the BO approach based on [31]. We set the counter values
as BO’s optimization target. Our vendors provide us with 9
diagnostic counters. For Collie and BO, we first generate 10
random points. We then compute the standard deviation over
the mean of the counter values collected in the first 10 run and
use the result to rank these diagnostic counters in decreasing
order. Both Collie and BO optimize each diagnostic counter
in this order. For a fair comparison, we use MFS to enhance
BO as well. In this section, we use subsystem F as an example.
We run each search for 10 hours.

Figure 4 shows the running time to find performance
anomalies. Random input (i.e., fuzzing) can already find 7
anomalies that only require simple conditions to trigger. BO
does improve efficiency but to a very limited extent. BO can
speed up the search process but only find 8 anomalies with

the given time. We analyze the optimization process of BO
and find that it is not able to optimize the corresponding coun-
ters. Our guess is that BO works well when counter values
are smooth in the search space. However, the counter values
in our search space can have sudden changes, because some
discrete dimensions have a huge impact on the counter values
(e.g., QP type). Collie uses a simulated annealing based algo-
rithm to optimize the counter values and successfully speed
up the search process. Given limited time, it can find all the
performance anomalies of this RDMA subsystem. We be-
lieve this improvement comes from the optimization process:
driving counters to extreme regions is more likely to trigger
performance anomalies. It is possible that a more efficient
search algorithm (e.g., a fine-tuned BO, reinforcement learn-
ing) can perform better, and it is worth future exploration.
However, our goal here is to demonstrate that existing simple
optimization algorithms, such as simulated annealing, can
search efficiently with these hardware counters.

Collie uses diagnostic counters and MFS to further speed
up the search. Now we break down their contribution to our
overall search speed. Figure 5 shows the result.

The value of diagnostic counters. Figure 5 shows that
with performance counters, Collie (Perf) has already found
11 of the 13 anomalies, including the 3 existing ones. This
proves that the performance counters are informative and can
be used to improve search efficiency. It shows the generality
of Collie because performance counters are general and pro-
vided by all commodity RDMA subsystems. Figure 5 also
shows that using diagnostic counters can further improve the
speed. Given limited time, Collie (Diag) can uncover more
anomalies and is faster. For example, Anomalies #7 and #8 are
not captured by Collie (Perf) because there is no performance
change during the search, but Collie (Diag) can observe the

296 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Anomalies found

0

100

200

300

400

500

600

Ru
nn

in
g

tim
e

(m
in

ut
es

)

Random BO Collie

Figure 4: Mean time to find anomalies with random input generation,
BO, and Collie. Error bars denote standard deviations. There is no
red bar starting from 8, and no purple bar starting from 9, because
random input generation and BO can only find 7 and 8 anomalies,
respectively.

increase of RNIC internal cache miss and uncover them.

The value of minimal feature set (MFS) The main differ-
ence between SA and Collie is whether MFS is applied. With
MFS, the efficiency of all approaches (both using diagnos-
tic counters and using performance counters) is significantly
improved. For example, Collie (Diag) only uses about half
of the time to uncover all the anomalies found by SA(Diag).
MFS improves efficiency by eliminating redundant tests from
the search space. Otherwise, approaches without MFS may
be stuck in the area of an uncovered anomaly.

To understand why increasing diagnostic counter values
can help to find anomalies and how MFS works, here we
use Receive WQE Cache Miss counter as an example. We do
not rely on the meaning of these diagnostic counters during
the search. To the best of our knowledge, the counter means
the number of times that RNICs need to issue extra DMA
operations to fetch receive WQE from host DRAM.

Figure 6 shows the diagnostic counter values during the
search. The random input generation approach (the orange
line) does not increase the diagnostic counter value and thus
cannot find many performance anomalies. Collie w/o MFS
(the green line) can drive the diagnostic counter value very
high, but it cannot find many distinct performance anomalies
because further increasing the counter value in the neigh-
boring regions of existing performance anomalies wastes
time. Collie (the blue line) is effective in finding performance
anomalies, because it can both increase the diagnostic counter
value to find application workloads that cause anomalies and
also do not need to test application workloads that belong
to the same anomaly. Figure 6 shows that most anomalies
are found when the diagnostic counter value is high. This
also supports the intuition that it is likely to trigger perfor-
mance anomalies when the diagnostic counter value is driven
to extreme regions, which indicates the RDMA subsystem
is under pressure. Some anomalies in Figure 6 do not show
a high value of this counter. This is mainly due to that they
are anomalies that can be easily triggered. They are usually
triggered at the beginning of the search process (left corner of
Figure 6) and another corresponding diagnostic counter value

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Anomalies found

0

100

200

300

400

500

600

Ru
nn

in
g

tim
e

(m
in

ut
es

)

Collie w/o MFS(Perf)
Collie w/o MFS(Diag)

Collie(Perf)
Collie(Diag)

Figure 5: Mean time to find anomalies. (Diag) means diagnostic
counters, and (Perf) means performance counters. Error bars denote
standard deviations.

is high. For example, Anomaly #13 has simple triggering con-
ditions and is usually found very soon. It does not increase the
Receive WQE Cache Miss counter but will increase another
counter, the counter of PCIe Internal Back Pressure.

7.3 Using Collie for Application Design

We use Collie in the development and performance debugging
of two key RDMA applications.

First, Collie provides design suggestions for our self-
developed efficient RDMA RPC library during its design
and implementation. The library needs to be CPU-efficient,
and we thus only consider RC as the transport because it is
the only transport that supports all one-sided RDMA oper-
ations (i.e., READ, WRITE) and ensures reliable messages.
In addition, major services that use this RPC library will
mainly be deployed on subsystem B and C. Given the search
space, Collie provides two suggestions to the developers. (1)
Anomaly #4 is in the restricted search space if the RDMA
RPC library uses READ, large WQE batch size, and a long
SG list to improve throughput and shape the message format.
(2) The library needs to use SEND/RECV to deliver small
control messages and generally keeps a large receive queue
in case of receive-not-ready error. This can potentially trigger
Anomaly #5. Unfortunately, both #4 and #5 temporarily have
no fix, so Collie suggest developers (1) use RDMA WRITE
to transmit data in a batch and (2) configure receive queue
depth carefully in SEND/RECV for small control messages
transmission. This RDMA based RPC library achieves ex-
pected performance and is currently supporting three major
services in production.

Second, Collie helps an distributed machine learning
(DML) application based on BytePS [14] bypass anomalies
during its further development in our production environ-
ment. Our DML application encountered anomaly #9 when
deploying on our new subsystem E. We worked with multiple
vendors (RNIC, server, CPU), but for several weeks we didn’t
find the root cause or the fix for this anomaly. During this
time, we ran Collie and compared the anomalous application
with the MFS we got. We found that the application’s behav-
iors matched one of the MFS: (1) use a long SG list to send
tensors with several meta data and (2) the message pattern of

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 297

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Running time (minutes)

0.0

0.5

1.0
No

rm
al

ize
d

co
un

te
r Random SA(Diag) Collie(Diag)

Figure 6: Diagnostic counter values (Receive WQE Cache Miss) during the search. Counter values are normalized based on the maximum value
we observed in the search. Red crossings denote the performance anomalies found by Collie. Red triangles denote the performance anomalies
found by random input generation. Red squares denote the performance anomalies found by Collie without MFS. Collie (the blue line) is flat
for a few minutes after finding a new performance anomaly. This is to represent the time needed for extracting the MFS.

tensors and meta data is a typical pattern that contains mix of
short and long messages. Collie suggested the developers to
avoid these conditions. The developers hence bypassed this
anomaly before vendors’ fix is ready.

7.4 Implications of the Performance Anomalies Found

After careful analysis of the anomalies found by Collie, we
have several interesting and important observations.

Holistic performance testing/tuning over entire RDMA
subsystems is important. With our vendors’ help, we try
our best effort to present the root causes of these anomalies
in Appendix A. The root causes can be bottlenecks from
RNIC internals, PCIe controllers, and host topologies (cross
socket communication). This is because the RDMA network
performance is highly related to the entire subsystem and the
holistic test is thus important. Besides, we need to configure
systems carefully (MTU, PCIe, NUMA, IOMMU, etc.) to
fully leverage RDMA’s performance [17, 30]. Collie shows
that it is sometimes difficult to choose what configuration to
use. For example, comparing the Anomaly #14 with other
cases related to the MTU setting (e.g., #6), we observe there
is no optimal MTU setting for all types of RDMA subsystems.
This also indicates that data center operators have to test
various RDMA subsystem configurations and tune the system
carefully before deploying them.

Opaque resource limitation of the RDMA subsystems.
RDMA virtualization, especially performance isolation is im-
portant for deploying RDMA to the public cloud environment.
Researchers have spent a lot of effort and proposed several
solutions [12, 19, 36, 43, 45]. However, anomalies found by
Collie suggest that there are new challenges. Existing ap-
proaches mainly focus on the isolation of visible resources
like verbs structures (e.g., QP, MR, CQ), pinned memory, and
bandwidth. However, there exist resources that are opaque for
developers and data center operators. For example, the RNIC
has limited caches that store many data structures, including
connection context (well known as QPC) and receive WQE.
Anomalies #1, #3, #4, #5 show that severe WQE cache miss
can have a huge impact on performance. Hence, it is possible
that a connection with a specific message pattern affects an-
other connection by triggering cache misses, even when the
bandwidth and other resources are well isolated. We therefore
believe it is necessary to take these invisible resources into

consideration when enforcing RDMA performance isolation,
especially in public clouds.

Does Ethernet-based RDMA need end-to-end flow con-
trol? Currently there is no end-to-end flow control mechanism
(e.g., the sliding window for TCP) for production Ethernet-
based RDMA deployment (i.e., RoCEv2). Collie shows that
this is a major barrier for RDMA subsystems to achieve high-
performance and reliability. For example, many anomalies
(e.g., #9 and #12) show that the host limitation can slow down
RNIC’s outbound rate (dispatching received data to host mem-
ory). This makes the receiver cannot consume packets as fast
as the sender sends. Without end-to-end flow control, the Ro-
CEv2 now can only rely on PFC, the hop-by-hop flow control
mechanism. PFC helps to avoid such overflow packet drop
but can cause catastrophic consequences [11, 13]. Note that
RDMA congestion control [20, 28, 46] mainly targets in-
network congestion, so it is orthogonal. A similar observation
has been shown in IRN [29], but they mainly focus on in-
network behaviors. Collie shows that, in addition to switches,
the hosts can also generate PFC pause frames, which requires
attention when deploying RDMA in production.

8 Discussion and Future Work
Search space. Collie mainly focuses on how specific applica-
tion workloads can stress the RDMA subsystems and trigger
performance anomalies. We therefore focus on a simple set-
ting of two RNICs and assume the network is free of anomaly.
In addition, we temporarily ignore control path behaviors and
the inter-arrival time between requests of a connection. The
main reason is that adding these factors substantially enlarge
the size of our search space. How to efficiently expand Col-
lie’s search space is an interesting direction for exploration.

Search algorithm. Collie uses simulated annealing based
algorithm with minimal feature set (MFS) to search efficiently.
Though powerful data centers can run Collie on multiple ma-
chines for a longer time, the search algorithm is also important.
According to the MFS found by Collie, the expected time for
a random approach is tens of days to find some anomalies that
require complicated triggering conditions. There are many
other search algorithms alternatives that can be leveraged,
such as reinforcement learning. Integrating more search algo-
rithms into Collie is another interesting direction to explore.

Generality of Collie. We believe that Collie can be used for

298 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

any type of RDMA subsystem or even subsystems with other
types of NICs. For example, though the link/transport proto-
cols are different for Infiniband and RoCEv2, the NIC internal
structures should be similar (e.g., both can use Mellanox CX-
6 VPI RNIC). Collie only relies on non-proprietary counters
that expose NIC internal status. Therefore, this methodol-
ogy should be generalizable to any NIC in any deployment
environment if similar counters are available.

Analysis of Performance Anomalies. Collie is designed to
uncover anomalies and help to bypass them from the perspec-
tive of data center operators, so it assumes minimal hardware
knowledge of RDMA subsystems for generality and does
not directly analyze the underlying causes. However, since
the anomalies found by Collie can be severe (e.g., triggering
PFC pause storms), we believe to fully understand them is
also an important direction to explore. For example, as men-
tioned in §7.4, many anomalies are due to bottlenecks on
some opaque resources. Both RNIC vendors and data cen-
ter operators hence need to understand what extra resources
should be considered if they want to provide performance
isolation for RDMA in a public cloud.

9 Related Work
Hardware bottlenecks in host networking. With the fast
growth in NIC performance, researchers have noticed several
potential hardware bottlenecks in host networking. Neuge-
bauer et al. [30] study the implication of PCIe performance in
host networking. Farshin et al. [6] examine when and when
not Intel Data Direct I/O technology can speed up host net-
working by allowing NIC to access CPU’s last-level cache
directly. Kalia et al. [15] observe the scalability bottlenecks of
caching per-connection metadata in RNIC. Stanko et al. [32]
study how the number of connections and memory regions
affect performance. These works have raised our attention
to RNIC hardware behaviors. Our work is on a different an-
gle: we systematically uncover the performance anomalies
that can be triggered by specific application workload due to
hardware bottlenecks.

Fuzz testing. Our techniques are in the broader category
of fuzz testing. There are three types of fuzz testing: black-
box [25,26], white-box [7,9,10], and gray-box fuzzing [1,40].
Black-box fuzzing is to generate random inputs to test a pro-
gram, and usually black-box fuzzing can only uncover shallow
bugs. In our context, this is also true that using randomly gen-
erated application workload can only uncover a small set of
anomalies (§7). White-box fuzzing is to use symbolic exe-
cution on source code to guide the fuzzer to generate inputs
that can have high coverage. We do not have the internal de-
signs of the various components within an RDMA subsystem,
so we cannot use white-box approaches. Gray-box fuzzing
in the software context is to use the coverage in the control
flow graph to guide the fuzzer to incrementally generate in-
puts that can lead to larger coverage. Our approach is similar
to gray-box fuzzing that we both use simulated annealing

and mutation-based test case generation. However, the key
difference is that we use hardware counters in the RDMA
subsystem to guide the search rather than the coverage on the
control flow graphs of the source code.

Application design on top of RDMA. Many RDMA ap-
plication designs leverage specific RDMA performance char-
acteristics, and some already try to circumvent certain RNIC
performance anomalies. HERD [16] uses UD SEND and UC
Write to implement an RPC library for reduced RNIC packet
processing overheads and better scalability. FaSST [18] and
eRPC [15] uses UD to further mitigate RNIC scalability bot-
tlenecks in RPC libraries. Kalia et al. [17] provide guidelines
to optimize HERD’s transport by considering PCIe bottle-
necks. FaRM [4, 5] uses RC to access remote in-memory key-
value stores, so that it can use RDMA 1-sided READ/WRITE
operation for reduced CPU overheads. Our goal is comple-
mentary: we systematically uncover the set of performance
anomalies of RDMA subsystems that application developers
need to be aware of. We show that for RDMA developers,
in reality, there is no optimal choice for a particular design
decision (e.g., all transport types have certain performance
anomalies). Developers therefore need to have a holistic view
of all the design decisions and the entire RDMA subsystem
before designing and implementing RDMA applications.

10 Conclusion
RDMA has been increasingly used in the industry for its low
latency and reduced CPU overheads. Performance anomalies
hurt application performance and can lead to catastrophic
consequences (e.g., deadlocking the data center network). We
build Collie, a tool to help RDMA users to find performance
anomalies of the entire RDMA subsystems, without the need
for access to any hardware internals design. Collie constructs
a comprehensive search space for RDMA application work-
loads and finds performance anomalies by using simulated
annealing to optimize two types of vendor-provided counters.
We evaluate Collie on 8 commodity RDMA subsystems and
Collie found 15 new performance anomalies that are all ac-
knowledged by the vendor. 7 of them are already fixed under
vendors’ guidance. We also present our experience in using
Collie to guide our development of an RDMA RPC library
and help our distributed machine learning applications bypass
performance anomalies before vendor fix is ready. Collie is
available at https://github.com/bytedance/Collie.

Acknowledgement
We thank Alvin R. Lebeck, Xiaowei Yang, Xi Wang, Wei Bai,
Mahmoud Elhaddad, Jitu Padhye, and Shachar Raindel for
their helpful comments and discussion. We thank NVIDIA,
Broadcom, and AMD for their strong technical support. We
thank our shepherd Costin Raiciu and other anonymous re-
viewers for their insightful feedback. Our work is partially
supported by an Amazon Research Award, a Meta Research
Award, and an IBM Academic Award.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 299

https://github.com/bytedance/Collie

References
[1] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen,

and Abhik Roychoudhury. Directed Greybox Fuzzing.
In CCS, 2017.

[2] Chiranjeeb Buragohain, Knut Magne Risvik, Paul Brett,
Miguel Castro, Wonhee Cho, Joshua Cowhig, Niko-
las Gloy, Karthik Kalyanaraman, Richendra Khanna,
John Pao, et al. A1: A Distributed In-Memory Graph
Database. In SIGMOD, 2020.

[3] Youmin Chen, Youyou Lu, and Jiwu Shu. Scalable
RDMA RPC on Reliable Connection with Efficient Re-
source Sharing. In EuroSys, 2019.

[4] Aleksandar Dragojević, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. FaRM: Fast Remote Mem-
ory. In NSDI, 2014.

[5] Aleksandar Dragojević, Dushyanth Narayanan, Ed-
mund B. Nightingale, Matthew Renzelmann, Alex
Shamis, Anirudh Badam, and Miguel Castro. No Com-
promises: Distributed Transactions with Consistency,
Availability, and Performance. In SOSP, 2015.

[6] Alireza Farshin, Amir Roozbeh, Gerald Q. Maguire Jr.,
and Dejan Kostić. Reexamining Direct Cache Access to
Optimize I/O Intensive Applications for Multi-hundred-
gigabit Networks. In USENIX ATC, 2020.

[7] Vijay Ganesh, Tim Leek, and Martin Rinard. Taint-
Based Directed Whitebox Fuzzing. In ICSE, 2009.

[8] Yixiao Gao, Qiang Li, Lingbo Tang, Yongqing Xi,
Pengcheng Zhang, Wenwen Peng, Bo Li, Yaohui Wu,
Shaozong Liu, Lei Yan, Fei Feng, Yan Zhuang, Fan Liu,
Pan Liu, Xingkui Liu, Zhongjie Wu, Junping Wu, Zheng
Cao, Chen Tian, Jinbo Wu, Jiaji Zhu, Haiyong Wang,
Dennis Cai, and Jiesheng Wu. When Cloud Storage
Meets RDMA. In NSDI, 2021.

[9] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin.
Grammar-Based Whitebox Fuzzing. In PLDI, 2008.

[10] Patrice Godefroid, Michael Y. Levin, and D. Molnar.
Automated Whitebox Fuzz Testing. In NDSS, 2008.

[11] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni,
Jianxi Ye, Jitu Padhye, and Marina Lipshteyn. RDMA
over Commodity Ethernet at Scale. In SIGCOMM, 2016.

[12] Zhiqiang He, Dongyang Wang, Binzhang Fu, Kun Tan,
Bei Hua, Zhi-Li Zhang, and Kai Zheng. MasQ: RDMA
for Virtual Private Cloud. In SIGCOMM, 2020.

[13] Shuihai Hu, Yibo Zhu, Peng Cheng, Chuanxiong Guo,
Kun Tan, Jitendra Padhye, and Kai Chen. Deadlocks in
Datacenter Networks: Why Do They Form, and How to
Avoid Them. In HotNets, 2016.

[14] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui,
and Chuanxiong Guo. A Unified Architecture for Ac-
celerating Distributed DNN Training in Heterogeneous
GPU/CPU Clusters. In OSDI, 2020.

[15] Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter RPCs can be General and Fast. In NSDI,
2019.

[16] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
Using RDMA Efficiently for Key-Value Services. In
SIGCOMM, 2014.

[17] Anuj Kalia, Michael Kaminsky, and David G. Ander-
sen. Design Guidelines for High Performance RDMA
Systems. In USENIX ATC, 2016.

[18] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
FaSST: Fast, Scalable and Simple Distributed Transac-
tions with Two-Sided (RDMA) Datagram RPCs. In
OSDI, 2016.

[19] Daehyeok Kim, Tianlong Yu, Hongqiang Harry Liu,
Yibo Zhu, Jitu Padhye, Shachar Raindel, Chuanxiong
Guo, Vyas Sekar, and Srinivasan Seshan. FreeFlow:
Software-based Virtual RDMA Networking for Con-
tainerized Clouds. In NSDI, 2019.

[20] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, and Min-
lan Yu. HPCC: High Precision Congestion Control. In
SIGCOMM, 2019.

[21] Ashlie Martinez and Vijay Chidambaram. CrashMon-
key: A Framework to Automatically Test File-System
Crash Consistency. In HotStorage, 2017.

[22] Mellanox. Device Proprietary Counters.
https://docs.nvidia.com/networking/display/
WINOFv55052000/Device+Proprietary+Counters.

[23] Mellanox. NEO-Host. https://
support.mellanox.com/s/productdetails/
a2v50000000N2OlAAK/mellanox-neohost.

[24] Mellanox Adapters Programmer’s Ref-
erence Manual (PRM). https://
www.mellanox.com/related-docs/user_manuals/
Ethernet_Adapters_Programming_Manual.pdf,
2021.

[25] Barton Miller, Mengxiao Zhang, and Elisa Heymann.
The Relevance of Classic Fuzz Testing: Have We Solved
This One? IEEE Transactions on Software Engineering,
page 1–1, 2020.

300 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://docs.nvidia.com/networking/display/WINOFv55052000/Device+Proprietary+Counters
https://docs.nvidia.com/networking/display/WINOFv55052000/Device+Proprietary+Counters
https://support.mellanox.com/s/productdetails/a2v50000000N2OlAAK/mellanox-neohost
https://support.mellanox.com/s/productdetails/a2v50000000N2OlAAK/mellanox-neohost
https://support.mellanox.com/s/productdetails/a2v50000000N2OlAAK/mellanox-neohost
https://www.mellanox.com/related-docs/user_manuals/Ethernet_Adapters_Programming_Manual.pdf
https://www.mellanox.com/related-docs/user_manuals/Ethernet_Adapters_Programming_Manual.pdf
https://www.mellanox.com/related-docs/user_manuals/Ethernet_Adapters_Programming_Manual.pdf

[26] Barton P. Miller, Louis Fredriksen, and Bryan So. An
Empirical Study of the Reliability of UNIX Utilities.
Commun. ACM, 33(12):32–44, December 1990.

[27] Christopher Mitchell, Yifeng Geng, and Jinyang Li. Us-
ing One-Sided RDMA Reads to Build a Fast, CPU-
Efficient Key-Value Store. In USENIX ATC, 2013.

[28] Radhika Mittal, Vinh The Lam, Nandita Dukkipati,
Emily Blem, Hassan Wassel, Monia Ghobadi, Amin
Vahdat, Yaogong Wang, David Wetherall, and David
Zats. TIMELY: RTT-Based Congestion Control for the
Datacenter. In SIGCOMM, 2015.

[29] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan
Zahavi, Arvind Krishnamurthy, Sylvia Ratnasamy, and
Scott Shenker. Revisiting Network Support for RDMA.
In SIGCOMM, 2018.

[30] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo,
Yury Audzevich, Sergio López-Buedo, and Andrew W.
Moore. Understanding PCIe Performance for End Host
Networking. In SIGCOMM, 2018.

[31] Fernando Nogueira. Bayesian Optimization:
Open source constrained global optimization
tool for Python. https://github.com/fmfn/
BayesianOptimization, 2014.

[32] Stanko Novakovic, Yizhou Shan, Aasheesh Kolli,
Michael Cui, Yiying Zhang, Haggai Eran, Boris Pis-
menny, Liran Liss, Michael Wei, Dan Tsafrir, and Mar-
cos Aguilera. Storm: A Fast Transactional Dataplane
for Remote Data Structures. In SYSTOR, 2019.

[33] OSU benchmarks. https://mvapich.cse.ohio-
state.edu/benchmarks/, 2021.

[34] OFED perftest. https://github.com/linux-rdma/
perftest, 2021.

[35] IEEE DCB. 802.1Qbb - Priority-based Flow Control.
https://1.ieee802.org/dcb/802-1qbb/, 2021.

[36] Jonas Pfefferle, Patrick Stuedi, Animesh Trivedi,
Bernard Metzler, Ionnis Koltsidas, and Thomas R. Gross.
A Hybrid I/O Virtualization Framework for RDMA-
Capable Network Interfaces. In VEE, 2015.

[37] Kun Qian, Wenxue Cheng, Tong Zhang, and Fengyuan
Ren. Gentle Flow Control: Avoiding Deadlock in Loss-
less Networks. In SIGCOMM, 2019.

[38] Linux rdma-core. https://github.com/linux-
rdma/rdma-core, 2021.

[39] Waleed Reda, Marco Canini, Dejan Kostić, and Simon
Peter. RDMA is Turing complete, we just did not know
it yet!, 2021.

[40] Sergej Schumilo, Cornelius Aschermann, Robert Gaw-
lik, Sebastian Schinzel, and Thorsten Holz. kAFL:
Hardware-Assisted Feedback Fuzzing for OS Kernels.
In USENIX Security, 2017.

[41] Jiaxin Shi, Youyang Yao, Rong Chen, Haibo Chen, and
Feifei Li. Fast and Concurrent RDF Queries with
RDMA-Based Distributed Graph Exploration. In OSDI,
2016.

[42] Arjun Singhvi, Aditya Akella, Dan Gibson, Thomas F.
Wenisch, Monica Wong-Chan, Sean Clark, Milo M. K.
Martin, Moray McLaren, Prashant Chandra, Rob Cauble,
Hassan M. G. Wassel, Behnam Montazeri, Simon L.
Sabato, Joel Scherpelz, and Amin Vahdat. 1RMA: Re-
Envisioning Remote Memory Access for Multi-Tenant
Datacenters. In SIGCOMM, 2020.

[43] Shin-Yeh Tsai and Yiying Zhang. LITE Kernel RDMA
Support for Datacenter Applications. In SOSP, 2017.

[44] Jilong Xue, Youshan Miao, Cheng Chen, Ming Wu, Lin-
tao Zhang, and Lidong Zhou. Fast Distributed Deep
Learning over RDMA. In EuroSys, 2019.

[45] Yiwen Zhang, Yue Tan, Brent Stephens, and Mosharaf
Chowdhury. Justitia: Software Multi-Tenancy in Hard-
ware Kernel-Bypass Networks. In NSDI, 2022.

[46] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong
Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra Pad-
hye, Shachar Raindel, Mohamad Haj Yahia, and Ming
Zhang. Congestion Control for Large-Scale RDMA
Deployments. In SIGCOMM, 2015.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 301

https://github.com/fmfn/BayesianOptimization
https://github.com/fmfn/BayesianOptimization
https://mvapich.cse.ohio-state.edu/benchmarks/
https://mvapich.cse.ohio-state.edu/benchmarks/
https://github.com/linux-rdma/perftest
https://github.com/linux-rdma/perftest
https://1.ieee802.org/dcb/802-1qbb/
https://github.com/linux-rdma/rdma-core
https://github.com/linux-rdma/rdma-core

A Performance Anomalies Found
More details of these anomalies and the lesson we learn are
included in this section. We present a concrete example of
each anomaly and try our best to simplify each anomaly so
that they can be reproduced easier. It is possible to find milder
or stricter conditions that trigger the anomaly. We, to the
best of our knowledge, also categorize these performance
anomalies to their root causes based on our observation and
conversations with our vendors.

A.1 Subsystem F with Mellanox 200 Gbps CX-6 VPI

Root cause #1: Receive WQE cache misses bottleneck
RNIC receiving rate.

(New) Anomaly #1: UD with large WQE batch size and
long WQ causes PFC pause frames and drastic throughput
drop. Collie observes that the pause duration ratio can be up
to ≈ 20.0% with only a single UD QP. The pause duration
ratio means that RNIC is asking the corresponding switch
port to pause for ≈ 200 milliseconds within one second on
average. We share the NIC vendor with our traffic engine
tool and the running command. They have reproduced the
anomaly in their environments, but the root cause is still not
clear yet. Therefore, we claim this anomaly not fixed yet. To
the best of our knowledge, it is likely due to the cache miss
triggered by the pre-fetch mechanism for the receive WQE.
This bottlenecks the receiver from receiving traffic.

Here is a simplified concrete trigger setting of Anomaly
#1: There is 1 connection of UD QP using SEND/RECV
Opcode. Each QP has 1 sending MR of 64KB and 1 receiving
MR of 64KB. Each QP has a work queue of length 256 (i.e.,
max_send/recv_wr = 256). The MTU is 2KB. The sender
keeps sending 64 requests in a batch. Each request only has
one SG element and a fixed size of 2KB.

(New) Anomaly #2: UD with small WQE batch size, long
WQ, small messages, and a few connections causes throughput
to drop without pause frames.

This anomaly is similar to #1 but more tricky and has a
different end-to-end symptom. Unlike #1, Collies does not ob-
serve PFC pause frames when the setting is slightly different
from #1: if the sender does not post sending requests in batch
or the batch size is small (e.g., less than 8) and the messages
are relatively small (e.g., 512B, 1KB), the throughput will
drop by more than 20% without any PFC pause frame trig-
gered when the receiver has an extremely long work queue. If
we set a smaller work queue for the receiver, the throughput
returns to the line rate. This anomaly is also reproduced and
acknowledged by NIC vendor. We conjecture that it has a sim-
ilar root cause to #1, but due to unknown RNIC bottlenecks,
it behaves differently that the throughput drops without pause
frame.

Here is a simplified concrete trigger setting of Anomaly
#2: There are 16 connections of UD QP using SEND/RECV
Opcode. Each QP has 1 sending MR of 64KB and 1 receiving
MR of 64KB. Each QP has a work queue of length 1024. The

MTU is 1KB. The sender keeps sending 4 requests in a batch.
Each request only has one SG element of 1KB.

(New) Anomaly #3: RC READ with large messages causes
PFC pause frames when MTU is under 1500 (the default
MTU for Ethernet).

We observe the throughput drops drastically once we use
RDMA READ opcode with 1500 MTU (1024 for RDMA),
the default value for our data centers. The pause duration can
be up to 10% and throughput drops to less than half. We
report this to our NIC vendor and they tell us the low MTU
may trigger the RNIC internal packet processing bottleneck
for this 200 Gbps NIC. We carefully survey the potential
effect of MTU modification in our deployment and modify
the MTU from 1500 to 4200, which supports 4096 as RDMA
MTU. This anomaly is successfully fixed in this way.

Here is a simplified concrete trigger setting of Anomaly
#3: There are 8 connections of RC QP using Read opcode.
Each QP has 1 sending MR of 4MB and 1 receiving MR of
4MB. Each QP has a work queue of length 128. The MTU
is 1KB. The sender keeps sending RDMA READ requests.
Each request only has one SG element and a fixed size of
4MB.

(New) Anomaly #4: Bidirectional RC READ with large
WQE batch size, long SG list, and a few connections causes
PFC pause frames, even when MTU is set to 4200 (4096 for
RDMA).

This anomaly is tricky but severe. Even with 4200 MTU
(Anomaly #3 is solved), Collie observes about 30% PFC
pause duration ratio that when bidirectional RDMA READ
happens and both sides post a large number of requests in
a batch (e.g., 32), each request consists of multiple scatter
gather element (e.g., 4) and there are a few connections (e.g.,
≈ 160). As usual, this newly found anomaly is reported to the
vendor and they have reproduced and confirmed the anomaly.
For now, the root cause of this anomaly is still unknown.
Therefore, we claim this anomaly not fixed yet.

Here is a simplified concrete trigger setting of Anomaly #4:
There are 80 connections of RC QP using Read opcode for
each direction. Each QP has 1 sending MR of 64KB and 1
receiving MR of 64KB. Each QP has a work queue of length
128. The MTU is 4KB. The sender keeps sending 128 requests
in a batch. Each request has 4 SG elements and a fixed size
of 128B.

(New) Anomaly #5: RC SEND with small MTU, large WQE
batch, long WQ, and long messages causes PFC pause frames
and drastic throughput drop.

(New) Anomaly #6: RC SEND with small MTU, small WQE
batch, large SG list batch, long WQ, small messages, and a
few connections causes reduced throughput without any pause
frame.

They are similar to UD ones (Anomaly #1 and #2) but
have a more complex and stricter trigger. For example, Collie
observes such anomaly only when MTU is small (e.g., 1024
for RDMA), work depth exceeds 1K for each QP as well as

302 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

post multiple receive WQE in a batch. These anomalies are
different because they have different QP types and stricter
trigger conditions. For example, those anomalous application
workloads in #1 and #2 won’t trigger anomalies if we only
switch the type of QP from UD to RC. Several discussion
with our vendors tells us that the Reliable Connection type
contains some subtle variance inside the RNIC that result in
such difference. These two are currently not fixed yet.

Here is a simplified concrete trigger setting of Anomaly #5:
There is 1 connection of RC QP using SEND/RECV opcode.
Each QP has 1 sending MR of 64KB and 1 receiving MR of
64KB. Each QP has a work queue of length 1024. The MTU
is 1KB. The sender keeps sending 64 requests in a batch. Each
request has 2 SG elements and a fixed size of 2KB.

Here is a simplified concrete trigger setting of Anomaly
#6: There are 32 connections of RC QP using SEND/RECV
opcode. Each QP has 1 sending MR of 64KB and 1 receiving
MR of 64KB. Each QP has a work queue of length 1024. The
MTU is 1KB. The sender keeps sending 8 requests in a batch.
Each request has 2 SG elements and a fixed size of 1KB.

Root cause #2: Interconnect Context Memory cache
misses reduce RNIC sending rates.

(New) Anomaly #7: RC WRITE with many QPs, small mes-
sages, small WQ depth, and small WQE batch size causes
reduced throughput.

(New) Anomaly #8: RC WRITE with many MRs, small mes-
sages, and small WQE batch size causes reduced throughput.

Though these two anomalies are well-known as the RDMA
scalability problem, our real applications do not meet them
even when the number of QPs exceeds 10K and the number of
MRs exceeds 100K. However, Collie uncovers these two so
we classified them into New anomalies. We take a deep look
into how Collie discovers them and have many discussions
with our vendors. We find our experience interesting and wor-
thy of sharing: RNIC caches many necessary structures on its
cache (e.g., memory translation table and connection context).
When a request triggers cache miss, the RNIC has to issue
extra PCIe operation to fetch them from the host DRAM. This
will certainly induce extra PCIe latency for processing this
request (victim request). However, RNIC is highly pipelined,
so even when the victim request has finished the PCIe oper-
ation, it may still have to wait for the other pipeline stages
to get ready (e.g., a previous long egress request blocks this
short egress request). Therefore, if the request size is rela-
tively large enough, the cache miss will not have a large effect
on end-to-end performance because the overhead is hidden
due to the pipeline.

Here is a simplified concrete trigger setting of Anomaly #7:
There are 480 connections of RC QP using RDMA WRITE
opcode. Each QP has 1 sending MR of 64KB and 1 receiving
MR of 64KB. Each QP has a work queue of length 16. The
MTU is 1KB. The sender keeps sending requests without
WQE batch. Each request has 1 SG element and a fixed size
of 512B.

Here is a simplified concrete trigger setting of Anomaly #8:
There are 24 connections of RC QP using RDMA WRITE
opcode. Each QP has 1024 sending MR of 64KB and 1024
receiving MR of 64KB. Each QP has a work queue of length
128. The MTU is 1KB. The sender keeps sending requests
without WQE batching. Each request has 1 SG element and a
fixed size of 512B.

Root cause #3: PCIe controller blocks RNIC from read-
ing host memory.

(Old) Anomaly #9: Bidirectional traffic with a mixture of
small and large messages in an SG list on particular AMD
servers causes PFC pause frames and drastic throughput
drop.

This anomaly is found by one of our production applica-
tions that keeps sending such message patterns (described in
2). The root cause of this anomaly is due to PCIe ordering is-
sue. If the RNIC on the AMD server is not configured as PCIe
relaxed ordering device, a DMA request may be blocked by
the previous one. Therefore, when bidirectional traffic with a
mix of short and long requests. The ingress short requests, to-
gether with the completion of egress traffic, blocks the ingress
long requests. This results in RNIC buffer accumulation and
triggers a large amount of PFC pause frames. The throughput
can only achieve 60 Gbps with 25% pause frame duration
ratio on average. With much effort from our appreciative ven-
dors, we finally fix this by configuring RNIC as a forced
relaxed ordering PCIe device.

Here is a simplified concrete trigger setting of Anomaly
#9: There are 8 connections of RC QP using RDMA WRITE
opcode for each direction. Each QP has 1 sending MR of
4MB and 1 receiving MR of 4MB. Each QP has a work queue
of length 128. The MTU is 4KB. The sender keeps sending 8
requests in a batch. Each request has 3 SG elements and the
pattern is [128B, 64KB, 1KB].

Root cause #4: RNIC packet processing bottleneck.
(New) Anomaly #10: Bidirectional RC Write with large

WQE batch size, a mixture of long messages and lots of short
messages, and a few connections causes PFC pause frames.

Collie finds that when several RC QPs keep posting multi-
ple short requests (e.g., 64B, 128B) in batch and a few long
requests for both directions, a large amount of pause dura-
tion is triggered. This RNIC of the RDMA subsystem has
already been configured as forced relaxed ordering PCIe de-
vice (Anomaly #8 is solved). Our vendors have confirmed this
anomaly and announce it fixed in their upcoming firmware
release. The lengthy discussion with our vendor shows us
the rough root cause: some component for packet processing
inside the RNIC is not fully bidirectional, and our bidirec-
tional reliable traffic (requires packet-level ACK) pattern with
a huge amount of short requests, trigger that component’s bot-
tleneck. This results in long requests blocked and then many
PFC pause frames are generated.

Here is a simplified concrete trigger setting of Anomaly
#10: There are 320 connections of RC QP using RDMA

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 303

WRITE opcode for each direction. Each QP has 1 sending
MR of 64KB and 1 receiving MR of 64KB. Each QP has
a work queue of length 128. The MTU is 1KB. The sender
keeps sending 64 requests in a batch. Each request has 1 SG
element and the pattern is [64KB, 128B, 128B, 128B].

Root cause #5: Host topology causes PCIe latency to
increase, and this bottlenecks RNIC receiving rate.

(New) Anomaly #11: On specific types of AMD servers,
Bidirectional cross-socket traffic causes pause frame storm
and drastic throughput drop.

Collie outputs the minimal feature set with only
source/destination NUMA set and bidirectional traffic, indicat-
ing these two are the dominant factors. With this bidirectional
(A to B and B to A) cross-socket NUMA setting (e.g., NUMA
0 from socket 0 for A and NUMA 2 from socket 1 for B,
where socket 0 is the affinitive node for RNIC), even mild
traffic with only a single connection can trigger up to 15.7%
pause frame duration ratio. After several conversations with
our RNIC and server vendors, we conjecture the root cause
lies in these particular servers’ cross-socket performance be-
cause we run the same traffic with the same NIC on different
servers but do not observe the same phenomenon. We consider
this anomaly as fixed because the vendor helps us roughly
understand the root cause and suggest we use 2x100 Gbps
NIC (each for a socket) to reduce cross-socket traffic, and we
follow this guidance.

Here is a simplified concrete trigger setting of Anomaly
#11: There is 1 connection of RC QP using RDMA WRITE
opcode for each direction. Each QP has 32 sending MR of
4MB and 32 receiving MR of 4MB. Each QP has a work
queue of length 128. The MTU is 4KB. The sender keeps
sending 16 requests in a batch. Each request has 1 SG element
with a fixed size of 256KB. The QP on host A is using the
memory of socket 0 and the QP on host B is using the memory
of socket 1.

(Old) Anomaly #12: GPU-direct RDMA causes pause
frame storm and drastic throughput drop on particular AMD
servers.

We observe a huge amount of pause frames and drastic
throughput drop only on some servers in our clusters. The
pause duration ratio can be up to 15% and throughput can
drop to less than 20% (i.e., 40 Gbps) in this scenario. After
careful debugging with our NIC vendor’s strong support, we
find out that there is a slight difference in PCIe bridge con-
figuration (PCIe ACSCtl) between the anomalous server and
normal ones. The anomalous configuration will forward GPU
traffic to the root complex rather than directly to the RNIC.
We fix this anomaly by adopting the correct configuration.

Here is a simplified concrete trigger setting of Anomaly
#12: There are 8 connections of RC QP using RDMA WRITE
opcode for each direction. Each QP has 1 sending MR of 4MB
and 1 receiving MR of 4MB. Each QP has a work queue of
length 128. The MTU is 4KB. The sender keeps sending 8
requests in a batch. Each request has 3 SG elements and the

pattern is [128B, 64KB, 1KB]. All MRs are allocated from
GPU memory and we use the GPU under the same PCIe
bridge (i.e., shown as PIX/PXB in nvidia-smi result).

Root cause #6: RDMA NIC has potential in-NIC in-
cast/congestion.

(Old) Anomaly #13: Co-existence of receiving traffic and
loopback traffic causes PFC pause frames.

This anomaly is found in our real applications and can also
be uncovered by Collie. Our machine learning system runs
workers and servers, and they use RDMA to accelerate the
communication. However, once a worker and a server are
scheduled on the same physical machine, there will be loop-
back traffic: the worker will send RDMA traffic to the server
on the same host. Meanwhile, the server is receiving traffic
from workers on other physical machines. The combination
of receiving and loopback traffic triggers congestion/incast
inside the NIC. And this RNIC lacks a mechanism to limit the
loopback traffic rate, which makes the problem worse. After
several discussions with our vendor, we bypass this anomaly
by identifying the loopback communication and using other
IPC mechanisms (e.g., shared memory). We do not consider
this anomaly fixed because we cannot fully rely on other IPC
mechanisms, especially for the virtualization environment.
This anomaly exposes that a proper design of RNIC needs to
consider NIC incast and we are glad to see that some latest
RNIC have done so.

Here is a simplified concrete trigger setting of Anomaly
#13: There are 16 connections of RC QP using RDMA
WRITE opcode. 16 receivers are 8 senders are on the same
host A and the other 8 senders are on the host B. Each QP has
32 sending MR of 4MB and 32 receiving MR of 4MB. Each
QP has a work queue of length 128. The MTU is 4KB. The
sender keeps sending 16 requests in a batch. Each request has
1 SG element with a fixed size of 256KB.

A.2 Subsystem H with Broadcom 100 Gbps P2100G

(New) Anomaly #14: Bidirectional RC traffic with lots of
connections and the large MTU causes reduced throughput
without PFC pause frame.

Collie observes that a large MTU is necessary to trigger this
anomaly. Once we switch the MTU from 4096 (for RDMA)
to 1024, both directions can achieve the line rate. This is un-
usual because most cases show that large MTU improves the
performance and small MTU triggers performance anomalies.
We don’t observe the same phenomenon on any other type of
RNICs.

Here is a simplified concrete trigger setting of Anomaly
#14: There are 1024 connections of RC QP using RDMA
WRITE opcode for each direction. Each QP has 81 sending
MR of 256KB and 83 receiving MR of 256KB. Each QP has
a work queue of length 128. The MTU is 4KB. The sender
keeps sending 1 request in a batch. Each request has 4 SG
element with a fixed size of 64KB.

(New) Anomaly #15: UD with long WQ and lots of connec-

304 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

tions causes PFC pause frames.
This anomaly is similar to the Mellanox anomaly #1 but has

a slightly different trigger. Collie successfully trigger #1 with
only a single connection, but for P2100 RNIC our multiple
runs show that a few connections are necessary.

Here is a simplified concrete trigger setting of Anomaly
#15: There are 32 connections of UD QP using SEND/RECV
opcode. Each QP has 1 sending MR of 4KB and 1 receiving
MR of 4KB. Each QP has a work queue of length 64. The
MTU is 2KB. The sender keeps sending 1 request in a batch.
Each request has 1 SG element. The message pattern is like
[256B, 1KB, 64B, 1KB].

(New) Anomaly #16: RC READ with lots of connections,
large WQE batch size, and small MTU causes PFC pause
frames.

This anomaly is similar to the Mellanox anomaly #4 and
it shows that for the same RNIC and other hardware compo-
nents, the best MTU choice can be different when workloads
change.

Here is a simplified concrete trigger setting of Anomaly
#16: There are 500 connections of RC QP using RDMA
READ opcode. Each QP has 1 sending MR of 256KB and 1
receiving MR of 256KB. Each QP has a work queue of length
128. The MTU is 1KB. The sender keeps sending 8 requests
in a batch. Each request has 1 SG element with a fixed size of
64KB.

(New) Anomaly #17: RC SEND with lots of connections,
small WQE batch size, small MTU, short messages, and long
WQ causes PFC pause frames.

We have reported this anomaly to our vendor. To the best
of our knowledge, we conjecture this anomaly is related to
some corresponding WQE cache component inside RNIC.

Here is a simplified concrete trigger setting of Anomaly
#17: There are 80 connections of RC QP using SEND/RECV
opcode. Each QP has 1 sending MR of 1MB and 1 receiving
MR of 1MB. Each QP has a work queue of length 128. The
MTU is 1KB. The sender keeps sending 1 request per batch.
Each request has 1 SG element of fixed size 1KB.

(New) Anomaly #18: Bidirectional RC WRITE with a few
connections, large WQE batch, and small messages causes
PFC pause frames.

Our vendor has confirmed anomalies #17 and #18. They
have reproduced these two anomalies and help us fix them.
The solution is to configure some specific registers of the
RNIC, and these two anomalies disappear.

Here is a simplified concrete trigger setting of Anomaly
#18: There are 16 connections of RC QP using RDMA
WRITE for each direction. Each QP has 1 sending MR of
12KB and 1 receiving MR of 12KB. Each QP has a work
queue of length 64. The MTU is 1KB. The sender keeps send-
ing 16 requests in a batch. Each request has 1 SG element of
fixed size 64KB.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 305

SCALE: Automatically Finding RFC Compliance Bugs in DNS Nameservers

Siva Kesava Reddy Kakarla1 Ryan Beckett2 Todd Millstein1,3 George Varghese1

1University of California, Los Angeles 2Microsoft 3Intentionet

Abstract
The Domain Name System (DNS) has intricate features that
interact in subtle ways. Bugs in DNS implementations can
lead to incorrect or implementation-dependent behavior, secu-
rity vulnerabilities, and more. We introduce the first approach
for finding RFC compliance errors in DNS nameserver im-
plementations, via automatic test generation. Our SCALE
(Small-scope Constraint-driven Automated Logical Execu-
tion) approach jointly generates zone files and corresponding
queries to cover RFC behaviors specified by an executable
model of DNS resolution. We have built a tool called FERRET
based on this approach and applied it to test 8 open-source DNS
implementations, including popular implementations such as
BIND, POWERDNS, KNOT, and NSD. FERRET generated over
13.5K test cases, of which 62% resulted in some difference
among implementations. We identified and reported 30 new
unique bugs from these failed test cases, including at least
one bug in every implementation, of which 20 have already
been fixed. Many of these bugs existed in even the most popu-
lar DNS implementations, including a critical vulnerability in
BIND that attackers could easily exploit to crash DNS resolvers
and nameservers remotely.

1 Introduction
The Domain Name System (DNS) plays a central role in
today’s Internet, as it allows users to connect to online
services through user-friendly domain names in place of
machine-friendly IP addresses. Organizations across the
Internet run DNS nameservers, which use DNS configurations
called zone files to determine how to handle each query, either
returning an IP address, rewriting the query to another one,
or delegating the responsibility to another nameserver. There
are many popular nameserver implementations of the DNS
protocol in the wild, both open-source [21, 23, 25, 76] and in
public or private clouds [2, 39, 85, 97].

Over time DNS has evolved into a complex and intricate
protocol, spread across numerous RFCs [41, 80, 86, 96]. It is
difficult to write an efficient, high-throughput, multithreaded
implementation that is also bug-free and compliant with these
RFC specifications. As a result, nameserver implementations
frequently suffer from incorrect or implementation-specific
behavior that causes outages [34, 103, 106], security
vulnerabilities [74, 94], and more [15, 19, 22].

This paper presents the first approach for identifying RFC
compliance errors in DNS nameserver implementations, by
automatically generating test cases that cover a wide range
of RFC behaviors. The key technical challenge is the fact
that a DNS test case consists of both a query and a zone file,
which is a collection of resource records that specify how
queries should be handled. Zone files are highly structured
objects with various syntactic and semantic well-formedness
requirements, and the query must be related to the zone file
for the test even to reach the core query resolution logic.

Existing standard automated test generation approaches are
not suitable for our needs, as illustrated in the top of Figure 1.
Fuzz testing is scalable but has well-known challenges in
navigating complex semantic requirements and dependen-
cies [13, 36], which are necessary to generate behavioral tests
for DNS. As a result, fuzzers for DNS only generate queries
and hence are used only to find parsing errors [10, 32, 89, 99].
Symbolic execution [72] can, in principle, generate DNS tests
that achieve high code coverage but, in practice, suffers from
the well-known problem of “path explosion” [9, 13, 36] that
limits scalability and coverage. As a result, symbolic execution
has only been used to identify generic errors like memory leaks
in individual functions within nameserver implementations,
again avoiding the need to generate zone files [93].

Our approach to automated testing for DNS nameservers,
which we call SCALE (Small-scope Constraint-driven
Automated Logical Execution), jointly generates zone files
and the corresponding queries, does so in a way that is
targeted toward covering many different RFC behaviors, and
is applicable to black-box DNS nameserver implementations.
The key insight underlying SCALE is that we can use the
existing RFCs to define a model of the logical behaviors of
the DNS resolution process and then use this model to guide
test generation. Specifically, we have created an executable
version of a recent formal semantics of DNS [71], which we
then symbolically execute to generate tests for black-box DNS
nameservers — each test consisting of a well-formed zone
file and a query that together cause execution to explore a
particular RFC behavior. Intuitively, tests that cover a wide
variety of behaviors in our executable model will also cover
a wide variety of behaviors in DNS nameservers since they
have the same goal, namely to implement the RFCs.

Symbolic execution of our logical model is still fundamen-
tally unscalable — there are an unbounded number of possible

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 307

Figure 1: Overview of different automated testing approaches.
Tested implementation paths are shown in red. (a) Fuzz testing
is scalable but is often unable to navigate complex input
requirements. (b) Symbolic execution can solve for input
conditions but suffers from path explosion and has difficulty
with complex data structures and program logic, and will thus
only typically explore a small subset of possible program paths.
(c) SCALE uses a logical model of the DNS RFCs to guide
symbolic search toward many different logical behaviors.

execution paths, they grow exponentially in the size of the zone
file, and expensive constraint solvers must be used to generate a
test case for each path. We therefore bound the generated zone
files to contain a very small number of resource records and
short domain names — a maximum of 4 for each of these in our
experiments, which is much smaller than real-world zone files.
However, we provide experimental evidence of the existence of
a small-scope property [43], meaning that many interesting be-
haviors can be covered with small tests. First, each return point
in our logical model can be reached with a test where the length
of domain names and the number of records in the zone file is at
most 3. Each return point represents a distinct RFC-specified
scenario for DNS resolution (e.g., a particular flavor of query
rewrite). Second, while increasing this constant from 2 through
4 increased the number of errors that our tool identified, no
new errors were found in a sample of paths that required size
5. This finding makes sense because, while zone files can
contain a large number of records, the number of records that
are relevant to any particular query tends to be small.

We have used the SCALE approach as the basis for a tool
called FERRET1 for automated testing of DNS nameserver
implementations (Figure 2). FERRET generates tests using
our logical model, which we have implemented in a modeling
language called Zen [4] that has built-in support for symbolic
execution. FERRET then performs differential testing by run-
ning these tests on multiple DNS nameserver implementations
and comparing their results to one another. In this way FER-
RET can identify RFC violations, crashes, as well as situations
where the RFCs may be ambiguous or underspecified, leading

1FERRET: https://github.com/dns-groot/Ferret

Test GeneratorRFC Model

NSDBIND ...

Response Grouping

✓ Fingerprintingsingle group >1 group

Figure 2: FERRET system architecture.

to implementation-dependent behavior. Because DNS imple-
menters strive for behavioral consistency among their imple-
mentations [92], any test that produces divergent results among
the implementations represents a likely error. However, there
can be orders-of-magnitude fewer root causes than divergent
tests, so as a final step we provide a simple but effective tech-
nique to help users with bug deduplication. We create a hybrid
fingerprint for each test, which combines information from
the test’s path in the Zen model with the results of differential
testing, and then group tests by fingerprint for user inspection.

Using FERRET, in just a few hours we generated over
12.5K valid test cases2 with a maximum zone-file size of 4
records. Running these tests on 8 different open-source DNS
nameserver implementations, we found that the implemen-
tations’ behaviors only completely agreed on 35% of the tests.
Our fingerprinting technique reduced the remaining cases to
roughly 75 groups. Because our executable model includes a
specification of the well-formedness conditions for zone files,
we also leveraged Zen to systematically generate zone files
that violate one of these conditions. We generated 900 invalid
zone files of which 184 resulted in some difference among
implementations. Inspecting tests from each fingerprinted
group resulted in the discovery of 30 unique bugs across the
different implementations. Developers have confirmed all of
them as actual bugs and fixed 20 of them, at the time of writing.
The most severe bug FERRET found was a subtle combination
of zone file and query that an attacker could easily use to crash
both BIND nameservers and resolvers remotely. We engaged
in a secure disclosure process, after which the developers fixed
the issue and then publicly disclosed the vulnerability, through
a CVE (CVE-2021-25215) [26, 38] rated with high-severity.

Contributions: This paper’s contributions are:
• The first automated approach to identify RFC violations

in black-box DNS nameservers. A unique feature of our
approach, SCALE, is the joint generation of zone files and
queries to produce high-coverage behavioral tests.

• An implementation of our approach in FERRET that
combines SCALE with differential testing.

• A novel fingerprinting approach for bug deduplication that
takes advantage of our RFC model to help triage bugs.

• An evaluation from testing 8 different open-source DNS
nameserver implementations with tests generated by FER-
2Test cases: https://github.com/dns-groot/FerretDataset

308 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/dns-groot/Ferret
https://github.com/dns-groot/FerretDataset

DNS root nameservers

Nameservers of org.

Nameservers of usenix.org.

usenix.org. 1

Go to nameservers for org.

2

3

Go to nameservers for usenix.org.

4

5

623.185.0.4

DNS Resolver

usenix.org.

usenix.org.

Figure 3: The resolution process for the domain name
usenix.org (with no caching).

RET consisting of over 13.5K zone files, which resulted in
the discovery of 30 new unique bugs and no false positives.

2 Background And Motivation

In this section, we first give a brief overview of DNS and then
motivate FERRET through two previously unknown errors that
it found in the popular BIND software for DNS [23].

2.1 Overview of DNS
The Domain Name System (DNS) is the phone book of the
Internet. Its primary role is to translate domain names (like
usenix.org) into various pieces of information, IP addresses
being the most common. A domain name is represented as
a sequence of labels joined by the . character. These labels
form a tree-like hierarchy with the root as . and org as a child
of it and so on. Each label at any level in the hierarchy can
contain information, and the user obtains that information by
querying the domain name formed by joining the labels from
that node to the root. Data is stored as DNS resource records
where each record has a domain (owner) name, a type for its
information, and the content, among other things.

The namespace database tree is divided into a large number
of zones. A zone is a collection of records that share a common
end domain name. For example, the usenix.org zone has
only records ending with usenix.org. All the resource
records of a zone are available to the user through a set of
authoritative nameservers, which are in turn identified by a
domain name. For example, the usenix.org zone is available
from servers like dns1.easydns.com, dns2.easydns.net
and dns3.easydns.ca. The same zone is served by multiple
servers to ensure redundancy and availability.

To resolve a domain name like usenix.org to its IP
address, a client will traverse the tree from one of the root
nameservers. The root nameserver checks its local zone
file and either provides the IP record or returns a set of
authoritative nameservers to ask instead. The client continues

Example Record Description
a.exm.org. A 1.2.3.1 IPv4 record
*.exm.org. AAAA 1:db8::2:1 Wildcard IPv6 record
s.exm.org. NS ns.dns.com. Delegation record
c.exm.org. DNAME cs.org. Domain redirection
w.exm.org. CNAME a.exm.org. Canonical name

Table 1: Examples of common DNS record types.

by querying the new set of nameservers either until the query
is resolved or gets a non-existent domain name error. The
process or the software that performs this traversal on the
client side is called a resolver. The resolution process for the
domain usenix.org is shown in Figure 3.

A nameserver can serve multiple zones. When a query
comes to the nameserver, it first checks whether the query ends
with any of the zone domains; otherwise, it sends a refusal
message to the resolver. After picking a zone, the nameserver
will look up the query name’s closest matching records. It then
creates a response based on the query type and the records se-
lected. DNS supports many record types, including records for
IP addresses, pointers to other records, domain aliases, delega-
tion records, and more. Table 1 shows a few example records.

2.2 Finding DNS Errors with FERRET

The goal of FERRET is to automatically generate high-
coverage query and zone file inputs to find behavioral errors
in DNS nameserver implementations. In this subsection
we illustrate both the challenges in doing so and FERRET’s
capabilities through two example errors that it automatically
found in BIND.

Bug #1: BIND sibling glue records bug. FERRET
generated the following test case, which identified a previously
unknown performance bug in BIND [47].3

campus.edu. SOA ...
foo.campus.edu. NS ns1.campus.edu.
ns1.campus.edu. A 1.1.1.1

Query: ⟨anything.foo.campus.edu., A⟩

In this test case, the query matches the NS record in the
zone file, which delegates the query to another nameserver,
ns1.campus.edu. However, that nameserver happens to
be a sibling of foo.campus.edu (as they are both directly
under campus.edu), and the zone file contains an A record,
called a glue record [41], for the nameserver’s IP address.
NSD, KNOT, and POWERDNS correctly return the NS record
along with the glue record, avoiding extra round-trips to
determine the nameserver’s IP address, while BIND returns
only the NS record. Returning the sibling glue record is not
compulsory, but our test case exposed two unrelated errors
that can negatively affect the performance of many queries.

3Note that we have renamed the labels for all the example bugs for clarity.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 309

After we filed the issue the BIND developers confirmed
the bug saying, “This report turns out to be very interesting..."
Briefly, BIND uses a “glue cache” that had two bugs. First,
if the cache lookup fails, then glue records are supposed to
be searched for in the zone file, but this was not happening.
Second, glue records for siblings domain nameservers were
accidentally never searched for at all.

This example illustrates the challenges of identifying
nameserver behavior errors. Even though the zone file has
only a few records, they have complex dependencies. First,
there must be a delegation of the query to another nameserver.
Second, that nameserver must be in the same zone. Third,
that nameserver must be a sibling domain. Fourth, there must
be a glue record for that domain in the zone. Given these
dependencies, it is understandable that prior testing techniques
did not uncover these bugs. Further, by comparing the outputs
from multiple implementations, FERRET is able to identify
this test case as potentially buggy behavior despite receiving
a valid response from BIND.

Bug #2: BIND crash. As another, more dire example,
consider the following zone file that FERRET generated. The
zone file is invalid due to having two identical records, but
BIND, NSD, and KNOT accept the zone file and make it valid
by ignoring the duplicate record.

attack.com. SOA ...
attack.com. NS ns1.outside.com.
attack.com. NS ns1.outside.com.

host.attack.com. DNAME com.

Query: ⟨host.attack.host.attack.com., DNAME⟩

FERRET generated multiple queries for this zone file (§ 3.6)
and the one showed above caused BIND to crash.

In this test case, the DNAME record is applied to rewrite any
queries ending with host.attack.com to end with just com, so
the query that FERRET generated is rewritten to the new query
host.attack.com. The nameservers add the DNAME record
and rewritten query to the response before resolving the new
query. The new query exactly matches the same DNAME record,
so implementations are expected to return the current response.
All implementations except BIND behaved as expected. BIND
did not respond, and the query timed out. Inspecting the logs,
we found that the server crashed with an assertion failure due to
an attempt to add the same DNAME record to the response twice.

This error constitutes a critical security vulnerability. We
next describe two scenarios to show how this failed assertion
check can be exploited remotely by an attacker.

Scenario 1 - Attack on a DNS hosting service that
uses Bind: DNS hosting services using BIND’s authoritative
nameserver implementation (e.g., Dyn [42]) are vulnerable
to this attack. An attacker can upload the above zone file to
the authoritative server instances through the hosting service.
Then, when the above query is requested, the server instances
will crash as shown in Figure 4(a). Since a server instance

DNS Hosting
Service
E.g., Dyn, Infoblox

Attacker

Host attack.com.
zone file

1

2 Query for
<host.attack.host.a
ttack.com., DNAME>

Crashes Authoritative
nameserver instances

3

(a) Attack on a DNS hosting service using Bind

𝑞1: <host.attack.com.,
DNAME>

Attacker

Bind Resolver

attack.com. zone file
Authoritative nameserver
(under attacker control)

1

2
𝑞1

3
DNAME
record

5
DNAME record
as response

4
cache
record𝑞2: <host.attack.ho

st.attack.com.,
DNAME>

6

7

Resolver crashes

(b) Attack on a public Bind DNS Resolver

Figure 4: DNAME attack targeting the DNS hosting services (a)
and the public BIND based recursive resolvers (b).

will generally be serving zone files from multiple customers,
such a crash will take down the zones for all customers hosted
at that nameserver. This provides a method for attackers to
trivially and remotely initiate a denial of service attack against
customers hosted by such a service.

Scenario 2 - Attack on a public Bind DNS resolver:
In this second scenario, the attacker can crash any public DNS
resolver based on BIND, thereby constituting, as stated by the
BIND security team, an “easily-weaponized denial-of-service
vector.” As illustrated in Figure 4(b), the attacker purchases,
registers, and controls the attack.com zone and its author-
itative servers. The attacker then simply requests the DNAME
record from a public recursive resolver running BIND, which
attempts to fetch the result from the attacker’s authoritative
server. This record is cached, and then the test query is
sent to the resolver. The resolver uses the cached DNAME

record and ultimately crashes as described earlier. In some
estimates, BIND accounts for over half of all DNS resolvers in
use [75], which means that attackers could effectively initiate
a simple distributed denial of service (DDoS) attack against
the numerous ISPs and public resolvers available to end users.

Disclosure: After discovering the DNAME attack, we
initiated a responsible disclosure procedure with the BIND
maintainers. Understanding the attack severity, they requested
that we keep the issue confidential until they worked through
their process to patch and then disclose the bug to the relevant
parties in a controlled manner. BIND released a Common
Vulnerabilities and Exposure (CVE-2021-25215) [26, 38],
with a “high severity” rating and asked developers and users
to upgrade to the patched version. The attack affected all
maintained BIND versions, which in turn affected RHEL,
Slackware, Ubuntu, and Infoblox.

310 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

SELECTBESTRECORDS

ZoneQuery

EXACTMATCH
YES NO

AUTHORITATIVE

EXACTTYPE E4

CNAMETYPEE1

E2 E3

WILDCARDMATCH

EXACTTYPE

W1 CNAMETYPE

W2 W3

DNAMETYPE

D1 REFERRAL

R1 R2

Figure 5: Abstract representation of the Authoritative DNS decision tree used to respond to a user query.

3 Methodology

In this section we overview our methodology for generating
high-coverage tests for DNS nameserver implementations and
discuss how we address several technical challenges.

3.1 SCALE Approach
As illustrated by the examples in the previous section, the
inputs to a DNS nameserver — a query and a zone file
containing a set of records — are highly structured. Further,
records can be of many different types and have many different
kinds of dependencies among them. Therefore, an effective
approach to automatically identifying RFC violations must be
able to generate valid inputs that meet the required structural
and semantic constraints of the domain, and it must also be able
to explore different combinations of record types and features
in a systematic way. To solve this joint generation problem, our
approach, SCALE (Small-scope Constraint-driven Automated
Logical Execution) leverages a specification of the DNS
nameserver logic to drive test generation. Specifically, we
have created an executable version of an existing DNS specifi-
cation [71] and generate tests through symbolic execution [72]
on this executable specification. Symbolic execution is a
static analysis technique that enumerates execution paths in a
program and uses automated constraint solvers to produce an
input that will take each enumerated path, thereby generating
tests that cover many different program behaviors.

While the end-to-end behavior of a DNS query lookup
can require contacting many nameservers, we employ a
compositional approach that only generates tests for a single
nameserver in isolation. Because our formal model considers
the space of all inputs to the nameserver that could be
produced by the rest of the system, and because the “next step”
delegation of the resolution process is captured in the output
at a single nameserver, this approach still allows us to generate
tests for all behaviors of the end-to-end DNS. In other words,
any implementation bug that exists in a DNS nameserver

implementation can be found using our approach. In general,
a downside of compositional testing is that it can lead to false
positives if the tester considers input states that are, in reality,
unreachable with respect to the rest of the system. However,
in the case of DNS, nameservers keep no internal state — the
response they provide is based only on the supplied query and
configuration. This stateless nature implies that compositional
testing will not incur any false positives.

Hence our formal semantics focuses on query lookup at
a single nameserver, which we model as a stateless function
that takes a user query and a zone file and produces a DNS
response. Figure 5 shows an abstract view of this function.
Given the input query and zone, DNS will first select the
closest matching records in the zone for the query using the
SELECTBESTRECORDS function and then follow the decision
logic laid out in the figure using these records. Each leaf
node represents a unique case in the DNS. For example, the
tree shows four different cases of exact matches, labelled
E1 through E4. Symbolic execution of our query-lookup
function generates inputs that drive the function down different
execution paths, thereby enabling us to systematically explore
the space of DNS behaviors and feature interactions.
Example: Consider the path in Figure 5 to the leaf labelled
R1. In order to reach that leaf, the selected records must not
contain one with either an exact match or a wildcard match on
the query domain name. Further, there should not be a DNAME
match but should be one of type NS (REFERRAL). Finally,
while not shown in the figure, when preparing a response to
the query the function will also search for a glue record if the
NS target is in the same zone. Solving all of these constraints
caused symbolic execution to automatically generate the first
test case shown in § 2.2, which identified two errors in BIND.

3.2 An Executable Model of DNS
We have created an implementation of the formal semantics of
query lookup [71] as a program in a modeling language called
Zen [4], a domain-specific language (DSL) embedded in C#.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 311

1 Zen<Response> QueryLookup(
2 Zen<Query> q,
3 Zen<Zone> z)
4 {
5 var records = SelectBestRecords(q, z);
6 var rname = records.At(0).Value().Name();
7 var types = records.Select(r => r.Type());
8
9 return If(

10 rname == q.Name(),
11 ExactMatch(records, q, z),
12 If(
13 IsWildcardMatch(q.Name(), rname),
14 WildcardMatch(records, q, z),
15 If(
16 types.Any(t => t == RType.DNAME),
17 Rewrite(records, q),
18 If(
19 And(types.Any(t => t == RType.NS),
20 Not(types.Any(t => t == RType.SOA))),
21 Response(Tag.R1,
22 Delegation(records, z), Null<Query>()),
23 Response(Tag.R2, empty, Null<Query>())
24))));
25 }

Figure 6: Record lookup model in C# using Zen.

To illustrate this approach, we show several components of
our model. Figure 6 shows the model’s main query-lookup
function, as depicted in Figure 5. The function first selects
the best records (Line 5) and then tests if the query domain
name is equal to the records’ domain name (Line 10). If
so, then this is an exact match and the model calls out to a
helper function to specifically handle the ExactMatch subcase
(Line 11). Similarly, if the query domain name is a wildcard
match for the record domain name (Line 13), then we invoke
the WildcardMatch subcase (Line 14). We show the imple-
mentation of wildcard matching in Figure 7. This function
implements the case where the best matching record is a wild-
card, properly handles interactions with CNAME records, and
synthesizes the correct records for use in the resolver cache.

Our complete executable model consists of 520 lines of C#
code. The model can also easily extend to new DNS RFCs that
would be added in the future. Similarly, if an organization has
a particular way of resolving RFC ambiguities or purposely
deviates from the RFCs in specific ways, the organization can
modify the logical model to reflect that intent.

We chose to implement our formal model in Zen because
it has built-in support for symbolic execution. In Zen, certain
inputs can be marked as symbolic, and the tool will then
leverage SMT solvers [27] to produce concrete values for
these inputs that drive the program down different execution
paths. In our code examples, the Zen<T> type for inputs has
the effect of marking them as symbolic. The tests produced
by symbolic execution can then be used to test any DNS
nameserver implementation. However, making symbolic
execution effective required us to address several challenges,
which we describe in the rest of this section.

26 Zen<Response> WildcardMatch(
27 Zen<IList<ResourceRecord>> rrs,
28 Zen<Query> q,
29 Zen<Zone> z)
30 {
31 var exact = rrs.Where(r => r.Type() == q.Type());
32 var record = rrs.At(0).Value();
33 var newQuery = Query(record.RData(), q.Type());
34 var exactSyn = RecordSynthesis(exact, q.Name());
35 var cnameSyn = RecordSynthesis(rrs, q.Name());
36
37 return If(
38 exact.Length() > 0,
39 Response(Tag.W1, exactSyn, Null<Query>()),
40 If(
41 rrs.Any(r => r.Type() == RType.CNAME),
42 Response(Tag.W2, cnameSyn, Some(newQuery)),
43 Response(Tag.W3, empty, Null<Query>())
44));
45 }

Figure 7: Wildcard match model in C# using Zen.

3.3 Generating Valid Zone Files
The first challenge that we encountered is that zone files
must satisfy several constraints in order to be considered
well-formed. For instance, if there is a DNAME record in a
zone file for math.uni.edu, then no other records below this
domain name may exist, for any record type (e.g., an A record
for fun.math.uni.edu is not allowed). The DNS RFCs define
many such constraints as a way to eliminate ambiguous or
useless zones, as shown in Table 2. Naively performing
symbolic execution will produce many zone files that are
not well formed. Further, DNS implementations typically
preprocess zone files to reject ill-formed zones, thereby failing
to test the intended execution path of the query lookup logic.

Fortunately, our SCALE approach admits a natural solution
to this problem. We have formalized all of the DNS zone
validity conditions as predicates in Zen. Whenever Zen’s
symbolic execution engine produces a constraint representing
the conditions under which the query lookup function takes
a particular execution path, we conjoin these predicates to that
constraint before Zen passes it off to an automated constraint
solver. In this way we ensure that all test cases will have
well-formed zone files by construction.

3.4 Data Representation
In our Zen model, we represent zone files as a list of resource
records, where each resource record contains a domain
name, record type, and data fields. We represent user queries
similarly as consisting of a domain name and a query type.
Record and query types are represented using enums, which
Zen translates to integer values.

One challenging decision we ran into was how best to repre-
sent and model domain names, for both zone records and record
data, in a manner that permits fully automatic and scalable
analysis. For instance, a natural way to encode domain names

312 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Validity Condition RFC Document
i. All records should be unique (there should be no duplicates). 2181 [28]

ii. A zone file should contain exactly one SOA record. 1035 [87]
iii. The zone domain should be prefix to all the resource records domain name. 1034 [86]
iv. If there is a CNAME type then no other type can exist and only one CNAME can exist for a domain name. 1034 [86]
v. There can be only one DNAME record for a domain name. 6672 [96]

vi. A domain name cannot have both DNAME and NS records unless there is an SOA record as well. 6672 [96]
vii. No DNAME record domain name can be a prefix of another record’s domain name. 6672 [96]

viii. No NS record can have a non-SOA domain name that is a prefix of another NS record. 1034 [86]
ix. Glue records must exist for all NS records in a zone. 1035 [87]

Table 2: Summary of DNS zone file validity conditions specified in various RFCs.

would be as string values (a domain name is just a ‘.’ separated
string). Indeed, modern SMT solvers like Z3 [27] support
the logical theory of strings, so this is a natural approach to
consider. However, the theory of strings is in general unde-
cidable [14, 35]. Moreover, this encoding would require us
to define complex predicates for manipulating domain names,
including extracting each of the labels of a domain name and
checking whether one domain name is a prefix of another.

Therefore, rather than model domain names as strings, we
take advantage of the observation that the particular character
values in a domain name label string do not matter for DNS
lookup. Instead, all that matters is whether two labels are
equivalent to one another and whether a label represents a
wildcard. As such, we encode a domain name in Zen as a list
of integers and use a specific integer value to represent the
wildcard character ‘*’. This allows us to use simple, efficient
integer operations and constraints to manipulate domain
names according to our formal model.

3.5 Handling Unbounded Data
A final challenge associated with symbolic execution for
our formal model is the fact that there are several sources
of unboundedness. For example, a zone file can contain an
unbounded number of records, and a domain name can contain
an unbounded number of labels. Our Zen model contains an
unbounded number of paths, since the number of resource
records in a zone file is unbounded and the function to select
the best records must examine all of them and compare them
to one another. SMT constraint solvers have limited support
for unbounded data structures such as lists, and in general, rea-
soning about such constraints requires quantifiers, which lead
to undecidability [95]. Therefore, in our Zen implementation
we only consider inputs that have a bounded size, e.g., at most
N records in a zone file, and hence only produce test cases that
respect these bounds. The size of inputs is a parameter that
is configurable by the user. While the SCALE approach can
therefore fail to detect some errors, we provide experimental
evidence of the existence of a small-scope property [43],
meaning that many interesting behaviors, and behavioral
errors, can be exercised with small tests (§ 5.1).

3.6 Generating Tests for Invalid Zone Files
While it’s critical to be able to generate well-formed zone files
for testing, bugs can also lurk in implementations’ handling of
ill-formed zones. Many DNS implementations use zone-file
preprocessors to perform syntactic and semantic checks. For
example, BIND uses named-checkzone [24], KNOT uses
kzonecheck [18], and POWERDNS uses pdnsutil [20]. The
implementations either reject an ill-formed zone or accept it
but convert it to a valid one by ignoring certain records that
cause it to be semantically ill-formed.

Many security vulnerabilities for software lie in the
incorrect handling of unexpected inputs (e.g., in parsers [1]),
and DNS software should be no different. Since our executable
model includes a formulation of the validity conditions for
zone files, we leverage Zen to systematically generate zone
files that violate one of these conditions. For example, we ask
Zen to generate a zone file in which all but the 7th condition
in Table 2 is violated and the rest are satisfied.

If an invalid zone is rejected, then there is no issue, but if it
is accepted, then there can be errors in how the zone is used for
DNS lookups. To test for such errors we must also be able to
generate queries for these zones. However, our formal model
is only well defined for valid zone files so we cannot use it to
generate queries. Instead, we use a technique from our prior
work on zone-file verification [71] to partition queries into
equivalence classes (ECs) relative to a given zone file. An
equivalence class is a set of queries with the same resolution
behavior, assuming a correct underlying DNS implementation,
and the ECs are generated through a simple syntactic pass
over a zone file. FERRET generates these ECs and then uses
one representative query from each EC as a test. Though the
number of ECs can vary widely, depending on the records
in a zone file, in practice a zone containing four records will
typically induce tens of ECs.

4 System Overview

FERRET is divided into several components, which are de-
picted in Figure 2. First it uses our Zen model described above
to generate test inputs. Because domain names are encoded in

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 313

Zen using lists of integer labels (see § 3.4), FERRET includes
a shim layer that translates the generated zone files and queries
into meaningful domain names by mapping these labels to a
collection of predefined strings (e.g., com). FERRET uses the
equivalence-class (EC) generation algorithm of GROOT [71]
to generate test queries for invalid zone files (§ 3.6).

FERRET uses Docker [83] to construct a work-
ing container image of each implementation. We
cloned the implementations’ code as of October 1st,
2020 [16, 21, 23, 25, 29, 33, 76, 102], from their open-source
repositories on GitHub [84] and GitLab [100]. FERRET starts
a container for each image, and each container serves one zone
file at a time as an authoritative zone. FERRET uses a Python
library dnspython [17] to construct queries and send them
to each implementation’s container. For each test case, the
Python script prepares the container by stopping the running
DNS nameserver, copying the new zone file and the necessary
implementation-dependent configuration files to the container,
and then restarting the DNS nameserver.

Finally, FERRET performs response grouping followed
by fingerprinting to deduplicate errors that are likely to have
the same root cause. For each test case, two DNS responses
are considered equivalent, and hence in the same group, if
they have the same response flags, return code, answer, and
additional sections. FERRET only compares the authority
section in two responses when their answer sections are
empty. We do this because implementations are free to add
additional records like a zone’s SOA or NS records along with
the requested records. We then fingerprint tests that result in
more than one group and thereby represent a likely error. The
fingerprint for a valid test is a tuple consisting of (1) the case
in the formal model (the leaf label in the decision tree from
Figure 5) as well as (2) the response groupings. An example
fingerprint is

〈
R1,

{
{NSD, KNOT, POWERDNS, YADIFA},

{BIND, COREDNS}, {TRUSTDNS, MARADNS}
}〉

. The
fingerprint for an ill-formed test is similar but we use the
validity condition being violated instead of the model case.

5 Results

5.1 Testing Using Valid Zone Files
Using FERRET, we generated thousands of tests and used
them to compare the behavior of 8 popular open-source
authoritative implementations of DNS. Table 3 shows the
8 implementations, the languages they are implemented in,
and a brief description of their focus or how they are used. We
constrained FERRET to generate tests where the length of each
domain name and the number of records in the zone was at
most 4. We ran FERRET on a 3.6GHz 72 core machine with
200 GB of RAM and it generated a total of 12,673 valid test
cases, one per path in our Zen model that is consistent with
the length constraints, in approximately 6 hours. Users can
run the tests in parallel, so the runtime depends heavily on the

Implementation Language Description
BIND [23] C de facto standard
POWERDNS [21] C++ popular in N. Europe
NSD [76] C hosts several TLDs
KNOT [25] C hosts several TLDs
COREDNS [16] Go used in Kubernetes
YADIFA [29] C created by EURid (.eu)
TRUSTDNS [33] Rust security, safety focused
MARADNS [102] C lightweight server

Table 3: The eight open-source DNS nameserver implemen-
tations tested by FERRET. FERRET can test implementations
implemented in any language.

Model Case #Tests #Tests Failing #Fingerprints
E1 3180 239 7
E2 12 10 5
E3 96 12 3
E4 6036 5312 11
W1 60 33 8
W2 24 21 9
W3 18 16 1
D1 230 65 4
R1 2980 2529 27
R2 37 3 1

Table 4: Test generation statistics for n= 4. The model case
refers to the leaves in Figure 5. Even though the number of
failed tests is higher, the number of fingerprints is small.

user resources for parallelization. Each test takes around 10
seconds to run on average, and most of the time is spent setting
up the zone file and necessary configuration files.

As described in § 4, FERRET runs each test against all 8
implementations and groups their responses. Out of 12,673
tests, FERRET found more than one group in the majority
(8,240) of tests. Table 4 shows the number of tests generated
for each case in the model (Figure 5), the number of tests
where there was more than one group, and the number of
unique fingerprints formed for each model case.

In total the 8,240 tests with more than one group were
partitioned into 76 unique fingerprints, for a reduction of more
than two orders of magnitude. For 24 of these fingerprints
there exists only a single test case, while one fingerprint
has 1892 corresponding tests. These 76 fingerprints can
over-count the number of bugs since a single implementation
issue can cause errors on multiple model paths. For example,
YADIFA, TRUSTDNS, and MARADNS do not support DNAME
records; so any generated test containing this feature will cause
them to give the wrong answer or fail to respond. However,
two tests can also have the same fingerprint despite different
implementation root causes; so the number of fingerprints can

314 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

also under-count the number of bugs.
For these reasons, we manually examined the test cases

matching each fingerprint, examining them all when the fin-
gerprint has 4 or fewer tests and otherwise examining a small
random sample. By doing this we identified 24 unique bugs, as
summarized in Table 6 (all except the ones marked with ✧). All
of these have been confirmed as actual bugs (no false positives)
and developers have fixed 14 of them at the time of writing.

5.2 Testing Using Invalid Zone Files
FERRET generated 900 ill-formed zone files, 100 violating
each of the validity conditions in Table 2, in 2.5 hours. We
used these zone files to test the four most widely used DNS
implementations — BIND, NSD, KNOT, POWERDNS— as
these have a mature zone-file preprocessor available.

There is no practical limit on the number of invalid zone
files the tool can generate. We limited it to 100 for each
violation in our experiments, but one could use FERRET to
generate many more such tests if desired. Similarly, though
we only explored violations of single well-formedness rules, it
is straightforward to use FERRET to generate tests that violate
a combination of rules. As a first step, FERRET checked all
of the zone files with each implementation’s preprocessor:
named-checkzone [24] for BIND, kzonecheck [18] for
KNOT, nsd-checkzone [77] for NSD, and pdnsutil [20] for
POWERDNS. Each implementation can either reject or accept
the invalid zone file and Table 5 shows the statistics of how
different implementations treat the zone files.

All together there are 573 invalid zone files (the first five
rows in the table) that are accepted by more than one DNS
implementation and so are amenable to differential testing.
Our formal model relies on zones to be well-formed: so we
cannot use it to generate queries for these zones. Instead we
leverage GROOT [71], which generates query equivalence
classes (ECs) of the form ⟨example.com, t⟩ for a given zone
file, one for each DNS record type t, and does not require the
zone to be semantically well-formed. We used 7 query types:
A, NS, CNAME, DNAME, SOA, TXT, AAAA. We excluded 19 zone
files as GROOT generated over 200 ECs for each of them due
to multiple interacting DNAME loops. For the remaining 554
zone files, the average number of ECs is 21*7 i.e., 21 domains
names and each domain name is paired with the 7 types, and
we chose one representative query from each EC.

The last column in Table 5 shows the results of differential
testing. For example, 106 out of the 201 zone files in the first
row exhibited differences among the three implementations
during testing. We manually inspected all differences for the
zone files that violated conditions of i, ii, iii, vi, and ix, as there
were 12 or fewer such differences in each category, and we
inspected a random sample for the others. By doing this we
identified 6 new errors as shown in Table 6 with the ✧ symbol
and all of them are fixed. Some of the errors identified earlier
were also present here but are not double-counted.

D
N
I
B

D
S
N

T
O
N
K

S
N
D
P

#Zones Condition
violated

#Zones with
a difference

A A A R 100 + 100 + 1 i or viii or ix 11 + 94 + 1
A A R R 100 + 61 vi or ix 8 + 3
A R A R 17 + 100 ii or iii 1 + 6
A R R A 60 vii 53
R A R A 34 ix 7
A R R R 39 vii -
R A R R 4 ix -
R R R A 95 + 1 v or vii -
R R R R 83 + 100 + 5 ii or iv or v -

Table 5: Invalid zone file statistics. The second row shows that
100 (61) zone files that violate condition vi (ix) are accepted
by only BIND and NSD, and 8 (3) of them resulted in some
difference between the two implementations.

5.3 Example Bugs
We now provide a detailed description of some of the bugs
from Table 6. Two of them were already described in § 2.2.

Bug #3: COREDNS Crash. FERRET generated the
following test that causes COREDNS, the recommended
nameserver for Kubernetes, to crash. It was subsequently
confirmed and fixed by the COREDNS developers.

example. SOA ...
∗.example. CNAME foo.example.

Query: ⟨baz.bar.example., CNAME⟩

In this example the zone file has a wildcard CNAME record
that rewrites any query ending with the label example to
foo.example. This rewritten query will then match the
wildcard record again and so on, causing COREDNS to loop
and consume resources until, eventually, the server crashes
with the following message:

runtime: goroutine stack exceeds 1000000000-byte limit
runtime: sp=0xc03c6c0378 stack=[0xc03c6c0000, ...]
fatal error: stack overflow

Interestingly, COREDNS correctly guards against CNAME loops
that do not involve wildcard; so only a test that combines
CNAME and wildcards will trigger the bug. After our bug report,
the developers fixed the issue by adding a loop counter and
breaking the loop if the depth exceeds nine. They commented:
“Note the answer we’re returning will be incomplete (more
cnames to be followed) or illegal (wildcard cname with
multiple identical records). For now it’s more important to
protect ourselves than to give the client a valid answer.”

Crashes like this represent serious security vulnerabilities,
particularly in multi-tenant settings such as the attack
described earlier in Figure 4(a).

Bug #4: Wrong RCODE for synthesized CNAME. FERRET
generated a zone that violates condition vii in Table 2:

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 315

Implementation Bugs Found Bug Type Status

BIND

Sibling glue records not returned [47] Wrong Additional ✓

Zone origin glue records not returned [45] Wrong Additional ✓

DNAME recursion denial-of-service✧ [44] Server Crash □✓
Wrong RCODE for synthesized record✧ [46] Wrong RCODE □✓

NSD

DNAME not applied recursively [65] Wrong Answer □✓
Wrong RCODE when * is in Rdata [64] Wrong RCODE □✓
Used NS records below delegation✧ [67] Wrong Answer □✓
Wrong RCODE for synthesized record✧ [66] Wrong RCODE □✓

POWERDNS
CNAME followed when not required [62] Wrong Answer ✓

pdnsutil check-zone DNAME-at-apex✧ [63] Preprocessor Bug □✓

KNOT

Incorrect record synthesis [58] Wrong Answer □✓
DNAME not applied recursively [61] Wrong Answer □✓
Used records below delegation [59] Wrong Answer □✓
Error in DNAME-DNAME loop KNOT test [60] Faulty KNOT Test □✓
Wrong RCODE for synthesized record✧ [91] Wrong RCODE □✓

COREDNS

NXDOMAIN for existing domain [53] Wrong RCODE □✓
Wrong RCODE for CNAME target [55] Wrong RCODE □✓
Wildcard CNAME loops & DNAME loops [52] Server Crash □✓
Wrong RCODE for synthesized record [57] Wrong RCODE □✓
CNAME followed when not required [56] Wrong Answer □✓
Sibling glue records not returned [54] Wrong Additional ✓

YADIFA

CNAME chains not followed [70] Wrong Answer □✓
Wrong RCODE for CNAME target [69] Wrong RCODE □✓
Used records below delegation [68] Wrong Answer □✓

MARADNS† AA flag set for zone cut NS RRs Wrong Answer ✓

Used records below delegation Wrong Answer ✓

TRUSTDNS†

Wildcard match only one label [49] Wrong Answer ✓

Used records below delegation [51] Wrong Answer ✓

AA flag set for zone cut NS RRs [50] Wrong Flag ✓

CNAME loops crash the server [48] Server Crash ✓

Table 6: Summary of the bugs found by FERRET across the eight implementations. Status column represents whether the
developers responded and acknowledged (✓) and also fixed (□✓) to the filed bug report. The † symbol denotes implementations
with unreported issues due to missing or unimplemented features. The ✧ symbol denotes the bugs found exclusively using testing
with invalid zone files. We reported all the bugs FERRET identified to the respective developers before publishing this paper.

test.com. SOA ...
foo.test.com. DNAME bar.test.com.

cs.foo.test.com. AAAA 1:db8::2:1

Query: ⟨www.foo.test.com., CNAME⟩

BIND and POWERDNS accepted the zone file but NSD
and KNOT did not. FERRET chose the above query as the
representative from the query EC ⟨α.foo.test.com., CNAME⟩
generated by GROOT, where α represents any sequence of
labels that does not start with cs. BIND responded with:

"rcode NXDOMAIN",
";ANSWER",
"foo.test.com. 500 IN DNAME bar.test.com.",
"www.foo.test.com. 500 IN CNAME www.bar.test.com.",

The response from POWERDNS was the same but with a
NOERROR RCODE. The RCODE is important as resolvers can use
QNAME minimization (RFC 7816 [6]) to wrongly conclude

domain (non-)existence if an incorrect RCODE is returned.
However, since the RFCs do not describe this subtle case, the
intended behavior is unclear. Since the query is not relevant
to the AAAA record, which violates the validity condition,
to further investigate this issue we decided to remove that
record and check the responses from NSD and KNOT. Both
responded with the same response as BIND, leading us to
(wrongly) conclude that the issue was with POWERDNS.

To our surprise, after reporting the issue to POWERDNS
they responded: “The PowerDNS behavior looks correct to me.
Are you sure BIND, NSD, and Knot all return NXDOMAIN
on a CNAME query in this context?” BIND and KNOT noticed
the issue we filed on POWERDNS’s GitHub and fixed the
bug almost immediately, even before we filed reports on
their repositories. After some back and forth with the NSD
developers they concurred saying: “If you are right that the
other implementations do this, then we can do that too; that
makes less unexpected surprises in packet responses.”

316 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Max Length (n) 2 3 4 5
No. of Tests 52 618 12673 646K (51K tested)
Test generation time 10m 40m 6h 14d
No. of Tests Failing 12 224 8240 41173
No. of Fingerprints 9 22 76 115
No. of Bugs 4 14 24 27

Table 7: Results summary for different bounds.

Bug #5: POWERDNS pdnsutil bug. FERRET generated
the following test case and POWERDNS returned an incorrect
response, exposing a bug in its zone-file preprocessor.

dept.com. SOA ...
dept.com. DNAME dept.edu.

host.dept.com. A 1.1.1.1

Query: ⟨host.dept.com., A⟩

The zone file is considered invalid as it violates condition vii
in Table 2. nsd-checkzone and kzonecheck preprocessors
reject the zone file but named-checkzone and pdnsutil do
not raise any errors or warnings and accept the zone file.
When queried for the A record, POWERDNS returned this
record even though it should have used the DNAME record.
POWERDNS has a long-standing open issue about handling
DNAME occlusion (records below a DNAME, which should be
ignored), and pdnsutil generally gives a warning but did not
in this specific case. We filed a bug report for this test and the
developers confirmed a bug in pdnsutil when the DNAME is
at the apex of the zone. This is now fixed and pdnsutil gives
a warning as in other occlusion cases.

5.4 Small-scope Property Validation
Finally, we performed an experiment to validate the small-
scope property that justifies our approach — many interesting
behaviors can be covered with small tests. We used FERRET
to generate valid tests where the length of each domain name
and the number of records in the zone were limited to n, for
different values of n. Table 7 shows the results. For example,
when n = 2 there are 52 feasible paths through the model.
FERRET generated the corresponding 52 tests in 10 minutes,
out of which 12 had more than one group, and these 12 fell into
9 fingerprints. By inspecting those failed tests, we identified
4 unique bugs, which are a subset of the ones identified by our
evaluation described in § 5.1, where n=4.

Our experiment identifies two distinct forms of small-scope
property. First, the DNS query resolution protocol itself, as
represented by our logical model, has a small-scope property.
In particular, when n=2 all leaf nodes in Figure 5 are covered
by at least one test, except for the R1 leaf, and all leaf nodes
are covered when n is 3 or higher. Hence, although we are
restricted to generating small zones, we can still cover all
return points in our formal model, each of which represents
a distinct RFC behavior.

Second, the DNS nameserver implementations have a small-
scope property. In part the fact that we have identified dozens
of subtle new errors is evidence that small tests can explore in-
teresting behaviors. The results in Table 7 add further evidence.
As we increase the size of n from 2 to 3 to 4, the number of bugs
identified goes from 4 to 14 to 24. In the n=5 case, FERRET
generated over 646K tests and took almost 14 days to finish.
The distribution of tests across model cases is similar to the
n=4 breakdown shown in Table 4, where the majority of tests
fall into the E1, E4 and R1 cases. We randomly sampled 50K
tests to run from these three cases, according to their propor-
tions. The other cases totalled to around 1000 tests, so we ran
all of them. Out of the resulting 115 fingerprints, 50 fingerprints
were in common with the fingerprints of n=4. We therefore
decided to examine the remaining 65 fingerprints to search for
new bugs. For these 65 fingerprints, the median number of
tests in each fingerprint was 3, and the mode was 1. We found
three bugs that we did not find with n= 4, but all three bugs
were covered by the tests for invalid zones with n=4 (§ 5.2). In
other words, increasing n from 4 to 5 has so far not uncovered
any new errors in the DNS nameserver implementations.

6 Discussion

Our SCALE approach worked surprisingly well at identifying
subtle errors in implementations. This was not obvious from
the beginning, since each implementation can have very
different control logic compared to one another and compared
to our formal model. And yet seemingly the tests derived from
paths through our formal RFC model frequently uncover bugs
in rare control paths for these implementations.

On the other hand, this approach is not a panacea. We
found situations where one path in the model corresponds
to multiple paths in an implementation due to the internal
data structures that it uses to represent different record types,
which can lead to FERRET missing some issues. This showed
up, for example, with empty non-terminals (ENTs) – domain
names that own no resource records but have subdomains
that do. Since there is no explicit branch that differentiates
empty non-terminals in the model, FERRET did not generate
test cases where the zone file had both an ENT and a query
targeting that ENT. However, by manually testing a few such
cases, we found two more bugs in COREDNS. Going forward
it may be possible to extend FERRET to find more cases like
this by adding additional non-semantic branches to the model
to expose behavior thought to be error-prone.

More generally, we believe our SCALE approach to
RFC compliance testing and “ferreting” out bugs through
(i) symbolic execution of a small formal model to jointly
generate configurations together with inputs, combined with
(ii) differential testing, and (iii) fingerprinting, could be useful
more broadly beyond the DNS. For instance, there are many
other complex and distributed protocols used at different
network layers such as routing protocols like BGP and OSPF,

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 317

flow control protocols like PFC, new transport layer protocols
such as QUIC, and many more. It would be interesting future
work to apply the SCALE methodology beyond DNS.

7 Related Work

FERRET and SCALE are related to several lines of prior work
in DNS and in automated testing.

Verified DNS implementations. One approach is to build,
from scratch, a nameserver implementation verified to be
correct. This approach has found some success in other
domains, for example, in operating system microkernels [73]
using proof assistants such as Coq [79]. Ironsides [12] is an
implementation of a DNS resolver and authoritative name-
server that uses SPARK [3] to prove the absence of dataflow
errors such as buffer overflows. While this work is promising,
it does not formalize the DNS RFC semantics and thus cannot
provide any functional correctness guarantees. Moreover,
open source implementations such as BIND [23] are already
used pervasively in the Internet. Providing a new verified
implementation does not help these existing deployments.

Models for DNS. In our prior work on the GROOT zone-file
verifier [71] we provided the first formalization of DNS
semantics. However, it was a paper formalism and was
only used to prove the correctness of the equivalence-class
generation algorithm that forms the core of GROOT’s approach
to verifying zone files. Indeed, GROOT assumes that DNS
implementations conform to the DNS RFCs. Our work is
therefore complementary, but we used GROOT’s logical model
as a basis for our executable Zen model. We also leveraged
GROOT’s equivalence-class generation algorithm to create
queries for invalid zone files.

Fuzz testing. Fuzz testing with semi-random and/or
grammar-based tests has seen success in recent
years [1, 5, 40, 78, 101]. However, as mentioned in § 1,
fuzzing cannot easily be used in our setting due to the need
to navigate complex constraints and dependencies, and hence
existing fuzzers for DNS [10, 89, 99] are limited to testing
DNS parsers and use a fixed zone file.

Symbolic execution. Symbolic execution [36, 37], which
systematically solves for inputs that take different execution
paths in a program, has also been successful [9, 11]. However,
as described in § 1, due to the scale and complexity of DNS
nameserver implementations, symbolic execution has been
used only on individual functions and has avoided the need
to generate zone files [93]. Our SCALE approach uses
symbolic execution to drive test generation, but it does so on an
executable model of the RFC behavior, which is significantly
smaller and simpler than an implementation and has carefully
chosen data representations that are amenable to symbolic
execution. As a result, symbolic execution on our model is
tractable and allows us to jointly generate (small) zone files
and DNS queries that exercise interesting behaviors.

Model- and specification-based testing. In model-based
testing (MBT) [8, 88, 90, 104] a user builds an abstract model
of the system to test (e.g., a finite state machine [8, 104]). A
tester implementation then generates paths through this ab-
stract model and creates concrete tests by “filling in” missing
information from the abstract example. Closest to our work are
model-based testers for black-box network functions (e.g., [30,
98]), which also use symbolic execution to generate tests. How-
ever, they respectively use finite-state machine models [30] and
a domain-specific language for specifying network function
behavior [98], while we have implemented a full functional
model of DNS in a general modeling language [4]. Further,
their setting does not require generating configurations, which
is the key technical challenge for testing protocols like DNS.

Specification-based testing leverages a user-provided
specification of the valid inputs to a function. Most commonly,
tests are generated by finding inputs that satisfy a given pre-
condition [7]. Like SCALE these approaches typically rely on
a small-scope hypothesis [43] and hence focus on generating
small inputs. Recent work has developed an approach to
automated testing for QUIC implementations [81, 82] that
leverages a formal specification, but in a very different way
than in our approach. Specifically, the specification models
the party that is interacting with the implementation being
tested and is used to generate valid responses.

Finally, recent works automatically learn protocol models
from implementations [31] or RFCs [105]. We could
potentially adopt these techniques in the future to reduce the
burden of producing our formal model.

8 Conclusion
Despite its importance as the “phonebook” of the Internet,
DNS is fraught with implementation bugs that can impact mil-
lions of users. In this paper, we introduced FERRET, the first
automatic test generator for RFC compliance of DNS name-
server implementations. The SCALE approach underlying
FERRET uses symbolic execution of a formal model to jointly
generate configurations together with inputs. FERRET com-
bines this technique with differential testing and fingerprinting
to identify and automatically triage implementation errors. In
total FERRET identified 30 new bugs, including at least two for
each of the 8 implementations that we tested. We believe that
this combination of techniques can generalize to “ferret” out
subtle RFC-compliance bugs in large implementation code
bases for other network protocols that use configurations.

Acknowledgements

We thank our shepherd Phillipa Gill and the anonymous
reviewers for their insightful comments. We also thank the
DNS developers and the DNS-OARC community for their
feedback on the bug reports. This work was partially supported
by NSF grants CNS-1704336 and CNS-1901510.

318 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] American Fuzzing Lop (AFL). Afl 2018.
https://lcamtuf.coredump.cx/afl/.

[2] Amazon. Route 53.
https://aws.amazon.com/route53/.

[3] John Barnes. Spark: The Proven Approach to High
Integrity Software. Altran Praxis, London, GBR, 2012.

[4] Ryan Beckett and Ratul Mahajan. A general framework
for compositional network modeling. In Proceedings
of the 19th ACM Workshop on Hot Topics in Networks,
HotNets ’20, page 8–15, New York, NY, USA, 2020.
Association for Computing Machinery.

[5] Marcel Böhme, Van-Thuan Pham, and Abhik Roy-
choudhury. Coverage-based greybox fuzzing as
markov chain. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications
Security, CCS ’16, page 1032–1043, New York, NY,
USA, 2016. Association for Computing Machinery.

[6] Stéphane Bortzmeyer. DNS Query Name Minimisation
to Improve Privacy. RFC 7816, March 2016.

[7] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko
Marinov. Korat: Automated testing based on java
predicates. In Proceedings of the 2002 ACM SIGSOFT
International Symposium on Software Testing and
Analysis, ISSTA ’02, page 123–133, New York, NY,
USA, 2002. Association for Computing Machinery.

[8] Josip Bozic, Lina Marsso, Radu Mateescu, and Franz
Wotawa. A formal tls handshake model in lnt. In John P.
Gallagher, Rob van Glabbeek, and Wendelin Serwe,
editors, Proceedings Third Workshop on Models for
Formal Analysis of Real Systems and Sixth International
Workshop on Verification and Program Transformation,
Thessaloniki, Greece, 20th April 2018, volume 268
of Electronic Proceedings in Theoretical Computer
Science, pages 1–40, Greece, 2018. Open Publishing
Association.

[9] Cristian Cadar, Daniel Dunbar, and Dawson Engler.
Klee: Unassisted and automatic generation of high-
coverage tests for complex systems programs. In
Proceedings of the 8th USENIX Conference on Oper-
ating Systems Design and Implementation, OSDI’08,
page 209–224, USA, 2008. USENIX Association.

[10] Frederic Cambus. Fuzzing dns zone parsers.
https://www.cambus.net/fuzzing-dns-zone-
parsers/.

[11] Marco Canini, Vojin Jovanović, Daniele Venzano,
Dejan Novaković, and Dejan Kostić. Online testing
of federated and heterogeneous distributed systems. In
Proceedings of the ACM SIGCOMM 2011 Conference,
SIGCOMM ’11, page 434–435, New York, NY, USA,
2011. Association for Computing Machinery.

[12] M. Carlisle and B. Fagin. Ironsides: Dns with
no single-packet denial of service or remote code
execution vulnerabilities. In 2012 IEEE Global
Communications Conference (GLOBECOM), pages
839–844, Anaheim, CA, USA, 2012. IEE.

[13] Peng Chen and Hao Chen. Angora: Efficient fuzzing
by principled search. In 2018 IEEE Symposium on
Security and Privacy (SP), pages 711–725, 2018.

[14] Taolue Chen, Yan Chen, Matthew Hague, Anthony W.
Lin, and Zhilin Wu. What is decidable about string
constraints with the replaceall function. Proc. ACM
Program. Lang., 2(POPL), December 2017.

[15] Bind Community. Bind gitlab issues.
https://gitlab.isc.org/isc-projects/bind9/
-/issues.

[16] CoreDNS community. Coredns.
https://coredns.io/.
Code commit used: https://
github.com/coredns/coredns/tree/
6edc8fe7f6c2f57844c8ee7f7f5deef71085ebe8.

[17] Dnspython Community. Dnspython.
https://dnspython.readthedocs.io/en/latest/
index.html.

[18] Knot community. kzonecheck – knot dns zone file
checking tool.
https://www.knot-dns.cz/docs/2.5/html/
man_kzonecheck.html.

[19] NSD Community. Nsd github issues.
https://github.com/NLnetLabs/nsd/issues.

[20] PowerDNS community. Pdnsutil.
https://doc.powerdns.com/authoritative/
manpages/pdnsutil.1.html.

[21] PowerDNS Community. Powerdns.
https://www.powerdns.com/.
Code commit used: https://
github.com/PowerDNS/pdns/tree/
a03aaad7554483ee6efe72a81eda00a9d1a94fe5.

[22] PowerDNS Community. Powerdns github issues.
https://github.com/PowerDNS/pdns/issues?q=
is%3Aissue+is%3Aopen+label%3Aauth.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 319

https://lcamtuf.coredump.cx/afl/
https://aws.amazon.com/route53/
https://www.cambus.net/fuzzing-dns-zone-parsers/
https://www.cambus.net/fuzzing-dns-zone-parsers/
https://gitlab.isc.org/isc-projects/bind9/-/issues
https://gitlab.isc.org/isc-projects/bind9/-/issues
https://coredns.io/
https://github.com/coredns/coredns/tree/6edc8fe7f6c2f57844c8ee7f7f5deef71085ebe8
https://github.com/coredns/coredns/tree/6edc8fe7f6c2f57844c8ee7f7f5deef71085ebe8
https://github.com/coredns/coredns/tree/6edc8fe7f6c2f57844c8ee7f7f5deef71085ebe8
https://dnspython.readthedocs.io/en/latest/index.html
https://dnspython.readthedocs.io/en/latest/index.html
https://www.knot-dns.cz/docs/2.5/html/man_kzonecheck.html
https://www.knot-dns.cz/docs/2.5/html/man_kzonecheck.html
https://github.com/NLnetLabs/nsd/issues
https://doc.powerdns.com/authoritative/manpages/pdnsutil.1.html
https://doc.powerdns.com/authoritative/manpages/pdnsutil.1.html
https://www.powerdns.com/
https://github.com/PowerDNS/pdns/tree/a03aaad7554483ee6efe72a81eda00a9d1a94fe5
https://github.com/PowerDNS/pdns/tree/a03aaad7554483ee6efe72a81eda00a9d1a94fe5
https://github.com/PowerDNS/pdns/tree/a03aaad7554483ee6efe72a81eda00a9d1a94fe5
https://github.com/PowerDNS/pdns/issues?q=is%3Aissue+is%3Aopen+label%3Aauth
https://github.com/PowerDNS/pdns/issues?q=is%3Aissue+is%3Aopen+label%3Aauth

[23] Internet Systems Consortium. Bind 9.
https://www.isc.org/bind/.
Code commit used: https://
gitlab.isc.org/isc-projects/bind9/-/tree/
dbcf683c1a57f49876e329fca183cb39d20ca3a4.

[24] Internet Systems Consortium. named-checkzone(8).
https://linux.die.net/man/8/named-checkzone.

[25] CZ.NIC. Knot.
https://www.knot-dns.cz/.
Code commit used: https://
gitlab.nic.cz/knot/knot-dns/-/tree/
563fcdd886b5d5c52bceeb8fda3c4bda59ece73e.

[26] National Vulnerability Database. CVE-2021-25215
Detail.
https://nvd.nist.gov/vuln/detail/CVE-2021-
25215.

[27] Leonardo De Moura and Nikolaj Bjørner. Z3: An
efficient smt solver. In Proceedings of the Theory and
Practice of Software, 14th International Conference on
Tools and Algorithms for the Construction and Analysis
of Systems, TACAS’08/ETAPS’08, page 337–340,
Berlin, Heidelberg, 2008. Springer-Verlag.

[28] Robert Elz and Randy Bush. Clarifications to the DNS
Specification. RFC 2181, July 1997.

[29] EURid.eu. Yadifa.
https://www.yadifa.eu/.
Code commit used: https://
github.com/yadifa/yadifa/tree/
dc5bed2fb8ec204af9b65eeb91934c2c85098cbb.

[30] Seyed K. Fayaz, Tianlong Yu, Yoshiaki Tobioka,
Sagar Chaki, and Vyas Sekar. BUZZ: Testing
Context-Dependent policies in stateful networks. In
13th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 16), pages 275–289,
Santa Clara, CA, March 2016. USENIX Association.

[31] Tiago Ferreira, Harrison Brewton, Loris D’Antoni, and
Alexandra Silva. Prognosis: Closed-box analysis of
network protocol implementations. In Proceedings
of the 2021 ACM SIGCOMM 2021 Conference,
SIGCOMM ’21, page 762–774, New York, NY, USA,
2021. Association for Computing Machinery.

[32] Jonathan Foote. How to fuzz a server with american
fuzzy lop.
https://www.fastly.com/blog/how-fuzz-
server-american-fuzzy-lop, 2015.

[33] Benjamin Fry and Community. Trust-dns.
http://trust-dns.org/.
Code commit used: https://

github.com/bluejekyll/trust-dns/tree/
7d9b186121fb5cb331cf2ec6baa47846b83de8fc.

[34] James Fryman. Dns outage post mortem.
https://github.blog/2014-01-18-dns-outage-
post-mortem/, 2014.

[35] Vijay Ganesh, Mia Minnes, Armando Solar-Lezama,
and Martin Rinard. Word equations with length
constraints: What’s decidable? In Proceedings of
the 8th International Conference on Hardware and
Software: Verification and Testing, HVC’12, page
209–226, Berlin, Heidelberg, 2012. Springer-Verlag.

[36] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin.
Grammar-based whitebox fuzzing. In Proceedings of
the 29th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’08, page
206–215, New York, NY, USA, 2008. Association for
Computing Machinery.

[37] Patrice Godefroid, Nils Klarlund, and Koushik
Sen. Dart: Directed automated random testing. In
Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation,
PLDI ’05, page 213–223, New York, NY, USA, 2005.
Association for Computing Machinery.

[38] Suzanne Goldlust, Michał Kępień, Peter Davies, and Ev-
erett Fulton. CVE-2021-25215: An assertion check can
fail while answering queries for DNAME records that
require the DNAME to be processed to resolve itself.
https://kb.isc.org/v1/docs/cve-2021-25215.

[39] Google. Cloud dns.
https://cloud.google.com/dns.

[40] Sam Hocevar. zzuf: multi-purpose fuzzer.
http://caca.zoy.org/wiki/zzuf/., 2007.

[41] Paul E. Hoffman, Andrew Sullivan, and Kazunori
Fujiwara. DNS Terminology. RFC 8499, January 2019.

[42] Dyn Inc. Dynamic dns.
https://account.dyn.com/.

[43] Daniel Jackson. Alloy: A lightweight object modelling
notation. ACM Trans. Softw. Eng. Methodol.,
11(2):256–290, April 2002.

[44] Siva Kakarla, Mark Andrews, Michał Kępień, Peter
Davies, and Michal Nowak. [CVE-2021-25215]
An assertion check can fail while answering queries
for DNAME records that require the DNAME to be
processed to resolve itself.
https://gitlab.isc.org/isc-projects/bind9/
-/issues/2540.

320 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.isc.org/bind/
https://gitlab.isc.org/isc-projects/bind9/-/tree/dbcf683c1a57f49876e329fca183cb39d20ca3a4
https://gitlab.isc.org/isc-projects/bind9/-/tree/dbcf683c1a57f49876e329fca183cb39d20ca3a4
https://gitlab.isc.org/isc-projects/bind9/-/tree/dbcf683c1a57f49876e329fca183cb39d20ca3a4
https://linux.die.net/man/8/named-checkzone
https://www.knot-dns.cz/
https://gitlab.nic.cz/knot/knot-dns/-/tree/563fcdd886b5d5c52bceeb8fda3c4bda59ece73e
https://gitlab.nic.cz/knot/knot-dns/-/tree/563fcdd886b5d5c52bceeb8fda3c4bda59ece73e
https://gitlab.nic.cz/knot/knot-dns/-/tree/563fcdd886b5d5c52bceeb8fda3c4bda59ece73e
https://nvd.nist.gov/vuln/detail/CVE-2021-25215
https://nvd.nist.gov/vuln/detail/CVE-2021-25215
https://www.yadifa.eu/
https://github.com/yadifa/yadifa/tree/dc5bed2fb8ec204af9b65eeb91934c2c85098cbb
https://github.com/yadifa/yadifa/tree/dc5bed2fb8ec204af9b65eeb91934c2c85098cbb
https://github.com/yadifa/yadifa/tree/dc5bed2fb8ec204af9b65eeb91934c2c85098cbb
https://www.fastly.com/blog/how-fuzz-server-american-fuzzy-lop
https://www.fastly.com/blog/how-fuzz-server-american-fuzzy-lop
http://trust-dns.org/
https://github.com/bluejekyll/trust-dns/tree/7d9b186121fb5cb331cf2ec6baa47846b83de8fc
https://github.com/bluejekyll/trust-dns/tree/7d9b186121fb5cb331cf2ec6baa47846b83de8fc
https://github.com/bluejekyll/trust-dns/tree/7d9b186121fb5cb331cf2ec6baa47846b83de8fc
https://github.blog/2014-01-18-dns-outage-post-mortem/
https://github.blog/2014-01-18-dns-outage-post-mortem/
https://kb.isc.org/v1/docs/cve-2021-25215
https://cloud.google.com/dns
http://caca.zoy.org/wiki/zzuf/.
https://account.dyn.com/
https://gitlab.isc.org/isc-projects/bind9/-/issues/2540
https://gitlab.isc.org/isc-projects/bind9/-/issues/2540

[45] Siva Kesava R Kakarla and Mark Andrews. Glue
records can be returned when the name server’s name
is same as the zone origin.
https://gitlab.isc.org/isc-projects/bind9/
-/issues/2385.

[46] Siva Kesava R Kakarla, Mark Andrews, and Michał
Kępień. DNAME: synthetized CNAME might be
perfect answer to CNAME query.
https://gitlab.isc.org/isc-projects/bind9/
-/issues/2284.

[47] Siva Kesava R Kakarla, Mark Andrews, and Michał
Kępień. Sibling (In-bailiwick rule of RFC 8499)
domain IP records not returned.
https://gitlab.isc.org/isc-projects/bind9/
-/issues/2384.

[48] Siva Kesava R Kakarla and Benjamin Fry. CNAME
loops throws off the server.
https://github.com/bluejekyll/trust-dns/
issues/1283.

[49] Siva Kesava R Kakarla and Benjamin Fry. Wildcards
match only one label.
https://github.com/bluejekyll/trust-dns/
issues/1342.

[50] Siva Kesava R Kakarla and Benjamin Fry. Zone cut
NS RRs returned as authoritative records.
https://github.com/bluejekyll/trust-dns/
issues/1273.

[51] Siva Kesava R Kakarla, Benjamin Fry, and Jonas
Bushart. Glue records returned as authoritative records
by the server .
https://github.com/bluejekyll/trust-dns/
issues/1272.

[52] Siva Kesava R Kakarla and Miek Gieben. Handling
wildcard CNAME loops.
https://github.com/coredns/coredns/issues/
4378.

[53] Siva Kesava R Kakarla and Miek Gieben. NXDO-
MAIN returned when the domain exists.
https://github.com/coredns/coredns/issues/
4374.

[54] Siva Kesava R Kakarla and Miek Gieben. Sibling
(In-bailiwick rule of RFC 8499) domain IP records can
also be returned along with NS records.
https://github.com/coredns/coredns/issues/
4377.

[55] Siva Kesava R Kakarla and Chris O’Haver. Non-
existent CNAME target in the same zone should be re-
turned with NXDOMAIN instead of NOERROR rcode.

https://github.com/coredns/coredns/issues/
4288.

[56] Siva Kesava R Kakarla, Chris O’Haver, and Kohei
Yoshida. CNAME need not be followed after a
synthesized CNAME for a CNAME query.
https://github.com/coredns/coredns/issues/
4398.

[57] Siva Kesava R Kakarla, Chris O’Haver, and Kohei
Yoshida. Return code for synthesized CNAME records
(from wildcards and DNAMEs).
https://github.com/coredns/coredns/issues/
4341.

[58] Siva Kesava R Kakarla, Libor Peltan, and Daniel
Salzman. Record incorrectly synthesized from
wildcard record.
https://gitlab.nic.cz/knot/knot-dns/-/
issues/715.

[59] Siva Kesava R Kakarla, Libor Peltan, and Daniel
Salzman. Records below delegation are not ignored
(kzonecheck also does not raise any issue).
https://gitlab.nic.cz/knot/knot-dns/-/
issues/713.

[60] Siva Kesava R Kakarla, Libor Peltan, Daniel Salzman,
and mscbg. DNAME-DNAME loop test case is not
a loop.
https://gitlab.nic.cz/knot/knot-dns/-/
issues/703.

[61] Siva Kesava R Kakarla, Libor Peltan, Daniel Salzman,
and Vladimír Čunát. DNAME not applied more than
once to resolve the query.
https://gitlab.nic.cz/knot/knot-dns/-/
issues/714.

[62] Siva Kesava R Kakarla and Peter van Dijk. CNAME
need not be followed after a synthesized CNAME for
a CNAME query.
https://github.com/PowerDNS/pdns/issues/
9886.

[63] Siva Kesava R Kakarla and Peter van Dijk. pdnsutil
DNAME checks have issues.
https://github.com/PowerDNS/pdns/issues/
9734.

[64] Siva Kesava R Kakarla and Wouter Wijngaards. ‘*’ in
Rdata causes the return code to be NOERROR instead
of NX.
https://github.com/NLnetLabs/nsd/issues/
152.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 321

https://gitlab.isc.org/isc-projects/bind9/-/issues/2385
https://gitlab.isc.org/isc-projects/bind9/-/issues/2385
https://gitlab.isc.org/isc-projects/bind9/-/issues/2284
https://gitlab.isc.org/isc-projects/bind9/-/issues/2284
https://gitlab.isc.org/isc-projects/bind9/-/issues/2384
https://gitlab.isc.org/isc-projects/bind9/-/issues/2384
https://github.com/bluejekyll/trust-dns/issues/1283
https://github.com/bluejekyll/trust-dns/issues/1283
https://github.com/bluejekyll/trust-dns/issues/1342
https://github.com/bluejekyll/trust-dns/issues/1342
https://github.com/bluejekyll/trust-dns/issues/1273
https://github.com/bluejekyll/trust-dns/issues/1273
https://github.com/bluejekyll/trust-dns/issues/1272
https://github.com/bluejekyll/trust-dns/issues/1272
https://github.com/coredns/coredns/issues/4378
https://github.com/coredns/coredns/issues/4378
https://github.com/coredns/coredns/issues/4374
https://github.com/coredns/coredns/issues/4374
https://github.com/coredns/coredns/issues/4377
https://github.com/coredns/coredns/issues/4377
https://github.com/coredns/coredns/issues/4288
https://github.com/coredns/coredns/issues/4288
https://github.com/coredns/coredns/issues/4398
https://github.com/coredns/coredns/issues/4398
https://github.com/coredns/coredns/issues/4341
https://github.com/coredns/coredns/issues/4341
https://gitlab.nic.cz/knot/knot-dns/-/issues/715
https://gitlab.nic.cz/knot/knot-dns/-/issues/715
https://gitlab.nic.cz/knot/knot-dns/-/issues/713
https://gitlab.nic.cz/knot/knot-dns/-/issues/713
https://gitlab.nic.cz/knot/knot-dns/-/issues/703
https://gitlab.nic.cz/knot/knot-dns/-/issues/703
https://gitlab.nic.cz/knot/knot-dns/-/issues/714
https://gitlab.nic.cz/knot/knot-dns/-/issues/714
https://github.com/PowerDNS/pdns/issues/9886
https://github.com/PowerDNS/pdns/issues/9886
https://github.com/PowerDNS/pdns/issues/9734
https://github.com/PowerDNS/pdns/issues/9734
https://github.com/NLnetLabs/nsd/issues/152
https://github.com/NLnetLabs/nsd/issues/152

[65] Siva Kesava R Kakarla and Wouter Wijngaards.
DNAME not applied more than once to resolve the
query.
https://github.com/NLnetLabs/nsd/issues/
151.

[66] Siva Kesava R Kakarla and Wouter Wijngaards.
DNAME: synthesized CNAME might be perfect
answer to CNAME query.
https://github.com/NLnetLabs/nsd/issues/
140.

[67] Siva Kesava R Kakarla and Wouter Wijngaards.
NS Records below delegation are not ignored (nsd-
checkzone also does not raise any issue).
https://github.com/NLnetLabs/nsd/issues/
174.

[68] Siva Kesava R Kakarla and yadifa. Records below
delegation are not ignored.
https://github.com/yadifa/yadifa/issues/12.

[69] Siva Kesava R Kakarla, yadifa, and edfeu. Non-existent
CNAME target in the same zone should be returned
with NXDOMAIN instead of NOERROR.
https://github.com/yadifa/yadifa/issues/11.

[70] Siva Kesava R Kakarla, yadifa, and edfeu. Why are
CNAME chains not followed?
https://github.com/yadifa/yadifa/issues/10.

[71] Siva Kesava Reddy Kakarla, Ryan Beckett, Behnaz
Arzani, Todd Millstein, and George Varghese. Groot:
Proactive verification of dns configurations. In
Proceedings of the Annual Conference of the ACM
Special Interest Group on Data Communication on
the Applications, Technologies, Architectures, and
Protocols for Computer Communication, SIGCOMM
’20, page 310–328, New York, NY, USA, 2020.
Association for Computing Machinery.

[72] James C. King. Symbolic execution and program
testing. Commun. ACM, 19(7):385–394, July 1976.

[73] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June
Andronick, David Cock, Philip Derrin, Dhammika
Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, Thomas Sewell, Harvey Tuch, and Simon
Winwood. Sel4: Formal verification of an os kernel.
In Proceedings of the ACM SIGOPS 22nd Symposium
on Operating Systems Principles, SOSP ’09, page
207–220, New York, NY, USA, 2009. Association for
Computing Machinery.

[74] Eduard Kovacs. Dns servers crash due to bind security
flaw.
https://www.securityweek.com/dns-servers-
crash-due-bind-security-flaw, 2018.

[75] Marc Kührer, Thomas Hupperich, Jonas Bushart,
Christian Rossow, and Thorsten Holz. Going wild:
Large-scale classification of open dns resolvers.
In Proceedings of the 2015 Internet Measurement
Conference, IMC ’15, page 355–368, New York, NY,
USA, 2015. Association for Computing Machinery.

[76] NLnet Labs. Nsd.
https://nlnetlabs.nl/projects/nsd/about/.
Code commit used: https://
github.com/NLnetLabs/nsd/tree/
4043a5ab7be7abaec969011e48e4d0d60a0056a6.

[77] NLnet Labs. nsd-checkzone - nsd zone file syntax
checker.
https://www.nlnetlabs.nl/documentation/nsd/
nsd-checkzone/.

[78] Hyojeong Lee, Jeff Seibert, Dylan Fistrovic, Charles
Killian, and Cristina Nita-Rotaru. Gatling: Automatic
performance attack discovery in large-scale distributed
systems. ACM Trans. Inf. Syst. Secur., 17(4), April
2015.

[79] Pierre Letouzey. Programmation fonctionnelle
certifiée: l’extraction de programmes dans l’assistant
Coq. PhD thesis, Université Paris Sud, 2004.

[80] Edward P. Lewis. The Role of Wildcards in the Domain
Name System. RFC 4592, July 2006.

[81] Kenneth L. McMillan and Lenore D. Zuck. Composi-
tional testing of internet protocols. In 2019 IEEE Cyber-
security Development (SecDev), pages 161–174, 2019.

[82] Kenneth L. McMillan and Lenore D. Zuck. Formal
specification and testing of quic. In Proceedings of the
ACM Special Interest Group on Data Communication,
SIGCOMM ’19, page 227–240, New York, NY, USA,
2019. Association for Computing Machinery.

[83] Dirk Merkel. Docker: Lightweight linux containers
for consistent development and deployment. Linux J.,
2014(239):2, March 2014.

[84] Microsoft. Github, inc.
https://github.com/.

[85] Microsoft. Microsoft dns.
https://en.wikipedia.org/wiki/Microsoft_DNS.

[86] P. Mockapetris. Domain names - concepts and facilities.
RFC 1034, November 1987.

[87] Paul Mockapetris. Domain names - implementation
and specification. RFC 1035, November 1987.

322 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/NLnetLabs/nsd/issues/151
https://github.com/NLnetLabs/nsd/issues/151
https://github.com/NLnetLabs/nsd/issues/140
https://github.com/NLnetLabs/nsd/issues/140
https://github.com/NLnetLabs/nsd/issues/174
https://github.com/NLnetLabs/nsd/issues/174
https://github.com/yadifa/yadifa/issues/12
https://github.com/yadifa/yadifa/issues/11
https://github.com/yadifa/yadifa/issues/10
https://www.securityweek.com/dns-servers-crash-due-bind-security-flaw
https://www.securityweek.com/dns-servers-crash-due-bind-security-flaw
https://nlnetlabs.nl/projects/nsd/about/
https://github.com/NLnetLabs/nsd/tree/4043a5ab7be7abaec969011e48e4d0d60a0056a6
https://github.com/NLnetLabs/nsd/tree/4043a5ab7be7abaec969011e48e4d0d60a0056a6
https://github.com/NLnetLabs/nsd/tree/4043a5ab7be7abaec969011e48e4d0d60a0056a6
https://www.nlnetlabs.nl/documentation/nsd/nsd-checkzone/
https://www.nlnetlabs.nl/documentation/nsd/nsd-checkzone/
https://github.com/
https://en.wikipedia.org/wiki/Microsoft_DNS

[88] B. Neelakantan and S. V. Raghavan. Protocol
Conformance Testing — A Survey, pages 175–191.
Springer US, Boston, MA, 1995.

[89] NMAP Organization. Dns-fuzz.
https://nmap.org/nsedoc/scripts/dns-
fuzz.html.

[90] Javier Paris and Thomas Arts. Automatic testing
of tcp/ip implementations using quickcheck. In
Proceedings of the 8th ACM SIGPLAN Workshop on
ERLANG, ERLANG ’09, page 83–92, New York, NY,
USA, 2009. Association for Computing Machinery.

[91] Libor Peltan and Daniel Salzman. DNAME: synthe-
sized CNAME might be perfect answer to CNAME
query.
https://gitlab.nic.cz/knot/knot-dns/-/
merge_requests/1217.

[92] Libor Peltans. Nsd and knot discussion.
https://github.com/NLnetLabs/nsd/issues/
142#issuecomment-732753256.

[93] David A. Ramos and Dawson Engler. Under-
constrained symbolic execution: Correctness checking
for real code. In 24th USENIX Security Symposium
(USENIX Security 15), pages 49–64, Washington, D.C.,
August 2015. USENIX Association.

[94] Fahmida Y. Rashid. Isc updates critical dos bug in bind
dns software.
https://www.infoworld.com/article/3126472/
isc-updates-critical-dos-bug-in-bind-dns-
software.html, 2016.

[95] Andrew Reynolds, Jasmin Christian Blanchette, Simon
Cruanes, and Cesare Tinelli. Model finding for recur-
sive functions in smt. In Nicola Olivetti and Ashish
Tiwari, editors, Automated Reasoning, pages 133–151,
Cham, 2016. Springer International Publishing.

[96] Scott Rose and Wouter Wijngaards. DNAME
Redirection in the DNS. RFC 6672, June 2012.

[97] Kyle Schomp, Onkar Bhardwaj, Eymen Kurdoglu,
Mashooq Muhaimen, and Ramesh K. Sitaraman.
Akamai dns: Providing authoritative answers to
the world’s queries. In Proceedings of the Annual
Conference of the ACM Special Interest Group on Data
Communication on the Applications, Technologies,
Architectures, and Protocols for Computer Communi-
cation, SIGCOMM ’20, page 465–478, New York, NY,
USA, 2020. Association for Computing Machinery.

[98] Harsha Sharma, Wenfei Wu, and Bangwen Deng. Sym-
bolic execution for network functions with time-driven

logic. In 2020 28th International Symposium on Model-
ing, Analysis, and Simulation of Computer and Telecom-
munication Systems (MASCOTS), pages 1–8, 2020.

[99] Robert Swiecki and et al. Honggfuzz - security oriented
software fuzzer.
https://github.com/google/honggfuzz/tree/
master/examples/bind.

[100] Dmitriy Zaporozhets Sytse "Sid" Sijbrandij. Gitlab,
inc.
https://gitlab.com/.

[101] Peach Tech. Peach fuzzer platform.
peach.tech/products/peach-fuzzer/
peach.tech/products/peach-fuzzer/.

[102] Sam Trenholme. Maradns.
https://maradns.samiam.org/.
Code commit used: https://
github.com/samboy/MaraDNS/tree/
3ec477f227b2bf6947be8fbe8fd0ab73130227d0.

[103] Liam Tung. Azure global outage: Our dns update
mangled domain records, says microsoft.
https://www.zdnet.com/article/azure-global-
outage-our-dns-update-mangled-domain-
records-says-microsoft/, 2019.

[104] Margus Veanes, Colin Campbell, Wolfgang Grieskamp,
Wolfram Schulte, Nikolai Tillmann, and Lev Nachman-
son. Model-Based Testing of Object-Oriented Reactive
Systems with Spec Explorer, pages 39–76. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2008.

[105] Jane Yen, Tamás Lévai, Qinyuan Ye, Xiang Ren,
Ramesh Govindan, and Barath Raghavan. Semi-
automated protocol disambiguation and code
generation. In Proceedings of the 2021 ACM
SIGCOMM 2021 Conference, SIGCOMM ’21, page
272–286, New York, NY, USA, 2021. Association for
Computing Machinery.

[106] Dan York. Hbo now dnssec misconfiguration makes
site unavailable from comcast networks (fixed now).
https://www.internetsociety.org/blog/2015/
03/hbo-now-dnssec-misconfiguration-makes-
site-unavailable-from-comcast-networks-
fixed-now/.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 323

https://nmap.org/nsedoc/scripts/dns-fuzz.html
https://nmap.org/nsedoc/scripts/dns-fuzz.html
https://gitlab.nic.cz/knot/knot-dns/-/merge_requests/1217
https://gitlab.nic.cz/knot/knot-dns/-/merge_requests/1217
https://github.com/NLnetLabs/nsd/issues/142#issuecomment-732753256
https://github.com/NLnetLabs/nsd/issues/142#issuecomment-732753256
https://www.infoworld.com/article/3126472/isc-updates-critical-dos-bug-in-bind-dns-software.html
https://www.infoworld.com/article/3126472/isc-updates-critical-dos-bug-in-bind-dns-software.html
https://www.infoworld.com/article/3126472/isc-updates-critical-dos-bug-in-bind-dns-software.html
https://github.com/google/honggfuzz/tree/master/examples/bind
https://github.com/google/honggfuzz/tree/master/examples/bind
https://gitlab.com/
peach.tech/products/peach-fuzzer/peach.tech/products/peach-fuzzer/
peach.tech/products/peach-fuzzer/peach.tech/products/peach-fuzzer/
https://maradns.samiam.org/
https://github.com/samboy/MaraDNS/tree/3ec477f227b2bf6947be8fbe8fd0ab73130227d0
https://github.com/samboy/MaraDNS/tree/3ec477f227b2bf6947be8fbe8fd0ab73130227d0
https://github.com/samboy/MaraDNS/tree/3ec477f227b2bf6947be8fbe8fd0ab73130227d0
https://www.zdnet.com/article/azure-global-outage-our-dns-update-mangled-domain-records-says-microsoft/
https://www.zdnet.com/article/azure-global-outage-our-dns-update-mangled-domain-records-says-microsoft/
https://www.zdnet.com/article/azure-global-outage-our-dns-update-mangled-domain-records-says-microsoft/
https://www.internetsociety.org/blog/2015/03/hbo-now-dnssec-misconfiguration-makes-site-unavailable-from-comcast-networks-fixed-now/
https://www.internetsociety.org/blog/2015/03/hbo-now-dnssec-misconfiguration-makes-site-unavailable-from-comcast-networks-fixed-now/
https://www.internetsociety.org/blog/2015/03/hbo-now-dnssec-misconfiguration-makes-site-unavailable-from-comcast-networks-fixed-now/
https://www.internetsociety.org/blog/2015/03/hbo-now-dnssec-misconfiguration-makes-site-unavailable-from-comcast-networks-fixed-now/

Decentralized cloud wide-area network traffic engineering with BLASTSHIELD

Umesh Krishnaswamy Rachee Singh Nikolaj Bjørner Himanshu Raj

Microsoft

Abstract

Cloud networks are increasingly managed by centralized
software defined controllers. Centralized traffic engineering
controllers achieve higher network throughput than decen-
tralized implementations, but are a single point of failure
in the network. Large scale networks require controllers
with isolated fault domains to contain the blast radius of
faults. In this work, we present BLASTSHIELD, Microsoft’s
software-defined decentralized WAN traffic engineering sys-
tem. BLASTSHIELD slices the WAN into smaller fault do-
mains, each managed by its own slice controller. Slice con-
trollers independently engineer traffic in their slices to maxi-
mize global network throughput without relying on hierarchi-
cal or central coordination. BLASTSHIELD is fully deployed
in Microsoft’s WAN and carries a majority of the backbone
traffic. BLASTSHIELD achieves similar network throughput
as the previous generation centralized controller and reduces
traffic loss from controller failures by 60%.

1 Introduction

Cloud wide-area networks (WANs) enable low-latency and
high bandwidth cloud applications like live-video, geo-
replication, and other business critical workloads. Cloud
WANs are billion-dollar assets, and annually cost a hundred
million dollars to maintain. To efficiently utilize their in-
frastructure investment, cloud providers employ centralized,
software-defined traffic engineering (TE) systems. Central-
ized TE leverages global views of the topology and demands
to maximize the network throughput.

Maximum throughput, but at what cost? The paradigm
shift in WAN TE from fully decentralized switch-native pro-
tocols (e.g., RSVP-TE [4]) to centralized TE controllers was
driven by the throughput gains made possible by centraliza-
tion [16]. After a decade of operating the software-defined
WAN (SWAN) in Microsoft’s backbone network, we claim
that it is more important that the centralized TE controller
does not become a single point of failure in the system. The
impact of a TE controller fault needs to be lowered along with
achieving high throughput.

Controller replication does not guarantee availability. Our
operational experience with SWAN has taught us that regard-
less of good engineering practices (e.g., code reviews, safe de-
ployment, testing and verification), software systems will fail

in production in unforeseen ways, often due to complex inter-
actions of multiple faults. While it is hard to eliminate faults,
it is crucial to contain the damage when faults inevitably
occur. Despite fault-tolerant components of the SWAN TE
system and replication of the centralized TE controller, an
unforeseen cascade of faults led to an outage of global scope
in the SWAN TE system.

In this work, we first describe the operational experiences
that led us to migrate away from SWAN, the fully centralized
TE system in the Microsoft cloud network (§ 2). Second, to
reason about the availability of large-scale wide-area TE sys-
tems, we define blast radius of a TE controller as the fraction
of customer or tier-0 traffic at risk due to its failure. We de-
veloped BLASTSHIELD, a WAN TE system that reduces the
blast radius by slicing the global cloud WAN into smaller fault
domains or slices (§ 3). BLASTSHIELD dials back from fully
centralized to slice-decentralized TE by striking a balance
between the centralized vs. distributed design principles.

BLASTSHIELD slices are independent, and do not rely on
hierarchical or central coordination. Multiple WAN slices
and controllers raise unique implementation challenges for
BLASTSHIELD. In SWAN, a centralized controller with global
view of the network, programmed TE routes in all WAN
routers. In contrast, BLASTSHIELD slice controllers work
independently — each with its own version of code, configu-
ration, and view of the global network topology. Inconsistent
views of the network topology can cause routing loops for
inter-slice traffic in the cloud WAN. The failure of a slice
controller on the path could blackhole traffic. BLASTSHIELD
solves these challenges by developing a robust inter-slice
routing mechanism that falls back on switch-native protocol
routes in case of slice controller failures (§ 4 and § 5).

We have been operating Microsoft’s backbone with BLAST-
SHIELD since 2020. We find that BLASTSHIELD allows us
to deploy changes to the network safely without the risk of
global impact. While any change in network configuration or
software is accompanied by risk, the ability to deploy changes
without global risk is a significant advantage. Quantitatively,
BLASTSHIELD reduces the risk of traffic loss due to failure
of a TE controller by 60%, compared to SWAN (§ 6).

2 Background and Motivation

In this section, we describe an outage in the SWAN network
that motivated the design of BLASTSHIELD. This outage was
caused by a cascade of several independent failures and its

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 325

ripple effects persisted long after the root cause was resolved.
The experience of resolving this incident urged us to survey
the components at risk in SWAN and mechanisms to mitigate
the risks. We define metrics to quantify the availability of
TE controllers and design a TE system robust to global-scale
outages like the one SWAN experienced.

2.1 Bad luck comes in threes

Prior to the development of BLASTSHIELD, a series of three
unfortunate events occurred causing a SWAN outage of global
scope. Global SWAN outages lasting more than a few minutes
result in loss of several terabytes of network traffic, and are
instantly observed by a global audience.

Controller removes all routes. A partially failed web re-
quest triggered the first bug that led the SWAN controller to
remove all its TE routes from WAN routers. In the absence
of controller routes, the traffic gets routed over shortest paths
computed by the IGP [18]. This type of fallback is acceptable
at a small scale, but not as a network-wide replacement.

Incorrect IGP shortest paths. Second, there were two links
with misconfigured IGP link weights. The misconfiguration
was inconsequential while the controller routes were present.
When the controller removed its routes, these links incorrectly
became a part of many shortest paths, consequently attracting
more traffic than their capacity.

Delayed controller response time. An automatic recovery
process could have restored the controller routes in 3 minutes,
but a second controller bug incorrectly assumed that the re-
covering routers were undergoing maintenance, and held back
programming routes on them. The longer recovery caused
some internal workloads to dynamically change their traffic
class to a higher tier, worsening the load and congestion in
the network. The combination of these three cascading faults
amplified the amount of traffic affected by the outage.

With the luxury of hindsight, we extract three key lessons
from the SWAN incident:

1. All changes have risk. Global changes are antithetical to
the availability of large-scale systems. We need an ability
to gradually deploy changes, starting with staging which
are production-like but without real customers, to low im-
pact, and finally high impact regions. Global centralized
TE precludes piece-wise rollout of changes.

2. Configuration and software bugs are inevitable. The
outage occurred due to configuration and software bugs
that escaped sandbox validation. While validation can be
effective, it remains inherently best effort. In a nutshell,
critical infrastructure like SWAN should not presume per-
fect pre-deployment validation.

3. Global optimization does not preclude multiple con-
trollers. In the scenario, non-leader replicas of the con-
troller had an accurate view of the network, and could have

optimized traffic correctly. By partitioning the scope of
TE controllers, a faulty leader in one region of the WAN
would not impact controllers in other regions.

2.2 Blast Radius, Ripple and Shielding
While faults and small-scale outages occur and get rectified
rapidly in our network, what stood out about the SWAN outage
incident was its global scope. We define the following terms
to quantify the scope of wide-area traffic engineering outages.
In later sections, we use these terms to evaluate the reduction
in the scope of potential outages when we deploy the new TE
system, BLASTSHIELD.

Definition 1 (Blast Radius) is the fraction of customer or
tier-0 traffic at risk by a TE controller failure.

The service level objective (SLO) is the daily average of the
hourly percentage of successfully transmitted bytes. Customer
or tier-0 traffic has the highest SLO of 99.999%. Discretionary
traffic tiers, tier-1 and tier-2, have a lower SLO of 99.9%. Half
the traffic in our network is tier-0. The TE controller routes
traffic on engineered paths to optimize for congestion, latency,
and diversity. When a TE controller fails by withdrawing its
routes or programming incorrect routes or stops programming
the network, the ensuing tier-0 loss is the blast radius of the
controller.

Definition 2 (Blast Ripple) of a controller failure is the ser-
vice level degradation experienced by components that are
not governed by the failing TE controller.

The blast or failure of a TE controller can cause ripples
and impact traffic not managed by the failing controller. The
impact of the ripple is proportional to the amount of tier-0
traffic affected that is not managed by the failing controller.

Definition 3 (Blast Shielding) is the engineering practice
that minimizes the blast radius of failing components while
meeting operational constraints like cost and complexity.

We note that blast shielding does not ensure that the overall
system is fault tolerant in achieving the service level objective.
Fault tolerance allows the system to operate even if its com-
ponents fail [3]. Table 1 covers mitigation in Microsoft’s TE
deployment to achieve fault tolerance and blast shielding. We
highlight faults that were not addressed in SWAN’s original
design and are a focus of this work with �.

3 Slicing the cloud WAN

The global scope of the SWAN outage inspired the design of
BLASTSHIELD, the WAN traffic engineering system that has
replaced SWAN in Microsoft’s backbone network. BLAST-
SHIELD views the WAN as a collection of sites. Each site

326 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Fault Mitigation
Controller hardware, cluster, or site failure. Automatic migration to geo-redundant cluster.
Network fault, e.g., link failure, forwarding fault,
router reboot.

Per-router agents perform local repair autonomously without controller
intervention. Controller does global repair in the next TE iteration.

Network device disconnects or is unreachable by
controller.

Router agents retain last programming. Controller reconnects via
router management plane. Router is treated as down if failure persists.
Rollback routes if disconnection is during new route programming.

Invalid, inconsistent, outdated programming by
controller.

Router agents perform data plane verification. Controller programs
agents with latest inputs every 3 minutes.

TE optimization failure e.g., a controller withdraws
its routes, or programs incorrect routes. �

Divide the WAN into subgraphs with a controller per subgraph
managing a small fault domain.

Malicious router agent e.g., agent stalls the
controller from programming other routers. �

Decrease agent-controller interaction to defined subgraphs of the
network.

Byzantine controller fault, e.g., a controller
sabotages other controllers. �

Controllers acquire network inputs independently.

Zero-day fault in multiple controllers. � Diverge configurations in TE controllers.
Table 1: Fault types and their mitigation. New fault types handled by this paper are marked with �.

Slice 1
controller

Slice 2
controller

Slice 3
controller

A

B
C

DE F

G H

slice 1 slice 1slice 2

router
site

slice 3

Figure 1: The WAN is divided into slices. Each slice is managed by
a dedicated slice controller. Slice 1 consists of routers in sites A–D,
slices 2 and 3 have routers in sites E–F and G–H.

consists of multiple WAN routers. WAN routers connect to
other routers in the network like the datacenter fabric with a
high bandwidth interconnect. WAN routers also transit traffic
that is not from a directly connected datacenter. WAN sites at
submarine landing terminals and optical transit sites do not
have datacenters attached to them.

WAN Slices. BLASTSHIELD divides the WAN into slices
or subgraphs of routers, each controlled by a dedicated slice
controller. A slice is a logical partitioning of the WAN into
disjoint sets of routers where each router belongs to exactly
one slice. A slice can consist of a single router or all routers,
or anything in between. Routers do not have any slice-specific
configuration. In Fig. 1, slice 1 consists of routers in sites A–
D. A slice can have multiple strongly connected components
of routers. Slice 1 has two strongly connected components,
the routers in sites A–C and D, respectively. Controllers 2
and 3 manage routers in sites E–F and G–H, respectively. The
count and composition of slices is not limited by the design
but dictated by operational choice.

Enforcing slice isolation. Only the slice’s owning controller

programs routers in the slice. All traffic from slice routers
to any destination is engineered by the slice controller. This
includes traffic that originates in datacenters directly con-
nected to slice routers and the traffic originating in upstream
slice routers. Each slice is a separate deployment and can be
patched independently. Slices can inherit common configura-
tion but BLASTSHIELD applies slice-specific configuration
independently. Slice controllers do not communicate with
another slice controller. This further isolates faults and pre-
vents byzantine controllers bringing the entire system down.
Slice controllers operate with a global view of the network
by acquiring global topology and demand inputs. Each slice
controller makes traffic engineering decisions based on ex-
pected conditions in local and remote slices. Controllers antic-
ipate what other controllers do given the same inputs. While
deviations between flow allocations computed by different
controllers are possible, they are not disruptive to BLAST-
SHIELD’s operation.

How many slices? The number of BLASTSHIELD WAN
slices decide the system’s operating point on an important
tradeoff between network throughput and blast radius. A sin-
gle slice enables the TE formulation to achieve maximum
network throughput through centralization, but exposes the
network to the risk of global blast radius. In contrast, several
BLASTSHIELD slices reduce the blast radius of slice con-
trollers but may also reduce the achievable network through-
put. Additionally, several WAN slices increase the operational
overhead of configuring and maintaining slice controllers.
There is a sweet spot for the number of slices that limits the
risk of changes and keeps operational overhead manageable.
We empirically derive the number of BLASTSHIELD slices
for Microsoft’s network and strike a balance between blast
radius and network throughput (§ 6).

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 327

4 BLASTSHIELD System Design

In this section we present the design of BLASTSHIELD and
describe the design choices that motivated our design.

4.1 System overview

Each BLASTSHIELD slice controller is a collection of four
services: topology service, demand predictor, traffic engineer-
ing scheduler, and route programmer (Fig. 2). In addition to
the controller services that run on off-router compute nodes,
a router agent runs on all WAN routers.

Topology
service

Demand
predictor

Traffic
engineering
scheduler

Route
programmer

Router
agent

feeds

feeds

globaltopology

global

demands

slice

TE FIB

TE routes

Figure 2: The slice controller consists of topology service, demand
predictor, traffic engineering scheduler, and route programmer. To-
gether, they compute traffic engineering routes and program slice
routers through router agents.

FIB
generator

slice
configuration

constraints
global

topology

global
demands

Path computer

MaxFlow

Penalizing

paths

TE solver

Priority fairness

Max-min
fairness

tier-0

Max-min
fairness

tier-1/2

Min cost
+ diverse

Min max
utilization

slice
TE FIB

Figure 3: Traffic engineering scheduler computes routes that opti-
mize paths for flows by traffic tier. Each controller performs global
optimization based on its view of the entire network, but only pro-
grams routers belonging to its slice.

Topology Service synthesizes the global network topology
using graph metadata, link state, and router agent input feeds.
Graph metadata consists of routers, links, and sites. BGP-
LS [15] is the primary source of dynamic link state informa-
tion e.g., link bandwidths, interface addresses, and segment
identifiers [11]. The router agent feed is only used to acquire
the health of the router agent; a router must have a functioning
agent to be used for traffic engineering.

Demand Predictor predicts upcoming global network
demands using a real-time traffic matrices measured by

sFlow [26] and host-level packet counters. Each network de-
mand is identified by the tuple: source router, destination site,
and traffic class. Traffic class is a differentiated service queue
name e.g., voice, interactive, best-effort, or scavenger [5].
Tier-0 traffic uses best-effort or higher traffic classes. Tier-1
and tier-2 use the scavenger traffic class. The data feeds of
the demand predictor are independently scaled out and not
part of the controller.

Traffic Engineering Scheduler forms the core of the BLAST-
SHIELD system (Fig. 3). It ingests global network topology
and global demands from topology service and demand pre-
dictor respectively. The path computer calculates paths using
the dynamic topology for the source-destination pairs in the
global demands. MaxFlow path computer uses maximum
flow algorithms [14], and penalizing path computer computes
risk diverse shortest paths using Dijkstra. Path constraints,
described later in §§ 5.1 and 5.2, limit allowed paths in order
to support the routing in BLASTSHIELD.

TE solver consists of a chain of linear programming op-
timization steps that place demands on multiple paths with
unequal weights between demand source and destination pairs.
It places tier-0 demands on paths with diversity protection that
minimize latency subject to approximate max-min fairness.
Lower priority demands in tier-1 and tier-2 classes are placed
on paths that minimize the maximum link utilization. For
brevity, we exclude the optimization problem formulations,
which are previously described in [6, 16, 21, 25].

The FIB generator mechanically converts the output of the
TE solver, called the solver result, into TE routes. The slice
configuration specifies the subset of routers for which routes
are generated. The FIB generator transforms the solver result
based on the slice configuration, and produces routes only for
the routers in the slice. The network is re-optimized every
3 minutes, or on topology change, whichever occurs first.

Route Programmer programs traffic engineering routes in
the router agent which in turn installs them in the router. It
periodically receives the full set of routes for all slice routers
from the traffic engineering scheduler. This is called the traffic
engineering forwarding information base (TE FIB). The FIB
is organized into per-router flow and group tables (see Fig. 4).
The route programmer updates all slice router agents in paral-
lel using an update procedure, called make-before-break. The
principle is to make all new traffic engineered paths before
placing traffic on them. Intermediate FIBs build new paths,
transfer traffic to the new paths, and tear down unused paths.

Router Agent runs on all WAN routers. It installs TE
routes, monitors the end-to-end liveness of TE paths (tunnels),
and modifies ingress routes based on liveness information.
Route installation on the router requires translating the FIB
into router platform-specific API calls. Router agents have
a platform-dependent module to handle this translation. The
router agent verifies tunnels within the slice using probes gen-
erated natively or with BFD [22] from tunnel ingress points.

328 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Flows are unequally hashed to live paths based on the path
weight, flow 5-tuple, and traffic class. If a path goes down, the
agent proportionally distributes the weight of the down path
to remaining up paths. If no path is up, then the ingress route
is withdrawn, and packets are forwarded using switch-native
protocol routes. This is called local repair.

4.2 Design considerations

Global solution at local instances. Each BLASTSHIELD
slice controller consumes global network topology and de-
mands. The solver of each controller computes flow alloca-
tions for the entire network. Therefore, each slice controller
produces the same solver result if its inputs and solver soft-
ware versions are the same. In practice, inputs and software
versions can differ, and we study the impact of these differ-
ences in § 6.2. Although a slice controller only programs
the WAN routers in its slice, it optimizes flow with a global
view. Slice controllers do not communicate with each other
but gather inputs from the network. Performing global opti-
mization at each slice controller is beneficial while deploying
changes to the network. Some faults involve complex inter-
actions that only occur in unique parts of the WAN. Global
inputs increase the coverage of code paths while new software
or configuration changes are being deployed in small blast
radius slices.

Slices as isolated routing domains. In centralized TE sys-
tems, a single controller is responsible for programming all
WAN routers with the TE routes. BLASTSHIELD replaces
the centralized controller with multiple slice controllers that
can only program the routers within their slice. By preventing
slice controllers from programming routers outside their slice,
we enforce fault isolation between slices. In addition, the
routing mechanisms described in § 5 ensure that the failure
of one controller does not impede other controllers e.g., the
failure of a downstream slice controller on an inter-slice route
in the WAN does not lead to blackholing of traffic. Similarly,
slice controllers with inconsistent views of the network, route
packets to their destination without centralized control.

Fault tolerant design. All services run on multiple machines
in at least two geographically separate clusters. Topology
service instances are fully active, but elect a leader to avoid
oscillations if two instances report different topologies due
to faults or transients. The traffic engineering scheduler and
route programmer elect leaders, and switchover in case of fail-
ure. The route programmer handles all the faults and incon-
sistencies that can happen during programming, e.g., router
agents are unresponsive or have faults before, during, or after
route programming. Reliable controller-agent communication
is achieved by using network control traffic class, and redun-
dant data and management plane connections. The router
agent can react to network faults even when it is disconnected
from the router programmer.

Decoupling TE scalability from blast shielding. BLAST-
SHIELD employs slice controllers to reduce the blast radius
of faults in our network. We handle scale along several dimen-
sions, unrelated to blast shielding. But slices also provide the
following scaling benefits. The total number of tunnels in the
network decreases because an inter-slice path is a sequence
of intra-slice tunnels in BLASTSHIELD, whereas in SWAN
it required its own tunnel. Second, shorter tunnels decrease
tunnel probe round-trip times and speed up local repair.

5 Routing and forwarding in BLASTSHIELD

The routing of intra-slice flows in BLASTSHIELD is the same
as SWAN. In this section, we describe BLASTSHIELD’s ex-
tensions to enable routing and forwarding of inter-slice flows
i.e., flows whose traffic engineered paths span multiple slices.
§ 5.1 describes inter-slice routing, the approach we deployed,
and § 5.2 describes a source routing approach that was evalu-
ated but not deployed.

5.1 Inter-slice routing

In SWAN, packets are routed using a combination of switch-
native protocols and the TE controller. WAN routers con-
nected to the datacenter fabric advertise datacenter routes with
themselves as the BGP [27] next hop. BGP receivers recur-
sively lookup the route for this BGP next hop and find multiple
available routes: the shortest path route computed by the IGP,
or the route programmed by the TE controller which leverages
traffic engineered paths. TE routes have higher precedence
than the IGP routes. The TE route encapsulates packets using
Multiprotocol Label Switching (MPLS) [28] path labels from
a label range reserved for the TE controller.

BLASTSHIELD routes inter-slice flows i.e., flows whose
traffic engineered paths span multiple slices, using slice-local
encapsulation till the slice boundary. Slice controllers add
encapsulation headers while the packet is within the slice but
ensure that the packets arrive at the next slice in their native
encapsulation i.e., the encapsulation in which the packets
entered the WAN. Each slice controller is only responsible for
routing traffic to the ingress router of the next slice. Packets
are encapsulated with an MPLS path label at the time of BGP
route lookup on the WAN ingress router or the intermediate
slice ingress routers. In both scenarios, transit routers forward
the packet using the MPLS path label, and the label is popped
by the penultimate router — either at a slice boundary or at
the destination. Intra-slice traffic is split across TE paths only
once at the WAN ingress router. Inter-slice traffic can also be
split at the ingress router of an intermediate slice.

Inter-slice forwarding In Fig. 4, all four slice controllers de-
termine that the demand from a to z should be placed on paths
abeg juwxz, acdmoqstyz, and acdmonikvyz with weights 0.3,
0.42, and 0.28 respectively. Slice 1 programs abe with weight

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 329

Slice 1 routes to z
Device Prefix Wt Action Out
a z 0.3 push 151 ab

0.7 push 157 ac
b 151 - pop be
c 157 - swap 157 cd
d 157 - pop dm

Slice 2 routes to z
Device Prefix Wt Action Out
e z 1 push 223 eg
i z 1 push 227 ik
g 223 - swap 223 gj
j 223 - pop ju
k 227 - pop kv

Slice 3 routes to z
Device Prefix Wt Action Out
m z 0.6 push 331 mo

0.4 push 337 mo
o 331 - swap 331 oq
q 331 - swap 331 qs
s 331 - swap 331 st
t 331 - pop ty
o 337 - swap 337 on
n 337 - pop ni

Slice 4 routes to z
Device Prefix Wt Action Out
u z 1 push 443 uw
v z 1 push 447 vy
y z 1 - yz
w 443 - swap 443 wx
x 443 - pop xz
y 447 - pop yz

Slice 1

a

b

c

d

Slice 2
e

f

g

h

i

j

k

Slice 3

l

m

n

o

p

q

r

s

t

Slice 4
u

v

w
x

y
z

Figure 4: Inter-slice routing using an example router-level network graph divided into four slices. The tables represent TE FIBs programmed by
slice controllers using inter-slice routing. Each slice controller programs the path segment within its slice. For the path abeg juwxz, slice 1
programs abe, slice 2 programs eg ju, and slice 3 programs uwxz. Traffic arriving at slice ingress routers get encapsulated and split over different
paths. Transit routers guide the packet along the path specified by the MPLS label. Packets return to native encapsulation at the next slice and
the WAN exit.

0.3, and acdm with weight 0.7. Slice 2 programs eg ju and
ikv. Slice 3 programs moqsty with weight 0.6, and moni with
weight 0.4, and slice 4 programs uwxz, vyz, and yz. Controllers
only need to install routes in their slice routers.

If any downstream slice controller fails to program routes
to the destination, packets are forwarded using protocol routes
along the shortest paths to the destination. Since we enable
segment routing [11] with the IGP, the IGP route changes the
packet encapsulation and routes the packet to the destination.
For example, if the slice 2 controller withdraws all routes due
to a failure, the inter-slice traffic uses shortest paths to the
destination, z. This is the blast ripple of a down controller.
In § 6.1, we will discuss how to define slice boundaries to
decrease the blast ripple. Downstream slice controllers may
have slightly inconsistent views due to network events like
link flaps. Inter-slice traffic will be forwarded on shortest
paths while the controllers converge. We show results on the
alignment of multiple controllers in § 6.2.

Preventing routing loops. Unlike the TE controller in
SWAN, a BLASTSHIELD slice controller is only responsible
for routing packets within the slice and not until the packets’
destination. Since each slice is its own routing domain, incon-
sistent views of the global network graph in different slice
controllers can lead to routing loops.

BLASTSHIELD avoids routing loops by enforcing enter-
leave constraints on inter-slice next hops. These constraints
define the set of inter-slice next hops for all source-destination
pairs in the network. The constraints ensure loop-free paths
and are calculated offline using a static network graph. The
path computer calculates paths on the dynamic network graph,
and only allow paths that satisfy the enter-leave constraints.
However, enter-leave constraints should not be overly restric-
tive. For example, a potential approach to preventing routing
loops can limit inter-slice next hops to be on the minimum

spanning tree from the source router to the destination. But
this approach restricts inter-slice paths to go through a few
links and causes bottlenecks.

s2

s1 s4

s3

slice graph

s4

s3

s2

s1 dag s1
s3

s1s4

s2 dag s2

s4

s2

s1

s3 dag s3

s1

s3

s2

s4 dag s4
Figure 5: Enter-leave constraints restrict paths to achieve loop-free
routing. Slice graph is a component level graph of Fig. 4. Slice
DAGs are constructed from shortest path distances in the slice graph.
Router-level paths must follow DAG edges when crossing slice
boundaries. Path acdmonikvyz is allowed for TE because s1 → s3 →
s2 → s4 is a path in DAG s4. Path ab f hinprvyz is not allowed for
TE because s2 → s3 is not present in DAG s4.

Computing enter-leave constraints. An offline generator
computes enter-leave constraints from the static router-level
network graph to prevent inter-slice routing loops. It first
constructs a slice graph from the network graph, where each
slice node represents a strongly connected component (SCC)
after removing all inter-slice links. Figure 5 is the slice graph
of Fig. 4, formed by removing inter-slice links be, b f , dl,
dm, f l, in, ju, kv, rv, and ty, and calculating SCCs. A slice
can contribute one or more SCCs as nodes to the slice graph.
A link between the slice graph nodes aggregates all links
between SCCs in the network graph. Link weights in the slice
graph are computed from link weights in the network graph.

330 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

The enter-leave constraint generator then constructs per-
destination slice DAGs based on the shortest path distances in
the slice graph. The enter-leave constraints come out directly
from the slice DAGs. In Fig. 5, the slice DAG for s4 says
that paths from any node in s1 to any node in s4 can only
have inter-slice transitions: s1 → s2 → s4, s1 → s3 → s4, and
s1 → s3 → s2 → s4. No controller, no matter its topology, can
use any other inter-slice transition.

The path computer blacklists edges excluded by enter-leave
constraints in the dynamic network graph before computing
TE paths. Since the slice DAG is loop-free, paths computed by
any slice controller are also loop-free. This ensures that even
if slice controllers have inconsistent views of the dynamic
network graph, they will arrive at loop free routes. Enter-
leave constraints place restrictions on TE paths, and reduce
the number of paths available to place demands. We evaluate
the percentage of allowed paths vs. computed paths without
constraints in § 6.1.
Verifying enter-leave constraints. Due to the negative im-
pact of routing loops in production, and because they are
global configuration, enter-leave constraints are verified of-
fline before deployment. Enter-leave constraints are updated
when there are newly provisioned routers or inter-slice links
in the network. They do not need to be updated for newly
provisioned intra-slice links.

We use the following formalism to define correct inter-slice
routing. Let R be the set of defined route keys, where route
key is a tuple of (router, destination prefix), end be the termi-
nating route key, null be the undefined route key, and ttl be
the packet time to live. Let f : R → R , where f (null) = null,
f (end) = end. Routing is a repeated application of f (), till
f n(x) = end where n ranges over 1 ≤ n ≤ ttl. The collection
of TE, BGP, and the IGP routes, and their union are examples
of routing functions. The routing function is complete, loops,
or blackholes, if:

∀x,∃n : f n(x) = end (complete)
∃x,n : f n(x) = x (routing loop)
∃x,n : f n(x) = null (blackhole)

where x ranges over R \{end,null} and n ranges over [1..ttl].
Enter-leave constraints are verified using this formalism to
detect routing loops.

5.2 Why not source routing?
In this section, we describe an alternate approach that lever-
ages the capabilities of segment routing (SR) [11], and why
we did not adopt this approach.
Loose source routing with SR. SR is a source-based routing
technique that allows senders to specify the packets’ route
through the network by leveraging the MPLS forwarding plane.
An SR router subjects arriving packets to a policy and encap-
sulates the matching packets in an MPLS label stack, each
label represents a segment in the SR-path. A node segment
causes the packet to be routed on least-cost paths computed

by the IGP to the router identified by the node segment. An
adjacency segment causes the packet to use a specified link
for its next hop.

An IGP path computer models the modified Dijkstra short-
est path first algorithm [18]. Coupled with segment identifiers
from topology service (§ 4.1), it implements loose source
routing. In place of explicitly listing adjacency segments of
hop-by-hop links of a path, loose source routing uses a node
segment when it exactly represents the sequence of the hop-
by-hop links of the path. Figure 6 shows an example of loose
source routing for the same paths shown in Fig. 4. The path
beg juwxz is composed of two shortest path segments beg ju
and uwxz. Hence a encapsulates with label stack of [n(u) n(z)]
to route to z, where n() is the node segment identifier of a
router.

Packet encapsulations reduce hashing entropy. To achieve
balanced utilizations across links in the WAN, the cloud net-
work employs two load balancing mechanisms. Link aggre-
gation group hashing sprays packets on member links of a
port-channel. Equal cost multi-path hashing sprays packets
on the next hops of a group of traffic engineering routes. The
packet processor uses fields from the packet headers to hash
the packet to different output ports with the goal of maximiz-
ing entropy in the hash calculation. To achieve high entropy,
the outermost IPv4/IPv6 source and destination addresses
under stack of MPLS header encapsulations should be used to
calculate the hash. A deep MPLS label stack can impair the
ability of the packet processor to extract the relevant fields in
the IP header.

The depth limit is the maximum number of MPLS encap-
sulations a packet can have while still allowing the packet
processor to extract the header fields of the original (i.e., prior
to MPLS encapsulations) packet. The depth limit is switch
platform-dependent [2, 8, 20]. We note that if the packets en-
tering the WAN are already encapsulated in MPLS, the depth
limit available to source routing is further reduced.

Why select inter-slice routing? Based on the current gener-
ation of platforms across different regions of our cloud WAN,
the depth limit is four labels. Paths that require more labels
cannot be used for TE. Figure 7 studies the label stack depth
needed to encode paths computed by the path computer for
current and future evolutions of the WAN. In source routing,
45% of computed paths can be used for TE. For compari-
son, 69% of computed paths can be used for TE in inter-slice
routing (see § 6.1).

Second, in source routing, a downstream slice can only
transit upstream flows. In inter-slice routing, the downstream
slice is free to rebalance the traffic to correct errors made
upstream or mitigate for local slice conditions. This kind of
control is not available with source routing.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 331

Source routes to z
Device Prefix Wt Action Out
a z 0.3 push n(u) n(z) ab

0.42 push n(o) n(z) ac

0.28 push n(o) n(k)
n(z) ac

Protocol routes for beg juwxz
Device Prefix Action Out
b n(u) swap n(u) be
e n(u) swap n(u) eg
g n(u) swap n(u) gj
j n(u) pop ju
u n(z) swap n(z) uw
w n(z) swap n(z) wx
x n(z) pop xz

Protocol routes for cdmoqstyz
Device Prefix Action Out
c n(o) swap n(o) cd
d n(o) swap n(o) dm
m n(o) pop mo
o n(z) swap n(z) oq
q n(z) swap n(z) qs
s n(z) swap n(z) st
t n(z) swap n(z) ty
y n(z) pop yz

Protocol routes for onikvyz
Device Prefix Action Out
o n(k) swap n(k) on
n n(k) swap n(k) ni
i n(k) pop ik
k n(z) swap n(z) kv
v n(z) swap n(z) vy
y n(z) pop yz

Slice 1

a

b

c

d

Slice 2
e

f

g

h

i

j

k

Slice 3

l

m

n

o

p

q

r

s

t

Slice 4
u

v

w
x

y
z

Figure 6: Source routing. Slice 1 controller programs ingress routes to z using loose source routing. The IGP with segment routing takes care of
transit routes. The path beg juwxz is composed of two shortest path segments beg ju and uwxz. Hence the label stack for the path is n(u) n(z),
where n() is the node segment identifier of a router. Weights of intra-slice links are 1 and inter-slice links are 5.

0 5 10

0.00

0.25

0.50

0.75

1.00
(a) Computed paths

A

B

0 5 10

0.2

0.4

0.6

0.8

1.0

(b) Total demand

A

B

Label stack depth

C
D

F

Figure 7: Cumulative distribution function of (a) computed paths
and (b) total demand, by label stack depth for inputs A and B of
increasing sizes. If depth limit is four, 45% of computed paths and
93% of the total demand map to allowed paths for input B.

6 Evaluating BLASTSHIELD in production

The incremental deployment of BLASTSHIELD began in 2020
and today BLASTSHIELD has replaced the legacy SWAN traf-
fic engineering system in Microsoft’s cloud network. In § 6.1,
we evaluate the benefits and costs of WAN slicing using de-
mands and topology inputs from the Microsoft backbone
network for the month of July 2021. The benefit of slice-
decentralized traffic engineering is the reduction in traffic loss
from a slice failure. Its cost is the reduction in TE throughput
due to enter-leave constraints. We quantify cost and benefit
as we incrementally divide the global network into ten slices.
In § 6.2, we evaluate the stochastic effects caused by multiple
and independent BLASTSHIELD controllers. We show that
despite the controllers having different configurations, soft-
ware versions and network topology snapshots, they arrive at
nearly similar flow allocations.

1 2 3 4

5 6 7 8

9 10
Table 2: Ten slice configurations of the global cloud network. In (1)
the entire network is one slice. Slices 2–6 are formed by grouping
routers in geographies. Slices 7–10 are created by further subdividing
the two largest geographies, Europe and North America.

6.1 Availability vs. throughput trade-offs
We incrementally carve out slices from the global cloud net-
work as shown in Table 2. We consider ten different slicing
configurations with increasing number of slices from 1 to
10. Slice configuration 1 represents centralized traffic engi-
neering as in SWAN. Slice configurations 2–6 are formed by
drawing slice boundaries around large geographical regions
like APAC, EMEA, India, North America, Oceania, and South
America. In Table 2, slice configuration 2 represents the net-
work divided into two slices: India and the rest of the world,
configuration 3 represents India, Oceania, and the rest of the
world, and so on. Slices 7–10 are formed by additionally divid-
ing the two largest geographies, Europe and North America,
into smaller slices. In our network, configurations 1–6 tend
to have higher intra-slice traffic in comparison to inter-slice
traffic. Slices have up to three strongly connected components,
arising from disconnected sites and router planes.

Availability gains from decentralized TE. The key benefit

332 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 2 3 4 5 6 7 8 9 10

5

10

15

(a) Traffic loss on slice failure

Tier 0

Tier 1/2

1 2 3 4 5 6 7 8 9 10

0.125

0.150

0.175

0.200

0.225
(b) Unsatisfied demand

Tier 0

Tier 1/2

Slice count

P
er

ce
n
ta

g
e

Figure 8: Benefit of BLASTSHIELD compared to its cost as a function of slice count: (a) Traffic loss from worst case single slice failure as a
percentage of requested demand, (b) Unsatisfied demand due to enter-leave constraints as a percentage of requested demand.

1 2 3 4 5 6 7 8 9 10

0.7

0.8

0.9

1.0

(a) Path counts

Computed

Active

1 2 3 4 5 6 7 8 9 10

0.97

0.98

0.99

1.00

(b) Path latency

Tier 0

1 2 3 4 5 6 7 8 9 10

0.01

0.02

(c) Unsatisfied demand

Tier 0

Tier 1/2

Slice count

R
a
ti

o

Figure 9: Stress-testing BLASTSHIELD with worst-case failures and 2× demands. (a) Computed paths are the count of paths computed with
enter-leave constraints. Active paths are the count of paths used for traffic engineering. (b) Path latency is the traffic weighted average latency
of active paths for tier-0 demands. (c) Unsatisfied demand is the unallocated demand per traffic tier. All values, except unsatisfied demand, are
normalized to corresponding values for one slice; the latter is a ratio of unsatisfied to requested demand.

of BLASTSHIELD’s slicing is the reduction in blast radius
when a slice controller fails. We consider the failure where
the slice controller removes all programmed TE routes. This
causes the traffic to fall back on protocol routes and the ensu-
ing traffic loss is the impact of the slice failure. We measure
the traffic loss using a network simulator because the scenar-
ios we are testing cannot be replicated in production. The
inputs to the simulation are the production network demands,
topology, TE and the IGP routes, and the network simula-
tor models routing, forwarding, and queuing behavior. The
simulator is used internally for capacity planning and opera-
tional safety checks, and hence is a well-tested proxy for the
production network.

Figure 8 (a) shows the impact of the worst-case single slice
failure when BLASTSHIELD is operating with 1–10 slices. We
keep the demands and topology fixed in this experiment. For
each slice configuration, we fail the largest slice by demand.
The network uses the IGP routes of the failed slice and TE
routes of the remaining slices (if any) to allocate the remaining
demands. The traffic losses are caused by congestion due to
shortest path routing over IGP routes. There are no losses due
to traffic blackholes or routing loops. Figure 8 (a) shows that
with ten slices, tier-0 traffic loss due to slice failure, which is

the metric for blast radius, decreases by 60%, from 9.5% to
3.9%. Tier-1 and tier-2 traffic loss reduction is greater at 70%
(18.1% to 5.7%) because they map to scavenger traffic class
and experience more congestion losses when the failed slice
uses IGP routes. Slices 2–4 show little improvement because
the largest slice can still cause an overly large failure. The
improvements come at six and eight slices with the breakup
of Europe and North America into separate and smaller slices.

Throughput cost of decentralized TE. The key reason why
inter-slice routing in BLASTSHIELD can have lower through-
put than SWAN is due to the enter-leave constraints (§ 5.1).
These constraints decrease the choice of paths available for
placing demands, which in turn decreases the demands that
can be allocated. Figure 8 (b) shows unsatisfied demand from
enter-leave constraints as a percentage of requested demand.
We calculate worst case unallocated demand from 20 vari-
ations of the network topology, each variation has multiple
shared risk failures that reduce the available capacity. Without
constraints, the worst-case unsatisfied demand is 0.27% of the
requested demand, and with ten slices it increases to 0.42%.
The increase in unsatisfied demand of 0.15% is much smaller
than the 18% traffic loss reduction from slice failure. Addi-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 333

tional capacity can be provisioned to decrease the unsatisfied
demand.

Stress testing BLASTSHIELD. We oversubscribe the net-
work by doubling the bandwidth values in requested demands,
and test with variations of the production network with mul-
tiple shared risk group failures in hot spots of the topology.
The purpose of the stress test is to evaluate the performance
of enter-leave constraints in the presence of significant over-
subscription. Figure 9 shows the impact of slicing on paths
computed by the BLASTSHIELD path computer. Since the
constraints enforce a shortest path order when crossing slice
boundaries, they exclude paths that would otherwise be al-
lowed. At ten slices, computed paths decrease by 31% when
compared with one slice. The number of paths actively used
for carrying traffic decreases slightly — by < 1% due to some
demands remaining completely unsatisfied, or diverse paths
not getting found. Figure 9 shows that the traffic weighted
path latency of tier-0 demands decreases by 3% because the
computed paths are skewed towards shortest paths. Finally,
unsatisfied demands as a percentage of requested demands
increases 16% from 3.1% to 3.6%. Unsatisfied demand in-
creases at half the rate of computed path decrease which
is well controlled. In practice, the percentage of computed
paths allowed by enter-leave constraints are used to determine
whether a slice strategy is appropriate.

6.2 Stochastic effects of multiple controllers

Prior to the deployment of BLASTSHIELD, the centralized
SWAN controller programmed new TE routes for the entire
cloud network. BLASTSHIELD replaces the centralized con-
troller with multiple slice controllers that snapshot the net-
work topology and demands at different times. Moreover, the
controllers may re-run the TE optimization and program their
slice routers at different times. We study the impact of the
temporally staggered operation of slice controllers to ask:
can multiple slice controllers work harmoniously and not be
discordant?

We reserve 15% scratch capacity in order to support the
high SLO of tier-0 traffic. Transient traffic bursts and hashing
polarization can cause link utilization to differ significantly
from expected values. The scratch capacity is used to avoid
congestion losses in these conditions. BLASTSHIELD uses
this scratch capacity to deal with differences that arise with
multiple controllers.

Symphony or cacophony of controllers? Path weights de-
cide the split of traffic across paths and are the ultimate result
of TE optimization. The weight of a path is the fraction of
demand placed on it. BLASTSHIELD programs the newly com-
puted path weights every 3 minutes. Since all slice controllers
solve the TE problem for the entire network, we measure if
the path weights that different controllers compute diverge
from each other. We quantify the path weight difference as

the root mean squared error between path weight time se-
ries from two controllers. A path weight difference of zero
implies that the controllers are perfectly aligned. Non-zero
path weight difference implies that the controllers are setting
aside different link bandwidths for a flow which can cause
congestion.

We measure the path weight difference between six differ-
ent BLASTSHIELD controller pairs in the production network
over a 30-day period. There were days when the controllers
were operating with different configurations, different soft-
ware versions, in addition to network topology and demand
changes that happen throughput the day. Figure 10 shows that
only 2% of paths and 3% of total demand have path weight dif-
ference of ≥ 0.15. Inter-slice demands make up 48% of paths
but 10% of total demand because of the slicing strategy. Since
intra-slice traffic dominates, the impact of the path weight
difference is limited. The slicing strategy and scratch capacity
allow multiple controllers to operate without coordination.

Solver stability. Different path weights for slightly perturbed
inputs can create an operational challenge for BLASTSHIELD.
We constrain the solver models to make their solutions stable
— the tier-0 objective function minimizes demand weighted
latency after solving for max-min fairness. In practice, this
makes the solver results more stable when subjected to in-
put perturbations. We do not allow non-determinism in the
TE solver e.g., no parallel primal and dual simplex invoca-
tion in the linear programming solver to pick the first result,
since they will produce different solution vectors that result
in different path weights.

We evaluate the stability of the solver results using the
normalized autocorrelation function (ACF) ρ(τ). ACF is the
correlation of a time series to a delayed version of itself,
as a function of the delay, τ. In Fig. 11, we calculate ACF
for the hour-long path weight time series of all paths in the
production network over a 24-hour period. ACF values range
[−1,1], and 1 implies perfect correlation.

Demand and network topology changes also affect path
weight ACF. So perfect correlation is not possible in an op-
erational network. Figure 11 (a) is an example path weight
time series with ACF(30 minutes) of 0.65 showing steady
values of the same path weight interspersed by occasional gy-
rations. Figure 11 (b) shows that mean ACF is 0.75–0.63 for
lags of 3–30 minutes. This reaffirms the data in Fig. 10 that
path weights from independent BLASTSHIELD controllers
are predominantly the same.

7 Discussion

In this section, we discuss our operational experience with
BLASTSHIELD and describe safe deployment of software
and configuration in BLASTSHIELD slices. We consider the
implications of byzantine slice controllers, and the safeguards
in place to prevent damage from them.

334 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0.00 0.15 0.30 0.45

0.25

0.50

0.75

1.00

(a) Paths

All

Inter-slice

0.00 0.15 0.30 0.45

(b) Total demand

All

Inter-slice

Path weight difference

C
D

F

Figure 10: Cumulative distribution function of (a) paths and (b) total demand, by path weight difference, for all demands and inter-slice
demands, measured for six controller pairs in the production network over a 30-day period. 98% of paths and 97% of total demand have path
weight difference ≤ 0.15. Inter-slice demands make up 48% of paths but 10% of total demand.

0 200 400 600 800

t (minutes)

0.3

0.4

0.5

P
a
th

w
ei

g
h
t

(a) ACF example

ACF(30)=0.65

0 3 6 9 12 15 18 21 24 27 30

Lag (minutes)

0.65

0.70

0.75

A
C

F

(b) Mean ACF of path weight time series

Tier 0

Tier 1/2

Figure 11: Autocorrelation function (ACF) measures self-similarity
with a delayed version, and ranges [−1,1] with 1 being perfect cor-
relation. (a) Example path weight time series with ACF(30 minutes)
of 0.65. (b) Mean ACF of path weight time series averaged over all
paths in the production network over a 24-hour period by traffic tier.

7.1 Operational experience

BLASTSHIELD has been in operation for two years. Migration
from SWAN to BLASTSHIELD was carried out over a number
of months. The first step was to deploy inter-slice routing
and forwarding functionality in the SWAN controller and
router agents. This was the riskiest step and preceded by many
months of testing in a virtualized emulation environment
of the production network with fault injection. Each slice
migration involved preparing a new BLASTSHIELD controller,
excluding a set of routers from the slice configuration of the
SWAN controller, and adding them to the new controller.

To support deployment of new software and configuration
changes, we define slices that range from low to high im-
pact. Safe deployment is a partial ordering of slices based on
their blast radius. BLASTSHIELD has two staging sites with

a staging controller, and new software and configuration is
first deployed here. The next slice has the smallest production
scope. We assign routers in geo-redundant site pairs to sep-
arate slices for additional safety. Deployment progresses to
the next slice in the sort order after a sufficient probationary
period. The process continues till either all slices receive the
new version of software or a failure happens in a slice, which
may trigger a rollback of this version from all slices.

Enter-leave constraints have been updated multiple times
to pick up newly provisioned routers and links. In one in-
stance, the constraints affected traffic engineering for an inter-
datacenter pair by excluding too many links. New constraint
configuration to correct the error and reverse an inter-slice
traffic flow was deployed without incident.

We have introduced new hardware platforms, router agents,
and controller services that would be considered high risk in
the SWAN paradigm. BLASTSHIELD allowed us to introduce
new implementations in isolated slices with very small blast
radius and no inter-slice traffic. Initially the slice only served
intra-slice traffic. Inter-slice traffic was introduced after the
slice had been in operation for many months. Outages caused
by failures in the new slices never had a global impact.

Slice controller environments are used by additional ser-
vices to decrease their blast radius. For example, discretionary
flows can be throttled at the sending host to control conges-
tion in the network. Bandwidth is allocated to discretionary
flows by global optimization but each controller only serves
bandwidth pools for a smaller fault domain.

7.2 Byzantine slice controllers
A byzantine controller is an unreliable controller that is dis-
seminating false information or sabotaging the operation of
other slices in the network [24]. A controller that only impacts
its own traffic is not considered byzantine in our analysis.

Resistance to byzantine slice controllers is baked into the
BLASTSHIELD design. BLASTSHIELD does not allow any
inter-controller interaction. Each controller uses its own ser-
vices to get demand and topology inputs. It calculates TE

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 335

routes by sensing the state of the network, and does not rely
on communication with other controllers. Route program-
mers of a WAN slice do not communicate with router agents
in other slices, and thus are unaffected by unreliable agents
in other slices. Access control lists on slice routers prevent
another slice controller from attempting to program them.

Despite these protections, a byzantine controller may route
traffic in a way that causes congestion in downstream slices.
A slice controller estimates the demands at the slice bound-
ary based on the assumption that all slices are well behaved
i.e., they use the same algorithm and configuration as itself.
Byzantine slice can violate this assumption. The impact of a
byzantine controller’s actions are limited to the remote traffic
from the byzantine slice. WAN traffic patterns inform the
creation of slices that minimize inter-slice traffic [30].

We note that non-byzantine controller faults are also possi-
ble. Faulty controller may withdraw all its routes and congest
links in its own or other slices. A faulty controller may loop
or blackhole packets. While we have safety checks and rout-
ing constraints that prevent such conditions, if a controller
manages to bypass the checks, human intervention is required.
We mitigate these failures by pausing the faulty controllers,
and restoring the network programming to last known good
FIB.

8 Related work

B4 [17, 19] and EBB [10] are two examples of operational
networks that use software-defined traffic engineering. [17]
states that site-level domain controllers were large blast radius
and faults caused widespread impact to traffic passing through
the affected site, which led them to divide a site into two or
four control domains, each managed by a separate domain
controller. Similarly, in BLASTSHIELD, we assign routers in
a site to separate slice controllers. [17] uses a central con-
troller to calculate tunnel split groups and the sequencing of
traffic engineering operations, and a large fleet of domain
controllers to do route calculation and programming. BLAST-
SHIELD does not use any central controllers and each slice
controller performs global traffic engineering calculation and
slice-local route programming. It should be noted that the
network architectures of BLASTSHIELD and B4 are quite dif-
ferent. [10] uses a centralized controller and segment routing,
which we evaluated but did not select because of label stack
depth and lack of control in intermediate slices.

Prior work on software-defined traffic engineering [1, 7,
23, 25, 29] focus on the optimization problem of maximiz-
ing utilization, guarantee fairness, preventing congestion un-
der faults, or dynamic pricing without considering how they
would be deployed. They all assume a centralized controller
will perform the optimization for the entire network without
considering what happens when the controller fails. BLAST-
SHIELD can be used in conjunction with these works to make
them deployable in operational networks.

Inter-slice routing is similar to pathlet routing [13] but
without any controller interaction or dissemination proto-
col. [9, 12] study consistent updates and loop avoidance with
a centralized controller, but not multiple controllers with in-
consistent views. BLASTSHIELD adopts a stricter approach of
not communicating with another controller to avoid additional
failure modes from faults in the communication, and because
the information a controller needs can be acquired from the
network.

9 Conclusion

In this work, we motivate the design of a decentralized traffic
engineering system for large-scale cloud WANs using our op-
erational experience with SWAN. We propose BLASTSHIELD,
Microsoft’s new global TE system that decentralizes the TE
controller with WAN slicing and implements loop-free inter-
slice routing. BLASTSHIELD achieves similar throughput as
fully centralized TE implementations while significantly re-
ducing the blast radius of faults in TE controllers. We have
been operating Microsoft’s WAN with BLASTSHIELD, and
it has substantially lowered the risk of configuration changes
causing large outages.
Acknowledgements. We thank our colleagues for their
significant contributions to BLASTSHIELD: Amin Ahmadi
Adl, Ashlesha Atrey, Jeff Cox, Shubhangi Gupta, Guruprasad
Hiriyannaiah, Luis Irun-Briz, Karthick Jayaraman, Srikanth
Kandula, Pranav Khanna, Sonal Kothari, Nishschay Kumar,
Erica Lan, Dave Maltz, Paul Mattes, Antra Mishra, Zahira
Nasrin, Paul Pal, Francesco De Paolis, Rohit Pujar, Rejimon
Radhakrishnan, Prabhakar Reddy, Newton Sanches, Anubha
Sewlani, Sailaja Vellanki, Wei Wang, and Li-Fen Wu. We
also thank our shepard, Stefan Schmid, and the anonymous
reviewers who gave us invaluable feedback.

References

[1] Firas Abuzaid, Srikanth Kandula, Behnaz Arzani, Ishai
Menache, Matei Zaharia, and Peter Bailis. Contracting
wide-area network topologies to solve flow problems
quickly. In Proceedings of USENIX NSDI, pages 175–
200, April 2021.

[2] Port channels and LACP load balancing hashing al-
gorithms. https://www.arista.com/en/um-eos/eos-port-
channels-and-lacp, accessed February 2022.

[3] Algirdas Avižienis. Fault-tolerant systems. IEEE Trans-
actions on Computers, 25(12):1304–1312, December
1976.

[4] Daniel O. Awduche, Lou Berger, Der-Hwa Gan, Tony
Li, Vijay Srinivasan, and George Swallow. RSVP-TE:
Extensions to RSVP for LSP tunnels. RFC 3209, De-
cember 2001.

336 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.arista.com/en/um-eos/eos-port-channels-and-lacp
https://www.arista.com/en/um-eos/eos-port-channels-and-lacp

[5] Steven Blake, David L. Black, Mark A. Carlson, Elwyn
Davies, Zheng Wang, and Walter Weiss. An architecture
for differentiated services. RFC 2475, December 1998.

[6] Jeremy Bogle, Nikhil Bhatia, Manya Ghobadi, Ishai
Menache, Nikolaj Bjørner, Asaf Valadarsky, and
Michael Schapira. TEAVAR: striking the right
utilization-availability balance in WAN traffic engineer-
ing. In Proceedings of ACM SIGCOMM, pages 29–43,
August 2019.

[7] Yiyang Chang, Chuan Jiang, Ashish Chandra, Sanjay
Rao, and Mohit Tawarmalani. Lancet: Better network
resilience by designing for pruned failure sets. Proc.
ACM Meas. Anal. Comput. Syst., 3(3), December 2019.

[8] Implementing Cisco Express Forwarding. https:
//www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/ip-
addresses/66x/b-ip-addresses-cg-ncs5500-
66x/m-implementing-cisco-express-forwarding-
ncs5500.html, accessed February 2022.

[9] Szymon Dudycz, Arne Ludwig, and Stefan Schmid.
Can’t touch this: Consistent network updates for mul-
tiple policies. In IEEE/IFIP International Conference
on Dependable Systems and Networks, pages 133–143,
June 2016.

[10] Mikel Jimenez Fernandez and Henry Kwok. Building
express backbone: Facebook’s new long-haul network,
May 2017. https://engineering.fb.com/2017/05/01/data-
center-engineering/building-express-backbone-
facebook-s-new-long-haul-network/.

[11] Clarence Filsfils, Stefano Previdi, Les Ginsberg, Brune
Decraene, Stephane Litkowski, and Rob Shakir. Seg-
ment routing architecture. RFC 8402, July 2018.

[12] Klaus-Tycho Forster, Ratul Mahajan, and Roger Watten-
hofer. Consistent updates in software defined networks:
On dependencies, loop freedom, and blackholes. In IFIP
Networking, May 2016.

[13] P. Brighten Godfrey, Igor Ganichev, Scott Shenker, and
Ion Stoica. Pathlet routing. In Proceedings of ACM
SIGCOMM, pages 111–122, August 2009.

[14] Andrew V. Goldberg, Éva Tardos, and Robert E. Tarjan.
Network flow algorithms. In Bernhard Korte, Lásló
Lovász, Hans Jürgen Prömel, and Alexander Schrijver,
editors, Paths, Flows, and VLSI Layout (Algorithms and
Combinatorics), volume 9, pages 101–164. Springer-
Verlag, 1990.

[15] Hannes Gredler, Jan Medved, Stefano Previdi, Adrian
Farrel, and Saikat Ray. North-bound distribution of
link-state and traffic engineering (TE) information using
BGP. RFC 7752, March 2016.

[16] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming
Zhang, Vijay Gill, Mohan Nanduri, and Roger Watten-
hofer. Achieving high utilization with software-driven
WAN. In Proceedings of ACM SIGCOMM, pages 15–26,
August 2013.

[17] Chi-Yao Hong, Subhasree Mandal, Mohammad Al-
Fares, Min Zhu, Richard Alimi, Kondapa Naidu B.,
Chandan Bhagat, Sourabh Jain, Jay Kaimal, Shiyu
Liang, Kirill Mendelev, Steve Padgett, Faro Rabe, Saikat
Ray, Malveeka Tewari, Matt Tierney, Monika Zahn,
Jonathan Zolla, Joon Ong, and Amin Vahdat. B4 and
after: Managing hierarchy, partitioning, and asymmetry
for availability and scale in Google’s software-defined
WAN. In Proceedings of ACM SIGCOMM, pages 74–87,
August 2018.

[18] Intermediate System to Intermediate System intra-
domain routeing information exchange protocol for
use in conjunction with the protocol for providing
the connectionless-mode network service (ISO 8473).
ISO/IEC 10589:2002, November 2002. https://www.iso.
org/standard/30932.html.

[19] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon
Ong, Leon Poutievski, Arjun Singh, Subbaiah Venkata,
Jim Wanderer, Junlan Zhou, Min Zhu, Jonathan Zolla,
Urs Hölzle, Stephen Stuart, and Amin Vahdat. B4: Expe-
rience with a globally-deployed software defined WAN.
In Proceedings of ACM SIGCOMM, pages 3–14, August
2013.

[20] Understanding the algorithm used to load balance
traffic on MX series routers. https://www.juniper.net/
documentation/us/en/software/junos/sampling-
forwarding-monitoring/topics/concept/hash-
computation-mpcs-understanding.html, accessed
February 2022.

[21] Srikanth Kandula, Dina Katabi, Bruce Davie, and Anna
Charny. Walking the tightrope: Responsive yet stable
traffic engineering. In Proceedings of ACM SIGCOMM,
pages 253–264, August 2005.

[22] Dave Katz and Dave Ward. Bidirectional Forwarding
Detection. RFC 5880, June 2010.

[23] Praveen Kumar, Yang Yuan, Chris Yu, Nate Foster,
Robert Kleinberg, Petr Lapukhov, Chiun Lin Lim, and
Robert Soulé. Semi-oblivious traffic engineering: The
road not taken. In Proceedings of USENIX NSDI, pages
157–170, April 2018.

[24] Leslie Lamport, Robert Shostak, and Marshall Pease.
The byzantine generals problem. ACM Transactions on
Programming Languages and Systems, 4(3):382–401,
1982.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 337

https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/ip-addresses/66x/b-ip-addresses-cg-ncs5500-66x/m-implementing-cisco-express-forwarding-ncs5500.html
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/ip-addresses/66x/b-ip-addresses-cg-ncs5500-66x/m-implementing-cisco-express-forwarding-ncs5500.html
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/ip-addresses/66x/b-ip-addresses-cg-ncs5500-66x/m-implementing-cisco-express-forwarding-ncs5500.html
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/ip-addresses/66x/b-ip-addresses-cg-ncs5500-66x/m-implementing-cisco-express-forwarding-ncs5500.html
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/ip-addresses/66x/b-ip-addresses-cg-ncs5500-66x/m-implementing-cisco-express-forwarding-ncs5500.html
https://engineering.fb.com/2017/05/01/data-center-engineering/building-express-backbone-facebook-s-new-long-haul-network/
https://engineering.fb.com/2017/05/01/data-center-engineering/building-express-backbone-facebook-s-new-long-haul-network/
https://engineering.fb.com/2017/05/01/data-center-engineering/building-express-backbone-facebook-s-new-long-haul-network/
https://www.iso.org/standard/30932.html
https://www.iso.org/standard/30932.html
https://www.juniper.net/documentation/us/en/software/junos/sampling-forwarding-monitoring/topics/concept/hash-computation-mpcs-understanding.html
https://www.juniper.net/documentation/us/en/software/junos/sampling-forwarding-monitoring/topics/concept/hash-computation-mpcs-understanding.html
https://www.juniper.net/documentation/us/en/software/junos/sampling-forwarding-monitoring/topics/concept/hash-computation-mpcs-understanding.html
https://www.juniper.net/documentation/us/en/software/junos/sampling-forwarding-monitoring/topics/concept/hash-computation-mpcs-understanding.html

[25] Hongqiang Harry Liu, Srikanth Kandula, Ratul Mahajan,
Ming Zhang, and David Gelernter. Traffic engineering
with forward fault correction. In Proceedings of ACM
SIGCOMM, pages 527–538, August 2014.

[26] Peter Phaal and Marc Levine. sFlow version 5, July
2004.

[27] Yakov Rekhter, Tony Li, and Susan Hares. A Border
Gateway Protocol 4 (BGP-4). RFC 4271, January 2006.

[28] Eric C. Rosen, Arun Viswanathan, and Ross Callon.
Multiprotocol label switching architecture. RFC 3031,
January 2001.

[29] Rachee Singh, Sharad Agarwal, Matt Calder, and
Paramvir Bahl. Cost-effective cloud edge traffic en-
gineering with Cascara. In Proceedings of USENIX
NSDI, pages 201–216, April 2021.

[30] Rachee Singh, Nikolaj Bjørner, Sharon Shoham, Yawei
Yin, John Arnold, and Jamie Gaudette. Cost-effective ca-
pacity provisioning in wide area networks with Shoofly.
In Proceedings of ACM SIGCOMM, pages 534–546,
August 2021.

338 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Detecting Ephemeral Optical Events with OpTel

Congcong Miao1, Minggang Chen1, Arpit Gupta2, Zili Meng3, Lianjin Ye3, Jingyu Xiao3,
Jie Chen1, Zekun He1, Xulong Luo1, Jilong Wang 3,4,5, Heng Yu3

1Tencent, 2UC Santa Barbara, 3Tsinghua University, 4 BNRist, 5 Peng Cheng Laboratory

Abstract

Degradation or failure events in optical backbone networks
affect the service level agreements for cloud services. It is
critical to detect and troubleshoot these events promptly to
minimize their impact. Existing telemetry systems rely on
arcane tools (e.g., SNMP) and vendor-specific controllers to
collect optical data, which affects both the flexibility and scale
of these systems. As a result, they fail to collect the required
data on time to detect and troubleshoot degradation or failure
events in a timely fashion. This paper presents the design
and implementation of OpTel, an optical telemetry system
that uses a centralized vendor-agnostic controller to collect
optical data in a streaming fashion. More specifically, it offers
flexible vendor-agnostic interfaces between the optical de-
vices and the controller and offloads data-management tasks
(e.g., creating a queryable database) from the devices to the
controller. As a result, OpTel enables the collection of fine-
grained optical telemetry data at the one-second granularity.
It has been running in Tencent’s optical backbone network for
the past six months. The fine-grained data collection enables
the detection of short-lived events (i.e., ephemeral events).
Compared to existing telemetry systems, OpTel accurately de-
tects 2× more optical events. It also enables troubleshooting
of these optical events in a few seconds, which is orders of
magnitude faster than the state-of-the-art.

1 Introduction

Cloud service providers, such as Google, Microsoft, and Ten-
cent, have embraced the approach of setting up as many data
centers as possible across metro areas [6, 20, 21, 23, 26, 38].
Such an approach enables cloud providers to physically get
closer to the end-users, which in turn enables a wide range
of applications with diverse bandwidth and latency require-
ments [29, 45]. The optical backbone network that intercon-
nects these geographically distributed data centers is crit-
ical for ensuring reliable exchange of terabits of data ev-
ery day [2, 3, 24, 25, 27]. Under the hood, the optical back-

bone network is composed of optical hardware (e.g., optical
transponders, amplifiers, wavelength (de-)multiplexers), and
fiber cables. Degradation or failure of any of these compo-
nents (i.e., optical events) would degrade the inter-DC con-
nectivity, which in turn affects the service level agreements
(SLAs) for cloud services [5,18,20,49]. Therefore, to improve
the reliability and availability of the optical backbone network,
it is critical to promptly detect and troubleshoot optical events.

Unfortunately, existing telemetry systems are not designed
for such fast-paced detection and troubleshooting of optical
events. More concretely, they collect sampled or aggregated
data from optical devices. Such coarse-grained data is not
suited for either detecting short-lived optical events or trou-
bleshooting related optical events to various stakeholders (i.e.,
application developers, data center tenants, etc.). Figure 1(a)
illustrates the limitations of existing telemetry systems. Here,
when a customer reports degradation in the quality of ex-
perience for video streaming service (e.g., rebuffering), at-
tributable to a short-lived optical event lasting few tens of
seconds. The network operator that looks at the telemetry data
collected by the existing telemetry systems at the 15-minute
granularity cannot detect or troubleshoot such a short-lived
optical event. The current telemetry systems are slow in de-
tecting and troubleshooting the more disruptive persistent
events as well. Network operators need to query data from
multiple vendor-specific controllers to stitch a holistic view
of the underlying network, which is tedious and prone to er-
rors. Our analysis of the trouble tickets dataset shows that
it takes hours to days to troubleshoot the optical hardware
failures. Though we witnessed the development of various
network telemetry systems, such as Sonata [19], Marple [33],
PathDump [42], OmniMon [22], etc., that offer packet-level
network streaming analytics at scale, they are not suited for
diagnosing degradation or failure events in optical networks.

The limitations of the existing telemetry systems are at-
tributable to three key factors. First, the optical backbone
network uses devices from multiple vendors (i.e., vendor-
free optical systems in § 2.1), and the current telemetry sys-
tems develop interfaces for vendor-specific controllers to ac-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 339

(a) Existing telemetry system (b) OpTel

Figure 1: (a) Existing telemetry systems fail to detect
ephemeral events and are slow in detecting and trou-
bleshooting persistent events. (b) OpTel detects and trou-
bleshoots both ephemeral and persistent events promptly
with the one-second granularity data.

cess the optical data. Though vendor diversity is critical for
cloud providers to deter vendor monopolies and avoid concur-
rent failures, fragmented design of existing telemetry systems
is undesirable. It inhibits accessing optical data directly or
extracting a consistent network view. Second, the existing
telemetry systems rely on arcane tool, i.e., SNMP, to collect
data from different devices. SNMP performs various data-
management tasks, such as creating a local MIB database [35],
supporting read and write operations to this database, etc., lo-
cally on the optical devices. Both faster reads (queries) and
writes to this database will cause higher CPU usage. Given
the limited resources at the device, it is not possible to query
this data at higher frequencies with the SNMP protocol. Third,
the vendor-specific controllers run on physical servers with
fixed compute and memory resources. Such inelastic resource
allocation for the existing telemetry pipelines creates multiple
bottlenecks with the increasing number of optical devices or
data-collection frequencies.

In this paper, we present the design and implementation
of OpTel (Figure 1(b)), an optical telemetry system for op-
tical networks. The proposed system offers direct access to
optical data in a vendor-agnostic manner and offloads data-
management tasks from the optical devices to cloud-based
controllers that can easily scale with network size and col-
lection frequency. We highlight the salient feature of the pro-
posed system below.
Vendor-agnostic centralized control. OpTel shunts away
vendor-specific controllers and replaces them with a single
centralized controller that directly interfaces with optical de-
vices in a vendor-agnostic manner. To enable such a vendor-
agnostic design, we develop a standardized model for optical
devices. This device-level model consists of two essential
parts: logic and data model. Here, the logic model identi-
fies key components common across devices from different
vendors and standardizes their workflow. The data model
specifies the configurable parameters for each component.
Streamline telemetry pipeline at optical devices. OpTel
replaces SNMP (pull-based) protocol with a “push-based"
telemetry pipeline. More concretely, it offloads the compute-
intense data-management tasks from the optical devices to
cloud-based controllers, with access to an elastic pool of re-

sources. Such streamlining of the telemetry pipeline offloads
resource-intense operations to the cloud, enabling OpTel to
collect fine-grained optical data at higher frequencies from
resource-constrained optical devices. The telemetry pipeline
at optical devices consists of the following key parts: teleme-
try manager, telemetry agent, cache, and aggregator. Here, the
telemetry manager interfaces with the centralized controller
and is responsible for receiving configurations from the con-
troller and configuring other parts. The telemetry agent reads
data from different modules and stores them into the local
cache. The aggregator is responsible for pushing the data in
the cache to the centralized controller.

The rest of the paper presents the background and moti-
vation in Section 2, details the design and implementation
in Section 3. We demonstrate how OpTel enables collecting
fine-grained telemetry data at the one-second granularity and
how such a dataset empowers network operators to promptly
detect and troubleshoot optical events, both persistent and
ephemeral, in Section 4. We have been running OpTel in Ten-
cent’s optical backbone network for the past six months. We
report our experience of collecting and analyzing the teleme-
try data at scale. Notably, we demonstrate that access to such
fine-grained data enables us to establish temporal relation-
ships between different optical events.

2 Background and Motivation

We first provide an overview of the optical backbone network
(§ 2.1). We then discuss why existing telemetry systems fail
to promptly detect and troubleshoot optical events (§ 2.2).

2.1 Optical Backbone Network
The optical backbone network interconnects different data
center sites, carrying terabytes of traffic each day. Figure 2
zooms-in into a specific link (i.e., an optical transport system)
interconnecting two data center sites. Each link consists of an
optical line system (OLS) and multiple optical transponder
units (OTUs). Each OTU receives the electrical signal from
the data center router (DR), and converts it into a specific
wavelength, called an optical channel, and vice versa. When
router ports have a lower capacity than the optical channel,
the OTU encapsulates and multiplexes multiple router ports
onto the channel.

The OLS contains two optical segments, one for each
direction of network traffic. Each segment carries multi-
ple optical channels, with wavelength division multiplex-
ing/demultiplexing (MUX/DMUX) combining/splitting these
channels and booster amplifier (BA) at the transmitting end
and preamplifier (PA) at the receiving end. Segments also
have in-line amplifiers (LAs) that amplify the signal in the
optical domain to deal with long-haul transmission loss. Each
part of the segment is called a span. As a special case, segment
yields span if the OLS does not have LA. Optical Supervisory

340 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

M
U
X/D
M
U
X

… OSC

DR

DC OTU

M
U
X/
D
M
U
X

BA

PA LA BA

PALA
DC

…

DC DC

OSC OSC OSC

OLS

Figure 2: An overview of the optical backbone network.

Channel (OSC) is an additional channel that does not carry
any payload traffic and monitors each span.

Most cloud providers use optical devices from multiple ven-
dors. Vendor diversity is intentional to deter vendor monopo-
lies and avoid concurrent failures. Typically, cloud providers,
including Tencent, embrace a vendor-free design of the opti-
cal transport system (i.e., vendor-free optical system), where
they purchase optical line systems and optical transponder
units from different vendors [11].

2.2 Monitoring Optical Backbone Network
Any degradation or failure events in the optical backbone
network can affect the SLAs for various cloud services. Thus,
it is critical for network operators to promptly detect and
diagnose such optical events, which in turn requires collecting
fine-grained optical data from the underlying optical devices
at high frequency. The existing telemetry systems are not
designed to support such intense data-collection requirements.
We identify three key factors that inhibit existing telemetry
systems to scale flexible data collection.
Highly fragmented design. The control plane for most op-
tical backbone networks is highly fragmented as it relies on
vendor-specific controllers to manage individual devices. The
existing telemetry systems inherited this fragmented design,
where a centralized controller interfaces with vendor-specific
controllers to collect the required telemetry data. Such a
fragmented design inhibits flexible and direct access to fine-
grained optical data at scale. Each vendor-specific subsystem
implements its workflow to collect the data from individual
devices, affecting how frequently each subsystem reports the
telemetry data. Additionally, the data schemas across vendors
are different, which further inhibits supporting a consistent
representation of the collected data.

To illustrate the impact of each of these factors, we use
the metric, polling delay, which measures the difference in
time when the centralized controller sends the poll request to
vendor-specific controllers and when it receives the requested
data. We have performed the measurement studies of two
subsystems provided by vendor 1 and vendor 2. For confiden-
tiality, we omit the vendor name. We observe it takes about 3
minutes and 7 minutes to complete the collection of 5 indi-
cators from vendor 1 and vendor 2 respectively. Here, each
indicator represents the type of data, such as SNR, Q-factor,

Figure 3: SNMP’s data collection workflow

(a) Performance of devices (b) Performance of controllers

Figure 4: Performance of optical devices and vendor-
specific controllers from two vendors.

etc., collected from the devices. The difference in polling de-
lay across two vendors is attributable to an artifact of different
data-collection workflow each applied within its subsystem.
Such high variance in polling delays across different vendors
makes it hard for network operators to extract a consistent
(synchronized) view of the network, affecting their ability to
troubleshoot various optical events.

Reliance on arcane data-collection tools. Most existing
telemetry systems for optical backbone networks rely on
SNMP [10], which is not suited for high-frequency data collec-
tion. SNMP performs various data-management tasks locally
on the optical device. More concretely, it creates and updates
a local queryable database (MIB) on the device, and handles
controller’s queries. Figure 3 shows SNMP’s data collection
workflow. Here, to simplify exposition, we divide the optical
device into control and data plane. Here, the control plane
consists of SNMP manager and MIBs and the data plane
comprises of multiple line cards. The black and red arrows
represent the control and data flows respectively. Once the
SNMP manager receives an SNMP GET request from the
controller, it traverses the table in MIB database [35] one
by one to get the function to obtain the data from the line
card and then reports the requested data. This process is slow
and consumes a significant number of CPU cycles, making it
difficult to scale data collection frequency with SNMP.

Figure 4(a) shows how polling delay changes as the num-
ber of indicators increases. We observe that the relationship
between polling delay and the number of indicators is lin-
ear. Our interactions with vendors revealed that this linear
relationship is attributable to their choice of serializing read
request for multiple indicators, reading only one at a time.
This design choice limits SNMP’s CPU usage, which com-
petes with device’s data-plane operations. Such a long polling
delay with SNMP inhibits existing telemetry systems to col-
lect fine-grained optical data at higher frequencies.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 341

Analytics
Data

TopoMgr

DevMgr

Manager
Topo

Controller

OLS Vendor4

Netconf
/Yang

Collector Cluster

Collector

Collector

CollectorSignature

Signature

Signature

Optical Transport System

Vendor1
Vendor2

OTU
Vendor3

Data
Stream

Vendor1
Vendor2

OTU
Vendor3

Lo
ad

Ba

la
nc

er

Figure 5: Architecture of OpTel.

Inelastic resource allocation for the telemetry pipeline.
Telemetry systems need to concurrently collect data from
all the underlying optical devices to ensure a consistent and
fine-grained view of the network. However, we observe that
the vendor-specific controllers run on physical servers with
fixed compute and memory resources. Such an inelastic de-
sign makes these controllers a bottleneck in existing telemetry
pipelines as the number of optical devices or the collection
frequency increases.

Unsurprisingly, we observe a linear relationship between
polling delay and the number of devices in Figure 4(b). This
behavior is also attributable to vendors’ choice to serialize
requests at the controller. Such serialization ensures that the
controller can handle all the incoming requests with a fixed set
of resources at the cost of longer polling delays, which affects
the ability to construct a consistent view of the network at
fine time scales. More concretely, it is impossible to correlate
the optical data across two different optical devices on a short
time scale, affecting the troubleshooting capabilities of the
existing telemetry systems.

3 OpTel’s Design and Implementation

We now describe how the proposed system, OpTel, addresses
the limitations of existing telemetry systems described above.
We first state its design goals in Section § 3.1, and then de-
scribe how it achieves these goals in Section § 3.2 and § 3.3.

3.1 Design Goals
OpTel’s goal is to extract multiple indicators from all the
devices in the optical backbone at finer time granularities, i.e.,
order of seconds. Such a dataset is critical for timely detection
and diagnosis of various disruptive events in the backbone
network. OpTel addresses the limitations of existing telemetry
systems to achieve this goal. More concretely, to address the
fragmentation issue, it bypasses vendor-specific controllers to
collect the telemetry data directly from the optical devices in
a vendor-agnostic manner. To address the scalability issues, it

Figure 6: The logic model of OTU.

streamlines the telemetry pipeline such that it performs all the
complex data-management tasks to a centralized controller
running in the cloud. Such a design ensures that the data
collection pipeline is not bottlenecked by limited compute
resources at the individual devices. The centralized controller
has access to an elastic pool of resources in the cloud.

3.2 Vendor-agnostic Centralized Control
Figure 5 presents OpTel’s architecture. Here, the centralized
controller directly interfaces with the optical devices in a
vendor-agnostic manner. We developed a standardized model
that abstracts away the vendor-specific details for the con-
troller. We now describe how we develop the vendor-agnostic
device model and how it enables collecting data directly from
the optical devices.

3.2.1 Standardized Model for Optical Devices

In vendor-free optical systems, the operation performed by
different optical devices is similar at a high level, but the
specific logic and workflow vary across vendors. Such het-
erogeneity across devices from different vendors complicates
the design of vendor-agnostic interfaces. We develop a stan-
dardized model for optical devices that abstracts away the
vendor-specific details to address this challenge. It consists of
two parts: logic model and data model. Here, the logic model
identifies key components common across devices from differ-
ent vendors and standardizes their workflow. The data model
specifies the configurable parameters for each component.
Logic model. The first challenge in developing vendor-
agnostic interfaces is that the physical components and their
workflow are proprietary to each vendor. To address this chal-
lenge, the logic model first identifies a group of logical compo-
nents that are common across devices from different vendors.
It then standardizes the workflow between these components.
To illustrate, consider the case of optical transponder units,
i.e., OTUs. Figure 6 shows OTU’s logic model. Here, the
logic model first identifies four logical components across all
vendors: Ethernet, optical data unit (ODU, ODUc), optical
transport unit (OTUc), and optical channel (OCH). Recall that
an OTU encapsulates and multiplexes multiple router ports
onto an optical channel. The ODUc is a high-order data unit
after combining the payload data from multiple router ports.
The logic model then specifies the workflow between these
components. For example, the mapping between Ethernet and
ODU represents an encapsulation of an Ethernet frame into
an ODU frame. Such an abstraction enables the standardized
representation of different optical devices.

342 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Data model. The second challenge in enabling vendor-
agnostic interfaces is that the capability of physical compo-
nents inside the device is different across vendors, although
their functions are the same. For example, the range of gain
of an optical amplifier provided by vendor 1 is 15-25 dB,
while it might be 20-30 dB from vendor 2. This heterogene-
ity complicates managing these devices in a vendor-agnostic
manner. We design a component data model with specific
descriptions of configurable parameters of each component.
When each device connects to the controller, the controller
obtains the specification datasheets from the device and ini-
tializes the corresponding value of configurable parameters.
Such an approach simplifies the management complexity of
heterogeneous devices, regardless of the capability of physical
components inside the device.

We have developed a model for each device type for our
optical backbone network. Our experience using these mod-
els in production settings was smooth, demonstrating their
generalizability.

3.2.2 Centralized Data Collection

The standardized model allows the centralized controller to ac-
cess the telemetry data directly, enabling OpTel to shunt away
vendor-specific controllers. The centralized controller consists
of three key modules: global manager, scalable collector and
real-time analytics, to perform detecting and troubleshooting
optical events at scale in a timely manner.
Global manager. It consists of two parts: device manager
(DevMgr) and topology manager (TopoMgr). The DevMgr is
responsible for configuring the underlying optical devices. For
each device, it leverages the relevant standardized model to
configure devices in a vendor-agnostic manner. It completes
this process by issuing a Yang file [7] to the device through
the vendor-neutral Netconf protocol [13]. The TopoMgr main-
tains a physical topology of optical devices to provide a
network-wide view of the optical networks and thus helps
the real-time analytics to troubleshoot the optical events at
scale. To illustrate how TopoMgr aids troubleshooting, con-
sider the case of degradation in a fiber cable. Here, as it is
not possible to directly collect the data from the cable, the
analytics can instead use the TopoMgr to identify the two ter-
minal devices at each end of the cable. It can then query the
transmit (Tx) and receive (Rx) power data from these devices
for troubleshooting.
Scalable collector. This module is a cluster of multiple col-
lector nodes designed to handle changes in the number of
indicators, collection frequency, or the number of optical de-
vices over time. With the aid of the cloud’s elastic pool of
resources, it can scale horizontally by adding (or removing)
collector nodes over time. It relies on a load balancer to dis-
tribute the load among individual collectors within the cluster.
It is robust against the failure of a particular collector node.
Real-time analytics. It performs the task of promptly de-

Figure 7: Push-based optical telemetry

tecting and troubleshooting optical events by combining the
optical data from the collector and the topology information
from the global manager. The workflow of real-time analytics
consists of two parts: detection and troubleshooting. To detect
degradation or failure events, it monitors the values of optical
data in real-time and raises the alarm if the value exceeds a
pre-specified threshold. In parallel, it starts the troubleshoot-
ing process. Rather than manually troubleshooting the optical
event, it leverages the signatures of previous optical events
for diagnosis. To illustrate, consider the case when the re-
ceived optical power becomes zero for a device. The analytics
module first raises the alarm with a message, the receiver
can not receive the light and then begins troubleshooting.
It matches the collected data with previous signatures. If it
finds the match, it simply sends troubleshooting report to the
operator. If the collected data does not match a pre-existing
signature, it lets operators manually express their queries for
troubleshooting. It automatically updates the relevant signa-
tures for future events. Our deployment experience shows that
is possible to troubleshoot most of the optical events using
existing signatures.

3.3 Streamlined Telemetry Pipeline
Promptly detecting and troubleshooting optical events re-
quires collecting fine-grained data from the underlying optical
devices. The widely used SNMP is flawed in performance
because it performs various data-management tasks locally
on the resource-constrained optical devices (Figure 3). In
contrast, OpTel offloads compute-intense operations from the
optical devices to the centralized controllers by push-based
telemetry pipeline, enabling to collect the fine-grained optical
data at higher frequencies. Figure 7 depicts the architecture
of push-based optical telemetry. The telemetry pipeline at
optical devices consists of the following key parts: telemetry
manager, cache and aggregator in the control unit (CU), and
telemetry agents in the line cards. The telemetry manager is
responsible for the configurations of other parts, i.e., telemetry
agent and aggregator. The telemetry agent reads data from
different modules and stores them into the local cache. The

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 343

aggregator is responsible for pushing the data in the cache to
the centralized controller. In the following, we will describe
them in detail.
Telemetry manager. The offloading of compute-intense data-
management tasks from the optical devices to the controller
requires preliminary configurations at the device. The teleme-
try manager firstly interfaces with the centralized controller
to obtain the YANG file [7] and then parses the YANG file to
configure the telemetry agent and aggregator. The aggregator
is configured to periodically initiate a connection to push the
optical data from the local cache to the controller. As for
the telemetry agent in the line card, it is configured in three
parts: the destination of data (i.e., cache), the source of data
(i.e., modules in the line card), and the periodicity that the
telemetry agent should push the data.

However, based on the real-world deployment experiences,
we observed that configuring the same periodicity for push-
ing data at the telemetry agent and aggregator may result in
the frequent data loss in the controller. This phenomenon is
attributable to the different timing mechanisms. Generally,
the CU always runs a Linux operating system and enables
network time protocol (NTP) [30] to keep timing. However,
some line cards are the embedded equipment without run-
ning a Linux operating system, resulting in it being unable
to keep timing through NTP. Thus, these line cards keep tim-
ing through the crystal oscillator. The frequency deviation
inside the crystal oscillator will lead to the timing inaccu-
racies [44]. Therefore, the performance data pushed by the
telemetry agent is not strictly periodic. Slower timing will
result in the data not being stored in the local cache, which in
turn causes data loss in the controller. For example, assume
that the controller needs to collect the data from the device at
the one-second granularity. The telemetry manager configures
the telemetry agent and aggregator to push the data every one
second. However, the frequency deviation inside the crystal
oscillator may result in the timing in the line card slower
than that in the CU. It will take more than one second for the
telemetry agent to push the data to the local cache. Therefore,
the aggregator will push the empty data to the controller. Mo-
tivated by this, we always configure the data pushed in the
telemetry agent at a higher frequency.
Telemetry agent. Once configured, the telemetry agent peri-
odically performs the card-level data collection through the
vendor-specific protocols and pushes the data to the local
cache. Specifically, the values of data are generated in two
ways: instant value and accumulated value.
Instant Value. It is a sampled data in a given time interval.
The receiver captures the physical analog signal and then
translates it into the digital value, which is further stored in the
RAM. Figure 8(a) describes the process of generating instant
value of the received signal in the physical layer. The PIN
photodiode firstly captures the light signal and transforms it
into the analog current. An analog-to-digital converter (ADC)
is applied to convert the analog current into a digital value

(a) Instant Value (b) Accumulated Value

Figure 8: The process of generating specific values. (a) In-
stant value records the performance in the physical layer;
(b) Accumulated value records the performance in the
data link and network layer.

of voltage which is further stored in the RAM. The telemetry
agent periodically reads RAM to collect the data through the
vendor-specific protocol. Note that the value in RAM will be
replaced frequently, thus enables the data to be collected at
higher frequencies. In our work, the instant value records the
performance in the physical layer. We use transmit/receive
(Tx/Rx) power to detect optical events, and signal-to-noise
ratio (SNR) and quality factor (Q-factor) to check the ability
of the optical system to transmit data (Figure 9(a) and 9(b)).
Accumulated Value. It is a counting value accumulated across
the whole timeline. The digital signal processor (DSP) pro-
cesses the received digital signal and counts in a certain way.
Figure 8(b) describes the process of generating the accumu-
lated value of the CRC error. The register counts the volume
of CRC errors in the whole time interval. The telemetry agent
periodically reads the register to collect the value. After that,
the register will be reset to its initial value. The accumulated
value records the performance in the data link and network
layer, such as CRC error and post forward error correction
(FEC). We use them to differentiate optical events according
to the influence of optical events in the data link and network
layer (Figure 9(c),9(d)).
Cache. The local cache serves as data storage that stores
the performance data received from the telemetry agent and
then bundles data at the device level. It is compatible with the
performance data pushed by the different agents at different
frequencies. Generally, the data for a single indicator stored in
the telemetry cache is more fine-grained since the frequency
of the telemetry agent pushing the data is higher than that of
the aggregator reading the data. The data in the local cache
will be cleaned after being read.
Aggregator. The aggregator periodically initiates a connec-
tion to get the bulked data from the local cache. Since the data
provided by the cache is more fine-grained, the aggregator
should merge the data to get representative statistics and push
them to the controller through the gRPC protocol [1].

4 Evaluation

OpTel has been running in Tencent’s backbone network for
the past six months, demonstrating its deployability in pro-
duction settings. In this section, we show how the proposed
streamlined telemetry pipeline enables collecting all possible
indicators from all the optical devices in the network at the

344 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

one-second frequency (Section 4.2). We then show how such
fine-grained data enables the detection of ephemeral optical
events (Section 4.3). We investigate how ephemeral events
help predict more disruptive future events, illustrating the
utility of such a fine-grained telemetry system (Section 4.4).
We also demonstrate how such fine-grained data enables trou-
bleshooting optical events in the order of few seconds, which
is orders of magnitude faster than possible with the existing
telemetry systems (Section 4.5).

4.1 Setup

4.1.1 Dataset

We use OpTel to curate three datasets. Here, we collect the
data for six months (July-December, 2020) from Tencent’s
optical backbone network. This backbone has O(50) links,
O(100) spans, O(100) segments, O(1000) optical channels,
and O(1000) optical devices from O(10) vendors. For confi-
dentiality reasons, we do not report the exact numbers.
Optical telemetry dataset. We curate this dataset by collect-
ing all indicators from all the optical devices at one-second
granularity using OpTel. We collect the Tx/Rx power levels,
SNR, and Q-factor from the physical layer. From the data link
layer, we collect the Post Forward Error Correction Bit Error
Rate (FEC BER) [31], loss and error frame rate (i.e., the ratio
of the number of Rx vs. Tx frames and Error vs. Rx frames).
We also collect cyclic redundancy check (CRC) error rate [40]
from the network layer. Here, the physical layer indicators
are “instant” values, and the rest are the “accumulated” values
(§ 3.3). Also, note that since the OTU encapsulates and mul-
tiplexes payload from router ports, we collect the data link
and network layer indicators directly from the OTU (§ 3.2.1).
However, it is not efficient to only focus on the Tx/Rx power
in OTU or BA/PA to troubleshoot optical events. For example,
if there are several spans and LAs in a segment, and the Rx
power of PA becomes 0 while the Tx power of BA does not
change, we can not distinguish which span is responsible for
the event. Thus, we combine the Tx/Rx power of OSC for
span-level monitoring. The detailed origins of telemetry data
are shown in Figure 17 in appendix A.
Location dataset. We use OpTel’s TopoMgr to curate this
dataset. It maintains a topology of the devices to provide a
network-wide view to establish a relationship between differ-
ent devices. Such relationships are critical for troubleshoot-
ing as indicators from a single device are often not enough
to diagnose various optical events. For example, diagnosing
degradation events in fiber cables requires data from both
ends of the fiber cable.
Trouble tickets dataset. We collect this data from the net-
work management platform at Tencent. We first filter out
the events related to the optical networks (see appendix B
for details) and then categorize these optical events into a
small number of classes, i.e., fiber cable, hardware, and power

(a) Transmission loss vs. Rx power (b) Physical layer

(c) Data link layer (d) Network layer

Figure 9: An example of the physical/data link/network
layer behaviors with the increase of transmission loss.

events. Each ticket contains a timestamp recording the event’s
start time with detailed messages and a corresponding times-
tamp recording the localization of the event, i.e., event name
(e.g., optical fiber jitter, amplifier instability, etc.). Note, trou-
bleshooting optical events requires much manual effort in
existing telemetry systems. We use this data to learn signa-
tures of different optical events and show the time efficiency
of OpTel on troubleshooting optical events by comparing it
with the existing telemetry system.

4.1.2 Optical Events

We now present how we categorize optical events on the
basis of their impact (degradation vs. interruption events) and
duration (ephemeral vs. persistent events).
Interruption vs. Degradation events. To categorize optical
events on the basis of their impact, we investigate the relation-
ship between indicators at the physical, data link, and network
layer (see Figure 9). Specifically, we take an optical transport
system as an example, and fix the Tx power and iteratively
adjust the transmission loss of optical fiber to simulate the
degradation/failure event. Figure 9(a) shows a linear relation-
ship between the transmission loss and values of Rx power
in OTU based on the formula Rx power (dBm) = Tx power
(dBm) - transmission loss (dB). We observe similar trends in
PA (not shown for brevity). After establishing the relation-
ship between transmission loss and Rx power, we study how
degradation in the power level at the receiver affects SNR and
Q-factor at the physical layer (Figure 9(b)); FEC BER, loss
frame and error frame rate at the data link layer (Figure 9(c));
and the CRC at the network layer (Figure 9(d)).

For higher Rx power levels (i.e., around -9 dBm), the val-
ues of SNR and Q-factor are high with SNR=31 dB and Q-
factor=9 dB. The SNR and Q-factor indicate the ability of the

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 345

Figure 10: The CDF of optical events’ duration.

system to transmit data. Higher values for these physical layer
indicators imply higher possibility of correctly decoding the
transmitted ‘1’s and ‘0’s signal, and vice versa [18]. As Rx
power decreases, SNR and Q-factor decrease linearly. But the
values of data link and network layer indicators do not change
as Rx power level above a specific threshold guarantees cor-
rect decoding of the transmitted signals. When the Rx power
is below the threshold (i.e., -19 dBm), the Q-factor and SNR
are below the sensitivity of transceiver and thus, it reports 0 to
represent the abnormal state of optical system. For links with
low SNR and Q-factor, the post-FEC BER increases because
the number of error bits exceeds its error correction capabil-
ity. Consequently, the receiver can not restore the transmitted
data, resulting in nearly 100% of frame loss and error in the
data link layer (Figure 9(c)) and packet loss due to CRC error
in the network layer (Figure 9(d)).

Given these observations, we conclude that the Tx/Rx
power level is the key indicator of optical-layer performance.
This reinforces the prior study [53]. Thus, We use the changes
of Tx/Rx power level to detect optical events and divide op-
tical events into two broad categories on the basis of their
impact: degradation and interruption. Generally, there is a
conservative deployment of the optical transport system, with
redundancy baked in at the Rx power. The degradation event
occurs when the optical system transitions to an abnormal
state, evident from smaller values for physical layer indicators
Tx/Rx power level, Q-factor, SNR, etc. However, here such
anomalies do not affect the data transmission at the data link
or network layer. In contrast, the interruption events are where
further degradation in the physical layer starts affecting data
transmission. Note that fluctuations in Rx/Tx power levels
are common in production networks. Based on the network
operator’s experiences, we treat any fluctuation within 1 dB
range as normal.
Ephemeral vs. Persistent events. Optical events not only
vary in terms of impact but also in duration. Figure 10 shows
the duration of optical events (both interruption and degrada-
tion). We observe that the event duration exhibits long-tail
behavior. Interestingly, we observe that 20% of events only
last for one second and more than 50% of them last for less
than ten seconds, indicating the prevalence of such transient
optical events in the optical backbone. These observations
demonstrate the utility of OpTel’s ability to detect such short-
lived events that go unnoticed with the existing telemetry
systems. Given these observations, we divide optical events
into two categories based on their duration. We call all the

Table 1: The proportion of four types of optical events.
Type P-I P-D E-I E-D Total

Percentage 44.63% 4.28% 16.85% 34.24% 100%

(a) Collection frequency (b) Number of indicators

Figure 11: CPU usage of the device with different collec-
tion frequencies and numbers of indicators (normalized).

optical events that last less than ten seconds as ephemeral
events and the rest as persistent events.

Overall, we consider four different types of optical events
based on the combination of their impact and duration:
ephemeral degradation (E-D), persistent degradation (P-D),
ephemeral interruption (E-I) and persistent interruption (P-I).
Table 1 shows the prevalence of each of these event types in
our dataset. For confidentiality, we do not report the exact
numbers. We observe that optical events of the type P-I con-
tribute 44.63% to the total, followed by the E-D events, which
contribute about one-third to the total. The P-D events are the
least prevalent, only contributing 4.28% to the total events.
Note that more than 50% of optical events are ephemeral.

4.2 Data Collection Overheads

Intuitively, we expect collecting optical data at higher frequen-
cies (i.e., order of seconds) to be prohibitively expensive. We
now demonstrate how OpTel’s streamlined telemetry pipeline
makes such high-frequency data collection feasible. We com-
pare OpTel’s overhead, quantified in terms of CPU usage at
the optical devices, with existing SNMP-based telemetry sys-
tems for different collection frequencies (i.e., 0.1s, 0.5s, 1s, 5s,
and 10s) and the number of indicators (i.e., 25%, 50%, 75%,
and 100% of the total). We can configure the same device
to either use OpTel’s or conventional SNMP-based telemetry
pipelines in our current deployment. Such flexibility enables
us to report the CPU usage for these two different pipelines
for the same set of optical devices.

Figure 11(a) shows that CPU usage increases with collec-
tion frequency for both pipeline, but the rate of change for
OpTel is marginal. More specifically, the increase in collection
frequency from 1 second to 0.1 seconds raises SNMP-based
pipeline’s CPU usage from 34% to 96%. Such high CPU
usage highlights SNMP’s struggles to handle polling requests
at such high frequencies. In contrast, OpTel’s CPU usage only
increases by 6% from 19% to 25%, demonstrating its efficacy.
As shown in Figure 3, the polling-based SNMP consumes a
significant number of CPU cycles to collect data, including
receiving the request from the controller, traversing the MIB

346 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 12: The percentage of events detected with the de-
crease of collection frequencies (y axes is normalized by
total events detected with one-second granularity data).

database [35], and then requesting data from the line cards.
The reduction in the CPU usage of OpTel is attributable to the
offloading of compute-intense data-management tasks from
the optical devices to the controller. As shown in Figure 7,
once configured, the device only needs to periodically initiate
a connection to push the data to the controller. This process
does not introduce much CPU overhead on the device.

Figure 11(b) shows that CPU usage increases with the
number of indicators, but the rate of change for SNMP-based
pipeline is greater than OpTel’s. Specifically, the CPU usage
is 16% if we collected 25% of total indicators with an SNMP-
based pipeline. However, the CPU usage increases to 34% if
all indicators are collected. In contrast, the CPU usage is only
19% for OpTel. Recall that vendors limit SNMP’s CPU usage
at the cost of longer polling delays. Figure 4(a) depicts that it
takes tens of seconds to complete a polling period. The high
polling frequency results in a new polling request starting
before the previous polling request has ended. There will be
a lot of concurrent polling requests, resulting in high CPU
usage. The current design choice of SNMP is not scalable to
collect a large number of indicators at higher frequencies. In
contrast, OpTel streamlines the telemetry pipeline by offload-
ing resource-intense operations to the cloud. Therefore, OpTel
maintains low CPU usage at the device with the increasing
collection frequencies and indicators.

4.3 Detecting Optical Events with OpTel
Detecting optical events is essential for troubleshooting the
related network disruptions to various stakeholders. We eval-
uate the efficiency and accuracy of OpTel on detecting optical
events by comparing with existing telemetry systems.
High Efficiency. We firstly study the efficiency of OpTel on
detecting optical events by comparing with different collec-
tion frequencies, i.e., time intervals varying orders of minutes
(1min, 3min, 5min, and 15min) and seconds (1s, 15s, and
30s). Previous works only took advantage of minute-level
data to study operational optical networks [8, 18, 39, 52]. To
the best of our knowledge, no prior work uses second-level
data to detect optical events in operational optical networks.
We introduce them in experiments to further demonstrate the
relationship between the number of detected events and col-
lection frequency. Specifically, we take the data collected at

Table 2: The comparison of detected optical events with
OpTel and the existing telemetry system. UND means un-
detected optical events.

Existing system (15 minutes)
P-I P-D UND Total

P-I 33.80% 0 10.83% 44.63%
P-D 0 1.92% 2.36% 4.28%
E-I 11.00% 0 5.85% 16.85%
E-D 0 11.88% 22.36% 34.24%O

pT
el

(1
se

co
nd

)

Total 44.80% 13.80% 41.40% 100%

the one-second granularity as the ground truth and simulate
the detection of events with different collection frequencies.

Figure 12 demonstrates that OpTel achieves high efficiency
on detecting optical events. For confidentiality, we do not
report the detailed number of events. As the figure shows, the
total number of detected events decreases when the collec-
tion frequency decreases. Specifically, OpTel outperforms the
collection frequencies with 15 seconds, 1 minute, and 15 min-
utes by 25%, 39%, and 71%, respectively. This phenomenon
proves the efficiency of OpTel to detect them. Another obser-
vation is that the collection frequencies lower than 15 seconds
can not detect ephemeral optical events, and the number of
persistent events (i.e., P-I and P-D) decreases when the col-
lection frequency decreases. OpTel takes advantage of the
one-second granularity data to exactly detect these ephemeral
events. Surprisingly, we observe that the number of persis-
tent events detected with the 15-second granularity data is
more than that with the 1-second granularity data. This phe-
nomenon implies that the majority of ephemeral events are
wrongly identified as persistent events, i.e., E-I and P-I are
wrongly identified as E-D and P-D, respectively. In other
words, a portion of persistent events detected with the coarse-
grained data are not actually persistent. This motivates us to
learn the accuracy of detecting optical events by OpTel.

Full Accuracy. We then study the accuracy of OpTel on de-
tecting optical events by comparing with existing telemetry
systems. We take the existing system with 15-minute granu-
larity data as an example since it is widely studied for optical
layer in previous works [8,18,39,52]. Similarly, we regard the
one-second granularity data as the ground truth and simulate
the detection of optical events. The results are shown in Table
2. For confidentiality, the number of events is normalized by
the total number of optical events detected with the 1-second
granularity data. Each row represents the events detected by
OpTel, while each column represents the events detected by
the existing telemetry system with 15-minute granularity data.
We observe that the existing system can only correctly detect
35.72% of optical events (shown in Bold), while 41.40% of
optical events are not detected (UND column) and 22.88%
of optical events are wrongly detected (shown in underlined).
Specifically, for P-D events, only less than 50% of P-D events
can be accurately identified by the existing telemetry system
while the rest can not be detected. As for ephemeral events,
they are either identified as persistent events or not detected

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 347

(a) Inter-event length (b) Probability of a P-I event (c) Probability of a P-D event

Figure 13: (a) The CDF of length of inter-events (Log-scale x-axes); (b) Probability of a P-I event in a given time window
after different types of events; (c) Probability of a P-D event in a given time window after different types of events.

by the existing telemetry system. As for E-D, 22.36% of E-D
events can not be detected, occupying about two thirds of
total E-D events. It can be caused by several reasons. For
example, if there are several E-D events in one 15-minute
time interval, only one E-D event will be identified as a P-D
event, and the rest can not be identified. In general, our OpTel
with 1-second granularity data accurately detects all optical
events, especially for ephemeral events.

4.4 Predicting Future Optical Events

We evaluate the possibility of predicting future events based
on the current event within a short time by OpTel. Figure
13(a) depicts the CDF of length of inter-events. A surprising
observation is that 20% of inter-event lengths are only one
second. This phenomenon suggests that these events occur
in bursts and demonstrates the utility of the optical telemetry
system on collecting data at the one-second granularity. An-
other observation is that 50% of inter-event lengths are less
than 1000 seconds, suggesting a high probability of an optical
event within about 15 minutes after the current event.

We focus on predicting persistent events as they represent
a more prolonged impairment or loss in network capacity and
are more predictable. Taking the P-I event as an example,
we first compute the probability of a persistent interruption
event within a window of time and call it p(P-I). For x ∈
{P-I, E-I, P-D, E-D}, p(P-I given x) indicates the probability
of observing a P-I event given a prior x event within the same
window. Fig 13(b) and 13(c) depict the average probabilities
across all spans as a function of window size, from 5 seconds
to 1 hour. In contrast to the previous work [17], our works
focus on taking advantage of one-second granularity data and
the ephemeral events to achieve the short-term predictions.

As expected, p(P-D) and p(P-I) increase as window size
increases; the larger the window of time, the higher possibility
of a persistent event occurs within that window. For a window
of 1 hour, the probability of a persistent event occurrence is
less than 1%. This suggests a low probability of having a
persistent event in the 1-hour window. However, there is a
significant jump in the probability if there has been another
event in the past, e.g., E-D, E-I, and P-D. For example, for a
window of 1 hour, the probability of persistent event occur-
rence increases to about 50% if there has been an E-D event
within that window. Meanwhile, we observe that the events

have a strong relation in a short time window. For example,
for a window of 5 seconds in Figure 13(b), the probability of
P-I occurrence increases to about 20% if there has been an E-
D event within that window, while for a window of 1 minute,
the probability increases to 40%. This indicates that the E-D
event is strongly related to the future P-I event. As for the pre-
diction of P-D events in Figure 13(c), the probability of P-D
occurrence increases to 30% if there has been an ephemeral
event (i.e., E-D and E-I) within 30 seconds, and the possi-
bility does not increase much with a larger window of time.
This suggests that the P-D event always happens after the
ephemeral event within 30 seconds. Another observation is
that the past P-I event is less predictive of the future persistent
events, indicating that the P-I events are memoryless.

OpTel demonstrates a high possibility for predicting future
events at the second-level granularity. Thus, network opera-
tors could take the fine-grained IP layer network management.
First, network operators should monitor the ephemeral and
degradation events and raise alarms when they occur. Then,
appropriate actions should be taken since the failure proba-
bility of IP layer link will increase. For example, they could
improve traffic engineering so that important traffic should be
dispatched away from the corresponding link.

4.5 Troubleshooting Events with OpTel

Characterizing failure signals. We demonstrate the effec-
tiveness of OpTel on unveiling the signatures of optical events,
and thus we could quickly troubleshoot the optical events
based on the observed signatures. We use the Tx/Rx power as
the primary method to unveil the signatures of optical events
since it is the key indicator of optical-layer performance [53].
For some optical events such as fiber events, we learn the
signatures based on the network operator’s experience (Fig-
ure 14). However, for some optical events such as hardware
failures, we should traverse the trouble tickets dataset to learn
the signatures. To locate optical events accurately, we take
advantage of the centralized controller to conduct inter-device
analysis by combining the Tx/Rx power from three sources,
i.e., OSC, OTU, and BA/PA. For confidentiality, we do not
show all signatures of optical events and take an example for
each category of the events.
(a) Fiber cable: optical fiber jitter before interruption
(Figure 13(b)). We firstly unveil the most frequent optical

348 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 14: Fiber Figure 15: Amplifier

events, i.e., fiber cable events. As shown in Figure 14, on the
one hand, we observe that the Tx powers of BA and OSC
remain unchanged during the timeline. However, the Rx pow-
ers at both PA and OSC is down to -60 dBm after 12:00:10
(The receiver records a predefined minimum value when the
received power is below its sensitivity.). On the other hand,
the timestamp of Rx power changes in OSC and PA is con-
sistent with several ephemeral degradation events at 11:59:59
and 12:00:02 before the interruption. Thus, we can localize
the optical event as an optical fiber event since the sources of
the light work well and the probability of two receivers at PA
and OSC having problems at the same time is relatively low.
(b) Hardware: amplifier instability. We then unveil one ex-
ample of hardware failures, i.e., amplifier failure. Since the
curve is quite similar, we only select a 1-minute time inter-
val, as shown in Figure 15. We observe that the Rx power of
PA changes periodically with about a 3 dB drop at 7:20:07,
7:20:32, and 7:20:53, while the indicators of the rest remain
unchanged. The stable Tx/Rx values of OSC indicate a nor-
mal state of fiber cable, while the stable Tx values of BA
indicate that BA works well. Thus, we can localize the optical
event as the instability of PA, i.e., amplifier failure.
(c) Power: power outage at site of LA. We unveil one ex-
ample of power events, i.e., the power outage at the site of
the in line amplifier (LA). In a long-haul transmission system,
there is a relay site containing LA that amplifies the signal to
deal with long-haul transmission loss. Figure 18 in Appendix
C depicts the detailed origins of Tx/Rx power in Figure 16. In
Figure 16(a), We observe that the Tx power of OSC can not
be collected after 03:32:31 while the Tx power of BA remains
almost unchanged. Surprisingly, the Rx power values of both
OSC and PA become -60 dBm after 03:32:32. Thus, we locate
the power outage event at LA in the site, and the delay of Rx
power is mainly due to energy storage of components in the
device, such as capacitance and inductance [12]. The similar
results in Figure 16(b) further prove this phenomenon. Thus,
we localize the optical event as a power outage at site of LA.

These signatures of optical events present the necessity of
indicators to be collected at the second-level granularity which
can not be demonstrated in the existing telemetry system.
OpTel unveils the signatures of optical events, which presents
the superiority of optical telemetry to collect data at the one-
second granularity and a centralized controller to conduct
inter-device analysis in real time.

(a) (b)
Figure 16: The power outage at site of LA.

We finally evaluate the time efficiency on troubleshooting
optical events by comparing OpTel with the existing telemetry
system. For the existing system, it takes much manual effort to
troubleshoot the optical events, and we calculate the total time
of troubleshooting the optical events based on timestamps
recorded in the trouble tickets dataset. As for OpTel, based
on signatures learned before, OpTel conducts inter-device
analysis in a centralized controller to detect and troubleshoot
optical events in a timely manner. Table 3 presents the com-
parison of the total time of troubleshooting optical events
between OpTel and the existing telemetry system across all
event categories. We do not report events that have not hap-
pened in the studied dataset. There are several observations.
Firstly, 89.7% of optical events (i.e., P-D, P-I, E-D, and E-I)
are caused by fiber cable, including fiber cut, fiber jitter, and
fiber bent/degradation. The existing telemetry system takes
about 5min ~10min to troubleshoot a fiber cut event. However,
it can not troubleshoot the optical events caused by fiber jitter
or degradation. In contrast, OpTel only takes several seconds
to troubleshoot all the events related to the fiber cable. Sec-
ondly, 7.8% of optical events are caused by hardware, and it
takes quite a long time, i.e., hours ~days and much manual
effort to troubleshoot them. Some hardware events, such as
amplifier instability (Figure 15) can not be troubleshooted in
the existing telemetry system. In contrast, OpTel only takes
about 2s ~60s to troubleshoot all the events related to hard-
ware, reducing the time by as much as two to four orders of
magnitude. The total time of troubleshooting events by OpTel
is related to the time length of the signature. For example,
OpTel takes 2s to troubleshoot amplifier malfunction and 60s
to troubleshoot amplifier instability since we need to take
about 60s to get the value change patterns of Rx power in
PA to troubleshoot the optical event (Figure 15). As for the
power events, OpTel is efficient to troubleshoot these events
within a minute. In summary, OpTel takes advantage of the
one-second granularity data to learn the signatures of the op-
tical events and thus troubleshoots optical events at scale in a
timely manner.

5 Related Work

Network streaming telemetry. Previous works have exten-
sively studied the design of network streaming telemetry
systems. End-host-based network streaming telemetry sys-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 349

Table 3: The comparison of the total time of troubleshooting events between OpTel and the existing telemetry system.
Event category Percentage Event type (Detect) Event name (Troubleshoot) Existing telemetry system OpTel

Fiber cable 89.7%
PI Fiber cut 5min~10min 10s

EI / ED Fiber jitter UNK 3s
PD Fiber bent / degradation UNK 10s

Hardware 7.8%
PI / ED Amplifier malfunction / instability hours~days / UNK 2s~60s
PI / ED OSC malfunction / instability hours~days / UNK 2s~60s

PI OTU malfunction hours ~days 2s~60s

Power 2.5% PI Power outage hours 10s~30s
PI Power down hours 10s~30s

tems [4, 16, 32, 41] performed flow-level tracking but had to
deal with a limited view of the network. Switch-based network
telemetry systems usually offered a coarse-grained view of
the network, collecting aggregated or sampled data from the
network [36, 43, 48]. Systems supporting packet-level analyt-
ics offered limited flexibility as they only supported a limited
set of analytics queries [28, 33, 50, 51]. More recently, hybrid
telemetry systems [19, 22, 42] struck a balance between flex-
ibility and scale, supporting dataflow operators over packet
fields at scale. Though these works enabled packet-level or
flow-level network streaming analytics, they were not suited
for ingesting physical, data link, and network link layer data to
diagnose optical events. Previous works [34, 37] did propose
a telemetry system explicitly designed for optical networks.
However, they evaluated the proposed artifacts in lab envi-
ronments, making it difficult to assess their performance in
production settings. In contrast, OpTel demonstrates the fea-
sibility to collect fine-grained optical telemetry data at higher
frequencies (i.e., one-second granularity) by running in pro-
duction at Tencent’s optical backbone network for six months.

Optical layer control. Several works have studied the control
interface of optical networks. Cox [11] proposed an ultimate
goal of controlling the open optical line system (i.e., vendor-
free optical system) in Microsoft’s optical backbone by a
unified SDN controller and discussed some issues surround-
ing the effort. Filer et al. [15] expressed a long-term goal of
unifying the optical control plane and pointed out the chal-
lenges in properly controlling the plurality of optical source
and line system options. They recognized Yang model [7] and
SNMP [10] as potential starting points for a standard data
model and control interface. In contrast to previous works
which only provided the preliminary idea, we demonstrate
the feasibility of a centralized control of vendor-free optical
networks by designing a standardized model for devices that
abstracts away the vendor-specific details.

Optical layer characterization. Previous work [9,14,46,47]
characterized the dispersion (e.g., polarization mode disper-
sion, chromatic dispersion) of the deployed fiber cable. Our
work complements these efforts by investigating similar phe-
nomenons (and more) for a much larger deployment. Ghobadi
et al. [17] reported a three-month study of Q-factor data from
Microsoft’s optical backbone and evaluated whether fiber
segments can support higher-order modulations to increase
network bandwidth. The following work RADWAN [39] pro-

vided a traffic engineering system that dynamically adapted
link rates according to the SNR to enhance network through-
put and availability. These works took advantage of one
coarsely sampled indicator. In contrast, our work benefits
from the fine-grained data and a centralized controller to sup-
port inter-device analysis to detect and troubleshoot optical
events. We leave correlations of IP layer performance and
optical events to future work.
Diagnosis optical events. Ghobadi et al. [18] studied Q-
factor data from Microsoft’s optical backbone network and
observed that network outages could be predicted based on
the values drops in optical signal quality. RAIL [53] regarded
RxPower as a key indicator of optical layer performance and
found that instances of low Rx power could cause packet
corruption. CorrOpt [52] used an optical layer monitor with
Tx and Rx power to help determine the root cause of packet
corruption in DCNs. These previous works adopted SNMP
optical MIB [35] to poll optical performance indicators span-
ning from 5 minutes to 15 minutes. As a result, their works
were slow in detecting persistent events and not capable of
detecting ephemeral events. In contrast, OpTel is an optical
telemetry system that supports one-second granularity optical
data collection. Meanwhile, based on the signature learned
from such fine-grained data, OpTel is able to detect and trou-
bleshoot optical events in a timely manner.

6 Conclusion

This paper presents OpTel, an optical telemetry system that
uses a centralized vendor-agnostic controller to collect opti-
cal data in a streaming fashion. More specifically, it offers
flexible vendor-agnostic interfaces between the devices and
the controller and offloads data-management tasks from the
devices to the controller. As a result, OpTel enables the collec-
tion of fine-grained optical telemetry data at the one-second
granularity. It has been running in Tencent’s optical backbone
network for the past six months. Compared to existing teleme-
try systems, OpTel accurately detects 2× more optical events,
half of which are ephemeral events. OpTel also enables trou-
bleshooting of these optical events in a few seconds, which is
orders of magnitude faster than the state-of-the-art.

This work does not raise any ethical issues.

350 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Acknowledgments

We sincerely thank our shepherd Manya Ghobadi, Walter Will-
inger, Gilberto Mayor, Kevin Schmidt, and the anonymous
reviewers for their valuable feedback on earlier versions of
this paper. We also thank teams at Tencent for their contri-
butions to the work. Zekun He and Jilong Wang are corre-
sponding authors. This work was supported in part by the
National Key Research and Development Program of China
under Grant No. 2020YFE0200500. Arpit Gupta was sup-
ported by NSF/Intel Partnership on Machine Learning for
Wireless Networking Program under Award 2003257, “ML-
WiNS: RL-based Self-driving Wireless Network Management
System for QoE Optimization”.

References
[1] grpc: a high performance, open-source universal rpc framework. https:

//grpc.io/.

[2] The need for otn in data center interconnect (dci) transport, 2016.

[3] Inter-datacenter bulk transfers with codedbulk. In 18th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 21)
(Apr. 2021), USENIX Association.

[4] ALIPOURFARD, O., MOSHREF, M., ZHOU, Y., YANG, T., AND YU, M.
A comparison of performance and accuracy of measurement algorithms
in software. In Proceedings of the Symposium on SDN Research (2018),
pp. 1–14.

[5] ALIZADEH, M., GREENBERG, A., MALTZ, D. A., PADHYE, J., PA-
TEL, P., PRABHAKAR, B., SENGUPTA, S., AND SRIDHARAN, M. Data
center tcp (dctcp). In Proceedings of the ACM SIGCOMM 2010 Con-
ference (2010), pp. 63–74.

[6] ARNOLD, T., HE, J., JIANG, W., CALDER, M., CUNHA, I., GIOTSAS,
V., AND KATZ-BASSETT, E. Cloud provider connectivity in the flat
internet. In Proceedings of the ACM Internet Measurement Conference
(2020), pp. 230–246.

[7] BJORKLUND, M., ET AL. Yang-a data modeling language for the
network configuration protocol (netconf).

[8] BOGLE, J., BHATIA, N., GHOBADI, M., MENACHE, I., BJØRNER,
N., VALADARSKY, A., AND SCHAPIRA, M. Teavar: striking the right
utilization-availability balance in wan traffic engineering. In Proceed-
ings of the ACM Special Interest Group on Data Communication. 2019,
pp. 29–43.

[9] BOHATA, J., JAROS, J., PISARIK, S., ZVANOVEC, S., AND KOMANEC,
M. Long-term polarization mode dispersion evolution and accelerated
aging in old optical cables. IEEE Photonics Technology Letters 29, 6
(2017), 519–522.

[10] CASE, J., FEDOR, M. S., SCHOFFSTALL, M. L., AND DAVIN, J. Sim-
ple network management protocol (snmp). RFC 1098 (1989), 1–34.

[11] COX, J. Sdn control of a coherent open line system. In Optical
Fiber Communication Conference (2015), Optical Society of America,
pp. M3H–4.

[12] DI VENTRA, M., PERSHIN, Y. V., AND CHUA, L. O. Circuit ele-
ments with memory: memristors, memcapacitors, and meminductors.
Proceedings of the IEEE 97, 10 (2009), 1717–1724.

[13] ENNS, R., BJORKLUND, M., SCHOENWAELDER, J., AND BIERMAN,
A. Network configuration protocol (netconf).

[14] FEUERSTEIN, R. J. Field measurements of deployed fiber. In National
Fiber Optic Engineers Conference (2005), Optical Society of America,
p. NThC4.

[15] FILER, M., GAUDETTE, J., GHOBADI, M., MAHAJAN, R., IS-
SENHUTH, T., KLINKERS, B., AND COX, J. Elastic optical networking
in the microsoft cloud. Journal of Optical Communications and Net-
working 8, 7 (2016), A45–A54.

[16] GENG, Y., LIU, S., YIN, Z., NAIK, A., PRABHAKAR, B., ROSEN-
BLUM, M., AND VAHDAT, A. {SIMON}: A simple and scalable
method for sensing, inference and measurement in data center net-
works. In 16th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 19) (2019), pp. 549–564.

[17] GHOBADI, M., GAUDETTE, J., MAHAJAN, R., PHANISHAYEE, A.,
KLINKERS, B., AND KILPER, D. Evaluation of elastic modulation
gains in microsoft’s optical backbone in north america. In 2016 Optical
Fiber Communications Conference and Exhibition (OFC) (2016), IEEE,
pp. 1–3.

[18] GHOBADI, M., AND MAHAJAN, R. Optical layer failures in a large
backbone. In Proceedings of the 2016 Internet Measurement Confer-
ence (2016), pp. 461–467.

[19] GUPTA, A., HARRISON, R., CANINI, M., FEAMSTER, N., REXFORD,
J., AND WILLINGER, W. Sonata: Query-driven streaming network
telemetry. In Proceedings of the 2018 conference of the ACM special
interest group on data communication (2018), pp. 357–371.

[20] HONG, C.-Y., KANDULA, S., MAHAJAN, R., ZHANG, M., GILL, V.,
NANDURI, M., AND WATTENHOFER, R. Achieving high utilization
with software-driven wan. In Proceedings of the ACM SIGCOMM
2013 Conference on SIGCOMM (2013), pp. 15–26.

[21] HONG, C.-Y., MANDAL, S., AL-FARES, M., ZHU, M., ALIMI, R.,
BHAGAT, C., JAIN, S., KAIMAL, J., LIANG, S., MENDELEV, K.,
ET AL. B4 and after: managing hierarchy, partitioning, and asym-
metry for availability and scale in google’s software-defined wan. In
Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication (2018), pp. 74–87.

[22] HUANG, Q., SUN, H., LEE, P. P., BAI, W., ZHU, F., AND BAO, Y.
Omnimon: Re-architecting network telemetry with resource efficiency
and full accuracy. In Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the applications,
technologies, architectures, and protocols for computer communication
(2020), pp. 404–421.

[23] JAIN, S., KUMAR, A., MANDAL, S., ONG, J., POUTIEVSKI, L.,
SINGH, A., VENKATA, S., WANDERER, J., ZHOU, J., ZHU, M., ET AL.
B4: Experience with a globally-deployed software defined wan. ACM
SIGCOMM Computer Communication Review 43, 4 (2013), 3–14.

[24] JIN, X., LI, Y., WEI, D., LI, S., GAO, J., XU, L., LI, G., XU, W.,
AND REXFORD, J. Optimizing bulk transfers with software-defined
optical wan. In Proceedings of the 2016 Conference of the ACM Special
Interest Group on Data Communication (2016), pp. 87–100.

[25] KACHRIS, C., AND TOMKOS, I. A survey on optical interconnects for
data centers. IEEE Communications Surveys & Tutorials 14, 4 (2012),
1021–1036.

[26] LABOVITZ, C., IEKEL-JOHNSON, S., MCPHERSON, D., OBERHEIDE,
J., AND JAHANIAN, F. Internet inter-domain traffic. ACM SIGCOMM
Computer Communication Review 40, 4 (2010), 75–86.

[27] LAOUTARIS, N., SIRIVIANOS, M., YANG, X., AND RODRIGUEZ, P.
Inter-datacenter bulk transfers with netstitcher. In Proceedings of the
ACM SIGCOMM 2011 Conference (2011), pp. 74–85.

[28] LIU, Z., MANOUSIS, A., VORSANGER, G., SEKAR, V., AND BRAVER-
MAN, V. One sketch to rule them all: Rethinking network flow mon-
itoring with univmon. In Proceedings of the 2016 ACM SIGCOMM
Conference (2016), pp. 101–114.

[29] MCQUISTIN, S., UPPU, S. P., AND FLORES, M. Taming anycast in the
wild internet. In Proceedings of the Internet Measurement Conference
(2019), pp. 165–178.

[30] MILLS, D. RFC1305: Network Time Protocol (Version 3) Specification,
Implementation. RFC Editor, 1992.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 351

https://grpc.io/
https://grpc.io/

[31] MIZUOCHI, T. Recent progress in forward error correction and its
interplay with transmission impairments. IEEE Journal of Selected
Topics in Quantum Electronics 12, 4 (2006), 544–554.

[32] MOSHREF, M., YU, M., GOVINDAN, R., AND VAHDAT, A. Trumpet:
Timely and precise triggers in data centers. In Proceedings of the 2016
ACM SIGCOMM Conference (2016), pp. 129–143.

[33] NARAYANA, S., SIVARAMAN, A., NATHAN, V., GOYAL, P., ARUN,
V., ALIZADEH, M., JEYAKUMAR, V., AND KIM, C. Language-
directed hardware design for network performance monitoring. In
Proceedings of the Conference of the ACM Special Interest Group on
Data Communication (2017), pp. 85–98.

[34] PAOLUCCI, F., SGAMBELLURI, A., CUGINI, F., AND CASTOLDI, P.
Network telemetry streaming services in sdn-based disaggregated opti-
cal networks. Journal of Lightwave Technology 36, 15 (2018), 3142–
3149.

[35] PRESUHN, R., CASE, J., MCCLOGHRIE, K., ROSE, M., AND WALD-
BUSSER, S. Management information base (mib) for the simple net-
work management protocol (snmp). Tech. rep., STD 62, RFC 3418,
December, 2002.

[36] RASLEY, J., STEPHENS, B., DIXON, C., ROZNER, E., FELTER, W.,
AGARWAL, K., CARTER, J., AND FONSECA, R. Planck: Millisecond-
scale monitoring and control for commodity networks. ACM SIG-
COMM Computer Communication Review 44, 4 (2014), 407–418.

[37] SADASIVARAO, A., JAIN, S., SYED, S., PITHEWAN, K., KANTAK,
P., LU, B., AND PARASCHIS, L. High performance streaming teleme-
try in optical transport networks. In Optical Fiber Communication
Conference (2018), Optical Society of America, pp. Tu3D–3.

[38] SAEED, A., GUPTA, V., GOYAL, P., SHARIF, M., PAN, R., AMMAR,
M., ZEGURA, E., JANG, K., ALIZADEH, M., KABBANI, A., ET AL.
Annulus: A dual congestion control loop for datacenter and wan traffic
aggregates. In Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the applications,
technologies, architectures, and protocols for computer communication
(2020), pp. 735–749.

[39] SINGH, R., GHOBADI, M., FOERSTER, K.-T., FILER, M., AND GILL,
P. Radwan: rate adaptive wide area network. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication
(2018), pp. 547–560.

[40] STONE, J., AND PARTRIDGE, C. When the crc and tcp checksum
disagree. ACM SIGCOMM computer communication review 30, 4
(2000), 309–319.

[41] TAMMANA, P., AGARWAL, R., AND LEE, M. Simplifying datacenter
network debugging with pathdump. In 12th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 16) (2016),
pp. 233–248.

[42] TAMMANA, P., AGARWAL, R., AND LEE, M. Distributed network
monitoring and debugging with switchpointer. In 15th {USENIX} Sym-
posium on Networked Systems Design and Implementation ({NSDI}
18) (2018), pp. 453–456.

[43] TILMANS, O., BÜHLER, T., POESE, I., VISSICCHIO, S., AND VAN-
BEVER, L. Stroboscope: Declarative traffic mirroring on a budget. In
Proc. of NSDI (2018).

[44] WALLS, F. L., AND VIG, J. R. Fundamental limits on the frequency
stabilities of crystal oscillators. IEEE transactions on ultrasonics,
ferroelectrics, and frequency control 42, 4 (1995), 576–589.

[45] WOHLFART, F., CHATZIS, N., DABANOGLU, C., CARLE, G., AND
WILLINGER, W. Leveraging interconnections for performance: the
serving infrastructure of a large cdn. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication
(2018), pp. 206–220.

[46] WOODWARD, S., NELSON, L., FEUER, M., ZHOU, X., MAGILL, P.,
FOO, S., HANSON, D., SUN, H., MOYER, M., AND O’SULLIVAN,

M. Characterization of real-time pmd and chromatic dispersion mon-
itoring in a high-pmd 46-gb/s transmission system. IEEE Photonics
Technology Letters 20, 24 (2008), 2048–2050.

[47] WOODWARD, S. L., NELSON, L. E., SCHNEIDER, C. R., KNOX,
L. A., O’SULLIVAN, M., LAPERLE, C., MOYER, M., AND FOO, S.
Long-term observation of pmd and sop on installed fiber routes. IEEE
Photonics Technology Letters 26, 3 (2013), 213–216.

[48] YU, D., ZHU, Y., ARZANI, B., FONSECA, R., ZHANG, T., DENG, K.,
AND YUAN, L. dshark: A general, easy to program and scalable frame-
work for analyzing in-network packet traces. In 16th {USENIX} Sym-
posium on Networked Systems Design and Implementation ({NSDI}
19) (2019), pp. 207–220.

[49] ZHONG, Z., GHOBADI, M., KHADDAJ, A., LEACH, J., XIA, Y., AND
ZHANG, Y. Arrow: Restoration-aware traffic engineering.

[50] ZHOU, Y., SUN, C., LIU, H. H., MIAO, R., BAI, S., LI, B., ZHENG,
Z., ZHU, L., SHEN, Z., XI, Y., ET AL. Flow event telemetry on
programmable data plane. In Proceedings of the Annual conference
of the ACM Special Interest Group on Data Communication on the
applications, technologies, architectures, and protocols for computer
communication (2020), pp. 76–89.

[51] ZHU, Y., KANG, N., CAO, J., GREENBERG, A., LU, G., MAHAJAN,
R., MALTZ, D., YUAN, L., ZHANG, M., ZHAO, B. Y., ET AL. Packet-
level telemetry in large datacenter networks. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication
(2015), pp. 479–491.

[52] ZHUO, D., GHOBADI, M., MAHAJAN, R., FÖRSTER, K.-T., KRISH-
NAMURTHY, A., AND ANDERSON, T. Understanding and mitigating
packet corruption in data center networks. In Proceedings of the 2017
Conference of the ACM Special Interest Group on Data Communication
(2017), pp. 362–375.

[53] ZHUO, D., GHOBADI, M., MAHAJAN, R., PHANISHAYEE, A., ZOU,
X. K., GUAN, H., KRISHNAMURTHY, A., AND ANDERSON, T.
{RAIL}: A case for redundant arrays of inexpensive links in data
center networks. In 14th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 17) (2017), pp. 561–576.

A The origins of telemetry data collected from
optical device

Figure 17: The origins of telemetry data collected from optical
device

B Filtering out the network events from trou-
ble tickets dataset related to optical events

Since the tickets in trouble ticket dataset describe whole net-
work events, each ticket contains a timestamp that records the
start time of the network event and the detailed alarm message
and corresponding a timestamp recording the end time of the
event with the causes of the failures. After manually review-
ing a number of tickets, we observed that most optical events

352 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

had been saliently described in the trouble tickets. Filtering
out and grouping these tickets requires a lot of effort. We
design a two-layer filtration. Specifically, in the first layer, we
filter out the trouble tickets related to the optical backbone
network by matching keywords, phrases, and regular expres-
sions to get a set of optical trouble tickets. In the second layer,
by manually reviewing the optical trouble tickets, we observe
that the optical events can be categorized into a small number
of classes, i.e., fiber cable, hardware and power event. We
classify these tickets based on matching keywords or phrases.
In some instances, there may be multiple tickets pertaining to
the same failure event. Grouping these multiple tickets into a
single event requires some piece of information to be repeated
in each ticket.

C Data collection point of power event.

Figure 18: Schematic diagram of data collection
The performance data shown in 16(a) is collected from

the top part of Figure 18, and the performance data shown in
16(b) is collected from the bottom part of Figure 18. Note, the
LAs in the site share the electrical power sources.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 353

Bluebird: High-performance SDN for Bare-metal Cloud Services

Manikandan Arumugam1, Deepak Bansal3, Navdeep Bhatia1, James Boerner3, Simon Capper1,
Changhoon Kim2, Sarah McClure3, Neeraj Motwani3, Ranga Narasimhan3, Urvish Panchal1,

Tommaso Pimpo3, Ariff Premji1, Pranjal Shrivastava3, and Rishabh Tewari3

Arista1, Intel2, Microsoft3

Abstract
The bare-metal cloud service is a type of IaaS (Infrastructure
as a Service) that offers dedicated server hardware to cus-
tomers along with access to other shared infrastructure in the
cloud, including network and storage.

This paper presents our experiences in designing, imple-
menting, and deploying Bluebird, the high-performance net-
work virtualization system for the bare-metal cloud service on
Azure. Bluebird’s data plane is built using high-performance
programmable switch ASICs. This design allows us to ensure
the high performance, scale, and custom forwarding capabili-
ties necessary for network virtualization on Azure. Bluebird
employs a few well-established technical principles in the
control plane that ensure scalability and high availability, in-
cluding route caching, device abstraction, and architectural
decoupling of switch-local agents from a remote controller.

The Bluebird system has been running on Azure for more
than two years. During this time, it has served thousands
of bare-metal tenant nodes and delivered full line-rate NIC
speed of bare-metal servers of up to 100Gb/s while ensuring
less than 1µs of maximum latency at each Bluebird-enabled
SDN switch. We share our experiences of running bare-metal
services on Azure, along with the P4 data plane program used
in the Bluebird-enabled switches.

1 Introduction

For some time now, Software Defined Networks (SDNs) have
been foundational in enabling virtualized networks for cus-
tomer workloads in multi-tenant clouds. Traditionally, the
data plane of SDNs has been implemented in software as part
of the end-host networking stack, typically leveraging virtual
switches in hypervisors such as Open V-Switch (OVS) [16] or
user-level networking libraries such as DPDK [17]. Given that
scale and performance needs have grown over the years, the
mechanisms available to offload such software-based packet
processing have also evolved. These include solutions such
as smartNICs [15], which leverage Switch-on-a-Chip (SoCs),
ASICs, and FPGAs to perform packet processing at line rate
without incurring significant overhead [58–60].

Today, cloud customers have even more demanding work-
loads in the cloud as they look to migrate their line-of-business
applications and begin to phase out their own data centers.

These workloads require complete control of the hardware,
and in many cases, custom hardware to be hosted in the cloud.
For example, workloads such as those for NetApp, Cray, SAP,
and HPC [13, 53] require custom hardware. We refer to the
cloud offering for supporting such workloads as bare-metal
cloud services or hardware as a service (HWaaS).

Bare-metal workloads are not well-supported by traditional
SDN stack implementations. In general, bare-metal servers
do not offer the necessary opportunities for integration with
the networking stack on the host or NIC, calling instead for a
"bump-in-the-wire" approach that has no dependency on the
host hardware. Since the Top-of-Rack (ToR) switches are the
first network hop connected to these hosts, the ToR offers an
excellent opportunity to implement this "bump in the wire."

In this paper, we introduce Bluebird, a ToR-based SDN
solution that is broadly deployed in one of the largest public
cloud infrastructures to enable bare-metal workloads. We also
discuss the challenges, design, and operational experiences in
building and designing such a solution.

Bluebird is based on programmable ASICs such as the
now largely available Barefoot Tofino chipset [27] as well
as upcoming merchant silicon offerings like Broadcom’s
SmartTOR ASIC [6]. The programmability of high-speed
networking ASICs, along with the increase in scale, have
made the ToR-based "bump-in-the-wire" approach feasible.
Cloud providers must be able to evolve the SDN capabilities
of the platform as customer requirements change. Without
programmable chips, a cloud provider may have to wait for an
18-24 month technology cycle before changing their service
offerings. Unless, of course, the cloud provider undertakes
an off-cycle, expensive hardware replacement. Additionally,
several SDN functions, such as load balancing, NAT, etc.,
require flow state tracking. ToR ASICs such as Barefoot Net-
work’s Tofino and Broadcom’s SmartToR are now able to
track millions of flows, which is critical to enable network
virtualization in a ToR.

Bluebird is able to achieve line-rate throughput and deliver
latencies of less than 1µs that are on par with non-virtualized
environments. By leveraging route caching mechanisms, Blue-
bird can scale to the largest virtualized networks that exist in a
public cloud. The rest of this paper is organized as follows: §2
reviews different SDN implementations; §3 describes goals
and rationales behind Bluebird; §4 presents the design at the

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 355

Figure 1: Virtual Filtering Platform (VFP) design.

base of our solution; §5 investigates performance; §6 explores
operationalization and experience; §7 discusses related work;
and §8 concludes this paper.

2 Background

In this section, we present an overview of the SDN stack
implementations coexisting within Azure and how they com-
pare with Bluebird to enable bare-metal services. Table 1
summarizes the comparison.

2.1 Host SDN
First, we consider end-host based software solutions. Figure 1
shows the Host SDN model, where the SDN software stack
runs on the host machine hypervisor. Packets to and from
the VMs are processed by a programmable virtual switch
(vSwitch) operating within the hypervisor environment. The
vSwitch’s design is critical to the effectiveness of this solution
since it is responsible for implementing the forwarding policy
while still minimizing overhead. Since the host has already
processed every packet reaching the physical forwarding layer,
the physical networking equipment can be relatively simple.
However, processing packets in software is expensive and
competes with client software for host resources. This results
in reduced revenue and has a negative impact on network
efficiency as congestion increases CPU use [15].

Using Hyper-V as the hypervisor and the Virtual Filtering
Platform (VFP) [14] as the vSwitch, Azure primarily em-
ploys the Host SDN model across its fleet (Figure 1). The
VFP implements SDN policies by acting as a programmable
platform accessible to the controllers running Azure’s SDN.
The VFP is organized in layers, which are stateful flow tables
that enforce the controller’s policy. Each layer implements
a specific set of inbound and outbound rules that can filter
and transform packets. A packet traverses the layers in order,
matching one rule per layer by searching by rule priority.

Figure 1 shows a common layer configuration. Following
the inbound order, the Virtual Network (VNET) layer provides
tunneling for packets coming from Customer Address (CA)
space to the Physical Address space (PA). Inbound packets
are decapsulated while outbound packets are encapsulated.

The next layer is the Ananta [61] NAT load balancer layer,
which NATs inbound packets from a Virtual IP (VIP) to a
Direct IP (DIP). The Access Control Lists (ACLs) layer is a
stateful firewall, while the metering layer is for billing and is
placed as the last layer between the VFP and the VM.

While the Host SDN model is used widely in Azure, it is
not well-suited for bare-metal workloads. Such workloads are
not Hyper-V based, leaving no environment to implement the
VFP. Furthermore, the network performance is expected to
be on par with deployments in non-virtualized environments,
precluding a software-based solution.

2.2 SmartNIC-based SDN
A smartNIC is a programmable network interface card (NIC)
that supports the network processing operations usually per-
formed by the host CPU. SmartNICs can be configured for
both control plane and data plane operations. They can make
use of various technologies depending on the requirements:
Application-specific Integrated Circuit (ASIC), System-on-
chip (SoC), and Field-programmable Gate Arrays (FPGA).

Compared to VFPs, smartNICs offer lower latency and
higher throughput while maintaining the same scalability and
programmability level. This allows the host CPU to offload
some costly network operations, resulting in reduced process-
ing time and improved power efficiency. However, in some
cases, only a subset of tasks is offloaded to the smartNIC,
which in itself requires careful orchestration between the hy-
pervisor and the smartNIC operating system.

While smartNICs have proven to be effective overall, they
are not a good fit for the bare-metal model given the integra-
tion requirements. This is mostly due to the complexities that
would be introduced at the hypervisor and network stack of
the host. Additionally, the SDN stack implementation should
be decoupled from any particular or specialized bare-metal
appliance to ensure that a single, general approach will be
compatible with all bare-metal services.

2.3 SDN on ToR
Traditionally, data centers are built using fixed-function
switches. In such environments, the cloud intelligence re-
sides in the host or hypervisor and not in the network. The
host uses smartNICs and VFPs to define a clear separation
between the control and data plane.

SDN on ToR refers to the use of programmable switches to
execute policy on the ToR switch instead of the host. In order
to use a programmable ToR, the target function(s) must be
well-defined and limited in scope. A well-targeted SDN ToR
application can reduce development time and complexity.

Most, if not all, SDN policies could be supported by pro-
grammable switches. However, we have taken an incremental
approach where only a small subset of features is initially
introduced. This set will be expanded once it has met certain

356 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

End-host software
stack per core (§2.1)

SoC-based smart-
NIC (§2.2)

ASIC-based smart-
NIC (§2.2)

FPGA-based smart-
NIC (§2.2)

Programmable
ASIC-based ToR
(Bluebird) (§2.3)

Max Throughput < 40Gbps & 10’s of
Mpps

Up to ~100Gbps &
~100Mpps

Up to 200Gbps & 100-
200Mpps

Up to 200Gbps & 100-
200Mpps

6.4-12.8Tbps &
5-7Bpps

Latency < 100 µsec > 1 µsec > 1 µsec > 1 µsec < 1 µsec
Scale GBs of DRAM + tradi-

tional cache hierarchy
8 GBs of DRAM + tra-
ditional cache hierar-
chy

Tens of MBs on
chip cache + GBs of
DRAM

Tens of MBs on chip
BRAM + GBs of
DRAM

12 stages of high-
throughput pipeline
and each pipeline has
24 TCAMs and 80
SRAM blocks

Cost per 100Gbps Medium (including
capex and opportunity
cost)

Medium Medium Medium Low

Power consumption
per 100Gbps

~500-700W per server
including the NIC

~500-700W per server
including the NIC

~500-700W per server
including the NIC

~500-700W per server
including the NIC

~300W for the sys-
tem that includes
64 ports of 100GbE
(~5W/100GbE)

Table 1: Comparison of SDN stack implementations.

standards of quality and reliability. In Bluebird, the primary
objective is for the ToR to maintain a high number of CA-to-
PA mappings while ensuring hardware-like performance.

An SDN ToR gives us the ability to collapse multiple func-
tions into one network element. In the Bluebird model, we
collapse two key roles into a single device: 1) logical net-
work isolation between customers via Virtual Routing and
Forwarding (VRF) instances and 2) the association of one
or more CA-to-PA mappings per VRF per customer. Imple-
menting these two functions separately on different devices
(such as routers implementing VRFs with tunnels to servers
running software gateways) incurs the cost of routers and
additional servers. By collapsing the routing and CA-to-PA
mapping tasks onto a single device, we reduce the number of
hops, encapsulations, and consequently latency for bare-metal
workloads. Implementing these functionalities directly on the
SDN switch results in increased performance and scalability.

To implement an SDN ToR for use with Bluebird, a single
VRF is allocated per customer to guarantee logical isolation
between customers. Since the goal of the SDN ToR is to
connect a customer’s bare-metal instance to their VNET, each
VRF is programmed with CA-to-PA mappings in the form of
VXLAN [48] static routes that associate the bare-metal host
to its VNET. Customized P4 programming is used to perform
the necessary encapsulation for packets destined to the VNET.
This allows the communication between bare-metal (BM) and
VMs and between BM and BM to happen at hardware speeds.
Additionally, the number of programmable routes is extended
through an onboard cache that increases the otherwise limited
number of routes the switch ASIC on-chip memory can hold.
The route-cache solution is discussed in more detail in §4.

2.4 SDN Servers
The bump-in-the-wire method could have also been ap-
proached by assigning dedicated ports on a custom DPDK-
enabled SDN server attached to the bare-metal appliance,
making use of DPDK-enabled smartNICs on this server to

perform the bump-in-the-wire function. However, based on
the power consumption data in the Table 1, one can deduce
that dedicated servers that carry out bump-in-the-wire opera-
tions make the power overhead a non-starter. The performance
and scale that an SDN ToR offers in a <500W power envelope
makes a strong case for using a dedicated SDN ToR.

3 Design Goals and Rationale

In developing an SDN solution for bare-metal workloads in
Azure, we had the following objectives:

1. Programmability
SDN for bare-metal workloads needs to be able to evolve
along with the rest of the SDN stack. The VFP [14] model
enables many configurable virtual network features. As
requirements and policies change over time, SDN for bare-
metal should maintain interoperability with the existing
stack. This is achieved through the ToRs’ programmability
which provides control at every stage of packet processing.

2. Scalability
The most significant disadvantage of SDN on ToR com-
pared to host implementations is the limited scale. Mem-
ory linearly scales with the number of hosts. Consequently,
route capacity can quickly become a bottleneck in resource-
limited ToRs. Accordingly, we developed a cache system
that extends the hardware capacity of our ToRs and allows
us to meet our scalability and performance requirements.

3. Latency and throughput
Bare-metal workloads typically demand high bandwidth,
low latency, and deterministic behavior. To meet these
requirements, we have used programmable high-speed
network ASICs since they offer consistent latency, high
throughput, and sustained performance.

4. High availability
To avoid customer impact due to hardware failure or main-
tenance, the SDN for bare-metal solutions must have high

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 357

availability. To support this requirement, we designed re-
dundancy into Bluebird as described in §6.

5. Multitenancy support
Azure supports a large number of customers and tenants
who have the ability to create, modify, and delete virtual
networks rapidly. When supporting multitenancy, isolation
is critical for providing an experience indistinguishable
from dedicated networks and servers.

6. Minimal overhead on host resources
With the VFP model, VMs running on the host compete
with the SDN stack for hardware resources. The introduc-
tion of AccelNet [15] and FPGA-based smartNICs has
significantly reduced the overhead, but the VFP still stays
on the host to process the first packet in the flow. With bare-
metal workloads, customers expect the performance to be
similar to that of direct access to the underlying hardware.

7. Seamless integration
Bare-metal workloads run on a wide array of architectures
and operating systems. Integrating a new workload in the
Azure network should be possible without change to the
bare-metal server. Bluebird decouples the workload archi-
tecture from the SDN stack and enables consistent virtual-
ization of a diverse set of bare-metal workloads.

8. External network access
Given that bare-metal hosts may require Internet or external
network access, a form of Network Address Translation,
directly available on the SDN ToR, should be supported.

9. Interoperability
As we introduce programmable ToRs to support bare-metal
workloads, these ToRs need to transparently operate with
the existing SDN stack to ensure communication between
the physical and virtual address space. Interaction with the
VFP §4 is of primary importance to realize a heterogeneous
system like the one proposed in this paper.

4 System Design

In network system design, there is often a trade-off between
the cost of a device, its memory (or route capacity), and fea-
tures intrinsic to the Network Processing Unit (NPU) or ASIC
itself. Internet core routers are generally feature-rich, designed
to support large route tables, able to move large amounts of
network traffic (>30 Tbps), and usually quite expensive. Al-
ternatively, the ToRs in data centers are cost-effective but
have fewer features and support smaller routing tables. In
our design, we needed an SDN ToR with a reasonably large
VNET routing table but with the cost efficiencies of a typical
data-center-class ToR. Bare-metal hosts would connect di-
rectly to such SDN ToRs and use a specialized route table to
communicate with Azure VMs in a virtualized address space.

Before Bluebird was introduced, Azure supported on-prem
bare-metal to VNET connectivity through a software-gateway
model. In this model, traffic is encapsulated on a router and

forwarded to one or more software-gateways. The software
gateways, implemented on standard servers, hold large num-
bers of CA-to-PA mappings associating an on-prem customer
to their VNET. However, with the introduction of the work-
loads for NetApp, it became clear that the gateway model
would not meet the throughput and performance requirements.
The NetApp bare-metal service required at least 240Gbps of
throughput with a latency ceiling of no more than 4ms. With
this in mind, we decided to adopt the SDN ToR model and
program the CA-to-PA VNET routes directly onto the ToR,
avoiding the software gateway altogether. This improves the
throughput as it is now limited only by the throughput of the
SDN ToR, which in Bluebird’s case is 6.4Tbps.

A considerable effort was put into the planning of how
on-chip resources had to be arranged in the pipeline to meet
our needs. In particular, we had to decide how to allocate the
on-chip switch memory to maximize the number of CA-to-
PA mappings which are represented in the VXLAN Tunnel
Endpoints (VTEP) resource table. Using Tofino’s P4 pro-
grammable pipeline, we reduced the IPv4 and IPv6 unicast
route table size and significantly increased the VXLAN VTEP
table scale from 16K to 192K entries. The ability to support
192K CA-to-PA mappings offered greater flexibility in cus-
tomer address choices since many specific routes (/32 IPv4 or
/128 IPv6 routes) could be used to point to customer VNETs
rather than limiting to a smaller number of aggregate routes.
In order to make the design future proof, we gave ourselves
the maximum allowable table space on the chip in the event
that more specific routes were dominant.

The reduction in IPv4 and IPv6 table space also allowed
us to extend the VXLAN Network Identifier field space as
well as add support for an IPv6 underlay. The custom P4
programmability proved to be extremely valuable in helping
us achieve our scale objectives.

While the P4 profile we implemented to give the SDN
ToR a large VXLAN VTEP table was adequate when we
launched the service, we had to start planning for growth.
The VXLAN VTEP route capacity of the ToR was further
enhanced with the introduction of a route cache system. The
route cache mechanism allowed the VXLAN VTEP table ca-
pacity to grow beyond the hardware limit of 192K entries. The
caching solution is described later in this section (§4.4). P4
programming flexibility also allowed for other quick packet
header manipulations that helped in the rapid development
of this service, namely overwriting the inner Ethernet header
with the destination VM’s MAC address while modifying the
VXLAN UDP source port to a custom value.

In the remainder of this section, we discuss the packet flow,
related packet transformations, and the control plane design.

4.1 Packet Flow

In this section we provide an in-depth discussion on the
packet flow. In order to achieve customer isolation at a logical

358 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Inner
MAC

VNET ID: 20500

VM
CA:192.168.10.2/32

VFP PA:100.64.90.90 Inner IP

VxLAN
Header

1

VNID: 20500

Src: 192.168.10.2

Dst: 192.168.11.1

TOR
PA: 100.64.30.90

VNI: 20500
VLAN ID: 400

2

Bare-metal
CA: 192.168.11.1/32

VLAN: 400

3

4

Dst: Dummy MAC

1

2

4

3

Outer
IP

Src: 100.64.90.90

Dst: 100.64.30.90

Inner
MAC

Inner IP

VxLAN
Header

VNID: 20500

Src: 192.168.11.1

Dst: 192.168.10.2

Dst: VM MAC

Outer
IP

Src: 100.64.30.90

Dst: 100.64.90.90

Vlan
Tag

Inner IP

Inner
MAC

Dst: Bare-metal
MAC

Src: 192.168.10.2

Dst: 192.168.11.1

400

Vlan
Tag

Inner IP
Src: 192.168.11.1

Dst: 192.168.10.2

400

Data

Data

DataData

Figure 2: Packet flow between a VM and a bare-metal server.

Tofino

CPU

PCIe 2x10GbE

100GbE

2

10GbE

64

Figure 3: Front panel and
CPU interfaces in an Arista
7170.

layer within a common fabric, we identify each customer’s
VNET by a Virtual Network Identifier (VNI) associated with
a unique Virtual Routing and Forwarding (VRF) instance.
Bare-metal to VM. When a bare-metal server sends a
packet to an Azure VM, a VLAN tag is added to the outbound
packet. The ToR then receives the packet on the virtual
interface specified by the VLAN tag. Each interface on the
ToR has an associated VRF configured to route the packet to
the customer VM. The routes in the VRF associate a VM’s IP
with the routable IP of the host containing the VM, the VNI
of the VNET, and the MAC address of the VM. When the
packet reaches the destination host, the VFP decapsulates the
packet and uses the MAC to switch the packet to the correct
VM. This flow is explained with an example below.

In the green flow shown in Figure 2 at point (1), the
bare-metal server sends a packet to the VM through the
VLAN 400 interface. The packet is then received on the
associated interface on the server’s ToR at (2). On the ToR,
VLAN 400 is configured to be associated with the VRF
20500, which contains the routes programmed by Bluebird
to route the packet to the VM. At (3), the ToR rewrites the
inner destination MAC with the VM’s MAC contained in
the VRF. At (4), the ToR, configured to use the loopback
interface as the VXLAN source interface, encapsulates the
original frame in a VXLAN frame containing its own PA
100.64.30.90 (loopback IP address) as outer source IP and
the VM’s host PA 100.64.90.90 as the outer destination IP.
VM to Bare-metal. When an Azure VM sends a packet to a
bare-metal server, a Bluebird-provisioned rule instructs the
VFP on the host to encapsulate the Ethernet frame in a UDP
datagram containing the customer VNI and the IP of the
bare-metal’s ToR as the destination VTEP IP. The SDN ToR
decapsulates the packet and uses the VNI to identify the VRF.

Within the VRF, a route lookup is performed to identify the
next-hop to which the packet is subsequently be forwarded.

In the blue flow in Figure 2, a VM sends a packet to the
bare-metal server where the inner source and destination IPs
are respectively set to the VM’s CA 192.168.10.2 and the
server’s CA 192.168.11.1. The destination MAC is set to a
dummy value. In the VFP (1) the packet is encapsulated in
a VXLAN frame containing the VM’s VNI 20500, the outer
source IP pointing to the host PA 100.64.90.90, and the PA
100.64.30.90 of bare-metal’s ToR as destination IP. At (2), the
bare-metal’s ToR receives the packet and decapsulates it. The
virtual network identifier is used to find the VRF associated
with the customer virtual network. At (3), the switch learns
the destination MAC through ARP and adds a VLAN tag
pointing to the configured VLAN interface 400, and at (4),
the packet is routed to the bare-metal server.

4.2 Platform Selection

Using a switch ASIC with a programmable P4 pipeline, we
were able to quickly prototype packet formats that would in-
teroperate with Azure’s VFP. Additionally, based on the initial
requirements, we needed support for at least 192K CA-to-PA
mappings. A variety of silicon offerings could meet most
of our requirements at the time, but the scale of CA-to-PA
mappings pointed our investigation towards (Intel) Barefoot
Network’s Tofino-1 chipset.

The Tofino-1 is a 6.4Tbps single-chip solution with 12
programmable stages, 256x25/10G SerDes, and a software-
defined P4 packet processing pipeline. On the Arista 7170
switch, the Tofino-1 is coupled with a Quad-core 2.2GHz Intel
Pentium CPU with additional 2x10GbE ports from the switch
ASIC wired directly into the CPU (as shown in Figure 3).

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 359

Figure 4: P4 programming pipeline.

These additional ASIC-to-CPU 10GbE ports provide a fast
path for route-cached packets to be processed on the CPU.

4.3 P4 Pipeline Design
P4 facilitated rapid prototyping and quick iteration in finding
a balance between desirable features and the available chip
resources. For instance, while the P4 programming needed
to create CA-PA mappings was easy to define, special con-
siderations had to be given to whether the underlay would be
IPv4 or IPv6. In a simplistic model, having an IPv6 underlay
would significantly reduce the number of CA-to-PA mappings
since the entries in the forwarding table would need additional
resources to support IPv6 PA destinations. However, with our
custom P4 pipeline, we were able to completely decouple the
underlay route scale from the overlay route scale thus giving
us the maximum number of CA-to-PA mappings independent
of whether the underlay used is IPv4 or IPv6.

To describe the packet transformations used in our flows,
we used the P4 programmable pipeline on Tofino, which con-
sists of an ingress and egress block (see Figure 4), with each
block comprising a sequence of sub-blocks: Parser, Match-
Action-Unit (MAU), and Deparser. The Parser block parses
the packet and extracts the relevant headers. After that, the
MAU performs table lookups and manipulates the packet. The
Deparser then reassembles and sends the packet to the Traf-
fic Manager (TM). Finally, packet queuing, replication, and
scheduling are done by the TM. A part of the P4 program [1],
which illustrates one of the inner-MAC rewrite transforma-
tions implemented in our pipeline, is open-sourced.

In the sample P4 program shared [1], the parser excludes
regular IP packets and keeps the VXLAN encapsulated pack-
ets. After each packet is decapsulated, a route lookup is done
on the inner destination IP which determines the action to be
taken and the data to be rewritten. In the egress logic, several
fields, such as the inner-MAC address, are rewritten based
on the bridged metadata received from the ingress pipeline.

ip route vrf VNET-A

192.168.10.2/32 vtep 10.100.2.4 vni 20500

router-mac-address 00:12:23:54:A2:9F

Figure 5: Static VXLAN route configuration on ToR

While the P4 example provided gives the reader a high-level
view of the flexibility available in packet manipulation, the
actual P4 code used for this service is more intricate and opti-
mized, allowing for 192K mappings and additional features.

The flexibility that P4 provides allowed us to give the
ToR a ’personality’ based on the application. A ToR can be
preloaded with a custom P4 profile, making the ToR suitable
for a given application. For example, we use a ‘bare-metal’
profile when the ToR is used for Bluebird workloads and a
‘NAT-profile’ when source NAT is required. Each profile re-
sults in a different P4 program getting activated in hardware.

The rest of the packet transformations are presented in
detail in the remainder of this section.

Inner Destination MAC Rewrite. When a BM sends traf-
fic to a VM, the receiving hypervisor’s VFP uses the inner des-
tination MAC (DMAC) to forward the packet to the destina-
tion VM. If the DMAC is unknown, the VFP drops the packet.
For this reason, the CA-to-PA routes have the form of static
routes extended with additional fields. An extended route,
defined on the SDN ToR, contains the VTEP as the PA ad-
dress, the VNI for the VNET, and the destination MAC of the
VM. When a packet matches a route, the ToR overwrites the
DMAC with the MAC of the VM. For example, the route in
Figure 5 points to a VNET VM with MAC 00:12:23:45:A2:9F
at address 192.168.10.2 residing on a VXLAN with VNI
20500 and reachable host (PA) at 10.100.2.4.

Limiting the Range of the VXLAN Source Port. In a
traditional VXLAN, the ToR imposes a VXLAN UDP source
port value derived from the incoming packet’s entropy. The
source port is calculated per packet. This is done to help
with hash-based ECMP load-balancing schemes employed by
network chipsets, ensuring that VXLAN packets are properly
load-balanced across the network. To aid the VFP on the VM
host in identifying BM-sourced VXLAN packets, we limit the
range of source port values usable by the SDN ToR. Limits
in imposable ports can be set with a simple CLI command.

Inner Destination MAC Masking. We also needed cus-
tomization on the SDN ToR to ignore the inner destination
MAC address arriving in the VXLAN packet. This is in the
direction of the VNET to the SDN ToR, where the inner
destination MAC address is usually resolved by an ARP ex-
change between two VXLAN hosts. Specifically, an ARP
request/reply exchange would have to take place, ensuring
that the end-hosts are aware of each other’s MAC addresses.
The entire ARP resolution step can be skipped if the SDN
ToR absorbs all packets regardless of the DMAC value, as
described in packet flow in §4.1. The VFP transmitter on
the VNET simply writes a bogus inner DMAC value in the

360 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

packet destined to the SDN ToR. The SDN ToR is made to
ignore this bogus MAC and proceeds to route all the received
frames regardless. The SDN ToR accomplishes this task using
a wildcard bitmask applied using a CLI command.

4.4 Route Cache

Although we were able to make room for additional mappings
using a custom P4 pipeline, we were faced with the challenge
of increasing the scale beyond what the chip hardware could
support. At this point, we had a working P4 pipeline that was
programmed to fit 192K CA-PA mappings, support an IPv6
underlay, and offer 1:1 static NAT to BM hosts.

As the number of bare-metal customers grew, we realized
that the 192K CA-PA upper-limit of the Tofino would soon
become a bottleneck. We considered a few alternatives, one
of which was to quickly onboard the next-generation Tofino
(Tofino-2), which was known to support up to 1.5M CA-PA
mappings in hardware. However, we ended up pursuing the
route cache feature since it would be valuable regardless of the
scale of the underlying Tofino ASIC. Route caching gives us a
five-fold increase over the original 192K mappings. The route
cache feature is an implementation of the familiar statistical
multiplexing model whereby a significantly higher number
of customers can share a finite resource, as long as not all
customers are active at the same time. In other words, if we
know that our customers are not always using all available
hardware entries, we can reassign those unused entries to
other active users. A primary enabler for the route cache
concept is the way Bluebird provisions SDN entries. Bluebird
does not preconfigure the SDN ToR but instead dynamically
provisions mappings as needed allowing the route cache logic
to continuously determine which entries are to remain in
hardware or moved to software.

Before describing the route cache feature, it is important
first to understand the Software Forwarding Engine (SFE).
The SFE is a DPDK-enabled packet processing function pro-
vided by the ToR’s CPU which has a packet forwarding rate
of 200K pps. CPU bound packets use the 2x10GbE inter-
faces connecting the Tofino to the CPU to reach the SFE.
A software agent on the ToR monitors hardware entries on
the switch ASIC and moves inactive entries to the SFE. SFE
resources are CPU and memory bound. With 16GB of mem-
ory, up to 600K mappings can be stored in the SFE, whereas
1.5M mappings can be stored with at least 32GB of memory.
The number of mappings compared to the total memory is
low because the memory also supports the switch operating
system, i.e., EOS (Extensible Operating System). The por-
tion of memory used by the SFE is relatively small: about
3GB out of the available 32GB total memory is used to store
mappings. The rest of the memory is used for running the
operating system and other agents such as the routing agent,
platform agent, etc.

Bluebird configures static VXLAN routes/mappings and

Threshold level Utilization Idle time
low 85% 1100s

medium 90% 300s
high 95% 100s

Table 2: Default caching thresholds.

specifies whether the route/mapping is cacheable or not. The
mapping itself is programmed by Bluebird using a JSON RPC
call as described later in this section. A mapping is identified
as active if there was a packet that recently used the prefix
programmed in the VNET route. We will use the concept of
a ‘hitbit’ to note when a route entry is touched by a packet,
either in software or hardware. EOS then maintains this hitbit
for all hardware and software (SFE) entries. The hardware
hitbit is triggered when mappings are used for hardware-based
forwarding. A SFE hitbit is triggered when a packet takes the
software DPDK path, indicating that this software mapping
now needs to be upgraded from the SFE to hardware.

To select the mappings that are evicted from the hardware,
we use a Least Recently Used (LRU) eviction algorithm. LRU
entries are found by polling the hitbit property maintained
in the hardware for each prefix. The flows going through the
SDN ToR are monitored using an age-based idle timer. No
packet state is maintained, nor are the packets examined. We
considered other hardware eviction algorithms but ultimately
rejected them. These included 1) tracking TCP flows and 2)
tracking flows that carried the most traffic volume.

These options were rejected because tracking TCP flows is
expensive from two perspectives: 1) the need to send packets
containing TCP flags S, F, R to an agent on the switch for
tracking purposes, and 2) flows are expensive to store as
the access key would comprise of the source IP/port and
destination IP/port. For routing purposes, the switch only
needs the destination IP and the added flow state becomes
unnecessary overhead.

We decided to implement the idle-timer based approach
since it was simpler and it met our requirements. The idle
timer based approach is the simplest and most efficient be-
cause it does not require tracking individual flows or state. In
the future, other algorithms may be considered as we learn
more about customer traffic patterns.

In the CLI, we can specify CA-PA mapping entries as cache
candidates. All candidate mappings become a part of the route
cache, which means that these prefixes can be downgraded
to software if they become inactive and can be upgraded to
hardware if they become active. The aging time of hardware
routes and how many of these entries remain in hardware
can be configured as a percentage of total hardware capacity.
Finally, the default threshold values are listed in Table 2.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 361

Bluebird service

Message Queue

Orchestrator

Module 1 Module 2 Module N

ToR 1 ToR 2 ToR N

Device Abstraction Layer

Figure 6: Bluebird service structure.

4.5 Control Plane and Policy Provisioning

In the Azure host SDN, a controller running on each host
programs the VFP. However, since this is no longer an option
for the bare-metal workloads, two alternatives for hosting
SDN logic were considered; an agent on the ToR or program-
ming the ToR via an external service. We rejected the idea of
having an agent on the ToR since it did not meet our perfor-
mance goals. The agent would compete for resources with
latency-sensitive operations running on the ToR, and resource
consumption could increase as requirements changed over
time. On the other hand, an external service does not need
immediate proximity to the ToR because configuration on a
ToR has less stringent latency requirements than typical data
plane operations. Moreover, a separate service also has ad-
vantages in terms of fault tolerance and deployment time. As
a result, we introduced the Bluebird Service (BBS) (Figure 6).

Provisioning SDN Policy on ToR
BBS is a lightweight, multi-tenant, stateless microservice

that configures the ToRs with virtual network policies for each
customer (Figure 6). Each policy is represented as a JSON
object that specifies a ToR’s desired state, called the goal-state.
Azure SDN services send their goal-states to BBS’ message
queue leading to the orchestrator module which parses and
consolidates the goal-states into ToR configurations. Config-
urations are then transferred to the device abstraction layer
(DAL), which keeps the SDN business logic independent from
ToR implementations. In the DAL, they undergo a conversion
process that results in a sequence of commands for the tar-
geted ToR. The list of allowed commands is strictly limited to
the operations needed for bare-metal provisioning, reducing
the possibility of interference with other automation systems
responsible for software upgrading or traffic shifting. In the
case of the Arista 7170, BBS uses the JSON-RPC 2.0 protocol
over HTTPS. Each JSON payload contains an ordered list of
commands using Arista EOS CLI syntax.

BBS performs a sync-check on all ToR configurations at de-
fined intervals. At every sync, it calculates the delta between a

ToR’s configuration and its target configuration and performs
a reconciliation in case of differences. Each configuration
request is atomic, and configurations are versioned to avoid
inconsistent states due to out-of-order execution. BBS also
ensures state consistency between multiple ToRs if they are
part of a high availability network configuration (see §6.1) in
which they are seen as one logical entity.

To prevent resource exhaustion due to extremely large
VNETs generating a high number of routes, BBS limits the
number of programmable routes per VNET. The default limit
is maintained as a function of the ToR’s capacity. When more
routes are needed, the limit can be raised to match the re-
quirements and, in some cases, customers are migrated to
dedicated ToRs.

Azure regions protect from failures through increased re-
dundancy. Each region is subdivided into several distinct phys-
ical locations called availability zones (AZs). Each zone is
made up of one or more data centers (DCs) equipped with in-
dependent power, cooling, and networking. BBS is deployed
per AZ within an Azure Service Fabric [33] ring organized as
a series of active and inactive instances. Additionally, BBS’s
scope is not limited to a single AZ and can target any AZ
within the same region. However, this is limited only to sce-
narios in which another AZ is severely impacted and the local
BBS is unable to function.

5 Performance

Over the past two years, Azure has been deploying bare-metal
services on SDN-ToRs in over 42 data centers. In addition,
Azure has successfully onboarded several HWaaS native ap-
plications such as Cray ClusterStor, and NetApp Files [13,53].
As of today, we have powered several thousands of bare-metal
servers and serve thousands of terabytes of traffic per day. Al-
though a significant number of customers are adopting these
bare-metal services, the number of routes tied to these work-
loads has yet to grow to the point of exceeding the route
cache threshold of 85% capacity which would trigger the use
of route cache. We estimate that the threshold will be ex-
ceeded within a year and believe that the route cache feature
will play an important role in the future of the bare-metal
service offering as the number of provisioned VNET routes
outpaces the growth in hardware capacity of SDN ToRs.

We have compared the performance of bare-metal servers
with VMs using Azure accelerated networking, both running
in an Azure data center on Intel Xeon E5-2673 v4 (Broad-
well at 2.3 GHz) CPUs with 40Gbps NICs and Windows
Server 2019. We measured throughput, CPU overhead, and
latency, with both solutions performing similarly and with no
appreciable difference.

This section presents a performance analysis specifically
focusing on route cache that is carried out through the use of
synthetic testing tools and production data where available.

362 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 7: Test topology.

Frame Size (Bytes)

0

25000

50000

75000

100000

0

50

100

150

200

256 512 1024 1280 1518 2122 9216

Mbps %

Figure 8: Throughput in Mbps on the left y-axis and in % on
the right y-axis per frame size.

5.1 Hardware Performance
To measure the port-to-port latency within a SDN ToR, we
connected a traffic generator directly to the Device Under Test
(DUT). Figure 8 shows that the Intel Tofino ASIC performs at
wire-speed with a consistent port-to-port latency of <1µs. The
Tofino chip demonstrated deterministic performance across
all cases of packet manipulation required for Bluebird. Addi-
tionally, even during heavy traffic load, minimal differences
were observed between the min and max throughput values.
Goodput was tested by passing L2 frames of various size
through a DUT in a snake topology (Figure 7).

In Figure 8, 100% goodput is sustained across all the tested
packet sizes up to 9216 bytes, with the only expected ex-
ception for packets of 256 bytes. This is due to the smaller
relative size difference between header and payload. This
performance is in line with our requirements to support bare-
metal workloads that are bandwidth and latency-sensitive.

From a power utilization perspective, although the ToR be-
haves like a bump in the wire, it is not adding any power draw
over a regular data center design. The typical/max power draw
of BlueBird ToRs is 271W/571W. This is in the same range as
other ToRs used in Azure with the same bandwidth (64x100G)
which have a typical/max power draw of 314W/616W.

5.2 Performance Impact of Route Caching
The route cache feature is responsible for moving route entries
from the SFE to the hardware and vice versa while ensuring
the process is transparent to the customer. The CPU on the
ToR provides a DPDK-enabled packet processing function,
helping to meet our stringent latency requirements. As men-

Frame Size (Bytes)

0

500

1000

1500

256 512 1024 1280 1518 2122 9216

Min(ns) Max(ns) Average(ns)

Figure 9: Latency measurements in nanoseconds (y-axis) per
frame size (x-axis).

~ElapsedTime

ns

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

1:20 1:40 2:00 2:20 2:40

Hardware Forwarded Flows Software Forwarded Flows

Figure 10: Latency comparison between software forwarded
and hardware forwarded flows in nanoseconds per frame.

tioned earlier, we use 2x10G high-bandwidth links between
the CPU and the ASIC. Since the traffic consists exclusively
of TCP flows, our system has enough time to move the en-
tries from the SFE to hardware by the time the TCP 3-way
handshake is complete.

There are two primary factors that contribute to the ob-
served latency when route-caching is performed; 1) the la-
tency experienced while packets are being forwarded in soft-
ware by the SFE and 2) the time taken to move a route entry
from the SFE to the hardware.

To accurately measure the latency experienced by packets
forwarded in software, we used instrumented packets that
were generated by a traffic analyzer and forcefully forwarded
them via the SFE. This was done by defining 5000 routes
on the SDN ToR and sending traffic to each one of these
entries while deliberately preventing the entries from being
programmed into the hardware ASIC. To ensure that these
software entries would not get programmed in the hardware,
we temporarily disabled the route cache feature after the route
entries were activated in the SFE. This approach ensured
that the route entries in the SFE remained in software while
we recorded latency measurements. In this state, where the
routes were present only in the SFE, we found that packets
experienced an increased latency of about 8µs when compared
to the latency experienced by packets using hardware entries.

Under normal circumstances, and assuming the route-entry
used is in the SFE, we expect the packets to be software-routed
for only a short time. The first packet that triggers a hitbit
recording immediately kicks off the hardware programming
for the SFE route. While this transition is hard to measure
using generic traffic analyzers due to their lack of precision,
we were able to inspect system logs on the SDN ToR to

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 363

Average Prefix Last-hit Time

%

0

25

50

75

10
0

100s 5m 10m 20m 50m 85m no activity

Figure 11: Prefix utilization based on last-hit time.

learn that this transition time is <2ms. To measure this, we
compared the logged timestamps between when the packet
hit the SFE and when the route appeared in hardware.

5.3 Validating Route Cache
The premise of designing and implementing the route cache
model was based on a theoretical assumption that not all bare-
metal customers would require hardware table entries at the
same time. In order to prove that route caching would work,
we had to find a way to record the age, or the last-time a given
hardware entry was used. In other words, if an entry had aged
and it’s recorded "last time used" was old, then that entry
could be demoted and moved to the SFE. Furthermore, we
created the following time-buckets for age categories; 0s-100s,
101s-5m, 5m-10m, 10m-20m, 20m-50m, 50m-85m and a ‘no
activity’ bucket for all prefixes that have not been touched,
in hardware, for over 85 minutes. Grouping the prefix counts
by last-time-used gives us further flexibility in tuning how
aggressively we want to move entries to the SFE.

After weeks of data gathering from production SDN ToRs
upgraded with the route cache feature, the results were inline
with our expectations. Figure 11 shows the hardware table
utilization across the route-entry last-hit time bins for the
entire SDN ToR fleet. We see that 10% of all the prefixes in
the hardware were utilized or ‘hit’ in the last 100 seconds.

Bluebird does implement an inherent artificial hardware
provisioning constraint, to mostly protect against complete
hardware table exhaustion on the SDN ToR. This protection
was put in place to ensure that the 192K entries are never
consumed. However, what we learned was that the hardware
table utilization is in fact only 50% utilized and no more than
20-25% of the prefixes are active at any given time (Figure 11).
This means that that a majority of the prefixes (75-80%) that
are in hardware can in fact be moved to the SFE.

Armed with this data, we can now remove the Bluebird
provisioning constraints and allow for provisioning of more
than 192K entries knowing that 75% of the prefixes will most
likely reside in the SFE.

Based on Figure 11, we can conclude that entries catego-
rized under ‘no activity’ are good candidates to migrate to

the SFE leaving newly-vacated hardware entries available to
other customers. Since only 20-25% of the entries are used at
any given time, route caching allows us to increase our scale
by 4-5x.

6 Operationalization and Experiences

Bluebird has now been deployed at scale in multiple data
centers for various bare-metal workloads. The service has
brought together high-throughput and low-latency bare-metal
offerings to existing cloud customers without compromising
scale or reliability. Bluebird has accomplished all the goals
that we set out in §3. In order to make Bluebird successful, we
adopted well-known operational models including continuous
integration for both service delivery and feature development,
ensuring redundancy in all aspects, planned failure for main-
tenance purposes, and incorporating monitoring and alerting.

During the feature development phase we used a P4 em-
ulator [2] to simulate the entire pipeline in software which
gave us a glimpse into the complete lifecycle of a packet.
Having this flexibility removed the need for hardware at every
stage of the development cycle. The software tools helped
implement all the SDN ToR features, simulated the hardware,
and allowed for rapid prototyping without any of the usual
and costly hardware resource dependencies. Furthermore,
P4 provided the flexibility of software with hardware-level
performance. For example, routing look-up decisions would
generally occur at a certain, fixed point in an ASIC’s pipeline.
In the case of P4, we had the flexibility of doing a routing
look-up after the parser stage or in the MAU, giving us the
luxury of normalizing the contents of an incoming packet
and acting on any portion of the inner or outer IP header (see
Figure 4). It was this flexibility in P4 that also allowed us to
limit the UDP source-port values described earlier.

For workloads where data-plane redundancy was required,
we paired two SDN ToRs using Multi-chassis Link Aggre-
gation Group (MLAG) (Figure 12). While MLAG seemed
like a natural choice for first-hop redundancy at layer-2, we
did not want BBS to be concerned with the details of MLAG
itself or make MLAG a design requirement moving forward.
Hence, we created a common anycast loopback IP to repre-
sent both members within a redundant pair of SDN ToRs.
BBS configures each member like any other SDN-ToR using
a shared anycast loopback IP address representing the SDN
ToR’s physical address. If traffic were to arrive on a member
of the SDN ToR pair with failed links to the bare-metal server,
MLAG would locally switch the packets to the neighboring
SDN ToR with active links to the bare-metal host.

While the P4 emulator tools helped with the development
of the software features running on the SDN ToR, a differ-
ent software emulator was used to help operationalize the
SDN ToR in the network. A Docker container emulating a
complete SDN ToR was used to speed up the management
plane bring-up between Bluebird and the SDN ToR. Since the

364 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Bare-metal
Hardware

SDN ToR-1 SDN ToR-2

PA

Figure 12: Bare-metal redundancy.

container version of the SDN ToR had all the properties of
the hardware based SDN ToR (minus the hardware), the Blue-
bird management plane was developed and tested against this
container. The Docker container was also useful when testing
new customer scenarios before taking them to production.

For monitoring and alerting, we built our system to gather
numerous metrics per ToR, BM server, and BBS. These met-
rics are collected in a centralized monitoring system, com-
bined, and further transformed to create alerts. The actions
based on the collected metrics differ based on the conditions
or events configured. The metrics and alerts are also fre-
quently added and updated as more experience is gained from
production. Additionally, they are aggregated in customizable
dashboards used to drive decision-making.

6.1 Lessons Learned

These are some of the lessons learned since the release of
Bluebird:

• Data-plane packet mirroring for debugging: Having
the ability to inspect data plane traffic during troubleshoot-
ing proved helpful. All data plane packets can be mirrored
to the ToR CPU to inspect traffic entering or leaving the
SDN ToR. This provides an additional layer of visibility to
all the interface and protocol-level counters that are avail-
able on the switch. We did not expect this feature would be
used as often as it has for debugging issues in production.

• ASIC with re-configurable programming pipeline:
The Tofino ASIC, with its re-configurable pipeline, allowed
us to develop features like route cache even after Bluebird
was deployed. The VXLAN source port offset feature, de-
scribed in §4.3, was possible because of the malleability of
the pipeline. Making the decision to use a P4 ASIC proved
to be useful as it allowed us to develop all the features that
would otherwise have not been possible.

• ASIC emulators can be used to speed up software de-
velopment on ToR: We used a P4 emulator during the
ToR packet pipeline development process. Because of this,
the development team did not have to wait for the hardware
to be available. Moreover, the end-to-end packet flow could
be tested by generating actual data-plane packets. This en-
abled us to test smaller parts of the P4 code without having
an end-to-end pipeline ready.

• Virtualized ToR image for control-plane testing: Since
the availability of the hardware ToR switch for lab testing
and development is limited, having a VM image of the ToR
was extremely useful to test the route programming service
along with the control-plane interaction.

• Need for 64-bit OS: With a 32-bit OS, only 4GB of virtual
memory could be addressed giving us 600k route cache
entries. Hence, moving to a 64-bit OS and increasing the
amount of RAM on the SDN-ToR was required to support
1.5M route-cache entries.

• Limited control-plane vocabulary: We limited the scope
of commands that BBS was allowed to execute on the SDN
ToR. The commands issued by BBS are strictly related to
adding/deleting customer VRFs and mappings. This limits
the damage that can be caused by bad actors and avoids
interference with the rest of the automation framework. All
other provisioning, maintenance, and monitoring functions
are performed by the larger automation framework.

• Software coordination at scale: BBS runs on a server-
class machine that is far more capable than the compara-
tively underpowered ToR’s hardware. This difference is
also reflected in the number of concurrent connections
possible, which, if left unchecked, can impact program-
ming time due to BBS exceeding the ToR connection limit.
Consequently, requests from BBS are sent to a queue and
batched to keep the number of connections within the limits
of the switch.

• Customer traffic should be agnostic of ToR availabil-
ity: MLAG helped us abstract out whether a ToR was in
maintenance or not. This made the BBS less disruptive to
deploy and maintain for redundant workloads.

• Reconciliation is necessary: Restoring an outdated ToR
configuration can lead to failures and programming con-
flicts. Reconciliation is necessary to ensure that errors in-
troduced by outdated configurations are repaired. A recon-
ciliation process running after a configuration is restored
guarantees eventual consistency and transient conflicts. For
instance, CA-to-PA mappings received from upstream are
compared with the ToR’s current configuration, and stale
mappings are removed in the process. Reconciliation is also
performed against BBS’ internal cache and state. Restoring
a state after a service fail-over is also a source of incoherent
configurations. Missed notifications during downtime are,
in fact, a common occurrence in a live service.

• Artificial limits can cause overheads: During analysis
of scale requirements from production data on the size of
VNETs, we concluded that we had to limit the per-customer
mappings until the route cache feature was enabled. As a
result, an upper limit was put to stop one customer from
monopolizing an entire ToR. This artificial limit soon be-
came an operational overhead since we had to increase it
per customer on an on-demand basis and in many cases the
new limit was barely above the imposed value.

• State to reduce reconciliation time: BBS initially was

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 365

developed as a fully stateless service. After each restart,
the switch configuration would simply be reconstructed
through data received from upstream and downstream
components. However, this significantly increased the re-
hydration and reconciliation time. Eventually, we moved
to a stateful model to reduce the time consuming interac-
tions with the other components. In the new model, BBS
maintains a versioned representation of the switch configu-
ration and communication is established only when strictly
necessary.

• For bug fixes, prefer a new image over a patch: During
the initial deployment stages, for quick bug fixes, we de-
ployed bug-fix patches on top of the ToR OS image. But as
the number of ToRs grew, it became cumbersome to deploy
patches throughout the fleet of devices and keep a track of
them. So, we decided to have bug fixes in new images only.
Now we upgrade the devices more often but in a manner
that is easier to track. This decision has helped us improve
the quality of the code overall.

• Unmodified Linux kernel: The ToR OS uses an unmodi-
fied Linux kernel. Because of this, we were able to use open
source tools like tcpdump, iperf, etc. for debugging without
any issues. Also, we are able to run Docker containers on
top of the ToR OS for SSH user certificate rotation.

7 Related Work

A practical implementation of Bluebird relies on the ability
to enable custom and dynamic SDN policies in a ToR, en-
abled by recent work in programmable switches [4, 5]. As
discussed in §2, many other forms of hardware can be used
to implement the SDN stack including smartNICs [58–60]
and servers running any one of a variety of software network
processing systems such as [17, 25, 41, 62]. While there is
a vast array of prior work in this space, the state-of-the-art
software solutions are not able to meet the throughput of a
programmable switch and require far more power. Work in
network function virtualization [20,43,49,54,66,68,70] shows
that these software-based approaches can be feasible at scale,
though they do not meet our stringent requirements. Similarly,
smartNICs have been used to offload various custom network
operations [15,44]. However, the bare-metal model precludes
these options as they reside at the host. One may also adopt
a hybrid approach, leveraging commodity switches and soft-
ware [3, 18], but again the power consumption of a server is
higher than a ToR switch.

Programmable switches have been used for a wide variety
of other applications such as caching [32, 45, 47], teleme-
try [24, 57], consensus [11, 31], machine learning [63], and
various network functions [37,39,52]. Despite the well-known
and strict resource constraints in programmable switches [65],
these systems demonstrate that non-trivial computations can
be done in the network at line rate on these devices.

Bluebird leverages this speed while overcoming the state

limitations of Tofino switches by using the switch CPU and
memory for cached flows. As the scale of the necessary state
continues to grow, upgrading to the Tofino-2 [28] or adopt-
ing a switch memory extension may be helpful [40]. With
increased traffic engineering and the rise of SDN, the limits of
in-switch memory have become a noticeable issue prompting
investigations into the practicality of caching for traditional
routes [38,46] and flow policies [9,36]. We do not have to im-
plement the complex dependency logic of [36] since the CA-
PA mappings are non-overlapping. Similarly, [38, 46] and [9]
capitalize on relationships between entries in a FIB or open-
flow table [51] which are not present in Bluebird’s in-switch
data. Other SDN rule distribution techniques [34, 35, 55] do
not apply to the Bluebird design as there is only one switch
on route to implement the necessarily policies.

Since the early and largely academic SDN designs [7,19,22,
23, 42, 51], hyperscale cloud networks have adopted SDN to
virtualize and isolate tenant networks [10,12,14,21,30,56,61],
implementing at various layers of the stack. Regardless of
multi-tenancy, SDN is used to operate large single-tenant
networks with high-level intent and to implement arbitrary
traffic engineering [8, 26, 29, 64, 67, 69, 71]. Bluebird is a new
addition to our SDN deployment accommodating the unique
requirements of baremetal customers: the servers must be
connected to virtual networks, but we cannot enforce any
SDN policies at the host in an approach such as [50]. This
encourages new in-ToR support so that the additional costs of
running the necessary network functions on a server similarly
to [50] can be avoided.

8 Conclusions and Future Work

We have presented our experiences designing, implement-
ing, and deploying Bluebird, a high-performance network
virtualization system for bare-metal cloud services on Azure.
Bluebird has been running in Azure data centers for more than
two years and has served demanding workloads like those for
Netapp, Cray, and SAP.

The abstraction layer in Bluebird’s control plane allows
us to handle different switches with minimal change. By us-
ing high-performance programmable ASICs, we rearranged
ToR’s resources to increase route capacity. On top of that, we
have implemented a cache system that extends the capacity
even further while incurring a negligible performance penalty.
The support for additional routes has allowed us to improve
performance by removing software gateways. Lastly, our de-
sign decouples the SDN stack from the bare-metal services
and facilitates the introduction of new and diverse workloads.

In the future, as we learn more about customer traffic, we
will explore ways to improve the cache system, such as by
considering a different eviction algorithm.

366 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] https://github.com/aristanetworks/
p4-vxlanencapdecap/blob/main/switch-vxlan.p4.

[2] P4 behavioral model, 2021. https://github.com/p4lang/
behavioral-model.

[3] Mina Tahmasbi Arashloo, Pavel Shirshov, Rohan Gandhi, Guo-
han Lu, Lihua Yuan, and Jennifer Rexford. A scalable VPN
gateway for multi-tenant cloud services. SIGCOMM Comput.
Commun. Rev., 48(1):49–55, April 2018.

[4] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McK-
eown, Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin
Vahdat, George Varghese, and David Walker. P4: Programming
protocol-independent packet processors. SIGCOMM Comput.
Commun. Rev., 44(3):87–95, July 2014.

[5] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese,
Nick McKeown, Martin Izzard, Fernando Mujica, and Mark
Horowitz. Forwarding metamorphosis: Fast programmable
match-action processing in hardware for SDN. In Proceed-
ings of the ACM SIGCOMM 2013 Conference on SIGCOMM,
SIGCOMM ’13, page 99–110. Association for Computing
Machinery, 2013.

[6] Broadcom. Trident SmartToR, 2021. https://www.
broadcom.com/products/ethernet-connectivity/
switching/strataxgs/smarttor.

[7] Martin Casado, Michael J. Freedman, Justin Pettit, Jianying
Luo, Nick McKeown, and Scott Shenker. Ethane: Taking con-
trol of the enterprise. In Proceedings of the 2007 Conference
on Applications, Technologies, Architectures, and Protocols
for Computer Communications, SIGCOMM ’07, page 1–12.
Association for Computing Machinery, 2007.

[8] Sean Choi, Boris Burkov, Alex Eckert, Tian Fang, Saman
Kazemkhani, Rob Sherwood, Ying Zhang, and Hongyi Zeng.
FBOSS: Building switch software at scale. In Proceedings of
the 2018 Conference of the ACM Special Interest Group on
Data Communication, SIGCOMM ’18, page 342–356. Associ-
ation for Computing Machinery, 2018.

[9] Andrew R. Curtis, Jeffrey C. Mogul, Jean Tourrilhes, Praveen
Yalagandula, Puneet Sharma, and Sujata Banerjee. DevoFlow:
Scaling flow management for high-performance networks. In
Proceedings of the ACM SIGCOMM 2011 Conference, SIG-
COMM ’11, page 254–265. Association for Computing Ma-
chinery, 2011.

[10] Michael Dalton, David Schultz, Jacob Adriaens, Ahsan Are-
fin, Anshuman Gupta, Brian Fahs, Dima Rubinstein, En-
rique Cauich Zermeno, Erik Rubow, James Alexander Docauer,
Jesse Alpert, Jing Ai, Jon Olson, Kevin DeCabooter, Marc
de Kruijf, Nan Hua, Nathan Lewis, Nikhil Kasinadhuni, Ric-
cardo Crepaldi, Srinivas Krishnan, Subbaiah Venkata, Yossi
Richter, Uday Naik, and Amin Vahdat. Andromeda: Perfor-
mance, isolation, and velocity at scale in cloud network virtu-
alization. In 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 18), pages 373–387, Ren-
ton, WA, April 2018. USENIX Association.

[11] Huynh Tu Dang, Pietro Bressana, Han Wang, Ki Suh Lee, Noa
Zilberman, Hakim Weatherspoon, Marco Canini, Fernando

Pedone, and Robert Soulé. P4xos: Consensus as a network
service. IEEE/ACM Trans. Netw., 28(4):1726–1738, August
2020.

[12] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith,
Roman Kononov, Eric Mann-Hielscher, Ardas Cilingiroglu,
Bin Cheyney, Wentao Shang, and Jinnah Dylan Hosein. Ma-
glev: A fast and reliable software network load balancer. In
13th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 16), pages 523–535, Santa Clara, CA,
March 2016. USENIX Association.

[13] Hewlett Packard Enterprise. Cray clusterstor e1000
storage systems, 2021. https://buy.hpe.com/us/
en/enterprise-solutions/storage-solutions/
cray-clusterstor-storage-systems/
cray-clusterstor-e1000-storage-systems/
cray-clusterstor-e1000-storage-systems/p/
1012842049.

[14] Daniel Firestone. VFP: A virtual switch platform for host SDN
in the public cloud. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17), pages 315–
328, Boston, MA, March 2017. USENIX Association.

[15] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur,
Derek Chiou, Alireza Dabagh, Mike Andrewartha, Hari
Angepat, Vivek Bhanu, Adrian Caulfield, Eric Chung, Har-
ish Kumar Chandrappa, Somesh Chaturmohta, Matt Humphrey,
Jack Lavier, Norman Lam, Fengfen Liu, Kalin Ovtcharov, Jitu
Padhye, Gautham Popuri, Shachar Raindel, Tejas Sapre, Mark
Shaw, Gabriel Silva, Madhan Sivakumar, Nisheeth Srivastava,
Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug Burger,
Kushagra Vaid, David A. Maltz, and Albert Greenberg. Azure
accelerated networking: SmartNICs in the public cloud. In
15th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18), pages 51–66, Renton, WA, April
2018. USENIX Association.

[16] Linux Foundation. Open vSwitch, 2016. https:
//www.nvidia.com/en-us/networking/ethernet/
connectx-5/.

[17] Linux Foundation. Data plane development kit (DPDK), 2021.
http://www.dpdk.org.

[18] Rohan Gandhi, Hongqiang Harry Liu, Y. Charlie Hu, Guo-
han Lu, Jitendra Padhye, Lihua Yuan, and Ming Zhang. Duet:
Cloud scale load balancing with hardware and software. In
Proceedings of the 2014 ACM Conference on SIGCOMM, SIG-
COMM ’14, page 27–38. Association for Computing Machin-
ery, 2014.

[19] Yashar Ganjali and Amin Tootoonchian. HyperFlow: A dis-
tributed control plane for OpenFlow. In 2010 Internet Net-
work Management Workshop/Workshop on Research on Enter-
prise Networking (INM/WREN 10), San Jose, CA, April 2010.
USENIX Association.

[20] Aaron Gember-Jacobson, Raajay Viswanathan, Chaithan
Prakash, Robert Grandl, Junaid Khalid, Sourav Das, and Aditya
Akella. OpenNF: Enabling innovation in network function
control. In Proceedings of the 2014 ACM Conference on
SIGCOMM, SIGCOMM ’14, page 163–174. Association for
Computing Machinery, 2014.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 367

https://github.com/aristanetworks/p4-vxlanencapdecap/blob/main/switch-vxlan.p4
https://github.com/aristanetworks/p4-vxlanencapdecap/blob/main/switch-vxlan.p4
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/smarttor
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/smarttor
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/smarttor
https://buy.hpe.com/us/en/enterprise-solutions/storage-solutions/cray-clusterstor-storage-systems/cray-clusterstor-e1000-storage-systems/cray-clusterstor-e1000-storage-systems/p/1012842049
https://buy.hpe.com/us/en/enterprise-solutions/storage-solutions/cray-clusterstor-storage-systems/cray-clusterstor-e1000-storage-systems/cray-clusterstor-e1000-storage-systems/p/1012842049
https://buy.hpe.com/us/en/enterprise-solutions/storage-solutions/cray-clusterstor-storage-systems/cray-clusterstor-e1000-storage-systems/cray-clusterstor-e1000-storage-systems/p/1012842049
https://buy.hpe.com/us/en/enterprise-solutions/storage-solutions/cray-clusterstor-storage-systems/cray-clusterstor-e1000-storage-systems/cray-clusterstor-e1000-storage-systems/p/1012842049
https://buy.hpe.com/us/en/enterprise-solutions/storage-solutions/cray-clusterstor-storage-systems/cray-clusterstor-e1000-storage-systems/cray-clusterstor-e1000-storage-systems/p/1012842049
https://buy.hpe.com/us/en/enterprise-solutions/storage-solutions/cray-clusterstor-storage-systems/cray-clusterstor-e1000-storage-systems/cray-clusterstor-e1000-storage-systems/p/1012842049
https://www.nvidia.com/en-us/networking/ethernet/connectx-5/
https://www.nvidia.com/en-us/networking/ethernet/connectx-5/
https://www.nvidia.com/en-us/networking/ethernet/connectx-5/
http://www.dpdk.org

[21] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth
Kandula, Changhoon Kim, Parantap Lahiri, David A. Maltz,
Parveen Patel, and Sudipta Sengupta. VL2: A scalable and
flexible data center network. Commun. ACM, 54(3):95–104,
March 2011.

[22] Albert Greenberg, Gisli Hjalmtysson, David A. Maltz, Andy
Myers, Jennifer Rexford, Geoffrey Xie, Hong Yan, Jibin Zhan,
and Hui Zhang. A clean slate 4D approach to network control
and management. 35(5):41–54, October 2005.

[23] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martín
Casado, Nick McKeown, and Scott Shenker. NOX: Towards an
operating system for networks. SIGCOMM Comput. Commun.
Rev., 38(3):105–110, July 2008.

[24] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jen-
nifer Rexford, and Walter Willinger. Sonata: Query-driven
streaming network telemetry. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Com-
munication, SIGCOMM ’18, page 357–371. Association for
Computing Machinery, 2018.

[25] Sangjin Han, Scott Marshall, Byung-Gon Chun, and Sylvia
Ratnasamy. MegaPipe: A new programming interface for
scalable network I/O. In Proceedings of the 10th USENIX
Conference on Operating Systems Design and Implementation,
OSDI’12, page 135–148, USA, 2012. USENIX Association.

[26] Chi-Yao Hong, Subhasree Mandal, Mohammad Al-Fares, Min
Zhu, Richard Alimi, Kondapa Naidu B., Chandan Bhagat,
Sourabh Jain, Jay Kaimal, Shiyu Liang, Kirill Mendelev, Steve
Padgett, Faro Rabe, Saikat Ray, Malveeka Tewari, Matt Tierney,
Monika Zahn, Jonathan Zolla, Joon Ong, and Amin Vahdat.
B4 and after: Managing hierarchy, partitioning, and asymmetry
for availability and scale in Google’s software-defined WAN.
In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM ’18, page
74–87. Association for Computing Machinery, 2018.

[27] Intel. Intel Tofino, 2021. https://www.intel.
com/content/www/us/en/products/network-io/
programmable-ethernet-switch/tofino-series.html.

[28] Intel. Intel Tofino 2, 2021. https://www.intel.
com/content/www/us/en/products/network-io/
programmable-ethernet-switch/tofino-2-series.
html.

[29] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon
Poutievski, Arjun Singh, Subbaiah Venkata, Jim Wanderer, Jun-
lan Zhou, Min Zhu, Jon Zolla, Urs Hölzle, Stephen Stuart, and
Amin Vahdat. B4: Experience with a globally-deployed soft-
ware defined WAN. In Proceedings of the ACM SIGCOMM
2013 Conference on SIGCOMM, SIGCOMM ’13, page 3–14.
Association for Computing Machinery, 2013.

[30] Vimalkumar Jeyakumar, Mohammad Alizadeh, David Maz-
ières, Balaji Prabhakar, Albert Greenberg, and Changhoon Kim.
EyeQ: Practical network performance isolation at the edge. In
10th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 13), pages 297–311, Lombard, IL, April
2013. USENIX Association.

[31] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun
Lee, Robert Soulé, Changhoon Kim, and Ion Stoica. NetChain:

Scale-free sub-RTT coordination. In 15th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 18),
pages 35–49, Renton, WA, April 2018. USENIX Association.

[32] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun
Lee, Nate Foster, Changhoon Kim, and Ion Stoica. NetCache:
Balancing key-value stores with fast in-network caching. In
Proceedings of the 26th Symposium on Operating Systems Prin-
ciples, SOSP ’17, page 121–136. Association for Computing
Machinery, 2017.

[33] Gopal Kakivaya, Lu Xun, Richard Hasha, Shegufta Bakht Ah-
san, Todd Pfleiger, Rishi Sinha, Anurag Gupta, Mihail Tarta,
Mark Fussell, Vipul Modi, Mansoor Mohsin, Ray Kong, An-
mol Ahuja, Oana Platon, Alex Wun, Matthew Snider, Chacko
Daniel, Dan Mastrian, Yang Li, Aprameya Rao, Vaishnav Ki-
dambi, Randy Wang, Abhishek Ram, Sumukh Shivaprakash,
Rajeet Nair, Alan Warwick, Bharat S. Narasimman, Meng Lin,
Jeffrey Chen, Abhay Balkrishna Mhatre, Preetha Subbaray-
alu, Mert Coskun, and Indranil Gupta. Service fabric: A dis-
tributed platform for building microservices in the cloud. In
Proceedings of the Thirteenth EuroSys Conference, EuroSys
’18. Association for Computing Machinery, 2018.

[34] Nanxi Kang, Zhenming Liu, Jennifer Rexford, and David
Walker. Optimizing the one big switch abstraction in software-
defined networks. In Proceedings of the Ninth ACM Confer-
ence on Emerging Networking Experiments and Technologies,
CoNEXT ’13, page 13–24. Association for Computing Ma-
chinery, 2013.

[35] Y. Kanizo, D. Hay, and I. Keslassy. Palette: Distributing tables
in software-defined networks. In 2013 Proceedings IEEE
INFOCOM, pages 545–549, 2013.

[36] Naga Katta, Omid Alipourfard, Jennifer Rexford, and David
Walker. CacheFlow: Dependency-aware rule-caching for
software-defined networks. In Proceedings of the Symposium
on SDN Research, SOSR ’16. Association for Computing Ma-
chinery, 2016.

[37] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivara-
man, and Jennifer Rexford. HULA: Scalable load balancing
using programmable data planes. In Proceedings of the Sympo-
sium on SDN Research, SOSR ’16. Association for Computing
Machinery, 2016.

[38] Changhoon Kim, Matthew Caesar, Alexandre Gerber, and Jen-
nifer Rexford. Revisiting route caching: The world should
be flat. In Proceedings of the 10th International Conference
on Passive and Active Network Measurement, PAM ’09, page
3–12, Berlin, Heidelberg, 2009. Springer-Verlag.

[39] Daehyeok Kim, Zaoxing Liu, Yibo Zhu, Changhoon Kim,
Jeongkeun Lee, Vyas Sekar, and Srinivasan Seshan. TEA:
Enabling state-intensive network functions on programmable
switches. In Proceedings of the Annual Conference of the ACM
Special Interest Group on Data Communication on the Applica-
tions, Technologies, Architectures, and Protocols for Computer
Communication, SIGCOMM ’20, page 90–106. Association
for Computing Machinery, 2020.

[40] Daehyeok Kim, Yibo Zhu, Changhoon Kim, Jeongkeun Lee,
and Srinivasan Seshan. Generic external memory for switch
data planes. In Proceedings of the 17th ACM Workshop on Hot

368 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html

Topics in Networks, HotNets ’18, page 1–7. Association for
Computing Machinery, 2018.

[41] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and
M. Frans Kaashoek. The Click modular router. ACM Trans.
Comput. Syst., 18(3):263–297, August 2000.

[42] Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Strib-
ling, Leon Poutievski, Min Zhu, Rajiv Ramanathan, Yuichiro
Iwata, Hiroaki Inoue, Takayuki Hama, and Scott Shenker. Onix:
A distributed control platform for large-scale production net-
works. In Proceedings of the 9th USENIX Conference on Op-
erating Systems Design and Implementation, OSDI’10, page
351–364, USA, 2010. USENIX Association.

[43] Chang Lan, Justine Sherry, Raluca Ada Popa, Sylvia Rat-
nasamy, and Zhi Liu. Embark: Securely outsourcing middle-
boxes to the cloud. In 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16), pages 255–
273, Santa Clara, CA, March 2016. USENIX Association.

[44] Bojie Li, Kun Tan, Layong (Larry) Luo, Yanqing Peng, Ren-
qian Luo, Ningyi Xu, Yongqiang Xiong, Peng Cheng, and
Enhong Chen. ClickNP: Highly flexible and high performance
network processing with reconfigurable hardware. In Proceed-
ings of the 2016 ACM SIGCOMM Conference, SIGCOMM
’16, page 1–14. Association for Computing Machinery, 2016.

[45] Ming Liu, Liang Luo, Jacob Nelson, Luis Ceze, Arvind Krish-
namurthy, and Kishore Atreya. Incbricks: Toward in-network
computation with an in-network cache. SIGARCH Comput.
Archit. News, 45(1):795–809, April 2017.

[46] Yaoqing Liu, Syed Obaid Amin, and Lan Wang. Efficient FIB
caching using minimal non-overlapping prefixes. SIGCOMM
Comput. Commun. Rev., 43(1):14–21, January 2013.

[47] Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li,
Changhoon Kim, Vladimir Braverman, Xin Jin, and Ion Stoica.
DistCache: Provable load balancing for large-scale storage sys-
tems with distributed caching. In 17th USENIX Conference
on File and Storage Technologies (FAST 19), pages 143–157,
Boston, MA, February 2019. USENIX Association.

[48] Mallik Mahalingam, Dinesh Dutt, Kenneth Duda, Puneet Agar-
wal, Larry Kreeger, T. Sridhar, Mike Bursell, and Chris Wright.
Virtual eXtensible Local Area Network (VXLAN): A Frame-
work for Overlaying Virtualized Layer 2 Networks over Layer
3 Networks. RFC 7348, August 2014.

[49] Joao Martins, Mohamed Ahmed, Costin Raiciu, and Felipe
Huici. Enabling fast, dynamic network processing with
ClickOS. In Proceedings of the Second ACM SIGCOMM Work-
shop on Hot Topics in Software Defined Networking, HotSDN
’13, page 67–72. Association for Computing Machinery, 2013.

[50] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher
Alfeld, Sean Bauer, Carlo Contavalli, Michael Dalton, Nan-
dita Dukkipati, William C. Evans, Steve Gribble, Nicholas
Kidd, Roman Kononov, Gautam Kumar, Carl Mauer, Emily
Musick, Lena Olson, Erik Rubow, Michael Ryan, Kevin Spring-
born, Paul Turner, Valas Valancius, Xi Wang, and Amin Vahdat.
Snap: A microkernel approach to host networking. In Proceed-
ings of the 27th ACM Symposium on Operating Systems Prin-
ciples, SOSP ’19, page 399–413. Association for Computing
Machinery, 2019.

[51] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru
Parulkar, Larry Peterson, Jennifer Rexford, Scott Shenker, and
Jonathan Turner. OpenFlow: Enabling innovation in campus
networks. SIGCOMM Comput. Commun. Rev., 38(2):69–74,
March 2008.

[52] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and
Minlan Yu. SilkRoad: Making stateful layer-4 load balancing
fast and cheap using switching ASICs. In Proceedings of
the Conference of the ACM Special Interest Group on Data
Communication, SIGCOMM ’17, page 15–28. Association for
Computing Machinery, 2017.

[53] Microsoft. Azure NetApp files, 2021. https://azure.
microsoft.com/en-us/services/netapp/#overview.

[54] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. De Turck,
and R. Boutaba. Network function virtualization: State-of-the-
art and research challenges. IEEE Communications Surveys
Tutorials, 18(1):236–262, 2016.

[55] Masoud Moshref, Minlan Yu, Abhishek Sharma, and Ramesh
Govindan. Scalable rule management for data centers. In
10th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 13), pages 157–170, Lombard, IL, April
2013. USENIX Association.

[56] Jayaram Mudigonda, Praveen Yalagandula, Jeff Mogul, Bryan
Stiekes, and Yanick Pouffary. NetLord: A scalable multi-tenant
network architecture for virtualized datacenters. In Proceed-
ings of the ACM SIGCOMM 2011 Conference, SIGCOMM
’11, page 62–73. Association for Computing Machinery, 2011.

[57] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Pra-
teesh Goyal, Venkat Arun, Mohammad Alizadeh, Vimalkumar
Jeyakumar, and Changhoon Kim. Language-directed hardware
design for network performance monitoring. In Proceedings
of the Conference of the ACM Special Interest Group on Data
Communication, SIGCOMM ’17, page 85–98. Association for
Computing Machinery, 2017.

[58] NVIDIA. Connectx-5, 2021. https://www.nvidia.com/
en-us/networking/ethernet/connectx-5/.

[59] NVIDIA. Data processing units, 2021. https:
//www.nvidia.com/en-us/networking/products/
data-processing-unit/.

[60] NVIDIA. Innova-2 flex, 2021. https://www.nvidia.com/
en-us/networking/ethernet/innova-2-flex/.

[61] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin Murthy,
Albert Greenberg, David A. Maltz, Randy Kern, Hemant Ku-
mar, Marios Zikos, Hongyu Wu, Changhoon Kim, and Naveen
Karri. Ananta: Cloud scale load balancing. In Proceedings of
the ACM SIGCOMM 2013 Conference on SIGCOMM, SIG-
COMM ’13, page 207–218. Association for Computing Ma-
chinery, 2013.

[62] Luigi Rizzo and Matteo Landi. Netmap: Memory mapped
access to network devices. In Proceedings of the ACM SIG-
COMM 2011 Conference, SIGCOMM ’11, page 422–423. As-
sociation for Computing Machinery, 2011.

[63] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson,
Panos Kalnis, Changhoon Kim, Arvind Krishnamurthy, Ma-
soud Moshref, Dan R. K. Ports, and Peter Richtárik. Scaling

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 369

https://azure.microsoft.com/en-us/services/netapp/#overview
https://azure.microsoft.com/en-us/services/netapp/#overview
https://www.nvidia.com/en-us/networking/ethernet/connectx-5/
https://www.nvidia.com/en-us/networking/ethernet/connectx-5/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/ethernet/innova-2-flex/
https://www.nvidia.com/en-us/networking/ethernet/innova-2-flex/

distributed machine learning with in-network aggregation. In
18th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 21). USENIX Association, April 2021.

[64] Brandon Schlinker, Hyojeong Kim, Timothy Cui, Ethan Katz-
Bassett, Harsha V. Madhyastha, Italo Cunha, James Quinn,
Saif Hasan, Petr Lapukhov, and Hongyi Zeng. Engineering
egress with edge fabric: Steering oceans of content to the world.
In Proceedings of the Conference of the ACM Special Inter-
est Group on Data Communication, SIGCOMM ’17, page
418–431. Association for Computing Machinery, 2017.

[65] Naveen Kr. Sharma, Antoine Kaufmann, Thomas Anderson,
Arvind Krishnamurthy, Jacob Nelson, and Simon Peter. Evalu-
ating the power of flexible packet processing for network re-
source allocation. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17), pages 67–82,
Boston, MA, March 2017. USENIX Association.

[66] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishna-
murthy, Sylvia Ratnasamy, and Vyas Sekar. Making middle-
boxes someone else’s problem: Network processing as a cloud
service. SIGCOMM Comput. Commun. Rev., 42(4):13–24,
August 2012.

[67] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby
Armistead, Roy Bannon, Seb Boving, Gaurav Desai, Bob Fel-
derman, Paulie Germano, Anand Kanagala, Hong Liu, Jeff
Provost, Jason Simmons, Eiichi Tanda, Jim Wanderer, Urs Höl-
zle, Stephen Stuart, and Amin Vahdat. Jupiter rising: A decade
of Clos topologies and centralized control in Google’s datacen-
ter network. Commun. ACM, 59(9):88–97, August 2016.

[68] Arjun Singhvi, Junaid Khalid, Aditya Akella, and Sujata Baner-
jee. SNF: Serverless network functions. In Proceedings of the
11th ACM Symposium on Cloud Computing, SoCC ’20, page
296–310. Association for Computing Machinery, 2020.

[69] Yu-Wei Eric Sung, Xiaozheng Tie, Starsky H.Y. Wong, and
Hongyi Zeng. Robotron: Top-down network management at
Facebook scale. In Proceedings of the 2016 ACM SIGCOMM
Conference, SIGCOMM ’16, page 426–439. Association for
Computing Machinery, 2016.

[70] Richard Wang, Dana Butnariu, and Jennifer Rexford.
OpenFlow-based server load balancing gone wild. In
Proceedings of the 11th USENIX Conference on Hot Topics
in Management of Internet, Cloud, and Enterprise Networks
and Services, Hot-ICE’11, page 12, USA, 2011. USENIX
Association.

[71] Kok-Kiong Yap, Murtaza Motiwala, Jeremy Rahe, Steve Pad-
gett, Matthew Holliman, Gary Baldus, Marcus Hines, Taeeun
Kim, Ashok Narayanan, Ankur Jain, Victor Lin, Colin Rice,
Brian Rogan, Arjun Singh, Bert Tanaka, Manish Verma, Puneet
Sood, Mukarram Tariq, Matt Tierney, Dzevad Trumic, Vytau-
tas Valancius, Calvin Ying, Mahesh Kallahalla, Bikash Ko-
ley, and Amin Vahdat. Taking the edge off with Espresso:
Scale, reliability and programmability for global internet peer-
ing. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM ’17, page
432–445. Association for Computing Machinery, 2017.

370 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Cetus: Releasing P4 Programmers from the Chore of Trial and Error Compiling

Yifan Li‡,†, Jiaqi Gao†, Ennan Zhai†, Mengqi Liu†, Kun Liu†, Hongqiang Harry Liu†

‡Tsinghua University †Alibaba Group

Abstract

Programmable switches are widely deployed in Alibaba’s

edge networks. To enable the processing of packets at line

rate, our programmers use P4 language to offload network

functions onto these switches. As we were developing in-

creasingly more complex offloaded network functions, we

realized that our development needs to follow a certain set

of constraints in order to fit the P4 programs into available

hardware resources. Not adhering to these constraints results

in fitting issues, making the program uncompilable. Therefore,

we decide to build a system (called Cetus) that automatically

converts an uncompilable P4 program into a functionally

identical but compilable P4 program. In this paper, we share

our experience in the building and using of Cetus at Alibaba.

Our design insights for this system come from our investiga-

tion of the past fitting issues of our production P4 programs.

We found that the long dependency chains between actions

in our production P4 programs are creating difficulties for

the programs to comply with the hardware resources of pro-

grammable switching ASICs, resulting in the majority of our

fitting issues. Guided by this finding, we designed the core

approach of Cetus to efficiently synthesize a compilable pro-

gram by shortening the lengthy dependency chains. We have

been using Cetus in our production P4 program development

for one year, and it has effectively decreased our P4 develop-

ment workload by two orders of magnitude (from O(day) to

O(min)). In this paper we share several real cases addressed

by Cetus, along with its performance evaluation.

1 Introduction

Programmable switches allow network programmers to use

P4 language to offload network functions to data planes, en-

abling these functions to process packets at line rate. As one

of the largest global service providers, Alibaba has widely de-

ployed programmable switches in its edge networks [20, 27].

By Jan 2021, we have built O(100) PoP (point of presence)

nodes and O(1000) edge sites in total, and the majority of

them have employed programmable switches to implement a

group of network functions, including firewall, DDoS defense,

and load balancer. Figure 1 shows an example of the archi-

tecture of network functions within a single programmable

switch in our edge networks. In this architecture, our pro-

grammers offload multiple network functions to a single pro-

grammable switch, enabling these network functions to pro-

cess packets at Tbps speeds and saving CPU resources on the

end-servers in edge networks.

While our business significantly benefits from the deploy-

Traffic
Manager

Pipeline 0

Pipeline 1

Pipeline 2

Pipeline 3

DDoS.p4 switch.p4

Ingress Egress

Ingress

Ingress

Ingress

Egress

Egress

Egress

LB.p4

scheduler.p4

firewall.p4 switch.p4 NAT.p4

LB.p4

DDoS.p4 switch.p4

scheduler.p4

firewall.p4

Incoming Traffic Outgoing Traffic

Figure 1: A gateway P4 program example deployed in Al-

ibaba’s edge network. In our edge network scenario, our pro-

grammers put various network functions in a single switch.

ment of programmable switches, nevertheless, we still en-

counter a tough problem. Our P4 program development—e.g.,

implementation of new network functions and update of the

existing network functions via P4—needs to take into account

the various constraints of programmable switching ASICs;

neglecting these constraints often results in programs that

cannot fit on the hardware and hence cannot compile. We call

this problem as fitting issue.

Fitting a P4 program is hard to our programmers, because

(1) programmable switching ASICs have various hardware

resources, each with unique size and constraints, and (2) re-

sources are sometimes correlated, reducing the resource A

usage of a program coming at the cost of increasing the usage

of resource B. Our programmers, therefore, usually fall into

time consuming trial and error program “reshaping” cycles,

significantly delaying their development time. On the other

hand, it is impractical to require our programmers to learn all

hardware constraints.

Alibaba therefore decided to build a system (called Cetus)

that automatically converts an uncompilable P4 program P

into a functionally identical but compilable P4 program P′.

State of the art. Existing work falls into two categories. On

the one hand are systems that compile a high-level abstraction

to generate optimized P4 programs [10, 13, 14, 25, 30]. Al-

though they offer good resource optimizations, we found these

solutions may not be effective in our specific scenario. For

example, P4All [13, 14] optimizes the resource usage among

network functions by explicitly leveraging reusable data struc-

tures (e.g., bloom filters and key-value stores); however, the

network functions within our production P4 programs do not

share these data structures, invalidating this optimization in

our case. In addition, our programmers are reluctant to use

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 371

an extension of P4 such as explicitly specifying some data

structure to optimize via objective in P4All. Another state-

of-the-art system, Lyra [10], merges the tables that have no

dependencies with each other in order to optimize the re-

source usage; however, we found that merging tables while

keeping the original dependencies is not enough to enable our

production P4 programs to fit into the programmable ASICs.

On the other hand, existing efforts like Chipmunk [11, 12]

and Domino [24] improve P4 compiler to synthesize opti-

mized switch binary code, which is different from our goal of

generating optimized P4 programs.

Our approach: Cetus. This paper shares our experience in

the building and using of Cetus at Alibaba. We first inves-

tigated our production P4 programs and their past fitting is-

sues, in order to derive insight for our solution design. We

found that the long dependency chains between actions in

our production P4 programs were creating difficulties for

the programs to comply with the hardware resources of pro-

grammable switching ASICs, resulting in the majority of

fitting issues.

Guided by the above finding, we designed Cetus. For a

given P4 program P, Cetus automatically merges tables to fit

into fewer stages by removing dependencies between tables,

thus shortening the long dependency chains (§5). Because

such a method may generate many table merging options

(called candidates), we propose an approach, called constraint-

based filter & optimizer (§6), to drop the candidates that do

not satisfy hardware resources (including memory size, PHV,

and crossbar) or constraints, and then select the best one as P′.

Designing such a filter & optimizer approach is non-trivial

due to two challenges: (1) the large formula encoding each

candidate may result in state explosion, and (2) large solution

searching space in each candidate will cause long solving

time. We propose PHV sharing encoding (§6.1) and two-step

solving (§6.2) to address the above two challenges, respec-

tively. With P′ in hand, Cetus automatically generates a set of

control plane APIs for P′ to enable P′ to be deployed seam-

lessly (§7).

Finally, we share several representative real cases addressed

by Cetus (§8), along with its performance evaluation (§9). We

have been using Cetus in production for one year, and it has

effectively decreased our P4 development workload by two

orders of magnitude (from O(day) to O(min)).

2 Preliminary: Programmable Data Plane

We use ϒ to denote the name of programmable switching

ASICs of Vendor A.1 Our programmers compile P4 programs

via ϒ compiler. ϒ chip is a physical implementation of Pro-

tocol Independent Switch Architecture (or PISA). ϒ chip’s

ingress and egress consist of 12 stages, respectively. All of

these stages are identical, in terms of compute units, memory

types, and memory capacities.

1We omit the vendor name and ASIC name for the confidentiality.

2.1 Hardware & Constraints of ϒ Chip

Hardware resource. ϒ chip contains various hardware re-

sources, and each of them has unique size and characteristic.

We are mainly focused on the following hardware resources:

• Pipeline stages. The packet processing pipeline consists

of a fixed number of individual stages. A P4 program does

not compile if it takes more than 12 stages in an ingress or

egress pipeline in ϒ chip.

• Packet header vector (PHV). The PHV is a “bus” that

carries information (from packet fields and per-packet meta-

data) between stages. PHV cannot carry more data than its

total width. See §6.1 for more PHV details.

• Memory. Memory resources mainly contain SRAM and

TCAM. SRAM and TCAM are around tens of Megabytes

in capacity. The memory resources are equally split and

attached to each stage so that each stage can only access

its local memory resources.

• Crossbar. In each stage, the crossbar extracts fields from

the PHV and sends them to the match and action units for

computation. Crossbar has a size limit, so the total number

of bytes assigned to a stage’s crossbar should not exceed

this limit.

Hardware constraints. The hardware constraints, in this pa-

per, refer to both the hardware resource characteristics (e.g., in

ϒ chip, memories are stage local, and memory can be accessed

no more than once per packet), and the mappings between the

P4 program elements and hardware resources (e.g., a P4 ta-

ble’s keys should be stored in SRAM or TCAM memory, and

a packet header field should be mapped into one or multiple

cells in the PHV). Understanding these hardware constraints

is crucial to programming on the ϒ chip.

To successfully compile a P4 program via ϒ compiler, this

program must not exceed the size of each hardware resource

and comply with all constraints of ϒ chip.

Fitting a P4 program in our practice. Our production P4

programs typically pack as many functions and modules as

possible, which may overuse hardware resources or violate the

hardware constraints, resulting in the fitting issues. When this

happens, our programmers have to ‘reshape’ the programs to

fit into the programmable ASIC. Such a reshaping process is

program specific. Our programmers often spend a significant

amount of time reshaping our P4 programs in order to comply

with the hardware resources and constraints.

2.2 Dependencies between Tables

A P4 program is a collection of match-action tables chained

together by branching conditions. In each table, at most one

action can be applied according to the match result. For a

given group of actions, if there is no read-write or write-write

dependency among these actions, they could be placed within

the same stage. On the contrary, for example, if action i1 uses

(reads or writes) a value generated by action i2, then i1 must

372 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

control read_after_write() {
action tbl1_actn() { b = c + 1; }
table tbl1 {

key = { a: exact; }
actions = { tbl1_actn; }

}

action tbl2_actn() { d = 1; }
table tbl2 {

key = { b: exact; }
actions = { tbl2_actn; }

}

apply {
tbl1.apply();
tbl2.apply();

}
}

control write_after_write() {
action tbl1_actn() { b = c + 1; }
table tbl1 {

key = { a: exact; }
actions = { tbl1_actn; }

}

action tbl2_actn { b = 1; }
table tbl2 {

key = { a: exact; }
actions = { tbl2_actn; }

}

apply {
tbl1.apply();
tbl2.apply();

}
}

control write_after_read() {
action tbl1_actn() { b = c + 1; }
table tbl1 {

key = { a: exact; }
actions = { tbl1_actn; }

}

action tbl2_actn { a = 1; }
table tbl2 {

key = { d: exact; }
actions = { tbl2_actn; }

}

apply {
tbl1.apply();
tbl2.apply();

}
}

(a) Read after write (b) Write after write (c) Write after read

match action

a b = c + 1

match action

b d = 1

match action

a b = c + 1

match action

a b = 1

match action

a b = c + 1

match action

d a = 1

Figure 2: Three types of dependencies between actions in our production P4 programs.

(a) The match-action DAG for the original P4 program

(b) The match-action DAG for P4 program after optimization

match action

a b = c + 1

match action

d a = 1

match action

a b = c + 1

match action

a b = 1

match action

a b = c + 1

b = 1

match action

a_0 b = c + 1

match action

d a = 1

Figure 3: Examples for match-action DAGs. Rectangles repre-

sent tables. The blue dashed frame represents the architecture

of ϒ chip. The blue dashed frame’s length and width repre-

sent the usages of stage and memory, respectively, in ϒ chip.

(a) shows a match-action DAG representing a given P4 pro-

gram P. P does not fit in ϒ chip. (b) is a match-action DAG

representing P′ that tweaked from P, which is compilable.

be placed in a stage after the stage of i2 in the PISA architec-

ture. In our production P4 programs, we are mainly focused

on three types of dependencies: read after write, write after

write and write after read2. Figure 2 shows their examples.

The tables, in Figure 2(a), (b), and (c), are not allowed to be di-

rectly placed within the same stage; otherwise, the programs’

function logic is changed.

Match-action DAG. By tracking dependencies between ac-

tions, we can represent a P4 program in the form of a match-

action directed acyclic graph or match-action DAG. Fig-

ure 3(a) presents such a match-action DAG.

Diameter of a match-action DAG. The total number of

stages occupied by a P4 program P cannot be less than the

diameter of the match-action DAG representing P. The di-

ameter of a match-action DAG G is: the number of tables

in the longest dependency chain (i.e., the dependency chain

containing the highest number of tables) in G. For example

2We explain why write after write dependency is necessary in §5.1

P4 Programs
Network
Functions

Diameter
Head, Tail

Memory PercentageIngress
Pipeline

Egress
Pipeline

Edge vSwitch

VXLAN encapsulation

9 3 14.73%, 3.32%

VXLAN decapsulation

Controlling the flow between
CPU and data plane

Traffic statistic

IP packet forwarding

ACL

CDN

Load balancing

10 5 0.87%, 5.04%

Controlling the flow between
CPU and data plane

Scheduling

IP packet forwarding

DDoS defense

ACL

Edge Gateway

VXLAN packet forwarding

8 7 0.01%, 0.86%
Traffic limit

Load balancing

ACL

Figure 4: Our production P4 programs and their involved

network functions as well as their diameters. These three

programs have been deployed on almost all the programmable

switches in our edge networks.

in Figure 3(a), the diameter is 7, because there are 7 tables

in the longest dependency chain of the DAG. The diameter

in Figure 3(b) is 5. Thus, we can say that the diameter of a

match-action DAG (representing P) must be ≤ the number of

stages, if P compiles.

3 Key Findings & Solution Intuition

In order to release our programmers from trial and error

program-reshaping cycles, we need to understand the root

causes resulting in fitting issues during the development of

our production programs, thus exploring insights for our so-

lution design. Specifically, we selected three mainstream P4

programs (listed in Figure 4) in our production, which were

deployed in almost all the edge switches in Alibaba edge

networks. We then selected all fitting issues (of these three

programs) that took our programmers more than one hour to

resolve, and manually analyzed how they were fixed.

We classified our analysis results into two groups. (1)

Group A: About 80% of fitting issues were resolved by elim-

inating or reducing dependencies between tables (e.g. by re-

ordering or merging them) that allowed us to take advantage

of the parallel nature of the switch architecture. (2) Group B:

20% issues were resolved by fixing hardware resources and

constraints that programmers were not aware of such as PHV

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 373

 0

 0.25

 0.5

 0.75

 1

 0 1 2 3 4 5 6 7 8 9 10 11

S
R

A
M

 O
c
c
u

p
a
ti

o
n

 R
a
ti

o

Stage Number

Figure 5: SRAM usage of Edge Gateway program.

allocation and stateful ALUs. We now analyze the principles

behind Group A (§3.1) and Group B (§3.2).

3.1 Key Findings from Group A

We investigated why rearranging tables can resolve the fitting

issues in this group. We found that all of these efforts (e.g.,

reordering and merging tables) implicitly shortened the P4

programs’ diameters. For example, in one of the cases, our

programmer unwittingly merged two tables by changing de-

pendencies between their actions (as shown in Figure 7(a)

example), and then found that the program compiled. While

this programmer did not know the fundamental reason (i.e.,

shortening the diameter), he succeeded after multiple reshap-

ing cycles.

Observation 1: Diameter is long in our production. Why

shortening the diameter can resolve the fitting issue? We

found that the match-action DAG representing each of these

three P4 programs had long diameters. Given that ϒ chip

provides 12 stages of match-action units, a long diameter

should be reduced in order to make programs fit on ϒ chip.

As shown in Figure 3(a), blue dashed frame’s length and width

represent the usages of stage and memory, respectively, in ϒ
chip. The program’s diameter in Figure 3(a) is too long to

comply with the stage resource size.

The long diameter results from the large number of packet

processing operations required by our diverse edge services.

In particular, each of our P4 programs not only needs to insert

various metadata into the different types of packet headers,

but also filters or forwards them according to a number of ser-

vice needs. For example, an input packet is first encapsulated

with VXLAN, then forwarded based on some condition, next

mirrored for traffic statistics and finally checked by ACL as

well as distributed by the ECMP. Figure 4 details these three

P4 programs’ diameters and their involved network functions.

All programs shown in Figure 4 have at least a diameter of 8

in ingress, which means they occupy at least 8 stages in the

ingress pipeline. It is therefore highly possible to result in

fitting issues in ϒ chip when new tables are added.

Observation 2: Many available memory resources. We

also found that shortening the diameter by tweaking tables,

in principle, increases the usage of memory within individual

stages, as shown in Figure 3(b). Why did this memory-for-

stage method work in our production? We found that both

ends of the match-action DAG (tables with 0 in-degree or

out-degree) use much less memory, offering flexibility for

table tweaking.

At the beginning of the pipeline, our programs need to per-

form checking and pre-computations such as packet valida-

tion, link aggregation group checking, pre-computing hashes,

and setting flag based on header’s validity; at the end of the

pipeline, our programs finalize the packet processing based

on the previous matching results, including marking header

fields, dropping packets, and encapsulations. All these oper-

ations can be easily done in parallel, while at the same time

they do not require a lot of table entries; thus, much available

memory remains. Figure 4 shows the percentage of memory

that both ends of DAG occupy compared with the entire pro-

gram. If the memory is distributed evenly across the DAG,

both ends of the DAG should occupy around 10% of memory

each. Figure 5 shows the SRAM occupation ratio per stage of

Edge Gateway program (i.e., the third program in Figure 4).

We observed that stage 0 and 11 only used less than 10%

of memory. The other two programs also follow the same

phenomena.

We also observed much available memory in the middle

of the pipeline. Figure 5 shows tables at stage 8 and 9 take

only 25% of memory. Similar phenomena also occurred in

the rest of the two P4 programs listed in Figure 4. This is

because, in a network function chain, we typically have a few

tables that are small but critical such as a table inserting a

mainstream service-shared DSCP value into the packet header

as metadata. Such a table (called T) must have (read-write or

write-write) dependency relationships with the tables before

and after T .

Summary. We now understand that our programmers unwit-

tingly shortened the diameter of their programs by trial and

error table (dependency) tweaking, luckily making their pro-

grams compile. Examples in Figure 3(a) and (b) illustrate such

an intuition. We therefore derive the following key finding.

Finding 1: Long dependency chains between actions

in our production P4 programs make the developed

programs hard to fit into the programmable ASIC.

We thus need to remove dependencies on the “longest

path” of DAG to change the original “long, narrow”

DAG to a “short, fat” DAG, as shown in Figure 3, in

order to enable our developed programs to compile.

3.2 Key Findings from Group B

Fitting issues in Group B were caused by the violation of chip-

specific resource size and hardware constraints. For example,

because our programmers ignored the size of an individual

stage, the program they wrote required the compiler to assign

more DRAM within one stage than allowed (otherwise the

dependency constraint is violated), resulting in a fitting issue;

the same issue also happened for other resources such as

hash units. There is no pattern to follow among these root

causes. But we noticed that some of the issues in Group B

were caused by same constraint violation. This means that our

374 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

P4 Program P

Table Merging

(§5)

Basic Constraints

+
Dependency

Graph Building

… ...

Optimization Candidates

V2V1 Vn

Constraint-based Filter & Optimizer

(§6)

Compilable

P4 Program P'

Control Plane
APIs Converter

(§7)

New Control Plane
Interfaces

Cetus

Figure 6: Cetus’s workflow overview.

programmers failed to learn or remember the fitting issues that

they have ever fixed. We thus derive the following finding.

Finding 2: Although it might be hard for our program-

mers to learn all chip-specific resource size and con-

straints, we should avoid the fitting issues—resulting

from the unfamiliarity with the resource size and

constraints—that we have encountered before.

3.3 Our Solution Idea

Based upon our above two findings, we design the core ap-

proach of our solution, which includes the following three

steps. First, for a given P4 program P, we automatically merge

tables to fit into fewer stages by removing dependencies be-

tween actions, in order to shorten the long diameter of DAG

representing P (driven by Finding 1). Such an approach would

generate many candidate results. Second, we encode hard-

ware resource size and hardware constraints as many as we

know in our system’s backend DB to ensure that the synthe-

sized program complies with all already-known resource size

and constraints (driven by Finding 2). Finally, we check each

candidate with the encoded constraints, selecting the most

optimal one.

Why the state of the art does not help? Existing systems

(e.g., Lyra [10] and P4All [13, 14]) are unable to offer such

a level of program optimization. Specifically, Lyra can only

merge tables without dependencies. In other words, Lyra can-

not merge two tables by removing dependencies between the

tables; thus, Lyra is unable to shorten the diameter of the

given DAG. P4All optimizes programs by reusing common

data structures. In our programs (shown in Figure 4), how-

ever, the tables on the diameter do not share any data structure,

invalidating P4All’s assumption.

4 Cetus’s Workflow Overview

We build Cetus, a synthesis system that automatically converts

an uncompilable P4 program P into a functionally identical

but compilable P4 program P′.

Figure 6 presents Cetus’s workflow that consists of the

following main phases.

• First, given a P4 program P, Cetus generates a match-action

DAG by analyzing read-write and write-write dependencies

in P. Then, Cetus introduces a table merging approach (§5)

to shorten the diameter of the generated DAG by removing

dependencies between tables. There could be many poten-

tial table merging cases. We drop the cases that violate

basic hardware constraints (e.g., memory size), obtaining a

group of candidate programs.

• Second, we propose a constraint-based filter and optimizer

(§6) to check each candidate individually with already-

known constraints, selecting the most optimal one as P′.

• Finally, Cetus automatically generates a set of control plane

APIs for P′ to enable P′ to be deployed seamlessly (§7).

5 Table Merging by Dependency Removal

Cetus proposes a table merging approach to shorten the di-

ameter by removing dependencies. Intuitively, the purpose of

the table merging module is to tweak P to fit into the architec-

ture of ϒ chip. This approach includes several primitives to

merge tables for different types of dependencies. This section

first introduces these primitives (§5.1), and then describes the

entire solution (§5.2).

5.1 Dependency Removal Primitives

We design several dependency removal primitives in terms

of dependency types, including write-after-write, write-after-

read and read-after-write dependencies (shown in Figure 2).

Each of the primitives takes two tables as input and returns

one or two tables that can be put within one single stage. The

purpose of these primitives is to reduce the number of used

stages by increasing other resources’ overhead such as PHV

and memory.

Symbols. We define the following notations: table t has nm

match fields {mt1, ...,mtnm}, each field mti has wti bits in width

and its match type is pti, which can be exact, ternary, etc. It

also has na actions {at1, ...,atna}. If one table has no default

action, we add an empty action as the default. Table t has lt
entries. Let Pt be the action parameters’ total bit width, then

table t’s total memory usage is lt(∑
nm
i=0 wti +Pt).

Write-after-write (WAW) dependency. WAW dependency

happens when one table t1 contains an action that writes the

value written by another table t2. For example, in Figure 2(b),

table tbl2’s action tbl2_actn writes variable b, which is pre-

viously modified by table tbl13. Since two actions are not

allowed to write to the same data in a PHV word concurrently,

one cannot place them in the same stage. It is also impossible

to reorder them since the program’s correctness is violated.

This primitive removes WAW dependency by merging the

two tables into a new table t ′. The merged table t ′ enumerates

both tables’ all action combinations. The primitive works as

follows, and Figure 7(a) shows an example.

3We cannot remove tbl1 because a packet can hit tbl1 but miss tbl2.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 375

(a) (b) (c) (d)

match action

c a = p_a (param)

match action

e b = a

match action

c a = p_a (param)

match action

e, c
b = p_a (param)

b = a_0

match action

d a = 0

match action

d
a = 0

a_0 = 0

match action

a b = c + 1

match action

a b = 1

match action

a
b = c + 1

b = 1

match action

a b = c + 1

match action

d a = 1

match action

a_0 b = c + 1

match action

d a = 1

match action

c a = 0

match action

c
a = 0

a_0 = 0

match action

c a = 1

match action

a b = 1

match action

c a = 1

match action

a_0, c b = 1

match action

d a = 0

match action

d
a = 0

a_0 = 0

Figure 7: Examples for different dependency removal primitives. (a) WAW (b) WAR (c) RAW-match (d) RAW-action

• Merge the match fields of the two tables and generate new

match fields {mt11, ...,mt1n1
,mt21, ...,mt2n2

}.

• Generate all possible combinations of the two tables’ ac-

tions {(at11,at21),(at12,at21), ...,(at1n,at2n)}

• Merge each pair of actions into one by appending the state-

ments in the second action after the first one.

• When a merged action has two statements that write the

same value, one from t1, one from t2, we keep the latter

one.

Memory usage. Since the two tables hit and miss indepen-

dently, the merged table should include all four possibili-

ties. Thus, unless two tables have identical match fields, ta-

ble t ′ uses ternary match field types and is deployed in the

TCAM memory. In total, there are (lt1 +1)(lt2 +1)−1 entries.

The total memory usage of table t ′ is lt1 lt2(∑
nt1m

i=0 wt1i +Pt1 +

∑
nt2m

i=0 wt2i +Pt2).

Write-after-read (WAR) dependency. When one table t2
writes the variable read by t1, WAR dependency happens. For

example, in Figure 2(c), the table tbl2’s action tbl2_actn

writes variable a, which is table tbl1’s match fields. Again,

we cannot reorder these two tables; however, PISA architec-

ture allows t2 to be deployed alongside t1. When t1 occupies

multiple stages, t2 can only share t1’s last stage and not earlier.

WAR dependency does not necessarily increase the total num-

ber of stages of a program directly, but it sets a “barrier” and

pushes other tables to later stages. For example, in Figure 2(c),

if we have a third table tbl3 that reads variable a after table

tbl2, then it has to be deployed after table tbl1, even though

there is no dependency between tbl1 and tbl3.

For WAR dependency, let x be the shared variable. We

have table t1 reads x and table t2 writes it. To remove WAR

dependency, we create a new copy of the shared variable x′

and modify t1 so that it reads x′ instead of x. The primitive

works as follows, and Figure 7(b) shows the example.

• Find the table where x is last written. If such a table exists,

copy the action that writes x and modifies it to write x′. If

no such table exists, such as x is a header, then we assign

the value of x′ in the parser.

• Modify table t1’s match and action list so that it reads x′.

Memory usage. This primitive does not create a new table and

the memory usage is kept the same. It may introduce PHV

overhead since it creates a new variable.

Read-after-write (RAW) dependency. Read-after-write de-

pendency happens when one table (t2) reads the value created

by another one (t1). For example, in Figure 2(a), table tbl2’s

match fields read the value written by table tbl1’s action.

The dependency can also happen when the value is read in

the action field. Same as the WAW dependency, two tables

with RAW dependency between them have to be placed in

different stages and cannot be reordered.

This primitive removes the RAW dependency by summa-

rizing the primitives used in WAW and WAR dependency: we

first create a new table t ′ that summarizes the match fields of

both tables and replace t2, and then we adopt WAR depen-

dency removal primitive to remove the dependency between

t1 and t ′.

Let x = f (vvv111) be action in t1 that modifies shared variable

x. In Figure 2(a), vvv111 is {c,1}. Assume the action is executed

when table t1 matches value vvv222, then after applying table t1,

x’s value is:

x =

{
f (vvv111) if (mt11,mt12, ...,mt1n) = vvv222

x0 otherwise
(1)

where x0 is the value of x before applying table t1. The key

of the dependency removal primitive is to encode enough

information in a new table t ′ to compute variable x without

using the result in t1. Equation 1 shows that x depends on

three sets of variables vvv111,vvv222,x0. We can learn vvv222 from entries

in table t1. x0 is created before t1, so we borrow the primitive

used in WAR dependency removal and create a new copy of

variable x. So our challenge is reduced to understanding vvv111.

Theoretically, since variables in vvv111 have fixed lengths, we

can enumerate all possibilities. However, this would lead to

too much memory overhead. As a result, we only remove

RAW dependency when we can infer values in vvv111 easily, such

as when all of them are numbers or assigned to numbers

directly. In Figure 2(a), vvv111 = {c,1}. If we can infer the value

of c, then we can merge tbl1 and tbl2, otherwise, we cannot.

Cetus removes dependency differently depending on whether

table t2 reads variable x in match or action part. If table t2
reads x in the match fields, the primitive works as follows,

and Figure 7(c) shows the example tables and merged result.

• Create a copy of variable x through the method introduced

in the WAR dependency removal primitive, let the copy be

x0.

• Merge the match fields of the two tables, remove x, and

generate new match fields {mt11, ...,mt1n1
,mt21, ...,mt2n2

}−
{x}+ vvv111 +{x0}.

• Remove constants from the match field. For example when

vvv111 or x0 is fixed.

376 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

RAW WAW WAR

Direct stateful objects N N Y

Normal & not directly involved Y Y Y

Normal & directly involved N Y Y

Table 1: Cetus applies primitives to different cases.

• Generate a new table t ′ with the new match fields. Copy

table t2’s action field to the table t ′.

If the table t2 reads x in the action field, we need to encode

both branches in Equation 1 and duplicate actions that read

x. The primitive works as follows, Figure 7(d) shows the

example tables and merged results.

• Create a copy of variable x through the method introduced

in the WAR dependency removal primitive, let the copy be

x0.

• Merge the match fields of the two tables and generate new

match field {mt11, ...,mt1n1
,mt21, ...,mt2n2

}+ vvv111.

• Remove constants from the match fields.

• For each action at2i that reads x, replace x with new copy x0.

Create a new copy a′t2i and add x0 into its parameter. Action

a′t2i is triggered when Equation 1’s first condition is trig-

gered, Action at2i is triggered when the second condition

is triggered.

• New table t ′ has the new match fields, all actions from table

t2, and newly generated actions a′t2i.

Memory usage. Memory usage varies depending on how

many constants we can infer. Assume we can infer the value

of x0 and vvv111, then the newly generated table t ′ takes up

lt2(∑
nt1m

i=0 wt1i+∑
nt2m

i=0 wt2i+Pt2) memory. The newly generated

table’s match fields stays the same.

Multiple dependencies between two tables. Two tables can

have more than one dependency and may not be limited to

the same type. For example, they can have WAW and WAR

dependency at the same time, or have two RAW dependencies.

When dependencies have the same type, we can apply the pre-

mentioned primitives directly (WAW) or recursively (RAW,

WAR) to remove dependencies. For different dependency

types, we choose not to remove them since the result table

usually incurs too much memory overhead.

Counters, meters, and registers. In ASIC, stateful objects

such as counters have two modes: direct and indirect. Direct

counters have one-to-one mapping with table entries, while in-

direct ones have user-defined sizes. Depending on their mode

and whether they are involved in the dependency directly (i.e.

they write to variables read or written by another table), Cetus

chose whether apply different primitives differently, and it is

summarized in Table 1.

5.2 Table Merging Approach

Given a P4 program with n dependencies, there could be 2n

different table merging strategies at most. Different strate-

gies produce different resource-usage trade-offs among stage,

PHV, and memory. Rather than sending all of them to the

constraint-based filter & optimizer module, we propose a

heuristic algorithm that filters out strategies that violate basic

constraints such as memory and stage.

In this approach, we only focus on comparing two metrics:

stage saving and memory overhead. §6 would take more re-

sources into account. If a strategy’s memory overhead takes

more stages than it can save by removing dependencies, it

must end up occupying more stages than the original program,

which conflicts with our goal. To sum up, given a P4 program,

our heuristic algorithm runs as follows:

• Given a P4 program P, we generate its match-action DAG,

DP, and find all pairs of tables that potentially could be

merged according to any of our primitives (mentioned in

§5.1). Suppose we find n pairs.

• We build a binary decision tree T with n layers. Each layer

represents one pair of tables, and each branch presents

whether we remove the dependency of this pair of tables or

not. Thus, a path from the root node of T to some leaf node

of T represents a combination of table merging strategies.

• We thus run a deep-first search on T . During the searching

process, we cut off the branches that violate basic mem-

ory and stage constraints. For each leaf node, we compute

Ssave ∗m > M, where Ssave is the number of stages this strat-

egy saves, m is the memory space of a single stage, and M

is the memory overhead this strategy actually introduces.

Note that Ssave and M are computed by our primitives. If

Ssave ∗m > M, we keep this leaf node as one of our candi-

dates used as the input of constraint-based filter & optimizer

module (§6); otherwise, we drop this strategy.

6 Constraint-Based Filter & Optimizer

This module takes as input all candidates generated by §5,

and then encodes each candidate program with all hardware

resource size and constraints (stored in Cetus’s backend DB)

into an SMT formula. Then, we call an SMT solver (e.g.,

Z3 [7]) to synthesize a table location plan that uses the least

memory and stage resources. Finally, we realize this plan in a

P4 program that specifies the locations of tables via pragma

instructions.

The key challenge is how to efficiently solve these SMT for-

mulas (each representing a candidate with all constraints). We

found that the existing encoding approaches (e.g., Lyra [10])

may result in state explosion, because a great number of di-

verse hardware resources create a huge search space that

exceeds the SMT solver’s searching capability.

To address the above challenge, we introduce a new ap-

proach that contributes two novel designs: (1) a new PHV

encoding approach that significantly reduces the size of SMT

formulas to avoid state explosion problem (§6.1); and (2) a

two-step solving algorithm that decouples the solving pro-

cess into table-related resource and variable-related resource

solving to speed up the solving process (§6.2).

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 377

a

a is valid b is valid

Word 0

Word 1

Word 2

Word 3

b
a

b

a

b

c c

Stage 1 2 1 2

x = a b = 1
c = d - 10

(a) (b)

Figure 8: PHV sharing (a) across stages, (b) in one stage.

6.1 PHV Sharing Encoding

Packet Header Vector (PHV) serves as the bus between stages.

The basic component of PHV is called word. There are tens of

words with 8, 16, and 32-bit width respectively. One field can

occupy one or multiple words. For example, a 48-bit source

MAC field can take one 32b and one 16b word or three 16b

words.

PHV is a scarce resource and needs careful planning, espe-

cially when the program is large and involves lots of headers

and metadata. Simply adopting encoding approaches (e.g.,

Lyra [10]) would waste the precious PHV spaces and fail to

find a feasible solution. This is because Lyra’s encoding as-

sumes each word is dedicated to one variable; however, PHV

words can be shared across variables in the PISA architecture,

both across stages and within the same stage.

PHV sharing across stages. Different variables can occupy

the same word at different stages. As shown in Figure 8(a),

after stage 2, variable a is no longer used and another variable

b can take over the same word. This allows us to use only one

PHV container to store two independent variables that would

otherwise require two containers. This sharing requires the

variables have non-overlapping lifetimes, i.e. from the stage

they are created till the last stage they are used. Note that all

packet header fields’ lifetime is the entire pipeline since they

are created by the parser and consumed by the deparser. So

the cross-stage sharing only applies to the metadata.

PHV sharing within one stage. Variables can also share the

same word in the same stage as long as this sharing does not

affect the correctness. Shown in Figure 8(b), variable a is read

in stage 1 and variable b is assigned to a new value in stage

2. These two variables can share the same word. But variable

c can not share with a at stage 1 because it was written by

a subtract instruction. This is constrained by the fact that

the Arithmetic Logic Unit (ALU) can perform at most one

instruction to one word in one stage. The same-stage sharing

applies to both header fields and metadata.

Cross-stage and same-stage sharing pack more variables

into PHV, and it poses great pressure on PHV encoding. Be-

cause of the cross-stage sharing, we have to encode each

stage’s PHV allocation separately. The same-stage sharing

further complicates the problem since we need to consider

whether each pair of variables could share the same word.

(a) (b)

w
0

w
1

w
3

w
2

g
1

g
0

a

b

c

a

b

c

Figure 9: PHV encoding for 3 variables and 4 PHV words.

(a) Strawman solution introduces 12 mapping variables and 4

rules. (b) Our solution reduces it to 6 mapping variables and

2 rules.

A strawman solution. A strawman solution is to encode the

mapping mv,w,s between the variable v and each PHV word w

at stage s. It encodes the cross-stage sharing by treating each

stage separately. As for same-stage sharing, when two vari-

ables v1 and v2 cannot share the same word, we can add the

constraint mv1,w,s & mv2,w,s = 0. Next, we encode constraints

such as each word has its own size limit, each variable should

reserve enough bits in the PHV, etc. However, shown in Fig-

ure 9(a), because there are tens of stages and hundreds of

PHV words, this solution introduces too many such mapping

variables and the search space is huge.

Our encoding. Our PHV sharing encoding method addresses

the scalability challenge. We observe that the total number

of independent mappings in the encoded formula is the key

complexity contributor. Thus, our focus is to reduce the inde-

pendent mappings.

For same-stage sharing, we remove the boundary between

PHV words and focus on whether variables can share with

each other. We noticed that at each stage, there are only a

few “shareable groups”, the set of variables that can share

with each other. Note that one variable can belong to multiple

groups since the shareability is not transitive, i.e. variable v1

can share with v2 and v3 cannot conclude v2 can share with

v3. Then we can maintain the mapping between variables

and these groups instead of the PHV words and restore PHV

mapping afterward.

We also observe that in the encoded formula, all groups

are symmetric: it does not affect the correctness when we

reorder the groups. This is also another slow-down factor

since it gives the SMT solver more freedom. To break the

symmetry, we give preference to the groups with lower ID,

the SMT solver can only use a new group until all the groups

with lower ID are already assigned.

To summarize, the PHV encoding works as follows:

• (1) Given the input program P , we count total number of

non-assignment instructions I in each pipeline. This is the

upper bound of the number of groups.

378 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

• (2) (Cross-stage sharing) For each variable v, we maintain:

i) the mapping mv,g,s, which denotes the number of bits v

assign to group g at stage s, ii) the lifecycle lv and rv, which

denotes the start and end stage of v.

• (4) (Same-stage sharing) If v1 cannot share with v2, then

(mv1,g,s > 0) & (mv2,g,s > 0) is always false.

• (5) (Variable width) For each variable, if stage s is within

the its lifecycle, the total number of bits in each group

equals variable width bv: ls ≤ s ≤ rs → ∑i mv,gi,s = bv.

Otherwise the summation is 0.

• (6) (PHV size) The summation of total number of

bytes in each group should be less than PHV size.

∑i⌈∑ j mv j ,gi,s/8⌉ ≤ NPHV .

• (7) (Break symmetry) We prioritize groups with lower ID:

(∑ j mv j ,gi+1,s)> 0 → (∑ j mv j ,gi,s)> 0.

In Figure 9(b), because only a cannot share with c, there

are at most 2 shareable groups. We introduce 2 groups g0 and

g1. Through this encoding, we can reduce the total mapping

from 12 to 6. In reality, there is at least one order of magnitude

fewer groups than the PHV words. This can greatly reduce

the encoded formula’s complexity.

6.2 Two-Step Solving

The PHV sharing encoding optimization can greatly reduce

the encoded formula’s complexity, but the SMT solver still

struggles when dealing with large-scale production programs.

Due to their scale, the encoded formula is still too complex.

Additionally, PISA architecture’s table-related resources (i.e.

memory, table stage) and variable-related resources (i.e. PHV,

crossbar) are orthogonal to each other: how much memory

the table allocates per stage does not affect where the variable

is located in the PHV. This loose coupling relationship forms

a huge search space and exceeds SMT solver’s searching

capability under large scale programs.

While this loose coupling is the culprit, it offers us an opti-

mization opportunity. We can safely ignore their correlation

and split the SMT solving problem into two smaller problems.

The two-step solving works as follows:

• Given a P4 program (i.e., one of the candidates), we en-

code all table-related resources and constraints and find a

feasible plan Pt meeting dependency and constraints.

• Upon Pt , we encode variable-related resources and con-

straints, and call the SMT solver to find a solution Pv ca-

pable of meeting resources (e.g., PHV and crossbar) and

constraints.

• If yes, with Pt and Pv, we have P = Pt +Pv as a resource

allocation plan for the input P4 program, returning plan P.

• If not, we return to step 1, find another feasible plan P′
t ,P

′
v.

• We repeat the above process until we find a valid plan P;

otherwise, there is no valid plan for the input program.

This two-step approach can greatly improve the efficiency

of our SMT solving. This aligns with our previous findings

in §3.1 that the allocation of stages and table is our major

concern. Other resources still remain and are more flexible.

6.3 The Best Result Selection

At the end of our workflow, the constraint-based filter & op-

timizer module may output one or more results that meet

all already-known resource size and constraints. We select

the most optimal one based on our internally-defined metric

calculator. However, our experience shows that the constraint-

based filter & optimizer module returns only one result in

most cases.

7 Control Plane APIs Converter

After P′ is obtained, our last task is to synthesize a control

plane converter, making sure that the control plane APIs gen-

erated from the original program P are compatible with P′

without any modification. Although different dependency re-

moval primitives require different converting strategies, they

follow the same underlying principle: generate new table

entries that replace the previous tables’ dependencies.

Due to limited space, we briefly describe the API converter

for a concrete case shown in Figure 7(d) when installing new

table entries. The rest of cases are detailed in Appendix A.

Let t1, t2 be the tables match c and e in program P, and t ′1, t ′2
be the tables after processing. In this example, t ′1 is the same

as t1. In the runtime, the converter keeps a record of existing

entries in table t1 and t2 installed from the control plane.

When inserting an entry e1 to table t1, we first insert e1 into

table t ′1 unmodified. Next, for each existing entry e2i in table

t2, create two new entries, one hits both e2i and e1, action is

b = p_a; one matches e2i but misses e1, action is b = a_0.

Insert all of them into table t ′2.

When inserting an entry e2 to table t2, for each existing

entry e1i in table t1, we create two new entries as well. If table

t1 is empty, only create one rule that matches e2 and other

fields left wildcard. Other operations such as modifying or

deleting an entry follow the same principle.

8 Deployment Experience

Cetus has been used to facilitate the development of P4 pro-

grams at Alibaba for one year. It has effectively decreased

our P4 development workload by two orders of magnitude

(from O(day) to O(min)) This section presents several real

cases addressed by Cetus.

Case 1: Parallelizing network functions. A common prob-

lem our programmers frequently encountered is that implicit

dependencies between actions or hardware constraints may

prevent two or multiple network functions from occupying

the same stages. If one of the functions contains a large table

and another function consists of multiple small tables form-

ing a long dependency chain, the total number of occupied

stages could exceed the number of stages available, and our

programmers had no clue on how to fix such a problem.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 379

A

B1 B2 B3

……

A1

B1

……
B2 B3

A2 A3

stage 1 stage 2 stage 3 stage 4 stage 5 stage 6 stage 7

(a) The original layout

(b) The layout when A is divided up

Figure 10: Parallelizing network functions via Cetus.

Figure 10 shows a real case in our edge gateway program.

In the original P4 program, network function A only has one

table A, which is a large table for load balancing. Function B

consists of multiple tables like B1, B2, B3, etc. formulating

a chain of small tables, each of which being responsible for

inserting customized metadata for diverse services. However,

if the program places network functions A and B as shown

in Figure 10(a), a fitting issue occurs because their resource

usage exceeds total stages available. From the view of our

programmers, they can only do trial and error.

Through the dependency removal algorithm introduced in

Section 5, Cetus can automatically address this problem by

parallelizing network functions within few minutes. As shown

in Figure 10(b), Cetus detected there is a deep dependency

between actions of A1 and B1, thus dividing function A into a

few tables and maximizing the parallelization of table place-

ment. We used the solution in [23] to guarantee the split tables

act the same as the original one.

Case 2: Optimizing write-after-write dependency. Us-

ing global data is common in many programming languages

and software systems. However, such practice comes with

pitfalls in P4 programs. For instance, because the physical

pipeline offers control registers, our programmers are allowed

to explicitly drop a packet in packet validation, access con-

trol, and error handling. However, write operations to a com-

mon field issued by different modules may constitute write-

after-write dependencies, which cause the number of required

stages to exceed the actual stage number.

Figure 11 shows a real case. Figure 11(a) is the original P4

program. Two tables are invoked consecutively, which may

call the same action to explicitly drop the packet. Because of

write-after-write dependency, they must occupy two stages.

Due to the “lengthy diameter” feature in our production pro-

grams, a fitting issue happened because stage resources are

overly used. We therefore called Cetus to solve our fitting

issue. Cetus automatically generates a program shown in Fig-

ure 11(b). We can observe that the two tables in the original

program are merged into one, saving one stage to enable the

program to compile. More interestingly, Cetus can also care-

action drop_packet(){
eg_dprsr_md.drop_ctl = 1;

}

table color_drop(){
key = { meta.pkt_color: exact; }
actions = { drop_packet; NoAction; }

}

table mirror_drop(){

key = { meta.pkt_color: exact;
meta.mirror: exact }

actions = { drop_packet; NoAction; }
}

control(){
color_drop();

mirror_drop();
}

action drop_packet(){
eg_dprsr_md.drop_ctl = 1;

}

table color_mirror_drop(){
key = { meta.pkt_color: exact;

meta.mirror: ternary }

actions = { drop_packet; NoAction; }
}

control(){
color_mirror_drop();

}

(a) write-after-write dependency that requires two stages (b) merged tables that require only one stage

Figure 11: Write-after-write optimization
action set_flow_tag(bit<16> tag){

meta.tag = tag;

}

table color_flow(){
key = { meta.ingress_port: exact; }
actions = { set_flow_tag; NoAction; }

}

action set_sample_rate(bit<16> rate){

meta.rate = rate;
}

table sample_rate(){
key = { meta.tag: exact; }

actions = { set_sample_rate;
NoAction; }

}

control(){

color_flow();
sample_rate();

}

action set_tag_rate(bit<16> tag,
bit<16> rate){

meta.tag = tag;
meta.rate = rate;

}

table generated_tbl(){

key = { meta.ingress_port: exact; }
actions = { set_tag_rate; NoAction; }

}

control(){

generated_tbl();
}

(a) read-after-write dependency that requires 2 stages (b) merged tables that require only one stage

Figure 12: Read-after-write optimization

fully merge the match keys from the two tables. Because

the color_drop table does not match meta.mirror so the

merged table used ternary to match meta.mirror.

Case 3: Optimizing read-after-write dependency. Mod-

ularization is another common paradigm in program develop-

ment. By clearly defining interfaces and decoupling modules,

it allows the independent design and development of indi-

vidual pieces of code. However, the modularization of P4

programs often comes at the expense of RAW dependencies.

In our production P4 programs, it is common for one mod-

ule to set a particular field, which is later read by another

module. Figure 12(a) shows a real program example where

the table color_flow tags each packet depending on which

port it comes from. Then, another sample_rate table sets

the sampling rate based on a packet’s tag. This constitutes

read-after-write dependency; thus, sample_rate has to be

placed at least one stage later than color_flow, resulting in

at least two stages occupied. We found such read-after-write

dependencies are quite annoying in our programs because

many fitting issues were caused by this type of dependency.

With Cetus in hand, we directly applied Cetus in this sce-

nario. Cetus automatically analyzes whether it is better to

trade-off modularization for more efficient and compact code,

given the limited number of physical stages in each pipeline.

In particular, Cetus checks whether meta.tag is solely de-

termined by color_flow, and whether they are applied con-

secutively. If so, it merges the two tables so that the first and

second lookup are performed simultaneously within one stage,

as shown in Figure 12(b). As a side effect, merging these two

380 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Program LoC
Table Num

(Ig/Eg)

Before After Dependency Removed
Time

Diameter (Ig/Eg) Stage Num Diameter (Ig/Eg) Stage Num WAW RAW WAR

PINT [3] 380 13 / 0 6 / 0 7 6 / 0 6 0 2 0 19s

RTT [16] 408 12 / 0 9 / 0 9 8 / 0 8 0 3 0 25s

Bier [18] 703 26 / 4 7 / 2 11 5 / 2 7 2 8 2 41s

P4_protect [17] 576 12 / 1 5 / 1 6 4 / 1 4 0 6 0 25s

Conquest [5] 847 1 / 19 1 / 7 9 1 / 6 6 0 8 0 2m51s

Beaucoup [6] 1677 25 / 0 10 / 0 12 10 / 0 11 0 1 0 6m58s

P4_switch 4701 34 / 25 8 / 5 12 8 / 5 11 0 2 0 11m30s

CDN 6342 19 / 2 10 / 2 11 10 / 1 10 0 3 0 1m27s

Edge vSwitch 2733 32 / 6 9 / 3 11 8 / 2 8 2 3 0 1m21s

Edge Gateway 4417 32 / 37 8 / 7 12 8 / 7 11 2 1 1 7m21s

Table 2: Experimental results conducted on a workstation with Intel Xeon 2.5GHZ CPU and 128GiB RAM

tables may cause the new table to occupy more memory;

however, as designed in §6, Cetus is able to take both factors

(i.e., memory and stage) into account and produces a feasible

solution if such optimization is indeed worthwhile.

Case 4: SDE upgrade. As the programs keep evolving, we

also upgrade the runtime and development-time infrastructure,

including the versions of switch OS and the P4 compiler, to

enjoy the latest performance optimizations and fixes provided

by the vendors. In such an upgrading case, the program must

be re-fit. We can consult Cetus to pinpoint the problem and

search for a feasible table layout. After being automatically

annotated with pragmas, the existing P4 program was suc-

cessfully compiled while keeping its code structure intact.

In this way, Cetus cleared the most challenging obstacle and

enabled the upgrade of the whole system.

9 Evaluation

Our evaluation aims to answer whether Cetus can reduce

different program’s stage usage (§9.1) and how effective the

optimization algorithms are (§9.2). All experiments were

performed on a server with 2.5GHz CPU and 768GiB RAM.

9.1 Optimization

We chose 10 P4 programs, 6 open-sourced and 4 private ones,

to evaluate whether Cetus can optimize and reduce their stage

usage. In this evaluation, we mainly show Cetus’s stage oc-

cupation reduction capability. For each program, we record

its DAG’s diameter and the number of stages it occupies in ϒ
chip before and after optimization. We further listed which

types of dependencies Cetus removed and the time it took for

each program. Table 2 shows the result.

First, Cetus removed 1 to 12 table dependencies, reduced

the program’s diameter by 1 to 2 and 1 to 4 stages. This

shows the effectiveness of the primitives used by Cetus and

our findings in §3.1 also apply to open source programs.

Second, Cetus can successfully find the best candidate at

a decent speed. For simple programs, Cetus can find a plan

in under a minute. For complicated ones, Cetus still managed

to finish the search in minutes. Compared with the days of

efforts developers spent optimizing the program manually,

this is way faster and saves a lot of deployment efforts.

Third, we can see that most of the dependencies removed

100

101

102

103

OOT

P4
Switch

Edge
Gateway

Conquest Edge
vSwitch

Pint

ti
m

e
/s

No optimization
PHV share(w/o sym)

PHV share(w/ sym)
PHV share+2-step

Figure 13: Time for a solution under different optimizations.

were RAW dependencies. This is because of two reasons: (1)

RAW dependency is common in programs. (2) RAW depen-

dency is hard to find and also hard to remove. For example,

below is a code snippet from Beaucoup [6]:

i f (ig_md . c f_key_matched ==1) {

exec_regcoupon_merge () ; / / w r i t e s coupon_merge_check

}

i f (ig_md . c f _ d e c a y _ h a s _ e x p i r e d ==1) {

e x e c _ c o u n t e r _ s e t _ t o _ o n e () ;

} e l s e {

i f (ig_md . c f_key_matched ==1 && ig_md . coupon_merge_check ==0) {

e x e c _ c o u n t e r _ i n c r () ;

}}

In the above code, the action exec_regcoupon_merge()

writes variable coupon_merge_check, which is later read

by the condition of action exec_counter_incr(). Cetus

removes their dependency through the RAW dependency re-

moval primitive, and it reduces one stage occupation. But for

developers, it is hard to notice because it is spread across two

different condition branches far away.

9.2 Performance

To further evaluate the effectiveness of the optimization tech-

niques introduced in §6, we chose several typical programs

with different scales and run experiments with different opti-

mization techniques enabled. Starting from the naive solution

with no optimization, we add vanilla PHV sharing encoding,

symmetry breaking encoding, and finally two-step solving to

Cetus sequentially. We set 1 hour as the timeout threshold.

The result is shown in Figure 13.

Without any optimization, all programs timed out, which

means it is necessary to introduce optimizations. For small-

scaled programs, such as Conquest, Edge vSwitch, and Pint,

adopting PHV sharing encoding can greatly improve the per-

formance, indicates that the bottleneck lines in the complexity

of the encoded SMT formula. However, for large-scale pro-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 381

grams, such as P4 Switch and Edge Gateway, we only met

the deadline after adding all three optimizations. This shows

that for large scale programs, encoding optimization is not

enough, the search space is still too large for the SMT solver

to handle. It is necessary to leverage the key findings in §3.1

and bring in two-step solving to give a hint to the SMT solver.

10 Discussion and Lessons

This section discusses our lessons and limitations.

Is P′ functionally identical to P? In principle, Cetus’s ap-

proaches, including table merging and constraint-based filter

& optimizer, can only change and optimize the location of

tables, rather than the function logic of programs; thus, P′

should be functionally the same as P. While we have not

manually proved our approach on this property, in Alibaba,

we employ a P4 verification tool, Aquila [27], to check the

consistency between P and P′ when Cetus generates P′. If

Aquila returns “yes”, that means we can use P′ to replace P.

So far, we have not seen any inconsistency case.

Can Cetus capture all hardware constraints within ϒ
chip? We encode constraints as many as we can; thus, we

can only make sure that P′ will not violate any constraints we

have encountered before. With the accumulation of more and

more hardware constraints, we believe the capability of Cetus

will become stronger. However, we cannot guarantee every

P′ can compile to ϒ chip. We did experience few cases that

P′ does not compile due to unknown constraints.

Can lengthy diameter always hold? We cannot guarantee

the lengthy diameter can always exist in our production pro-

grams in the future; however, based on our experience with Ce-

tus so far, the stage shortage issue resulting from the lengthy

diameter is still the highest priority barrier in our scenario.

We thus suggest the ASIC vendor consider releasing a chip

with double the number of stages and less memory.

Cetus’s limitations. We have the following main limitations.

First, Cetus can only remove dependencies like WAW, RAW,

and WAR. Cetus cannot handle more tricky cases such as

removing dependency via modifying program semantic. Both

RAW dependency removal algorithms require a third table in

front to parallelize the latter two tables. For programs such

as Syncookies [22], Cheetah [29], because they have long,

chained sequential computations, the requirement of RAW

dependency removal is not met, Cetus cannot perform opti-

mizations. Second, Cetus cannot optimize a program when it

occupies too many resources, since the dependency removal

algorithms come at the cost of additional resources in the

switch, such as PHV and memory. Third, we cannot guaran-

tee Cetus’s implementation is bug-free although we spent a

lot of time checking our implementation bugs; thus, some-

times the output P′ may not be the best one. Finally, if a new

programmable ASIC architecture is introduced, Cetus cannot

be directly used to generate compilable programs for this new

ASIC. Cetus has to encode all constraints of this new ASIC.

11 Related Work

P4 program optimizers and compilers. This type of sys-

tems optimize resource usage in programmable ASICs or sim-

plify programmers’ tasks on expressing their coding intent.

P4All [13, 14] aims to optimize resource usage by leveraging

reusable data structures, such as bloom filters and key-value

stores; however, our production P4 programs do not share

these data structures. P4visor [31, 32] optimizes resources by

merging redundant code fragments (e.g., header parser and

tables). P4visor is a good complementary to Cetus. Before

Cetus was developed, we already built an internal system (sim-

ilar to P4visor) to merge redundant code fragment. µP4 [26]

proposes a modular way to write P4 code. Jose et al. [15] com-

piles P4 programs to architectures such as the RMT and Flex-

Pipe. Domino [24] and Lyra [10] simplify data plane program-

ming by specifying C-like new languages. Chipmunk [11,12]

leverages slicing, a domain-specific synthesis technique, to

remove unnecessary resources cost by Domino. P2GO [30]

proposes an idea that reduces the allocated resources of a P4

program based on traffic trace profiling. However, it might be

hard for us to deploy it in our environment, because if unex-

pected traffic turns up after the profiling, some function might

be already pruned. Different from the state of the art (that

keeps the original dependencies), Cetus optimizes resource

usage by removing dependencies in P4 programs.

Network-wide configuration synthesis. Configuration syn-

thesis work [4,8,9,19,21,28] offers the operator network-wide

abstractions for configuration synthesis. SyNET [8] and Con-

figAssure [19] offer general abstractions to synthesize the

protocol configuration. Recent work [9]indicates that none

of the above systems is scalable to cloud-scale networks.

Propane [1, 2], Snowcap [21], and Jinjing [28] synthesize

BGP, updating, and ACL configurations, respectively.

12 Conclusion

We have presented Cetus, the first system that releases the P4

programmers from frustrating trial and error compiling. Cetus

can automatically convert an uncompilable P4 program into a

functionally identical but compilable P4 program. We have

been using Cetus in our production P4 program development

for one year, and it has effectively decreased our P4 develop-

ment workload by two orders of magnitude (from O(day) to

O(min)).

This work does not raise any ethical issues.

Acknowledgments

We thank our shepherd, Dejan Kostic, and NSDI’22 review-

ers for their insightful comments. We also thank Vladimir

Gurevich for his valuable feedback on both the technical part

and the presentation of this paper. This work is supported

by Alibaba Group through Alibaba Research Intern Program.

Yifan Li is supported in part by the National Natural Science

Foundation of China under Grant Number 61872212.

382 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra

Padhye, and David Walker. Don’t mind the gap: Bridg-

ing network-wide objectives and device-level configu-

rations. In Proceedings of the 2016 ACM SIGCOMM

Conference, pages 328–341, 2016.

[2] Ryan Beckett, Ratul Mahajan, Todd D. Milstein, Jiten-

dra Padhye, and David Walker. Network configuration

synthesis with abstract topologies. In 38th ACM SIG-

PLAN Conference on Programming Language Design

and Implementation (PLDI), 2017.

[3] Ran Ben Basat, Sivaramakrishnan Ramanathan, Yuliang

Li, Gianni Antichi, Minian Yu, and Michael Mitzen-

macher. Pint: Probabilistic in-band network telemetry.

In Proceedings of the 2020 ACM SIGCOMM Confer-

ence, pages 662–680, 2020.

[4] Eric Hayden Campbell, William T. Hallahan, Priya

Srikumar, Carmelo Cascone, Jed Liu, Vignesh Rama-

murthy, Hossein Hojjat, Ruzica Piskac, Robert Soulé,

and Nate Foster. Avenir: Managing data plane diversity

with control plane synthesis. In 18th USENIX Sympo-

sium on Networked Systems Design and Implementation

(NSDI), 2021.

[5] Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jen-

nifer Rexford, Ori Rottenstreich, Steven A Monetti, and

Tzuu-Yi Wang. Fine-grained queue measurement in the

data plane. In Proceedings of the 15th International

Conference on Emerging Networking Experiments And

Technologies, pages 15–29, 2019.

[6] Xiaoqi Chen, Shir Landau-Feibish, Mark Braverman,

and Jennifer Rexford. Beaucoup: Answering many net-

work traffic queries, one memory update at a time. In

Proceedings of the 2020 ACM SIGCOMM Conference,

pages 226–239, 2020.

[7] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3:

An efficient SMT solver. In 14th Tools and Algorithms

for the Construction and Analysis of Systems (TACAS),

2008.

[8] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever,

and Martin T. Vechev. Network-wide configuration syn-

thesis. In 29th International Conference on Computer

Aided Verification (CAV), 2017.

[9] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever,

and Martin T. Vechev. NetComplete: Practical network-

wide configuration synthesis with autocmpleteion. In

15th USENIX Symposium on Networked Systems Design

and Implementation (NSDI), 2018.

[10] Jiaqi Gao, Ennan Zhai, Hongqiang Harry Liu, Rui Miao,

Yu Zhou, Bingchuan Tian, Chen Sun, Dennis Cai, Ming

Zhang, and Minlan Yu. Lyra: A cross-platform lan-

guage and compiler for data plane programming on het-

erogeneous asics. In Proceedings of the 2020 ACM

SIGCOMM Conference, pages 435–450, 2020.

[11] Xiangyu Gao, Taegyun Kim, Aatish Kishan Varma,

Anirudh Sivaraman, and Srinivas Narayana. Autogener-

ating fast packet-processing code using program synthe-

sis. In 18th ACM Workshop on Hot Topics in Networks

(HotNets), 2019.

[12] Xiangyu Gao, Taegyun Kim, Michael D Wong, Divya

Raghunathan, Aatish Kishan Varma, Pravein Govindan

Kannan, Anirudh Sivaraman, Srinivas Narayana, and

Aarti Gupta. Switch code generation using program

synthesis. In Proceedings of the 2020 ACM SIGCOMM

Conference, pages 44–61, 2020.

[13] Mary Hogan, Shir Landau Feibish, Mina Tahmasbi

Arashloo, Jennifer Rexford, and David Walker. Modular

switch programming under resource constraints. In 19th

USENIX Symposium on Networked Systems Design and

Implementation (NSDI), 2022.

[14] Mary Hogan, Shir Landau Feibish, Mina Tahmasbi

Arashloo, Jennifer Rexford, David Walker, and Rob Har-

rison. Elastic switch programming with P4All. In 19th

ACM Workshop on Hot Topics in Networks (HotNets),

2020.

[15] Lavanya Jose, Lisa Yan, George Varghese, and Nick

McKeown. Compiling packet programs to reconfig-

urable switches. In 12th USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI),

2015.

[16] Elie Kfoury, Jorge Crichigno, Elias Bou-Harb, and Gau-

tam Srivastava. Dynamic router’s buffer sizing using

passive measurements and p4 programmable switches.

[17] Steffen Lindner, Daniel Merling, Marco Häberle, and

Michael Menth. P4-protect: 1+ 1 path protection for

p4. In Proceedings of the 3rd P4 Workshop in Europe,

pages 21–27, 2020.

[18] Daniel Merling, Steffen Lindner, and Michael Menth.

Hardware-based evaluation of scalable and resilient mul-

ticast with bier in p4. IEEE Access, 9:34500–34514,

2021.

[19] Sanjai Narain, Gary Levin, Sharad Malik, and Vikram

Kaul. Declarative infrastructure configuration synthesis

and debugging. J. Network Syst. Manage., 16(3):235–

258, 2008.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 383

[20] Tian Pan, Nianbing Yu, Chenhao Jia, Jianwen Pi, Liang

Xu, Yisong Qiao, Zhiguo Li, Kun Liu, Jie Lu, Jianyuan

Lu, et al. Sailfish: accelerating cloud-scale multi-tenant

multi-service gateways with programmable switches. In

Proceedings of the 2021 ACM SIGCOMM Conference,

pages 194–206, 2021.

[21] Tibor Schneider, Rüdiger Birkner, and Laurent Vanbever.

Snowcap: synthesizing network-wide configuration up-

dates. In Proceedings of the 2021 ACM SIGCOMM

Conference, pages 33–49, 2021.

[22] Dominik Scholz, Sebastian Gallenmüller, Henning

Stubbe, Bassam Jaber, Minoo Rouhi, and Georg

Carle. Me love (syn-) cookies: Syn flood mitiga-

tion in programmable data planes. arXiv preprint

arXiv:2003.03221, 2020.

[23] Devavrat Shah and Pankaj Gupta. Fast updating algo-

rithms for tcam. IEEE Micro, 21(1):36–47, 2001.

[24] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu,

Changhoon Kim, Mohammad Alizadeh, Hari Balakr-

ishnan, George Varghese, Nick McKeown, and Steve

Licking. Packet transactions: High-level programming

for line-rate switches. In Proceedings of the 2016 ACM

SIGCOMM Conference, pages 15–28, 2016.

[25] John Sonchack, Devon Loehr, Jennifer Rexford, and

David Walker. Lucid: A language for control in the data

plane. In Proceedings of the 2021 ACM SIGCOMM

Conference, pages 731–747, 2021.

[26] Hardik Soni, Myriana Rifai, Praveen Kumar, Ryan Do-

enges, and Nate Foster. Composing dataplane programs

with µp4. In Proceedings of the 2020 ACM SIGCOMM

Conference, pages 329–343, 2020.

[27] Bingchuan Tian, Jiaqi Gao, Mengqi Liu, Ennan Zhai,

Yanqing Chen, Yu Zhou, Li Dai, Feng Yan, Mengjing

Ma, Ming Tang, et al. Aquila: a practically usable veri-

fication system for production-scale programmable data

planes. In Proceedings of the 2021 ACM SIGCOMM

Conference, pages 17–32, 2021.

[28] Bingchuan Tian, Xinyi Zhang, Ennan Zhai,

Hongqiang Harry Liu, Qiaobo Ye, Chunsheng

Wang, Xin Wu, Zhiming Ji, Yihong Sang, Ming Zhang,

et al. Safely and automatically updating in-network acl

configurations with intent language. In Proceedings of

the 2019 ACM SIGCOMM Conference, pages 214–226.

2019.

[29] Muhammad Tirmazi, Ran Ben Basat, Jiaqi Gao, and

Minlan Yu. Cheetah: Accelerating database queries

with switch pruning. In Proceedings of the 2020 ACM

SIGMOD International Conference on Management of

Data, SIGMOD ’20, page 2407–2422, New York, NY,

USA, 2020. Association for Computing Machinery.

[30] Patrick Wintermeyer, Maria Apostolaki, Alexander Diet-

müller, and Laurent Vanbever. P2GO: P4 profile-guided

optimizations. In The 19th ACM Workshop on Hot Top-

ics in Networks (HotNets), 2020.

[31] Peng Zheng, Theophilus Benson, and Chengchen Hu.

P4visor: Lightweight virtualization and composition

primitives for building and testing modular programs. In

14th International Conference on emerging Networking

EXperiments and Technologies (CoNEXT), 2018.

[32] Peng Zheng, Theophilus A. Benson, and Chengchen

Hu. Building and testing modular programs for pro-

grammable data planes. IEEE J. Sel. Areas Commun.,

38(7):1432–1447, 2020.

384 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a)

(b)

(c)

match action

a b = c + 1

match action

a b = 1

match action

a
b = c + 1

b = 1

match action

a b = c + 1

match action

d a = 1

match action

a_0 b = c + 1

match action

d a = 1

match action

c a = 0

match action

c
a = 0

a_0 = 0

match action

c a = 1

match action

a b = 1

match action

c a = 1

match action

a_0, c b = 1

match action

d a = 0

match action

d
a = 0

a_0 = 0

Figure 14: Examples for control plane APIs converter: (a)

WAW (b) WAR (c) RAW-match.

APPENDIX

Appendices are supporting material that has not been peer-

reviewed.

A Control Plane APIs Converter

This section details how Cetus’s control plane API converter

bridges the inconsistency between the original program P and

the optimized one P′. We labeled the tables in Figure 7 and

show the example tables in Figure 14.

Write-after-write dependency. Since two tables ta1 and ta2

in Figure 14(a) share the same match field, the entries for both

tables are inserted to the merged table t ′a directly. However,

when two entries e1, e2 for ta1 and ta2 respectively overlaps

their match field (e.g. e1 matches 10.0.0.0/8 while e2 matches

10.0.0.0/16), entry e2 has higher priority than e1 because table

ta2 applies later than ta1.

Write-after-read dependency. The match field of table tb2 is

renamed. For an entry e2 inserted to table tb2, Cetus renames

the match fields’ name and inserts it to table t ′b2. For example,

in Figure 14(b), the match field a in e2 is renamed to a_0.

Entries for table tb3 are inserted to table t ′b3 directly.

Read-after-write-match dependency. In this case, Cetus

records all the entries inserted to table tc2 and tc3 in a ‘logical

table’ stored in memory. When a control plane application

inserts an entry e2 to table tc2 with match value ce2
, Cetus first

inserts e2 to table t ′c2 unmodified. Next, if there exists an entry

recorded in logical table tc3 that matches the result of action

in table tc2, which is a = 1 in Figure 14(c), then Cetus creates

a new entry e′2 that matches c with value ce2
and ignores value

of a_0 and inserts it to table t ′c3. When an entry e3 is inserted

to table tc3, there are two cases. If e3 matches the result of

the action in table tc2, record it in the ‘logical table’ and do

not insert it anywhere. Otherwise, rename the match field

name of e3 from a to a_0, add another match field c in e3 but

ignores the value. The ‘ignore’ can be expressed by using the

wildcard if t ′c3 uses TCAM memory, or by enumerating all

possible values if it uses SRAM memory.

Read-after-write-action dependency. This part has been de-

tailed in §7.

The entry removal operation is the reverse of the above

actions.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 385

Exploiting Digital Micro-Mirror Devices for Ambient Light Communication

Talia Xu, Miguel Chávez Tapia, and Marco Zúñiga

Technical University Delft
{m.xu-2, m.a.chaveztapia, m.a.zunigazamalloa}@tudelft.nl

Abstract
There is a growing interest in exploiting ambient light for
wireless communication. This new research area has two key
advantages: it utilizes a free portion of the spectrum and does
not require modifications of the lighting infrastructure. Most
existing designs, however, rely on a single type of optical
surface at the transmitter: liquid crystal shutters (LCs). LCs
have two inherent limitations, they cut the optical power in
half, which affects the range; and they have slow time re-
sponses, which affects the data rate. We take a step back to
provide a new perspective for ambient light communication
with two novel contributions. First, we propose an optical
model to understand the fundamental limits and opportuni-
ties of ambient light communication. Second, based on the
insights of our analystical model, we build a novel platform,
dubbed PhotoLink, that exploits a different type of optical
surface: digital micro-mirror devices (DMDs). Considering
the same scenario in terms of surface area and ambient light
conditions, we benchmark the performance of PhotoLink us-
ing two types of receivers, one optimized for LCs and the
other for DMDs. In both cases, PhotoLink outperforms the
data rate of equivalent LC-transmitters by factors of 30 and
80: 30 kbps & 80 kbps vs. 1 kbps, while consuming less than
50 mW. Even when compared to a more sophisticated multi-
cell LC platform, which has a surface area that is 500 times
bigger than ours, PhotoLink’s data rate is 10-fold: 80 kbps
vs. 8 kbps. To the best of our knowledge this is the first work
providing an optical model for ambient light communication
and breaking the 10 kbps barrier for these types of links.

1 Introduction
In the last two decades, the adoption of wireless communi-
cation has gone through an unprecedented expansion. This
ever-increasing demand has raised warnings of a looming
‘radio frequency (RF) crisis’ [5], and various alternative tech-
nologies are being explored to mitigate this risk. Among
them, visible light communication (VLC) has gained signif-
icant attention due to its wide, free and unregulated spec-
trum. VLC is a sub-area of optical wireless communication

(OWC) that focuses on light sources that are incoherent, di-
vergent and multichromatic (such as sunlight and artificial
white light). VLC allows standard LEDs to provide illumi-
nation and communication and it is enabling several novel
applications, from interactive toys [23], indoor positioning
systems [27], to LiFi [20]. VLC, however, has an important
limitation: it requires direct (active) control over the circuitry
of the light source to modulate its intensity. Most of the light
in our environments comes from sources we cannot control
directly, not only the sun but also plenty of artificial lighting.

To exploit the vast presence of ambient light, researchers
are investigating backscattering (passive) communication.
Passive-VLC modulates ambient light using liquid crystal
shutters (LCs). LCs can be seen as light shutters that allow
(or block) the passage of light to communicate logical ones
(or zeros). Recent studies report ambient light links reaching
more than 50 m with data rates around 1 kbps, while consum-
ing only a few mWs [7, 25]. Ambient light communication is
a transformative eco-friendly concept because it piggybacks
on top of energy that already exists, but current passive-VLC
studies face two main challenges.

Challenge 1: There has been no optical analysis of various
passive VLC systems. In a way, our community has rushed
into the design of systems without carrying out first a proper
optical analysis of the various types of ambient light and their
impact on communication. Hence, several designs have been
implemented reporting a wide range of (i) coverages (from
a few meters to several tens of meters), (ii) data rates (from
hundreds of bps to several kbps), and (iii) lighting conditions
(from cloudy and sunny days to various types of artificial
lighting). However, without an analytical framework, it is
difficult to define a common baseline to directly compare
and understand which elements contribute to such disparate
performance. More importantly, we cannot provide insights
about the fundamental opportunities and limits of ambient
light communication.

Challenge 2: Transmitters focus on a single optical device.
State-of-the-art (SoA) designs in passive VLC studies have
been mainly constrained to a single type of optical surface,

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 387

the LCs, but LCs have some inherent limitations. First, even
before any type of modulation begins, LCs cut the optical
power in half due to the use of polarizers. This undesirable,
but necessary, property of LCs reduces the communication
range. Second, LCs have inherently slow rise and fall times,
which has limited the data rate of all single-cell designs to
values around 1 kbps [7, 13, 29]. Our design space could
broaden greatly if we include other types of optical surfaces.

In this work, we take a step back to rethink passive-VLC.
First, we propose a simple optical model to gain fundamental
insights. Then, based on the outcomes of our model, we ex-
plore the use of digital micromirror devices (DMDs), which
have different operating principles compared to LCs. In par-
ticular, our work makes the following contributions:

Contribution 1 [section 2]: An optical model for ambi-
ent light communication. Our model includes a key optical
principle that has not been considered in ambient light com-
munication: the fact that the performance depends not only on
the luminous flux of the light source (output power) but also
on its radiation pattern (diffused or directional). For example,
this insight explains why a system tested under artificial light
can perform better than under diffuse sunlight, even though
diffuse sunlight can provide illumination that is an order of
magnitude higher than artificial lighting.

Contribution 2 [section 3]: A new type of transmitter de-
vice. Our model shows that maintaining directional light pat-
terns is central for passive links, but maintaining such direc-
tionality requires the right type of (i) ambient light and (ii)
transmitter (optical surfaces with specular reflection). To at-
tain that goal, we propose a novel transmitter based on DMDs.
Inexpensive DMDs, however, are designed for video projec-
tion and provide slow update rates, around a few hundred
Hz. We design a custom controller to generate carriers up to
220 kHz.Our novel transmitter provides higher contrast and
faster switching speed, allowing us to increase the data rate of
passive links by a factor of 80 compared to LC transmitters.

Contribution 3 [section 4 and section 5]: An implemen-
tation and thorough evaluation of our platform. We build
two transmitters, one with a DMD and the other with an LC;
and two receivers, one optimized for LCs and the other for
DMDs. Using the same setup for all evaluations, in terms
of surface area and illumination, our results show that (i) if
we use the receiver optimized for LCs, PhotoLink attains 30
kbps for a distance of six meters and a BER below 1%, com-
pared to the 1 kbps provided by the LC for the same range
and BER [3, 7, 29], (ii) if we use the receiver optimized for
DMDs, the data rate increases to 80 kbps. This performance
is obtained with a power consumption around 45 mW. Fur-
thermore, even if we compare PhotoLink with a multi-cell LC
system having a surface area that is 500+ times bigger than
ours (66 cm2 vs. 0.13 cm2) [28], PhotoLink can achieve an
order of magnitude higher data rate (80 kbps vs. 8 kbps). To
the best of our knowledge, our work is the first to break the
10 kbps barrier with ambient light communication.

2 System Analysis
A passive VLC system has three basic components, the emit-
ter (light source), the transmitter (modulating surface) and the
receiver. Every SoA study adopts a different set of compo-
nents. Some studies use a light bulb as the emitter, others use a
flashlight or the sun. Some studies use a diffuser at the modu-
lating surface, others use retro-reflectors or aluminium plates.
Some studies use lenses at the receivers, others do not. This
wide range of set ups is, in part, responsible for the equally
wide range of performances reported in the literature, with
data rates ranging from 0.5 kbps to 8.0 kbps to link distances
ranging from 2 m to 80 m [3, 13, 25, 26, 28, 29].

Leaving aside the specific modulation methods of all these
studies, we want to gain a fundamental understanding of pas-
sive systems and their components. Building upon the models
developed for free-space optics [21], we propose a framework
to analyze passive communication with ambient light.

2.1 Maintaining the luminous flux
First, let us start with a guideline that, to the best of our knowl-
edge, has not been stated in any prior passive-VLC study: The
most important aim in passive communication is to convey as
much LUMINOUS FLUX as possible from the emitter to the
receiver. The luminous flux, which is measured in lumen, is
different from illuminance, which is measured in lux (lux =
lumen per unit area). To compare two different systems fairly,
one should know at least the area and the illuminance at the
transmitter (modulating surface). This represents the amount
of energy that is captured by the transmitter (EC). Unfortu-
nately, few studies report these two pieces of information.

The luminous flux, however, is not the only important pa-
rameter. Equally important is the radiation pattern, which
determines how much luminous flux is maintained through-
out the optical link (i.e., how much of EC is able to arrive at
the receiver). To highlight the importance of the radiation pat-
tern, Fig. 2 depicts a specular (mirror-like) surface under four
different types of light sources. The effect on the luminous
flux is shown from more to less directive:

a) Ideal. First, to exemplify an ideal setup, let us use a laser,
which is a highly directional source where the luminous flux
is hardly lost. Due to this property, lasers are used extensively
for long-distance free-space communication. Lasers, however,
are a fundamentally different type of light source that is not
as pervasive (or safe) as natural or artificial white light, and
therefore, it is considered only as a reference in this paper.

b) Directional (sunlight in a clear day). On a clear day,
sunlight rays travel in parallel and a specular surface maintains
that directionality (luminous flux) towards the receiver. We
found only one study exploiting this setup, but with LCs [7].
Our platform shows the significant gains that can be obtained
in this setup using DMDs.

c) Lambertian (light bulbs and flashligths). With light
bulbs, only a fraction of the luminous flux radiated by the
source reaches the surface (green arrows in Fig. 1c). Further-

388 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Ideal
[laser]

(b) Directional
[direct sunlight]

(c) Lambertian
[light bulb]

(d) Random
[diffuse sunlight]

Figure 1: The effect of different radiation patterns on the luminous flux. The reflective surface is specular.

more, since rays are radiated in different angles, when the
luminous flux hits the surface, some rays are lost because the
impinging angle is either too broad or too narrow to hit the re-
ceiver (blue arrows). This scenario is used by all the backscat-
tering studies reported in the literature [13, 25, 28, 29].

d) Random (sunlight in a cloudy day). Clouds scatter sun-
light, emitting rays uniformly in random directions. Due to
this phenomenon, only an infinitesimally small fraction of the
rays will impinge the surface at the right angle to reach the
receiver (green arrow in Fig. 1d). Our model shows that this is
the worst case scenario with specular surfaces. No practical
links can be obtained in this setup.

The key point of this preliminary analysis is to highlight
the importance of maintaining the luminous flux throughout
the optical link. In the next subsection, we present a model to
capture more detailed insights with a ray-tracing simulator.

2.2 Ray-tracing model
A 2D representation of a typical passive system is shown in
Fig. 2a. The optical link has two main parts. First, the link
between emitter and transmitter. Light is emitted from the
light source OL, with a (yellow) wavefront represented by AL.
The modulating surface OT , acting as a transmitter, is at a
distance DLT from the light source, and receives a fraction of
the luminous flux emitted by OL. Second, the link between
transmitter and receiver. The flux reflected by the surface OT
is represented with a (blue) wavefront AT

1. The photoreceiver
OR is at a distance DT R from the transmitter, and collects
only a fraction of the flux reflected by OT . Another relevant
parameter is the Field-of-View (FoV) of the receiver, which
is represented by αR (purple coverage). A wide FoV can cope
with movements at the transmitter, but captures more noise.

Our toolbox, based on the above described model, is built
upon Optometrika, a ray-tracing tool [18]. In essence, the
toolbox divides the surface of the emitter, transmitter and
receiver into small elements and calculates the fraction of
rays that are able to reach the receiver. To assign the correct
weight to each ray, Optometrika considers important optical
parameters such as the angles of radiation, incidence and
reflection. To analyze ambient light communication, the key
inputs we need to provide to the toolbox are the radiation
patterns of the emitter and the modulating surface.

1It is important to note that our model also captures the performance of
retroreflectors because, from an optical perspective, the reflected radiation
patterns are similar to those caused by mirrors

(a) A 2D representation of the
optical system

(b) Different types of reflections
based on the Phong model [19].

Figure 2: Optical system and different reflection types.

2.3 Insights & Guidelines
A passive link is, in essence, a triplet <emitter, transmitter,
receiver> that finetunes the parameters of each element to
optimize the performance. To analyze the complete design
space, including the systems proposed in prior studies, we
utilize a few abstractions for the emitters and transmitters, as
presented in Tables 1 and 2.

Unless indicated otherwise, our analysis assumes that (i)
there is no noise, which is similar to conducting experiments
in the dark, (ii) the illuminance on the transmitter is fixed
at 1800 lx, to provide a common baseline for all cases and
remove the trivial case where the performance is increased by
increasing the illuminance, and (iii) the area of the receiver is
1×1 cm2. The selected area has no real impact on the analysis.
The only assumption we make is that the transmitter’s area is
bigger than the receiver’s, which is the case for most systems.
Also, for our initial analysis, the receiver’s FoV does not play
a role because we assume a dark environment. In practice, the
FoV plays a critical role and we will discuss it later on.

Regarding the modulating surface, we consider two main
reflective patterns, as shown in Fig. 2b: diffuse reflection,
caused by rough surfaces that reflect light in all directions,
and specular reflection, caused by smooth surfaces. We further
classify specular surfaces based on their specular angle. If the
angle is zero, we call it mirror reflection.

2.3.1 Choosing the right emitter and transmitter
The design space of passive links can be divided into six
main blocks based on the <emitter, transmitter> pair. Table 3
shows previous works categorized in this manner. Considering
that direct sunlight provides tens of thousands of lx, overcast
sunlight thousands of lx and light bulbs only hundreds of lx, a

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 389

Table 1: Emitters
Source Type Size of OL DLT

L1 LED 5 cm × 5 cm 1 m
L2 LED 5 cm × 5 cm 4 m
L3 Diffuse Sunlight N/A N/A
L4 Direct Sunlight N/A N/A

Table 2: Transmitters
Modulating

Surface Type
Specular

Angle Size of OT Illuminance

T1 Diffuse N/A 3 cm × 3 cm 1800 lx
T2 Specular 0.3° 3 cm × 3 cm 1800 lx
T3 Specular 1° 3 cm × 3 cm 1800 lx
T4 Specular 5° 3 cm × 3 cm 1800 lx

designer may assume that for any given surface, sunlight will
always perform better than light bulbs. Similarly, considering
that specular (mirror) surfaces provide stronger reflections
than diffuse surfaces, a designer may assume that for any
type of ambient light, a specular reflector will always perform
better. Neither assumption is correct. In fact, we show that
a particular combination of sunlight and specular reflectors
gives the worst performance.

Fig. 3 depicts the signal strength of various scenarios as a
function of the transmitter-receiver distance (DT R). We con-
sider all six possible combinations of emitters: LED (L1 &
L2), overcast day (L3), clear day (L4); and transmitters: dif-
fuse (T1), specular (T2). Our results show four design regions,
which are described next from worst to best. Our evaluation
section validates many of these results empirically.

Region 1: cloudy day & specular surface (L3-T2 in Fig. 3a,
gray area in Table 3). This region captures the scenario in
Fig. 1d, where light arrives in a scattered manner and only
an infinitesimal amount of the flux reaches the receiver. The
signal strength of this setup is so weak and decays so fast,
compared to the other scenarios, that it is not shown within
the range of Fig. 3a to have a clearer view of the other regions.

Region 2: any light & diffuse surface (LX-T1, blue area).
When a diffuse surface is used, it does not matter the radiation
pattern of the light source, so long as the luminous flux at
the transmitter’s surface is the same. Note that all T1 curves
overlap with each other in Fig. 3a. This occurs because ideal
diffusers, such as paper or plaster, distribute the reflections of
the impinging flux in all directions.

Region 3: LED & specular surface (L1/L2-T2, red area).
This is the second best region, and coincidentally, the main
focus of prior work using retro-reflectors. Artificial lights,
however, offer a wide range of radiation patterns, resulting
in widely different performance. To illustrate this point we
use Fig. 3b, where two emitters are placed at 1 m and 4 m
(L1 & L2). Both emitters attain the same illuminance at
the receiver (1800 lx, a white light illuminance of 1800 lx
over an 1m2 surface is approximately equivalent to the power
of a 25 W LED), but L2, which is further away, provides
a stronger signal strength, which is counter-intuitive. This

Table 3: A taxonomy of passive VLC systems

Light
Source

Surface
Type

Specular
(includes

retro-reflectors)
Diffuse

LED
RetroVLC [13]

PassiveVLC [29]
RetroTurbo [28]
RetroI2V [25]

Sunlight
(Cloudy Day)

Tweeting with
Sunlight (TwSL) [4]

Sunlight
(Clear Day) ChromaLux [7] Luxlink [3]

occurs because the further away the light source is, the more
it behaves as a distant point source, leading to more directional
beams impinging on the transmitter, and hence, less flux lost
towards the receiver, c.f. Fig. 1c. In practice, L1 could be seen
as a light bulb and L2 as a flashlight, which explains why
studies using a flashlight attain better results [25, 28].

Region 4: clear day & specular surface (L4-T2, green area).
This is the best operation region. Note that the signal strength
hardly decays in Fig. 3a. This occurs because the high direc-
tionality of clear sunlight maintains the luminous flux over
long distances, which is why heliographs (mirrors) used in the
1800’s reached ranges beyond 100 km. This same property
can increase the data rate of ambient light links. In practice,
air attenuates the signal strength (similar to what happens
with lasers), but the benefits of directionality remain strong.

2.3.2 Choosing the right specular surface
The above analysis highlights the importance of maintain-
ing directionality throughout the optical link. However, given
that there are no perfect mirror-reflectors, how critical is the
specular angle? A wide specular angle can be the result of
imperfections on the surface. For example, many studies use
retro-reflectors, but the quality of retro-reflectors can vary.
Fig. 3c shows the signal strength of surfaces with different
specular angles, from narrow (T2, 0.3◦) to wide (T4, 5.0◦),
considering an LED (L1) and direct sunlight (L3). When an
LED is used (blue lines), the misaligned radiation pattern of
the LED is more relevant than the specular angle, therefore,
there is not much difference among the various surfaces. How-
ever, for a directional source (red lines), a large specular angle
(e.g. 5◦ for T4) can lead to a significant decrease in the signal
strength. Thus, the more directional the rays, the more critical
is the use of high-quality specular surfaces.

2.3.3 Choosing the right receiver
Passive-VLC systems use cameras and photodiodes as re-
ceivers. Cameras are widely available in smartphones, but
they are power hungry and slow, allowing only a few hundred
frames per second. Photodiodes (PDs), on the other hand, are
inexpensive, low-power and have a high bandwidth. Thus,

390 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Signal strength for different light source
and surface combinations

(b) Signal strength for LEDs at different
distances DLT .

(c) Signal strength for different specular
angles.

Figure 3: Different simulation setups.

PDs are the preferred choice for high data rate links. A key
element in the PD’s design is its FoV. The FoV will not only
capture the intended signal but the surrounding noise as well
(purple coverage in Fig. 2a). In practice, to maximize the
SNR, the receiver’s FoV should cover only the modulating
surface, but that is difficult to attain. PDs with varying FoV
have been used in the literature, ranging from 1◦ to close to
90◦ [3, 26]. Many studies using the wide FoV, however, were
conducted at night with no interfering ambient light, which is
similar to having a nearly perfect FoV of 0°. Given that our
system is aimed at working with surrounding ambient light
(noise), we borrow the design from [3], which uses a lens at
the receiver to reduce the FoV, and thus, limit the noise level.

Overall, our analysis uncovers two key design guidelines.
First, for the emitter-transmitter link. Direct sunlight, flash-
lights and light bulbs –in that order– are preferred due to their
directionality. Diffuse (cloudy) daylight is the least ideal con-
dition in spite of being the second most powerful source (after
direct sunlight). Second, for the transmitter-receiver link. The
more directional the light source is, the more critical is to use
mirror-like reflectors. The only case where diffuse surfaces
are preferred is when the impinging light is diffuse as well.

3 Transmitter Design
3.1 LC limitations
Most passive-VLC systems using either transmissive [3, 30]
or reflective (backscattering) principles [13, 29] rely on liquid
crystal shutters (LCs) as the modulating surface. Unlike liquid
crystal displays (LCDs), LCs do not have embedded light
sources. LCs are readily available, economical, and power
efficient, but they suffer from two intrinsic limitations.

3.1.1 Limitation 1: High signal attenuation
LCs only allow a single polarization direction to pass through.
All other directions are either fully or partially attenuated.
Ambient light, however, is not polarized. This implies that
only half of the power can pass through a linear polarizer.
On the other hand, DMDs have microscopic mirrors with a
high reflection coefficient and are polarization insensitive. For
example, the DLP2000 module from Texas Instruments has an
efficiency of 97% [9]. Thus, considering the same modulating
area and incoming illuminance, DMDs radiate almost 100%

more light than LCs, which can be exploited to increase the
range or the data rate of passive links.u

3.1.2 Limitation 2: Limited bandwidth
The rise and fall times of commercial LCs take a few ms, as
shown in Fig. 4d. These times limit the bandwidth to be under
1 kHz. Furthermore, LCs combine two different operation
principles, an electrical signal for the rise time and mechanical
inertia for the fall time. This asymmetric operation makes the
fall time much slower and it is usually the main bottleneck
to increase the bandwidth. Active research has been carried
out to squeeze as much data rate as possible from that limited
bandwidth, but community efforts are still restricted to around
1 kbps for single-cell designs [3,7,13,29] and 8 kbps for more
sophisticated multi-cell designs [25, 28]. DMDs, on the other
hand, use the same (fast) operating principle for the rise and
fall times. We exploit this fast switching speed to increase the
data rate of passive links by an order of magnitude or more.

3.2 DMD basics
A DMD is an optical micro-electro-mechanical system
(MEMS) that contains between a few hundred thousand and
several millions of highly reflective microscopic mirrors of
less than 10 microns each. A DMD can be controlled by
electrical pulses, which flip each mirror to one of two fixed
directions, for example, +12◦ and −12◦. DMDs usually come
integrated within a sophisticated projector system called Dig-
ital Light Processing (DLP). Besides the DMD, the DLP has
a lamp, a light absorber and a projection lens, as shown in
Fig. 4a. A micro-mirror is on if its angle is tilted towards
the projection lens, and off if the angle is tilted towards the
light absorber. All these optical and electrical components are
tightly synchronized by the DLP controller.

There are multiple types of DLPs, as shown in Table 4.
All these DLPs tackle Limitation-1 because DMDs have a
high reflective coefficient by design, but exploiting the DMDs’
potential for higher bandwidth is harder to attain (Limitation-
2). On one hand, there are inexpensive units, such as the
DLP2000 (∼ ¤100), but their screen refresh rate is too slow.
The refresh rate can be seen as the equivalent of the rise
(or fall) time in an LC. At 120 Hz, the DLP2000 is even

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 391

(a) States: ON/OFF (right/left
pixel). Reprinted from [12].

(b) Maximum data rate of out-of-
the-box DMD

(c) DMD rise/fall time with cus-
tom controller

(d) LC rise/fall time

Figure 4: DMD Pixel states and DMD and LC timing characteristics.

slower than the LC shown in Fig. 4d, which provides 320
Hz (1000×2

1.38+4.82). On the other hand, there are units providing
refresh rates above 20 kHz, but with prices beyond ¤4K, they
are prohibitively expensive compared to LC-based systems,
which cost a few tens of Euros. A single DMD device (instead
of an integrated unit) has comparable cost (¤26) to a LC.

The inability to exploit DMDs is an important barrier in
passive-VLC. While there are multiple studies utilizing LCs,
there are only a few utilizing DMDs. One of those studies
uses the same DMD we use, the DLP2000, but attains only a
few bits per second because they only use the default refresh
rate (120 Hz) and utilize a smartphone camera as a receiver,
which is inherently slow [2]. The other studies utilize the more
sophisticated DLP4500 (¤1100) [10, 11], which provides a
maximum refresh rate of 4.2 kHz. Those studies, however,
do not exploit that refresh rate for digital communication,
but to generate analog signals of just a few tens of Hz (sine,
square, triangle, saw-tooth) for localization and audio trans-
missions. We design a controller for the inexpensive DMD
inside the DLP2000 (¤26) and increase its refresh rate to
220 kHz, almost a factor of ten faster than the most expensive
DLP (DLP9500, ¤4400). Next, we describe the main limita-
tion of the DLP2000 for ambient light communication, and
subsequently, the design of the PhotoLink controller.

3.3 Limitations of inexpensive DMDs.
The DMD from the DLP2000 is the most readily available and
economical product, but it is designed for display applications.
Hence, for ambient light communication, logical 1s and 0s
can only be conveyed as a series of white and black images in
a video, which leads to the slow update rate shown in Fig. 4b.
In a video application, the pixel’s color is obtained by (i)
multiplexing RGB beams and (ii) changing the duty cycle
of the mirror for each color beam. DMDs provide incredible
images, with up to 16.7 million colors, thanks to the fine-
grained duty cycle provided by the micro-mirrors. The micro-
mirrors can be flipped at very high speeds between their
on/off status, enabling short operational periods τ, with τ � T .
These short periods allow a large number of (primary color)
combinations. The operation of DMDs, however, is designed
for the human eye, which has a slow response. As long as
the 3T period takes less than 8.3 ms (120 Hz), people will
only see high quality videos. Photodiodes, on the other hand,
have MHz bandwidth and do not need to capture colors. For

Figure 5: The block diagrams of an off-the-shelf DMD (green,
left), and our custom PhotoLink controller (blue, right)

PhotoLink, we need control of τ, not T . Thus, our goal is to
remove the controller in the original system and design a new
one that gets us as close as possible to the bare fast switching
speed of the micro-mirror.

3.4 PhotoLink controller
There are two main obstacles preventing the use of inexpen-
sive DMDs for ambient light communication: no suitable
hardware abstractions or operational modes. Next, we de-
scribe each obstacle and the solutions we provide.

3.4.1 Hardware abstraction
Most commercial DLPs do not expose control and power sig-
nals to user applications, as illustrated in Fig. 5. There are
two ASIC components preventing direct access to these sig-
nals: the controller and power management. The controller
implements the logic to set each micro-mirror and an I2C in-
terface. The interface is the only means to communicate with
user applications and hides all control signals. It is therefore
impossible to extend beyond the supported frame rate by the
controller (120 Hz for the DLP2000). The power management
controls the DMD power and the integrated RGB light source,
which is not needed for ambient light communication.

To increase the refresh rate of the DMD, we remove all
hardware components from the original DLP design and use
only the DMD. As shown in Fig. 5 (blue side), our main com-
ponents are: (i) the power management unit, which provides
the necessary voltage supplies for different DMD operations
without requiring a light source; (ii) an FPGA, which supplies

392 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 4: Commercial DMD Module
Name Clock Rate Data Bus Screen Refresh Rate # of Pixels Module (DLP) Price DMD Price # of pins

DLP2000 60-80 MHz 12(bits)x1 120 Hz 640x360 ¤109.01 ¤26.14 42
DLP4500 80-120 MHz 24(bits)x1 4.2 KHz 912x1140 ¤1106.49 ¤144.69 80
DLP7000 200-400 MHz 16(bits)x2 32.5 kHz 1024x768 ¤4144.09 ¤866.96 203
DLP9500 200-400 MHz 16(bits)x4 23.1 kHz 1920x1080 ¤4403.30 ¤2693.38 355

the data and logic for updating the DMD; and (iii) the Mi-
croblaze module (soft-processor), which runs on the FPGA
and provides a user interface but without hiding the control
logic. This interface is used to configure the packet format
and the transmitting frequency (explained in section 4).

3.4.2 Operational modes.

Creating a new hardware abstraction is necessary but insuffi-
cient to use the DLP2000 for ambient light communication.
The next step is to apply the appropriate operational mode to
switch the mirrors as fast as possible. The manufacturer does
not disclose all the required information to tackle this step, so
we base our design on two references: the data sheet of the
DMD [9] and a basic description of micro-mirrors [12].

The switching of the mirrors involves two steps: the mem-
ory state and micro-mirror state. In the memory state, the
value of each mirror is set (on/off), but the mirror does not tilt.
In the micro-mirror state, an actuation pulse tilts the mirrors
to their new value. These states define two operational modes.

Individual pixel mode. In this mode, every pixel acts as
an individual binary reflector. This allows the DMD to be
configured as a fine-grained video projector. The DLP2000
has more than 230 thousand pixels, whose memory has to
be written sequentially. As a result, the memory state takes
a few hundred µs before any actuation (transmission) can be
performed.

Global mode. Considering that the bulk of the delay is in
the memory state, it would be ideal to by-pass it. In ambient
light communication, a fine-grained control of the DMD is not
necessary, as photodiodes are used as receivers2 It is sufficient
to update all pixels at once and use the DMD as a single-pixel
device, which we dub the global mode. In this mode, we do
not write the memory of each pixel, but instead write a global
’0’ or ’1’ to all pixels. Attaining this operation requires a
careful coordination of various signals3, but the bandwidth
increases dramatically compared to the original DLP design,
as shown in Fig. 4c: 60 Hz vs 217.4 kHz, a factor of 3600+4.
Compared to the LC, the global mode reduces the rise time
by a factor of 540 (2.56 µs vs. 1.38 ms) and the fall time by
a factor of 2360 (2.04 µs vs. 4.82 ms), which translates to
almost a 1350 increase in bandwidth.

2To take advantage of the individual pixel model, a camera has to be used
as a receiver, which is slow (hundreds of frames per second) and requires the
use of large screens as transmitters to be efficient.

3The hardware and firmware of our controller will be made open source.
4The refresh rate of the DLP2000 is 120 Hz, which considers only the

time taken by the rise or fall time, the bandwidth considers both times.

3.4.3 Summary of contributions.
Our novel controller allows inexpensive DMDs to be decou-
pled from their integrated video-projection system. We design
a global mode to take full advantage of the fast switching
times of micro-mirrors. Compared to LCs, our approach in-
creases the transmitter bandwidth by more than three orders
of magnitude. Our controller also achieves a higher refresh
rate, even when compared to the high-end DLPs shown in
Table 4. Since all DMDs manufactured by TI follow the same
operating principles [12], our controller’s design would also
apply to those DLPs, which could allow them to increase their
refresh rates to attain even a better performance than the one
obtained with the low-end DLP2000.
4 Optical Link
4.1 Modulation
The majority of modulation schemes fall within two cate-
gories: amplitude-based [13, 29] and frequency-based [3].
Amplitude-based methods work well in dark scenarios but
are prone to errors when external light sources are present.
Frequency-based modulation, on the other hand, has the inher-
ent property of being more resilient to external noise. How-
ever, prior LC studies using frequency-based methods had
difficulties creating stable periodic signals because the rise
and fall times of LCs are asymmetric [3]. DMDs have sym-
metric times, which allows the generation of stable periodic
signals.

To increase the data rate, we use M-ary FSK (MFSK) with
two bits per symbol. This high frequency band of PhotoLink
(217.4 kHz) allows us to define different modulation parame-
ters and data rates, as shown in Table 6. For example, for a
data rate of 30 kbps, we set the four modulating frequencies to
15 kHz, 30 kHz, 45 kHz and 60 kHz. The different modulation
parameters permit a thorough evaluation of PhotoLink under
different ranges and with different receivers, as discussed in
the next section. To avoid abrupt transitions between two
frequency signals, the transition between the MFSK frequen-
cies only occurs after a full oscillation period, as depicted in
Fig. 6. Considering that the only prior work using MFSK for
passive-VLC is [3], we use it as a baseline for comparison.
We implement a similar data link layer (shown in Table 5) and
receiver design (shown in Fig. 7b and described in Sec. 5).
Our packet starts with a SYN symbol (00010101) that uses
only the lower transmitting frequencies (00 & 01). These low
frequencies have the highest amplitude, and hence, it is easier
for the receiver to discover the signal and synchronize to the
phase of the transmitter. The ASCII payload is preceded by
a STX (Start of Text, 00000010) and followed by ETX (End

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 393

Table 5: The structure of the data link layer.
00010101 00000010 ASCII Byte Array 00000011 00010111 00010101

SYN STX ASCII Text Message ETX ETB SYN

Table 6: Parameters for different bit rates.

Bit rate Symbol Frequency
of

cycle

24 kbps/30 kbps/
40 kbps/60 kbps/
80 kbps/100 kbps

00 12/15/20/30/40/50 kHz 1
01 24/30/40/60/80/100 kHz 2
10 36/45/60/90/120/150 kHz 3
11 48/60/80/120/160/200 kHz 4

Figure 6: The received signal for different symbols for 100
kbps. Each symbol carries two bits.
of Text, 00000011) and ETB (End of Transmission Block,
00010111).
4.2 Demodulation
The receiver knows the transmitting frequencies and takes the
following steps to demodulate the signal.
Preamble detection: A sliding window, equivalent to one sym-
bol, applies a Fourier transform (FFT) to the received signal
and decodes the symbol. Every time a byte (four symbols) is
decoded, the byte is compared to SYN.
Data demodulation: After a SYN byte is identified, the re-
ceiver decodes the incoming message using the same FFT
process. If an ETX is received, the packet transmission ends.
Phase correction: If a received two-bit symbol is ’00’, during
the preamble detection or data demodulation, the receiver
leverages the presence of this high-amplitude symbol to syn-
chronize to the phase of the transmitter and adjust to any
frequency shift that could have been induced by the channel.

5 Evaluation
Our transmitter runs the methods described in Sec. 3 using a
custom FPGA controller board and a custom PCB with power
management circuits for the DMD. Next, we evaluate our
simulation toolbox and controller under various aspects.
5.1 Receiver Design & Data Rate
The design of a low-power optical receiver needs to balance
a trade-off between gain and bandwidth. If we optimize for
sensitivity (high-gain), small changes in light intensity can
be detected, which is advantageous for long-distance com-
munication; but the response is slow (low-bandwidth), which
limits the ability to decode high frequency carriers. The op-
posite trade-off holds for a high-bandwidth receiver. A low-

FPGA
Controller

DMD

(a) Transmitter setup

Receiver
Board

Lens

(b) Receiver setup
Figure 7: Transmitter and receiver setup

(a) DMD (b) LC
Figure 8: Bit error rate of DMD and LC with artificial light

bandwidth receiver is not a concern when LCs are used as
transmitters, as the bandwidth of the LC is low, but it can
severely restrict the performance of DMDs. In this subsection,
we compare the performance of PhotoLink with LCs used in
state-of-the-art studies. we quantify the performance of Pho-
toLink with two receivers, one optimized for LC operation
and the other for DMD. LCs can be used in different ways de-
pending on the type of application: as part of a reflective tag,
where either a diffusive or retro-reflective material is placed
behind the LC to reflect light, or as part of a transmissive
tag, where the LC is used solely as an optical shutter without
additional reflective surfaces. To ensure a fair comparison be-
tween DMDs and LCs, in the following evaluation, we carry
out experiments with both optical devices, but without adding
any additional surfaces.
Experiment 1: Receiver optimized for LCs. PhotoLink in-
creases the data rate by a factor of 30.

In this experiment, we use a receiver similar to the one
used in [3], consisting of a convex lens with a diameter of 2.5
cm and a TEPT4400 photosensor placed at the focal distance
of the lens. The TEPT4400 is a high-gain low-bandwidth
photoresistor well-suited for long-range communication with
LCs. Using the same illumination environment, we test this
receiver using a DMD and an LC as transmitters. The LC
and the DMD have the same physical setup, surface area,
modulation and demodulation schemes.

394 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 7: Rise and fall time for different sensors and resistors
Photoreceiver Feedback resistor rise time fall time

TEPT4400 69/50/20 kΩ 100/64/24 µs 140/105/48 µs
PD204-6C 1000/400/100 kΩ 6.4/3.5/2.5 µs 6.2/3.2/2.1 µs

Figure 9: Bit error rate with different sensors and resistors.

We evaluate the DMD and LC in two scenarios. First, we
use a bike flashlight (Simson USB Headlight "Future") to
illuminate the transmitting surface in a dark room, such that
repeatable experimental results can be obtained. The flashlight
is placed 1 m away from the transmitter, and the illuminance
at the transmitter is 1800 lx. Then, we use the same setup
but turn on the indoor lights located on the ceiling and allow
natural ambient light to enter the room (in addition to the
flashlight). These additional light rays are not aligned with
the receiver and act as ambient noise. The illuminance of the
ambient noise (excluding the flashlight) is around 700 lx at
the transmitter.

In each experiment, a "Hello world!" packet is sent 100
times. Each experiment is repeated 30 times, and the mean
and standard variation of the bit error rates are shown in Fig. 8.
With the DMD, we obtain an average BER of less than 1%
at 7 m for a data rate of 24 kbps and 6 m for a data rate of 30
kbps. With the LC, we obtain an average BER of less than 1%
at 6 m for a data rate of 800 bps and 1 kbps. The data rates
achieved with the LC are in line with what has been reported
for single-pixel systems [3,7,13,29]. Overall, under the same
illumination and modulation conditions, DMDs achieve a data
rate of more than 30 times that of LCs.
Experiment 2: Receiver optimized for DMDs. PhotoLink in-
creases the data rate by a factor of 80.

Considering that the maximum data rate achieved by the
SoA is 8 kbps [28], a 30 kbps link is a significant improve-
ment. However, using a receiver optimized for LCs does not
exploit fully the capabilities of DMDs. Note from Table 6 that
the maximum frequency used for a 30 kbps data rate is 60 kHz,
but as stated in section 3, the global mode can reach frequen-
cies above 200 kHz. The limitation of low-bandwidth sensors
is that they cannot capture fast transitions: even though the
transmitted signal has rise and fall times below 3 µs (Fig.1c),
the received signal delivers rise and fall times above 100 µs.

At the core of this phenomenon are two parameters, the
parasitic capacitance CP, which is inherent to the sensor and
cannot be modified; and the feedback resistor RF , which can
be modified. A large RF and CP improve the receiver’s SNR

(high-gain), but reduces the bandwidth. We analyze the effect
of the feedback resistor on two photosensors: the TEPT4400
(high CP, low-bandwidth) and the PD204-6C (low CP, high-
bandwidth). Table 7 shows the ability of each receiver-resistor
pair to measure the fast DMD transitions for the rise and fall
times. The first pair is the configuration used for LCs in [3],
and thus, we use it as our baseline. We can see that the PD204
has a bandwidth that is big enough to capture transitions in
the few microseconds range.

To showcase the importance of designing an optimal re-
ceiver for DMDs, we select four pairs from Table 7, and repeat
the same experiment and setup described in Sec. 5.1 but for
a fixed distance dtr=2 m. The results are presented in Fig. 9.
We know from Experiment 1 that the TEPT4400 with a 69 kΩ

resistor can attain 30 kbps (baseline). A 50 kΩ resistor is not
low enough to increase the bandwidth significantly, but a resis-
tor of 20 kΩ can increase the data rate to 40 kbps. The lower
capacitance of the PD204, however, increases the bandwidth
to a value that is high enough to double the data rate, reaching
80 kbps. Note that the improvement in data rate comes at the
cost of reducing the range (lower gain). For the TEPT4400,
the range is reduced from 6 m (30 kbps) to 2 m (40 kbps). For
the PD204 with 100 kΩ (last pair in Table 7), the data rate
reaches 100 kbps but at ranges shorter than 2 m, and thus, is
not presented in Fig. 9. The limited range, however, is not a
fundamental problem because it can be increased by adding
more amplifier stages at the receiver (our receiver has a single
stage) or by using focusing lenses at the transmitter. In the
case of the LCs, the bandwidth of any photodetector is much
higher than the the bandwidth of the LCs, however, that is not
the case for DMDs. We expect that an even higher data rate
can be achieved if a photodetector with a high gain bandwidth
is used together with multiple stages of signal amplification.
The data rate, on the other hand, has been a fundamental lim-
itation for passive-VLC and PhotoLink provides a ten-fold
improvement over the most sophisticated LC-system in the
SoA. Regarding the cost, DMD-based and LC-based systems
can make use of the same photo-receivers, a DMD (C 28.62)
costs C 22 more than an LC (C 6.56). We use an Artix-7
FPGA, which cost C 50, but a less expensive controller can
be used as well. A microcontroller that costs C 13.6 was used
in Luxlink [22].
5.2 Analyzing the Luminous Flux
Our work has two main contributions, the controller evaluated
in the prior subsection and the toolbox presented in section 2.
The main insight of our toolbox is the importance of maintain-
ing the luminous flux throughout the optical link. To capture
this phenomena, we consider two scenarios.

Scenario 1: Normalized flux (indoor setup). In this sce-
nario, we use the baseline receiver (TEPT4400 with a 69 kΩ

resistor) and transmit a fixed carrier frequency. The frequency
is empirically chosen to be 30 kHz because this signal can
be clearly detected at 4 m without saturating the receiver at
1 m. To calculate the amount of luminous flux maintained

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 395

in the optical link, the signal intensity measured at 4 m is
normalized with respect to the intensity measured at 1 m for
the same light source. This normalization process and careful
setup quantify the impact of the radiation pattern of each light
source independent of its emitted power.

Under this setup, we evaluate four different light sources
indoors, as shown in Table 8, and simulate the same illumina-
tion conditions with our toolbox. In the test setups, the direct
and diffuse sunlight arrive at the DMD through a large glass
window. To obtain realistic simulation results, we apply the
parameters in Table 9, which correspond to the actual physical
properties of PhotoLink. The normalization method is also ap-
plied to the simulations5, and the results are shown in Fig. 10.
The plots show a strong agreement between the experimental
and simulated flux under all illumination conditions. With
diffuse sunlight, we are not able to detect a signal even at 1 m,
despite measuring a 2000 lx illuminance on the surface of the
DMD. This aligns with our analysis in Sec. 2, which states
that diffuse light has the lowest performance with reflective
surfaces. The results also show that direct sunlight performs
best at retaining the luminous flux (losing 30% at 4 m), fol-
lowed by artificial lights (losing more than 80%). And with
artificial lights, more luminous flux is retained at the receiver
when the light is placed further away from the transmitter
(setup 2). All these results are in agreement with the insights
provided by our model in Sec. 2.

Scenario 2: Absolute flux (outdoor setup). In this scenario,
we do not perform a normalization process, instead, we trans-
mit 100 packets of "Hello world!" at 30 kbps and present the
received voltage and BER. We evaluate the two best light
sources identified by our toolbox, flashlight and direct sun-
light. The evaluation with direct sunlight is done outdoors
during a clear day with good sunlight (several thousand lux),
and then, moving the setup indoors and placing a flashlight in
a dark room.

With sunlight, a BER of 0.9x10−3 is achieved at 1 m and
a BER of 0.8x10−3 is achieved at 2 m. The errors can be
attributed to the fact that a link in the outdoor environment is
subjected to occasional disturbance. With flashlight, the BER
is 0 at 1 m, however, at 4 m, the BER increases to 19.4x10−3.
In Fig. 11, we present a direct comparison of the flux reaching
the receiver with the flashlight and sunlight using the SYN
symbols in the packet. At 1 m, the flux reaching the sensor
with the flashlight is slightly lower than that with sunlight
(around 0.18 V vs. 0.2 V), which shows that the flashlight
and sunlight result in similar voltage range. However, at 4 m,
the luminous flux reduces by 60% with flashlight, due to a
less directional pattern, while direct sunlight loses only 10%6.
This result highlights the importance of expanding passive-

5Since photodiodes have a quasi-linear response to light intensity, we
assume a linear correlation between the obtained signal strength in the toolbox
and the voltage obtained in our experiment.

6Note that the flashlight loss is higher than the loss predicted in Fig. 10
for 1 m because we place the light closer to the DMD, 30 cm instead of 1 m

Table 8: Measuring the power drop-off with respect to distance

Setup
Light

Source DLM DT R

Measured
Normalized

Signal

Simulated
Normalized

Signal

1 Direct Sunlight N/A
1 m
and
4 m

0.70 0.73

2 Flashlight 4 m 0.17 0.20
3 Flashlight 1 m 0.04 0.06

4 Diffuse Sunlight N/A N/A N/A

Table 9: Key parameters used in simulator

Light Source
Dimension 2.7 m x 2.7 m
Half Angle 30°

Modulating Surface
Dimension 4.8 mm x 2.7 mm

Light-absorbing area 8 mm by 8 mm
Spreading Angle 0.3°

Receiver

Lens Dimension 2.5 cm
Tangent Sphere Radius (4 cm, -5 cm)

Lens Material bk7
FoV 1◦

Photodiode Diameter 3 mm

VLC studies towards the exploitation of natural light.
5.3 Issues with DMDs
DMDs have not been designed for ambient light communi-
cation, and hence, present some limitations. We now discuss
what we consider the main shortcomings of this MEMS tech-
nology for passive-vlc.

Issue 1: Directionality. DMDs operate with two fixed an-
gles, which raises up the issue of directionality. If the light
source changes its location, the impinging light rays will no
longer be aligned with the predefined angles at the DMD,
breaking the link. This issue can be overcome with light
concentrators. As a proof of concept, we build a simple con-
centrator with two optical components, as show in Fig. 12a.
The first component is a Compound Parabolic Concentrator
(CPC). The CPC is a special parabolic lens that collects light
from different angles and concentrates it on a small output
area. We use a CPC with an input and output circular area of
14 mm and 4 mm diameter respectively, and a concentration
factor of 10. The second component is a ball lens of 8 mm
diameter, which is used as a coupler and collimator, to further
focus the collected light. We manufacture a 3D-case to align
the CPC and the ball lens, and aim its output to the DMD.

Fig. 12b presents the results obtained with and without
the light concentrator. A flashlight is positioned at different
incidence angles and the signal strength is measured at the
receiver. Without the concentrator, the signal strength decays
below 0.9 with deviations around +/- 1 degree. With the con-
centrator, the signal remains above 0.9 for angles around +/-
10 degrees. This is a simple implementation, more sophis-
ticated designs can increase the FoV to any desired degree.
Thus, while an ideal DMD design for passive-VLC could
consider flexible angles, it is not a strict requirement.

Issue 2: Power consumption. Perhaps the most limiting
factor of current DMD designs is the relationship between
its small area and relatively high power consumption. The

396 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 10: Simulated and measured voltage dropoff.

(a) Flashlight (b) Sunlight
Figure 11: Signal strength

performance of passive-VLC depends on the area of the trans-
mitting surface. For example, a standard light bulb consumes
1 watt to emit 90 lumen,But with an area of 13 mm2, the
DLP2000 would emit only between 0.1 and 0.5 lumen.

Regarding the power consumption, current DMD designs
have two levels of overhead. The first level is related to the
memory state, which is not required for PhotoLink and con-
sumes 57 mW in the DLP2000. The second level is the ac-
tuation of the micromirrors and consumes 45.5 mW. We are,
thus, left with a surface that emits between 0.1 and 0.5 lu-
men (depending on daylight conditions), while consuming
45 mW. Considering that LCs consume less than 1 mW, and
that low-power LEDs consume less than 100 mW, it is cen-
tral to consider power consumption in the comparison with
LCs and LEDs. To perform that analysis, let us consider a
low-power LED that has been used in prior VLC studies [8],
the VLMB1500, which consumes 75 mW and emits 0.2 lu-
men. We perform a theoretical comparison between LCs,
DMDs and LEDs based on the Shannon-Hartley theorem
C = B log2(1+SNR). The analysis assumes a luminous flux
of 0.2 lumen for the DMD.

First, let us consider LCs, which have areas that are two
orders of magnitude bigger than DMDs, and hence, receive
two orders of magnitude more lumen. Assuming that the
LC receives 20.2 lumen on its incoming area (20 from the
light source and 0.2 from the ‘extra’ LED), the outgoing
flux would be 10.1 lumen because LCs cut the power in half
(Limitation-1 in section 3). Hence, the SNR of an LC-system
would increase by a factor of 50 (10.1/0.2), but the SNR only
contributes logarithmically to the capacity. Overall, the extra
SNR would contribute with a factor of 6, compared to the
factor of 1350 contributed by the BW of the DMD, making
the DMD still two orders of magnitude more competitive.

CPC Ball lens

Light input
Focused
output

(a) Design (b) Evaluation
Figure 12: CPC

To consider the option of using the LED with active-VLC,
we measure its rise and fall times, which are 3.5 µs and 1.6 µs:
a period of 5.1 µs compared to the period of 4.6 µs for DMDs.
Recalling that the LED and DMD emit a similar lumen, the
DMD is only slightly more competitive. This result, however,
should consider that current DMDs are not designed for am-
bient light communication. The mirrors of the DLP have a
size of microns and use electrostatic actuation, larger area
mirrors (bigger than 2 mm) “benefit from electromagnetic ac-
tuation proportional to the mirror area" [17], leading to bigger
surfaces with lower power consumption.

Thus far, the passive-VLC community has faced a major
obstacle, even with big LC surfaces, no system can provide
data rates above 10 kbps. PhotoLink shows that current (sub-
optimal) DMDs can provide 100 kbps. Synergies with MEMS
researchers could enable the design of bigger modulating sur-
faces to create wireless networks operating solely with natural
light and with low power budgets.
6 Related Work
Passive VLC systems using LCs. There have been several
studies on passive VLC systems, which are summarized in
Table. 10. To date, LCs have been widely used as an optical
transmitter in SoA passive VLC systems. There are two cat-
egories: one uses LCs in combination with retro-reflectors,
where the light source and the receiver are co-located; the
other adopts only the LC as a transmitter, where the light
source and the receiver can be placed at different locations,
opening up the possibility to take advantage of natural light.

The studies in the former category typically have a con-
strained data rate and range. The earlier studies [13, 29],
achieve a data rate of 0.5 kbps and 1 kbps with ranges up to a
few meters. More recently, RetroI2V [25] achieves a range of
80 m. However, it uses a powerful 30 W light to achieve a data
rate around 1 kbps. RetroTurbo [28] has a surface area of 66
cm2 and uses an advanced modulation scheme to overcome
the slow time response of LCs. RetroTurbo achieves a data
rate of 8 kbps with a moderate light source (4W flashlight) up
to 7.5 m [25]. However, retro-reflectors cannot be used with
ambient light, as the light source and the receiver have to be
co-located. On the other hand, the studies in the latter cate-
gory take advantage of the strong illumination from sunlight
and are able to achieve a long range without a dedicated illu-
minator, such as in the case of Luxlink [3] and Chromalux [7].
Luxlink is able to reach a range of 65 m with sunlight, but the

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 397

Table 10: Comparison of PhotoLink with the most relevant systems in the state of the art.

Name OL
OL Power or
Illuminance DLT OT Surface Type OR FoV Data Rate Range

RetroVLC [13] LED 12 W Variable1 LC+RR2 Specular Photodiode 50° 0.5 kbps2 2.4 m

PassiveVLC [29] Flashlight 3 W Variable LC+RR Specular PD 4° 1 kbps 1 m

RetroTurbo [28] Flashlight 4 W Variable LC+RR Specular PD 20° 8(4) kbps 7.5(10.5) m

RetroI2V [25] Flashlight 30 W Variable LC+RR Specular PD 30° 125(1000) bps 101(80)m

Chromalux [7]
Sunlight(Direct)

Flashlight
3-6 klx

400-700 lx
N/A
N/S

LC
and Metal Sheet Specular

Color
Sensor Variable 1 kbps

50 m
10 m

Luxlink [3]
Sunlight(Direct)

LED
10-26 klx

2 klx
N/A
N/S 3

LC
and Diffuser Diffuse PD 1°

80 bps
1 kbps

65 m
3 m

TwSL [4] Sunlight(Diffuse) 3 klx N/A Paper Diffuse PD N/S 127 bps 4 m
[10] LED 15 W c̃ms DMD Specular PD N/S 4.2 kbps 170 cm
[11] LED 15 W c̃ms DMD Specular PD N/S 9 bps 2.5 m
[2] Sunlight(Direct) 330 lux N/A DMD Specular Camera N/S 1 bps 60 cm

PhotoLink Flashlight 1800 lx 1 m DMD Specular PD 1° 30(80) kbps 6(2) m
1 For work involving retro-reflectors as a transmitter, DLT = DT R.
2 RR stands for Retro-reflectors.
3 For work involving retro-reflectors, uplink data rate is quoted.
4 N/S stands for ’not specified’.

data rate is limited to 80 bps. It also demonstrates that with an
LED, a data rate of 1 kbps can be achieved up to 3 m. Chro-
malux [7] takes advantage of the transient state in LCs, and
is able to achieve a range of 50 m with a data rate of 1 kbps
with sunlight, and up to 10 m with a flashlight. While LCs
are energy efficient, they suffer from a high attenuation loss
due to the use of polarizers, and a limited bandwidth because
of its slow rise and fall times. On the other hand, a higher
data rate can be achieved with DMDs, but using more power.
And in addition to demonstrating a novel system, we provide
an analytical framework to understand the performance of
different studies.

Applications of DMDs. Like LCs, the main application of
DMDs is video projection, and thanks to their competitive ad-
vantages (high reflective efficiency and switching times) they
dominate the market. But DMDs are also used in other ap-
plications: microscopy, holography, data storage, and also as
spatial modulators with lasers [6]. The use of DMDs for am-
bient light modulation, however, is restricted to a handful of
studies involving localization [10] and communication [2,11].
And all these studies suffer from a limited data rate (1 bps,
9 bps and 4 kbps), as well as a limited communication range
(60 cm, 2.5 m and 170 cm). These systems use the off-the-
shelf DMD controllers with their default refresh rates, which
fail to take advantage of the fast switching times of the DMDs.

Channel modelling for VLC systems. There have been an ar-
ray of studies on channel modelling techniques for indoor
active VLC systems [21], several of which are ray-tracing
based [15, 16]. The focus of those studies is to achieve an
accurate impulse response considering the dynamics of the
VLC system and its indoor environment. They remain a theo-
retical exercise in most cases, as an accurate description of the
indoor space is difficult to obtain. This differs from our work,

as our study focuses on the interactions between different
types of surfaces and ambient light.
Ambient RF backscatter systems. In RF backscatter, passive
devices can communicate with each other utilizing surround-
ing RF sources. The first study exploited TV tower signals
and showed a data rate of 1 kbps at distances of 2.5 feet
outdoors and 1.5 feet indoors [14]. Subsequent studies have
shown that WiFi, BLE and LoRa signals can also be backscat-
tered, attaining even higher data rates and/or ranges [1, 24].
RF backscattering is an exciting area but requires man-made
signal (radio towers and antennas), and antennas typically
have a limited bandwidth. Ambient light backscattering not
only allows exploiting a different part of the electromagnetic
spectrum but it can also exploit natural sunlight.

7 Conclusion
In this work, we propose an optical model to analyze ambient
light communication, and based on the insights it provides,
we explore the use of a DMD as an optical transmitter. We
propose a novel platform that optimizes the retention of the
luminous flux to attain the best optical performance. This ap-
proach allows us to achieve a data rate that is 30 times higher
compared to LCs under the same working conditions. Further-
more, with optimally designed receivers, the data rate reaches
80 kbps. While current DMD designs still face limitations to
operate with ambient light, it is a component that expands the
possibilities of the nascent area of Passive-VLC.

Acknowledgments
The authors would like to thank the reviewers and shep-
herd, Kurtis Heimerl, for their feedback. This work has been
funded by the European Union’s H2020 programme under
the Marie Skłodowska Curie grant agreement ENLIGHTEM
No. 814215, and by the Dutch Research Council (NWO) with
a TOP-Grant with project number 612.001.854.

398 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Dinesh Bharadia, Kiran Raj Joshi, Manikanta Kotaru,
and Sachin Katti. Backfi: High throughput wifi backscat-
ter. volume 45, page 283–296, New York, NY, USA,
aug 2015. Association for Computing Machinery.

[2] Roy Blokker. Communication with ambient light us-
ing digital micromirror devices. Master’s thesis, Delft
University of Technology, 2021.

[3] Rens Bloom, Marco Zúñiga Zamalloa, and Chaitra Pai.
Luxlink: Creating a wireless link from ambient light.
In Proceedings of the 17th Conference on Embedded
Networked Sensor Systems, SenSys ’19, page 166–178,
New York, NY, USA, 2019. Association for Computing
Machinery.

[4] Rens Bloom, Marco Zuniga, Qing Wang, and Domenico
Giustiniano. Tweeting with sunlight: Encoding data
on mobile objects. In IEEE INFOCOM 2019 - IEEE
Conference on Computer Communications, pages 1324–
1332, 2019.

[5] Cisco. Cisco annual internet report - cisco annual inter-
net report (2018–2023) white paper.

[6] Dana Dudley, Walter Duncan, and John Slaughter.
Emerging digital micromirror device (dmd) applica-
tions.

[7] Seyed Keyarash Ghiasi, Marco A. Zúñiga Zamalloa, and
Koen Langendoen. A principled design for passive light
communication. In Proceedings of the 27th Annual
International Conference on Mobile Computing and
Networking, MobiCom ’21, page 121–133, New York,
NY, USA, 2021. Association for Computing Machinery.

[8] Tilahun Zerihun Gutema, Harald Haas, and Wasiu O.
Popoola. Bias point optimisation in lifi for capac-
ity enhancement. Journal of Lightwave Technology,
39(15):5021–5027, 2021.

[9] Texas Instrument. Dlp2000 (.2 nhd) dmd datasheet,
2019. https://www.ti.com/lit/ds/symlink/dlp2000.pdf.

[10] Motoi Kodama and Shinichiro Haruyama. Visible light
communication using two different polarized dmd pro-
jectors for seamless location services. In Proceedings
of the Fifth International Conference on Network, Com-
munication and Computing, ICNCC ’16, page 272–276,
New York, NY, USA, 2016. Association for Computing
Machinery.

[11] Motoi Kodama and Shinichiro Haruyama. Pulse width
modulated visible light communication using digital
micro-mirror device projector for voice information

guidance system. In 2019 IEEE 9th Annual Com-
puting and Communication Workshop and Conference
(CCWC), pages 0793–0799, 2019.

[12] Benjamin Lee. Introduction to ±12 degree or-
thogonal digital micromirror devices (dmds), 2018.
https://www.ti.com/lit/an/dlpa008b/dlpa008b.pdf.

[13] Jiangtao Li, Angli Liu, Guobin Shen, Liqun Li, Chao
Sun, and Feng Zhao. Retro-VLC: Enabling battery-
free duplex visible light communication for mobile and
iot applications. In Justin Manweiler and Romit Roy
Choudhury, editors, Proceedings of the 16th Interna-
tional Workshop on Mobile Computing Systems and Ap-
plications, HotMobile 2015, Santa Fe, NM, USA, Febru-
ary 12-13, 2015, pages 21–26. ACM, 2015.

[14] Vincent Liu, Aaron Parks, Vamsi Talla, Shyamnath Gol-
lakota, David Wetherall, and Joshua R. Smith. Ambient
backscatter: Wireless communication out of thin air.
SIGCOMM Comput. Commun. Rev., 43(4):39–50, aug
2013.

[15] Francisco J. Lopez-Hernandez, Rafael Perez-Jiminez,
and Asuncion Santamaria. Ray-tracing algorithms for
fast calculation of the channel impulse response on dif-
fuse IR wireless indoor channels. Optical Engineering,
39:2775–2780, October 2000.

[16] Farshad Miramirkhani and Murat Uysal. Channel mod-
eling and characterization for visible light communica-
tions. IEEE Photonics Journal, 7(6):1–16, 2015.

[17] Pamela Rae Patterson, Dooyoung Hah, Makoto Fujino,
Wibool Piyawattanametha, and Ming C. Wu. Scanning
micromirrors: an overview. In Yoshitada Katagiri, edi-
tor, Optomechatronic Micro/Nano Components, Devices,
and Systems, volume 5604, pages 195 – 207. Interna-
tional Society for Optics and Photonics, SPIE, 2004.

[18] Yury Petrov. Optometrika, howpublished = https://
github.com/caiuspetronius/optometrika, 2014.

[19] Bui Tuong Phong. Illumination for computer generated
pictures. Commun. ACM, 18(6):311–317, June 1975.

[20] PureLiFi. http://purelifi.com/, 2021.

[21] A.M. Ramirez-Aguilera, J.M. Luna-Rivera, V. Guerra,
J. Rabadan, R. Perez-Jimenez, and F.J. Lopez-
Hernandez. A review of indoor channel modeling tech-
niques for visible light communications. In 2018 IEEE
10th Latin-American Conference on Communications
(LATINCOM), pages 1–6, 2018.

[22] Yu-Xuan Ren, Rong-De Lu, and Lei Gong. Tailoring
light with a digital micromirror device. Annalen der
Physik, 527(7-8):447–470, 2015.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 399

https://github.com/caiuspetronius/optometrika
https://github.com/caiuspetronius/optometrika

[23] Nils Ole Tippenhauer, Domenico Giustiniano, and Ste-
fan Mangold. Toys communicating with leds: Enabling
toy cars interaction. In 2012 IEEE Consumer Commu-
nications and Networking Conference (CCNC), pages
48–49, 2012.

[24] Nguyen Van Huynh, Dinh Thai Hoang, Xiao Lu, Dusit
Niyato, Ping Wang, and Dong In Kim. Ambient
backscatter communications: A contemporary survey.
IEEE Communications Surveys Tutorials, 20(4):2889–
2922, 2018.

[25] Purui Wang, Lilei Feng, Guojun Chen, Chenren Xu,
Yue Wu, Kenuo Xu, Guobin Shen, Kuntai Du, Gang
Huang, and Xuanzhe Liu. Renovating road signs for
infrastructure-to-vehicle networking: A visible light
backscatter communication and networking approach.
In Proceedings of the 26th Annual International Confer-
ence on Mobile Computing and Networking, MobiCom
’20, New York, NY, USA, 2020. Association for Com-
puting Machinery.

[26] Zixiong Wang, Dobroslav Tsonev, Stefan Videv, and
Harald Haas. On the design of a solar-panel receiver
for optical wireless communications with simultaneous
energy harvesting. IEEE Journal on Selected Areas in
Communications, 33(8):1612–1623, 2015.

[27] Maury Wright. Philips lighting deploys led-based indoor
positioning in carrefou, 2015. https://goo.gl/a0tGIj.

[28] Yue Wu, Purui Wang, Kenuo Xu, Lilei Feng, and Chen-
ren Xu. Turboboosting visible light backscatter commu-
nication. In Proceedings of the Annual Conference of the
ACM Special Interest Group on Data Communication on
the Applications, Technologies, Architectures, and Pro-
tocols for Computer Communication, SIGCOMM ’20,
page 186–197, New York, NY, USA, 2020. Association
for Computing Machinery.

[29] Xieyang Xu, Yang Shen, Junrui Yang, Chenren Xu,
Guobin Shen, Guojun Chen, and Yunzhe Ni. Passivevlc:
Enabling practical visible light backscatter communi-
cation for battery-free iot applications. In Proceedings
of the 23rd Annual International Conference on Mo-
bile Computing and Networking, MobiCom ’17, page
180–192, New York, NY, USA, 2017. Association for
Computing Machinery.

[30] Zhice Yang, Zeyu Wang, Jiansong Zhang, Chenyu
Huang, and Qian Zhang. Wearables can afford: Light-
weight indoor positioning with visible light. In Proceed-
ings of the 13th Annual International Conference on
Mobile Systems, Applications, and Services, MobiSys
’15, page 317–330, New York, NY, USA, 2015. Associ-
ation for Computing Machinery.

400 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Whisper: IoT in the TV White Space Spectrum

Tusher Chakraborty, Heping Shi, Zerina Kapetanovic†, Bodhi Priyantha, Deepak Vasisht‡, Binh Vu,
Parag Pandit, Prasad Pillai, Yaswant Chabria, Andrew Nelson, Michael Daum, and Ranveer Chandra

Microsoft, †University of Washington, ‡UIUC

Abstract
The deployment of Internet of Things (IoT) networks has
rapidly increased over recent years – to connect homes, cities,
farms, and many other industries. Today, these networks rely
on connectivity solutions, such as LoRaWAN, operating in
the ISM bands. Our experience from deployments in multiple
countries has shown that such networks are bottlenecked by
range and bandwidth. Therefore, we propose a new connectiv-
ity solution operating in TV White Space (TVWS) spectrum,
where narrowband devices configured for IoT can opportunis-
tically transmit data, while protecting incumbents from receiv-
ing harmful interference. The lower frequency of operation
extends the range by a factor of five over ISM bands. In
less-densely populated area where larger swaths of such band-
width are available, TVWS-based IoT networks can support
many more devices simultaneously and larger transmission
size per device. Our early experimental field work was in-
corporated into a petition to the US FCC, and further work
influenced the subsequent regulations permitting the use of
IoT devices in TVWS. We highlight the technical challenges
and our solutions involved in deploying IoT devices in the
shared spectrum and complying with the FCC rules.

1 Introduction

The growth in IoT is accelerating and expanding across a
wide variety of industries. Networking has emerged as a fun-
damental challenge for IoT. Current solutions like LoRaWAN
rely on narrowband (NB) connectivity in the ISM bands, such
as US915, EU868, CN779, and so on [23]. However, as IoT
networks continue to expand, they run into bottlenecks of
these networking solutions. Consider an agriculture scenario,
where IoT devices are used to enable precision agriculture
techniques on farms in remote areas. These farms can span
tens of thousands of acres. LoRaWAN has a communica-
tion range of up to 2.5 miles [4]. To connect such vast cov-
erage areas, multiple LoRa gateways need to be deployed
and maintained, where deploying a single gateway may cost
thousands of US dollars. Besides, setting up proper backhaul
connectivity for a gateway is cumbersome in remote areas. It
holds for several other scenarios, such as oil and gas fields,
power grids, wind farms, and so on. Furthermore, ISM bands
have a limited bandwidth, e.g., only 8 MHz in EU868 and
26 MHz is US915 where bandwidth allocated for downlink
communication is even smaller (see Section 2). Therefore,
it becomes challenging to support IoT applications such as

heatmap-based monitoring and plant stress monitoring using
cameras, where comparatively larger volumes of data traffic
is required to be transmitted over a low data rate long-range
network [7, 17, 18]. In such cases, the combination of longer-
range and larger available bandwidth is required.

To bridge the gap, we envision enabling IoT networks over
the TV white spaces (TVWS). TV white spaces are the al-
located, but unused channels in the VHF and UHF broad-
cast TV bands that can be leveraged for both high and low
bandwidth data transmission. There are several advantages
of utilizing TVWS spectrum for a NB IoT deployment over
ISM bands. As the TV band spectrum consists of lower fre-
quencies than the 800/900 MHz ISM bands, it facilitates
longer-range connectivity which extends to 10s of miles, with
non-line of sight (NLOS) operations, and even through some
obstructions. Consequently, it opens the door of covering a
large-area IoT deployment with one or a minimal number
of gateways. It even facilitates higher data rates for distant
IoT clients which in turn provides power savings on the IoT
device. In addition, in less densely populated areas, there are
typically several unused TV channels available for use by
TVWS devices. The actual number of available channels vary
by location. In the aggregate, these available channels can
offer a large bandwidth, and hence support for many more
simultaneous communication channels and increased traffic.

However, in the way of realizing this vision, the challenges
are twofold – regulatory and technical. While operating in a
dynamic spectrum as the unlicensed user, the precondition is
to ensure the protection of incumbents from receiving harm-
ful interference and the inability to claim protection from
interference. Although this challenge has been addressed in
the case of unlicensed broadband devices operating in the
TVWS [5], it is non-trivial to extend the same to NB devices
due to their limited power budget and distinct regulations for
NB operation, such as channel occupancy limit (Section 3).
We identify three corresponding challenges below:

• First, in a large-area deployment, the data rate of sparsely
deployed clients (Figure 7c) served by a single gateway
becomes highly variable as the data rate is inversely pro-
portional to the distance. Single configuration setting of
slow data rate (longer range) for all the clients, will result
in throughput loss and power overhead. On the other hand,
mainstream IoT MAC protocols, mainly designed for ISM
bands, cannot make the best utilization of wide TVWS
spectrum in serving large traffic even using a gateway with
multi-data rate support on a single channel (Section 7.2).

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 401

• The second challenge is handling the spatio-temporal dy-
namism in TVWS channel availability and quality. The dy-
namism is mainly due to the channel occupancy by nearby
licensed users (e.g., TV station, wireless microphone, etc.)
and unpredictable unlicensed users (e.g., TVWS broadband
network). Moreover, the long spatial separation between the
gateway and client devices implies that uplink and downlink
may operate on different channels with dissimilar quality.
Finally, the power constraint of IoT client devices adds a
curb on dynamic spectrum access and management.

• The final challenge is to develop an efficient carrier sensing
solution to detect the presence of an interfering RF trans-
mission from incumbents – both licensed and unlicensed –
in a dynamic spectrum. With LoRa modulation, the devices
can communicate even when the signal level is below the
ambient RF noise floor. Hence, the conventional approach
of simply measuring RF energy level in a NB channel to
detect RF interference does not work.
Over the years, we have worked on devising Whisper, an

end-to-end IoT network system over the TVWS spectrum
which addresses both regulatory and technical challenges. Our
early field work, authorized under an experimental license,
led to a proposal on NB TVWS device operations which was
the part of a broader 2018 petition for rulemaking to the US
Federal Communications Commission (FCC) for expanding
its rules for TVWS devices. Later, our work supported the
FCC’s December 2020 decision to adopt regulations on NB
white space devices to operate in the VHF and UHF bands
below 602 MHz [10]. In addition, we make the following
contributions through this work.
Whisper Protocol: We design a new MAC protocol for a
star-topology IoT network operating in the TVWS spectrum.
Our Frequency Time Division Multiple Access (FTDMA)
based design supports larger traffic along with diversity in the
data rate of sparsely deployed clients. It leverages a dynamic
binary counting table with the linear Diophantine equation
for formalizing and optimally limiting the channel occupancy
to protect the incumbents. The protocol further incorporates
a smart approach for handling the dynamism in the TVWS
spectrum given the power limitation of IoT devices.
Whisper Hardware: We design and develop a NB Whisper
radio that operates in the continuous spectrum ranging from
150MHz to 960MHz. The radio uses LoRa modulation at
the physical layer. Given that and the above-mentioned chal-
lenge in corresponding carrier sensing, we further develop a
spectrum sensing module that uses a locally generated signal
by a Whisper radio to measure the RF interference from the
incumbents in individual NB TVWS channels.
Real-world Deployment: Finally, we make a real-world de-
ployment of Whisper as an end-to-end IoT network system
for more than 2.5 months. The deployment covers 17 fields in
a 8500 acre farm with single gateway and 20 IoT devices. The
sensor data collected via Whisper is used by third-party users
in multiple agriculture applications including food tracing,

Data type Area
(acre) #gateways #clients Traffic

(bytes/hr)
Prominent

issue
Sensor 1700 3 11 3.2k Range
Sensor 350 2 20 0.9k Range
Sensor 700 3 9 0.5k Range
Image 8500 2(Abortive) 20 550k Bandwidth

Table 1: Setup of multiple real-world IoT deployments where
Whisper would befit. These are representative data from our
deployments across the globe using ISM band LoRa.

data-driven farming [32], and carbon monitoring.
From our real-world deployment, we find that Whisper

facilitates at least 5x range improvement over LoRa operating
in the 800/900 MHz ISM band and at least 3x over state-of-
the-art modulation techniques proposed for NB operation in
TVWS [27,28]. Furthermore, our simulation shows that using
only 3 white TV channels (6 MHz each), Whisper can handle
at least 5x traffic compared to ISM band.

2 Motivation from Real-world Experience

The need for deploying IoT devices in TVWS spectrum is
motivated by the bottlenecks experienced in our real-world
deployments using LoRa operating in the ISM bands. We
highlight two application scenarios here.

The first application scenario emanates from one of our
earlier projects, FarmBeats, that aims to enable data-driven
agriculture [32]. To do so, we deploy sensors across a farm
and aggregate data in a star-topology LoRa network operating
in 800/900 MHz ISM bands. We have made more than 30
research deployments in farms across the globe (including US,
South Asia, Europe, Africa, Asia Pacific, etc.) over a period
of 4 years. The top three entries in Table 1 are representative
of the setup of these deployments. The major challenge we
have experienced in these settings is the relatively short range
of the communication link compared to the size of a farm
and sparsely deployed IoT clients. The average maximum
achieved range is 1.12 miles combining both NLOS and LOS
settings. Consequently, we need to deploy multiple gateways
to cover a farm, even when we need to support just a small
number of sensors spread across the farm. Whereas, TVWS
spectrum offers a range of tens of miles, and thus, reduces the
number of gateways as we show in Section 7.

In the second application scenario (bottom entry in Table 1),
we study the feasibility of monitoring plant stress using a cam-
era in US915 ISM band [24]. Each client sends an image of
∼ 25 kB where the gateway can expect at least 22 images per
hour. Here, the foremost problem is sending a large number of
confirmed-up frames as the ISM band suffers from the paucity
of bandwidth in two levels. First, the dwell time restriction of
0.4 sec enforces sending an image in a large number of small
uplink frames. It, in turn, increases the load on the down-
link (allocated bandwidth is 4 MHz) with a large number of
ACKs. For example, if we consider the median uplink data
rate (DR2) supported in US915 band, it takes around 230
uplink frames for an image [3]. On the downlink side, with a

402 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

comparable data rate (DR12), a gateway can serve ACKs for
maximum 7 images per hour without even considering any
frame loss and the inefficiency of existing MAC protocols
in handling confirmed-up frames [3, 16]. Multiple existing
research work report similar problem [7, 17, 18]. Even one
of the largest commercial LoRaWAN service providers, The
Things Network, recommends finding an alternative platform
in such scenarios [22]. Furthermore, with the aforementioned
data rates, the maximum range can be up to a mile. In this
scenario, TVWS spectrum offers a larger bandwidth that can
easily handle the aforementioned traffic (Section 7.2).

3 Regulating NB Operation in TVWS

Although FCC has adopted regulations on NB operation in
TVWS spectrum in 2020, we have been working with FCC on
it for more than four years. FCC’s Office of Engineering Tech-
nology granted us several experimental licenses for operating
NB IoT TVWS devices in an agricultural setting. From the be-
ginning, the experimental NB TVWS transmitter and network
architecture have been designed with the understanding that
the primary users of these frequency bands must be protected
from receiving harmful interference. Based on the experience
gained over the course of the field tests, we filed a petition for
rulemaking at the FCC for expanding TVWS operations that
included NB. Next, we describe the key regulations mandated
by FCC for NB operation in TVWS spectrum [10].
• Incumbents are protected through a geolocation and

database method. The location of the NB is provided
through an incorporated geolocation decision, typically
GPS [9]. The geolocation information is provided to a white
spaces database (WSDB). The WSDB combines informa-
tion on incumbent users from the FCC Licensing and Man-
agement System that is updated daily; information from
other users input directly, such as wireless microphones
that is updated hourly; and a calculation engine that deter-
mines the list of available channels for the TVWS device
operating at that location.

• A TV channel in the US is 6 MHz wide. The conducted
power and power spectral density limits for broadband
TVWS devices are based on 100 kHz. Thus, the channel
size limit for a NB device is proposed to be 100 kHz. The
proposed channel plan requires NB TVWS devices to oper-
ate at least 250 kHz from the edge of a 6 MHz TV channel.
It implies that NB devices are permitted to operate within
55 possible 100 kHz NB channels in the center 5.5 MHz of
each TV channel.

• FCC limits transmissions by a NB TVWS device on each
NB channel to a total of 36 sec per hour. It means that differ-
ent NB channels may be required for the uplink/downlink
data communication and interaction with the WSDB.

• The conducted power and power spectral density limits for
NB devices per 100 kHz are the same as for broadband

TVWS Antenna
Port

GPS Antenna
Port

GPS Module

SX1262

STM32L
MCU

Figure 1: Whisper radio fabricated as an industrial-grade
module that can operate from 150MHz to 960MHz.

TVWS devices. Here, the EIRP of a NB TVWS device
can be up to 18.6 dBm/100 kHz. The rules for protecting
incumbents are based on a scenario where each of the 55
channels of 100 kHz in a TV channel is concurrently being
used at its conducted power limit.

We highlight that the NB devices can operate in 174-216 MHz
in the VHF band and 470-602 MHz in the UHF band.

4 System Design

Whisper is a new IoT system that can support long-range
communication at large-scale in the TVWS spectrum. We de-
sign Whisper to have two key components similar to a classic
star-topology IoT network: an IoT client radio and gateway.
In the following subsections, we describe each component.

4.1 Whisper radio
Whisper requires a radio that can operate over the whole
TVWS spectrum in both VHF and UHF bands as mentioned
in Section 3. We further intend to use LoRa modulation in
the physical layer, which is very popular for long-range and
low-power wide area network (LPWAN). Since commercial
off-the-shelf LoRa radios are designed to operate over nar-
row ISM bands, we develop a custom NB IoT radio that can
operate over a wider TVWS spectrum. Figure 1 shows the fab-
ricated radio which can operate from 150 MHz to 960 MHz
including the upper-VHF, UHF, and ISM bands. For modula-
tion and demodulation of LoRa signal, our radio incorporates
an SX1262 radio transceiver manufactured by Semtech [12].

Unlike an off-the-shelf radio designed using SX1262 for
narrow ISM bands, our design for a wider TVWS spectrum
requires careful consideration of avoiding leakage and har-
monics in an adjacent TV channel or other licensed bands
within the spectrum. The power amplifier stage of the off-
the-shelf radio chips typically has low linearity to reduce
power consumption. This non-linearity results in RF signals
at harmonics of the carrier frequency. In a design for a wide
spectrum, harmonics of the lower carrier frequencies can lie
within the higher frequencies of the spectrum, resulting in
spurious RF emissions. As a remedy, our radio design incor-
porates a collection of electronically switchable RF filters
between the SX1262 radio transceiver and the antenna. The
filter cut-off frequencies are selected in a way such that, with
the appropriate filter selected, the harmonics of any carrier

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 403

TVWS database (WSDB)

LoRaWAN
(customized)

Whisper MAC
manager

TVWS channel
coordinator

PAWS
over backhaul

MAC cmd

Cloud platform

TV
W

S
d

e
vi

ce
 p

ro
vi

si
o

n

BS
radios

U
SB

 B
U

S
U

SB
 B

U
S

Radio
ctrl

LoRaWAN
frame

Spectrum
sensing
module

Lo
ca

l s
to

ra
ge

Lo
ca

l s
to

ra
ge

Edge device

Available
channel

Enc.
user data

Device
profile

Spectrum
sensing

data/ctrl

Cloud management client

Over backhaul

Figure 2: Gateway architecture. Whisper implements it to
enable the gateway operation in the TVWS spectrum.

signal within 150 MHz to 960 MHz are filtered out prevent-
ing spurious RF emissions. We further carry out laboratory
experimentation to ensure that the adjacent channel emissions
limits of Whisper radio comply with FCC regulations. Find
the setup and results of the experimentation in Appendix A.

Whisper radio has a low-power GPS module to provide its
geo-coordinates and height to the WSDB, as required under
the FCC rules for unlicensed white space devices (Section 3).
To control all of these components and execute our communi-
cation protocol, we use an ultra-low-power microcontroller,
STM32L151RE based on ARM cortex-M3 architecture [30].

The maximum current consumption by Whisper radio is
119 mA in transmission (at 20 dBm transmit power) and
12 mA in reception with 3.3V power supply. Although the
TX energy consumption seems to be higher compared to
off-the-shelf ISM band LoRa radio, Whisper radio consumes
less energy per given throughput while communicating at a
distance of more than a mile. Because the lower frequency of
TVWS spectrum enables higher data rate, i.e., less time on air,
at a longer distance compared to the ISM band (Section 7.1.4).

4.2 Whisper Gateway

Using the Whisper radio as an IoT client device, we also
need a gateway to enable end-to-end communication. Fig-
ure 2 shows the architecture of Whisper gateway. It consists
of multiple Whisper radios, an edge device, and a spectrum
sensing module. First, the radios integrated with the gateway
are referred to as base station (BS) radios and follow a similar
design to the Whisper radio mentioned above. The number
of BS radios can be adjusted depending on the scale of appli-
cation. Next, the edge device is off-the-shelf can be a single
board computer (e.g. Raspberry Pi, Up Board, etc.) or even

a laptop PC. Finally, the spectrum sensing module and BS
radios are connected to the edge device through a USB hub.

The edge device has the Whisper MAC manager at its
core, which facilitates IoT communication over the TVWS
spectrum. It administrates the medium access by the clients
(Section 5), coordinates network bootstrap followed by data
communication (Section 5.4), and handles the dynamism in
TVWS spectrum (Section 6). To do so, it requires exchang-
ing MAC commands with the clients. Here, MAC commands
and user data are wrapped in standard LoRaWAN frame for-
mat [11]. To be specific, we use the security provided by
LoRaWAN along with its frame format, however, not any
associated MAC protocol. Consequently, we customize the
MAC commands according to our protocol.

TVWS channel coordinator prepares the list of available
channels to be used in the network. To do so, it directly com-
municates with the TVWS database (WSDB) for TV channel
availability in the region using the standard protocol to access
white space (PAWS) [8]. Furthermore, it conducts real-time
screening of the uplink NB channels using the spectrum sens-
ing module (Section 6).

5 Whisper MAC Protocol

With TVWS, we can reduce the number of gateways in a
large-area deployment and still support endpoint devices dis-
persed at varying distances. A question that comes up is, why
can we not take a similar approach that is used in mainstream
LPWAN communication such as pure or slotted ALOHA?
Unfortunately, these protocols do not perform well in our
targeted scenarios [1, 14, 16, 26]. In particular, these proto-
cols are not suitable for applications requiring confirmed-up
frames (e.g., cameras for plant stress monitoring) and higher
traffic load in a single-gateway network (Section 7.2). Be-
sides, a gateway following these protocols appears to be even
more inefficient in handling the diversity in data rate demands
by the clients [13, 19]. Most importantly, the dynamic nature
of the TVWS spectrum is not considered in existing MACs,
since these are primarily designed for ISM band operation.

We design and implement FTDMA based MAC protocol
to address these challenges. However, note that there are two
apparent overheads of FTDMA based protocol for LPWAN:
synchronization frame and scheduling control frame. These
are neutralized by leveraging the complementary advantages
from FCC-mandated compulsory parts of the system. Here,
we utilize the onboard GPS module, mounted to comply with
FCC regulations detailed in Section 3, for synchronization
purposes. Furthermore, we piggyback the scheduling info in
the FCC mandated regulatory control frames.

5.1 FTDMA structure
Whisper’s MAC protocol has a custom FTDMA structure at
its core. We first introduce the structure and corresponding

404 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

q0 q1 qN-1 q0 q1 qN-1

T

F

0sec
(UNIX) 3600s

(UNIX)

h0 h1

NBCh1

NBCh0

7200s
(UNIX)

Periodicity quantum Periodicity quantum

Scheduling quantum Scheduling quantum

Figure 3: FTDMA structure of Whisper MAC. For communica-
tion, each client uses a slot that is a group of consecutive scheduling
quanta inside a periodicity quantum.

components. Figure 3 shows a high-level depiction of the pro-
posed FTDMA structure. The T-axis represents time tracked
in seconds in the form of a UNIX timestamp. The origin
point of the T-axis is starting of the UNIX timestamp which
is universal. We divide the T-axis into two dividing time units:
periodicity quantum and scheduling quantum. The required
periodicity of periodic traffic is basically a multiple of the peri-
odicity quantum. Each periodicity quantum is further divided
into an equal number of scheduling quantum. Scheduling
quantum (q) is the minimum time precision required in the
scheduling. Both periodicity and scheduling quantum can be
adjusted based on the computation capability of the edge de-
vice and the required precision of scheduling parameters for
the application scenario. For the application in our real-world
evaluation, we use the hour as the periodicity quantum. To
keep the coherence in the rest of the paper, we use hour (h)
in place of periodicity quantum. Here, each hour in T-axis is
denoted with hn (Figure 3), where n is the number of hours
from the origin point of the T-axis. As mentioned above, we
further break each hour down into N scheduling quanta where
nth one is denoted with qn. Now, the F-axis represents the NB
channels to be used. Note that if the gateway has multiple BS
radios, the T-axis, as well as the set of scheduling quanta, is
separate for each radio, however, the F-axis is shared. This
allows multiple BS radios to operate simultaneously across
different NB channels. The final component of the FTDMA
structure is the slot, a group of consecutive scheduling quanta.
For communication, each client is allocated at least one slot.
Note that, in a slot, not more than one uplink (downlink) chan-
nel is used. However, multiple uplink (downlink) frames can
be transmitted in a slot.

The IoT clients can generate two different patterns of traf-
fic: periodic and event-driven. Here, the timing required for
communication depends on the traffic pattern. Depending on
the data rate and size of the payload, the time length required
for communication varies. We formulate these requirements
as the slot requirement in our FTDMA structure. To fulfill the
requirement, the slot allocation algorithm of Whisper MAC
optimally allocates slots along with communication channels
in compliance with the occupancy limit. In the following sub-
sections, we describe the slot allocation algorithm in detail
for the two aforementioned traffic patterns.

5.2 Slot allocation for periodic traffic
A client generating periodic traffic requires slots at a regular
periodicity. We define the requirement as σ scheduling quanta
are required with the periodicity of p, where σ depends on
the number of frames, both uplink and downlink, to be com-
municated and system processing time. One or multiple slots
can be allocated having at least σ scheduling quanta in total.
Now, the frames to be communicated can have a variable size
depending on the data rate and payload size. Therefore, each
frame requires at least a certain number of scheduling quanta
in a slot for communication. Here, we define continuity (α)
as the number of scheduling quanta in a slot. Now, αmin is
the minimum continuity required for the communication of a
frame. Next, we delineate how the slot allocation algorithm
of Whisper MAC allocates slots in three phases: scheduling
quantum selection, channel selection, and slot allocation.

5.2.1 Scheduling quantum selection

The goal of the scheduling quantum selection process is to
find a set of σ scheduling quanta at every p hours which are
not a part of the existing allocated slots. As the T-axis is
separate for each BS radio, we here describe the quantum
selection process for single BS radio. We first define assign-
ment, A<hs, p>, for a scheduling quantum which implies it is
occupied at every p hour starting from hs hour to fulfill a slot
requirement. When two assignments of a quantum take place
in the same hour, we call it a collision. Consequently, two com-
munication slots corresponding to these assignments collide
which is not desirable. Hence, given the new slot requirement,
the quantum selection process makes sure that the new assign-
ment for a quantum does not collide with the existing ones. To
do so, it leverages the linear Diophantine equation. According
to the theorem for solution to linear Diophantine equation,
two assignments A1<hs1, p1> and A2<hs2, p2> collides iff
|hs1−hs2| is a multiple of gcd(p1, p2). For now, we assume
that p ∈ Z+,1hr ≤ p ≤ 24hr (cases outside this boundary
are discussed in Appendix B.4). Given the boundary of p,
hs ∈ Z+,0hr ≤ hs ≤ 23hr.

Now, what if any scheduling quantum is not found collision-
free for the new assignment? In this case, we modify the new
assignment by making it silent in the hours of collision with
existing assignments. As a result, the new client will halt its
transmission in the slots of those hours. It is apparent that
silencing has an effect on the throughput of the new client, and
thus, it should be minimum. Here, we introduce a metric ωq%
that measures the frequency of silencing. It can be calculated
from the generic solution of the Diophantine equation. See
Appendix B.1 for more details.

The scheduling quantum selection process tunes the value
of hs from h0 to h(p−1) for the required periodicity p and
makes the list of collision-free scheduling quanta with and
without modifying the new assignment to be silent. For the
slot selection algorithm, it sets a priority value (ρq ∈ R,0≤

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 405

Ac0

0
τ
0

1 6

Ac0

0
τ
0

1 6

Ac0Ac1

00
τ
0

10 6
01 9
11 0

Ac0Ac1

00
τ
0

10 6
01 9
11 0

Ac0Ac1

00
τ
0

10 6
01 9

Ac0Ac1

00
τ
0

10 6
01 9

Ac0Ac1Ac1

000
τ
0

100 6
010 9
001 12
101 18
011 21

Ac0Ac1Ac1

000
τ
0

100 6
010 9
001 12
101 18
011 21No collison

Figure 4: Construction of channel occupancy table.Whisper
uses it to formulate and optimally limit the channel occupancy.

ρq ≤ 1) to every scheduling quantum in the list as following.

ρq =

1, has old A[], no collision with new A
2/3, does not have assignment
1−Max(ωq%)

3 ,has old A[] and collides with new A
A scheduling quantum having existing assignments and

no collision with the new assignment gets the higher priority
compared to the one with no existing assignment. It ensures
optimal usage of a quantum by grouping non-colliding as-
signments together. Finally, a quantum having existing as-
signments colliding with the new one gets the lowest priority
depending on the frequency of silence.

5.2.2 Channel selection

The channel selection process, completely independent of
quantum selection, optimally finds the channels for new slot
requirement complying with the occupancy limit. First off, if
two assignments use the same channel in the same hour, it is a
collision in channel usage. However, the collision is safe, i.e.,
assignments are valid, as long as the total occupancy of the
channel in that hour is not more than 36s (Section 3). Based
on it, validating a new assignment for a downlink channel is
challenging. A downlink channel might be assigned to mul-
tiple clients, and these assignments can collide in different
combinations and hours. Furthermore, in a gateway having
multiple BS radios, although the T-axis is separate for each
BS radio, the F-axis is shared, and the channel occupancy is
calculated in aggregate for all BS radios. Now, simply avoid-
ing the collision in channel usage by making the assignment
silent in the colliding hour or using spare channels result in
significant throughput loss and wastage of bandwidth respec-
tively. Therefore, we need to formulate the channel occupancy
and optimally limit the same despite collision among assign-
ments in channel usage. Here, we propose binary counting
based dynamic table on top of the linear Diophantine equation
to validate an assignment for a downlink channel.

Now, we illustrate the dynamic construction of channel
occupancy table with Figure 4. We here define the assign-
ment for channel as Ac<A,τ,q[]>, where τ denotes the chan-
nel occupancy (in seconds) per hour for the assignment, and
q[] denotes the list of scheduling quanta associated with it.
q[] is used in tracking the channel overlap in FDMA. As
shown in Figure 4, each entry in the table contains the col-
liding assignments and corresponding total occupancy (τ) in
the colliding hour of the assignments. For example, an entry
<Ac3 = 1,Ac2 = 0,Ac1 = 1,Ac0 = 1,τ = 17> means Ac3, Ac1,
and Ac0 collide in channel usage, and the channel occupancy

is 17s in the colliding hour. Now, if there are n assignments for
a channel, there are 2n possible combinations of assignments.
However, the assignments in a possible combination may not
collide, and thus it can be ruled out for future computation.
For example, Ac0 and Ac1 do not collide, and thus the last
entry in the second table has τ = 0 that is removed for any
further development. Find step by step description of table
construction with example in Appendix B.2

The channel selection process leverages the channel occu-
pancy table in finding a valid channel despite the collision
between new and existing assignments in an hour. However,
the question arises which channel is optimal to select? To
do so, we here utilize a priority variable (ρc) for a channel
similar to (ρq). However, ωc% is treated differently compared
to ωq%. In case of a collision between the new and existing as-
signments in channel usage, although the occupancy becomes
higher only in the hour of colliding occurrence, the channel
remains under-utilized in the rest of the hours of non-colliding
occurrences. Consequently, a higher value of ωc% results in
lesser under-utilized hours. Hence, instead of 1−Max(ωq%)

3 , we

use Avg(ωc%)
3 in calculating ρc for a channel. Although it can-

not ensure complete eradication of under-utilized hours for a
channel, we later show how the channel can be utilized fur-
ther in these hours for event-driven traffic. In aggregate, for
a given assignment Ac, the channel selection process finds a
valid downlink channel using the occupancy table with the
maximum possible ρc.

5.2.3 Slot allocation

The slot requirement from a client can be satisfied with a
single or a combination of slots. From a high level, the slot
allocation algorithm works in two steps. First, it prepares
different possible combinations of slots using the schedul-
ing quantum selection and downlink channel selection (find
the pseudo code in Appendix B.3). Then, it selects the best
combination of slots based on the following weight function.

f = w1ρq +w2ρc +w3α−w4ψ

We have discussed ρq and ρc earlier. Positive weight on higher
continuity (α) value takes lesser slots to fulfill the requirement
of σ quanta, which, in turn, saves the power of the client. On
the other hand, ψ quantifies the wastage of quanta, i.e., how
many extra quanta are used in total for a combination of slots.
Consequently, a negative weight on ψ reduces the wastage in
bandwidth-sensitive applications. All weights can be further
tuned based on the nature of the application.

5.3 Slot allocation for event-driven traffic

In event-driven traffic, a frame is generated based on an event-
trigger, e.g., rain monitoring. The frame needs to reach the
gateway before a certain time. Therefore, we define the re-
quirement as σ scheduling quanta are required with αmin con-

406 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Beacon slot Join slot Data communication slot
hn hn+1 Time

BS radio1

BS radio0

Client0

Client1

Figure 5: Time sequence diagram of Whisper protocol in a
simple example scenario. This example depicts bootstrapping
of two clients followed by data communication with the gateway
having two BS radios.

tinuity before the expiry, ε. The underneath concept of slot
allocation algorithm for event-driven traffic is mostly similar
to the periodic traffic. We point out the distinct factors below.

During scheduling quantum selection, we check the colli-
sion of an assignment for event-driven traffic with the existing
assignments for both types of traffic. However, there is no
notion of silencing the new assignment for event-driven traf-
fic as its time-sensitive. Accordingly, ρq has three different
priority levels - highest priority to no collision with existing
assignments, then to no existing assignments, and lowest to
collision only with existing assignments for periodic traffic.
Here, in the last case, even if the existing periodic assignment
ends up transmitting frames in the same channel together with
the new event-driven assignment, according to the nature of
LoRa physical layer, there is a probability of one getting suc-
cessfully demodulated. In this way, the scheduling quantum
selection process enlists all quanta before the expiry, ε.

Although the underneath concept remains similar, the chan-
nel selection for event-driven traffic is more simplistic than
periodic traffic. Here, rather than using the channel occu-
pancy table, the validity of a new assignment for a channel
is probed by simply checking collision with individual ex-
isting assignment for both types of traffic in the hour of the
new assignment. If the new assignment collides with existing
assignments in channel usage and the total τ of all colliding
assignments including the new one remains within the limit,
we consider it valid. The priority of a channel (ρc) for a valid
new assignment is decided differently – highest priority to
no collision with existing assignments, then to collision with
existing assignments, and lowest to no existing assignments.
It facilitates the utilization of a channel in no or low utilization
hours of the periodic assignments.

Finally, we make a modification in the weight function for
slot allocation as following.

g = w1ρq +w2ρc +w3α−w4ψ−w5δ

where δ is the time difference between selected scheduling
quantum and the expiry (ε). A negative weight on δ makes the
choice for immediate slot less greedy. It, in turn, facilitates
serving multiple concurrent requests of event-driven traffic
without colliding in the immediate slot.

5.4 Bootstrap and Data Communication

Hitherto we discuss the process of slot allocation for con-
trolling the medium access by the clients. We now describe
how Whisper MAC manages client bootstrapping and data
communication using the slot allocation. Client bootstrapping
is a critical part of a TVWS based IoT network since it is
required to comply with FCC regulations given the power
constraint of the IoT devices. Recall that, each NB TVWS de-
vice must provide the WSDB its geo-coordinates and height
to obtain the list of available channels for transmission at
that location. Here, the clients can register via the gateway
as they do not have Internet connectivity. Nevertheless, a key
question remains. How does a client share its location with
the gateway without knowing the available channel and time
for transmitting registration request?

According to the FCC regulations, a client that is not regis-
tered in the WSDB can transmit only its location information
or network join request on the channels registered against
the gateway. To do so, a client requires to know the channels
registered against the gateway where the list of these chan-
nels may even vary over time. As a remedy, Whisper MAC
utilizes broadcast beacons that embed the info of join slots
for clients to transmit WSDB registration, i.e., network join
request. In the join slot, a client transmits the join request
along with its location for WSDB registration and slot re-
quirement for the data communication. Note that the beacon
slots have predefined and fixed timing and channels. There-
fore, the time synced (using GPS) clients can listen for the
beacon frames without draining its power in random or con-
tinuous scanning. Figure 5 depicts an example scenario of
client bootstrapping followed by data communication. Due to
space limitations, we put the corresponding implementation
details in Appendix B.5.

After receiving the WSDB registration response, i.e., join
response, a client is ready for the data transmission in the al-
located slots (piggybacked as MAC command in the response
frame) until the expiry of channel. A TVWS device is required
to contact (poll) the WSDB once every 24 hours and check
the list of available channels at the location. The poll request
is piggybacked as a MAC command in a confirmed-up data
frame. The expiry generally gets extended after the polling,
and updated expiry is sent in the downlink ACK. However,
polling is not required for a client generating event-driven
traffic as it freshly joins the network whenever it has a data
frame to transmit.

6 Dynamic Spectrum Access

The dynamic nature of TVWS spectrum can lead to bottle-
necks when it is utilized for NB IoT networks. First, the long
distance between the gateway and a client brings about sep-
arate uplink and downlink having dissimilar quality at their
corresponding locations. Second, the IoT clients are power

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 407

Transmitter

RF
attenuator

Receiver

Antenna

RF
combiner

RF signal line
Control line

Figure 6: Block diagram of our spectrum sensing module that
measures interference from the incumbent users.

constrained. Hence, any extra transmission and carrier sensing
activity by the clients for spectrum management adds power
overhead. Whisper addresses these challenges by implement-
ing spectrum awareness capability and then incorporating
smart spectrum exploitation approach in the protocol.

6.1 Spectrum awareness
Uplink communication is inevitably significant in most of the
IoT applications as IoT traffic is push-based. The quality of
this communication link directly relies on the interference
nearby the gateway. Hence, we first try to enable spectrum
awareness at the gateway. A part of spectrum awareness, both
uplink and downlink, is achieved by using the WSDB. How-
ever, it is not enough to accumulate info about the real-time
activity of incumbent users – both licensed and unlicensed –
in the carrier. To do so, Whisper performs spectrum sensing.

First off, how can the interference level in a NB channel
be measured given the Whisper radio uses LoRa modulation
and its minimum detectable signal (MDS) is very low (−149
dBm)? The LoRa modulation enables frame reception even
when the carrier signal level is below the ambient RF noise
floor. Consequently, the conventional approach of measuring
RF energy in a NB channel as an indication of interference
level is not viable here. Instead, we design a custom off-
the-shelf spectrum sensing module to evaluate the level of
interference in NB TVWS channels. It can evaluate the impact
of interference from licensed and unlicensed cognitive radio
users at a very low signal level.

Spectrum sensing module locally generates RF signal with
a controlled amplitude to determine MDS in a NB channel.
The MDS gives the perception of interference from incum-
bent users in the NB channel – a lower MDS implies a lower
RF interference. Figure 6 depicts the block diagram of the
spectrum sensing module. It consists of a transmitter, a con-
trolled attenuator, an RF combiner, and a receiver. We use two
Whisper radios as the transmitter and receiver. The attenuator
is controlled by the transmitter. We modify transmitter radio
firmware to set the value of attenuator. To estimate the MDS
in a channel, we tune the transmitter and receiver to the spe-
cific channel frequency, and the transmitter starts transmitting
test frames. The RF signal of a test frame is attenuated by the
attenuator to yield a weak signal similar to a reception from a
remote transmitter, which is a commonly practised technique
in laboratory emulation [15]. The combiner combines this
weak signal with the ambient RF signals (includes interfer-

ence from incumbent users) picked up by the antenna. The
attenuator value is varied to identify the maximum attenuation
that results in 90% successful frame reception. The lowest
RSSI of the received frames is the MDS under the interfer-
ence. Note that the spectrum sensing module only senses the
RF channel. The generated RF signal is only used internally,
and thus has no effect on data communication and channel
occupancy limit. The spectrum sensing module is a part of
the gateway as mentioned in Section 4. The channel control
unit utilizes it every hour to update the interference level from
the incumbent users.

6.2 Spectrum exploitation

The interference in the downlink at the location of a client
cannot be measured with the spectrum sensing module, given
the long distance. Furthermore, carrier sensing at the client’s
end would add huge power overhead. Here, Whisper enables
the spectrum exploitation approach to mitigate the effect of
interference through dynamic channel assignment that does
not require any additional frame transmission.

Before jumping into the details, we first introduce the re-
lated terminologies and notations. For each slot, we define a
channel-tube (ChT) that has two channels for a confirmed-up
and one channel for an unconfirmed-up data frame. For a slot
used in periodic traffic, NChT channel-tubes are assigned by
adjusting the Ac for the associated channels during the slot
allocation described in Section 5. In every occurrence of the
slot, a ChT is picked in a sequential round-robin manner for
communication. In case of event-driven traffic, a ChT is as-
signed which is different from last (NChT −1) ChT s. In this
way, when a slot completes hopping across all NChT ChT s, we
call it a hopping cycle. Note that, a client may have multiple
slots (as mentioned in Section 5) and each slot has an indi-
vidual set of NChT ChT s. Furthermore, ChT s are preferably
selected from different TV channels to facilitate robustness
against broadband interference. Next, we delineate how the
set of ChT is dynamically updated in three phases.

1. Monitoring phase: During this phase, the performance
of assigned ChT s for all the slots of a client is monitored at
the gateway, and a flag is raised in case of substandard per-
formance. It is raised based on the overflow of a bucket that
is filled up with the tickets for an event of missing frame in
a ChT . The number of tickets for a missing event is equal
to the number of previous consecutive occurrences starting
from the current event in the ChT . In the event of successful
communication in a ChT , we remove its tickets in a similar
manner. Now, how do we detect an incident of the missing
frame? We here leverage the frame count block of the standard
LoRaWAN frame header. Finally, we need to determine the
optimal bucket size (Sbukt). It is directly related to ∑

NDChT
i=1 ki

where NDChT is number of distinct ChT s and k is number
of times it is used in a cycle. Sbukt depends on the length of
hopping cycle too. For example, a client with a smaller cycle

408 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

overflows the bucket faster in presence of a short-term inter-
ference, whereas it gets slower in case of a longer cycle with
long-term interference. Both these scenarios are undesired.
Here, we express Sbukt as m∑

NDChT
i=1 ki for different bands of

cycle. From our emulation and real-world deployments, we
found the following optimal values of m with NChT = 4 for
each slot. Here, m typically exhibits an exponential downward
pattern with respect to the length of cycle.

m =

2.5, cycle length < 1hr
1.6, 1hr ≤cycle length < 3hr
1.05, 3hr ≤cycle length < 6hr
0.7, 6hr ≤cycle length < 11hr
0.5, 11hr ≤cycle length

2. Decision making phase: After a flag has been raised,

the decision making phase decides which ChT and associated
channels are to be replaced. We note that a ChT is selected
for replacement if its contribution in bucket overflow is at
least a certain percentage defined as, ki

∑
NDChT
i=1 ki

. If no such

ChT is found, older events are removed to accommodate new
events in the bucket. Next, we find which channel(s) in the
ChT (s) needs to be replaced based on the knowledge from the
monitoring phase. The replacement ChT is placed exactly at
the same sequential position of the replaced one in the current
list of ChT s for a slot.

3. Execution phase: For a client sending confirmed-up
frames, the execution of ChT update is initiated immediately
after the decision making. Whereas, in case of a client send-
ing unconfirmed-up data frames, it is carried out when the
client polls the channel from WSDB since this is the only
time when the client sends confirmed-up data frames. The
execution is initiated by the gateway by sending an update
notice in the downlink frame. The client sends a notification
of notice reception in the following uplink data frame. To
ensure the robustness against frame loss, the update notice (if
a confirmed up frame is received) and notification are sent
in the following NChT slots. The timing of the update is set
accordingly in the notice. Note that the execution process
is separate for each slot. Furthermore, no extra frame is ex-
changed for the execution process since all the associated
MAC commands are piggybacked in the data frames.

6.3 Fallback

Finally, in a rare event of complete communication loss with
the gateway, a client calls for the fallback. Although a client
sending confirmed-up data frames detects such an event
straight away, a client sending unconfirmed-up data frames
detects only at the time of channel polling from WSDB. In
such an event, the client does not get a downlink packet in
any slot and ChT . As a fallback alternative, the client rejoins
the network. It reports the event in the join request so that
gateway can assign a different set of ChT s.

Avg. Max Min
Throughput (in bps) 0.0626 0.0681 0.0601
FDR (in %) 98.4 100 97.1
Latency (in sec) 2.39 2.43 2.37

Table 2: Performance of Whisper in real-world deployment

7 Evaluation

In this section, we focus on evaluating the performance of
Whisper through a real-world deployment and simulation. We
further make a comparison with the ISM band IoT solutions.

7.1 Real-world deployment
We have an ongoing deployment of Whisper on 8500 acre
dry-land wheat farm in Eastern Washington, which has been
operating for over 2.5 months. Here, Whisper is used by the
third-party users in collecting sensor data from 17 different
fields for multiple data-driven agriculture applications.

7.1.1 Setup

The deployment includes 20 Whisper client radios that
communicate with a single gateway. The client radios are
retrofitted inside a weatherproof box, powered by solar, and
connected to a sensor interface to collect data from five sen-
sors – temperature, humidity, CO2, and soil moisture and
temperature (Figure 7b). As configured by third-party users,
11 clients report data of all sensors at different periodicity
starting from 30 min to 12hr. Similarly, the remaining clients
report all sensor data in an event-driven manner based on
CO2 level. All of the data frames are confirmed-up – 51 bytes
uplink, 20 bytes downlink. The modulation parameters are
configured to have a coding rate (CR) of 4, 62.5 kHz channel
bandwidth (ChBW), and preamble length of 8. We tune the
spreading factor (SF) based on the distance of the clients from
the gateway as shown in Figure 7c.

The gateway is deployed on the farm, and due to a lack of
power, is powered by solar power (Figure 7a). Since there is
no Internet connectivity in the middle of the farm, we use an
Adaptrum TVWS broadband radio at the gateway to create a
wireless link to the nearest source of connectivity (farmer’s
home) [2]. It in turn enables the evaluation of Whisper in
coexistence with off-the-shelf unlicensed TVWS broadband
network. We use a Raspberry Pi 3B as the edge device at
the gateway. For WSDB, we use Wave DB Connect by RED
Technologies [31]. Finally, both BS radio and clients use om-
nidirectional antennas with approximately 5 dBi gain where
the TX power is set to the max according to Section 3.

7.1.2 Results

Thus far, 4766 sensor data points have been collected via
Whisper. We evaluate the performance of Whisper in terms
of three metrics: throughput, frame delivery ratio (FDR), and

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 409

(a) (b) (c)

Dis = 18.5mi, SF=12
Dis = 9mi, SF=10

Dis =2.5mi,
SF = 7, 8

Gateway

Client

Figure 7: Whisper Deployment. The solar powered IoT Hub shown in (a) includes a broadband TVWS backhaul and Whisper
gateway. In (b), Whisper client integrated with sensors and retrofitted inside a weatherproof box. (c) shows the deployment map.

0 5 10 15

Distance from Gateway (miles)

-160

-140

-120

-100

-80

-60

R
S

S
I

(d
B

m
)

Rural Urban

(a)

0 5 10 15

Distance from Gateway (miles)

0

500

1000

1500

2000

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 (

m
J
)

TVWS (VHF) ISM (915MHz)

(b)

Figure 8: (a) Range of Whisper radio and (b) Comparison of
energy consumption between Whisper radio in TVWS VHF
band and off-the-shelf LoRa radio in ISM band.

latency. The value of each metric is averaged over a period of
24hr. We do not observe any significant deviation in the aver-
age values of these metrics throughout the deployment period.
Table 2 summarizes the results. We also observe that Whisper
has shown robustness against multiple real-world incidents
such as power outages at gateway and clients due to thunder-
storms, disrupted Internet connectivity, and WSDB disruption
due to maintenance. Furthermore, Whisper shares the spec-
trum (470 to 488 MHz) with Adaptrum broadband TVWS
radio in the deployment as we mentioned above. However, we
do not observe any mutual interruption in the communication
of Adaptrum radio and Whisper.

7.1.3 Range

We perform range experiments to evaluate the sensitivity of
the Whisper radio. Range tests are conducted in both urban
and rural environments, where both have line-of-site (LOS)
and non-line-of-sight (NLOS) connectivity. For the urban
settings, we place a BS radio on the rooftop of an industry
campus building. Then, we move the client to different lo-
cations using a vehicle and record the RSSI. The radios are
configured for LoRa modulation having a ChBW of 31.25
kHz, SF of 12, and CR of 4 in the VHF band. Figure 8a shows
the RSSI of received frames with respect to distance in miles.
We can see that frames are successfully received at 11.3 miles
with RSSI of −85 dBm. For the evaluation in rural settings,
we use our aforementioned farm deployment. In this scenario,
the performance is even better in comparison to the urban
settings. We can see that packets are successfully received at

15 miles with a measured RSSI of −87 dBm which is signifi-
cantly higher than the MDS (−149 dBm) of Whisper radio.
These results imply that clients can be deployed as far as 15
miles away from the gateway, and likely even further. For ex-
ample, in Figure 7c, one of the clients communicates with the
gateway from a distance of 18.5 miles. Note that, the range
of LoRa in ISM band is found to be 1 - 3 miles in literature
and our real-world deployment [4].

7.1.4 Energy profile

We next conduct energy profiling of Whisper radio operating
in TVWS spectrum and compare it with an off-the-shelf LoRa
radio, SX126xMB2xAS [20], operating in the US915 ISM
band. The physical setup for the experimentation is similar
to the range test. Both radios are configured to send an up-
link frame of 51 bytes every hour to the gateway with the
same LoRa modulation configurations (CR: 1, ChBW: 62.5
kHz, TX power: 20 dBm). We then vary the distance of the
radios from the gateway and tune the SF accordingly for suc-
cessful communication. In Figure 8b, we show the energy
consumption for each frame transmission in TVWS VHF
band (174.3 MHz) and ISM band (915 MHz). Note that the
energy consumption of the Whisper radio in locking GPS
(once in 24hr) is prorated over its transmitted frames. Up to
the initial distance of around a mile, the energy consumption
in the TVWS spectrum is higher. However, as the distance
increases, the time on the air for frame transmitted in the ISM
band increases due to the higher spreading factor. Whereas,
the lower frequency of the VHF band facilitates longer dis-
tance with comparatively lower SF. Consequently, the energy
consumption becomes at least 2x higher in the ISM band
compared to the TVWS VHF band after a mile of distance.

7.1.5 Performance in presence of interference

To evaluate the performance of Whisper under interference
in the above-mentioned real-world deployment, we create
interference with a separate transmitter. The interference is
introduced on both uplink and downlink channels in three
different ways - intermittent, continuous, and complete block.

410 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 500 1000 1500 2000 2500

Time (minutes)

0

50

100

F
D

R
 (

%
)

Continuous Intermittent Complete Block

A B C

(a)

0 500 1000 1500 2000 2500 3000

Time (minutes)

60

70

80

90

100

F
D

R
 (

%
)

Continuous Intermittent Complete Block

A B

C

D

(b)

Figure 9: Whisper’s response to different types of interference
on (a) downlink and (b) uplink channels in real-world.

In the case of intermittent interference, the interferer hops
across the channels of NChT = 4 ChT s and creates short-term
interference for the period equals to the time on air of a frame.
Whereas, in continuous interference, the interferer picks one
of the channels from the 4 ChT s and creates continuous inter-
ference on that channel. Finally, in case of complete block, the
interferer is time-synced and aware of the hoping cycle sched-
ule of the target radio. It accordingly creates interference on
the active channel for data communication.

We evaluate the impact of these three types of interference
on downlink channels. The interferer is placed very close to
a client with high transmit power. The interferer is aware of
the downlink channels used by the client. We then record the
FDR on the downlink channels and the activity of switching
channels for the client. In this way, we investigate the impact
of interference for the clients, having different periodicity and
traffic patterns, in our aforementioned deployment. Since all
the clients generating periodic traffic exhibit similar behav-
ior, we only discuss a client having a periodicity of 30 min.
Figure 9a shows downlink FDR of the client averaged over
a period of 120 min (one hopping cycle). As shown in the
figure, the intermittent interference has a very minor impact
on the FDR. No ChT update is initiated in response, whereas,
for continuous interference, we observe a significant drop in
FDR after the interferer is activated (point A in Figure 9a).
As a result, a ChT update is initiated by the gateway. After
the execution of same, the FDR reaches 100% (point C in
Figure 9a). Finally, for complete block interference, we see
the complete cease in downlink communication for the client.
Consequently, the client triggers the fallback mechanism and
rejoins the network (point B in Figure 9a). As a new set of
ChT s is assigned after rejoining, the FDR reaches the maxi-
mum. We observe a similar impact of intermittent interference
and a lesser impact of continuous interference on clients gen-
erating event-driven traffic. This is due to the members of the
set of 4 ChT s varying with time.Nevertheless, it is difficult to
create complete block interference for event-driven traffic.

Next, we evaluate the impact on uplink channels by plac-
ing the interferer close to the gateway. We select four uplink
channels of the same client for the interferer, however, these
channels are used by more than half of the clients in different
combinations. To get a precise understanding of the effect
of interference, we record uplink frames transmitted by any
client on only these four channels. Figure 9b shows corre-
sponding uplink FDR averaged over a period of 120 min. We

observe very minimal effect of the intermittent interference
on the network and no ChT update took place for the same. In
case of continuous interference, we see a drop in the FDR af-
ter the activation of interferer (point A in Figure 9b). Over the
period of two days, ChT s of two clients are updated followed
by increment in FDR (point C and D). Besides, the spectrum
sensing unit detects the interference on the channel, and con-
sequently, the channel is not further assigned to any client for
sending event-driven traffic in this period by the channel coor-
dinator. Finally, the complete block interference only affects
the communication of one client. The client exhibits similar
response as described above in case of the downlink.

7.2 Simulation

We now focus on evaluating Whisper’s capability in terms of
scale. Since deploying a very large-scale network (100s of
clients) is challenging, we carry out the simulation. In partic-
ular, we evaluate two things: (1) how the larger bandwidth
of TVWS spectrum facilitates scaling and (2) how Whisper
MAC makes better utilization of this bandwidth compared
to mainstream IoT MAC protocols. For this purpose, IoT de-
vices transmitting images is a compelling application scenario
(Section 2). We simulate this scenario in three network setups:
(S1) Whisper MAC in TVWS spectrum, (S2) Whisper MAC
in ISM band, and (S3) pure ALOHA (used by LoRaWAN)
in TVWS spectrum. Comparison between S1 and S2 shows
the role of bandwidth in our application scenario, whereas S1
and S3 show how Whisper MAC makes better utilization of
this larger bandwidth.

7.2.1 Setup

We first integrate the LoRa physical layer from FLoRa simu-
lator and the simulation environment of OMNet++ with our
protocol [29]. We set up a single-gateway star-topology net-
work where every IoT client device sends a 25 kB image. The
gateway has eight BS radios. The number of clients is varied
from 5 to 1000 at an increment of 5. The ratio of clients gen-
erating periodic traffic (Np) to event-driven traffic (Ne) is also
adjusted in five levels. We make an even distribution of image
generation periodicity starting from 1hr to 24hr among the
clients generating periodic traffic. A client with event-driven
traffic sends an image once in every 24hr following random
distribution. For S1 and S3, the uplink frame size is 255 bytes
and downlink ACK frame is 18 bytes. The LoRa modulation
parameters are set as following - CR: 1 and ChBW: 62.5
kHz. To simulate the effect of distance and associated data
rates, we make an even distribution of six possible SF values
(7−12) among the clients. Beacon periods are separated by
two minutes with a periodicity of pbcn = 1hr (Appendix B.5).
For simulation purposes, since radios are not certified real
devices, we use a local proxy of WSDB where each device,
including gateway, has 3 TV channels available for transmis-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 411

0 200 400 600 800 1000

Number of Clients

0

100

200

300

T
h

ro
u

g
h

p
u

t
(B

p
s
)

Whisper (TVWS) 100:0

Whisper (TVWS) 75:25

Whisper (TVWS) 50:50

Whisper (TVWS) 25:75

Whisper (TVWS) 0:100

Whisper (ISM) 50:50

ALOHA (TVWS) 50:50

(a) Throughput

0 200 400 600 800 1000

Number of Clients

0

50

100

F
D

R
 (

%
)

Whisper (TVWS) 100:0

Whisper (TVWS) 75:25

Whisper (TVWS) 50:50

Whisper (TVWS) 25:75

Whisper (TVWS) 0:100

Whisper (ISM) 50:50

ALOHA (TVWS) 50:50

(b) Frame delivery ratio

0 200 400 600 800 1000

Number of Clients

0

50

100

150

Im
a

g
e

 T
ra

n
s
fe

r
(m

in
.)

Whisper (TVWS) 100:0

Whisper (TVWS) 75:25

Whisper (TVWS) 50:50

Whisper (TVWS) 25:75

Whisper (TVWS) 0:100

Whisper (ISM) 50:50

ALOHA (TVWS) 50:50

(c) Image Transfer Time

Figure 10: Simulation results showing the role of large TVWS band and how Whisper MAC better utilizes the same in scaling.

sion. For S2, we use the four uplink data rates, DR0-DR3,
permitted in the US915 ISM band where corresponding SF
ranges from 10 to 7 with the channel bandwidth of 125 kHz.
The dwell time restriction limits the uplink payload size (in
bytes) for these data rates – DR0:11, DR1:53, DR2:125, and
DR3:242. On the downlink side, we use data rates, DR10-
DR13, having same SFs as uplink with ChBW of 500 kHz.

7.2.2 Results

We analyze the performance in terms of throughput, FDR,
and image transfer completion time.

1. Throughput: As shown in Figure 10a, we analyze the
throughput of the network under a various number of clients
and ratios of traffic types. Each point in the graph represents
the average throughput of the network in a period of 24hr.
Here, we only consider the data frames, not any frames as-
sociated with the bootstrapping process. For S1 (Whisper in
TVWS), the throughput increases linearly with the number of
clients for every ratio of traffic types (Np : Ne) until it reaches
the network capacity. As the proportion of event-driven traffic
increases in a group of clients, the throughput slightly drops
due to the higher collision rate among the randomly triggered
events. For S2 (Whisper in ISM band) and S3 (ALOHA in
TVWS), we only show the representative results from the
traffic ratio of 50 : 50. Although S2 shows similar patterns
as S1, there are two distinct factors. First, due to the limited
bandwidth in ISM band compared to the TVWS spectrum,
S2 reaches the saturation point with ∼ 5x fewer clients than
S1. Second, for the same number of clients in the network, S2
exhibits higher throughput as per-channel bandwidth is higher
and supported SF is lower in the US915 ISM band compared
to the TVWS spectrum. However, the lower value of sup-
ported SFs in the ISM band results in a much shorter range.
In case of S3, both maximum throughput and number of sup-
ported clients are significantly lower than S1. This shows why
the existing mainstream IoT MAC protocol is not suited for
making better utilization of large TVWS bandwidth.

2. FDR: In computing FDR, we consider the frame gen-
erated but not successfully transmitted, even due to implied
silence by Whisper MAC, as a frame loss. Figure 10b pro-
vides similar insights as the throughput. Although the initial
throughput is found higher in S2 than S1, FDR is lower in
the ISM band due to the larger number of small frame (both
uplink and downlink) transmission for sending each image

(Section 2). It, in turn, increases the probability of frame loss.
3. Image transfer completion time: We further report the

time required to send an image including the re-transmission
of frames. The image is dropped after 3hr, if it is not com-
pletely transmitted. As shown in Figure 10c, the completion
time linearly increases for S1 and S2 until it hits the satura-
tion point, whereas it increases exponentially for S3. Now,
although S2 exhibits higher throughput than S1 at the cost of
a much shorter range, S2 reports at least 2x higher completion
time. Because, in ISM band, a client requires to transmit a
larger number of small frames to send an image due to the
cap on uplink payload size (Section 2).

8 Related Work

Even though unlicensed operations in TVWS spectrum have
been extensively studied in literature [5,6,21]. Nearly all prior
work have focused on broadband scenarios and corresponding
FCC regulations. However, there are fundamental differences
in NB operation such as power constraint of IoT devices, num-
ber of devices in the network, channel occupancy limitation,
etc. These make the challenges in unlicensed NB operation
non-trivial to solve. There are some prior work on devising
suitable signal modulation techniques for NB operation in
TVWS spectrum [25, 27, 28]. However, dynamic spectrum
access and management in NB operation, compliance with
the NB FCC regulations, and corresponding comprehensive
MAC protocol design are beyond the scope of these work.

9 Conclusion

In this paper, we have presented Whisper, a new solution to
enable long-range and wider spectrum communication for
IoT by leveraging TVWS spectrum. With Whisper, we get
at least 5x longer range compared to LoRa operating in ISM
band. Consequently, in our real-world deployment, Whisper
has covered 17 fields in a 8500 acre farm with single gateway.
Besides, the lower frequency of TVWS spectrum facilitates
2x less energy consumption than ISM band at a range of more
than a mile. Note that, for a deployment spanning not more
than a mile from the gateway, LoRa in ISM band would be
preferable over TVWS spectrum. It also holds for an indoor
scenario. Finally, with only 3 white TV channels, Whisper
can accommodate 5x more traffic than ISM band.

412 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Khaled Q Abdelfadeel, Dimitrios Zorbas, Victor Cionca,
and Dirk Pesch. FREE — Fine-grained scheduling
for reliable and energy-efficient data collection in Lo-
RaWAN. IEEE Internet of Things Journal, 7(1):669–
683, 2019.

[2] Adaptrum. Adaptrum TVWS broadband radio,
2021. https://www.adaptrum.com/Content/docs/
acrs2_datasheet_1016.pdf.

[3] Arjan. Airtime calculator for LoRaWAN, 2021. https:
//avbentem.github.io/airtime-calculator/
ttn/us915-dl/38.

[4] A. Augustin, J. Yi, T. Clausen, and W.M. Townsley. A
study of LoRa: Long range low power networks for the
Internet of Things. Sensors, 2016.

[5] Paramvir Bahl, Ranveer Chandra, Thomas Moscibroda,
Rohan Murty, and Matt Welsh. White space networking
with Wi-Fi like connectivity. ACM SIGCOMM Com-
puter Communication Review, 39(4):27–38, 2009.

[6] Ranveer Chandra, Thomas Moscibroda, Paramvir Bahl,
Rohan Murty, George Nychis, and Xiaohui Wang. A
campus-wide testbed over the TV White Spaces. SIG-
MOBILE Mob. Comput. Commun. Rev., 15(3):2–9,
November 2011.

[7] Tonghao Chen, Derek Eager, and Dwight Makaroff. Ef-
ficient image transmission using LoRa technology in
agricultural monitoring IoT systems. In 2019 Interna-
tional Conference on Internet of Things (iThings) and
IEEE Green Computing and Communications (Green-
Com) and IEEE Cyber, Physical and Social Computing
(CPSCom) and IEEE Smart Data (SmartData), pages
937–944. IEEE, 2019.

[8] V Chen, S Das, L Zhu, J Malyar, and P McCann. Proto-
col to access white-space (PAWS) databases. Internet
Engineering Task Force (IETF), 2015.

[9] Federal Communications Commission. FCC rules for
unlicensed white space devices. March 2020.

[10] Federal Communications Commission. Unlicensed
white space device operations in the television bands.
FCC ET Docket No. 20-36, Report Order and Further
Notice of Proposed Rulemaking, October 2020.

[11] LoRa Alliance Technical Committee. Lo-
RaWAN 1.0.3 specification, 2018. https:
//lora-alliance.org/sites/default/files/
2018-07/lorawan1.0.3.pdf.

[12] Semtech Corporation. Semtech SX1262,
2020. https://www.semtech.com/products/
wireless-rf/lora-transceivers/sx1262.

[13] Joseph Finnegan, Ronan Farrell, and Stephen Brown.
Analysis and enhancement of the LoRaWAN adaptive
data rate scheme. IEEE Internet of Things Journal,
7(8):7171–7180, 2020.

[14] Jetmir Haxhibeqiri, Ingrid Moerman, and Jeroen Hoe-
beke. Low overhead scheduling of LoRa transmissions
for improved scalability. IEEE Internet of Things Jour-
nal, 6(2):3097–3109, 2018.

[15] Jetmir Haxhibeqiri, Floris Van den Abeele, Ingrid Mo-
erman, and Jeroen Hoebeke. LoRa scalability: A simu-
lation model based on interference measurements. Sen-
sors, 17(6):1193, 2017.

[16] Md Tamzeed Islam, Bashima Islam, and Shahriar Nirjon.
Duty-cycle-aware real-time scheduling of wireless links
in low power WANs. In 2018 14th International Con-
ference on Distributed Computing in Sensor Systems
(DCOSS), pages 53–60. IEEE, 2018.

[17] Akram H Jebril, Aduwati Sali, Alyani Ismail, and Mohd
Fadlee A Rasid. Overcoming limitations of LoRa physi-
cal layer in image transmission. Sensors, 18(10):3257,
2018.

[18] Mookeun Ji, Juyeon Yoon, Jeongwoo Choo, Minki Jang,
and Anthony Smith. LoRa-based visual monitoring
scheme for agriculture IoT. In 2019 IEEE Sensors Ap-
plications Symposium (SAS), pages 1–6. IEEE, 2019.

[19] Shengyang Li, Usman Raza, and Aftab Khan. How ag-
ile is the adaptive data rate mechanism of LoRaWAN?
In 2018 IEEE Global Communications Conference
(GLOBECOM), pages 206–212. IEEE, 2018.

[20] ARM MBED. SX126xMB2xAS, 2021. https://os.
mbed.com/components/SX126xMB2xAS/.

[21] Rohan Murty, Ranveer Chandra, Thomas Moscibroda,
and Paramvir Bahl. Senseless: A database-driven white
spaces network. IEEE Transactions on Mobile Comput-
ing, 11(2):189–203, 2011.

[22] The Things Network. Fair use policy explained, 2021.
https://www.thethingsnetwork.org/forum/t/
fair-use-policy-explained/1300.

[23] The Things Network. Regional parameters, 2021.
https://www.thethingsnetwork.org/docs/
lorawan/regional-parameters/.

[24] NCSU College of Agriculture and Life Sciences. Low-
cost cameras could be sensors to remotely monitor crop
stress, 2022. https://shorturl.at/evxGW.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 413

https://www.adaptrum.com/Content/docs/acrs2_datasheet_1016.pdf
https://www.adaptrum.com/Content/docs/acrs2_datasheet_1016.pdf
https://avbentem.github.io/airtime-calculator/ttn/us915-dl/38
https://avbentem.github.io/airtime-calculator/ttn/us915-dl/38
https://avbentem.github.io/airtime-calculator/ttn/us915-dl/38
https://lora-alliance.org/sites/default/files/2018-07/lorawan1.0.3.pdf
https://lora-alliance.org/sites/default/files/2018-07/lorawan1.0.3.pdf
https://lora-alliance.org/sites/default/files/2018-07/lorawan1.0.3.pdf
https://www.semtech.com/products/wireless-rf/lora-transceivers/sx1262
https://www.semtech.com/products/wireless-rf/lora-transceivers/sx1262
https://os.mbed.com/components/SX126xMB2xAS/
https://os.mbed.com/components/SX126xMB2xAS/
https://www.thethingsnetwork.org/forum/t/fair-use-policy-explained/1300
https://www.thethingsnetwork.org/forum/t/fair-use-policy-explained/1300
https://www.thethingsnetwork.org/docs/lorawan/regional-parameters/
https://www.thethingsnetwork.org/docs/lorawan/regional-parameters/
https://shorturl.at/evxGW

[25] Mahbubur Rahman, Dali Ismail, Venkata P Modekurthy,
and Abusayeed Saifullah. LPWAN in the TV White
Spaces: A practical implementation and deployment
experiences. arXiv preprint arXiv:2102.00302, 2021.

[26] Brecht Reynders, Qing Wang, Pere Tuset-Peiro, Xavier
Vilajosana, and Sofie Pollin. Improving reliability and
scalability of LoRaWANs through lightweight schedul-
ing. IEEE Internet of Things Journal, 5(3):1830–1842,
2018.

[27] Abusayeed Saifullah, Mahbubur Rahman, Dali Ismail,
Chenyang Lu, Ranveer Chandra, and Jie Liu. SNOW:
Sensor network over white spaces. In Proceedings of the
14th ACM Conference on Embedded Network Sensor
Systems CD-ROM, pages 272–285, 2016.

[28] Abusayeed Saifullah, Mahbubur Rahman, Dali Ismail,
Chenyang Lu, Jie Liu, and Ranveer Chandra. Low-
power wide-area network over white spaces. IEEE/ACM
Transactions on Networking, 26(4):1893–1906, 2018.

[29] Mariusz Slabicki, Gopika Premsankar, and Mario
Di Francesco. Adaptive configuration of LoRa net-
works for dense IoT deployments. In NOMS 2018-2018
IEEE/IFIP Network Operations and Management Sym-
posium, pages 1–9. IEEE, 2018.

[30] STMicroelectronics. STM32L151RE,
2020. https://www.st.com/en/
microcontrollers-microprocessors/
stm32l151re.html.

[31] RED Technologies. Wave DB Connect forTVWS,
2021. https://www.redtechnologies.fr/
sas-technology-copy.

[32] Deepak Vasisht, Zerina Kapetanovic, Jongho Won,
Xinxin Jin, Ranveer Chandra, Sudipta Sinha, Ashish
Kapoor, Madhusudhan Sudarshan, and Sean Stratman.
FarmBeats: An IoT platform for data-driven agriculture.
In 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17), pages 515–529,
2017.

A Compliance of Emission

We conduct laboratory measurements to ensure that the emis-
sion generated by Whisper radio complies with the FCC leak-
age regulations. Our evaluation is twofold. First, we look at
the changes in the desired to undesired (D/U) signal ratio on
the first adjacent channel of select DTV receivers when the
source of the undesired signal is changed from a broadband
white space device (WSD) to a NB WSD (Whisper radio).
Second, we evaluate the changes in the D/U ratio on the first
adjacent channel of select DTV receivers in response to the
airtime of Whisper radio.

A.1 Setup

As the bandwidth of a NB TVWS channel is limited to 100
kHz, we select the lowest and highest possible bandwidths
supported by the Whisper radio within the limit. Recall that
airtime in LoRa modulation is determined by the spreading
factor (SF). In this case, we use the lowest (SF7) and highest
(SF12) possible spreading factors to change the airtime from
low to high, respectively. The duty cycle of the Whisper IoT
radio was set at 78% (ON time 780 ms, OFF time 220 ms for
each second transmission). Note that the FCC proposed duty
cycle is considerably less: 1%.

As shown in Table 3, a set of DTVR - RX1, RX4, RX5,
RX10, and RX12 - are identified for this evaluation to di-
versify over different price ranges, resolutions, dimensions,
and form factors. Channel 9 in the high-VHF band (center
frequency: 189 MHz) and Channel 16 in the UHF band (cen-
ter frequency: 485 MHz) are selected to provide the desired
DTV signal. The D/U ratio for the Whisper radio is average
across four desired signal levels – moderately strong (−43
dBm), moderate (−53 dBm), moderately weak (−65 dBm),
and very weak (−80 dBm) at ±3 MHz and ±6 MHz from
the edge of the broadcast DTV channel. These are the same
desired signal levels used in the broadband WSD laboratory
testing. In this way, the two sets of measurements for the
D/U ratio on the first adjacent channel can be compared. The
video loop used in the D/U measurements for the broadband
WSD measurements is used for this test. For each measure-
ment, the undesired signal power is increased until artifacts
are observed.

A.2 Results

Table 4 and 5 summarize the results of D/U ratio evaluation
for different DTVR receivers.

For the ATSC 1.0 DTVs, (RX1, RX4, RX5, and RX10),
the D/U ratio on the first adjacent channel for the NB TVWS
IoT radio indicates the receivers are even more selective (i.e.,
the value of the D/U ratio more negative) with respect to an
undesired NB WSD than an undesired broadband WSD. Note
that the D/U ratio at ±6 MHz from the broadcast channel’s
edge is usually a few dB better (more selective) than the D/U
ratio at ±3 MHz from the broadcast channel’s edge.

For the ATSC 3.0 receiver (RX12) tests at a modulation
level of 256QAM, the D/U ratio for NB and broadband WSDs
for moderate and weak desired signals are about the same,
within error. There is a 5-6 dB difference for moderately
strong and very weak desired signal, where the NB WSD
is more selective than the broadband WSD for moderately
strong signals and the NB WSD is less selective than the
broadband WSD for very weak signals. In both instances, the
D/U ratio represents very high ATSC 3.0 receiver selectivity.
As RX12 is tested only at 256 QAM, it could be a function of
the higher threshold at this modulation level.

414 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.st.com/en/microcontrollers-microprocessors/stm32l151re.html
https://www.st.com/en/microcontrollers-microprocessors/stm32l151re.html
https://www.st.com/en/microcontrollers-microprocessors/stm32l151re.html
https://www.redtechnologies.fr/sas-technology-copy
https://www.redtechnologies.fr/sas-technology-copy

DTVR ID Manufacturer Model Standard Profile Resolution Display size
RX1 Samsung UN65NU8000 ATSC1.0 TV 4K 65in
RX4 Samsung UN32N5300AFXZA ATSC1.0 TV 1080p 32in
RX5 Insignia NS-24DF310NA19 ATSC1.0 TV 720p 32in

RX10 Mediasonic HOMEWORX HW130STB ATSC1.0 Set-up box 1080p -
RX12 RedZone TVXPLORER BUNDLE ATSC3.0 USB dongle HD -

Table 3: Information of DTVR receivers

DTV center frequency = 189MHz (Channel 9)
Change in D/U

when SF is increased
from SF7 to SF12

Change in D/U
when b/w is increased

from 7.8kHz to 62.5 kHz
DTV Receiver 7.8kHz 62.5kHz SF7 SF12

RX1 -0.1 1.4 1.8 0.3
RX4 0.9 1.4 0.8 0.3
RX5 0.1 1.2 1.5 0.4

RX10 0.1 8.1 8.0 0.0
RX12 0.5 2.5 3.1 0.2

Table 4: Change in the D/U Ratio of DTV Receivers for the
DTV Transmitter Operating on Channel 9

DTV center frequency = 485MHz (Channel 16)
Change in D/U

when SF is increased
from SF7 to SF12

Change in D/U
when b/w is increased

from 7.8kHz to 62.5 kHz
DTV Receiver 7.8kHz 62.5kHz SF7 SF12

RX1 -0.2 1.7 1.9 0.0
RX4 0.6 1.0 0.6 0.2
RX5 0.1 0.7 1.0 0.2

RX10 0.1 4.7 5.0 0.2
RX12 0.3 1.1 1.3 0.0

Table 5: Change in the D/U Ratio of DTV Receivers for the
DTV Transmitter Operating on Channel 16

In general, the NB WSD operating at 62.5 kHz bandwidth
with a spreading factor of SF12 displays higher impact on
DTVR operation compared to other configurations. For the
traditional ATSC 1.0 DTV receivers (RX1, RX4, and RX5),
there is negligible change in the D/U ratio for the NB WSD
operating at bandwidths of 7.8 kHz (at spreading factors SF7
and SF12) and 62.5 kHz (at spreading factors SF7 and SF12),
for measurements in both the UHF and high-VHF bands. For
the low-cost digital-to-digital converter (RX10), there is sig-
nificant change in the D/U ratio with the 62.5 kHz bandwidth
and SF12, with a greater change observed in the high-VHF
band than the UHF band. For the ATSC 3.0 receiver, there was
a 2−3 dB change in the D/U ratio observed in the high-VHF
frequency band for the 62.5 kHz bandwidth and SF12. The
change in the UHF frequency band was minimal: 1.1−1.3
dB.

B MAC Protocol

B.1 Handling collision in quantum selection
If two assignments – A1 and A2 – of a scheduling quantum
are colliding, we can make these collision free by ensuring
that one of these keeps silence in the colliding hour. For ex-
ample, if A2 keeps silence, then we represent collision free

form of it as A2<hs2, p2,Silent[<hs1, p1>]>. Inside Silent[],
we can keep all the assignments colliding with A2. In this
way, the new assignment is made collision free with respect
to the existing assignments of a quantum. Now, the ques-
tion arises, how to measure the effect of silencing? Here,
we introduce a new metric, frequency of silence (ωq), rep-
resenting how frequently the new assignment requires to be
silent. We can get the value of ωq from the generic form of
solution to Diophantine equation. In the aforementioned ex-
ample, ωq for A2 is quotient of p1 divided by gcd(p1, p2).
If ωq = 1, then the new assignment requires to be silent
in every occurrence of it to avoid collision. Consequently,
the quantum is of no use for the new assignment. Based on
it, if the quantum has existing assignments (mutually non-
colliding by definition) that collide with the new one, we use
ωq% =

number o f assignments impelling ωq f requency o f silence
ω

for quan-
tum selection. If ωq% ≥ 1, then the new assignment requires
to be silent in every occurrence of it. Note that the value of
ωq% is clamped at 1 for any further calculation.

B.2 Construction of channel occupancy table
In Figure 4, Ac0 is the first assignment for the channel with the
occupancy of τ = 6. The first table in the figure represents the
entry of Ac0. The first entry in the table with no assignment
is to facilitate future entries. Ac1 is the next assignment with
the occupancy of τ = 9 and does not collide with Ac0. Now,
there are 22 possible combination of these two assignments as
shown in the second table which is basically a binary counter
of two digits. However, Ac0 and Ac1 do not collide, and thus
the last entry in the second table has τ = 0. Consequently,
any combination in future having these two assignments will
not have a common colliding hour. So we can remove this
entry and get the third table. Ac2 is the next assignment with
the occupancy of τ = 12 and collides with both Ac0 and Ac1.
Using the method of binary counting we derive the fourth
table from the third one. Finally, if the value of τ crosses the
limit of 36sec in an entry while adding a new assignment, the
assignment is not valid for the channel.

B.3 Pseudo code of slot allocation algorithm
In Algorithm 1, we show how possible combinations of slots
are prepared. We first get the dictionary of collision free
scheduling quanta for all base station radios using schedul-
ing quantum selection as mentioned above. The output of

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 415

Algorithm 1: Pseudo code: Generate possible combi-
nation of slots for slot allocation algorithm

Function Get_PossibleSlotCombinations(p, σ,
αmin):
GET qDictionary FROM Quantum_Selection(p);
INIT possibleSlotCmbntns[] TO empty ;
while qDictionary ! = empty do

POP entry<A,collisionFreeq[]> FROM
qDictionary;

for α = αmax TO αmin do
if collisionFreeq ! = empty then

INIT listO f Grpdq[] TO (SELECT * FROM
(SELECT * FROM collisionFreeq GROUPBY
(continuity = α)) ORDERBY (AVG(ρq));

INIT cntGrpdq TO Count(listO f Grpdq);
INIT numO f SlotRqrd TO dσ

α
e;

INIT cntSlotGotChnl TO zero;
INIT slotsWithChnl[] TO empty;
for i = 0 TO cntGrpdq−1 do

INIT Ac TO <A,τ, listO f Grpdq[i]>;
GET channel FROM Channel_Selection (Ac);
if channel ! = null then

ADD <listO f Grpdq[i],channel> TO
slotsWithChnl[];

INCREASE cntSlotGotChnl BY 1;
if cntSlotGotChnl == numO f SlotRqrd then

ADD <slotsWithChnl[],α,Avg(ρq),ρc,A>
TO possibleSlotCmbntns[];

break;

scheduling quantum selection is a dictionary having different
possible (with(/out) modification for silencing) assignments
(A<hs, p,Silent[]>) as the key and corresponding list of colli-
sion free scheduling quanta as the value. For each entry in the
dictionary, we then vary the continuity (α) of the scheduling
quantum from max to given min. For each continuity value,
we group the α consecutive scheduling quanta. Groups are
ordered by the average ρq of member scheduling quanta in
each group. Here, to serve the requirement of σ scheduling
quanta, we take dσ

α
e groups of scheduling quantum. Next, we

select downlink channel for each group using the channel se-
lection algorithm. Now, each group is an individual slot, and
the combination of dσ

α
e slots together satisfy the requirement

from the client. In this way, we make a list of the possible
combinations of slots. Next, to select a combination from the
list, we use the above mentioned weight function.

B.4 Cases where p is out of boundary
Now, what if the traffic has a periodicity of plow seconds that
is less than 1hr? We convert it as d plow

3600e requirements hav-

ing a periodicity of 1hr. During the slot allocation, we select
slot combinations for each requirement having a time gap of
no more than plow seconds from the selected slot combina-
tions for earlier requirement. If a client generates periodic
traffic with p > 24hr, it freshly joins the network before data
transmission. Because as mentioned in Section 5.4, a static
client with periodic traffic requires to poll channel status from
WSDB once in every 24 hours with the recent GPS reading.
The poll request is piggybacked as a MAC command in a
confirmed up data frame. As a client generating traffic at a
periodicity of more than 24hr, it does not send any data frame
within 24hr of the pervious one where the poll request can
be piggybacked. Besides, sending a frame just for channel
polling would be power inefficient. Thus, it it freshly joins
the network every time when it has data frame to transmit. It
in turn saves the power of polling channel in every 24 hours.

B.5 Client bootstrapping
B.5.1 Beacon

In one hour, there are Nbcnprd pre-specified beacon periods,
each having Nbcnslot of the same length. Every beacon slot has
identical periodicity of pbcn. For example, in Figure 5, each
beacon period has Nbcnslot = 2 beacon slots with a periodicity
of pbcn = 1hr. A NB channel for downlink transmission is
associated with each beacon slot. These NB beacon channels
are distinctly picked from the TV channels registered for the
gateway which increases robustness against noisy link and
interference. The beacon slot structure along with channels
are pre-specified and pre-loaded in the client radio. Here, the
question arises what would happen if the WSDB in future
ceases transmission on a particular beacon channel for the
gateway? Although it is very infrequent, it needs to be ad-
dressed to comply with the regulation. In such a case, the
gateway goes silent in the beacon slot associated with ceased
channel. However, the clients continue to listen on that chan-
nel without violating the regulation. Finally, Nbcnprd , Nbcnslot ,
and pbcn are adjusted based on application and expected traf-
fic pattern. For example, for a deployment expecting high
event-driven traffic, Nbcnprd is set to a higher value with lower
pbcn.

B.5.2 Join

On reboot, a client radio first locks the GPS and retrieves
the current location and time with a precision of one sec-
ond. It then hops across the beacon channels according to the
previously specified beacon slot structure and listens for the
beacon. Since the client is already time synced using GPS
and knows beacon schedule, it requires minimal hopping de-
pending on the channel quality. Each beacon frame embeds
join slot information as MAC command in an encrypted Lo-
RaWAN multicast frame. To be specific, each beacon frame
contains the scheduling info of N jnslot join slots between the

416 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

current and next beacon period. Hence, the info received in
a beacon is only valid till the next beacon period. For exam-
ple, in Figure 5, each beacon contains the scheduling info of
following N jnslot = 3 join slots. Here, the gateway books the
join slots as an event-driven traffic. The benefit is twofold.
First, N jnslot can be adjusted depending on the expected join
requests in a deployment over the time. Second, it utilizes
no or low-utilized channels in that hour assigned for periodic
assignments. It in turn impels variation in the channels used
in the join slots with the time which increases robustness
against noisy channels and long-term interference. Note that
the uplink and downlink channels are same in the join slot.

Upon receiving the beacon, a client selects one of the join
slots from the info embedded in the beacon. Since multiple
clients may attempt to send join request at the same time,
we need to ensure that clients are selecting join slots in a
distributed manner to reduce the collision. Here, the client
leverages dynamic quadratic hash function where the unique
device id is used as the key. The gateway decides the coeffi-
cients of the hash function equation. To do so, it estimates the
set of clients likely to send join request using set the differ-
ence between the provisioned clients for the deployment and
clients already joined the network for periodic traffic. The
coefficients chosen based on this estimated set are embedded
in the beacon. For example, in Figure 5, Client0 and Client1
select two different join slots.

In the join slot, a client transmits the join request along with
its location and slot requirement for the data communication.
Upon receiving the join request, the gateway sends the client’s
location to the channel coordinator for the registration on the
WSDB (see Figure 2). Once the registration of the client is
done, the Whisper MAC manager gets the available channel
for it and allocates the slots for data communication. The
gateway then sends a join response incorporating the allocated
slots and expiry of the associated channels.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 417

Learning to Communicate Effectively Between Battery-free Devices

Kai Geissdoerfer
TU Dresden

Marco Zimmerling
TU Dresden

Abstract
Successful wireless communication requires that sender and
receiver are operational at the same time. This requirement
is difficult to satisfy in battery-free networks, where the en-
ergy harvested from ambient sources varies across time and
space and is often too weak to continuously power the devices.
We present Bonito, the first connection protocol for battery-
free systems that enables reliable and efficient bi-directional
communication between intermittently powered nodes. We
collect and analyze real-world energy-harvesting traces from
five diverse scenarios involving solar panels and piezoelectric
harvesters, and find that the nodes’ charging times approxi-
mately follow well-known distributions. Bonito learns a model
of these distributions online and adapts the nodes’ wake-up
times so that sender and receiver are operational at the same
time, enabling successful communication. Experiments with
battery-free prototype nodes built from off-the-shelf hardware
components demonstrate that our design improves the average
throughput by 10–80× compared with the state of the art.

1 Introduction
The last few years have seen rapid innovation in battery-free
systems [40], culminating in a number of real-world applica-
tions [1, 12, 27]. These systems pave the way toward a more
sustainable Internet of Things (IoT) [7] by enabling small,
cheap, and lightweight devices to perform complex tasks (e.g.,
DNN inference [20]) off ambient energy while using tiny,
environmentally friendly capacitors as energy storage [40].
However, to replace today’s trillions of battery-powered IoT
nodes, battery-free devices must learn to communicate.
Challenge. The power that can be harvested from solar, vibra-
tions, or radio signals is typically insufficient to continuously
operate a device. A traditional energy-neutral device buffers
harvested energy in a rechargeable battery and can freely con-
trol its average duty cycle to avoid power failures. Instead, a
battery-free device cannot avoid power failures, and has very
limited control over when the power failures begin and end.
Fig. 1 illustrates this so-called intermittent operation. After
executing for a short time, a battery-free device is forced to

Figure 1: Because ambient power is often weak, a battery-free node
must buffer energy before it can wake up and operate for a short
time period. This is known as intermittent operation.

become inactive and wait for a long, fluctuating time until its
capacitor is sufficiently charged again. For example, when har-
vesting energy from indoor light, our prototype battery-free
nodes need to stay off and recharge, on average, for hundreds
of milliseconds before they can operate for at most 1 ms.

Many techniques have been developed to deal with inter-
mittency on a single battery-free device [6,11,34], but how to
communicate between intermittently powered devices is one
of the most pressing problems yet to be solved [22, 28, 48].
This is due to the fact that device-to-device communication is
a fundamental building block for a variety of network and sys-
tem services, including optimal clock synchronization [26],
ranging and localization [9,21], sensor calibration [41], distri-
bution and coordination of sensing and computing tasks [32],
collaborative learning [47], and efficient and reliable wireless
networking [25]. Realizing these services across battery-free
devices has the potential to enable novel and more sustainable
IoT and sensor network applications, from automatic contact
tracing to planetary-scale environmental monitoring.

To be able to communicate, sender and receiver must be ac-
tive and have enough energy for at least one complete packet
transmission at the same time. However, since the nodes’ ac-
tivity phases are generally interleaved and short compared
to their charging times, as visible from the real-world trace
in Fig. 2a, it often takes thousands of wake-ups until two
nodes encounter each other and communication becomes pos-
sible [19]. Moreover, after an encounter, the nodes quickly
get out of sync if they become active immediately after a

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 419

2.5

3.0

3.5

C
ap

ac
it

or
vo

lt
ag

e
[V

] Device active Initial encounter Failure

0.00 0.25 0.50 0.75 1.00 1.25 1.50

Time [s]

2.5

3.0

3.5

C
ap

ac
it

or
vo

lt
ag

e
[V

] Device active

(a) Because of their short and interleaved activity phases, battery-free devices often need a long time with hundreds of wake-ups until they
encounter each other. Even after an initial encounter, the devices quickly get out of sync, rendering communication inefficient and unreliable.

2.5

3.0

3.5

C
ap

ac
it

or
vo

lt
ag

e
[V

]

Device active Initial encounter

0.00 0.25 0.50 0.75 1.00 1.25 1.50

Time [s]

2.5

3.0

3.5

C
ap

ac
it

or
vo

lt
ag

e
[V

]

Device active Connection
interval

Devices are connectedDevices are connected

(b) With Bonito, devices learn and exchange statistical models of their charging times and agree on a connection interval that ensures that both
devices have sufficient energy at the same time. Maintaining a connection over multiple encounters enables efficient and timely communication.

Figure 2: The challenge of efficient battery-free device-to-device communication in (a) and our proposed protocol in (b).

recharge, as stipulated by the state of the art [8,33] and appar-
ent in Fig. 2a. This is because ambient energy varies across
time and space [3], which leads to fluctuating and different
charging times between the nodes.

Besides establishing a first encounter [19], active radio com-
munication has been considered too demanding for battery-
free devices [36]. Conversely, work on backscatter communi-
cation has focused on physical-layer issues, such as improving
range and throughput, purposely considering high-energy en-
vironments, batteries, or cables to continuously power the de-
vices in the experiments to avoid intermittency [29,35,38,49].
However, when running off ambient energy, duty cycling of
the backscatter transceivers becomes necessary [14, 29, 43]—
and, without a battery, the intermittency problem occurs.

Contribution. This paper presents Bonito, the first connection
protocol for battery-free wireless networks. Bonito provides
reliable and efficient bi-directional communication despite
the time-varying intermittency of battery-free devices.

The real-world trace in Fig. 2b illustrates the high-level
protocol operation. Unlike the state of the art, Bonito enables
two battery-free nodes, after an initial encounter, to maintain
a connection across multiple consecutive encounters. To this
end, Bonito continually adapts the connection interval, which
is the time between the end of an encounter and the beginning
of the next encounter. A shorter connection interval provides

more communication opportunities in the long run. However,
a connection interval that is shorter than any of the nodes’
charging times breaks the connection and requires the nodes
to wait for a long time until they encounter each other again.
Thus, the challenge is to keep the connection interval as short
as possible without losing the connection, which is difficult
in the face of time-varying charging times.

One of our key insights is that, depending on the scenario
and energy-harvesting modality, the charging time of a battery-
free node approximately follows well-known probability dis-
tributions. We leverage this insight in Bonito by letting each
node continuously learn and track the parameters of a model
that approximates the distribution of locally observed charg-
ing times against non-stationary effects (e.g., changes in mean
or variance). Then, to maintain an efficient and reliable con-
nection, the nodes exchange at every encounter their current
model parameters and jointly adapt the connection interval.

We implement Bonito on a custom-designed ultra low-
power battery-free node. Our prototype is built from off-the-
shelf components, including an ARM Cortex-M4 microcon-
troller that features a 2.4 GHz Bluetooth Low Energy (BLE)
radio. The node harvests energy from a solar panel or a piezo-
electric harvester, using a 47 µF capacitor as energy storage.

To evaluate Bonito through testbed experiments and fairly
compare it against two baselines, we use up to 6 Shepherd ob-

420 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0

1

H
ar

ve
st

in
g

p
ow

er
[m

W
]

40

60

S
to

re
d

en
er

gy
[µ

J
]

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Time [s]

0.0

0.5

C
h

ar
gi

n
g

ti
m

e
[s

]

Figure 3: The top plot shows an example trace of real kinetic harvest-
ing power during jogging (see picture in Fig. 4a). The middle and
bottom plots show the corresponding energy stored in the capacitor
and the resulting charging times of a simulated battery-free device.

servers [18] to record and replay real-world energy-harvesting
traces from 5 diverse scenarios. Our results show, for example,
that Bonito maintains connections for hundreds of consecu-
tive encounters, and that it outperforms the state of the art by
10–80× in terms of throughput. We also conduct a case study
that demonstrates the utility of Bonito for accurate and timely
occupancy monitoring in homes and commercial buildings.

Overall, this paper contributes the following:
• We collect 32 h of energy-harvesting traces from 5 dif-

ferent scenarios. Our analysis of these traces provides
new insights into spatio-temporal intermittency patterns.

• We design the Bonito protocol. Bonito enables, for the
first time, reliable and efficient communication between
intermittently powered battery-free devices.

• We demonstrate an efficient implementation of Bonito
on a prototype node with a 3.1 mm3 ceramic capacitor.

• Results from testbed experiments and an occupancy mon-
itoring case study provide evidence that Bonito performs
well under a diverse range of real-world conditions.

2 Motivation
While previous work on intermittency has focused on individ-
ual battery-free devices [6,11,33] or discovery of neighboring
devices [19], reliable and efficient device-to-device commu-
nication is still an open challenge. By device-to-device com-
munication we mean the regular exchange of application data
between two battery-free devices after they have successfully
discovered each other through a first encounter [19].

To motivate the need for our work, we consider the scenario
of battery-free wearables. Fig. 3 shows real-world data from
a piezoelectric energy harvester that is attached to the ankle
of a person (see Fig. 4a). The upper plot shows the harvest-

(a) Runner with full measurement
setup for the jogging dataset.

(b) Washing machine with partial
setup for the washer dataset.

Figure 4: Pictures from two of the five scenarios in which we use syn-
chronized Shepherd nodes [18] to record energy-harvesting traces.

ing power while the person is jogging, recorded by a Shep-
herd node. Shepherd is a measurement tool that records time-
synchronized voltage and current traces from one or more
energy-harvesting nodes with high rate and resolution [18].
The power spikes correspond to when the foot strikes the
ground, with significantly lower harvesting power during the
rest of the stride cycle. Based on trace-driven simulations, the
middle plot shows the corresponding amount of harvested
energy stored in an ideal 17 µF capacitor powering a battery-
free device that turns on when the capacitor voltage exceeds
3 V and turns off when the capacitor voltage falls below 2 V.
We see that when the device powers up, the stored energy is
quickly consumed, forcing it to turn off already after about
1 ms. While powered off the harvesting power exceeds the
standby power, so energy is accumulated and the capacitor
voltage rises again. Compared to the short activity phases, the
time needed to charge the capacitor, shown in the bottom plot
of Fig. 3, is much longer and varies significantly over time.

The variability of a node’s charging time is a function of
its location and the associated energy environment, that is,
how much power the harvester delivers at any given time.
Thus, two battery-free devices, even when they are physically
close to each other, have a different energy environment and
therefore experience different charging times.

As an example, Fig. 5 plots the charging times of two de-
vices during jogging over one hour. One device is powered by
a piezoelectric harvester attached to the left ankle of a person,
while the other device is powered by the same type of har-
vester attached to the right ankle of the person (see Fig. 4a).
Each point in Fig. 5 indicates the charging times of both de-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 421

Dataset Energy Source Harvester Part Number Duration #Devices #Links #Wake-ups Model

Jogging Human motion MIDE S128-J1FR-1808YB 1 h 3 10 13252 Exponential
Outdoor solar IXYS KXOB25-05X3F 2 119127 Normal

Stairs Outdoor solar IXYS KXOB25-05X3F 1 h 6 15 359002 Normal
Office Indoor light IXYS SM141K06L 1 h 5 10 98324 Gaussian mixture
Cars Car vibrations MIDE S128-J1FR-1808YB 2 h 6 15 8517 Exponential
Washer Machine vibrations MIDE S128-J1FR-1808YB 45 min 5 10 22224 Normal

Table 1: Overview of energy-harvesting datasets we record in a variety of scenarios.

0.5 1.0 1.5 2.0

Charging time of node at left ankle [s]

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

C
h

ar
gi

n
g

ti
m

e
of

n
o

d
e

at
ri

gh
t

an
kl

e
[s

]

Communication failure

Communication success

Figure 5: Charging times of two battery-free devices powered by
kinetic harvesters attached to a jogger’s ankles (see Fig. 4a). Using
the greedy approach, the devices communicate successfully only in
0.04 % of the cases in which the charging times are almost identical.

vices when they begin to charge their 17 µF capacitors at the
same time from the same initial charge. We observe that in
many instances the two nodes have vastly different charging
times. This means that if nodes become active as soon as
they reach the turn-on threshold, which is the state-of-the-art
approach, called greedy and illustrated in Fig. 2a, the nodes
often wake up with an offset that prevents communication, de-
spite a successful encounter at the previous wake-up. Indeed,
the success rate for the two nodes in Fig. 5 is less than 0.04 %.
This leads to poor communication reliability and efficiency
as the nodes more often than not fail to exchange their data.

To assess the generality of these observations, we record
distributed energy-harvesting traces in diverse scenarios using
multiple Shepherd nodes [18]. Table 1 lists the main charac-
teristics of the five datasets we collected:

• The full jogging dataset comprises traces from two partic-
ipants, each equipped with two piezoelectric harvester at
the ankles and a solar panel at the left wrist (see Fig. 4a).
The two participants run together for an hour in a public

Jogging Cars Office Stairs Washer

Dataset

0

5

10

15

S
u

cc
es

s
ra

te
[%

]

2.77%

0.02%

3.27%

16.05%

0.38%

Figure 6: Success rate of greedy approach in trace-driven simulations,
averaged across all pairs of devices (i.e., links) in a given dataset.

park, including short walking and standing breaks.
• For the stairs dataset, we recorded traces from six solar

panels that are embedded into the surface of an outdoor
stair in front of a lecture hall. Over the course of one hour,
numerous students pass the stairs, leading to temporary
shadowing effects on some or all of the solar panels.

• The office dataset comprises traces from five solar panels
mounted on the doorframe and walls of an office with
fluorescent lights. During the one-hour recording, people
enter and leave the office and operate the lights.

• The cars dataset contains traces from two cars. Each car
is equipped with three piezoelectric harvesters mounted
on the windshield, the dashboard, and in the trunk. The
cars drive for two hours in convoy over a variety of roads.

• The washer dataset includes five traces from piezoelec-
tric harvesters mounted on a WPB4700H industrial wash-
ing machine, as shown in Fig. 4b, while the machine runs
a washing program with maximum load for 45 min.

Fig. 6 plots for each dataset the average success rate across
all pairs of devices (i.e., communication links) in the scenario.
Even in the most favorable scenario, stairs, where the solar
panels receive a fairly constant and similar energy input from
natural sunlight, we find that the greedy approach succeeds
in only 16 % of the cases. In all other scenarios, the success
rate ranges below 3.5 %. Our experiments on real battery-free
nodes in Sec. 5 confirm these trace-driven simulation results.

422 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

3 The Bonito Protocol
This section describes the Bonito protocol. The Bonito proto-
col enables two battery-free devices to stay connected after
a first encounter, which can happen either coincidentally or
with the support of a neighbor discovery protocol [19].

3.1 Overview
Bonito aims to make nodes repeatedly encounter each other so
they can exchange application data reliably and efficiently, as
shown in Fig. 2b. To ensure that nodes wake-up with a time
offset small enough for a successful encounter, they agree
at every encounter on a new connection interval TC. This is
the time between the end of the current encounter and the
beginning of the next (i.e., planned) encounter.
Main idea and approach. For two nodes i and j with known
charging times ci and c j, the shortest possible connection
interval T ∗C is simply the maximum of their charging times

T ∗C = max(ci,c j) (1)

If a shorter connection interval TC < T ∗C is used, then one node
does not reach the required energy level to become active by
TC. Thus, the encounter fails, preventing the nodes from agree-
ing on the next connection interval—the connection is lost. A
lost connection entails that the nodes often need to wait for
a long time until they encounter each other again to resume
communication. However, choosing a longer connection in-
terval TC > T ∗C to mitigate the risk of a lost connection adds
unnecessary delay as nodes, after having reached the required
energy level, are forced to wait before they wake up at TC.

The key challenge is to determine the connection interval
TC such that both nodes have enough energy while introducing
only minimal delay. This is difficult as the charging times ci
and c j are unknown and time-varying, as discussed in Sec. 2.

Using a probabilistic approach, we address this problem
as follows. Let p be the probability that nodes i and j have
sufficient energy to become active after a connection inter-
val TC. This corresponds to the probability that the nodes’
charging times, ci and c j, are shorter than the connection
interval TC. Modeling ci and c j as random variables with a
strictly monotonically increasing joint cumulative distribution
function (cdf) Fi, j, this translates into

p = Fi, j(ci = TC,c j = TC) (2)

Solving for TC yields the minimum connection interval that
guarantees, with a user-defined probability p, a successful
encounter of the two nodes at their next wake-up

TC = F−1
i, j (p) (3)

where F−1
i, j is the inverse joint cdf of ci and c j.

Base protocol. In practice, the joint cdf Fi, j is rarely known
a priori. Moreover, Fi, j can only be estimated online by the
nodes based on full knowledge of each other’s charging times.

Unfortunately, this requires frequent communication between
battery-free nodes—precisely what Bonito intends to enable.

To circumvent this chicken-and-egg problem, we assume
that the charging times, ci and c j, are statistically independent.
In this case, the joint cdf Fi, j is the product of the marginal
cdfs Fi and Fj. The marginal cdfs can be estimated locally by
each node from observations of their own charging times.

Based on these insights, we propose the following main
steps of the Bonito protocol:

1. Each node i continuously estimates the marginal cdf Fi
of its charging time based on local measurements.

2. When two nodes i and j encounter each other, they ex-
change their current estimates of Fi and Fj.

3. Using the same inputs (i.e., the marginal cdfs Fi and Fj
and the user-defined probability p), both nodes compute
the same new connection interval TC according to (3).

4. Both nodes become active and communicate after the
new connection interval TC, and continue with step 2.

In this way, Bonito adapts the connection interval to changes
in the energy environment, effectively enabling battery-free
nodes to stay connected across several hundreds of subsequent
encounters, as demonstrated by our experiments in Sec. 5.

To achieve this performance, we first need to answer the
following key questions in our design of Bonito:

• How to compactly represent and exchange the marginal
cdfs Fi and Fj in the face of limited energy (Sec. 3.2)?

• How to learn and track online an accurate estimate of Fi
against a changing energy environment? (Sec. 3.3)

• How to efficiently compute the inverse joint cdf F−1
i, j (p)

to obtain the connection interval TC? (Sec. 3.4)

3.2 Modeling Charging Time Distributions
Because of the small energy storage, battery-free devices can
only exchange a limited amount of data during an encounter.
Thus, the marginal cdfs Fi and Fj must be represented in a
compact form in order to be able to exchange them.

Unlike the common belief that the duration of a recharge is
completely random [11, 31], we make the empirical observa-
tion that, in the scenarios we considered, the nodes’ charging
times can be faithfully modeled by well-known distributions.
The rightmost column of Table 1 lists the models we use for
each dataset. To illustrate, Fig. 7 plots representative charging
time distributions and the corresponding models for the stairs,
cars, and office datasets. Non-stationary effects like a time-
varying mean are removed in the plots as these are effectively
handled by our online learning approach detailed in Sec. 3.3.

We observe in Fig. 7a that when harvesting energy from
outdoor solar with a constant harvesting voltage, the charg-
ing time can be modeled by a normally distributed random
variable. The intuition is that temporary environmental ef-
fects, such as shadowing and change in incidence angle, let
the charging time vary around a certain value. Fig. 7b shows
that an exponential distribution is often a good fit when har-
vesting kinetic energy. This can be explained by the decaying

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 423

0.04 0.06 0.08

Charging time [s]

0

100

200

300

F
re

q
u

en
cy

Model

Observations

(a) Stairs dataset, normal distribution.

0 10 20

Charging time [s]

0.0

0.1

0.2

0.3

F
re

q
u

en
cy

Model

Observations

(b) Cars dataset, exponential distribution.

0.15 0.20 0.25 0.30

Charging time [s]

0

10

20

30

F
re

q
u

en
cy

Model

Observations

(c) Office dataset, Gaussian mixture model.

Figure 7: Charging time distributions of individual nodes. The nodes’ charging times can be modeled by well-known distributions.

response of a piezoelectric harvester to the distinct impulses
of a car during driving (e.g., acceleration, breaking, bumps) or
a person during jogging (see Fig. 3). In the washer scenario,
instead, we find that the continuous shaking of the industrial
washing machine over long periods induces approximately
normally distributed charging times. Looking at Fig. 7c, we
see that in the office scenario the charging times are mostly
distributed around a certain value. However, the maximum
power point tracking (MPPT) of the DC-DC converter used
in this scenario, which periodically disconnects the charger
for a short time, leads to a second peak. We approximate this
distribution with a Gaussian mixture model (GMM).

These observations motivate us to model the marginal cdf
Fi of a node’s charging time in the scenarios we considered
through the parameters of a normal distribution (2 parame-
ters), an exponential distribution (1 parameter), or a GMM
(6 parameters for two Gaussians and two weights). The last
column of Table 1 lists the corresponding model for each of
the datasets. The jogging dataset contains traces from differ-
ent types of harvesters: We use an exponential distribution to
model the charging times of kinetic harvesting nodes and a
normal distribution for the solar harvesting nodes. During an
encounter, a node only needs to share the type of model and
the current estimates of the model parameters.

3.3 Learning Distribution Parameters Online
We now turn to the problem of estimating the parameters of a
given charging time distribution based on local observations.
Given a sample of n independent and identically distributed
observations, the log-likelihood L(θ | x) and the correspond-
ing maximum likelihood estimator θ̂ are given by

L(θ | x) = ln

(
n

∏
i=1

fθ(xi)

)
=

n

∑
i=1

ln fθ(xi) (4)

θ̂ = argmax
θ

L(θ | x) (5)

where fθ(xi) is the conditional probability to observe xi if the
underlying distribution is parameterized with θ.

Unfortunately, vanilla maximum likelihood estimation is
not viable in our setting. First, the observations of the charg-

0.00

0.05

0.10

M
ea

n
[s

]

Observation Estimate Ground truth

0:00 0:05 0:10 0:15 0:20 0:25

Time [h:mm]

0.00

0.01

0.02
S

ta
n

d
ar

d
d

ev
ia

ti
on

[s
]

Figure 8: Varying mean and standard deviation over a moving win-
dow of one of the trace from the stairs dataset reveal non-stationarity.
Using SGD, the changing distribution parameters are tracked online.

ing time become available only one by one at runtime, yet the
nodes do not have enough memory and energy to recompute
the estimator with every new observation. Further, the charg-
ing time distributions are non-stationary. For instance, the
dashed lines in Fig. 8 reveal trends in the mean and standard
deviation of a node’s charging time from the stairs dataset.
Thus, an approach is needed that dynamically adjusts the pa-
rameter estimates to changing energy harvesting conditions.

To address these problems, Bonito learns the distribution
parameters online using stochastic gradient descent (SGD),
which has become a popular method for training a wide range
of machine learning models [5]. Compared to a sliding win-
dow based approach, SGD is less computationally demanding
as the parameter update is only computed for the current obser-
vation rather than for a set of past observations that also have
to be kept in memory. If the gradient of L(θ | x) is known,
one solution to (5) is to iteratively adjust θ̂ along the gradient,
known as gradient descent

∇L(θ | x) = ∇

n

∑
i=1

ln fθ(xi) (6)

θ̂ = θ̂+η ·∇L(θ̂ | x) (7)

424 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

By pulling the ∇ operator in (6) into the sum, the update step
in (7) can be split into a series of updates for every individual
observation xi. This yields the update equation of SGD

θ̂i = θ̂i−1 +η ·∇L(θ̂ | xi) (8)

Sec. A derives the gradient equations required to solve (8)
for the normal, exponential, and Gaussian mixture models.
By keeping the learning rate η constant, Bonito implicitly
reduces the weight of old observations relative to more recent
observations. This way, devices dynamically learn changing
properties of the charging time distribution locally, without
information exchange with other devices.
Example. Fig. 8 illustrates how Bonito learns and tracks mean
and standard deviation of a non-stationary normal distribu-
tion. To obtain ground truth, we sample charging times (i.e.,
observations) from a known normal distribution, whose mean
and variance change dynamically over time. We extract these
changes from one of the traces in the stairs dataset using a
2 min moving average filter. We can see in Fig. 8 that the pa-
rameter estimates of Bonito converge from their initial values
(zero mean and unit standard deviation) to the true ground
truth parameters within less than a minute. Then the estimates
closely follow the changes of the underlying distribution.

3.4 Computing Inverse Joint CDF Efficiently
Having shared the type of model and the current estimates
of the model parameters during an encounter, Bonito needs
to compute the new connection interval TC from the inverse
joint cdf F−1

i, j for a user-defined probability p. This is difficult
since there exists no closed-form solution for most bivariate
distributions, let alone for joint cdfs of different distribution
families (e.g., when a solar and a kinetic energy harvesting
node in the jogging scenario want to communicate). Instead,
we have to solve (3) numerically, while taking into account
the energy and compute constraints of battery-free devices.

We are interested in the connection interval TC where the
joint cdf is equal to the user-defined target probability, that is,
Fi, j(TC) = p. This yields the following objective function

f (TC) = Fi, j(TC)− p = Fi(TC) ·Fj(TC)− p = 0 (9)

Note that f (TC) has a single root—the sought solution—as
Fi, j is strictly monotonically increasing. Bonito solves this
problem using the well-known bisection method, which itera-
tively finds the root of any continuous function that has its root
inside a bracket (i.e., search interval). Indeed, we can derive
such a bracket based on the inverse cdfs of our marginal distri-
butions, which either have a closed form solution (exponential
and normal) or are easy to approximate (GMM).

To derive a lower bracket, we first note that F(x)< 1 for
any cdf F . It follows that Fi, j(x= z,y= z) =Fi(x= z) ·Fj(y=
z)<min(Fi(x = z),Fj(y= z)) and therefore the lower bracket

F−1
i, j (p)> max

(
F−1

i (p),F−1
j (p)

)
(10)

0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12

Connection interval

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
pr

ob
ab

ili
ty

Fi = p

Fi = q

Fj = p

Fj = q

Fi,j = p

Fi
Fj

Fi,j

p = 0.75

q = 0.87

Bracket

Figure 9: Bracketing the inverse joint cdf based on the inverse cdf
of the marginal distributions enables efficient computation of the
connection interval on resource-constrained battery-free devices.

To derive an upper bracket, we introduce q =
√

p and c =
max(F−1

i (q),F−1
j (q)). Let Fm be the marginal cdf (i.e., either

Fi or Fj) such that F−1
m (q) = c, that is, the marginal cdf that

reaches q later. Let Fn be the other marginal cdf that reaches q
sooner. From Fn(c)≥ Fm(c) follows Fi, j(c) = Fm(c) ·Fn(c)≥
Fm(c) ·Fm(c) = q2 = p. Finally, because Fi, j(c) is monotoni-
cally increasing, we obtain the upper bracket

F−1
i, j (p)≤ max(F−1

i (q),F−1
j (q)) (11)

Example. Fig. 9 shows an example, where (10) and (11) are
used to determine an initial bracket for F−1

i, j (p = 0.75). The
resulting bracket [0.61,0.77] is already relatively tight, and
therefore we find the solution F−1

i, j (p = 0.75) = 0.88 with a
tolerance of 0.01 after only three bisection steps.

3.5 Impact of Target Probability
The target probability p is a key parameter of the Bonito pro-
tocol that must be set by the user. It specifies the probability
that both devices have accumulated enough energy in their
capacitors to become active after a connection interval TC. A
high target probability requires a long connection interval TC,
increasing communication delay and lowering throughput.

To illustrate how the choice of p impacts communication
reliability and efficiency, we run trace-driven simulations as
detailed in Sec. 2 on the traces from the datasets in Table 1.
We use two metrics to quantify the performance of Bonito: As
a proxy for communication reliability, we define the success
rate as the ratio of successful encounters with Bonito to the
total number of wake-ups. As a proxy for communication
efficiency, we consider the relative delay as the median of
all successful connection intervals with Bonito divided by the
median of the optimal clairvoyant solutions according to (1).

Fig. 10 plots for each dataset success rate and relative delay
averaged across all links. We can observe the following:

• A higher target probability p leads to a higher success
rate, which demonstrates the plausibility of our approach.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 425

50

60

70

80

90

100

S
u

cc
es

s
ra

te
[%

]

50 60 70 80 90 100

Target probability p [%]

1

3

5

7

9

R
el

at
iv

e
d

el
ay Ideal

Jogging

Cars

Office

Stairs

Washer

Figure 10: Trace-driven simulations reveal that the rate of success-
fully arranged encounters matches the user-defined target probability.
The price to pay in terms of latency depends on the model of the
underlying charging time distribution.

In most cases, the success rate is even slightly higher
than requested, presumably due to small model errors.

• Since connection losses are costly, a higher target prob-
ability is preferable in practice. Fig. 10 shows that the
price to pay in terms of a higher relative delay depends
on the scenario. For the cars and jogging datasets, where
most or all links include at least one node with approxi-
mately exponentially distributed charging times, the rel-
ative delay increases exponentially with p, due to the
heavy tail of the distribution. For GMM (office), the in-
crease is moderate, whereas it is hardly noticeable for
the normal distribution (washer and stairs).

4 Implementation
In this section, we describe the hardware and software com-
ponents of our prototype implementation.

4.1 Hardware
We design a ulta low-power battery-free node based on the
popular Nordic Semiconductor nRF52805 microcontroller
(MCU). This particular MCU features a 2.4 GHz BLE radio
and a state-of-the-art 32-bit 64 MHz ARM Cortex-M4, which
is powerful enough to complete also more demanding compu-
tations in a short time, benefitting overall system efficiency.
To enable low-power timekeeping between wake-ups, the
MCU is equipped with a 32 kHz crystal with ±20 ppm fre-
quency tolerance. A TI BQ25504 DC-DC step-up converter
charges a 2 mm× 1.25 mm× 1.25 mm 47 µF multilayer ce-
ramic capacitor (MLCC) from a connected solar panel or a
piezoelectric energy harvester. Once the capacitor voltage
reaches a hardware-programmable threshold of 3.3 V, the
BQ25504 sets one of its pins high. This pin is wired to a
TI TS5A23166 analog switch that connects the MCU to the
capacitor-buffered supply voltage.

Due to its DC bias characteristics, the capacitor has an ef-

Figure 11: Prototype battery-free node based on the nRF52805 MCU.
A sustainable 3.1 mm3 ceramic capacitor is used as energy storage.

Figure 12: Packet format. Using Bonito, nodes exchange between 5 B
and 25 B carrying model type and parameters during an encounter.

fective capacitance of only 17 µF at 3.3 V. This allows for a
maximum active time of around 1 ms per wake-up. A larger
capacitance would increase the active time per wake-up and
the charging time between wake-ups. To minimize the phys-
ical dimensions and the price of the node, we choose the
minimum capacitance that allows the nodes to remain active
for long enough to compensate for clock drift accumulated
over a connection interval of 5 s (see Sec. 4.2).

The node also integrates a circuit to measure the current
flow from the harvester, which can be used as a sensing sig-
nal [39]. The two-layer printed circuit board (PCB) shown
in Fig. 11 measures 20 mm × 20 mm. The total cost of all
components is $8.73.

4.2 Software
We implement Bonito and the Find neighbor discovery proto-
col [19] on our battery-free nodes. Find is used to establish
an initial encounter after a connection loss or a power failure.

Bonito protocol settings. We use the 2 Mbit/s BLE mode
and the frame structure depicted in Fig. 12. Depending on the
model type, encoded by one byte, a packet carries 1, 2, or 6
model parameters represented by 32-bit floating point values.

To jointly agree on the next connection interval, Bonito re-
quires nodes to exchange messages bi-directionally during an
encounter. The exact sequence of packet exchanges is subject
to application requirements and can be flexibly configured.
We implement the packet sequence shown in Fig. 13. When
two nodes encounter each other using Find, one of the nodes
receives the first beacon and replies with an acknowledge-
ment. At all following encounters, the node that received the
first beacon starts to listen at the time agreed on using Bonito.

426 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 13: After the initial encounter, nodes use Bonito to agree
on a connection interval. At the next encounter, one of the nodes
starts to listen and the other node transmits its packet after a grace
period to account for clock drift due to the long charging times. After
receiving this packet, the listening nodes replies with its own packet.

Due to the small energy buffer, a node can keep the radio on
for at most Twdw = 1ms. Thus, the maximum listening time
is Tl,max = Twdw−Ttx−Tta = 820µs, where Tta ≈ 40µs is the
time it takes to switch from receive to transmit mode and
Ttx = 140µs is the airtime of a packet with 6 model parame-
ters and 4 B of application data. To increase the robustness to
clock drift in the face of long charging times and hence long
connection intervals, we let the node that sends first transmit
its packet after a grace period of Tg = 0.5 ·Tl,max−1.5 ·Ttx =
200µs. We can thus tolerate an offset of up to ±200 µs be-
tween the clocks of the two nodes, which corresponds to a
maximum connection interval of 5 s when taking into account
the frequency tolerance of the 32 kHz crystal oscillator. Upon
receiving the packet, the other node switches to transmit mode
and sends its own packet.

In our current implementation of Bonito, the devices con-
sider a connection as lost whenever a planned packet exchange
fails, for example, due to fading, external interference, or when
one of the two devices does not reach the turn-on threshold by
the end of the connection interval. In this case, they return to
discovery mode and use Find to re-establish the connection.

Runtime support. In addition to Bonito and Find, we imple-
ment an efficient soft intermittency runtime, where the MCU
is gracefully suspended to an ultra low-power mode before
an impeding power failure [19]. This reduces the costs asso-
ciated with a cold start after a hardware reset and allows to
keep track of time between consecutive wake-up events using
the built-in real-time clock (RTC). To this end, a node period-
ically samples the capacitor voltage during charging with the
built-in analog-to-digital converter (ADC) until the capacitor
voltage reaches a software-defined turn-on threshold. Then
the node executes protocol and application code until it is
interrupted by the power-fail comparator, upon which it im-
mediately transitions back into low-power mode to replenish
its energy buffer.

Although our runtime tries to prevent hardware resets, after
multiple seconds without any energy input, the sleep current
drains the remaining charge from the capacitor and the node
eventually powers off. While powered off, the on-board static

random access memory (SRAM) is subject to decay, that is,
bits that were set to one may flip and become zero after some
time. To still retain the trained model of a node’s charging
time distribution across short power failures, we store it in a
dedicated section of the SRAM. After every model update,
we compute a checksum over this section and store it next
to the model parameters. If the recomputed checksum after a
hardware reset does not match the checksum stored in mem-
ory, we conclude that the memory is corrupted and restart
training the model with the initial parameters.

5 Evaluation
This section uses testbed experiments to evaluate Bonito on
real battery-free nodes under realistic, repeatable conditions.
We start by showing in Sec. 5.2 how Bonito dynamically ad-
justs the connection interval to changes in the nodes’ charging
times to maintain long-running connections. In Sec. 5.3, we
compare Bonito against two baseline approaches. Finally, in
Sec. 5.4, we quantify the runtime overhead of Bonito. Our
experiments reveal the following key findings:

• Bonito establishes connections that outlast on average
hundreds of consecutive encounters even between nodes
that harvest from different types of energy sources.

• Bonito improves the throughput by 10–80× compared
with the current state of the art. It achieves this by con-
sciously keeping the connection interval as short as pos-
sible while maintaining a high success rate that agrees
to within 1 % of the requested target probability.

• Depending on the distribution model, Bonito consumes
between 4 % and 25 % of the energy available per wake-
up on our nodes. The energy cost of losing a connection
is 1000× higher than the energy overhead of Bonito.

5.1 Testbed and Settings
We connect two battery-free nodes (see Fig. 11) to two Shep-
herd observers [18]. In addition to recording spatio-temporal
harvesting traces (see Sec. 2), Shepherd can also replay previ-
ously recorded traces and monitor the behavior of connected
battery-free devices. The observers synchronously replay for
all 60 links in our datasets (see Table 1) the two correspond-
ing energy-harvesting traces. At the same time, the observers
log the serial output and GPIO events of the attached nodes,
which we use to compute performance metrics. In total, we
collect measurements from 218 hours of testbed experiments.

For the stairs, office, and washer scenarios, we replay the
recorded energy-harvesting traces as is. When using the origi-
nal traces from the cars and jogging scenarios, however, we
were not able to collect sufficient data points. The reason is
that the piezoelectric harvesters were selected and tuned for
the frequency and amplitude of the washer scenario, which
led to a relatively low harvesting power in the cars and jog-
ging scenarios, as evident from the small number of wake-ups
in Table 1. Because it can take thousands of wake-ups until
two nodes encounter each other, we had to scale the cars and
jogging traces by a factor of five to allow for a meaningful

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 427

0:00 0:10 0:20 0:30 0:40 0:50

Time [h:mm]

0

2

4

6

8

10

T
im

e
[s

]

Connection breaks

Reconnected

Charging time node 1

Charging time node 2

Connection interval

Figure 14: Real-world trace from testbed experiments showing the
charging times of two nodes from the cars dataset. By dynamically
adjusting the connection interval, Bonito maintains a connection for
37 min until the cars leave the highway and enter stop-and-go traffic;
the charging times increase dramatically and the connection breaks.

evaluation. Note that this does not change the dynamics and
shape of the charging time distributions, nor does it affect
relative performance when comparing different approaches.

In all experiments, we configure Bonito with a target prob-
ability of p = 0.99. We use a learning rate of η = 0.01 for
the normal and exponential models and η = 0.001 for GMM,
which we found to perform well in a wide range of scenarios.

5.2 Maintaining Long-running Connections
We begin by looking at how well Bonito can maintain a con-
nection between battery-free devices. As an illustrative exam-
ple, Fig. 14 shows the charging times of two nodes from the
cars dataset and the connection interval determined by Bonito
over the course of 55 min. Bonito successfully maintains the
connection for more than half an hour by dynamically adjust-
ing the connection interval based on the continuously updated
models of the nodes’ charging time distributions. Then, after
around 37 min, the two cars driving in convoy exit the high-
way and enter stop-and-go traffic. As a result, the charging
times increase suddenly and exceed the connection interval—
the connection is lost. At this point, the nodes switch over to
executing the Find neighbor discovery protocol and success-
fully reconnect after roughly 10 min. Afterward, Bonito takes
over and again maintains a connection for several minutes.

Fig. 15a plots for all datasets the cdf of the connection
duration in terms of the number of encounters, while Fig. 15b
plots it in terms of time for the unscaled datasets (see Sec. 5.1).
Overall, we find that in 90 % of the cases, the nodes stay con-
nected for at least 30 consecutive encounters, and 40 % of
the connections last for 800 encounters or more. This demon-
strates that Bonito enables, for the first time, reliable and effi-
cient communication between intermittently powered nodes.

5.3 Bonito versus Baseline Approaches
We now compare Bonito against two baseline approaches:

• Greedy: This is the current state of the art. Using Greedy,
nodes wake up and attempt to communicate as soon as

0 250 500 750 1000 1250 1500 1750 2000

Connection duration [#encounters]

0.00

0.25

0.50

0.75

1.00

F
ra

ct
io

n
of

co
n

n
ec

ti
on

s

Washer

Office

Stairs

Jogging

Cars

(a) cdf of connection duration in terms of number of encounters.

0 200 400 600 800 1000 1200

Connection duration [s]

0.00

0.25

0.50

0.75

1.00

F
ra

ct
io

n
of

co
n

n
ec

ti
on

s

Washer

Office

Stairs

(b) cdf of connection duration in terms of time.

Figure 15: Bonito maintains connections over hundreds of encounters
even in challenging scenarios with different types of energy sources.

they reach the minimum required energy level. Greedy
is the prevalent execution model in the intermittent com-
puting literature [8,33] as it maximizes the effective duty
cycle of a battery-free device.

• Modest: As a complementary approach to Greedy, we de-
sign Modest. Using Modest, each node keeps track of the
maximum observed charging time cmax. During an en-
counter, two nodes i and j share their current maximum
charging times cmax,i and cmax, j, and agree to meet again
after a connection interval of TC = max(cmax,i,cmax, j).

Our comparison uses two end-to-end metrics that also ac-
count for periods where Find runs to establish a first encounter
after a connection loss or power failure. Throughput is the
number of packets delivered from one node to another node
per time unit. Note that traffic is always bi-directional, that
is, the same number of packets is also delivered in the other
direction (see Fig. 13). Latency is the time between two con-
secutive packet exchanges. We also consider success rate,
which is the ratio of successfully arranged encounters to the
total number of trials when using Greedy, Modest, or Bonito.

Fig. 16 plots for each dataset the throughput gains of Bonito
and Modest over Greedy. We see that Bonito improves the
throughput by 10–80×. For example, for the stairs dataset,
Bonito achieves a throughput of 15.18 pkt/s versus 0.33 pkt/s
with Greedy. Modest outperforms Greedy across the board,
too, but often falls far short of Bonito’s throughput.

To understand the reasons for the significant performance
differences among the different approaches, we plot in Fig. 17
success rate and latency for the stairs dataset. As the charging

428 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Cars Washer Office Stairs Jogging

Dataset

0

20

40

60

80

T
h

ro
u

gh
p

u
t

ga
in

Bonito

Modest

Figure 16: Throughput improvement over Greedy. By maintaining
connections over many wake-ups, the average number of encounters
with Bonito is at least an order of magnitude higher than with Greedy.

0 50 100

Success rate [%]

Bonito

Modest

Greedy

99.91%

99.92%

11.48%

(a) Success rate

0 2 4

Latency [s]

0.00

0.25

0.50

0.75

1.00

C
u

m
u

la
ti

ve
fr

ac
ti

on

Bonito

Modest

Greedy

(b) Latency

Figure 17: Detailed comparison of performance metrics for the stairs
scenario. Bonito achieves a high success rate that is on a par with the
Modest approach, while providing a significantly lower latency.

times vary across time and space, Greedy achieves a low suc-
cess rate of only 11.48 % (see Fig. 17a). This means that in 9
out of 10 cases the nodes loses the connection right after the
first encounter. Every time the connection is lost, the nodes
cannot communicate until they reconnect, causing excessively
long latencies as visible in Fig. 17b. Instead, Modest chooses
the connection interval highly conservatively, which leads to
a high success rate of 99.92 % but also long latencies. Bonito
provides much shorter latencies at almost the same high suc-
cess rate, which agrees to within 1 % of the requested target
probability. By aiming to keep the connection interval short
and to avoid the latency associated with reconnecting after a
connection loss, Bonito significantly increases the end-to-end
throughput compared with the two baseline approaches.

5.4 Bonito’s Runtime Overhead
Next, we evaluate the runtime overhead of Bonito based on
the logs from the testbed experiments. The overhead can be
broken down into three components: (i) updating the model
parameters using SGD, (ii) exchange of the model parameters
over wireless during an encounter, and (iii) computing the
inverse joint cdf to obtain the connection interval.

The time required to update the model is constant: 1.3 µs for
exponential, 3.2 µs for normal, and 28.8 µs for GMM. This
constitutes up to 2.8 % of the around 1 ms active time per
wake-up. Similarly, the airtime to exchange 4, 8, or 24 bytes

100 200 300 400 500

Execution time [µs]

Exponential

Normal

GMM

Figure 18: Distribution of execution times on our battery-free node
when computing the inverse joint cdf. The execution time depends
on the number of model parameters and varies with the number of
bisection steps needed to satisfy the required tolerance.

0 5 10 15 20 25

Percentage of energy budget per wake-up [%]

GMM

Normal

Exponential Updating model parameters

Computing inverse joint cdf

Exchange of model parameters

Figure 19: The energy overhead of Bonito ranges between 4 % and
25 % of the energy available per wake-up on our nodes. In absolute
terms, the cost to recover from a lost connection is 1000× higher.

of model parameters is fixed and determined by the bitrate
of the BLE radio. By contrast, Fig. 18 shows that the time to
compute the inverse joint cdf varies depending on the number
of bisection steps required to reach the desired tolerance.

In terms of energy, our battery-free nodes have an energy
budget of 27.5 µJ per wake-up. Fig. 19 shows for each model
the median percentage of energy budget spent by Bonito. We
can see that the required energy mainly depends on the num-
ber of model parameters and the computational complexity of
evaluating the inverse joint cdf. In the worst case, for GMM,
Bonito consumes 7.1 µJ, which amounts to about 25 % of the
available energy per wake-up. To set this into perspective,
Fig. 20a plots for all datasets the time it takes for two nodes
to synchronize with the Find neighbor discovery protocol [19]
in terms of the number of wake-ups, while Fig. 20b plots it
in terms of time for the unscaled datasets (see Sec. 5.1). On
average it takes 283 wake-ups, or 7782.5 µJ, to synchronize
after a lost connection—1000×more than the energy required
by Bonito to maintain a connection. This demonstrates that,
overall, the absolute energy costs of Bonito are well spent.

6 Case Study: Occupancy Monitoring
Occupancy monitoring is essential to save energy in homes
and commercial buildings [10, 16]. Recently, it has also be-
come an important tool to manage the spread of infectious
diseases, such as SARS-CoV2 [37]. To assess the potential of
Bonito for real-world battery-free applications, we conduct an

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 429

0 200 400 600 800 1000 1200 1400 1600

Discovery latency [#wake-ups]

Cars

Washer

Office

Stairs

Jogging

D
at

as
et

(a) Discovery latency in terms of number of wake-ups.

0 100 200 300 400

Discovery latency [s]

Washer

Office

Stairs

D
at

as
et

(b) Discovery latency in terms of time.

Figure 20: Synchronizing two devices with the Find neighbor dis-
covery protocol takes a long time and consumes significant energy.
Using Bonito, devices can establish long-running connections to
periodically exchange data without the need to resynchronize.

occupancy monitoring case study with our prototype nodes.

Occupancy sensor. To efficiently count the number of people
in a room, we use the solar panel as a sensor [23,39] to detect
when a person enters or leaves the room. Fig. 21 shows the
solar panel current of two nodes mounted next to each other
on a doorframe (see Fig. 22), when a person enters the room
in Fig. 21a and when a person leaves the room in Fig. 21b. To
detect the direction of movement, the nodes record the time
when they detect the onset of the shadowing by the person.
Then the nodes exchange the recorded times and compute the
time difference τ. The sign of τ indicates the direction.

Setup. We mount two battery-free nodes equipped with IXYS
SM141K06L solar panels next to each other on the doorframe
at the entrance of an office room, as shown in Fig. 22. The
nodes sample the solar panel current with a sampling rate
of 1 kHz, and record the time when the solar panel current
falls below 87.5 % of its average value. The nodes run Bonito
and insert the timestamp of detected events into the packets.
Together with logging information (charging time, connection
interval, etc.) every packet carries 26 B of application data.

Because the clocks of the two nodes are not synchronized,
timestamps are transmitted relative to the start of the corre-
sponding packet. To this end, nodes measure the time between
the detected event and the start of the transmission and insert
the result into the packet. The receiving node timestamps the
reception of the packet and converts the contained relative
timestamp to its local clock. Finally, by relating a received

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Time [s]

0

200

P
an

el
cu

rr
en

t
[µ

A
]

τ Node 1

Node 2

(a) Person entering the room: τ > 0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Time [s]

0

200

P
an

el
cu

rr
en

t
[µ

A
]

τ
Node 1

Node 2

(b) Person leaving the room: τ < 0

Figure 21: The shadow of a person passing ambient light harvesting
devices on a doorframe causes a distinct temporal pattern in the solar
panel current. By comparing the times of the onset of the shadowing
on the two nodes, we can determine the direction of movement.

timestamp to the timestamp of the corresponding event that
was recorded locally, the nodes compute the time difference τ.

The nodes transmit the result over wireless to an nRF52840
development board that serves as a base station. We configure
the base station to timestamp the reception of packets con-
taining a detected event and button presses of two on-board
push buttons, one for each direction. Four participants ran-
domly enter and leave the room one by one. Another person
records ground truth by pressing the corresponding button on
the nRF52840 board precisely when a person passes through
the doorframe.

Results. The confusion matrix in Table 2 shows that the sys-
tem correctly classified 60 out of 61 events, corresponding to
an accuracy of 96 %. It missed just one in-event, and falsely
reported an in-event and an out-event for a single in-event.

Fig. 23 plots the latency in terms of the time between a

Figure 22: Two of our battery-free nodes are attached to the door-
frame and harvest energy from ambient light. Thanks to Bonito, the
nodes can communicate in a timely and reliable fashion, allowing
them to count the number of people entering and leaving the room.

430 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Ground truth
In Out No event

Recorded
In 30 0 1
Out 0 31 0
No event 1 0 0

Table 2: By collaborating, the battery-free nodes classified people
entering and leaving the room with an average accuracy of 96.83 %.

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Latency [s]

Figure 23: Due to the low communication latency provided by Bonito,
the system reported detected events both timely and accurately.

button press and the reception of the detected event at the base
station. The median latency was 1.2 s and all events were re-
ported within less than 2 s. Over the course of the experiment,
the two nodes successfully exchanged 10.56 kB of application
data for an application-level throughput of 28.38 B/s.

Fig. 24 shows a ten-second excerpt from the experiment.
The markers indicate the charging times of the nodes. Solid
vertical lines indicate button presses (ground truth); dashed
vertical lines indicate when a event was received at the base
station. We can observe that, right after the received out-event,
node 1 reports an exceptionally high charging time of 210 ms.
This happens when the shadowing by a person occurs while a
node charges its capacitor: The shadowing reduces the energy
input for a short time, which prolongs the recharge. Never-
theless, by keeping the connection interval at around 700 ms,
Bonito provides a stable connection despite such dynamics.

7 Discussion
Bonito is the first connection protocol for battery-free devices.
It enables two devices to communicate efficiently and reliably
by dynamically adapting the connection interval to changes
in the devices’ energy availability. In this section, we discuss
limitations and opportunities for extending Bonito.

From connections to networks. The ability to efficiently and
reliably exchange data between two devices is the fundamen-
tal building block required to form large wireless networks
consisting of multiple battery-free devices. A number of trade-
offs and challenges arise from each of the possible approaches
to move from the two-node setting to larger networks, which
could be explored by future work. For example, devices may
sequentially connect with their neighbors or devices may try
to establish Bonito connections with one common connection
interval between multiple devices.

Communication with battery-powered devices. While we
focus on communication between two battery-free devices,
Bonito is also useful for effective communication from battery-

42 44 46 48 50 52

Time [s]

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

C
h

ar
gi

n
g

ti
m

e
[s

]

Person enters room
Event in reported

Person leaves room

Event out reported

Long charging time

Connection interval

Encounters

Node 1

Node 2

Figure 24: Example trace from the occupancy monitoring case study.
The system correctly classifies and reports events to the base station.
With Bonito, the connection interval is chosen large enough to sustain
outliers of the charging time in response to transient shadowing.

free to battery-powered devices. For example, a battery-free
tag may want to transmit data to a user’s smartphone or to a
battery-powered gateway in a wireless sensor network. Be-
cause battery-powered devices are in control of their wake-up
times, any connection interval works for them. Thus, instead
of computing the inverse joint cdf of the charging time distri-
bution of both devices, it is sufficient to compute the inverse
cdf of the charging time of the battery-free device in order to
determine a connection interval that works for both devices.

Model accuracy. The goodness-of-fit of the learned charg-
ing time model critically affects the performance of Bonito.
With perfect knowledge of the underlying distribution, Bonito
would compute the minimum connection interval feasible for
the requested target probability. Overestimating the real distri-
bution leads to increased delay, while underestimation reduces
reliability. If the distribution is so complex that a large num-
ber of model parameters or a non-parametric model (e.g., a
deep neural network) would be required to accurately capture
this complexity, then the limited resources on a battery-free
device may not be sufficient to learn the model online.

Exploiting statistical dependence. In the current implemen-
tation, Bonito assumes statistical independence of the nodes’
charging time distributions in order to compute a connection
interval without prior knowledge of the statistical properties
of the joint charging time distribution. After establishing a
connection, the devices can record observations of the joint
distribution and could attempt to exploit statistical depen-
dence between their charging times, possibly improving com-
munication efficiency and reliability.

8 Related Work
Intermittent computing. The thriving research area of in-
termittent computing has made great strides in recent years,
including the first real deployments of battery-free sensors [1].

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 431

This achievement rests upon techniques that ensure forward
progress [34], consistent peripheral state [6], and a reliable no-
tion of time [11] despite frequent and random power failures.
This line of research is highly relevant but completely orthog-
onal to our work as it deals exclusively with intermittency
issues on individual devices and, if at all, considers commu-
nication with continuously powered base stations [42].

Battery-free device-to-device communication. Prior work
on battery-free wireless device-to-device communication is
mainly theoretical [24, 30, 50], studying the energy trade-offs
for different scheduling, transmission, and decoding policies.
Recent work discusses middleware and applications for net-
works of intermittently powered devices, yet explicitly leaves
the question of how to communicate between the devices as
an open problem [28, 48]. A simulative study also acknowl-
edges the sheer difficulty of sychronizing the wake-up times
of intermittently powered devices and proposes to communi-
cate an energy state via an always-on backscatter radio, with-
out demonstrating a real implementation or experiments [45].
Similar to Bonito, a recent theoretical work proposes to let
nodes agree on a future point in time when they become active
to increase communication throughput [46]. This time is com-
puted based on a moving average of previous charging times,
whereas Bonito lets the user explicitly trade reliability against
delay by taking into account the charging time distributions.

In terms of practical work, tag-to-tag backscatter commu-
nication has mainly focused on physical-layer issues and con-
siders intermittency an orthogonal problem [29, 35, 38, 49].
Instead, the Find neighbor discovery protocol explicitly ad-
dresses the intermittency problem and shows that by delaying
wake-ups by a random time battery-free nodes can encounter
each other faster [19]. We use Find to bootstrap efficient and
reliable device-to-device communication with Bonito. Concur-
rently to our work, a protocol was proposed and implemented
that lets devices “die early” when no packet is received to
preserve energy and maximize the number of wake-ups [13].

Delay-tolerant networking (DTN). DTN studies networks
that are only intermittently connected because of, for exam-
ple, node failures, mobile users, and power outages [4, 17].
Both DTN and Bonito have the same high-level goal: effective
communication in intermittently connected networks. How-
ever, DTN and Bonito address orthogonal problems toward
the same end goal. While DTN is concerned with forward-
ing, routing, naming, in-network storage, and optimization
of node trajectories to generate encounters in the spatial do-
main, Bonito aims to generate encounters in the time domain
between nodes that are spatially close to each other. Whether
concepts from the DTN literature could be applied on top of
Bonito is an interesting question for future research.

Energy-aware MAC protocols. Numerous MAC protocols
have been proposed for ad-hoc and sensor networks [15].
These protocols turn the radio off most of the time, and power
it up only to send or receive a packet. The goal is to achieve

a desired network lifetime by maintaining a certain average
duty cycle. A fundamental assumption of these protocols is
that the radio can be powered up at any point in time, which
is exploited to reduce idle listening by flexibly scheduling
communication among nodes. This is, however, not possible
in a battery-free system, where devices are unavailable when-
ever the capacitor voltage is below a certain threshold, which
renders existing energy-aware MAC protocols ineffective.

9 Conclusions
We have presented Bonito, a connection protocol for wireless
battery-free devices. By adapting the connection interval to
the different and time-varying charging times of intermittently
powered nodes, Bonito maintains long-running connections
that provide significantly better throughput, latency, and re-
liability than the state of the art. We have evaluated Bonito
by implementing it on a battery-free prototype, conducting
testbed experiments with real energy-harvesting traces from
diverse scenarios, and demonstrating its utility in an occu-
pancy monitoring case study. With Bonito, we contribute a
prime communication primitive, device-to-device unicast, that
brings the capabilities of battery-free systems one step closer
to those known from today’s battery-supported systems.

Availability
The data described in Sec. 2 and a Python implementation of
the Bonito protocol from Sec. 3 are available under a permis-
sive MIT license at https://bonito.nes-lab.org/.

Acknowledgments
We thank Sarah Nollau, Ingmar Splitt, Friedrich Schmidt, Jus-
tus Paulick, and Lebenshilfe Altenburg e. V. for supporting
the data collection campaign, and all participants of the occu-
pancy monitoring case study. Thanks also to the anonymous
reviewers, and to our shepherd, Shyam Gollakota. This work
was supported by the German Research Foundation (DFG)
within the Emmy Noether project NextIoT (grant ZI 1635/2-1)
and the Center for Advancing Electronics Dresden (cfaed).

A Appendix: Gradient Equations
Exponential distribution. The derivative of the log-
likelihood function is given by:

L(λ) = log(λ · exp(−λx)) = logλ−λxi (12)

∇L(λ) =
1
λ
− xi (13)

Calculating the natural gradient by defining the step size
in terms of the Kullback-Leibler divergence in the distribu-
tion space has been shown to speed up convergence in many
cases [2]. We obtain the natural gradient by multiplying the
regular gradient from (13) with the inverse of the Fisher In-
formation Matrix of the exponential distribution Mexp:

432 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://bonito.nes-lab.org/

Mexp = λ
−2 (14)

∂L
∂λ

= [Mexp]
−1 · 1

λ
− xi = λ−λ

2 · xi (15)

Gaussian mixture model. We adopt the gradient equations
from [44]: Let f (xi,µ,σ2) be the probability density function
of the standard normal distribution. The responsibility func-
tion r(xi,k) quantifies the contribution of the k-th component
to the model:

r(xi,k) =
ρk · f (xi,µk,σ

2
k)

∑
K
l
(
ρl · f (xi,µl ,σ

2
l)
) (16)

The update equations for the model parameters for the k-th
component are then:

∂L
∂ρk

= r(xi,k)−ρk (17)

∂L
∂µk

=
1
ρk
· r(xi,k) · (xi−µk) (18)

∂L
∂σ2

k
=

1
ρk
· r(xi,k) · (xi−µk)

2−σ
2
k (19)

Normal distribution. We consider the special case of a gaus-
sian mixture model with a single component and also use the
equations from [44]:

∂L
∂µ

= (xi−µ) (20)

∂L
∂σ2 = (xi−µ)2−σ

2 (21)

References
[1] Mikhail Afanasov, Naveed Anwar Bhatti, Dennis Cam-

pagna, Giacomo Caslini, Fabio Massimo Centonze,
Koustabh Dolui, Andrea Maioli, Erica Barone, Muham-
mad Hamad Alizai, Junaid Haroon Siddiqui, and Luca
Mottola. Battery-less zero-maintenance embedded sens-
ing at the mithræum of circus maximus. In Proceedings
of the 18th Conference on Embedded Networked Sensor
Systems (SenSys), 2020.

[2] S. Amari and S.C. Douglas. Why natural gradient?
In Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
1998.

[3] Abu Bakar and Josiah Hester. Making sense of inter-
mittent energy harvesting. In Proceedings of the 6th
ACM International Workshop on Energy Harvesting and
Energy-Neutral Sensing Systems (ENSSys), 2018.

[4] Sanjit Biswas and Robert Morris. ExOR: opportunistic
multi-hop routing for wireless networks. In Proceedings
of the Annual conference of the ACM Special Interest
Group on Data Communication on the applications,
technologies, architectures, and protocols for computer
communication (SIGCOMM), 2005.

[5] Léon Bottou. Stochastic gradient descent tricks. In
Neural Networks: Tricks of the Trade: Second Edition.
Springer Berlin Heidelberg, 2012.

[6] Adriano Branco, Luca Mottola, Muhammad Hamad Al-
izai, and Junaid Haroon Siddiqui. Intermittent asyn-
chronous peripheral operations. In Proceedings of the
17th ACM Conference on Embedded Networked Sensor
Systems (SenSys), 2019.

[7] Albert Cohen, Xipeng Shen, Josep Torrellas, James
Tuck, Yuanyuan Zhou, Sarita Adve, Ismail Akturk,
Saurabh Bagchi, Rajeev Balasubramonian, Rajkishore
Barik, Micah Beck, Ras Bodik, Ali Butt, Luis Ceze,
Haibo Chen, Yiran Chen, Trishul Chilimbi, Mihai
Christodorescu, John Criswell, Chen Ding, Yufei Ding,
Sandhya Dwarkadas, Erik Elmroth, Phil Gibbons, Xi-
aochen Guo, Rajesh Gupta, Gernot Heiser, Hank Hoff-
man, Jian Huang, Hillery Hunter, John Kim, Sam King,
James Larus, Chen Liu, Shan Lu, Brandon Lucia, Saeed
Maleki, Somnath Mazumdar, Iulian Neamtiu, Keshav
Pingali, Paolo Rech, Michael Scott, Yan Solihin, Dawn
Song, Jakub Szefer, Dan Tsafrir, Bhuvan Urgaonkar,
Marilyn Wolf, Yuan Xie, Jishen Zhao, Lin Zhong, and
Yuhao Zhu. Inter-disciplinary research challenges in
computer systems for the 2020s. Technical report, 2018.

[8] Alexei Colin, Emily Ruppel, and Brandon Lucia. A
reconfigurable energy storage architecture for energy-
harvesting devices. In Proceedings of the 23rd ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASP-
LOS), 2018.

[9] Pablo Corbalán and Gian Pietro Picco. Concurrent rang-
ing in ultra-wideband radios: Experimental evidence,
challenges, and opportunities. In Proceedings of the In-
ternational Conference on Embedded Wireless Systems
and Networks (EWSN), 2018.

[10] Stephen Dawson-Haggerty, Andrew Krioukov, Jay
Taneja, Sagar Karandikar, Gabe Fierro, Nikita Kitaev,
and David Culler. BOSS: Building operating system
services. In 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2013.

[11] Jasper de Winkel, Carlo Delle Donne, Kasim Sinan
Yildirim, Przemysław Pawełczak, and Josiah Hester. Re-
liable timekeeping for intermittent computing. In Pro-
ceedings of the 25th ACM International Conference on

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 433

Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2020.

[12] Jasper de Winkel, Vito Kortbeek, Josiah Hester, and Prze-
mysław Pawełczak. Battery-free game boy. Proceedings
of the ACM on Interactive, Mobile, Wearable and Ubiq-
uitous Technologies, 4(3), 2020.

[13] Vishal Deep, Mathew L. Wymore, Alexis A. Aurandt,
Vishak Narayanan, Shen Fu, Henry Duwe, and Daji Qiao.
Experimental Study of Lifecycle Management Protocols
for Batteryless Intermittent Communication. In Pro-
ceedings of the 18th IEEE International Conference on
Mobile Ad Hoc and Smart Systems (MASS), 2021.

[14] Farzan Dehbashi, Ali Abedi, Tim Brecht, and Omid
Abari. Verification: can wifi backscatter replace RFID?
In Proceedings of the 27th ACM Annual International
Conference on Mobile Computing and Networking (Mo-
biCom), 2021.

[15] I. Demirkol, C. Ersoy, and F. Alagoz. Mac protocols for
wireless sensor networks: a survey. IEEE Communica-
tions Magazine, 44(4), 2006.

[16] Varick L. Erickson, Miguel Á. Carreira-Perpiñán, and
Alberto E. Cerpa. Occupancy Modeling and Prediction
for Building Energy Management. ACM Transactions
on Sensor Networks, 10(3), 2014.

[17] Kevin Fall. A delay-tolerant network architecture for
challenged internets. In Proceedings of the Annual con-
ference of the ACM Special Interest Group on Data
Communication on the applications, technologies, ar-
chitectures, and protocols for computer communication
(SIGCOMM), 2003.

[18] Kai Geissdoerfer, Mikołaj Chwalisz, and Marco Zim-
merling. Shepherd: A portable testbed for the batteryless
IoT. In Proceedings of the 17th ACM Conference on
Embedded Networked Sensor Systems (SenSys), 2019.

[19] Kai Geissdoerfer and Marco Zimmerling. Bootstrapping
battery-free wireless networks: Efficient neighbor dis-
covery and synchronization in the face of intermittency.
In 18th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI), 2021.

[20] Graham Gobieski, Brandon Lucia, and Nathan Beck-
mann. Intelligence beyond the edge: Inference on in-
termittent embedded systems. In Proceedings of the
24th International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS), 2019.

[21] Bernhard Großwindhager, Michael Stocker, Michael
Rath, Carlo Alberto Boano, and Kay Römer. Snaploc:
An ultra-fast uwb-based indoor localization system for

an unlimited number of tags. In Proceedings of the 18th
ACM/IEEE International Conference on Information
Processing in Sensor Networks (IPSN), 2019.

[22] Josiah Hester and Jacob Sorber. The Future of Sensing is
Batteryless, Intermittent, and Awesome. In Proceedings
of the 15th ACM Conference on Embedded Network
Sensor Systems (SenSys), 2017.

[23] Sara Khalifa, Mahbub Hassan, Aruna Seneviratne, and
Sajal K. Das. Energy-Harvesting Wearables for Activity-
Aware Services. IEEE Internet Computing, 19(5), 2015.

[24] Meng-Lin Ku, Wei Li, Yan Chen, and K. J. Ray Liu.
Advances in energy harvesting communications: Past,
present, and future challenges. IEEE Communications
Surveys & Tutorials, 18(2), 2016.

[25] J.N. Laneman, D.N.C. Tse, and G.W. Wornell. Cooper-
ative diversity in wireless networks: Efficient protocols
and outage behavior. IEEE Transactions on Information
Theory, 50(12), 2004.

[26] Christoph Lenzen, Philipp Sommer, and Roger Watten-
hofer. Optimal clock synchronization in networks. In
Proceedings of the 7th ACM Conference on Embedded
Networked Sensor Systems (SenSys), 2009.

[27] Tianxing Li and Xia Zhou. Battery-free eye tracker
on glasses. In Proceedings of the 24th ACM Annual
International Conference on Mobile Computing and
Networking (MobiCom), 2018.

[28] Gaosheng Liu and Lin Wang. Self-Sustainable Cyber-
Physical Systems with Collaborative Intermittent Com-
puting. In Proceedings of the 12th ACM International
Conference on Future Energy Systems, 2021.

[29] Vincent Liu, Aaron Parks, Vamsi Talla, Shyamnath Gol-
lakota, David Wetherall, and Joshua R. Smith. Ambient
backscatter: Wireless communication out of thin air.
In Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the
applications, technologies, architectures, and protocols
for computer communication (SIGCOMM), 2013.

[30] Edward Longman, Oktay Cetinkaya, Mohammed El-
Hajjar, and Geoff V. Merrett. Wake-up Radio-enabled
Intermittently-powered Devices for Mesh Networking:
A Power Analysis. In Proceedings of the 18th IEEE
Annual Consumer Communications Networking Confer-
ence (CCNC), 2021.

[31] Brandon Lucia, Vignesh Balaj, Alexei Colin, Kiwan
Maeng, and Emily Ruppel. Intermittent computing:
Challenges and opportunities. In Proceedings of the
2nd Summit on Advances in Programming Languages
(SNAPL), 2017.

434 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[32] Brandon Lucia, Brad Denby, Zachary Manchester, Harsh
Desai, Emily Ruppel, and Alexei Colin. Computa-
tional nanosatellite constellations: Opportunities and
challenges. ACM GetMobile: Mobile Computing and
Communications, 25(1), 2021.

[33] Kiwan Maeng and Brandon Lucia. Adaptive dynamic
checkpointing for safe efficient intermittent computing.
In Proceedings of the 13th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI),
2018.

[34] Amjad Yousef Majid, Carlo Delle Donne, Kiwan Maeng,
Alexei Colin, Kasim Sinan Yildirim, Brandon Lucia, and
Przemysław Pawełczak. Dynamic Task-based Intermit-
tent Execution for Energy-harvesting Devices. ACM
Transactions on Sensor Networks, 16(1), 2020.

[35] Amjad Yousef Majid, Michel Jansen, Guillermo Or-
tas Delgado, Kasim Sinan Yildirim, and Przemysław
Pawełczak. Multi-hop backscatter tag-to-tag networks.
In Proceedings of the IEEE Conference on Computer
Communications (INFOCOM), 2019.

[36] Amjad Yousef Majid, Patrick Schilder, and Koen Lan-
gendoen. Continuous sensing on intermittent power. In
Proceedings of the 19th ACM/IEEE International Con-
ference on Information Processing in Sensor Networks
(IPSN), 2020.

[37] Giulia Pazzaglia, Marco Mameli, Luca Rossi, Ma-
rina Paolanti, Adriano Mancini, Primo Zingaretti, and
Emanuele Frontoni. People Counting on Low Cost Em-
bedded Hardware During the SARS-CoV-2 Pandemic.
In Proceedings of Pattern Recognition. ICPR Interna-
tional Workshops and Challenges, 2021.

[38] Jihoon Ryoo, Yasha Karimi, Akshay Athalye, Milutin
Stanaćević, Samir R. Das, and Petar Djurić. Barnet: To-
wards activity recognition using passive backscattering
tag-to-tag network. In Proceedings of the 16th ACM
Annual International Conference on Mobile Systems,
Applications, and Services (MobiSys), 2018.

[39] Muhammad Moid Sandhu, Sara Khalifa, Kai Geissdoer-
fer, Raja Jurdak, and Marius Portmann. SolAR: Energy
positive human activity recognition using solar cells. In
Proceedings of the IEEE International Conference on
Pervasive Computing and Communications (PerCom),
2021.

[40] Mahadev Satyanarayanan, Wei Gao, and Brandon Lu-
cia. The computing landscape of the 21st century. In
Proceedings of the 20th ACM International Workshop
on Mobile Computing Systems and Applications (Hot-
Mobile), 2019.

[41] Olga Saukh, David Hasenfratz, and Lothar Thiele. Re-
ducing multi-hop calibration errors in large-scale mobile
sensor networks. In Proceedings of the 14th ACM/IEEE
International Conference on Information Processing in
Sensor Networks (IPSN), 2015.

[42] Lukas Sigrist, Rehan Ahmed, Andres Gomez, and
Lothar Thiele. Harvesting-Aware Optimal Communi-
cation Scheme for Infrastructure-Less Sensing. ACM
Transactions on Internet of Things, 1(4), 2020.

[43] Vamsi Talla, Joshua Smith, and Shyamnath Gollakota.
Advances and Open Problems in Backscatter Network-
ing. ACM GetMobile: Mobile Computing and Commu-
nications, 24(4), 2021.

[44] D. M. Titterington. Recursive Parameter Estimation
Using Incomplete Data. Journal of the Royal Statistical
Society: Series B (Methodological), 46(2), 1984.

[45] Alessandro Torrisi, Kasim Sinan Yildirim, and Davide
Brunelli. Enabling Transiently-Powered Communica-
tion via Backscattering Energy State Information. In
Applications in Electronics Pervading Industry, Envi-
ronment and Society. Springer International Publishing,
2021.

[46] Mathew L. Wymore, Vishal Deep, Vishak Narayanan,
Henry Duwe, and Daji Qiao. Lifecycle Management
Protocols for Batteryless, Intermittent Sensor Nodes.
In Proceedings of the 39th IEEE International Perfor-
mance Computing and Communications Conference
(IPCCC), 2020.

[47] Xun Xian, Xinran Wang, Jie Ding, and Reza Ghanadan.
Assisted learning: A framework for multi-organization
learning. In Proceedings of the 34th Conference on Neu-
ral Information Processing Systems (NeurIPS), 2020.

[48] Kasim Sinan Yildirim and Przemyslaw Pawelczak. On
Distributed Sensor Fusion in Batteryless Intermittent
Networks. In Proceedings of the 15th IEEE Interna-
tional Conference on Distributed Computing in Sensor
Systems (DCOSS), 2019.

[49] Jia Zhao, Wei Gong, and Jiangchuan Liu. X-tandem: To-
wards multi-hop backscatter communication with com-
modity wifi. In Proceedings of the 24th ACM Annual
International Conference on Mobile Computing and
Networking (MobiCom), 2018.

[50] Tongxin Zhu, Jianzhong Li, Hong Gao, and Yingshu
Li. Broadcast scheduling in battery-free wireless sensor
networks. ACM Transactions on Sensor Networks, 15(4),

2019.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 435

Saiyan: Design and Implementation of a Low-power Demodulator for
LoRa Backscatter Systems

Xiuzhen Guo
Tsinghua University

Longfei Shangguan
University of Pittsburgh & Microsoft

Yuan He
Tsinghua University

Nan Jing
Yanshan University

Jiacheng Zhang
Tsinghua University

Haotian Jiang
Tsinghua University

Yunhao Liu
Tsinghua University

.

Abstract
The radio range of backscatter systems continues growing

as new wireless communication primitives are continuously
invented. Nevertheless, both the bit error rate and the packet
loss rate of backscatter signals increase rapidly with the radio
range, thereby necessitating the cooperation between the ac-
cess point and the backscatter tags through a feedback loop.
Unfortunately, the low-power nature of backscatter tags limits
their ability to demodulate feedback signals from a remote
access point and scales down to such circumstances.
This paper presents Saiyan, an ultra-low-power demodula-
tor for long-range LoRa backscatter systems. With Saiyan,
a backscatter tag can demodulate feedback signals from a
remote access point with moderate power consumption and
then perform an immediate packet re-transmission in the pres-
ence of packet loss. Moreover, Saiyan enables rate adaption
and channel hopping – two PHY-layer operations that are
important to channel efficiency yet unavailable on long-range
backscatter systems. We prototype Saiyan on a two-layer PCB
board and evaluate its performance in different environments.
Results show that Saiyan achieves 3.5–5× gain on the demod-
ulation range, compared with state-of-the-art systems. Our
ASIC simulation shows that the power consumption of Saiyan
is around 93.2 µW . Code and hardware schematics can be
found at: https://github.com/ZangJac/Saiyan.

1 Introduction

Backscatter radios have emerged as an ultra-low-power and
economical alternative to active radios. The ability to commu-
nicate over long distances is critical to the practical deploy-
ment of backscatter systems, particularly in outdoor scenar-
ios (e.g., smart farm) where backscatter tags need to deliver
their data to a remote access point regularly. Conventional
RFID technology [12] functions within only a few meters

Yuan He is the corresponding author.

Carrier signal

Ask for retrans

(a) Traditional LoRa backscatter tag (b) Backscatter tag with demodulation ability

Carrier signal

Carrier signal

Msg one

Access point Back� tag

Hundreds of meters

Access point Back. tag+Saiyan

Hundreds of meters

Msg one

Msg one

Figure 1: Saiyan empowers the LoRa backscatter tag to
demodulate feedback signals from a remote access point.

and is not well suited for outdoor scenarios. To this end, the
research community has proposed long-range backscatter ap-
proaches [23, 40, 47] that leverage Chirp Spreading Spec-
trum (CSS) modulation on LoRa [5] to improve the signal re-
silience to noise, thereby extending the communication range.
For instance, LoRa backscatter [47] allows tags to communi-
cate with a source and a receiver separated by 475 m.

However, existing long-range LoRa backscatter systems
present a new challenge on packet delivery. The backscatter
signals travel twice the link distance and suffer drastic attenu-
ation as the link distance scales. They become very weak after
traveling long distances, thereby causing severe bit errors and
packet losses. Figure 2 shows the Bit Error Rate (BER) of
PLoRa [40] and Aloba [23], two representative long-range
LoRa backscatter systems. Evidently, the BER of both sys-
tems rises rapidly from less than 1% to over 50% as the tag is
moved away from the transmitter (Tx). The receiver is almost
unable to demodulate any backscatter signal once the tag is
placed 20 m away from the transmitter. Considering that the
backscatter tags are unaware of packet loss, each packet must
be transmitted blindly for multiple times to lift the packet
delivery ratio, which inevitably wastes precious energy and
wireless spectrum and cause interference to other radios that
work on the same frequency band.

To address these issues, we expect a downlink from the
access point to the backscatter tag, through which the feed-
back signals (e.g., asking for a packet re-transmission) can
be delivered, thereby forming a feedback loop. We envision
that such a feedback loop will bring opportunities to bridge

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 437

https://github.com/ZangJac/Saiyan

the gap between long-range backscatter communication and
the growing packet loss rate, as reflected on the following
aspects:

• Making on-demand re-transmissions in the presence of
packet loss. The backscatter tag demodulates feedback sig-
nals from an access point and makes a re-transmission only
if it is asked to do so. This reactive packet re-transmission
can mitigate packet loss while improving power and channel
efficiency.

• Scheduling channel hopping to minimize interference. The
unlicensed band where the LoRa resides in is already over
crowded. The access point monitors the wireless spectrum and
notifies the backscatter tag to switch channels in the presence
of in-band interference. As such, the channel utilization and
packet delivery ratio can be improved effectively.

• Adapting data rate to link condition. The condition of
backscatter links varies over time. The access point assesses
each backscatter link and keeps the backscatter tag updated
through the feedback loop. Each tag then adapts its data rate
proactively to utilize the wireless link better.

In addition, such a feedback loop empowers the network
administrator to turn on/off sensors on backscatter tags re-
motely, thereby avoiding labor-intensive and time-consuming
physical access to the devices.

To enjoy these benefits, the primary hurdle to overcome
is the packet demodulation on LoRa backscatter tags. LoRa
is based on frequency modulation. To demodulate a LoRa
symbol, the commercial LoRa receiver operates by down-
converting the incident LoRa chirp to the baseband, sampling
it at twice the chirp bandwidth (BW), and then converting the
signal samples from the time domain to the frequency domain
using Fast Fourier Transformation (FFT). These operations
consume over 40 mW power altogether [6]. Considering a
miniaturized energy harvester equipped with a palm-sized
solar panel, this harvester merely generates 1 mW power every
25.4 seconds in a bright day [3]. In other words, to support the
standard LoRa demodulation, a backscatter tag needs to wait
for 17 minutes until it accumulates enough power. Although
the envelope detector has been used for packet demodulation
on many backscatter systems [38, 46, 52], it is ill-suited for
LoRa demodulation because the envelope of a LoRa signal is
a constant.

In this paper, we propose Saiyan, a low-power demodulator
for long-range LoRa backscatter systems. Saiyan is based on
an observation that a frequency-modulated chirp signal can
be transformed into an amplitude-modulated signal using a
differential circuit. The amplitude of this transformed signal
scales with the frequency of the incident chirp signal, thereby
allowing us to demodulate a LoRa chirp by tracking the peak
amplitude on its transformed counterpart without using power-
intensive hardware, such as a down-converter and an ADC. To
put this high-level idea into practice, the challenges in design

0.1 0.2 0.5 1 5 10 15 20

Tag-to- distance (m)

10-5

10-4

10-3

10-2

10-1

100

B
E

R

PLoRa
Aloba

Tx Rx
Tag

100 m

Figure 2: BER of PLoRa [40] and Aloba [23] in different
tag-to-transmitter settings. The BER of both systems rises dra-
matically with the increasing distance between the transmitter
and the tag. We re-implement both systems on PCB.

and implementation must be addressed, as summarized below.

Frequency-amplitude transformation. The low-power na-
ture of backscatter tags requires the differential circuit to be
extremely low-power. Moreover, to support higher data rate,
such a differential circuit should also be hyper-sensitive to
the frequency variation of LoRa signals. However, the narrow
bandwidth of LoRa signals (e.g., 125/250/500 KHz) renders
the conventional detuning circuits, such as RLC resonant
circuit, inapplicable. In Saiyan, we instead repurpose the Sur-
face Acoustic Wave (SAW) filter as a signal converter by
leveraging its sharp frequency response (§2.1). To minimize
the power consumption on demodulation, we further replace
the power-consuming ADC with a well-designed double-
threshold based comparator (§2.2) coupled by a proactive
voltage sampler (§2.3).

Improving the demodulation sensitivity. Although the
aforementioned vanilla Saiyan can demodulate LoRa signals
with the minimum power consumption, its communication
range is limited to 55 m because of the Signal-to-Noise Ratio
(SNR) losses in both SAW filter and envelope detector. To
extend the communication range, we introduce a low-power
cyclic-frequency shifting circuit coupled with an Intermediate
Frequency (IF) amplifier to simultaneously remove the noise
while magnifying the signal power. This low-power circuit
brings 11 dB SNR gain and doubles the demodulation range
(§3.1). Furthermore, a low-power correlator is leveraged to
extend the demodulation range further to 148 m (§3.2).

Implementation. We implement Saiyan on a 25 mm×20 mm
two-layer Printed Circuit Board (PCB) using analog circuit
components and an ultra-low power Apollo2 MCU [13]. The
Application Specific Integrated Circuit (ASIC) simulation
shows that the power consumption can be reduced to 93.2 µW,
which is affordable on an energy harvesting tag. The main
contributions of this paper are summarized as follows:
•We simplify the standard LoRa demodulation from energy
perspective and design the first-of-its-kind low-power LoRa
demodulator that can run on an energy harvesting tag.
• We design a set of simple but effective circuits and algo-
rithms, prototyping them on PCB board for system evaluation.

438 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

• We demonstrate that Saiyan outperforms the state-of-
the-arts on power consumption, communication range, and
throughput.

The remainder of this paper is structured as follows. We
present the design of vanilla Saiyan in Section 2, followed
by super Saiyan in Section 3. Section 4 describes the imple-
mentation details. The experiment (§5) follows. We review
related works in Section 6 and conclude in Section 7.

2 Vanilla Saiyan

A LoRa symbol is represented by a chirp whose frequency
grows linearly over time, as formulated below.

s(t) = Asin(2π f (t)t) (1)

where A is the signal amplitude; f (t) = F0 +kt describes how
the frequency of this chirp signal varies over time; F0 is the
initial frequency offset; k is the frequency changing rate. The
frequency of a LoRa chirp wraps to 0 right after peaking
BW—the bandwidth of LoRa. Different LoRa chirps peak the
frequency BW at different time due to the difference in their
initial frequency offset, as shown in Figure 3(a). Applying a
differential to a LoRa chirp, we have:

s′(t) =
ds(t)

dt
= Acos(2π f (t)t)[2π

d f (t)
dt

t +2π f (t)] (2)

= 2πA(F0 +2kt)︸ ︷︷ ︸
Amplitude

cos(2π f (t)t)

The above equation indicates that the amplitude of the trans-
formed signal s′(t) is proportional to the frequency of the in-
put LoRa chirp s(t), as shown in Figure 3(b). This frequency-
amplitude correlation allows us to demodulate the frequency-
modulated (FM) chirp signal by tracking the peak amplitude
of its transformed amplitude-modulated (AM) counterpart.

2.1 Frequency-amplitude Transformation
To realize the differential operation [10], an intuitive solution
is using RLC resonant circuit. However, the narrow band-
width of LoRa (e.g., 125/250/500 KHz) renders this idea
infeasible (see Appendix A.1 for details). In Saiyan we in-
stead exploit the sharp frequency response of the Surface
Acoustic Wave (SAW) filter to transform LoRa chirps into
amplitude-modulated signals.

SAW filter primer. A SAW filter consists of two interdigital
transducers (shown in Figure 4). The input interdigital trans-
ducer transforms electrical signals into acoustic waves; the
output interdigital transducer then transforms acoustic waves
back into electrical signals. This two-stage signal transforma-
tion introduces 6 dB insertion loss to the incident signal [4].

Re-purposing SAW filter as a signal converter. Our design
is based on the observation that the frequency response of a

0F BW

0F t t
chirpTSymbol 00

0F
chirpT

Symbol 10

f f

(a) Frequency

02 AF t
chirpTSymbol 00

0F BW

02 (2)A F BW

02 AF t
chirpT

02 (2)A F BW

Symbol 10
(b) Amplitude

Figure 3: LoRa symbols before and after frequency-amplitude
transformation. (a) Different LoRa symbols in the frequency
domain. (b) The amplitude of LoRa symbols after frequency-
amplitude transformation.

Input transducer Output transducer

Surface wave

0 dBm -6 dBm

+X-X +X-X

Figure 4: Diagram of the SAW filter. The SAW filter converts
electrical signal into acoustic signal and then back through
two inter-digital transducers.

SAW filter grows monotonically within a certain frequency
band (termed as critical band). After passing through the
critical band, the chirp signal will be transformed into an
AM signal whose amplitude scales with the frequency of this
input FM chirp. This allows us to demodulate LoRa chirp by
simply tracking the peak amplitude of the AM signal. On the
other hand, since SAW filter by its own design is battery-free,
such frequency-amplitude transformation doesn’t incur extra
power consumption to backscatter tags.

In Saiyan, we take into account the working frequency and
bandwidth of LoRa signals and select a general-purpose Qual-
comm B3790 [1] SAW filter as the signal converter. Figure 5
shows its frequency response. The signal amplitude grows
by 25 dB as the frequency of the incident signal scales from
433.5 MHz to 434 MHz (500 KHz bandwidth). To validate
this 25 dB amplitude gap is strong enough for differentiating
LoRa chirps, we feed four different chirp symbols into this
SAW filter and plot the output in Figure 6. Evidently, these
symbols peak their amplitude at clearly different time points,
confirming the effectiveness of the SAW filter.

2.2 Demodulation
The transformed symbols are down-converted to the base-
band through an envelope detector. Before demodulation, the

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 439

428 430 432 434 436 438 440
Frequency (MHz)

-70

-60

-50

-40

-30

-20

-10

A
m

pl
itu

de
 (

dB
m

)
434

433.5
25dB

500KHz

 125K

7.2dB9.5dB

K
433.5 433.4

-10

-35

Figure 5: The amplitude-frequency response of the SAW
filter adopted by Saiyan. The central frequency is 434 MHz.
The measured insertion loss of this SAW filter is 10 dB. We
observe 25 dB, 9.5 dB, and 7.2 dB amplitude variation as
the frequency of an incident signal grows from 433.5 MHz,
433.75 MHz, and 433.875 MHz to 434 MHz, respectively.

standard LoRa receiver first digitizes these baseband signals
using an ADC, which is power intensive. To save power, an
intuitive solution is to replace the ADC with a low-power
voltage comparator [37, 46]. The threshold of this comparator
is set to a value slightly lower than the peak amplitude of the
basband signal. This allows us to locate the peak amplitude by
checking the comparator’s output. Unfortunately, due to the
in-band interference and hardware noise, the transformed AM
signal may experience multiple amplitude peaks and valleys
that may confuse the comparator.

Double-threshold based comparator. In Saiyan we instead
adopt a double-threshold based comparator to stabilize the out-
put binary sequence. Let UH and UL denote the high-voltage
and low-voltage threshold defined in this comparator. When
the amplitude of an input signal is sufficiently higher than UH ,
the comparator outputs a high voltage. When the amplitude
of this signal is equivalent to UH or above, no chattering oc-
curs since the output will not respond unless the input falls
below UL. Following this idea, the output voltage Bi can be
formulated as follows:

Bi =

low, i f Ai <UH & Bi−1 = low
high, i f Ai ≥UH & Bi−1 = low
low, i f Ai <UL & Bi−1 = high
high, i f Ai ≥UL & Bi−1 = high

(3)

where Ai represents the amplitude of the ith signal sample.
This double-threshold comparator takes into account the am-
plitude samples both in the past and present. It nulls out the
chattering caused by the amplitude oscillation. The threshold
setup is detailed in system implementation (§4).

To show the effectiveness of this double-threshold based
comparator, we apply it to a LoRa chirp and plot the output
in Figure 7. For comparison, we also plot the output of two
single-threshold based comparators (UH alone and UL alone,
respectively). We can see that using a high threshold UH

Table 1: The required sampling rate (KHz) in theory/practice
to achieve 99.9% decoding accuracy.

SF=7 SF=8 SF=9 SF=10 SF=11 SF=12

K=1 15.6/20 7.8/12 3.9/5.5 1.95/2.6 0.98/1.2 0.49/0.6
K=2 31.2/40 15.6/20 7.8/12 3.9/5.5 1.95/2.6 0.98/1.2
K=3 62.5/85 31.2/40 15.6/20 7.8/12 3.9/5.5 1.95/2.6
K=4 125/180 62.5/85 31.2/40 15.6/20 7.8/12 3.9/5.5
K=5 250/400 125/180 62.5/85 31.2/40 15.6/20 7.8/12

alone fails to detect the amplitude peak due to the valleys
emerging on signal amplitude (i.e., t ∈ [tE , tF] in Figure 7(b)).
Using a low threshold UL alone causes false positives due
to the misleading peak emerging on the signal amplitude
(t ∈ [tA, tB] in Figure 7(d)). In contrast, the double-threshold
based comparator produces a series of stable binary voltages
that can guide us to locate the peak amplitude at the correct
position (i.e., at the tail of the high voltage samples tF shown
in Figure 7(e)).

2.3 Low-power Voltage Sampler

The comparator quantizes chirp samples into binary voltages
which are stored in a counter of micro-controller (MCU). The
sampling rate tradeoffs the power consumption and the de-
modulation performance and thus cannot be set arbitrarily. A
higher sampling rate supports a higher link throughput. It how-
ever consumes more power. Suppose a LoRa chirp encodes K
bits data. The data rate equals K ·BW/2SF , where BW and SF
respectively represent bandwidth and spreading factor. Ac-
cording to the Nyquist sampling theorem, the sampling rate
should be not lower than 2 ·BW/2SF−K .

However, in reality, using the theoretical minimum sam-
pling rate exacerbates bit errors. We conduct a benchmark
experiment to measure the practical sampling rate required
to achieve 99.9% decoding accuracy. Table 1 lists the re-
sults with different settings of spreading factor and coding
rate. We find that the required sampling rate in practice is
slightly higher than the theoretical minimum sampling rate.
Suggested by this result, we conservatively set the sampling
rate to 3.2·BW/2SF−K , which guarantees the demodulation
performance.

Decoding. After quantization, the low-power MCU decodes
each LoRa chirp by localizing the bit ‘1’ within each LoRa
symbol, as shown in Figure 8. The LoRa preamble contains
ten identical up-chirps. Upon detecting the LoRa preamble,
Saiyan waits for 2.25 symbol times (sync. symbols) and oper-
ates demodulation on the payload hereafter.

Remarks. The vanilla Saiyan demodulates LoRa signals with
the minimum power consumption. However, its demodulation
sensitivity is limited due to the signal attenuation in the SAW

440 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 125 250
Time (us)

-250

0

250

Fr
eq

 (k
H

z)

0 125 250
Time (us)

-250

0

250

Fr
eq

 (k
H

z)

0 125 250
Time (us)

-250

0

250

Fr
eq

 (k
H

z)

0 125 250
Time (us)

-250

0

250

Fr
eq

 (k
H

z)

Fr
eq

 (M
H

z)

433.5

434

Fr
eq

 (M
H

z)

433.5

434

Fr
eq

 (M
H

z)

433.5

434

Fr
eq

 (M
H

z)

433.5

434

0 125 250
Time (us)

0

0.25

0.5

Am
pl

itu
de

0 125 250
Time (us)

0

0.25

0.5

Am
pl

itu
de

0 125 250
Time (us)

0

0.25

0.5

Am
pl

itu
de

0 125 250
Time (us)

0

0.25

0.5

Am
pl

itu
de

(a) Symbol “00” (b) Symbol “01” (c) Symbol “10” (d) Symbol “11”

Figure 6: The input (top) and output (bottom) signals of the SAW filter. The amplitude of the output signal scales with the
frequency of the input signal. They reach the maximal value simultaneously.

0 125 250

(
)

(c) Single threshold UH

(d) Single threshold UL

(e) Double thresholds UH and UL

UH
tA tB

tB

tD tE tF

tE

tFLow High

tC

Amplitude peak Amplitude trough

0

0.5

Vo
lta

ge

(V
)

Lo
gi

c

0

0

1

1

0

1

T

(b) Amplitude

(a) Frequency-time of upchirp
0

500

Fr
eq

 (K
H

z)
Lo

gi
c

Lo
gi

c

500us

Peak position

UL

Figure 7: Comparing the output of different voltage com-
parators. (a): the incident LoRa chirp. (b): the output of an
envelope detector. (c)-(d): the output of the single-threshold
based comparator that uses UH or UL as the cut-off amplitude.
(e) the output of the double-threshold based comparator that
uses UH and UL simultaneously as the cut-off amplitudes.

filter and the noise added by the envelope detector. Next, we
introduce super Saiyan to improve the sensitivity.

3 Super Saiyan

Super Saiyan takes the following actions to consistently im-
prove the demodulation sensitivity: i) improving the SNR
of baseband chirp signals with a cyclic-frequency shifting
circuit, and ii) improving the sensitivity of demodulator with
correlation.

3.1 Cyclic-frequency Shifting

Understanding the principle of envelope detector. The en-
velope detector has been widely adopted by low-power RF
devices to down-convert the incident signal. However, due to
the inherent non-linearity caused by the squaring operation of

0
0.1
0.2

V
ol

ta
ge

 (
V

)

0 1 2 3 4 5
Time (ms)

0

1
Lo

gi
c

Preamble Sync Payload

UH
UL

000
001

010
011

100
101

110
111

Figure 8: The decoding process of a LoRa packet

CMOS devices [27], both the targeted signal (i.e., feedback
signals from the LoRa access point) and the RF noises will be
down-converted to the baseband. Consequently, the targeted
signal becomes even weaker after down-conversion. We ex-
plicate this phenomenon using the following example. Let Sin
be the incident signal: Sin = St +Sn, where St and Sn denote
the targeted signal and RF noises, respectively. The output
signal Sout of this envelope detector can be represented by:

Sout = kS2
in = k(St +Sn)

2 (4)

= kS2
t +2kSt ·Sn + kS2

n

where k represents the attenuation factor. The first term S2
t on

the right side of this equation manifests that the targeted signal
St is shifted to the baseband through self-mixing. The second
and the third terms both indicate the RF noises are shifted
to the baseband after mixed with the targeted signal and the
noises themselves, respectively, causing strong interference
on the baseband.

Cyclic-frequency shifting. In Saiyan we design a low-power
circuit to mitigate the SNR loss brought by the envelope
detector. The circuit is realized by two RF mixers and two
clock signals. Its operation is detailed as follows.

• Step 1. The micro-controller first generates a clock sig-
nal CLKin(∆ f) and mixes it with the incident signal S(F),
resulting in two sideband signals S(F−∆ f) and S(F +∆ f),
as shown in Figure 9(a)-(b). The sideband signals and the

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 441

CLKin(f)

Input Mixing

Output Mixing

CLKout(f)

S(F)

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

freqF F F+ fF- f + f - f

 + f00

S(F)

S(+ f)S(- f)

S(0)

S(F- f) S(F+ f)

IF
Amplification

S(+ f)
S(0)S(0)

(a) (b) (c)

(f) (e) (d)

Envelope
Detection

Low-pass
Filtering

RF Signal

Noise

Output

freq + f

LPF

Figure 9: The illustration of the cyclic-frequency shifting. (a) The input signal S(F). (b) S(F) is first mixed with the clock signal,
resulting in two sideband signals S(F−∆ f) and S(F +∆ f). (c) The envelope detector extracts the envelope of those three signals
and down-converts them to the the baseband. (d) The IF amplifier boosts the power of S(∆ f) and attenuates the power at other
frequency bands. (e) The desired signal S(∆ f) with significantly lower noises is shifted back to the baseband. (f) The output
signal S(0).

incident signal are then down-converted to the intermediate
frequency (IF) band (denoted by S(−∆ f) and S(∆ f)) and the
baseband (denoted by S(0)) respectively with an envelope
detector (Figure 9(c)).

• Step 2. Since RF noises are not down-converted to the IF
band by the envelope detector, we amplify the unpolluted IF
signal S(∆ f) using a low-power IF amplifier. The frequency
selectivity of this IF amplifier filters out signals at other fre-
quencies (e.g., S(0)), as shown in Figure 9(d).

• Step 3. The power-amplified IF signal S(∆ f), mixed with
another clock signal CLKout(∆ f), is shifted back to the base-
band, as shown in Figure 9(e). At the same time, the noisy
baseband signal S(0) will be shifted to the IF band and then
filtered by a low-pass filter (Figure 9(f)).

In a nutshell, this circuit first moves the targeted signal to
an intermittent frequency band (step 1) to avoid the RF noise
contamination introduced by the envelope detector. This also
leaves us an opportunity to remedy the SNR loss in down-
conversion (step 2). Finally, the targeted signal is moved back
to the baseband for demodulation. At the same time the DC
offset, flicker and other noises are moved to the IF band and
removed by a low-pass filter (step 3).

Figure 10 shows the spectrums before and after feeding
the chirp signal into the cyclic frequency shifting circuit. Evi-
dently, both the inband and out-of-band RF noises have been
cleaned by the circuit, ensuring the decodability of chirp sig-
nals. Our quantitative measurement shows that the cyclic-
frequency shifting circuit brings in 11 dB SNR gain.

Clock signal generation. The above circuit design relies on
two clock signals CLKin(∆ f) and CLKout(∆ f). To save power,

0
Time (ms)

0

1

2

3

4

5

F
re

qu
en

cy
 (

kH
z)

-150

-100

-50

0
Time (ms)

0

1

2

3

4

5

F
re

qu
en

cy
 (

kH
z)

-140

-120

-100

-80

-60

-40

(a) Without frequency shifting (b) With frequency shifting

Figure 10: The spectrum of an incident LoRa signal when
being down-converted into the baseband with an envelope de-
tector. (a) Without cyclic-frequency shifting. (b) With cyclic-
frequency shifting. The LoRa signal contains 24 LoRa chirps
(BW=500KHz, SF=8).

we program the MCU to generate CLKin(∆ f) signal and then
leverage a delay line to copy CLKin(∆ f) as CLKout(∆ f):

CLKout(∆ f) =CLKin(∆ f +∆φ) (5)

where ∆φ is the phase shift caused by the delay line. We tune
the length of this delay line to ensure cos(∆φ) ≈ 1 so that
CLKout(∆ f) equals CLKin(∆ f).

Circuit integration. We integrate this cyclic-frequency shift-
ing circuit into the envelope detector. Figure 11 shows the
schematic of this design. It consists of an input mixer, an out-
put mixer, an envelope detector, an IF amplifier, a low-pass
filter (LPF), an oscillator, and a transmission line. Specifically,
The base clock signal is provided by a micro-power precision
oscillator LTC6907 [11]. A low-power transistor 2N222 [8]
is adopted as the IF amplifier.

442 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

CLKin CLKout
Transmission Delay

A

Envelop Detector Low-pass FilterInput Mixer Output Mixer

CLKin CLKout
Transmission Delay

A

Envelop Detector Low-pass FilterInput Mixer Output MixerAAmmppllififieierr

Envelop Detector based on frequency Shifting

Input Output
IF

Figure 11: The schematic of cyclic-frequency shifting.

MCU

Impedance Matching

Frequency-amplitude
Transformation

SAW Filter Comparator

Frequency-amplitude
Transformation

SAW Filter

MCU

Comparator

DemodulationEnvelop Detection

Envelop Detection

A

LNA

Figure 12: The high-level circuit schematic of Saiyan.

3.2 Correlation
While the above cyclic-frequency shifting circuit successfully
improves the SNR of the incident signal, the demodulation
accuracy still suffers degradation when the incident signal
is too weak, e.g., close to the noise floor. We thus employ
correlation — a mainstream approach that has been largely
adopted for packet detection to further improve the demodu-
lation sensitivity. It operates by correlating signals samples
with a local chirp template. An energy peak shows up as long
as the incident signal matches the template. The receiver then
tracks the energy peak and demodulates the incident signal.

4 Implementation

We describe the system implementation in this section.

4.1 Backscatter Tag
We implement Saiyan on a 25 mm×20 mm two-layer PCB
using commercial off-the-shelf analog components and an
ultra-low power Apollo2 (10 µA/MHz) [13] MCU. We de-
termine its size through a mixed analytical and experimental
approach, striking a balance between the form factor and cir-
cuit interference. Figure 13 shows the hardware prototype.
Saiyan functions with an omni-directional antenna [2] with
3 dBi gain.

Architecture and workflow. Figure 12 shows the architec-
ture of Saiyan. The incident signal passes through a passive
SAW chip B39431B3790Z810 [1] and is transformed into an
amplitude-modulated signal. We place a common-gate low-
noise amplifier (CGLNA) [17] between the SAW filter and
the customized envelope detector to amplify the transformed
signal. The amplified signal is then down-converted to the
baseband through the envelope detector. Finally, a low-power
voltage comparator NCS2202 [9] is leveraged to quantize the
output signal from the envelope detector.

20 mm

25
 m

m

�D��)URQW �E��%DFN �F��4XDUWHU

Figure 13: The hardware prototype of Saiyan. The quarter
next to Saiyan demonstrates the form factor.

Plug-and-play. As an ultra-low-power peripheral, Saiyan can
be integrated into the existing long-range LoRa backscatter
systems [23, 40] with ignorable engineering efforts. Taking
PLoRa [40] as an example, we replace its packet detection
module with Saiyan and retained all the remaining functional
units the same. This simple replacement allows PLoRa tag
to demodulate the feedback signals while retaining the mod-
ulation capability at the same time. On the software side,
we replicate the sampling rate control logic to facilitate the
demodulation.

Power management. The energy harvester on Saiyan com-
prises of a palm-sized photovoltaic panel and a high-efficiency
step-up DC/DC converter LTC3105 [3]. It generates 1 mW
power every 25.4 seconds in a bright day. The power manage-
ment module provides a constant 3.3V output voltage to the
MCU. The power consumption of this power management
module in working mode is approximately 24 µW

Determining the voltage thresholds UH and UL. Ideally,
UH should be slightly lower than the peak amplitude of the
input signal Amax. Let G be the gap between Amax and the
voltage threshold UH . We have: G = 20lg(Amax/UH). Thus,
UH can be estimated on the basis of the following equation:
UH = Amax/10

G
20 . The threshold voltage UL is set to UH−UF ,

where UF represents the amplitude of the envelope detector’s
output. The thresholds UH and UL are tuned by two adjustable
on-board resistors. In practice, considering that Amax and UF
both vary with the link distance, we measure these two values
offline under different link distance settings and store a map-
ping table on each tag to facilitate the configuration of UH
and UL. To alleviate this manual configuration overhead, one
could leverage an Automatic Gain Control (AGC) [42, 43]
to adapt the power gain automatically. We leave it for future
work.

4.2 LoRa Transmitter and Receiver

LoRa transmitter. We use two types of LoRa transmitters
in the evaluation: i) a LoRa transmitter implemented on a
software-defined radio platform USRP N210, and ii) a com-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 443

Figure 14: Outdoor experiment field.

mercial off-the-shelf LoRa node equipped with a Semtech
SX1276RF1JAS [7] chip. Both platforms use a single omni-
directional antenna with 3 dBi gain. The transmission power
is set to 20 dBm.

LoRa receiver. The LoRa receiver is implemented on a
software-defined radio platform USRP N210. We set the sam-
pling rate to 10 MHz, thereby allowing the receiver to monitor
six LoRa channels simultaneously.

4.3 ASIC Simulation
We simulate the Application Specific Integrated Circuit
(ASIC) of Saiyan based on the TSMC 65-nm CMOS pro-
cess. The active area of on-chip Integrated Circuits (IC) is
0.217 mm2. The ASIC simulation shows that the power con-
sumption of Saiyan is 93.2 µW . Specifically, the power con-
sumption of LNA, oscillator, and digital circuit is 68.4 µW
and 22.8 µW , and 2 µW , respectively. Once Saiyan demod-
ulated the feedback signals, the MCU starts preparing data
for packet re-transmissions, which consumes extremely low
power (i.e., the power consumption of the ultra-low power
Apollo2 [13] in Saiyan is merely 19.6 µW).

4.4 MAC-layer for Multi-tag Coexistence
We briefly discuss MAC-layer in this section. The downlink
packets can be divided into three groups: unicast packet, mul-
ticast packet, and broadcast packet. In unicast, all backscat-
ter tags within the radio range will receive and demodulate
this unicast packet from the access point. However, only the
targeted tag will response (e.g., re-transmit the lost packet).
Hence, no collision occurs. However, in multicast and broad-
cast, collision happens as long as more than one backscatter
tag replies at the same time. For instance, the access point
sends a downlink packet (e.g., turn off the humidity sensor),
while multiple tags acknowledge the reception of this down-
link packet simultaneously. In this case, the access point can
leverage slotted ALOHA [22] protocol to coordinate tags and
minimize collisions. We take Figure 15 as an example to
illustrate the MAC-layer operation. Suppose three tags are
sending an acknowledgement to the access point to confirm
the reception of a downlink packet. Each tag will randomly
select a time slot and store it in its local counter. Upon the

1. Command Signal (shutting down the humidity sensor); 2\4\6. Carrier Signal

1

AP

Tag 1

Tag 2

T1 T2

Tag 3

1

1

2 3 4 5 6 7

T3

3. ACK from Tag 1; 5. ACK from Tag 2; 7. ACK from Tag 3

Figure 15: The illustration of MAC-layer operations in Saiyan.
Each tag randomly selects a slot to transmit. The access point
(AP) signals the beginning of each slot with a carrier signal.

detection of a carrier signal from the access point, each tag
decreases the slot number by one and transmits as soon as
the slot number goes zero. The randomness in slot selection
minimizes the interference among tags.

5 Evaluation

In this section, we present the evaluation results of field stud-
ies (§5.1) and micro-benchmarks (§5.2). Two case studies
follow (§5.3). Unless otherwise posted, the transmitter and
the receiver are collocated throughout the experiment.

Setups. The LoRa transmitter works on the 433.5 MHz fre-
quency band. The spreading factor and the bandwidth are set
to 7 and 500 KHz, respectively. The payload of each LoRa
packet contains 32 chirp symbols. In each experiment, we let
the transmitter transmit 1,000 LoRa packets and then repeat
the experiment for 100 times to ensure the statistical validity.
We adopt BER, throughput, and demodulation range as the
key metrics to assess Saiyan’s performance.

• BER refers to the ratio of error bits to the total number
of bits received by Saiyan.

• Throughput measures the amount of received data cor-
rectly decoded by Saiyan within one second.

• Demodulation range refers to the maximum distance
between the tag and the LoRa transmitter when the BER
is maintained below 1‰.

5.1 Field Studies
We conduct field studies both indoors and outdoors to assess
the impact of coding rate (CR), spreading factor (SF), and
bandwidth (BW) on BER, demodulation range, and through-
put, which are three key evaluation metrics.

5.1.1 Outdoor experiments

Impact of coding rate. We place a Saiyan tag 10 m, 20 m,
50 m, 100 m, and 150 m away from a LoRa transmitter. Under

444 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 2 3 4 5
Coding rate (CR)

10-5

10-4

10-3

10-2

B
E

R

Tag-to-Tx=10m Tag-to-Tx=20m
Tag-to-Tx=50m Tag-to-Tx=100m
Tag-to-Tx=150m

1 2 3 4 5
Coding rate (CR)

100

101

2 101

T
hr

ou
gh

pu
t (

K
bp

s)

Tag-to-Tx=10m Tag-to-Tx=20m
Tag-to-Tx=50m Tag-to-Tx=100m
Tag-to-Tx=150m

(a) BER

(b) Throughput

Figure 16: BER and throughput in differ-
ent coding rate settings.

7 8 9 10 11 12
0

60

120

180

 (
m

)

=1
=3
=5

7 8 9 10 11 12
SF

100

101
2 101

T
hr

ou
gh

pu
t (

K
bp

s)

=1
=3
=5

SF

(a) Range

(b) Throughput

Figure 17: Demodulation range and
throughput in different SF settings.

125 250 500
BW (KHz)

0

50

100

150 (
m

)

=1
=2
=3

125 250 500
BW (KHz)

100

101

T
hr

ou
gh

pu
t (

K
bp

s) =1
=2
=3

 (a) Range

(b) Throughput

Figure 18: Demodulation range and
throughput in different BW settings.

each distance setting, we vary the coding rate of LoRa signals
and measure BER and throughput. We have three observations
based on the results shown in Figure 16.

First, the BER grows with the coding rate. As shown in
Figure 16(a), the BER under the highest coding rate setting
(i.e., 5) is 2.4–5.2× higher than the BER under the lowest
coding rate setting (i.e., 1) across all different Tx-to-tag dis-
tances. For instance, when the Tx-to-tag distance is 100 m,
Saiyan achieves a BER of 1.85‰ under the highest coding
rate setting. The BER then drops to 0.4‰ under the same
Tx-to-tag distance setting when we change the coding rate to
1. This is expected since the Saiyan tag has to differentiate
more types of LoRa chirps under the high coding rate setting.

Second, the throughput grows linearly with the coding rate
(Figure 16(b)). For example, when the Tx-to-tag distance is
100 m, the achievable throughput at CR=5 (18.12 Kbps) is
around 5.1× higher than the throughput at a coding rate of 1
(3.57 Kbps).

Third, both the BER and the throughput get exacerbated
with the growing Tx-to-tag distance. For instance, when
CR=5, the BER grows dramatically from 0.1‰ to 4.4‰ as the
Tx-to-tag distance grows from 10 m to 150 m. The through-
put, on the other hand, declines from 19.6 Kbps to 17.2 Kbps.
This is expected since Saiyan relies on the signal power to
demodulate the incident LoRa signal.

Impact of spreading factor. Next, we vary the spreading
factor from 7 to 12 and assess Saiyan’s demodulation range
and throughput under each setting. The results are shown in
Figure 17. We observe that the demodulation range grows
with the increasing spreading factor. The throughput, on the
contrary, declines with the increasing spreading factor. For
instance, the demodulation range under the highest spread-
ing factor setting (i.e.,SF=12) is 1.1–1.3× longer than the

demodulation range under the lowest spreading factor set-
ting (i.e., SF=7) across three different coding rate settings.
The throughput drops by 30.3–35.1× as we decrease the SF
from 12 to 7. This is expected since a higher spreading factor
enhances the anti-noise capability of LoRa signals; thus the
demodulation range grows. On the other hand, the symbol
time grows with the increasing spreading factor, resulting in
a lower throughput.

Impact of bandwidth. We set the spreading factor to 7 and
assess the impact of LoRa bandwidth on the demodulation
range and throughput. The results are shown in Figure 18.
We observe that the demodulation range and the throughput
both grow with the LoRa bandwidth. Specifically, given the
coding rate of 2, the demodulation range grows from 72.2 m
to 138.6 m as we increase the bandwidth from 125 KHz to
500 KHz. On the other hand, since the LoRa symbol time
is inversely proportional to the bandwidth, we observe the
throughput drops around 4× from 7.2 Kbps to 1.8 Kbps as
we decrease the bandwidth from 500 KHz to 125 KHz.

5.1.2 Indoor experiments

We repeat the above experiments in an indoor environment
where the LoRa signals have to penetrate one or multiple
concrete walls to arrive at the backscatter tag.

Penetrating one concrete wall. Similar to the trend shown
in the outdoor scenario, the throughput measured in the indoor
scenario also grows with the increase of the coding rate (Fig-
ure 19). For example, the throughput grows from 3.7 Kbps
to 18.7 Kbps when the coding rate varies from 1 to 5. The
demodulation range, on the other hand, declines from 48.8 m
to 26.2 m as we increase the coding rate from 1 to 5.

Penetrating two concrete walls. The LoRa signal experi-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 445

1 2 3 4 5
Coding rate

0

5

10

15

20

T
hr

ou
gh

pu
t (

K
bp

s)

0

10

20

30

40

50

R
an
ge

 (
m

)

Throughput
Range

Figure 19: Throughput and downlink
range in the presence of one concrete
wall.

1 2 3 4 5
Coding Rate

0

5

10

15

20

T
hr

ou
gh

pu
t (

K
bp

s)

0

5

10

15

20

25

R
an
ge

 (
m

)

Throughput
Range

Figure 20: Throughput and downlink
range in the presence of two concrete
walls.

Outdoor Indoor
Scenario

0

30

60

90

120

150

D
et

ec
tio

n
 (

m
)

Aloba
PLoRa
Saiyan

Figure 21: Comparison of Saiyan, Aloba,
and PLoRa on the detection range.

10 30 50 70 90 110 130 150 170
Tag-to- x distance (m)

-90

-70

-50

-30

R
S

S
 (

dB
m

)

0

0.2

0.4

0.6

0.8

1
RSS
BER

B
E
R

Figure 22: RSS and BER over distance.

10 30 50 70 90
Tag-to- distance (m)

0

5

10

15

20

25

 (
dB

)

125 KHZ
250 KHZ
500 KHZ

Figure 23: The amplitude gap of the out-
put signal after SAW filter

8 12 16 20
Time (h)

-10

-6

-2

2

T
em

pe
ra

tu
re

 (
°C

)

119

123

127

R
an
ge

 (
m

)

Temperature
Range

Figure 24: Demodulation range under dif-
ferent temperatures

ences stronger attenuation when penetrating two concrete
walls. Accordingly, we observe the demodulation range and
the throughput decline by 2.21-2.09× and 1.01-1.05× com-
pared to those under the single concrete wall settings (Figure
20).

5.1.3 Comparison with state-of-the-art systems

We further compare Saiyan with two state-of-the-art systems,
namely, Aloba [23] and PLoRa [40] in both outdoor and in-
door environments. PLoRa operates cross-correlation to de-
tect a LoRa packet. Aloba feeds the incident signal into a
moving average filter and then leverages the unique RSSI
pattern of the LoRa preamble to detect a LoRa packet. They
both cannot demodulate the payload. Therefore, we compare
them with Saiyan in terms of the packet detection range.

Figure 21 shows the experiment result. In the outdoor line-
of-sight settings, Saiyan achieves a packet detection range of
148.6 m, outperforming ALoBa (30.6m) and PLoRa (42.4m)
by 4.52× and 3.26×, respectively. In an indoor none-line-
of-sight environment, although the packet detection range of
Saiyan declines to 44.2 m, it still outperforms Aloba (12.4 m)
and PLoRa (16.8 m) by 3.56× and 2.63×, respectively.

5.2 Micro-benchmarks

To better understand the performance of each design com-
ponent in Saiyan, we run micro-benchmarks to assess the
receiver sensitivity, the SAW filter, as well as the power con-
sumption and the system cost.

5.2.1 Receiver sensitivity

We define the receiver sensitivity as the minimum Received
Signal Strength (RSS) of an incident signal that can be de-
tected by Saiyan. To assess the receiver sensitivity, we mea-
sure the BER and the Received Signal Strength (RSS) under
different Tx-to-tag distance settings. As expected, the BER
grows gradually with the increase of the Tx-to-tag distance, as
shown in Figure 22. Nevertheless, Saiyan can still detect the
incident signal when the tag is 180 m away from the transmit-
ter. As we increase the tag-to-Tx further, the signal strength
is too weak to be detected by Saiyan. The above experiment
demonstrates an -85.8 dBm receiver sensitivity, outperform-
ing the conventional envelope detector by 30 dBm [27].

5.2.2 Performance of the SAW filter

Frequency-amplitude response. Saiyan relies on the
frequency-amplitude response of the SAW filter to demod-
ulate LoRa signals. A sharp frequency-amplitude response
(e.g., a small frequency variation leads to a large amplitude
gap) is desirable as it allows the Saiyan tag to detect the
minute frequency variation on the incident signal.

We feed LoRa signals with different bandwidth into the
SAW filter and measure the amplitude variation of the output
signal. The results are shown in Figure 23. As expected, the
amplitude variation of the output signal (a.k.a., amplitude
gap) tends to be less significant with the decreasing chirp
bandwidth. For instance, when the Tx-to-tag distance is 10 m,
the amplitude gap drops from 24.7 dBm to 9.3 dBm, and
further to 7.1 dBm as we decrease the chirp bandwidth from
500 KHz to 250 KHz, and further to 125 KHz, respectively. A
similar trend shows up as we increase the Tx-to-tag distance.

446 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 2 3 4 5
Coding Rate

0

50

100

150

 (
m

)

Vanilla Saiyan
Frequency shifting
Correlation

Figure 25: Ablation study of Saiyan.

40

50

60

70

80

90

100

P
R

R
 (

%
)

PLoRa
Aloba

Figure 26: PRR in different settings.

40 60 80 100
PRR (%)

0

0.2

0.4

0.6

0.8

1

C
D

F

Figure 27: PRR lifts with Saiyan.

Table 2: Energy consumption (under 1% duty cycling) and
cost of each component in Saiyan tag.

Component
SAW
Filter LNA

OSC
Clock

Envelope
Detector Comparator MCU Total

Energy (µW) 0 248.5 86.8 0 14.45 19.6 369.4
Cost ($) 3.87 4.15 1.25 1.20 1.26 15.43 27.2

For instance, when the signal bandwidth is 500 KHz, the
amplitude gap of the output signal drops from 24.7 dBm to
20.2 dBm as the Tx-to-tag distance increases from 10 m to
100 m.

The impact of temperature. The frequency selectivity of the
SAW filter is affected by the ambient temperature [36]. We
thus run an experiment to assess the impact of temperature
on the demodulation range. The experiment is conducted
outdoors on a sunny day from 8 a.m. to 8 p.m.. Figure 24
shows the result. We observe that the demodulation range in
general is insensitive to the temperature. For instance, when
the temperature rises from the lowest -8.6 ◦C at 8 a.m. to the
highest 1.6 ◦C at 2 p.m., the demodulation range merely drops
from 126.4 m to 118.6 m.

5.2.3 Ablation study

We conduct an ablation study to assess the effectiveness of
each design component of Saiyan. In this experiment, we set
the spreading factor and the bandwidth to 7 and 500 KHz
respectively and measure the maximum demodulation range
under different coding rate settings. The results are shown
in Figure 25. We find that the vanilla Saiyan achieves a rela-
tively short demodulation range (38.4 m—72.6 m) across five
different coding rate settings. The demodulation range then
grows by 1.56×–1.73× with the help of the cyclic frequency
shifting module. The cross-correlation further improves the
demodulation range by 1.94×–2.25×.

5.2.4 Power consumption & system cost

Table 2 summarizes the power consumption (under 1% duty
cycling as in LoRa [22]) and cost of each component in Saiyan.
Among these hardware components, the most power-hungry
parts are LNA and oscillator (OSC) clock, which account
for 67.3% and 23.5% of the total power consumption, respec-
tively. As we demonstrate in §4.3, the power consumption can
be effectively reduced by 74.8% when implementing Saiyan

on ASIC. The hardware cost of Saiyan, on the other hand, is
around 27.2 USD, which can be also reduced sharply after
ASIC fabrication.

5.3 Case Studies
Next, we run two real-world case studies to showcase packet
re-transmission (§5.3.1) and frequency hopping (§5.3.2).

5.3.1 Packet re-transmission through the ACK mecha-
nism

Setups. We integrate Saiyan into PLoRa and Aloba tags,
which allows the tags to demodulate the feedback signals from
the receiver and make an immediate packet re-transmission if
needed. The link distance is set to 100 m.

Results. As shown in Figure 26, PLoRa and Aloba achieve
81.8% and 45.6% packet reception ratio (PRR) without packet
re-transmission. The PRR of Aloba grows drastically from
45.6% to 70.1% when the Aloba tag is allowed to re-transmit
the lost packet only once. The PRR then grows to 83.3$
and further to 95.5% when the Aloba tag re-transmits the
lost packet twice and three times, respectively. The PRR of
PLoRa shows the similar trend. These results demonstrate
that Saiyan effectively improves the packet reception ratio for
long-range LoRa backscatter systems.

5.3.2 Interference avoidance through channel hopping

As an ultra-low-power tag working on the ISM band, both
PLoRa and Aloba are likely to bear strong in-band interfer-
ence from other legacy RF devices working on the same band.
We show that with Saiyan, these backscatter tags can demodu-
late the feedback signals from the receiver and switch to other
channels to avoid interference.

Setups. We use PLoRa to demonstrate the feasibility of chan-
nel hopping. The PLoRa tag communicates with the receiver
at the 434 MHz frequency band. It switches to the 434.5 MHz
frequency band upon detecting the feedback signal from the
receiver. We put a software-defined radio three meters away
from the receiver to jam the channel at the 433 MHz frequency
band.

Results. Figure 27 shows the CDF of PRR before and after
the channel hopping. We can see the PRR is very low when
the USRP jams the channel (dotted line). As the receiver

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 447

initiates a channel hopping command to the backscatter tag,
we witness a significant lift on the PRR. In particular, the
median PRR grows from 47% to 92% once PLoRa switches to
another channel. This result clearly demonstrates that Saiyan
can support better channel utilization through remote control.

6 Related Work

We review research topics relevant to Saiyan in this section.

RFID system. A passive RFID tag modulates sinusoidal tone
from an RFID reader to transmit data [52, 58]. It can also de-
modulate amplitude-modulated (AM) signals from a nearby
RFID reader [16, 26, 51, 53]. Specifically, the RFID tag down-
converts the incident signal to the baseband and accumulates
the signal power through an integrator circuit. Subsequently, it
compares the accumulated power to a threshold to demodulate
incident signals. Saiyan differs from passive RFID tags in two
aspects. First, Saiyan demodulates frequency-modulated sig-
nal as opposed to amplitude-modulated signal. Second, Saiyan
is designed for long-range backscatter systems whereas the
passive RFID tag functions within only a few meters.

Ambient backscatter systems. Ambient backscatter systems
empower backscatter tags to take the ambient wireless traffic
as the carrier signals [14, 15, 18, 20, 23, 29–33, 35, 37, 39, 40,
47–50, 55–57, 60]. For example, WiFi backscatter [33] reuses
WiFi signals as the carrier, thereby allowing for the backs-
actter tag to communicate with a commercial WiFi receiver.
Interscatter [29] enables backscatter tags to modulate Blue-
tooth signals into WiFi signals. LoRa backscatter [47] allows
backscatter tags to communicate over long distances by tak-
ing advantage of the noise resilience of LoRa symbols. These
pioneer works have remarkably improved the throughput and
the communication range of backscatter systems. Some recent
works [37, 44, 55, 56, 59, 60] support a few types of downlink
functionalities such as carrier sensing [37, 44, 55, 56, 59, 60]
and packet detection [23, 40] at the packet level. For example,
WiFi backscatter [33], Passive-WiFi [34], Interscatter [29],
LoRa backscatter [47], and Netscatter [24] use the presence
and absence of carrier packets to convey downlink data. How-
ever, they cannot demodulate downlink packets at the symbol
level, particularly under long-range settings. Saiyan can serve
as an important building block to the existing long-range
backscatter systems, where the on-demand retransmission is
needed due to the drastic packet loss.

Low-power demodulator. With the growth of low-power
IoT market, the research community has shifted the focus to
the design and implementation of low-power RF receivers,
e.g., by replacing the active components with their passive
counterparts, or by offloading the power-intensive functions
to external devices. Ensworth et al. [19] proposed a 2.4 GHz
low-power BLE receiver that offloads the RF local oscillator
to an external device. Carlos et al. [41] proposed a low-power
802.15.4 receiver that could demodulate phase-modulated

ZigBee signals at orders of magnitude lower power consump-
tion compared with the standard 802.15.4 receiver. However,
the working range of this low-power receiver is limited to tens
of centimeters, which sets a strong barrier towards the practi-
cal deployment. Turbo charging [39] designs a multi-antenna
cancellation circuit to facilitate the signal demodulation on
backscatter tags. Similarly, full-duplex backscatter [38] en-
ables a backscatter tag to demodulate the instantaneous feed-
back signal from another backscatter tag. Saiyan differs from
these systems in two aspects. First, Saiyan is designed for de-
modulating frequency-modulated signals as opposed to phase
or amplitude modulated signals. Second, Saiyan can support
up to 180 m demodulation range, whereas all the aforemen-
tioned systems function within only tens of centimeters.

SAW filter. The SAW filter has been widely adopted by wire-
less communication systems such as telecommunications [25],
radar [54], and aerospace communications [45], etc. These
systems leverage the low-distortion and minimal passband
variation of the SAW filter to filter out noise and interference
signals. Furthermore, medical devices transform a SAW filter
into a sensor for in-situ detection (e.g., detecting chemical
gas concentration) [21, 28]. Different from all the above ap-
plications, Saiyan exploits the sharp frequency response of
the SAW filter to demodulate frequency-modulated signal.

7 Conclusion

We have presented the design, implementation, and evaluation
of Saiyan, the first-of-its-kind low-power demodulator for
LoRa backscatter systems. Saiyan allows LoRa backscatter
tags to demodulate the command or feedback signals from
a remote access point that is hundreds of meters away. With
such capability, the backscatter tag can realize a plethora of
networking functionalities, such as packet re-transmission,
channel hopping, and rate adaptation. Field study shows that
Saiyan outperforms state-of-the-art systems by 3.5–5× in
terms of demodulation range. The ASIC simulation shows
that the power consumption of Saiyan is around 93.2 µW .

Acknowledgment

We thank our shepherd Fadel Adib and the anonymous re-
viewers for their insightful comments. We are also very grate-
ful to Dr. Lu Li from University of Electronic Science and
Technology of China for his constructive feedback. This
work is supported in part by National Key R&D Program
of China No. 2017YFB1003000, National Science Fund of
China under grant No. 61772306, and the R&D Project of Key
Core Technology and Generic Technology in Shanxi Province
(2020XXX007).

448 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] B39431-B3790-Z810 by Qualcomm-RF360 SAW filters.
Webpage.

[2] 3 dBi omni-directional antenna in 433 MHz. Webpage.

[3] Energy harvesting chip LTC3105. Webpage.

[4] Introduction to SAW filter theory & design techniques.
Webpage.

[5] LoRa Alliance. Webpage.

[6] LoRa receiver. Webpage.

[7] LoRa transceivers SX1276RF1JAS in 433 MHz. Web-
page.

[8] Low-power amplifier transistors 2N222. Webpage.

[9] Low-power comparator NCS2202. Webpage.

[10] Realization of Differential Circuit. Webpage.

[11] Silicon oscillators LTC6907. Webpage.

[12] The RF in RFID. Webpage.

[13] Ultra-low power microcontroller Apollo2 Blue. Web-
page.

[14] Mohamed R. Abdelhamid, Ruicong Chen, Joonhyuk
Cho, Anantha P. Chandrakasan, and Fadel Adib. Self-
reconfigurable micro-implants for cross-tissue wireless
and batteryless connectivity. In Proceedings of ACM
MobiCom, Virtual event, September 21-25, 2020.

[15] Dinesh Bharadia, Kiran Raj Joshi, Manikanta Kotaru,
and Sachin Katti. BackFi: High throughput WiFi
backscatter. In Proceedings of ACM SIGCOMM, Bu-
dapest, Hungary, August 20-25, 2018.

[16] Binbin Chen, Ziling Zhou, and Haifeng Yu. Understand-
ing RFID counting protocols. In Proceedings of ACM
MobiCom, Miami, Florida, USA, September 20-October
4, 2013.

[17] Chunyuan Chiu, Zhencheng Zhang, and Tsung Hsien
Lin. Design of a 0.6-V, 429-MHz FSK transceiver us-
ing Q-enhanced and direct power transfer techniques
in 90-nm CMOS. IEEE Journal of Solid-State Circuit,
55(1):3024–3035, 2020.

[18] Farzan Dehbashi, Ali Abedi, Tim Brecht, and Omid
Abari. Verification: Can WiFi backscatter replace RFID?
In Proceedings of ACM MobiCom, New Orleans, USA,
October 25-29, 2021.

[19] Joshua F. Ensworth, Alexander T. Hoang, and
Matthew S. Reynolds. A low power 2.4 GHz super-
heterodyne receiver architecture with external LO for
wirelessly powered backscatter tags and sensors. In Pro-
ceedings of IEEE RFID, Phoenix, AZ, May 9-11, 2017.

[20] Joshua F. Ensworth and Matthew S. Reynolds. Every
smart phone is a backscatter reader: Modulated backscat-
ter compatibility with Bluetooth 4.0 Low Energy (BLE)
devices. In Proceedings of IEEE RFID, San Diego, CA,
USA, April 15-17, 2015.

[21] Fahim, Mainuddin, U. Mittal, Jitender Kumar, A. T. Ni-
mal, and M. U. Sharma. Single chip readout electronics
for SAW based gas sensor systems. In Proceedings of
IEEE SENSORS, Glasgow, UK, October 29- November
1, 2012.

[22] Amalinda Gamage, Jansen Christian Liando, Chaojie
Gu, Tan Rui, and Mo Li. LMAC: Efficient carrier-sense
multiple access for LoRa. In Proceedings of ACM Mo-
biCom, Virtual event, September 21-25, 2020.

[23] Xiuzhen Guo, Longfei Shangguan, Yuan He, Jia Zhang,
Haotian Jiang, Awais Ahmad Siddiqi, and Yunhao Liu.
Aloba: Rethinking on-off keying modulation for ambi-
ent LoRa backscatter. In Proceedings of ACM SenSys,
Virtual event, November 16-19, 2020.

[24] Mehrdad Hessar, Ali Najafi, and Shyamnath Gollakota.
Netscatter: Enabling large-scale backscatter networks.
In Proceedings of USENIX NSDI, Santa Clara, CA,
March 16-18, 2016.

[25] Tzuhsuan Hsu, Fengchieh Su, Kuanju Tseng, and
Minghuang Li. Low loss and wideband surface acoustic
wave devices in thin film Lithium Niobate on Insula-
tor (LNOI) platform. In Proceedings of 34th Interna-
tional Conference on Micro Electro Mechanical Systems
(MEMS), Gainesville, FL, USA, January 25-29, 2021.

[26] Pan Hu, Pengyu Zhang, and Deepak Ganesan. Laissez-
faire: Fully asymmetric backscatter communication. In
Proceedings of ACM SIGCOMM, London, United King-
dom, August 17-21, 2015.

[27] Xiongchuan Huang, Guido Dolmans, Harmke de Groot,
and John R. Long. Noise and sensitivity in RF envelope
detection receivers. IEEE Transactions on Circuit and
Systems, 60(10):1549–7747, 2013.

[28] Tarikul Islam, Upendra Mittal, A T Nimal, and M U
Sharma. Surface Acoustic Wave (SAW) vapour sensor
using 70 MHz SAW oscillator. In Proceedings of 6th
International Conference on Sensing Technology (ICST),
Kolkata, India, December18-21, 2012.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 449

https://www.mouser.com/datasheet/2/842/B3790-1092449.pdf
https://www.ebay.com/itm/433Mhz-Magnetic-base-Antenna-3dbi-SMB-Connector-3m-cable-for-Ham-radio-/154317399569
https://www.analog.com/en/products/ltc3105.html
https://www.rfcafe.com/references/app-notes-copyrighted/SAW-Filter-Theory-Whitepaper-API-Technologies.pdf
https://www.lora-alliance.org/
https://semtech.my.salesforce.com/sfc/p/#E0000000JelG/a/2R0000001Rbr/6EfVZUorrpoKFfvaF_Fkpgp5kzjiNyiAbqcpqh9qSjE
https://www.semtech.com/products/wireless-rf/lora-transceivers/sx1276rf1jas
https://www.semtech.com/products/wireless-rf/lora-transceivers/sx1276rf1jas
https://datasheetspdf.com/pdf/490344/Motorola/2N222/1
https://www.onsemi.com/pub/Collateral/NCS2200-D.PDF
https://onlinelibrary.wiley.com/doi/pdf/10.1002/0471726400.app2
https://www.analog.com/en/products/ltc6907.html#product-overview
https://www.sciencedirect.com/book/9780750682091/the-rf-in-rfid#book-info
https://ambiq.com/zh/apollo2-blue/
https://ambiq.com/zh/apollo2-blue/

[29] Vikram Iyer, Vamsi Talla, Bryce Kellogg, Shyamnath
Gollakota, and Joshua Smith. Inter-technology backscat-
ter: Towards internet connectivity for implanted devices.
In Proceedings of ACM SIGCOMM, Salvador, Brazil,
August 22-26, 2016.

[30] Junsu Jang and Fadel Adib. Underwater backscatter net-
working. In Proceedings of ACM SIGCOMM, Beijing,
China, August 19-24, 2019.

[31] Zhang Jianhui, Zheng Siwen, Zhang Tianhao, Wang
Mengmeng, and Li Zhi. Charge-aware duty cycling
methods for wireless systems under energy harvesting
heterogeneity. ACM Transactions on Sensor Networks,
16(15):1–23, 2020.

[32] Mohamad Katanbaf, Anthony Weinand, and Vamsi Talla.
Simplifying backscatter deployment: Full-duplex LoRa
backscatter. In Proceedings of USENIX NSDI, virtual,
April 12-14, 2021.

[33] Bryce Kellogg, Aaron Parks, Shyamnath Gollakota,
Joshua R. Smith, and David Wetherall. WiFi backscat-
ter: Internet connectivity for RF-powered devices. In
Proceedings of ACM SIGCOMM, Chicago, USA, August
17-22, 2014.

[34] Bryce Kellogg, Vamsi Talla, Joshua R. Smith, and
Shyamnath Gollakot. Passive WiFi: Bringing low power
to WiFi transmissions. In Proceedings of USENIX NSDI,
Santa Clara, CA, March 16-18, 2018.

[35] Songfan Li, Chong Zhang, Yihang Song, Hui Zheng,
Lu Liu, Li Lu, and Mo Li. Internet-of-microchips: Di-
rect radio-to-bus communication with SPI backscatter.
In Proceedings of ACM MobiCom, Virtual event, Septem-
ber 21-25, 2020.

[36] Alexei N. Liashuk, Sergey A. Zavyalov, Aleksandr N.
Lepetaev, Anatoliy V. Kosykh, and Igor V. Khomenko.
Digitally temperature compensated SAW oscillator
based on the new excitation circuit. In Proceedings
of IEEE International Frequency Control Symposium &
the European Frequency and Time Forum, Denver, CO,
USA, April 12-16, 2015.

[37] Vincent Liu, Aaron Parks, Vamsi Talla, Shyamnath Gol-
lakota, David Wetherall, and Joshua R. Smith. Ambient
backscatter: Wireless communication out of thin air. In
Proceedings of ACM SIGCOMM, Hong Kong, China,
August 12-16, 2013.

[38] Vincent Liu, Vamsi Talla, and Shyamnath Gollakota. En-
abling instantaneous feedback with full-duplex backscat-
ter. In Proceedings of ACM MobiCom, Maui, Hawaii,
USA, September 7-11, 2014.

[39] Aaron N. Parks, Angli Liu, Shyamnath Gollakota, and
Joshua R. Smith. Turbocharging ambient backscatter
communication. In Proceedings of ACM SIGCOMM,
Chicago, USA, August 17-22, 2014.

[40] Yao Peng, Longfei Shangguan, Yue Hu, Yujie Qian, Xi-
anshang Lin, Xiaojiang Chen, Dingyi Fang, and Kyle
Jamieson. PLoRa: A passive long-range data network
from ambient LoRa transmissions. In Proceedings of
ACM SIGCOMM, Budapest, Hungary, August 20-25,
2018.

[41] Carlos Perez-Penichet, Claro Noda, Ambuj Varshney,
and Thiemo Voigt. Battery-free 802.15.4 receiver. In
Proceedings of IEEE/ACM IPSN, Porto, Portugal, April
11-13, 2018.

[42] Brecht Reynders, Franco Minucci, Erma Perenda,
Hazem Sallouha, , and Roberto Calvo Palomino. Fast-
settling feedforward automatic gain control based on
a new gain control approach. IEEE Transactions on
Circuits and Systems, 61(9):651–655, 2014.

[43] Brecht Reynders, Franco Minucci, Erma Perenda,
Hazem Sallouha, Roberto Calvo, Yago Lizarribar,
Markus Fuchs, Matthias Schafer, Markus Engel,
Bertold Van den Bergh, Sofie Pollin, Domenico Gius-
tiniano, Gerome Bovet, and Vincent Lenders. Sky-
Sense: Terrestrial and aerial spectrum use analysed using
lightweight sensing technology with weather balloons.
In Proceedings of ACM MobiSys, Online, June 16-19,
2020.

[44] Mohammad Rostami, Karthik Sundaresan, Eugene Chai,
Sampath Rangarajan, and Deepak Ganesan. Redefining
passive in backscattering with commodity devices. In
Proceedings of ACM MobiCom, Virtual event, Septem-
ber 21-25, 2020.

[45] Franz Seifert, Helmut Stocker, and Otto Franz. The first
SAW based IFF system and its operation in Austrian
aerospace defence. In Proceedings of IEEE History of
Telecommunications Conference, Paris, France, eptem-
ber 11- 12, 2008.

[46] Joshua R. Smith, Alanson P. Sample, Pauline S.
Powledge, Sumit Roy, and Alexander V. Mamishev. A
wirelessly-powered platform for sensing and computa-
tion. In Proceedings of ACM UbiComp, Orange County,
California, September 17-21, 2006.

[47] Vamsi Talla, Mehrdad Hessar, Bryce Kellogg, Ali Na-
jafi, Joshua R. Smith, and Shyamnath Gollakota. LoRa
backscatter: Enabling the vision of ubiquitous connec-
tivity. In Proceedings of ACM UbiComp, Maui, HI, USA,
September 11-15, 2017.

450 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[48] Ambuj Varshney and Lorenzo Corneo. Tunnel emit-
ter: Tunnel diode based low-power carrier emitters for
backscatter tags. In Proceedings of ACM MobiCom,
Virtual event, September 21-25, 2020.

[49] Ambuj Varshney, Oliver Harms, Carlos Perez Penichet,
Christian Rohner, and Thiemo Voigt Frederik Hermans.
LoRea: A backscatter architecture that achieves a long
communication range. In Proceedings of ACM SenSys,
Delft, Netherlands, November 06-08, 2017.

[50] Anran Wang, Vikram Iyer, Vamsi Talla, Joshua R. Smith,
and Shyamnath Gollakota. FM backscatter: Enabling
connected cities and smart fabrics. In Proceedings of
USENIX NSDI, Boston, MA, USA, March 27-29, 2017.

[51] Ju Wang, Liqiong Chang, Shourya Aggarwal, Omid
Abari, and Srinivasan Keshav. Soil moisture sensing
with commodity RFID systems. In Proceedings of ACM
MobiSys, Toronto, Ontario, Canada, June 16-19, 2020.

[52] Jue Wang, Haitham Hassanieh, Dina Katabi, and Piotr
Indyk. Efficient and reliable low-power backscatter
networks. In Proceedings of ACM SIGCOMM, Helsinki,
Finland, August 13-17, 2012.

[53] Davide Zanetti, Boris Danev, and Srdjan Apkun.
Physical-layer identification of UHF RFID tags. In
Proceedings of ACM MobiCom, Chicago, Illinois, USA,
September 20-24, 2010.

[54] Peng Zhang, Houjun Wang, Li Li, Lianping Guo, and
Ping Wang. FPGA based echo delay control method
for pulse radar testing. In Proceedings of 13th IEEE
International Conference on Electronic Measurement
and Instruments (ICEMI), Yangzhou, China, October
20-22, 2017.

[55] Pengyu Zhang, Dinesh Bharadia, Kiran Joshi, and
Sachin Katti. HitchHike: Practical backscatter using
commodity WiFi. In Proceedings of ACM SenSys, Stan-
ford, CA, USA, November 14-16, 2016.

[56] Pengyu Zhang, Colleen Josephson, Dinesh Bharadia,
and Sachin Katti. FreeRider: Backscatter communica-
tion using commodity radios. In Proceedings of ACM
CONEXT, Incheon, Republic of Korea, December 12-15,
2017.

[57] Pengyu Zhang, Mohammad Rostami, Pan Hu, and
Deepak Ganesan. Enabling practical backscatter com-
munication for on-body sensors. In Proceedings of ACM
SIGCOMM, Salvador, Brazil, August 22-26, 2016.

[58] Yufan Zhang, Ertao Li, and Yihua Zhu. Energy-efficient
Dual-codebook–based backscatter communications for
wireless powered networks. ACM Transactions on Sen-
sor Networks, 17(9):1–20, 2021.

[59] Jia Zhao, Wei Gong, and Jiangchuan Liu. Towards scal-
able backscatter sensor mesh with decodable relay and
distributed excitation. In Proceedings of ACM MobiSys,
Virtual event, June 16-19, 2020.

[60] Renjie Zhao, Fengyuan Zhu, Yuda Feng, Siyuan Peng,
Xiaohua Tian, Hui Yu, and Xinbing Wang. OFDMA-
enabled WiFi backscatter. In Proceedings of ACM Mo-
biCom, Los Cabos, Mexico, October 21-25, 2019.

A Appendix

In this section, we prove the infeasibility of RLC resonant
circuit to realize LoRa frequency-amplitude transformation.

A.1 The Infeasibility of RLC Resonant Cir-
cuit

The center frequency ω0, the passband ∆ω, and the quality
factor Q of a resonant circuit satisfy that:

Q =
ω0

∆ω
(6)

A higher Q value leads to a narrower passband width. Tak-
ing a step further, the quality factor Q is determined by the
resistance R, inductance L, and capacitance C of this circuit
following the equation:

Q =
√

L/(R ·
√

C) (7)

Given a constant center frequency of ω0 = 1/(2π
√

LC),
we can deduce the capacitance C satisfy that:

C =
1

Qω0R
=

∆ω

ω2
0R

(8)

Generally, the equivalent R of RF circuit is 50 Ω. Taking
LoRa signals working on 433 MHz frequency band (with
500 KHz bandwidth) as an example, this requires C to be as
low as 5.2×10−14 pF .

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 451

Graham: Synchronizing Clocks by
Leveraging Local Clock Properties

Ali Najafi
Meta†

†Work done while at VMware

Michael Wei
VMware Research

Abstract
High performance, strongly consistent applications are be-
ginning to require scalable sub-microsecond clock synchro-
nization. State-of-the-art clock synchronization focuses on
improving accuracy or frequency of synchronization, ignoring
the properties of the local clock: lost of connectivity to the
remote clock means synchronization failure.

Our system, Graham, leverages the fact that the local clock
still keeps time even when connectivity is lost and builds
a failure model using the characteristics of the local clock
and the desired synchronization accuracy. Graham charac-
terizes the local clock using commodity sensors present in
nearly every server and leverages this data to further improve
clock accuracy, increasing the tolerance of Graham to failures.
Graham reduces the clock drift of a commodity server by
up to 2000×, reducing the maximum assumed drift in most
situations from 200ppm to 100ppb.

1 Introduction

The ever increasing performance demands of strongly con-
sistent distributed applications has driven a desire for tightly
synchronized clocks. Instead of communicating over the net-
work, servers can establish an order over messages using a
timestamp from a local clock [7, 18, 30]. Leveraging syn-
chronized clocks has become more pervasive as applications
require tighter latencies that approach the latency of the net-
work itself. However, deploying finely synchronized clocks
at scale remains a significant challenge, often requiring the
use of specialized hardware [20, 22],.

In an ideal system, synchronizing clocks would be a triv-
ial task. Clocks would never drift (lose or gain time) and a
synchronized clock would stay synchronized forever. In real
systems, however, clocks drift, so synchronization needs to be
done frequently to keep clocks in time. Spanner [7], for exam-
ple, assumes 200ppm drift, which translates into 200µs/s, a
second roughly every hour, or a minute every 4 days. This drift
increases clock uncertainty (ε) and limits the performance of

applications leveraging clocks, which must wait out the un-
certainty. State-of-the-art systems today assume high clock
drift and focus on increasing synchronization precision and
frequency, with specialized hardware performing as many as
10K synchronizations per second to achieve sub-microsecond
clock synchronization [17, 20, 22, 28]. Furthermore, systems
assume missed synchronizations result in loss of synchroniza-
tion, resulting in potentially unnecessary shutdowns due to
clock uncertainty exceeding application requirements [20].

The clocks which drive the processor and timestamping
hardware, however, are required to drift far less than these
systems expect: datasheets from several vendors specify a
clock crystal with at least ±20ppm temperature stability [9,
26]. An unstable clock could cause the system to violate the
tight timing requirements required by the processor, memory
and I/O subsystem. Local clocks can be much more stable
than most systems assume. If we know that a system has
lower drift, we can reduce the rate of synchronization, tolerate
synchornization failures, reduce network congestion and the
overhead of processing synchronization messages, as well as
avoid the use of specialized hardware [4].

In this paper, we describe Graham1, a system which mod-
els the stability of the local clock to determine the required
synchronization rate. Graham leverages sensors available in
every commodity server to characterize the clock against an
accurate reference clock, such as GPS, PTP or even NTP.
Graham uses this characterization to build a synchronization
model, which determines how frequently the system must be
synchronized and how many synchronization failures can be
tolerated, and can achieve below 1ppm drift. In the servers we
tested, we were able to achieve 100ppb stability in most cases,
which is over 2000× better than the max drift rate assumed by
Spanner. The guiding principle behind Graham is to improve
the clock in software without adding additional hardware.
This approach is challenging because existing sensors are not
designed to characterize clocks, and are located at varying

1Named after George Graham (1673–1751), a clockmaker who improved
the pendulum clock’s accuracy by compensating for changes in pendulum
length due to temperature.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 453

distances away from the oscillators that drive system clocks.
To address this challenge, Graham characterizes the system
by observing the effect of temperature fluctuations at various
sensors on clock error between synchronizations.

The contributions of this paper are:

• We debunk the myth that commodity computers have
unstable clocks.

• We describe how to automatically characterize computer
clocks using commodity sensors.

• We show that this characterization can be used to greatly
reduce synchronization rates, resulting in 100ppb stabil-
ity without specialized hardware.

2 Clock Generation and Synchronization

The term clock is often used for several related concepts. In
this paper, we will use clock to mean a counter which is incre-
mented at some frequency and can be used to measure time.
Clocks are driven by clock signals, which oscillate between
low and high logical states. A clock driven by this signal
increments on a clock edge, which is the transition between
two logical states (typically, the rising edge is used). Clock
signals are provided by clock sources, which are typically
quartz crystal oscillators in modern computers. In this sec-
tion, we provide background on how clocks are generated and
synchronized in a typical computer system.

2.1 A typical Linux Intel x86 clock system
Clock systems are architecture and vendor dependent, so we
focus on a typical Intel Linux x86 machine as a model clock
system. An Intel x86 system consists of multiple clocks which
are driven by multiple clock sources. Some of the clocks
accessible to users include the timestamp counter (TSC), real-
time clock (RTC) and the precision time protocol clock (PTP).
Each of these clocks run at different frequencies and serves
different purposes, and which clock software ultimately can
access has been shown to vary [23].

For the purposes of this paper, we center on the
TSC, the clock typically accessed by applications via
clock_gettime(2). This clock is driven by a clock signal
known as BCLK (typically 100MHz). The BCLK is driven by a
phase-locked loop (PLL) which multiplies the frequency of a
quartz crystal (48MHz on C620 ICC [9]). The BCLK is an im-
portant signal which not only drives the logic in the processor,
but the memory controller and other components, depending
on the processor model. Adjusting the BCLK is often done
when overclocking by changing PLL parameters, but large
adjustments can result in system instability and lockup.

So far, we have described how Linux enables applications
to read a clock. In order to be able to compare one clock to

another, clocks must be synchronized. Most Linux distribu-
tions rely on ntpd [24] or chrony [5] to synchronize local
clocks to a remote server with a reference clock synchronized
to wall clock time (UTC) via a time source such as GPS using
the NTP protocol. The NTP protocol estimates the network
delay between the server to client by dividing the round-trip
delay in half and can achieve on the order of 1ms-100ms
time synchronization error, with error increasing as the delay
becomes more asymmetrical. In addition, since NTP is run
in software, synchronization is subject to software jitter such
as scheduling and interrupt handling which prevents NTP
accuracy below 0.5ms, even in ideal conditions.

To achieve sub-microsecond accuracy, PTP (IEEE 1588)
reduces software jitter [10]. First, instead of acting as a ser-
vice where clients request the time, a PTP server continuously
broadcasts the current time at periodic intervals. Clients esti-
mate the network delay by sending a special message to the
server to compute the round trip time and dividing that time
in half. Finally, PTP introduces a new hardware clock located
on the network card itself. This clock is driven by a different
quartz crystal at the network card, usually corresponding to
the frequency needed to drive the card’s transceivers (25MHz
for 10Gb Ethernet). The network card can capture the syn-
chronization packets as they arrive to synchronize the PTP
clock to the server, eliminating the inaccuracy introduced
by software jitter. In Linux, phc2sys synchronizes the TSC
clock to the PTP clock.

The accuracy of PTP is dependent on accurate delay esti-
mation. Recognizing this limitation, Huygens [14] and Tick
Tock [6] use coded probes and support vector machines to fil-
ter out queued packets from round trip delay estimation. Some
commercial PTP implementations use packet delay variation
(PDV) filters [27], and compensate for known latencies in the
receive and transmit paths.

Because of clock drift, synchronization frequency is also
important. While most of the latency sensitive paths of PTP
are in hardware, it is still software driven, limiting the fre-
quency of PTP synchronization, especially when filters are
used that necessarily discard some synchronization data. This
can be problematic if clock synchronization requirements are
tight and clock drift is high. For instance, Huygens has a de-
fault sync interval of 2 seconds. A clock with 200ppm (0.02%)
of drift will accumulate up to 400µs of drift between missed
synchronizations. If there is a single transient synchronization
failure resulting in a 4 second interval, up to 800µs of drift
would accumulate, which would be problematic if an appli-
cation required sub-microsecond clock accuracy. To increase
synchronization frequency, most solutions require specialized
hardware. For example, DTP modifies the Ethernet physical
layer to exchange messages at the frequency of microseconds
while reducing network delay nondeterminism [17]. Sundial
leverages specialized hardware that synchronizes every 100µs
and performs fast failure detection to notify software to re-
cover by finding a backup clock [20].

454 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2.2 Holdover Time
Notably, current state-of-the-art systems do not attempt to
characterize the holdover time of the clock, which refers to
the amount of time a clock can remain accurate without a
synchronization. For instance, Spanner and Sundial both as-
sume a static 200ppm maximum drift. If the maximum time
uncertainty bound (ε) is 1µs, then a clock with 200ppm drift
(200µs/s) will only be able to holdover the clock for 5ms
without synchronization before potentially exceeding ε. The
formula for holdover time can be given as:

th =
ε

d f
(1)

Where th is the holdover time, ε is the maximum time un-
certainty, and d f is the clock drift. 200ppm, however, is very
conservative: most quartz crystals used for computer systems
are specified on the order of 100ppm of error, and only when
operated under extreme operating conditions. In the next sec-
tion, we describe how we can characterize oscillator error,
and use this characterization to increase the holdover time.

2.3 Characterizing Oscillator Error
Oscillators provide the clock signals that ultimately drive the
clocks used in computer systems, and are the source of most
clock error. The most common oscillator in use in nearly all
computers today is a quartz crystal, which uses the pizeoelec-
tric properties of quartz to produce a clock signal at a given
frequency.

Quartz is cut to resonate at a given frequency, however, as
the cut is a mechanical process, tolerances in the cut process
may result in a resonant frequency which is slightly offset
from the advertised frequency, known as the frequency toler-
ance. Since any error in the cut is usually fixed, this tolerance
results in a fixed offset from the advertised frequency. In typi-
cal computer crystals, this error is usually in the 50ppm range.
Lower tolerances require more accurate (e.g., fine laser) cuts
and are significantly more expensive.

Quartz crystals also age over time as mechanical devices
which are constantly vibrating, slowly deviating from their ad-
vertised frequency. This error is usually small (5ppm/year) [1],
and also results in a slight frequency offset.

So far, we have described sources of quartz crystal oscilla-
tor error which are relatively constant. As physical devices,
the frequency of quartz crystals are also affected by envi-
ronmental changes. The most prominent factor is tempera-
ture [36], which can result in a significant change in frequency
over the crystal’s operating temperature range. While tem-
perature can induce variations in the frequency of the crystal,
the temperature-frequency response of crystals are quite de-
terministic: in fact, some crystal manufacturers produce the
response curve on the crystal datasheet. Typical crystals pro-
duce anywhere from a 30ppm-100ppm change in frequency
over their operating temperature ranges [1].

Table 1: Frequency Error in Standard Quartz Oscillators

Name Typical Range Typical

Tolerance ±50 ppm -
Aging ±5 ppm/year -

Temperature ±1 ppm/◦C ±15 ppm (25-40◦C)
Voltage ±1 ppm/V ±0.1 ppm (±2% 3.3V)
Load ±0.1 ppm/pF ±0.1 ppm (±10% 15pF)

Acceleration 0.1 ppb/G 0 @ Rest
Time Dilation 0.1 ppq/m 0 @ Sea Level

In addition to temperature, a variety of other environmental
factors will affect the frequency of the oscillator. However,
these factors contribute a relatively small amount of frequency
error compared to temperature. Changes in supply voltage
usually result in a 0.1ppm-5ppb change in frequency. An-
other factor is variation in the load capacitance: in order for
the crystal to resonate at the expected frequency, the cor-
rect amount of capacitance is required. Since the capacitors
used to provide the load capacitance also have tolerances,
the capacitance can vary depending on the properties of the
capacitors used. Typically, load capacitance error is specified
at 0.1ppm-5ppb [29, 33]. The frequency of quartz crystals
are also sensitive to acceleration, depending on the axis it is
applied to. For ordinary quartz crystals, this is typically in
the range of 0.1-10ppb/G [29, 33]. For a 500G shock, such as
that specified in MIL-STD-883H, representative of a device
dropping to the floor, frequency error could be as high as
1ppm [19, 33]. Note that the recommendation for operational
vibration and shock limits in datacenters is less than 5G [16]
which is well below 500G. Finally, crystals are even sensi-
tive to relativity: a crystal closer to the gravitational field of
the earth will have a lower frequency than a crystal further
away, such as on a mountain or in space. This error is around
0.1ppq/m from sea level, or ≈ 0.9ppt at the top of Mount
Everest or ≈ 3ppb from geostationary orbit [33].

These sources of error are a result of the physical properties
of quartz, and the data collected in Table 1 are collected from
the datasheets of various quartz oscillators used in servers [1,
19, 29, 33, 36].

2.4 Debunking the Myth of Unstable Clocks

As we have seen, most of the frequency error in a quartz os-
cillator is either relatively static or dependent on temperature.
Voltage and load only contribute a small amount of error and
should be within small tolerances (otherwise, other parts of
the system may begin failing). Servers in most datacenters
are stationary, so the effects of acceleration and time dilation
should be constant.

Static error can be easily corrected if it can be learned: if
we learn that our crystal resonates at 32.769 KHz instead of
32.768 KHz, we simply need to adjust our accounting of time,

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 455

perhaps by using 32769 as a divider instead of 215. If our
synchronization error is minimal and we keep the temperature
constant, we can learn this value over several synchronization
passes. NTPd and chrony both try to learn the static drift using
the driftfile.

Most state-of-the-art systems, however, combine static and
dynamic error in their uncertainty calculations, resulting in
the assumption of an unstable clock. For instance, Sundial
assumes that the clock error of their oscillator is 100ppm, but
this number includes the static tolerance error from the cut,
which is easily learned. Moreover, even if they had chosen
a ±100ppm temperature tolerance crystal, this shift would
be over the entire operating range, as in a shift from -30◦C
to 85◦C. An overheating server moving from 60◦C to 80◦C
would experience only about 20ppm change in drift from
temperature, an order of magnitude less than the conservative
200ppm error used in spanner.

In practice, most crystals used to generate processor clocks
have temperature tolerances in the range of ±20ppm. In-
tel Chipset Integrated Clock Controllers (ICC), for example,
specify "Total of crystal cut accuracy, frequency variations
due to temperature, parasitics, load capacitance variations is
recommended to be less than 90ppm" [9], and external clock
generators such as the common CK420BQ used in Intel sys-
tems specify a cut tolerance of ±20ppm and a temperature
tolerance of ±20ppm over the entire operating range [26]. If
we can filter out the static error, we will be left with 20ppm
temperature error. Then this clock will have a 1 µs holdover
time of 50ms, a 10× improvement over the 200ppm assump-
tion.

2.5 Software Temperature Compensation

Once we have corrected the static frequency error, temperature
remains as the dominant source of frequency error. This effect
is well known, and software compensation techniques are de-
scribed in the literature [13, 15, 25]. In computers, chrony
can correct for temperature errors given the temperature-
frequency relationship and a temperature sensor. In wireless
networks, where minimizing clock error is critical, environ-
ment and temperature aware compensation are used [34, 35].

While temperature-frequency curves are sometimes pub-
lished on the datasheet of a crystal, using them to correct
errors on a commodity computer system requires knowing
the crystal used. This can be difficult even for an expert given
the small markings on most crystal packages. Moreover, the
crystal used can be different even across the same model
of motherboards, since manufacturers may substitute func-
tionally equivalent parts due to cost or supply-chain reasons.
Unless the system was purpose built with temperature cor-
rection in mind, temperature sensors are likely located some
distance away from the crystal. Therefore, selecting the right
temperature sensor may be a challenge. However, correcting
for temperature error can effectively reduce the frequency

error of the crystal to less than 1ppm, resulting in a 1 µs
holdover time of 1s, a 200 × improvement over Spanner’s
assumption.

2.6 Other Oscillators
Many applications outside of general-purpose computing,
such as wireless require low frequency error over a wide
temperature range. The temperature compensated crystal os-
cillator (TCXO) consists of quartz crystal with a temperature
compensation circuit and reduces the effect of temperature
to ≈±1ppm of error. The oven compensated crystal oscilla-
tor (OCXO) takes temperature control one step further and
places the crystal in a miniature oven which keeps the crys-
tal at a constant temperature, reducing temperature effects to
≈ ±1ppb. This oven can be doubled (DOCXO) to achieve
≈±0.1ppb of temperature error. Atomic oscillators, which
work based on electron transitions, can provide even more
stability: rubidium oscillators provide up to 0.0002ppb/s. The
cost of these oscillators is often cited as prohibitive, but can
be quite inexpensive, relative to specialized hardware. For
instance a 48MHz TCXO at 0.5ppm suitable for driving an
Intel ICC costs around USD $2 [11], and a 25MHz OCXO
at 10ppb suitable for driving a CK420BQ clock synthesizer
costs around USD $70 [2].

While replacing the oscillators in computer systems might
be an option in new, future hardware, it is an invasive and
expensive procedure for existing hardware. The focus of Gra-
ham is to democratize accurate clocks using only existing
hardware. Using software techniques, we can achieve low
error without adding additional hardware.

3 Clocks and Sensors In Servers

In order to understand how temperature sensors can be used
to estimate clock error in commodity systems, we studied
the sensor and time configuration of a variety of platforms.
One unexpected challenge was the difficulty of accurately
measuring clock error.

Clocks. The Linux pulse-per-second (PPS) [21] facility pro-
vides a mechanism for delivering an accurate reference time.
PPS devices are devices that accurately emit a low-jitter pulse
every second. A PPS driver calls the pps_event API when-
ever the pulse is received, and the kernel records the times-
tamp associated with that pulse. Typically, this pulse is a
signal that causes an interrupt, and the PPS API is called by
an interrupt service routine (ISR). However, even when using
very low jitter PPS devices, such as the ublox ZED-F9T [32]
GPS timing module that advertises ±4 ns jitter, we saw jit-
ter over 10µs. As we diagnosed the problem, we saw several
sources of jitter throughout the hardware and software stack
which made it difficult for our driver to call pps_event in a
timely manner after the pulse interrupt is raised.

456 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Our initial approach was to use GPS dongles with PPS sup-
port over USB2, which are inexpensive (USD ≈$10), readily
available, and usable on nearly every server. The GPS device
presents itself as a serial device, and the PPS interrupt is en-
capsulated as a message over the USB bus. We saw that the
polling message-driven nature of USB resulted in high jitter:
not only was there a ≈100µs delay (which is easily corrected
for), but also ±10µs of jitter that made it difficult to accurately
time the pulse. Our next attempt involved using a FPGA to
deliver an interrupt over PCIe, since PCIe slots are readily
available in most commodity servers. However, while PCIe
offered less jitter PCIe interrupts are also message signaled
and also saw as much as ±5µs of jitter dependent on device
traffic and serial transceiver jitter.

We needed a low-latency interrupt pin to accurately capture
the PPS signal. We ended up resorting to using the legacy
serial port, which exposes interrupts pins on the device carrier
detect (DCD) and clear to send (CTS) lines. Unlike PCIe and
USB, these legacy ports drive an interrupt pin on the low-pin
count (LPC) bus and offer much lower jitter, on the order of
1µs. Even with the serial port, we still saw significant “blips”
in our PPS signal. To reduce those blips, we made several
changes: first, we pinned the serial port interrupt to a single
core, disabled power management, disabled all watchdogs,
installed a “lowlatency” kernel, turned on interrupt threading
and set the serial interrupt priority to realtime. While these
changes reduced the number of blips, there was still periodic
noise present which made time daemons such as chrony detect
as much as 10ppm of drift change over a second. This drift
only disappeared when we forced the C-state of the machine
to C0, disabling idling. This surprised us: the CPU advertised
FEATURE_NONSTOP_TSC, so the TSC should not be affected
by C-States. We realized that the most likely scenario was
that when idling was enabled, the CPU would take a non-
deterministic amount of time to wake up from sleep and fire
the ISR that eventually causes pps_event to be recorded.

To deal with this scenario, we took advantage of the two
time pulse outputs of the ZED-F9T module and connected the
second time pulse to the CTS serial line. We configured the
second time pulse with a 400ns delay from the first one, and
modified the kernel PPS serial line discipline driver to only
record the second pulse if is 400ns ± 100ns from the first
pulse. While this caused some pulses to disappear, it greatly
reduced the jitter we observed. To compensate for lost time
pulses, we changed the time pulse frequency from 1Hz to
3Hz. Removing this software jitter enabled us to see that the
clock was actually fairly stable over long periods of time, only
deviating by about .5ppm per hour, as seen in Figure 1. We
suspected most of this deviation was due to the rising ambient
temperature.

2To expose the PPS signal, we used a common FT232H USB-to-RS232
converter and connected the PPS line to the DCD signal expected by the PPS
serial line discipline driver.

(a) Frequency Error Without Dual Time Pulse, all C-states enabled.

(b) Frequency Error with Dual Time Pulse

Figure 1: Software Frequency Error. Interrupts and system
activity give the illusion clock error.

Table 2: Systems Evaluated and Temperature Sensors

Name Type Crystal Location Sensors

Server 2S 1U Rack Near Chipset 50
Workstation Desktop Chipset 8

Pi 4 SoC Under SoC 1
Pi 3 SoC Under SoC 1

Sensors. Modern computer systems are littered with sen-
sors for environmental conditions. The original use of these
sensors were to monitor alarm conditions: for example, to
shut off the system if there are abnormally high temperatures
that would cause instability, or if a voltage regulator mal-
functions. A more recent use of temperature sensors is for
thermal throttling, which reduces the frequency of a processor
or GPU based on the temperature. The goal of Graham is to
reuse these temperature sensors for the purpose of performing
software-based temperature compensation.

Using these temperature sensors can be challenging be-
cause their location relative to the clock crystal is not consis-
tent. While crystals are usually located near the clock gen-
erator, the clock generator can be located in a number of
locations, which might not be at all near a temperature sensor.
Systems also have a varying number of sensors, as shown
in Table 2. The server platform we evaluated, for example,

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 457

Figure 2: Server Platform Temperature Map. The server
platform contains over 50 sensors with approximate positions
labeled.

has nearly 50 sensors (Figure 2). However, even though the
platform provides the position of these sensors, it is still of
little help to determine which sensor is closest to the crystal.
As an additional challenge, not all temperatures offer the same
precision. For instance, some of the sensors in the server plat-
form only reported ±10◦C changes, likely because they were
designed only for use as an alarm. Finally, the response time
of the sensors may vary depending on various environmental
factors. For instance, a sensor located near the large copper
ground plane of the motherboard may respond slower to rising
temperatures than a sensor located on a the thinner PCB of
a DIMM. An ideal sensor has high precision and responds
quickly to changes in the same way as the crystal.

Establishing the Ground Truth. Armed with an accu-
rate timing signal and a number of candidate sensors, our
next goal is to attempt to establish the “ground truth”, or
the temperature-clock error response curve. If we can deter-
mine the clock error given a certain temperature, then we can
correct the clock even in the absence of the accurate timing
signal.

Nearly all quartz crystals used in computers today are AT-
cut crystals. Their frequency relationship with temperature
can be described by a 3rd order equation [3, 8, 12, 36]:

∆ fT = k0 + k1T + k2T 2 + k3T 3 (2)

where ∆ fT is the crystal frequency error due to temperature,
T is the crystal temperature and ki are coefficients of the fre-
quency versus temperature curve. To find the relationship of
the clock frequency versus temperature we need to solve for
the ki parameters using synchronization messages from a ref-
erence clock. Unfortunately, since the sensor data is noisy, we
may need to obtain many temperature points to “average out”
the sensor error. This required designing an experiment which
required many passes, and was difficult to perform on a server
platform. As a result, we performed most of our ground truth
tests on the Raspberry Pi (Pi 3/Pi 4) SoC systems, though we

Figure 3: Temperatures and Polynomial Fit. Even though
there is variation in the measured delay, a polynomial fit curve
can still be plotted against it.

show our full implementation of Graham in action on desktop
and server platforms in Section 5. While the Raspberry Pi is
an ARM-based SoC, it runs Linux like the x86 system and
has a clock driven by a quartz crystal on the underside of the
SoC PCB.

The Pi, as a bare SoC system, allowed us to easily subject
it to various temperatures. The Pi includes a temperature mon-
itor which measures the core SoC temperature. We provided
an accurate PPS timing pulse using a uBlox Neo-M8N GPS
module [31] to a Pi GPIO and exposed it to various temper-
atures using either a hair dryer or ice bucket. We used the
difference in timing ticks between PPS signals to calculate
the estimated frequency error of the crystal, and the result is
plotted in Figure 3. The distribution we saw was around ±5
ppm and probably attributable to interrupt delay and sensor
error.

Once we saw that we were able to capture the temperature-
error relationship, we wanted to ensure that the data we were
generating was repeatable, so we collected several traces using
varying temperature patterns, all exercising the same temper-
ature range. Figure 4 shows that the curve we generated was
similar even with different temperature inputs.

Next, we wanted to see if the curves differed across devices.
Figure 5 shows that even across devices of the same model,
curves are significantly different. Even the same crystal model
could be cut slightly differently, resulting in two 25MHz crys-
tals which are for example, 24.997MHz and 25.001MHz that
meet the tolerance requirement, but yield different curves.

Finally, because age can have an effect on the crystals, we
wanted to test if we could observe a change in the curve with
age. In Figure 6, we ran two tests with a 7 month time differ-
ence, obtaining two slightly different curves, as expected. The
1ppm offset we obtained roughly matches the aging expected
by a regular quartz crystal during this time period.

Now that we have obtained the ground truth using an accu-

458 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 4: Repeatability of the Curve. We measured several
traces using different temperature patterns (Test 1-5) by vary-
ing the use of ice and the hair dryer and we obtained similar
temperature curves.

rate PPS signal, we use this knowledge to guide us in scaling
our solution to many devices. Since each device will have its
own unique curve, it became clear to us that we needed to
design a way to automatically learn the curve of each device.

4 Graham Design

The overall approach of Graham is to learn the temperature-
clock error relationship by fitting curves as new data points
are learned. Unlike the experiments we designed when trying
to learn the ground truth, we cannot expect to be able to point
a hair dryer or dump a production server in ice. In addition,
since a truly scalable solution should not require a precise
PPS timing signal, we need to ensure that we can perform
this learning with traditional synchronization protocols such
as NTP or PTP. As a result, Graham must fit these curves
over time on incomplete and noisy data. Once we determine
that the we have observed enough data points, we can use the
derived curve to correct the time error. To fit this data on a
curve, we begin by formalizing the variables and equations
required to solve for the time error.

4.1 Formulating the problem

We previously described the relationship of the crystal error
with temperature as a cubic polynomial in Equation 2. How-
ever, we cannot directly measure the frequency of the crystal
to obtain the error. Instead, we can obtain two timestamps
from the clock using a known time interval and calculate the
difference to see how much it deviates from the expected
difference.

Figure 5: Curves Across Devices. We observed that different
devices, even of the same model had varying curves.

Figure 6: Aging of Devices. As a device ages, the curve can
change due to crystal aging effects.

For example, a clock crystal may have an ideal frequency
(f0) of 32.768KHz. We would expect two timestamps taken
exactly 1 second apart to have a difference of 1 (∆tsi). But
if we actually observe 1.5 seconds (∆tso), then we know the
actual frequency is 49.152KHz (f1), or 1.5× f0. If we subtract
the two frequencies, we obtain 16.384KHz of frequency error
(∆ f). We can express this as an equation:

∆ f ∆tsi = ∆tso −∆tsi (3)

in which ∆ f is the relative frequency error. If we assume
most of the frequency error is from temperature, we can re-
place ∆ fT in Equation 2 with ∆ f . Then we obtain:

(k0 + k1T + k2T 2 + k3T 3)∆tsi = ∆tso −∆tsi (4)

Eq. 4 is a linear equation with 4 unknowns – k0, k1, k2
and k3. Timestamp interval ∆tso can be obtained from the

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 459

system’s local clock and the timestamp interval ∆tsi can be
obtained from synchronization messages. If we receive N syn-
chronization messages then we can build N linear equations
as follows:

AK = B (5)

in which A, K and B are matrices equal to:

K =

k0
k1
k2
k3

 , A =

1 T1 T 2

1 T 3
1

1 T2 T 2
2 T 3

2
...
1 TN T 2

N T 3
N

 (6)

B =

∆tso,1 −∆tsi,1
∆tso,2 −∆tsi,2

...
∆tso,N −∆ti,N

 (7)

in which TN , ∆tsi,N and ∆to,N are respective parameters
for the Nth synchronization message and equation. Gra-
ham solves Eq. 5 using linear least square methods.

So far, we assumed that the temperature is constant for
the duration of ∆tso. If the synchronization messages are
infrequent, as in the case of a protocol such as NTP, the tem-
perature can change during this period. To solve this problem,
Graham records temperatures during this period and when it
receives a synchronization message, it aggregates the effects
of temperatures. Assume there are n intervals in which we
record temperatures during a period. The equation for the jth

time interval is:

∆ f j∆tsi, j = ∆to, j −∆ti, j (8)

∆to =
n

∑
j

∆to, j (9)

∆ti =
n

∑
j

∆ti, j (10)

n

∑
j

∆ f j∆ti, j =
n

∑
j

∆to, j −
n

∑
j

∆ti, j (11)

Using Eq. 2, 9 and 10, we get:

(12)
k0

n

∑
j

∆tsi, j + k1

n

∑
j

Tj∆tsi, j + k2

n

∑
j

T 2
j ∆tsi, j

+ k3

n

∑
j

T 3
j ∆tsi, j = ∆tso − ∆tsi

where Tj is the temperature at the jth time interval. Note
that, ∆tsi, j is an unknown parameter. We can be approximated
it by α∆tso, j in which α = ∆ti

∆to
.

(13)

k0

n

∑
j

∆tso, j + k1

n

∑
j

Tj∆tso, j

+ k2

n

∑
j

T 2
j ∆tso, j + k3

n

∑
j

T 3
j ∆tso, j =

∆tso − ∆tsi

α

Similar to Eq. 4, Eq. 13 is a linear equation with 4 un-
knowns and we can solve it using similar linear least square
methods.

4.2 Implementation
We implemented a prototype daemon in C which solves for
the equations by using temperature sensors exposed through
sysfs or a network management interface such as SNMP. We
record temperatures with 1◦C precision at a configurable fre-
quency, which defaults to 1Hz. For synchronization data, we
modified chrony to collect the ∆tso and ∆tsi necessary from
synchronization messages over NTP.

Graham keeps a FIFO queue of equations with known size
for each temperature, bounding the number of equations that
need to be solved. Graham assumes an operating temperature
range of 40-80◦C and does not start applying corrections
until the curve errors are within 20ppm. Graham constantly
collects temperature data to learn the curve before corrections
are applied.

4.3 Addressing practical issues
In 4.1, we assumed an ideal case in which all the known pa-
rameters to solve for the clock frequency versus temperature
are accurate. However, that is not the case in practical systems.
We outline these inaccuracies and non-idealities and explain
how we can address them.

4.3.1 Timestamp Error

There are two main sources of timing error in the system:
Error in ∆to,i. Since the temperature changes happen in the

timescale of seconds, even several milliseconds error in the
observed ∆to,i values will have a limited effect on the result.

Error in (∆ti −∆to). This value is the combination of 3
parameters: crystal frequency error (∆ f), jitter in timestamps
and network asymmetry from the time server to our system.
Graham is interested in only ∆ f , but the last two parameters
are error (δterr) and add noise to our measurements.

∆to −∆ti = ∆ f ∆ti +δterr (14)

Note that δterr is only dependent on the type of timestamp-
ing (software and hardware) and the method of the synchro-
nization (NTP, PTP, PPS and ...). The error in curve estimation

460 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

is determined by δterr
∆ti

. Therefore, as we increase ∆ti, the first
term in Eq. 14 increases while the second term is constant
and we can increase the curve estimation accuracy. Moreover,
δterr can be modeled as a random variable with zero mean.
As we increase the number of equations, we can average out
the δterr and in turn the lower the estimation error. By having
a high enough number of equations and building equations
for longer durations we can increase the curve estimation
accuracy.

4.3.2 Temperature Sensor Challenges

Leveraging already existing temperature sensors requires ad-
dressing several challenges:

Accuracy. Temperature sensor accuracy has limited effect
on correction performance since both learning the relationship
of the clock frequency versus temperature and applying the
correction is done using the same temperature sensor.

Precision. Low precision means that temperature measure-
ment readings have a random variability. Having a higher
number of equations will average out these random errors.
This means that as the temperature sensor’s statistical mea-
surement variance increase we need higher number of equa-
tions.

Responsiveness. A temperature sensor which does not
respond to temperature in the same way the crystal does
will limit the effectiveness and potentially contribute to error.
This responsiveness of a sensor can be measured by check-
ing the temperature error curve. In a system with multiple
temperature-error curves, we select the sensor which mini-
mizes the frequency error during learning runs.

4.3.3 Computation Accuracy

The computed curve is only accurate for the temperature
ranges that the system has experienced. For example, if Gra-
ham only has equations for temperatures from 50◦C to 80◦C,
the curve is accurate in that range and close to boundaries of
that range. As we go far from this boundary the accuracy of
the curve decreases. One of the main reasons for this is that
the temperature-error curve is cubic, but the typical operating
range of the server is only within a small convex region of the
curve. Two of the roots are likely at the extreme temperature
ranges, and one root is likely in the extreme negative (below
freezing region).

To exercise a variety of temperature ranges without using a
heater or ice, we load the CPU and allow the system to cool
off.

5 Evaluation

Our evaluation of Graham is motivated by the following:

• How effective is learning over a noisy synchronization
channel such as NTP? (§5.2)

(a) After 40 Eq (≈12h) (b) After 80 Eq (≈24h)

(c) After 120 Eq (≈36h) (d) After 160 Eq (≈48h)

Figure 7: NTP Learning. While learning over NTP takes
longer, the curve converges towards the same curve produced
by faster, more accurate synchronization sources.

• What is the holdover time Graham can achieve, and how
many synchronization failures can it tolerate? (§5.3)

• Can Graham compensate for rapid changes in tempera-
ture, as in with a HVAC failure?(§5.4)

Test Platforms. The primary system requirement to be able
to apply Grahamis the presence of a temperature sensor which
is present in nearly all modern computer systems. We evalu-
ated Graham on several platforms, as shown in Table 2. For
the Pi tests, we used a ublox M8N [31] GPS receiver with a
time pulse accuracy of ±60ns (99%). The M8N module does
not specify jitter, but we observed ±20ns jitter using a RIGOL
MSO5074 oscilloscope. For the x86-based platforms, we used
a ublox ZED-F9T [32] GPS module which specifies a time
pulse accuracy of ±5ns (1σ), and a jitter of ±4ns. In our tests,
we are mainly concerned about jitter, as the timing accuracy
specifies the accuracy of the timing pulse to GPS time, and
these GPS modules have their own TCXO oscillator.

5.1 Learning over PPS

We obtained baseline curves with Graham using PPS. With
PPS, we generate 1 new equation per second, corresponding
to the frequency of the synchronization signal. As shown
in Figure 8, even though the temperature data we used to
generate each curve was quite different, the curves are almost
the same. While the curves look similar, the constants for each
curve varies. This is because there are many cubic equations
which can fit the small convex portion of the curve that we
observe within the operating temperature range.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 461

Figure 8: PPS Curves and Input Data. Curves learned over
each experiment have a similar shape despite having variable
input data.

(a) NTP vs PPS Temperature
Error Curves (b) NTP vs PPS Error

Figure 9: NTP Performance Compared to PPS. The learned
curves for NTP are within 0.5ppm of the PPS curves for most
of the operating range.

5.2 Learning over NTP

To evaluate learning over NTP, we used chrony to obtain
NTP synchronization data for Graham against public NTP
servers over a standard home cable broadband connection,
with a ping latency to the NTP server between 30–40ms. This
resulted in synchronization accuracy in the ms range. In order
to compensate for this, we needed to use high ∆tso. For NTP,
we use ∆tso = 1000s, which results in one equation every
1000s as opposed to 1 equation per second with PPS. Note
that ∆tso is independent of the synchronization periods and
intervals used by chrony, which has its own algorithm for
NTP synchronization frequency.

Figure 7 shows the 160 equations we collected over the
course of a 48 hour run. This resulted in a curve within
±0.5ppm of the curve generated using PPS signals, as shown
in Figure 9. We suspect that the error of the curve is not con-
stant because of lack of data points at temperature extremes

for both sets of data.

5.3 Holdover
Once we have learned the temperature-error relationship, we
wanted to evaluate how well Graham’s time frequency correc-
tion would perform in the absence of synchronization mes-
sages. To test the accuracy of the frequency correction, we
recorded the accurate PPS time pulse, but did not provide
it to Graham. We measured the accuracy of Graham’s time
correction versus the real time. We then exposed the system
to a new temperature trace.

Pi Experiments. Figure 10 shows a trace of one of these
experiments on the Pi 3. In this particular experiment we
exposed the system to both ambient air effects of the 8 hour
time period as well as artificial cooling (ice) and heating (hair
dryer). The red vertical line shows the rapid growth of time
error if Graham did not perform any compensation. At 620s,
this well exceeds 5000µs of drift, which corresponds to the
the 8ppm of temperature drift Graham is trying to correct for.
On the other hand, Graham’s corrections perform very well,
never exceeding 1500µs of error over the course of the entire 8
hour run, even though the temperature is shifting significantly.
For most of the test, the slope never exceeds 100ns/s of error,
which means the clock is performing as well as one with only
100ppb of error, a 200× improvement over the performance of
the 20ppm crystal, performing nearly as well as a high quality
TCXO or some OCXOs. We can calculate the holdover time
using the slope from Equation 15, given a maximum time
uncertainty (ε). If ε=1µs, then the holdover time during the
100ns/s region is:

th =
1µs

100ns/s
(15)

or th = 10s. In other words, the corrected clock will not
exceed 1 µs of error for at least 10 seconds without any addi-
tional synchronization. This would enable more infrequent
synchronizations, or enable the system to tolerate the very
real potential of missed synchronization messages. In one
part of the graph, we experience a 330ns/s slope, when the
temperature exceeds 85◦C. We speculate that this slope is
because the training temperature data we used had very few
points at or above this temperature. 330ppb still is very good:
we obtain a 1µs holdover time of 3 seconds, which still allows
for lower frequency synchronizations.

Server Experiments. We also evaluated the holdover time
on desktop and server x86 systems. These systems are much
more complex and contain multiple sensors and fans, so Gra-
ham needs to determine which sensor works best, given a
variety of factors. There are also multiple components which
can generate heat load, which vary from system to system.
Notably, the many fans in the server made it more difficult to

462 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Time drift (b) Temperature

Figure 10: Holdover. The uncompensated temperature drift
quickly increases while Graham is able to maintain the time
with minimal drift. The slope of each part of the graph corre-
sponds to the frequency error performance: s1 = 50, s2 = 80,
s3 = 330, s4 = 100, s5 = 30, s6 = 15 ns/s.

(a) Server drift (b) Server sensors

Figure 11: Warming Server Holdover. With a server sitting
in a garage on a hot summer day, Graham is able to maintain
0.1ppm of error.

create rapid changes in temperature. To get a picture of the
server sensor’s performance, we performed a 24 hour learning
run exposing the server to various temperatures while heating
it from the fan intake and letting it cool via ambient cooling,
and running stress-ng in various modes to create load on
the system. We then exposed the server to a new temperature
curve.

Figure 11 shows the holdover graph for the server during
one of our first tests, which is just ambient warming of the
server in a garage on a hot summer day. We selected the 5 best
performing sensors. Surprisingly, even though we thought
the “chipset_zone sensor” would perform the best, “dimm1”
actually produced the best correction curve. We wanted to
ensure that this would be the case even in a loaded system, so
we performed a memory test using stress-ng to see if heat
from a memory load would affect our learned result. Figure 12
shows the holdover curves from that run, with the memory
test running at time 0. The DIMM 1 sensor still remained one
of the top performing sensors, producing less than 200µs of
drift over the first 2000 seconds of the run, or 0.1ppm error.
Many of the other sensors perform well too, likely because
they experience similar patterns of temperature changes. The
impact of the load, however, can be seen across Figure 11 and
Figure 12: while the ambient temperature works well without
a load, its performance is worse when a load is present. In all
our runs with the server workload, we never observed more

(a) Server drift (b) Server sensors

Figure 12: Memory Load Holdover. The DIMM sensor re-
mains the best sensor, even when the server is under memory
load.

than a 0.2ppm error with Graham.

Desktop Experiments. Finally, we evaluated Graham on
a typical desktop machine. Unlike the server, which is fully
instrumented with sensors throughout, the desktop machine
we used only had a few sensors exposed by default, just on the
CPU die and the DIMMs. However, during our experiments,
we made an error to include the output of the fan sensors (in
RPM) as training data. Surprisingly, the fan sensors worked
well even though they were not directly measuring the tem-
perature. We suspect that the speed of the fan is driven by
a combination of the ambient temperature, (which is not ex-
posed to the user) and dynamic CPU load by the hardware
monitor. However, we ended up using the second core sensor,
which is located closer to the chipset and crystal. This gave
us 0.1ppm error on nearly all experiments.

Figure 13 shows a peculiar experiment on the desktop plat-
form where we failed to expose the server to all temperature
points. In the first 2000 seconds we run a CPU load exper-
iment, which resulted in the a higher than expected error
(0.5ppm vs 0.1ppm). After debugging, we realized this was
because the temperatures we exposed to Graham during test-
ing (Figure 13c) were not learned (Figure 13d). In particular,
the testing temperatures were above 70◦C for the first 2000s,
while the learning temperatures were below. Still, we thought
this test showed that even without learning temperatures, Gra-
ham can provide some correction to the temperature error.

5.4 Rapid Changes
One of the often cited sources of timing instability in com-
puter systems is a thermal shock event, such as an HVAC
failure. To evaluate Graham’s performance in dealing with
a rapid thermal shock, we used the Pi system and pointed a
hair dryer directly at it, attempting to raise the temperature
rapidly to the maximum operating temperature. As with the
holdover tests, we turned off synchronization and only relied
on Graham’s temperature-based frequency error correction.

Figure 14 shows the time drift after correction by Gra-
ham (left) which results from the rapidly rising slope in tem-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 463

(a) Desktop Drift (b) Desktop Sensors

(c) Testing Temperatures (d) Learning Temperatures

Figure 13: Desktop Holdover with Missing Points. Even
with missing points, Graham is able to make corrections to
keep error within 0.5ppm.

perature (right) from the hair dryer. Using the hairdryer, we
were able to produce a 2◦C/s slope, which cools at about
0.2◦C/s. While we feel that such fast heating is unlikely to
happen, it may be representative of an HVAC failure, and
is an indication of the robustness of Graham’s temperature
correction: the time drift never exceeds more than 10µs over
the initial 25 second slope, a drift of only -0.4ppm. Once the
temperature slope decreases, Graham is able to maintain the
time without exceeding the initial 10µs of error. Without Gra-
ham, the system accumulates nearly 1ms of error during this
time period (bottom).

6 Discussion

Our evaluation has shown that Graham can maintain clock
frequency error below 1ppm using commodity sensors in a
variety of conditions. Graham is only one part of the solution,
however – while Graham can maintain a long holdover time,
the synchronization maintained will only be as good as the
initial synchronization.

Graham works in synergy with other synchronization mech-
anisms, such as Huygens [14], PTP [10] and FaRMv2 [28] to
maintain synchronization. Our experiments with NTP show
that Graham can maintain 1µs ε for 10 seconds after loss of
synchronization. As Sundial [20] shows, however, missed syn-
chronizations can occur for a number of reasons. For Huygens,
significant CPU load on the system could occur causing the
SVM processing to be delayed, and in PTP and FaRMv2, syn-
chronization messages could be missed, leading to increased
uncertainty of time. Using our 1µs holdover result for Graham,
we could reduce the standard 1s synchronization frequency
of PTP to 3s and tolerate 2 lost synchornization messages.

(a) Time drift (b) Temperature

(c) Uncorrected

Figure 14: Thermal shock. Even with a hair dryer’s rapid
heat, Graham is able to quickly compensate for errors in time,
never drifting beyond 10µs.

Graham also aims to democratize precise time by enabling
commodity servers, desktops and even SoCs to have access
to stable clocks without adding specialized hardware. One of
the barriers we see in adopting precise time for these devices
is the myth of the unstable clock, which is perpetuated by
the challenge of measuring the drift in the clock in the first
place. Software noise can give the illusion that a clock is
drifting rapidly, even though hardware clocks are relatively
stable. Unfortunately, without specialized hardware, drift is
measured by software itself, further exacerbating the problem.
By characterizing the clock. Graham enables applications
to trust the hardware instead of relying on noisy software
measurements.

In the future, we may consider incorporating multiple sen-
sors to the equations Graham solves for better accuracy. As
more applications require precise time, we expect systems
with TCXOs or OCXOs to come on the market, and expect
that Graham performs favorably against them.

7 Conclusion

It has been long thought that computer clocks are unstable,
and that stability cannot be achieved without frequent syn-
chronizations. We hope that this work dispels that myth and
convinces the reader that much perceived clock instability
is due to software measurement error. By understanding the
sources of clock error, we have built Graham, which can re-
duce local clock error well below 1ppm using commodity
clock sensors. Combined with an accurate synchronization
source, Graham can maintain microsecond clock accuracy
without additional hardware.

464 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Abracon. Abracon ABLKJO crystal oscillator. https:
//abracon.com/Precisiontiming/ABLJO.pdf.

[2] abracon. Aoc2012vajc ocxo datasheet. https://
abracon.com/datasheets/AOC2012-Series.pdf.

[3] Abracon. Tuning fork crystals and oscil-
lator. https://abracon.com/Support/
Tuning-Fork-Crystals-and-Oscillator.pdf.

[4] BCM53903. Bcm53903 timing over packet
(top) processor for precision timing applica-
tions. https://www.broadcom.com/products/
embedded-and-networking-processors/
communications/bcm53903.

[5] Chrony. chrony – introduction. https://chrony.
tuxfamily.org/.

[6] Clockwork. Tick tock networks is now clockwork.
https://www.clockwork.io.

[7] James C Corbett, Jeffrey Dean, Michael Epstein, An-
drew Fikes, Christopher Frost, Jeffrey John Furman,
Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, et al. Spanner: Google’s globally
distributed database. ACM Transactions on Computer
Systems (TOCS), 31(3):1–22, 2013.

[8] CTS Corporation. Crystal basics. https:
//www.ctscorp.com/wp-content/uploads/
Appnote-Crystal-Basics.pdf.

[9] Intel Corporation. C620 platform controller hub
datasheet. https://www.intel.com/content/
dam/www/public/us/en/documents/datasheets/
c620-series-chipset-datasheet.pdf.

[10] John C Eidson, Mike Fischer, and Joe White. Ieee-
1588™ standard for a precision clock synchronization
protocol for networked measurement and control sys-
tems. In Proceedings of the 34th Annual Precise Time
and Time Interval Systems and Applications Meeting,
pages 243–254, 2002.

[11] Epson. Tg2016smn ((tcxo / vc-tcxo) high stability).
https://www5.epsondevice.com/en/products/
tcxo/tg2016smn.html.

[12] Fil-Tech. Frequency-temperature behav-
ior of at-cut crystals. https://www.
filtech.com/tech-library/document/
frequency-temperature-curve-cut-crystals/
?dl=1.

[13] Marvin Frerking. Crystal oscillator design and tempera-
ture compensation. Springer Science & Business Media,
2012.

[14] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Bal-
aji Prabhakar, Mendel Rosenblum, and Amin Vahdat.
Exploiting a natural network effect for scalable, fine-
grained clock synchronization. In 15th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 18), pages 81–94, 2018.

[15] D Habic and D Vasiljevic. Temperature compensation of
crystal oscillators using microcontroller-/spl mu/ctcxo.
In Proceedings of IEEE 48th Annual Symposium on
Frequency Control, pages 587–593. IEEE, 1994.

[16] IBM. https://www.ibm.com/docs/en/
power-blade-server/version_undefined?
topic=planning-vibration-shock, Accessed:
Feb 7 2022.

[17] Ki Suh Lee, Han Wang, Vishal Shrivastav, and Hakim
Weatherspoon. Globally synchronized time via dat-
acenter networks. In Proceedings of the 2016 ACM
SIGCOMM Conference, pages 454–467, 2016.

[18] Bojie Li, Gefei Zuo, Wei Bai, and Lintao Zhang. 1pipe:
scalable total order communication in data center net-
works. In Proceedings of the 2021 ACM SIGCOMM
2021 Conference, pages 78–92, 2021.

[19] Chao Li and Arvind Sridhar. Vibration and shock sensi-
tivity: A comparative study of oscillators. Texas Instru-
ments, Dallas, TX, USA, Appl. Note SNAA296, pages
1–11, 2017.

[20] Yuliang Li, Gautam Kumar, Hema Hariharan, Hassan
Wassel, Peter Hochschild, Dave Platt, Simon Sabato,
Minlan Yu, Nandita Dukkipati, Prashant Chandra, et al.
Sundial: Fault-tolerant clock synchronization for dat-
acenters. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pages
1171–1186, 2020.

[21] LinuxPPS. Linuxpps wiki. https://www.linuxpps.
org.

[22] Pedro Moreira, Javier Serrano, Tomasz Wlostowski,
Patrick Loschmidt, and Georg Gaderer. White rabbit:
Sub-nanosecond timing distribution over ethernet. In
2009 International Symposium on Precision Clock Syn-
chronization for Measurement, Control and Communi-
cation, pages 1–5. IEEE, 2009.

[23] Ali Najafi, Amy Tai, and Michael Wei. Systems research
is running out of time. In Proceedings of the Workshop
on Hot Topics in Operating Systems, pages 65–71, 2021.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 465

https://abracon.com/Precisiontiming/ABLJO.pdf
https://abracon.com/Precisiontiming/ABLJO.pdf
https://abracon.com/datasheets/AOC2012-Series.pdf
https://abracon.com/datasheets/AOC2012-Series.pdf
https://abracon.com/Support/Tuning-Fork-Crystals-and-Oscillator.pdf
https://abracon.com/Support/Tuning-Fork-Crystals-and-Oscillator.pdf
https://www.broadcom.com/products/embedded-and-networking-processors/communications/bcm53903
https://www.broadcom.com/products/embedded-and-networking-processors/communications/bcm53903
https://www.broadcom.com/products/embedded-and-networking-processors/communications/bcm53903
https://chrony.tuxfamily.org/
https://chrony.tuxfamily.org/
https://www.clockwork.io
https://www.ctscorp.com/wp-content/uploads/Appnote-Crystal-Basics.pdf
https://www.ctscorp.com/wp-content/uploads/Appnote-Crystal-Basics.pdf
https://www.ctscorp.com/wp-content/uploads/Appnote-Crystal-Basics.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/c620-series-chipset-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/c620-series-chipset-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/c620-series-chipset-datasheet.pdf
https://www5.epsondevice.com/en/products/tcxo/tg2016smn.html
https://www5.epsondevice.com/en/products/tcxo/tg2016smn.html
https://www.filtech.com/tech-library/document/frequency-temperature-curve-cut-crystals/?dl=1
https://www.filtech.com/tech-library/document/frequency-temperature-curve-cut-crystals/?dl=1
https://www.filtech.com/tech-library/document/frequency-temperature-curve-cut-crystals/?dl=1
https://www.filtech.com/tech-library/document/frequency-temperature-curve-cut-crystals/?dl=1
https://www.ibm.com/docs/en/power-blade-server/version_undefined?topic=planning-vibration-shock
https://www.ibm.com/docs/en/power-blade-server/version_undefined?topic=planning-vibration-shock
https://www.ibm.com/docs/en/power-blade-server/version_undefined?topic=planning-vibration-shock
https://www.linuxpps.org
https://www.linuxpps.org

[24] ntpd. ntpd - network time protocol (ntp) daemon. https:
//docs.ntpsec.org/latest/ntpd.html.

[25] Bruce M Penrod. Adaptive temperature compensation
of gps disciplined quartz and rubidium oscillators. In
Proceedings of 1996 IEEE International Frequency Con-
trol Symposium, pages 980–987. IEEE, 1996.

[26] Renesas. 932sql456 - low-power ck420bq
derivative for pcie separate clock architectures.
https://www.renesas.com/us/en/document/dst/
932sql456-datasheet?r=166281.

[27] Renesas. Limiting IEEE 1588 slave clock
wander caused by packet delay variation.
https://www.renesas.com/us/en/document/whp/
limiting-ieee-1588-slave-clock-wander-caused-packet-delay-variation.

[28] Alex Shamis, Matthew Renzelmann, Stanko No-
vakovic, Georgios Chatzopoulos, Aleksandar Dragoje-
vić, Dushyanth Narayanan, and Miguel Castro. Fast
general distributed transactions with opacity. In Pro-
ceedings of the 2019 International Conference on Man-
agement of Data, pages 433–448, 2019.

[29] SiTime. Sitime 5146 super-tcxo. https:
//www.sitime.com/support/resource-library/
datasheets/sit5146-datasheet.

[30] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan Van-
Benschoten, Jordan Lewis, Tobias Grieger, Kai Niemi,
Andy Woods, Anne Birzin, Raphael Poss, et al. Cock-
roachdb: The resilient geo-distributed sql database. In
Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, pages 1493–1509,
2020.

[31] ublox. ublox neo-m8n datasheet. https:
//www.u-blox.com/sites/default/files/
NEO-M8-FW3_DataSheet_UBX-15031086.pdf.

[32] ublox. ublox zed-f9t datasheet. https://www.u-blox.
com/en/docs/UBX-18053713.

[33] John R Vig. Quartz crystal resonators and oscillators
for frequency control and timing applications. a tutorial.
Nasa Sti/recon Technical Report N, 95:19519, 1994.

[34] Miao Xu, Wenyuan Xu, Tingrui Han, and Zhiyun Lin.
Energy-efficient time synchronization in wireless sensor
networks via temperature-aware compensation. ACM
Transactions on Sensor Networks (TOSN), 12(2):1–29,
2016.

[35] Zhe Yang, Lin Cai, Yu Liu, and Jianping Pan.
Environment-aware clock skew estimation and synchro-
nization for wireless sensor networks. In 2012 Proceed-
ings IEEE INFOCOM, pages 1017–1025. IEEE, 2012.

[36] Hui Zhou, Charles Nicholls, Thomas Kunz, and Howard
Schwartz. Frequency accuracy & stability dependencies
of crystal oscillators. Carleton University, Systems and
Computer Engineering, Technical Report SCE-08-12,
2008.

466 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://docs.ntpsec.org/latest/ntpd.html
https://docs.ntpsec.org/latest/ntpd.html
https://www.renesas.com/us/en/document/dst/932sql456-datasheet?r=166281
https://www.renesas.com/us/en/document/dst/932sql456-datasheet?r=166281
https://www.renesas.com/us/en/document/whp/limiting-ieee-1588-slave-clock-wander-caused-packet-delay-variation
https://www.renesas.com/us/en/document/whp/limiting-ieee-1588-slave-clock-wander-caused-packet-delay-variation
https://www.sitime.com/support/resource-library/datasheets/sit5146-datasheet
https://www.sitime.com/support/resource-library/datasheets/sit5146-datasheet
https://www.sitime.com/support/resource-library/datasheets/sit5146-datasheet
https://www.u-blox.com/sites/default/files/NEO-M8-FW3_DataSheet_UBX-15031086.pdf
https://www.u-blox.com/sites/default/files/NEO-M8-FW3_DataSheet_UBX-15031086.pdf
https://www.u-blox.com/sites/default/files/NEO-M8-FW3_DataSheet_UBX-15031086.pdf
https://www.u-blox.com/en/docs/UBX-18053713
https://www.u-blox.com/en/docs/UBX-18053713

IA-CCF: Individual Accountability for Permissioned Ledgers

Alex Shamis1,2, Peter Pietzuch1,2, Burcu Canakci∗ 3, Miguel Castro1, Cédric Fournet1,
Edward Ashton1, Amaury Chamayou1, Sylvan Clebsch1, Antoine Delignat-Lavaud1, Matthew Kerner4,
Julien Maffre1, Olga Vrousgou1, Christoph M. Wintersteiger1, Manuel Costa1, and Mark Russinovich4

1Microsoft Research, 2Imperial College London, 3Cornell University, 4Microsoft Azure

Abstract
Permissioned ledger systems allow a consortium of mem-

bers that do not trust one another to execute transactions safely
on a set of replicas. Such systems typically use Byzantine
fault tolerance (BFT) protocols to distribute trust, which only
ensures safety when fewer than 1/3 of the replicas misbehave.
Providing guarantees beyond this threshold is a challenge:
current systems assume that the ledger is corrupt and fail to
identify misbehaving replicas or hold the members that oper-
ate them accountable—instead all members share the blame.

We describe IA-CCF, a new permissioned ledger system
that provides individual accountability. It can assign blame
to the individual members that operate misbehaving replicas
regardless of the number of misbehaving replicas or members.
IA-CCF achieves this by signing and logging BFT protocol
messages in the ledger, and by using Merkle trees to provide
clients with succinct, universally-verifiable receipts as evi-
dence of successful transaction execution. Anyone can audit
the ledger against a set of receipts to discover inconsistencies
and identify replicas that signed contradictory statements. IA-
CCF also supports changes to consortium membership and
replicas by tracking signing keys using a sub-ledger of gover-
nance transactions. IA-CCF provides strong disincentives to
misbehavior with low overhead: it executes 47,000 tx/s while
providing clients with receipts in two network round trips.

1 Introduction
Permissioned ledger systems, such as Hyperledger Fabric [4],
Quorum [52] and Diem [3], allow a consortium of members
that do not trust one another to deploy a trustworthy service
on a set of replicas that they operate. These systems typically
use protocols for Byzantine fault tolerant (BFT) state
machine replication [12, 17, 20, 25, 37, 62] to distribute trust:
clients send requests to execute transactions [59, 60] that are
executed in a consistent order by the replicas. The results are
recorded in a persistent, replicated ledger.

BFT protocols ensure safety (linearizability [29]) and
liveness, but they can only do this if fewer than 1/3 of N repli-
∗Work done while at Microsoft Research.

cas misbehave. With more misbehaving replicas, current
permissioned ledger systems can no longer be trusted. When
safety violations are detected, the whole service is deemed
to have failed, and all members and replicas share the blame.

Current systems try to avoid this problem by increasing
replication [25, 36, 62] or hardening individual replicas [54].
Adding replicas does not help if they are controlled by
the same consortium members and thus do not behave
independently. Increasing the number of consortium mem-
bers, however, is challenging or even infeasible in practice.
For example, the Diem Association [6] had 26 members,
which prevented it from offering a service with more than
26 independent replicas; other consortia are smaller, which
results in fewer independent replicas [7, 34, 50]. Even
for large consortia with reputable companies, a persistent
attacker may slowly compromise N/3 replicas over time,
e.g., by exploiting lax security practices, bribing members’
employees or exploiting software vulnerabilities. Without
accountability after a service compromise, there is also no
perceived reputational loss that would incentivize members
to prevent or disclose these incidents [16, 24, 30].

The Confidential Consortium Framework (CCF) [54]
uses trusted hardware [21, 35] to isolate replicas from
operators and members, and it provides receipts that commit
transaction execution to its ledger. However, CCF does
not offer safety or individual accountability if the trusted
hardware is compromised.

Prior work explores accountability for various types of
distributed systems [1, 26, 27, 38, 64]. PeerReview [27] makes
general message passing systems accountable. As we show
in §6, applying such a general approach to a permissioned
ledger system incurs high overhead: all messages must be
signed, and auditing is expensive, because it correlates logs
across many replicas. More recent work [14, 19, 53, 56]
investigates accountability in BFT protocols and blockchains.
These proposals, however, offer no guarantees when 2/3 or
more replicas misbehave, because misbehaving replicas may
rewrite the ledger history without detection.

We describe Individual Accountability for CCF (IA-CCF),

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 467

a BFT permissioned ledger system that identifies misbehaving
replicas and assigns blame to the individual members that
operate them, even if all replicas misbehave. Individual
accountability provides strong disincentives for misbehavior.

IA-CCF is a prototype that extends CCF [54] with support
for BFT and individual accountability, while retaining the
same user programming model, key-value store, transaction
execution engine, and model of governance for changes to
the consortium membership and replica set.

IA-CCF supports individual accountability by introducing
Ledger PBFT (L-PBFT), a new BFT state machine replication
protocol that stores ordered transactions in the ledger together
with the protocol messages from replicas that justify the
execution order. L-PBFT maintains Merkle trees [42] over
the ledger, and includes the roots of the trees in protocol
messages. Since protocol messages are signed by the replicas,
this commits them to the entire contents of the ledger.

IA-CCF then issues receipts to clients that provide succinct,
universally-verifiable evidence that a transaction executed
at a given position in the ledger. Receipts include signed
protocol messages from multiple replicas that executed the
transaction, thus binding them to a prefix of the ledger.

Given a collection of receipts that violates linearizability,
anyone can audit the ledger against the receipts to assign
blame to at least N/3 replicas. Auditing produces an ir-
refutable universal proof-of-misbehavior (uPoM) in the form
of contradictory statements signed by the same replica. The
uPoM can be used by an enforcer, e.g., a court, to punish the
members responsible for the misbehaving replicas. To provide
accountability when all replicas misbehave, the enforcer may
have to compel members to produce a ledger, imposing sanc-
tions otherwise. While this formally adds a weak synchrony
assumption, the enforcer chooses a conservative timeout to
make blaming correct members unlikely in practice.

As an example of auditing, a client Alice may have a
receipt for a transaction that executed at index i in the ledger
and deposited $1 million into client Bob’s account. If Bob
obtains the receipt from Alice and another receipt for a
balance query transaction executed at index j (j> i) that does
not show the balance, he may conduct an audit: he engages an
enforcer to obtain the relevant ledger fragment, and replays
the transactions between i and j to check for consistency
with his receipts. If Bob is right, auditing produces a uPoM
for at least N/3 replicas, which Bob sends to the enforcer to
punish the consortium members responsible for the replicas.

To support changes to the consortium membership, IA-
CCF uses governance transactions that alter the set of replicas
and consortium members [54]. Governance transactions
complicate receipt verification and auditing because they
change the signing keys that must be considered. IA-CCF
therefore records governance transactions in the ledger,
which allows clients, replicas, and auditors to determine the
set of valid signing keys. Clients do not need to keep the full
ledger, but only receipts of governance transactions. Since

Consortium
member

Replica

Client

Ledger

Transaction

L-PBFT

governance
transaction

transactionevidence check-
point

Merkle
trees

Receipts
to audit

Auditor

Governance
receipts

Auditing
1

2

ti oi

Receipt

4

3

G
ov

er
na

nc
e

tra
ns

ac
tio

ns

Enforcer
Ledger

fragment

uPoM

Fig. 1: IA-CCF permissioned ledger system

governance transactions are relatively rare, this governance
sub-ledger is significantly smaller than the full ledger.

Our IA-CCF prototype provides individual accountability
without compromising on throughput or latency: it imple-
ments a commitment scheme for transaction batches with
only a single signature per replica. This enables clients
to receive results with receipts after only two network
round-trips. Our evaluation shows that IA-CCF can execute
over 47,000 tx/s with low latency.

The contributions of IA-CCF and the paper structure are:

1. L-PBFT, a BFT state machine replication protocol that or-
ders and stores transactions together with the protocol mes-
sages justifying the execution order in a ledger (§3.1, §3.2);

2. universally-verifiable client receipts that are generated
efficiently with the ledger (§3.3);

3. an efficient auditing approach using the ledger and
associated checkpoints, which produces short proofs-of-
misbehavior (§4); and

4. a governance mechanism for changing members and
replica sets, allowing auditing to assign blame even after
members have left (§5).

2 Overview of IA-CCF
Fig. 1 shows IA-CCF’s design. An IA-CCF deployment
provides a service, with a well known name, to clients, which
are identified by their signing keys. Clients send requests to
execute transactions by calling stored procedures that define
the service logic. Transactions are executed by replicas
against a strictly-serializable key-value store that supports
roll-back at transaction granularity. A transaction request t
reads and/or writes multiple key-value pairs and produces
a transaction result o.

Consortium members, also identified by their signing
keys, own the service. They may be added or removed over
the service lifetime. For this, members issue governance
transactions, which change the consortium membership, add
or remove replicas, and update stored procedures. The first
governance transaction, the genesis transaction gt, defines
the initial members and replicas. Its hash is the service name.
1 Ledger PBFT (L-PBFT) is a BFT state machine
replication protocol used by replicas to order transactions.
L-PBFT is based on PBFT [17]. It provides linearizability

468 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

and liveness if at most f = ⌈N/3⌉−1 out of N replicas fail
in a partially-synchronous environment [23].
2 Ledger. L-PBFT maintains an append-only ledger, which
stores each transaction request t and result o at a ledger
index i. Since the consortium membership and the replica set
are dynamic, the ledger also records governance transactions.
They form a governance sub-ledger, which can be used to
learn the public signing keys of active replicas and members
at any index i.

To assign blame, the ledger also includes evidence that
a transaction batch was committed by a quorum of replicas.
This evidence consists of at least N− f signed L-PBFT pro-
tocol messages for a batch. Finally, the ledger stores periodic
checkpoints of the key-value store, allowing its state to be
reconstructed by replaying the ledger from a checkpoint cp.

All entries in the ledger are bound by Merkle trees.
Protocol messages for a transaction batch contain the roots of
the Merkle trees. This commits replicas to the whole ledger
while allowing succinct existence proofs for entries.
3 Receipts are created by replicas and returned to clients.
They bind request execution to members via the replicas’
signatures over Merkle tree roots that contains the executed
request and the ledger’s history. If two or more receipts
are inconsistent with any linearizable execution, at least
f+1 replicas must have signed contradictory statements and
can thus be assigned blame.

More precisely, a receipt R for ⟨t,i,o⟩ states that request t
was executed at index i and produced result o. The receipt
consists of N− f protocol messages for t’s batch, signed by
different replicas, and a path from a Merkle tree root to the
leaf that contains an entry for ⟨t,i,o⟩.

Clients may obtain receipts from a reply to a request they
sent, from replicas, or from other clients. To validate a receipt,
clients must check its signatures using the signing keys
determined by the governance sub-ledger. A receipt therefore
includes the ledger index of the last governance transaction,
and clients must obtain the receipt of this governance trans-
action and all those preceding it. Clients cache governance
transaction receipts and fetch missing ones from replicas.
4 Auditing returns a universal proof-of-misbehavior (uPoM)
if clients obtain receipts that are inconsistent with a lineariz-
able execution. IA-CCF’s ledger is universally-verifiable, i.e.,
anyone can act as an auditor: they replay the ledger, check
consistency with receipts, and potentially generate a uPoM.

Since all consortium members and replicas may misbehave,
an enforcer, e.g., a court, must compel members to produce
a ledger copy for auditing, sanctioning non-compliance.
The enforcer also punishes members based on uPoMs. It
is unreasonable to assume that courts could run the service
or audit long executions. Therefore, IA-CCF only requires
enforcers to re-execute transactions between two consecutive
checkpoints to verify a uPoM in the worst case.

After a client passes a sequence of receipts and the
governance sub-ledger to the auditor, the auditor confirms

the receipts’ validity by calculating a Merkle tree root and
verifying the replica signatures. It then asks the enforcer
to obtain the ledger fragment corresponding to the receipts
from the replicas. The auditor checks the validity of the
checkpoint cp referenced by the oldest receipt. It then
replays the ledger from cp, re-executing transaction requests
while checking for consistency with receipts (including
governance transaction receipts). If an inconsistency is found
at index i, the auditor creates a uPoM ⟨i,F , cp,R⟩ with a
ledger fragment F , the checkpoint cp, and the inconsistent
receipt R. The uPoM is then forwarded to the enforcer, which
imposes penalties on the consortium members blamed.
Threat model, and limitations. We assume a strong attacker
that can compromise replicas, clients, auditors, and members
to make them behave arbitrarily, but cannot break the cryp-
tographic primitives. We trust the enforcer to assign blame to
replicas and the members that operate them only when it veri-
fies a valid uPoM or fails to obtain data for auditing. IA-CCF
provides linearizability and liveness if fewer than 1/3 of the
replicas are compromised [17]. With any number of compro-
mised replicas, clients, auditors, and members, IA-CCF never
punishes members that operate only correct replicas unless
they fail to provide data for auditing. In addition, IA-CCF
guarantees that at least 1/3 of the replicas are blamed, and the
members that operate them punished, if clients obtain receipts
that are inconsistent with a linearizable execution. The current
implementation does not prevent attacks that overwhelm the
ledger with transactions to slow down auditing or replaying
the governance sub-ledger. It also does not blame replicas
for liveness violations, e.g., not returning receipts. Possible
defences include: having the enforcer timestamp the genesis
transaction and bounding the rate of regular and governance
transactions; and forwarding requests to the enforcer and
having it monitor protocol execution to assign blame to
replicas when receipts are not returned before a deadline. We
leave the details of these defences for future work.

3 L-PBFT protocol and receipts
Next, we describe how L-PBFT maintains a ledger with
transactions and evidence (§3.1), and how it handles view
changes (§3.2). We then explain how evidence is used to
create receipts (§3.3) and introduce performance optimiza-
tions (§3.4). For ease of presentation, we first assume a fixed
replica set; we add dynamic membership in §5.

3.1 Protocol

To support auditing, a BFT state machine replication
protocol, such as PBFT [17], must integrate with a ledger:
it must ensure that replicas agree on a ledger with both
transactions (requests and results) and protocol messages.
It must also handle non-determinism to enable replaying
the ledger. L-PBFT addresses this issue by agreeing on
non-deterministic inputs [18] and using early execution: it
requires the primary replica to propose a transaction result,

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 469

Alg. 1: Ledger Practical Byzantine Fault Tolerance

1 on receiveTransactionRequest(t=⟨request,a,c,H(gt),mi⟩σc)
2 Pre: verify(t)
3 T ←T ∪{t}
4 on sendPrePrepare()
5 Pre: isPrimary() ∧ ready∧ |T |>0∧ hasEvidence(M ,v,s−P)
6 B← [];G←{}
7 foreach t∈T do
8 B←B ||H(t) ; ⟨i,o⟩← execute(kv,t); G←G||⟨t,i,o⟩
9 ⟨Es−P,Ps−P,Ks−P⟩← getEvidence(M ,v,s−P)

10 L←L ||Ps−P ||Ks−P;M←M||Ps−P ||Ks−P

11 K [v,s]←createNonce();M̄← getRoot(M); Ḡ← getRoot(G)
12 pp=⟨pre-prepare,v,s,M̄,Ḡ,H(K [v,s]),Es−P⟩σr
13 L←L || pp ||G;M←M || pp;M ←M ∪{pp}; T ←{}; s←s+1
14 sendToAllReplicas(pp ||B)

15 on receivePrePrepare(pp=⟨pre-prepare,v,s′,M̄,Ḡ,H(k),Es′−P⟩σr ,B)
16 Pre: isBackup() ∧ verify(pp) ∧ ready∧ s′=s∧K [v,s]=nil∧

hasRequests(T ,B) ∧ hasEvidence(M ,s′−P,Es′−P)
17 M ←M ∪{pp};G←{}
18 foreach h∈B do
19 t← removeTx(h,T); ⟨i,o⟩← execute(kv,t);G←G||⟨t,i,o⟩
20 ⟨Es−P,Ps−P,Ks−P⟩← getEvidence(M ,v,s−P,Es−P)
21 L←L ||Ps−P ||Ks−P;M←M||Ps−P ||Ks−P;
22 if getRoot(M) ̸=M̄ or getRoot(G) ̸= Ḡ then
23 undo(pp,kv,M ,B,T ,L); return
24 L←L || pp ||G;M←M || pp;K [v,s]←createNonce()
25 p=⟨prepare,r,H(K [v,s]),H(pp)⟩σr
26 sendToAllReplicas(p); M ←M ∪{p};s←s+1
27 on receivePrepare(p=⟨prepare,r′,H(kr′),H(pp)⟩σr′

)
28 Pre: verify(p)
29 M ←M ∪{p}
30 on batchPrepared(pp=⟨pre-prepare,v,s′,M̄,Ḡ,H(kp),Es′−P⟩σp)
31 Pre: prepared(pp,M)∧∃⟨prepare,r′,H(K [v,s′]),H(pp)⟩σr′

∈M
32 c=⟨commit,v,s′,r,K [v,s′]⟩
33 sendToAllReplicas(c); M ←M ∪{c}
34 foreach ⟨t,i,o⟩∈getTxForBatch(L ,v,s′) do
35 sendReplyToClient(t,⟨reply,v,s′,r,σr ,K [v,s′]⟩)
36 if shouldSendReceipt(r,t) then
37 S←getMerklePath(G,i)
38 sendReceiptToClient(t,⟨replyx,v,s′,M̄,H(kp),Es′−P,H(t),i,o,S⟩)
39 on receiveCommit(c=⟨commit,v,s′,r′,kr⟩)
40 Pre: verify(c)
41 M ←M ∪{c}

which the backup replicas must agree on for the batch to
commit. L-PBFT then maintains Merkle trees over all ledger
entries and puts the trees’ roots in protocol message, which
ensures that all replicas agree on a serial history of the ledger.

Fig. 2 gives an overview of L-PBFT with early execution:
first clients send transaction requests to all replicas. The
primary orders the requests, groups them into batches and
performs early execution. It then sends a pre-prepare message
to the backups, which includes the request batch and the ex-
ecution results. Upon receiving the pre-prepare, the backups
execute the requests and confirm that the results match the
primary’s. If so, they send a prepare message to all other
replicas. After a replica receives a pre-prepare and N− f−1
matching prepare messages for the same sequence number s
and view v, the batch is prepared at the replica at v with s if all
batches with lower sequence numbers have also prepared. A
replica then sends a reply to the clients and commit messages
to the other replicas. We say that a batch is committed at
sequence number s if it has been prepared by N− f replicas
in the same view. A client has received a complete response
when it has a receipt consisting of replies from N− f replicas.

request pre-prepare

Client

prepare reply & commit

Primary

Backup

Backup

Backup

execution receipt

Fig. 2: L-PBFT protocol with early execution and receipts

A naive approach would require each replica to sign two
protocol messages, i.e., the pre-prepare/prepare and the
commit message, for each committed batch. Instead, L-PBFT
uses a novel nonce commitment scheme, in which replicas
only sign the pre-prepare/prepare messages after including
a hashed nonce. Instead of signing the commit, a replica
includes the unhashed nonce. This effectively halves the
signatures that replicas emit to commit batches successfully.

Alg. 1 presents the pseudocode of L-PBFT. The replica
state includes: the current view v and batch sequence num-
ber s; a set of transaction requests T waiting to be ordered;
a message store M ; a nonce store K ; a boolean ready indi-
cating if the replica can send/accept pre-prepare messages;
a replica identifier r; the key-value store kv; the ledger L ; and
the Merkle tree M that binds the ledger entries.

In receiveTransactionRequest (line 1), a replica adds a
request message to T , where a identifies the invoked stored
procedure and its arguments, c is the client identifier, H(gt)
is the genesis transaction hash, mi is the minimum index after
which the request can be added to the ledger, and σc is the
client signature. σc and H(gt) ensure that requests cannot be
forged or moved to a different ledger, and mi allows clients
to create an ordering dependency between the request and
a previously executed transaction.

The function sendPrePrepare (line 4) uses early execution
to include the execution result in the batch’s Merkle tree
root. The primary p=v mod N collects a batch of transaction
requests, executes them, and appends them to a new Merkle
tree G. Then, the primary retrieves the commitment evidence
Ps−P and Ks−P for the batch at s−P from the message
store M and appends it to the ledger. Es−P is a bitmap that
records the replicas that supplied commitment evidence.

Next, the primary creates the pre-prepare message with the
hash of a fresh nonce K [v,s], the root of the Merkle trees, M̄
and Ḡ, and signs it. G is a Merkle tree that contains all ⟨t,i,o⟩
entries in a batch. The complete pre-prepare message has two
extra fields: ig, the index of the last governance transaction,
which allows clients to verify receipts with a changing set of
replicas (see §5.2); and dC, a digest of the key-value store state
at the last checkpoint, which enables auditing from a check-
point without replaying the ledger from the start (see §4).

By signing M̄, the primary commits to the contents of the
ledger, including the commitment evidence for s−P that it
retrieved and added to the ledger. It is important for the pri-
mary to order the evidence to ensure that replicas agree on the

470 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Ps-P Ks-P

Ti-1 Ti Ti+1 Ti+2

G1
pps

Fig. 3: Ledger with evidence and Merkle trees

ledger: if replicas added their own evidence to the ledger when
they received prepare and commit messages, their ledgers
could diverge. The commitment evidence Ps−P contains
N− f−1 prepare messages for sequence number s−P and
view v that match the pre-prepare at sequence number s−P in
the ledger. Ks−P are the N− f nonces with hashes in the pre-
prepare/prepare messages in Ps−P. This evidence is sufficient
to prove to a third party that the batch at s−P prepared at N− f
replicas and therefore committed with s. The pre-prepare mes-
sage along with the leaves of G are then added to the ledger.

The primary communicates its ordering decision by
sending the pre-prepare message to all replicas, together with
a list B of the hashes of transaction requests in execution
order. The requests are sent separately by the clients, and
the commitment evidence for s−P is not included in the
message. The pre-prepare messages are O(N) in size but
the constant is small. Our implementation uses 8 bytes in
the Es−P bitmap to support up to 64 replicas, making the
pre-prepare messages effectively O(1).

Fig. 3 gives an example of the ledger state after this step.
For each transaction in the batch, the primary adds a ledger en-
try in the order executed. The entry for Ti has the form ⟨t,i,o⟩
where o includes the reply sent to the client and the hash of
the transaction’s write-set; pps is the pre-prepare for s, and
Ps−P and Ks−P are evidence that the batch at sequence number
s−P committed. L-PBFT pipelines the ordering of up to P≥1
concurrent batches to improve performance. Therefore, the
commitment evidence lags P behind s, because it is unavail-
able when the primary sends the pre-prepare for s. Appx. A,
Lemma 2 shows that early execution maintains linearizability.

When a backup replica receives the pre-prepare (line 15),
it rejects the message if it already sent a prepare for the
same view and sequence number (K [v,s] ̸=nil). Otherwise, it
checks if it already has the requests and commitment evidence
referenced by the pre-prepare. Replicas store received re-
quests, prepare, and commit messages in non-volatile storage
(M) until they receive (or send) a corresponding pre-prepare.
To reduce network load, the primary does not resend requests
or messages used as commitment evidence. If the backup
is missing messages, it requests that the primary retransmit
them, because a correct primary is guaranteed to have them.

The backup then executes the requests in the order
prescribed by the primary, and adds the resulting transaction
entries to a new Merkle tree G (line 19). Then, it adds the
same Ps−P and Ks−P as the primary to the ledger. At this
point, the ledger at the backup should be identical to the one at
the primary just before the pre-prepare message is added. The
backup checks that the roots of its Merkle trees match M̄ and

Ḡ in the pre-prepare, respectively. If not, the message is re-
jected, the entries for batch s are removed from the ledger, and
the transactions are rolled back. Otherwise, the backup adds
the pre-prepare to the ledger, followed by the leaves of the
Merkle tree G, and sends a matching prepare message with
the format ⟨prepare,r,H(K [v,s]),H(pp)⟩σr , where H(K [v,s])
commits a fresh nonce, and H(pp) is the pre-prepare’s hash.

L-PBFT ensures deterministic transaction execution by
agreeing on non-deterministic inputs [18]. Line 22 ensures
that a backup’s execution of batch B and its ledger are identi-
cal to those of the primary by comparing the Merkle roots Ḡ
and M̄. If this check fails, the backup rolls back execution and
attempts to view change (§3.2). This way divergent execution
due to bugs, i.e., failing to identify non-deterministic inputs,
can affect liveness but not diverge the ledger.

In batchPrepared (line 30), the nonce commitment and
early execution allow replicas to return replies to clients in two
message round trips without signing reply or commit messages.
When the batch prepares at replica r, it sends a commit mes-
sage with the format ⟨commit,v,s′,r,K [v,s′]⟩ where K [v,s′] is
the nonce the replica committed to in the pre-prepare/prepare
messages that it sent for v and s′. Since the nonce K [v,s′] is
revealed to clients and replicas only when a replica prepares
the batch having a pre-prepare/prepare message and the
corresponding nonce can prove to a third party that the replica
prepared the batch at v and s′ (see Appx. A, Lemma 3).

Finally, a replica r commits a prepared batch v, s′ after
it receives N− f commit messages, including its own. The
nonce hashes in the commit messages must match the ones
in the pre-prepare/prepare messages.

We prove that L-PBFT produces a linearizable execution
order in Appx. A, Thm. 1.

3.2 View changes

During the L-PBFT protocol execution, the primary may mis-
behave or be slow, which requires a view change. The change
of the primary must be done in a manner that does not pre-
clude auditing, which is a new requirement that goes beyond
PBFT’s view change protocol. L-PBFT view changes are
auditable and must provide proof that a batch’s re-execution
produces the same result as the original execution.

L-PBFT addresses this as follows: it sends the evidence
that batches prepared during view changes and includes
the Merkle tree root Ḡ of a batch and its execution in
the pre-prepare message, which ensures that batches are
re-executed consistently. During a view change, each replica
sends a view-change message with information about
prepared requests. The primary for a new view v′ sends a
new-view message backed by N− f view-change messages
for v′. For each sequence number with a prepared batch in
the view-change messages, the primary picks the batch that
prepared with the largest view and proposes it in v′. Since
all committed requests have also prepared, this ensures
linearizability with batch execution ordered by the sequence

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 471

Alg. 2: View Changes in L-PBFT

1 on sendViewChange()
2 Pre: primaryAppearsFaulty(v)
3 P P =getPLastPrepared(msgs(L)∪M)
4 v=v+1; ready← false;vc=⟨view-change,v,r,P P ⟩σr
5 sendToAllReplicas(vc); M ←M ∪{vc}
6 on receiveViewChange(vc=⟨view-change,v′,r′,P P ⟩σr)
7 Pre: v′>=v∧ verify(vc)∧ hasPrepares(msgs(L)∪M ,getLast(P P))
8 M ←M ∪{vc}
9 if |getViewChanges(M ,v′)|> f ∧ v′>v then

10 v=v′−1; setPrimaryApearsFaulty()
11 sendViewChange()
12 on sendNewView(v)
13 Pre: isPrimary(v) ∧¬ready∧ |getViewChanges(M ,v)|>N− f
14 ⟨M̄,Evc,hvc,P P ov⟩=processViewChanges(getViewChanges(M ,v))
15 nv=⟨new-view,v,M̄,Evc,hvc⟩σr ;L←L ||nv;M←M ||nv
16 sendToAllReplicas(nv)
17 resendPreparesInNewView(P P ov); ready←true

18 on receiveNewView(nv=⟨new-view,v,M̄,Evc,hvc⟩σr′
,P P nv)

19 Pre: isPrimary(r′,v)
∧ hasRequests(T ,P P nv) ∧ hasEvidence(M ,P P nv)
∧r′ ̸=r∧¬ready∧ |getViewChanges(M ,Evc,hvc)|>N− f

20 ⟨M̄′,P P ′ov⟩=processViewChanges(getViewChanges(M ,Evc,hvc))

21 if M̄′=M̄ then
22 L←L ||nv;M←M ||nv
23 if ready←processPreparesInNewView(P P nv,P P ′ov) then return
24 undo(nv,s,M ,L)

numbers at which batches committed.
Alg. 2 formalizes the pseudocode for view changes. If the

primary for view v appears faulty or slow, a replica sends
a view-change message, ⟨view-change,v+1,r,P P ⟩σr , to all
other replicas (line 1), where P P contains the last P pre-
prepare messages that prepared locally (line 3). Only the last
message in P P is required to provide linearizability, because
it includes the Merkle tree roots M̄ and Ḡ that determine
the ledger contents up to that point. The other pre-prepare
messages are used during auditing to verify that replicas
reported the batches they prepared in view-change (§4).

When replicas receive a view-change message (line 6),
before processing it, they fetch missing prepare messages
from the sender to prove that the last pre-prepare in P P has
prepared. When replicas increment v, they set ready to false
(lines 4, 11), which ensures that they do not send or accept
pre-prepare messages until they have completed the new-view.

After accepting N− f view-change messages for the new
view (line 12), the new primary calls processViewChanges,
which picks the view-change message vclp with the last pre-
pared pre-prepare message pplp from those with the largest
view number. It then updates the ledger to match the Merkle
roots in pplp by fetching missing ledger entries from replicas
that sent matching prepare messages. Since at least f+1 of
those are correct, this is always possible. The primary checks
that all messages in P P of vclp appear at the right ledger posi-
tions; if not, it discards vclp and re-tries (omitted from Alg. 2).

Next the primary resets the ledger to slp−P, because the
batches up to this point are guaranteed to have committed.
It saves all the request batches and commitment evidence
for sequence numbers between slp−P and slp and returns
it in P P ov. This is needed to resend pre-prepare messages
for the prepared batches in the new view. The function ends

Alg. 3: Verifying Receipts
1 on verifyReceipt(⟨t,i,o⟩,⟨v,s,M̄,H(kp),Es−P,ig,dC),σp,Es,Σs,Ks,S⟩)
2 Ḡ′← pathHash (⟨t,i,o⟩)
3 foreach Gi∈S do
4 Ḡ′← pathHash (Ḡ′, Gi)
5 pp=⟨pre-prepare,v,s,M̄,Ḡ′,H(kp),Es−P,ig,dC⟩
6 if not checkSignature (σp, pp) then return false
7 foreach r∈Es do
8 if r= p∧H(Ks[p]) ̸=H(kp) then return false
9 if r ̸= p∧ not checkSignature

(Σs[r], ⟨prepare,r,H(Ks[r]),H(ppσp)⟩) then return false
10 return true

by adding an entry with the N− f view-change messages
that it accepted to the ledger in order of increasing replica
identifier; hvc is the hash of that entry and Evc is a bitmap
with the replicas that sent the messages. It returns the root of
the Merkle tree M̄, Evc, hvc, and P P ov (line 14). The primary
appends the new-view to the ledger, sends it to all replicas,
resends the prepared batches in pre-prepare messages in the
new view, and adds them to the ledger.

When backups receive the new-view (line 18), they obtain
missing view-change messages, requests and evidence that
it references, and call processViewChanges. If it returns a
Merkle tree root equal to the one in new-view, they accept
the message, add it to the ledger, and process the pre-prepare
messages P P nv. If these match the batches and evidence in
P P ′ov for the same sequence numbers, they are added to the
ledger; otherwise, all changes are undone.

3.3 Receipts

To allow third parties to audit the ledger against the
transaction results returned to clients, L-PBFT returns
receipts, which are statements signed by N− f replicas that
a transaction request t executed at index i and produced
a result o. L-PBFT exploits the per batch Merkle tree G
together with the nonce commitment scheme (§3.1) to avoid
having replicas sign the reply for each request.
Creating receipts. When a transaction batch described by
pre-prepare pp prepares at replica r, view v and sequence
number s′ (Alg. 1, line 30), it sends ⟨reply,v,s′,r,σr,K [v,s′]⟩
to every client with a transaction in the batch. (If the client
has multiple transactions in the batch, only one reply is sent.)
By revealing the nonces, the replicas provide the client with
proof that they claimed to have prepared the batch without
a signed reply.

Only a designated replica, chosen based on t, sends the
result and the rest of the receipt to the client (line 36). The
replica computes a list of sibling hashes S along the path
from the leaf to the root of the per-batch Merkle tree G. For
the example of Ti in Fig. 3, S consists of the digest of Ti−1 and
G1, which is sufficient to recompute Ḡ given Ti. It then sends
the client ⟨replyx, v, s′, M̄,H(kp),Es′−P, ig, dC,H(t), i, o, S⟩,
where ig and dC are used for auditing.
Verifying receipts. The client waits for N− f replicas to send
reply messages with the same v and s, and for a replyx mes-
sage with the same v and s. It then recreates the pre-prepare

472 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

and prepare messages (Alg. 3, line 6), with the information in
replyx and the hashes of the nonces, and verifies the signatures.
(We describe how to determine N and verify signatures under
dynamic membership in §5.2.) This step is shared across all
transaction requests that the client may have sent in the batch.

IA-CCF uses the Merkle tree G to bind signatures in
pre-prepare and prepare messages to transactions in the
batch, enabling replicas to produce a single signature
per batch. In the example in Fig. 3, the client checks if
Ḡ = H(H(H(Ti−1)||H(⟨t, i, o⟩))||G1)) (lines 2–4). If the
hashes match, the client has a valid receipt, i.e., a statement
signed by N− f replicas that a request t executed at index i
and produced a result o; otherwise (or if the client does not
receive replies before a timeout), it retransmits the request and
selects a different replica to send back replyx. (The application
is responsible for ensuring exactly-once semantics if needed.)

Clients store the receipt for ⟨t,i,o⟩ as ⟨v,s,M̄,H(kp),Es−P,
ig,dC,σp,Es,Σs,Ks,S⟩ where Σs is a list of the signatures in
prepare messages, Ks is a list of nonces, and Es is a bitmap
indicating the replicas with entries in Σs, and Ks, sorted in
increasing order of replica identifier. All receipt components,
including common hashes in S , are shared across requests
in the same batch.

Clients must store the receipts together with the transaction
request and the corresponding result to resolve future
disputes. This is not a burden because receipts are concise: all
components have constant size, except |S |, whose number of
entries is logarithmic in the number of requests in a batch; Σs
and Ks have up to N− f entries. In addition, most intermediate
hashes in S can be shared across collections of receipts. We
explored using signature aggregation [13] to reduce the size
of Σs, but, for realistic consortia sizes, verifying the signatures
becomes more expensive than our current implementation.

3.4 Performance optimizations

L-PBFT includes several optimizations to improve transaction
and auditing throughput.
Checkpoints in L-PBFT allow new replicas to start process-
ing requests without having to replay the ledger from the
start (§5.1); slow replicas to be brought up-to-date using a
recent checkpoint; and auditing to start from a checkpoint
instead of the beginning of the ledger(§4.1).

Checkpoints include the key-value store and the Merkle
tree M’s newest leaf, root, and the connecting branches.
Replicas create a checkpoint cps when they execute a batch
with sequence number s such that s mod C=0. The primary
adds a batch to the ledger at sequence number s+C with a
special checkpoint transaction, which records the checkpoint
digest. C is chosen to give replicas enough time to complete
a checkpoint without delaying L-PBFT execution. Backups
only accept the pre-prepare for s+C if they compute the
same checkpoint digest for sequence number s.

When a replica fetches checkpoint cps, it also retrieves the
ledger up to s. It does not need to replay the ledger or check

all signatures (with the exception of governance transactions;
§5.2). Instead, it checks the signatures in checkpoint receipts
and that the ledger contents between consecutive checkpoints
are consistent with the Merkle tree roots in the corresponding
receipts. This is done from the start of the ledger until s+C.
Cryptography. L-PBFT reduces the impact of cryptographic
operations. Signature verification is parallelized for messages
received from replicas and clients [12, 20] to improve
throughput and scalability. All messages are sent over
encrypted and authenticated connections, even signed
messages. This mitigates denial-of-service attacks that
consume replica resources verifying signatures [20].

To further improve performance, backups overlap the ex-
ecution of request batches with the validation of pre-prepare
signatures. They only send the prepare after both completed.
Since pre-prepare messages are received over authenticated
connections, this always succeeds for correct primaries.

4 Auditing and enforcement
In this section, we describe how auditing produces universal
proofs-of-misbehavior (uPoMs) when linearizability is vio-
lated (§4.1), and the role of the enforcer in obtaining ledgers
for auditing and punishing the members responsible for mis-
behaving replicas (§4.2). We first focus on the simpler case
of auditing without governance transactions; §5 describes
governance transactions and their impact on auditing.

4.1 Auditing

An audit is triggered when someone, usually a client, obtains
a sequence of transaction receipts that violate linearizability,
i.e., when no linearizable execution of the stored procedures
that define the transactions can produce the sequence of
receipts. The mechanism to detect linearizability violations
is application dependent. It involves clients, which interact
through a sequence of transactions, exchanging receipts and
using the application semantics to reason about the correct-
ness of the receipt sequence. We describe a banking-inspired
example in the introduction.

The goal of auditing is to detect dishonest behavior
regardless of the number of misbehaving replicas, i.e., it
must find proof of misbehavior even if all replicas collude
and rewrite the ledger. IA-CCF therefore tightly integrates
the ledger with receipts—even if the ledger is rewritten, the
misbehaving replicas are unable to alter the receipts.

An audit can be performed by anyone, and begins when
an auditor receives a collection of receipts. Next, the auditor
requests a checkpoint and a ledger fragment that contains the
section of the ledger spanning the receipts. Any honest replica
that signed the receipts is guaranteed to have the checkpoint
and ledger fragment. When the auditor receives the requested
data, it verifies the ledger structure by checking the protocol
messages and their order, and validating any signatures in
the ledger—but it does not re-execute transactions. Then, the
auditor checks that the transactions referenced by the receipts

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 473

are present at the right positions in the ledger.
If the above steps have not discovered misbehavior, there

remains the possibility that at least N− f of the replicas col-
luded and agreed on an incorrect execution result. Therefore,
the auditor loads the checkpoint and replays the transactions
from the ledger fragment to check if execution results are
correct. Throughout this process, if dishonest behavior is
uncovered, the auditor can produce a universally-verifiable
proof that at least f+1 replicas misbehaved.

More formally, Alg. 4 presents the pseudocode for the
auditing process. First, the auditor receives an ordered set of
receipts R = {⟨⟨t0,i0,o0⟩,x0⟩,...,⟨⟨tk,ik,ok⟩,xk⟩} where k≥ 1
and ∀l∈ [0,k) :sl≤sl+1. Here, si is the sequence number that
is specified in xi. The auditor invokes auditReceipts (line 2)
to check if the receipts are valid and the minimum index
requirements have been satisfied. If there is a receipt that
violates the requirement in the request, all replicas that have
signed the receipt can be blamed.

After that, the auditor must obtain a ledger fragment and
checkpoint that are complete in relation to R (line 3). We
formally define completeness in Appx. B, but intuitively
the ledger fragment must be (i) well-formed; (ii) include
all batches and evidence between sequence numbers sC0

and sk where sC0 is the sequence number of the checkpoint
transaction that is linked in the first receipt; and (iii) include
view-change messages for all views in R . The transaction
and checkpoint at sC0 must match the checkpoint linked
in the first receipt. A ledger fragment is valid if it can be
produced by a sequence of correct primaries in a sequence
of views where there are at most f Byzantine failures. It is
well-formed if it is valid, or if it would be valid if not for the
incorrect execution of some transactions and/or checkpoints.
A correct replica always maintains a well-formed ledger.

In getCheckpointAndLedger (line 3), the auditor, with the
help of an enforcer, obtains ledger fragments and checkpoints
from replicas that signed the latest receipt with the highest
view number in R (line 10). The auditor checks if responses
are complete in relation to the receipts. If a ledger fragment
is not well-formed or misses the required view-change mes-
sages, the auditor can blame the responding replica. Below,
we assume that the responses contain no invalid signatures,
we show in Appx. B how the auditor handles that case.

If the batch at sC0 is not a checkpoint or the checkpoint
digest does not match the first receipt, the auditor can assign
blame to the intersection of replicas that have signed the
batch at sC0 + C and the first receipt, as the checkpoint
reference in a receipt must always link to the last committed
checkpoint. If the fragment is not long enough to include
the sequence number in one of the receipts, there must be
misbehavior during a view change. The auditor can then
blame at least f+1 misbehaving replicas: the intersection
of the replicas that participated in a view change and that
also signed the receipt. A correctness proof and the details
of obtaining a complete ledger fragment and checkpoint are

Alg. 4: Ledger Auditing (simplified)

1 on audit(R ={⟨⟨t0,i0,o0⟩,x0⟩,...,⟨⟨tk,ik,ok⟩,xk⟩})
2 auditReceipts(R)
3 C0,sC0 ,L←getCheckpointAndLedger(x0,xk)

4 verifyReceiptsInLedger(R ,L)
5 replayLedger(C0,sC0 ,L)

6 on auditReceipts(R ={⟨⟨t0,i0,o0⟩,x0⟩,...,⟨⟨tk,ik,ok⟩,xk⟩})
7 foreach ⟨⟨ti,ii,oi⟩,xi⟩∈R do
8 if not verifyReceipt(⟨ti,ii,oi⟩,xi) then return invalidReceipt
9 on getCheckpointAndLedger(x0,xk)

10 for C0,sC0 ,L ,r←enforcerGetLedgerPackage(xo,xk) do
11 uPoM←nil
12 foreach s∈sC0 ,...,seqno(xk+P) do
13 if not isBatchWellformed(L ,s) then
14 F ←createLedgerFragment(nil,s,L)
15 uPoM←⟨nil,F ,r⟩; send(uPoM); return
16 if uPoM=nil then return C0,sC0 ,L
17 on verifyReceiptsInLedger(R ,L)
18 foreach ⟨⟨ti,ii,oi⟩,xi =⟨v,s,H(kp),...Ks,S⟩⟩∈R do
19 if not isReceiptInBatch(xi,L) then
20 F ←createLedgerFragment(nil,s,L)
21 uPoM←⟨F ,⟨⟨ti,ii,oi⟩,xi⟩⟩; send(uPoM); return
22 on replayLedger(C0,sC0 ,L)
23 scp←sC0 ; cp←C0; kv← loadCheckpoint(sC0 ,C0)

24 foreach s∈sC0 ,...,seqno(xk) do
25 foreach ⟨ti,ii,oi⟩∈s do
26 L ,kv←replayRequest(L ,kv,ti)
27 if not verifyReplay(L ,kv,⟨ti,ii,oi⟩) then
28 F ←createLedgerFragment(scp,s,L)
29 uPoM←⟨ii,F ,cp⟩; send(uPoM); return
30 if s mod C=0 then
31 scp←s; cp←createCheckpoint(kv)

described in Appx. B, Lemmas 4 and 6.
After obtaining a well-formed ledger, in verifyReceiptsIn-

Ledger (line 4), the auditor compares the receipts with the
ledger. If a receipt ⟨⟨tk,ik,ok⟩,xk⟩ does not match the batch
at sk in the ledger fragment, we show in Lemma 5 that the
auditor can assign blame to f+1 misbehaving replicas. In
summary, there are three cases: (i) the pre-prepare with
sequence number sk in L has a view number vl = vk;
(ii) vl > vk; or (iii) vl < vk. In case (i), the ledger fragment
contains evidence that the batch with sequence number sk has
prepared at N− f replicas. Since at least f+1 of the replicas
that have prepared the batch also signed the receipt, they
can be blamed. In case (ii), since vl > vk, there must be at
least N− f view-change messages from different replicas that
transition to a view greater than vk in the ledger fragment
but claim not to have prepared the batch in the receipt in
view vk. Since there are at least f+1 of those replicas that
also signed the receipt, they can be blamed. In case (iii), since
vk >vl and the ledger fragment is complete in relation to the
receipt, there must be at least N− f view-change messages
from different replicas that transition to a view greater than
vl in the ledger fragment. Similarly, the intersection of those
replicas and the ones that signed the receipt can be blamed.

Since N− f or more replicas may have misbehaved, it is
necessary to replay transaction execution to check if the re-
sults are correct. The auditor does not need to understand the
semantics of the service; it can retrieve the code of the stored
procedures from C0. The auditor sets the service state to the
checkpoint value and replays transactions. If replaying a trans-
action fails to match the result in the ledger, the auditor can

474 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

assign blame to any replica that signed the batch that contains
the transaction. This is shown in replayLedger (line 5).

4.2 Enforcement

Since IA-CCF provides individual accountability even if all
replicas and members misbehave, there must be an enforcer
outside of the system to obtain checkpoints and ledger
fragments for auditing, and to punish members responsible
for misbehaving replicas. For example, consortium members
may sign a binding contract to establish penalties if a uPoM
proves that one of their replicas misbehaved, or if they fail
to produce checkpoints and ledgers for auditing by an agreed
deadline. These penalties may be imposed by the enforcer
via arbitration [8] or a court of law [9].

The enforcer receives a set of receipts R from the
auditor (Alg. 4, line 10). It then verifies that the receipts are
valid, and requests all of the replicas that signed the latest
receipt with the highest view for a ledger fragment that is
complete in relation to R .

Correct replicas will respond to the enforcer quickly. If
the enforcer does not receive a response from a replica within
a reasonable duration, e.g., within minutes, it contacts the
controlling consortium member to obtain the checkpoint and
ledger. If the member fails to provide this information by an
agreed deadline, e.g., within days, it is punished according
to the contract. This is important to ensure that misbehaving
members cannot escape punishment by failing to produce
information for auditing. However, it introduces a weak
synchrony assumption that may lead to the punishment of
honest but slow members. We expect that the deadline will be
chosen conservatively to make this unlikely in practice. After
the deadline elapses, the enforcer either returns to the audi-
tor f+1 responses, or it penalizes f+1 unresponsive replicas.

The enforcer also punishes members if a uPoM proves that
one of their replicas misbehaved. When it receives a uPoM,
it checks its validity by carrying out an audit, as described
in §4.1, but the ledger fragment size and the number of
transactions to replay is bounded by the transactions between
two consecutive checkpoints. Furthermore, if there are fewer
than N− f misbehaving replicas, the uPoM does not require
the enforcer to replay transactions. If the uPoM is incorrect,
the enforcer punishes the auditor; otherwise, it punishes the
members responsible for at least f+1 misbehaving replicas.

In practice, we expect the load placed on the enforcer
to be small, because auditing is rare—IA-CCF provides
linearizability with up to f misbehaving replicas and the
enforcer penalizes entities that request information for
auditing and fail to produce a valid, minimal uPoM.

5 Reconfiguration and auditing
In this section, we describe how IA-CCF can change the
consortium membership and the active replica set (§5.1).
We explain how this impacts receipt validation (§5.2) and
auditing (§5.3).

5.1 Reconfiguration

An IA-CCF deployment must handle changes to the active
member and replica set while supporting auditing, regardless
of how many replicas misbehave. For this, IA-CCF maintains
governance data in the form of a configuration, which
includes the public signing keys for members and replicas
and an endorsement of each replica’s signing key signed by
the member responsible.

Changing the configuration enables members to change
the active replica set. This is initiated by a referendum:
members propose an updated configuration followed by the
other members voting on the proposal. The number of votes
required to pass the proposal is part of the service’s state.

When voting on proposals, members must ensure the in-
tegrity of the service, e.g., disallowing an individual member
from controlling too many replicas. Members are also limited
to adding or removing at most f replicas, which ensures that
the configuration change does not effect the service’s liveness.

A referendum is carried out through governance transac-
tions: a member proposes a new configuration by sending
a propose transaction request. This is followed by members
sending vote requests. Upon executing the final vote
transaction required for a referendum to pass at sequence
number s, the primary ends the current batch, and initiates
the reconfiguration process.

A reconfiguration first adds evidence for the referendum
to the ledger. This is done as part of the old configuration by
the primary sending P pre-prepare messages without batched
requests, called the end-of-configuration batches. The
pre-prepare message for the end-of-configuration batch at se-
quence number s+P contains evidence that the batch at s com-
mitted (§3). In addition, these pre-prepare messages include
an extra field: the committed Merkle root, which is the root of
the Merkle tree at s. This evidence is required for auditing: it
commits the replicas that signed the Pth end-of-configuration
batch to triggering the reconfiguration. Similarly, the signa-
tures of the replicas that prepared the Pth end-of-configuration
batch must be included in the ledger in the same configura-
tion. Following the first P end-of-configuration batches, the
primary pre-prepares another set of P end-of-configuration
batches. The configuration change takes effect at s+2P.

The replicas in the new configuration create a checkpoint
of the key-value store at sequence number s+2P. The
primary creates a pre-prepare for the checkpoint at s+2P+1,
followed by P start-of-configuration pre-prepare messages
with empty request batches. This ensures that a correct
replica commits the checkpoint transaction before other trans-
actions are executed in the new configuration. If any of the
end/start-of-configuration batches correspond to a checkpoint
sequence number, the checkpoint is skipped. Therefore, the
checkpoint digests dc in the pre-prepare messages always
refer to checkpoints in the same configuration.

A newly added replica first obtains the ledger and a recent

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 475

checkpoint, and replays the ledger from that checkpoint (§3.4).
Replicas that are no longer part of the new configuration retire
after sending the pre-prepare for s+2P. Removed members
and replicas should delete their private signing keys to pro-
vide forward security. This prevents them from being blamed
for future compromises, while still allowing authentication
of transactions in the ledger using their public keys.

5.2 Governance sub-ledger and receipts

When a client verifies a receipt, it must know which replicas
were active when the receipt was created. IA-CCF addresses
this with the help of the governance sub-ledger.

Governance transactions are recorded in the ledger and
used by auditors to determine the active configuration.
Clients, however, do not have a copy of the ledger, but need
to verify receipt signatures. To do this, they store receipts
for all governance transactions and, for each reconfiguration,
they also store the receipts for the Pth end-of-configuration
batch. We refer to this as the receipts of the governance
sub-ledger. A client checks that a transaction receipt for
index i is valid by considering the governance sub-ledger
from the genesis transaction gt up to i. The client verifies
the governance receipts, and if successful, the replica signing
keys at index i are used to validate the receipt (§3).

This raises the challenge of how a client determines that
it has all required governance receipts. IA-CCF includes
the ledger index of the last governance transaction in
each pre-prepare message and receipt (ig). A client can
request missing receipts from replicas by traversing the
sequence of governance receipts. It verifies received receipts
incrementally and caches them locally.

With reconfiguration, the definition of a valid receipt is
extended: a valid receipt R must include valid governance
receipts from gt up to the configuration that produced R.

5.3 Auditing

Reconfiguration introduces several new tasks for the auditor:
it must consider the governance sub-ledger with receipts;
validate that reconfigurations were executed correctly;
and ensure that that only one configuration was active for
any given index or sequence number. Next, we provide a
summary of the required changes to the auditing process; a
detailed correctness proof is included in Appx. B.2.

A client initiates an audit by sending inconsistent receipts
and the supporting governance receipts to an auditor. The
auditor replays these governance transactions to determine
the signing keys required to verify each client receipt. After
verifying the receipts, the auditor requests a ledger fragment
and checkpoint from the enforcer.

The auditor may uncover that multiple configurations were
active for a given index or sequence number, this can happen
when misbehaving replicas fork or rewrite the ledger. We call
this a fork in governance. If the auditor finds a fork, there
are two Pth end-of-configuration batch receipts with the same

preceding configuration that are not equivalent: they are at
different indices or sequence numbers, or their pre-prepare
messages do not contain the same committed Merkle root, i.e.,
they are not preceded by the same governance transactions.
In this case, the auditor assigns blame to the replicas that
signed both receipts, as a correct replica that prepares a Pth

end-of-configuration batch commits the final vote transaction
that triggers reconfiguration.

If the enforcer cannot obtain the required information for a
valid receipt R from the sequence of provided receipts, there
must be misbehaving replicas. In addition to the misbehavior
described in §4.1, the misbehaving replicas may have
created a fork in governance or incorrectly prepared the Pth

end-of-configuration batch that succeeds the configuration
that produced the receipt R (see Lemmas 8 and 11).

Another possibility is that the configuration that produced a
receipt R for a sequence number s may not match the configu-
ration that prepared the batch at s in a well-formed ledger frag-
ment. In this case, blame is again assigned to the replicas that
signed R and prepared the Pth end-of-configuration batch that
succeeds the configuration that produced R (see Lemma 9).

After assigning blame, the auditor sends a uPoM to the
enforcer with the supporting governance receipts.

6 Evaluation
We evaluate IA-CCF to understand the cost of providing
receipts (§6.1), its scalability (§6.2), the overheads of receipt
validation (§6.3), and auditing (§6.5). We finish with a
performance breakdown of IA-CCF’s design features (§6.8).
Testbeds. Our experimental setup consists of three environ-
ments: (a) a dedicated cluster with 16 machines, each with an
8-core 3.7-Ghz Intel E-2288G CPU with 16 GB of RAM and
a 40 Gbps network with full bi-section bandwidth; (b) a LAN
environment in the Azure cloud, with Fsv2-series VMs with
16-core 2.7-GHz Intel Xeon 8168 CPUs and 7 Gbps network
links; and (c) a WAN environment with the same VMs across
3 Azure regions (US East, US West 2, US South Central). All
machines run Ubuntu Linux 18.04.4 LTS.
Implementation. Our IA-CCF prototype is based on
CCF v0.13.2 [45] and has approx. 40,000 lines of C++ code.
It uses the formally-verified Merkle trees and SHA functions
of EverCrypt [51], the MbedTLS library [41] for client
connections, and secp256k1 [61] for all secure signatures.
Replicas create secure communication channels using a
Diffie–Hellman key exchange.

Pipelining batch execution (P in Alg. 1) improves IA-
CCF’s throughput. We use P=2 for the LAN and P=6 for the
WAN, with maximum batch sizes of 300 and 800 requests, re-
spectively. Checkpoints are created every 10K or 4K sequence
numbers in the LAN and WAN environments, respectively.
Benchmarks. We use the SmallBank benchmark [2], which
models a bank with 500K customer accounts. Clients
randomly execute 5 transaction types: deposit, transfer, and
withdraw funds; check account balances; and amalgamate ac-

476 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Tab. 1: Size of ledger entries (SmallBank)

Ledger entry type Size (bytes)
f = 1 f = 3

Transaction (SmallBank) 216–358
Pre-prepare 277
Prepare Evidence 298 894
Nonces 32 64

0 10 20 30 40 50
Throughput (1000 tx/s)

0

25

50

75

100

La
te

nc
y

(m
s)

1500

2000
Hyperledger Fabric 2.2
IA-CCF-PeerReview

IA-CCF
IA-CCF-NoReceipt

Fig. 4: Transaction throughput/latency (f=1, dedicated cluster)

counts. The size of the ledger entries is shown in Tab. 1 where
only the Prepare Evidence and Nonces entries depend on f .

Since IA-CCF’s design targets accountability with more
than f failures, we omit results from experiments with fewer
failures. In such cases, IA-CCF’s performance matches that of
prior work, because it uses well-established BFT techniques,
such as view changes, sending messages via authenticated
channels and client-signed requests [12, 20]. Instead, we
consider the performance of receipt validation (§6.3) and
auditing (§6.5), which are new contributions of IA-CCF.

Transaction throughput is measured at the primary replica
and latency at the clients. All experiments are compute-bound.
Results are averaged over 5 runs, with min/max error bars.
Baselines. We compare against four baselines: IA-CCF-
PeerReview, which uses PeerReview for accountability [27],
i.e., replicas sign all messages and send signed acknowl-
edgements for all messages; IA-CCF-NoReceipt, an IA-CCF
variant that produces a ledger but no receipts; HotStuff [62], a
state-of-the-art BFT protocol, which is at the core of the Diem
permissioned ledger system [3]; and Hyperledger Fabric
(v. 2.2) [4], a popular open-source permissioned ledger
system. We compare against Fabric’s latest major release
that does not include a BFT consensus protocol [33] and only
tolerates crash failures using Raft [49].

6.1 Transaction throughput and latency

We explore the throughput and latency of transaction execu-
tion with 4 replicas (f=1) in the dedicated cluster, comparing
IA-CCF, IA-CCF-NoReceipt, IA-CCF-PeerReview, and Fabric.

Fig. 4 shows a throughput/latency plot as transaction load
increases. IA-CCF achieves 47,841 tx/s while maintaining
latencies below 70 ms. As the load increases, queueing
delays increase latency. IA-CCF-NoReceipt’s throughput
is 51,209 tx/s, which is only 3% higher than IA-CCF,
demonstrating the low cost of receipts.

IA-CCF-PeerReview exhibits an order of magnitude lower

Tab. 2: Request latency under low load (WAN)

average 99th percentile network
latency latency round trips

IA-CCF 183 ms 194 ms 2
HotStuff 340 ms 393 ms 4.5

0 10 20 30 40 50 60
Number of replicas

10

20

30

40

Th
ro

ug
hp

ut
(1

,0
00

 tx
/s

)

IA-CCF (LAN)
IA-CCF (WAN)

HotStuff (WAN)
IA-CCF-PeerReview (WAN)

Fig. 5: Transaction throughput vs. replica count (WAN)

throughput because all messages must be signed, e.g., a replica
must sign a reply message for each transaction in a batch. This
causes IA-CCF-PeerReview to perform two orders of magni-
tude more asymmetric cryptographic operations than IA-CCF.

Fabric’s throughput is only 1,222 tx/s, with a latency of
1.9 s. This is substantially worse than IA-CCF, despite not
using a BFT protocol. Our analysis reveals two reasons:
Fabric’s execute-order-validate model requires that replicas
issue a signature for each executed transaction, while
IA-CCF replicas only require one signature per batch; and
Fabric suffers from documented inefficiencies related to its
key-value store implementation [48].

6.2 Scalability

Next we consider the effect on transaction throughput when
increasing the number of IA-CCF replicas in the Azure WAN
environment, spanning multiple regions to reduce correlated
failures [10]. We compare against IA-CCF deployed in the
Azure LAN environment, IA-CCF-PeerReview, and HotStuff,
a BFT consensus protocol without a ledger or key-value store.

Fig. 5 shows that, as expected, IA-CCF’s throughput
decreases with more replicas because more signatures are
verified by each replica. Since each replica has a fixed
number of threads for checking signed pre-prepare/prepare
messages in parallel, throughput decreases when the replica
count exceeds the number of hardware threads, which is only
16 in this deployment. IA-CCF is only marginally affected
by the higher WAN latencies due to its use of pipelining, as
shown by the comparison to the LAN deployment.

HotStuff [63] achieves a throughput of 5,862 tx/s in the
WAN environment, which is worse than its reported LAN
throughput [66]. While it degrades slowly with more replicas,
even with 64 replicas its throughput remains 71% lower than
that of IA-CCF. The throughput of IA-CCF-PeerReview is
even lower since it performs more cryptographic operations.

We also measure the request latency of HotStuff and
IA-CCF under low load. As reported in Tab. 2, HotStuff’s
request latency is approximately twice that of IA-CCF’s. For

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 477

0 10 20 30 40 50
Throughput (1000 tx/s)

0

20

40

60

80

La
te

nc
y

(m
s)

Checkpoint interval
1,700 SeqNo.
10,000 SeqNo.
100,000 SeqNo.

(a) 100,000 accounts

0 10 20 30 40 50
Throughput (1000 tx/s)

0

20

40

60

80

La
te

nc
y

(m
s)

Checkpoint interval
1,700 SeqNo.
10,000 SeqNo.
100,000 SeqNo.

(b) 500,000 accounts

0 10 20 30 40 50
Throughput (1000 tx/s)

0

20

40

60

80

La
te

nc
y

(m
s)

Checkpoint interval
1,700 SeqNo.
10,000 SeqNo.
100,000 SeqNo.

(c) 1,000,000 accounts

Fig. 6: Transaction throughput/latency when varying the number of accounts and checkpoint interval (f=1, dedicated cluster)

both systems, request latency is dominated by the number
of network round trips and clients receive transaction results
with receipts in only 2 round trips in IA-CCF.

6.3 Receipt validation

We measure the time required to verify receipts, which
depends on (i) the length of the path in the Merkle tree G
and (ii) the number of signatures to be checked. Since the
number of leaves in G is bounded by the batch size, the path
length remains small: verification takes 2.1 µs and 2.3 µs for
batches of 300 and 800 requests, respectively. The overall
cost is dominated by the signature verification, which takes
18 ms and 52 ms for f=1 and f=3, respectively.

6.4 Governance sub-ledger

Next, we consider the size of the governance sub-ledger,
which is stored by clients. The sub-ledger is a collection
of receipts for every transaction that has updated the
governance of an IA-CCF deployment. A receipt’s size is
623 bytes or 1,565 bytes for f=1 or f=3, respectively. In
addition, the client must store the governance request and the
corresponding response, which have variable size. We expect
governance operations to be rare. Therefore, storing and
verifying governance sub-ledger receipts has low overhead.

6.5 Ledger auditing

Next, we want to understand auditing performance. For the
SmallBank workload, we compare execution time to auditing
time. When measuring throughput at f=1, auditing is 23%
faster than execution, because there is no network overhead,
message signing, or ledger writes. In each batch, IA-CCF
only verifies 2 f+1 rather than up to 3 f+1 signatures. For
f=4, the performance gap increases to 67%, as more replicas
add communication and cryptographic load during execution.
We observe that the bottleneck for auditing is verification of
client request signatures, which can be trivially parallelized.

6.6 Key-value store

We explore the performance impact of varying the number of
entries in the key-value store by varying the number of Small-
Bank accounts. Fig. 7 shows a throughput vs. latency plot. As
expected, throughput decreases when the number of entries in
the key-value store increases. CCF’s implementation [54] of
the key-value store uses a CHAMP map [58], whose access
time grows logarithmically with the number of items.

0 10 20 30 40 50
Throughput (1000 tx/s)

0

20

40

60

80

La
te

nc
y

(m
s)

SmallBank - number accounts
100,000 500,000 1,000,000

Fig. 7: Transaction throughput/latency with different account
numbers (f=1, dedicated cluster)

6.7 Checkpointing

We also explore the effect of checkpointing on performance.
We vary the size of the key-value store and the checkpoint
interval for the SmallBank workload. Fig. 6 shows the results
as throughput vs. latency plots. As expected, the checkpoint
overhead increases with the size of the key-value store
and the checkpoint frequency, but the overhead is low for
checkpoint intervals between 10 and 100K (approximately 1
to 10 minutes). The checkpoint interval impacts the overhead
to check uPoMs at the enforcer. We expect checkpointing
every 10 minutes to be acceptable in practice; it requires the
enforcer to replay at most 10 minutes of transactions.

6.8 Overhead breakdown

To provide a permissioned ledger with individual account-
ability, IA-CCF implements functionality that goes beyond
traditional BFT consensus protocols, e.g., generating receipts.
We now explore the impact of implementing this functionality
on IA-CCF’s throughput in the dedicated cluster.

We compare several variants of IA-CCF, each limiting
functionality further: (a) IA-CCF; (b) IA-CCF-NoReceipt, i.e.,
without creating receipts; (c) without creating checkpoints;
(d) with a small key-value store, i.e., the key-value store
fits in the CPU cache; (e) without signed client requests;
(f) using only MACs for message authentication between
replicas; (g) without a ledger; and (h) with empty requests,
i.e., without the overhead of executing transactions against
the key-value store.

Tab. 3 shows that (a)–(d) have comparable throughput, but
not verifying client signatures (e) doubles throughput. Only
using MACs instead of signatures (f) or removing the ledger
altogether (g) does not increase throughput substantially, but
removing the overhead of executing transactions against the
key-value store (h) again doubles throughput.

478 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Tab. 3: Breakdown of IA-CCF features (f=1, dedicated cluster)

Variant Throughput (tx/s)

(a) Full IA-CCF 47,841
(b) IA-CCF-NoReceipt 51,209
(c) + without checkpoints 51,288
(d) + small key-value store 53,759
(e) + without signed client requests 111,926
(f) + with MACs only 128,921
(g) + without ledger 131,959
(h) + with empty requests 299,321

HotStuff (with empty requests) 307,997
Pompē (with empty requests) 465,646

For context, we compare with two Byzantine consensus
protocols with similar functionality to (h) above, HotStuff [62]
and Pompē [66, 67]. HotStuff’s throughput is 307,997 tx/s,
but with higher latency (§6.2). By separating request ordering
and consensus, Pompē achieves a throughput of 465,646 tx/s,
also with worse latency (IA-CCF’s 12 ms to Pompē’s 73 ms).
IA-CCF could utilize Pompē’s techniques for increased
throughput by sacrificing its two round-trip latency.

These breakdown results show that IA-CCF’s overhead
comes primarily from the cryptographic operations required
for verifying client requests, followed by the transactional
key-value store, rather than the consensus protocol or the
mechanisms specific to providing individual accountability.

7 Related work
Permissioned ledgers. Many permissioned ledger sys-
tems [3, 4, 32, 52] rely on BFT consensus protocols to order
transactions. Hyperledger Besu [32] and Quorum [52] use
variants of PBFT [47, 55], which do not retain proof of
a replica’s operations, and therefore cannot assign blame.
Diem [3] uses the DiemBFT [11] consensus protocol, which is
based on HotStuff [62] and also lacks accountability features.

The IA-CCF prototype is built on top of CCF [54], an
open source [44] distributed ledger framework deployed
in the Azure cloud [43], which utilizes trusted execution
environments (TEEs) [21,35] to harden replicas. Russinovich
et al. [54] describe CCF’s programming model, receipts,
governance, and replication protocols. CCF produces
hardware attestation reports for the code running on each
replica and adds them to the ledger. The ledger is signed by
the CCF service and in the process binds CCF’s public key to
the code and hardware platform. While CCF enables auditing
and can recover a ledger when all replicas crash, it relies
on the security of TEEs, and its auditing does not guarantee
individual accountability.
Byzantine consensus [17, 20, 37] distributes trust. Recent
work on BFT protocols has focused on improving guaran-
tees [5,22,46] or performance for particular use cases [57,67].
SBFT [25] and HotStuff [62] scale to hundreds of replicas
using threshold cryptography, which prevents blame assign-
ment. For permissioned ledgers, scaling to many replicas
without growing the consortium size does not improve trust-
worthiness, and consortia typically cannot grow arbitrarily.

Other work has explored misbehavior and its impact on
Byzantine consensus. BFT2F [39] formalizes safety and
liveness guarantees after more than f replicas are compro-
mised. It provides PBFT’s guarantees with up to f failures
and provides fork* consistency with up to 2 f failures. For
permissioned ledgers, fork* consistency is not sufficient,
because it is susceptible to double-spending attacks.

Depot [40] issues proofs-of-misbehavior after observing
misbehavior, but it adopts eventual consistency, which is
incompatible with permissioned ledgers. Pompē [67] prevents
dishonest primaries from controlling the ordering of requests.
It does not address scenarios in which there are more than
f dishonest replicas though.
Accountability. PeerReview [27] ensures that distributed
nodes remain accountable for their actions. As shown in
§6.1, PeerReview incurs a high overhead when applied
to a permissioned ledger. In contrast, IA-CCF introduces
mechanisms specific to BFT state machine replication, such
as a shared ledger with a Merkle tree, to improve both regular
transaction execution and auditing.

Accountable virtual machines [26] carries out auditing
through spot checking of checkpoints, but has the same
performance overheads as PeerReview for ledgers. SNP [68]
is a networking-specific implementation of accountability,
offering provenance for routing decisions. Such specializa-
tions improve performance in particular domains, but are not
directly applicable to permissioned ledgers.

BAR [1] and Prosecutor [65] incentivize replicas to act
honestly by having honest replicas penalize misbehavior.
This weaker model allows BAR to tolerate more than 1/3
faulty replicas, while Prosecutor uses these incentives to
improve performance. If these incentives fail [31], however,
replicas share the blame.

Accountability with more than f+1 misbehaving replicas
has been discussed before [14, 15, 28]. BFT Protocol
Forensics [56] and Polygraph [19] propose a ledger auditing
mechanism, but assume that fewer than N− f replicas
misbehave. They also do not support changing replica sets.
ZLB [53] and Tendermint [14] support changes to the replica
set but also assume that fewer than N− f replicas misbehave.

8 Conclusions
In permissioned ledger systems, individual accountability is a
strong disincentive for misbehavior. IA-CCF provides the evi-
dence required to prove that f+1 or more replicas misbehaved
when clients observe safety violations (even if all replicas
fail). It offers strong consistency and security properties while
providing state-of-the-art performance compared to existing
ledger systems with weaker security guarantees. IA-CCF
achieves this by integrating evidence collection for assigning
blame with a novel ledger-based BFT consensus algorithm.
Acknowledgements. We thank our shepherd, Xiaowei Yang,
and the anonymous reviewers for their valuable feedback.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 479

References
[1] Amitanand S Aiyer, Lorenzo Alvisi, Allen Clement,

Mike Dahlin, Jean-Philippe Martin, and Carl Porth.
BAR: Fault tolerance for cooperative services. In
Proceedings of the twentieth ACM symposium on
Operating systems principles, pages 45–58, 2005.

[2] Mohammad Alomari, Michael Cahill, Alan Fekete, and
Uwe Rohm. The cost of serializability on platforms that
use snapshot isolation. In 2008 IEEE 24th International
Conference on Data Engineering, pages 576–585.
IEEE, 2008.

[3] Zachary Amsden, R Arora, S Bano, M Baudet,
S Blackshear, A Bothra, G Cabrera, C Catalini,
K Chalkias, E Cheng, et al. The Libra blockchain.
https://developers.diem.com/papers/ the-diem-
blockchain/2020-05-26.pdf , 2019.

[4] Elli Androulaki, Artem Barger, Vita Bortnikov,
Christian Cachin, Konstantinos Christidis, Angelo
De Caro, David Enyeart, Christopher Ferris, Gennady
Laventman, Yacov Manevich, et al. Hyperledger
Fabric: A distributed operating system for permissioned
blockchains. In Proceedings of the Thirteenth EuroSys
Conference, pages 1–15, 2018.

[5] Avi Asayag, Gad Cohen, Ido Grayevsky, Maya
Leshkowitz, Ori Rottenstreich, Ronen Tamari, and
David Yakira. A fair consensus protocol for transaction
ordering. In 2018 IEEE 26th International Conference
on Network Protocols (ICNP), pages 55–65. IEEE,
2018.

[6] Diem association. An independent membership
organization. https://diem.com/en-US/association/.
Accessed: 2021-03-19.

[7] J Aythora, R Burke-Agüero, A Chamayou, S Clebsch,
M Costa, N Earnshaw, L Ellis, P England, C Fournet,
M Gaylor, et al. Multi-stakeholder media provenance
management to counter synthetic media risks in news
publishing. In Proc. International Broadcasting
Convention (IBC), 2020.

[8] American bar association. Arbitration. https:
//www.americanbar.org/groups/dispute_resolution/
resources/DisputeResolutionProcesses/arbitration/.
(Accessed on 03/27/2021).

[9] American bar association. How courts work. https:
//www.americanbar.org/groups/public_education/
resources/law_related_education_network/
how_courts_work/discovery/. (Accessed on
03/27/2021).

[10] Jeff Barr, Attila Narin, and Jinesh Varia. Building
fault-tolerant applications on AWS. Amazon Web
Services, pages 1–15, 2011.

[11] Mathieu Baudet, Avery Ching, Andrey Chursin, George
Danezis, François Garillot, Zekun Li, Dahlia Malkhi,
Oded Naor, Dmitri Perelman, and Alberto Sonnino.
State machine replication in the Libra blockchain. The
Libra Assn., Tech. Rep, 2019.

[12] Alysson Bessani, João Sousa, and Eduardo EP Alchieri.
State machine replication for the masses with BFT-
SMaRt. In 2014 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks,
pages 355–362. IEEE, 2014.

[13] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signa-
tures from the weil pairing. In International Conference
on the Theory and Application of Cryptology and
Information Security, pages 514–532. Springer, 2001.

[14] Ethan Buchman. Tendermint: Byzantine fault tolerance
in the age of blockchains. PhD thesis, The University
of Guelph, 2016.

[15] Vitalik Buterin and Virgil Griffith. Casper the friendly
finality gadget. arXiv preprint arXiv:1710.09437, 2017.

[16] Carole Cadwalladr. Another huge data
breach, another stony silence from facebook.
https://www.theguardian.com/technology/2021/
apr/11/another-huge-data-breach-another-stony-
silence-from-facebook. (Accessed on 05/04/2021).

[17] Miguel Castro and Barbara Liskov. Practical Byzantine
fault tolerance. In OSDI, volume 99, pages 173–186,
1999.

[18] Miguel Castro and Barbara Liskov. Practical Byzantine
fault tolerance and proactive recovery. ACM Transac-
tions on Computer Systems (TOCS), 20(4):398–461,
2002.

[19] Pierre Civit, Seth Gilbert, and Vincent Gramoli. Poly-
graph: Accountable Byzantine agreement. In 2021 IEEE
41st International Conference on Distributed Comput-
ing Systems (ICDCS), pages 403–413. IEEE, 2021.

[20] Allen Clement, Mirco Marchetti, Edmund Wong,
Lorenzo Alvisi, and Mike Dahlin. BFT: The time is now.
In Proceedings of the 2nd Workshop on Large-Scale Dis-
tributed Systems and Middleware, pages 1–4, 2008.

[21] Victor Costan and Srinivas Devadas. Intel SGX
explained. Cryptology ePrint Archive, 2016.

[22] Tyler Crain, Vincent Gramoli, Mikel Larrea, and Michel
Raynal. DBFT: Efficient leaderless Byzantine consen-
sus and its application to blockchains. In 2018 IEEE

480 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://developers.diem.com/papers/the-diem-blockchain/2020-05-26.pdf
https://developers.diem.com/papers/the-diem-blockchain/2020-05-26.pdf
https://diem.com/en-US/association/
https://www.americanbar.org/groups/dispute_resolution/resources/DisputeResolutionProcesses/arbitration/
https://www.americanbar.org/groups/dispute_resolution/resources/DisputeResolutionProcesses/arbitration/
https://www.americanbar.org/groups/dispute_resolution/resources/DisputeResolutionProcesses/arbitration/
https://www.americanbar.org/groups/public_education/resources/law_related_education_network/how_courts_work/discovery/
https://www.americanbar.org/groups/public_education/resources/law_related_education_network/how_courts_work/discovery/
https://www.americanbar.org/groups/public_education/resources/law_related_education_network/how_courts_work/discovery/
https://www.americanbar.org/groups/public_education/resources/law_related_education_network/how_courts_work/discovery/
https://www.theguardian.com/technology/2021/apr/11/another-huge-data-breach-another-stony-silence-from-facebook
https://www.theguardian.com/technology/2021/apr/11/another-huge-data-breach-another-stony-silence-from-facebook
https://www.theguardian.com/technology/2021/apr/11/another-huge-data-breach-another-stony-silence-from-facebook

17th International Symposium on Network Computing
and Applications (NCA), pages 1–8. IEEE, 2018.

[23] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer.
Consensus in the presence of partial synchrony. Journal
of the ACM (JACM), 35(2):288–323, 1988.

[24] Dan Goodin. Equifax website hack exposes data for
~143 million us consumers. https://arstechnica.com/
information-technology/2017/09/equifax-website-
hack-exposes-data-for-143-million-us-consumers/.
(Accessed on 05/04/2021).

[25] Guy Golan Gueta, Ittai Abraham, Shelly Grossman,
Dahlia Malkhi, Benny Pinkas, Michael Reiter, Dragos-
Adrian Seredinschi, Orr Tamir, and Alin Tomescu.
SBFT: A scalable and decentralized trust infrastructure.
In 2019 49th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN),
pages 568–580. IEEE, 2019.

[26] Andreas Haeberlen, Paarijaat Aditya, Rodrigo Ro-
drigues, and Peter Druschel. Accountable virtual
machines. In 9th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 10), 2010.

[27] Andreas Haeberlen, Petr Kouznetsov, and Peter
Druschel. PeerReview: Practical accountability for
distributed systems. ACM SIGOPS operating systems
review, 41(6):175–188, 2007.

[28] Maurice Herlihy and Mark Moir. Blockchains and
the logic of accountability: Keynote address. In
Proceedings of the 31st Annual ACM/IEEE Symposium
on Logic in Computer Science, pages 27–30, 2016.

[29] Maurice P Herlihy and Jeannette M Wing. Lineariz-
ability: A correctness condition for concurrent objects.
ACM Transactions on Programming Languages and
Systems (TOPLAS), 12(3):463–492, 1990.

[30] Chris Hourihan and Bryan Cline. A look back: US
healthcare data breach trends. Health Information
Trust Alliance. Retrieved from https://hitrustalliance.
net/content/uploads/2014/05/HITRUST-Report-US-
Healthcare-Data-Breach-Trends. pdf, 2012.

[31] Crypto Hustle. Krypton recovers from a new type of
51% network attack. http://cryptohustle.com/krypton-
recovers-from-a-new-type-of-51-network-attack/.
(Accessed on 12/06/2020).

[32] Hyperledger. Hyperledger Besu enterprise Ethereum
client (Hyperledger Besu). https://besu.hyperledger.org/
en/stable/. (Accessed on 12/06/2020).

[33] Hyperledger. The ordering service. https://hyperledger-
fabric.readthedocs.io/en/release-2.2/orderer/
ordering_service.html. (Accessed on 12/05/2020).

[34] IBM. we.trade | ibm. https://www.ibm.com/case-
studies/wetrade-blockchain-fintech-trade-finance.
(Accessed on 05/04/2021).

[35] David Kaplan, Jeremy Powell, and Tom Woller. AMD
memory encryption. White paper, 2016.

[36] Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas
Gailly, Ismail Khoffi, Linus Gasser, and Bryan Ford.
Enhancing bitcoin security and performance with strong
consistency via collective signing. In 25th USENIX
Security Symposium (USENIX Security 16), pages
279–296, Austin, TX, 2016. USENIX Association.

[37] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen
Clement, and Edmund Wong. Zyzzyva: Speculative
byzantine fault tolerance. In Proceedings of twenty-first
ACM SIGOPS symposium on Operating systems
principles, pages 45–58, 2007.

[38] Hemi Leibowitz, Ania M Piotrowska, George Danezis,
and Amir Herzberg. No right to remain silent: Isolating
malicious mixes. In 28th USENIX security symposium
(USENIX security 19), pages 1841–1858, 2019.

[39] Jinyuan Li and David Maziéres. Beyond one-third
faulty replicas in Byzantine fault tolerant systems. In
NSDI, 2007.

[40] Prince Mahajan, Srinath Setty, Sangmin Lee, Allen
Clement, Lorenzo Alvisi, Mike Dahlin, and Michael
Walfish. Depot: Cloud storage with minimal trust. ACM
Transactions on Computer Systems (TOCS), 29(4):1–38,
2011.

[41] SSL Library mbed TLS / PolarSSL. https:
//tls.mbed.org/. (Accessed on 12/09/2020).

[42] Ralph C Merkle. A digital signature based on a
conventional encryption function. In Conference on
the theory and application of cryptographic techniques,
pages 369–378. Springer, 1987.

[43] Microsoft. Confidential ledger - distributed ledger tech-
nology | Microsoft Azure. https://azure.microsoft.com/
en-us/services/azure-confidential-ledger/. (Accessed
on 02/04/2022).

[44] Microsoft. Microsoft/CCF: Confidential Consor-
tium Framework. https://github.com/microsoft/ccf.
(Accessed on 02/01/2022).

[45] Microsoft. Release ccf-0.13.2 · microsoft/CCF. https:
//github.com/microsoft/CCF/releases/tag/ccf-0.13.2.
(Accessed on 01/13/2022).

[46] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and
Dawn Song. The honey badger of BFT protocols. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security, pages 31–42, 2016.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 481

https://arstechnica.com/information-technology/2017/09/equifax-website-hack-exposes-data-for-143-million-us-consumers/
https://arstechnica.com/information-technology/2017/09/equifax-website-hack-exposes-data-for-143-million-us-consumers/
https://arstechnica.com/information-technology/2017/09/equifax-website-hack-exposes-data-for-143-million-us-consumers/
http://cryptohustle.com/krypton-recovers-from-a-new-type-of-51-network-attack/
http://cryptohustle.com/krypton-recovers-from-a-new-type-of-51-network-attack/
https://besu.hyperledger.org/en/stable/
https://besu.hyperledger.org/en/stable/
https://hyperledger-fabric.readthedocs.io/en/release-2.2/orderer/ordering_service.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/orderer/ordering_service.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/orderer/ordering_service.html
https://www.ibm.com/case-studies/wetrade-blockchain-fintech-trade-finance
https://www.ibm.com/case-studies/wetrade-blockchain-fintech-trade-finance
https://tls.mbed.org/
https://tls.mbed.org/
https://azure.microsoft.com/en-us/services/azure-confidential-ledger/
https://azure.microsoft.com/en-us/services/azure-confidential-ledger/
https://github.com/microsoft/ccf
https://github.com/microsoft/CCF/releases/tag/ccf-0.13.2
https://github.com/microsoft/CCF/releases/tag/ccf-0.13.2

[47] Henrique Moniz. The Istanbul BFT consensus
algorithm. arXiv preprint arXiv:2002.03613, 2020.

[48] Takuya Nakaike, Qi Zhang, Yohei Ueda, Tatsushi
Inagaki, and Moriyoshi Ohara. Hyperledger Fabric
performance characterization and optimization using
GoLevelDB benchmark. In 2020 IEEE International
Conference on Blockchain and Cryptocurrency (ICBC),
pages 1–9. IEEE, 2020.

[49] Diego Ongaro and John Ousterhout. In search of an
understandable consensus algorithm. In 2014 USENIX
Annual Technical Conference (USENIX ATC 14), pages
305–319, 2014.

[50] Panavia. Introduction. https://www.panavia.de/
company/introduction/. (Accessed on 05/04/2021).

[51] Jonathan Protzenko, Bryan Parno, Aymeric Fromherz,
Chris Hawblitzel, Marina Polubelova, Karthikeyan
Bhargavan, Benjamin Beurdouche, Joonwon Choi, An-
toine Delignat-Lavaud, Cédric Fournet, et al. Evercrypt:
A fast, verified, cross-platform cryptographic provider.
In 2020 IEEE Symposium on Security and Privacy (SP),
pages 983–1002. IEEE, 2020.

[52] Quorum. A permissioned implementation of Ethereum
supporting data privacy. https://github.com/ConsenSys/
quorum. Accessed: 2020-11-27.

[53] Alejandro Ranchal-Pedrosa and Vincent Gramoli. ZLB:
A blockchain to tolerate colluding majorities. arXiv
preprint arXiv:2007.10541, 2020.

[54] Mark Russinovich, Edward Ashton, Christine Avanes-
sians, Miguel Castro, Amaury Chamayou, Sylvan Cleb-
sch, Manuel Costa, Cédric Fournet, Matthew Kerner,
Sid Krishna, et al. CCF: A framework for building con-
fidential verifiable replicated services. Technical report,
Technical Report MSR-TR-2019-16, Microsoft, 2019.

[55] Roberto Saltini and David Hyland-Wood. IBFT 2.0: A
safe and live variation of the IBFT blockchain consensus
protocol for eventually synchronous networks. arXiv
preprint arXiv:1909.10194, 2019.

[56] Peiyao Sheng, Gerui Wang, Kartik Nayak, Sreeram
Kannan, and Pramod Viswanath. BFT protocol
forensics. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security,
pages 1722–1743, 2021.

[57] Chrysoula Stathakopoulou, Tudor David, and Marko
Vukolić. Mir-BFT: High-throughput BFT for
blockchains. arXiv preprint arXiv:1906.05552, 2019.

[58] Michael J Steindorfer and Jurgen J Vinju. Fast and
lean immutable multi-maps on the JVM based on

heterogeneous hash-array mapped tries. arXiv preprint
arXiv:1608.01036, 2016.

[59] Nick Szabo. The idea of smart contracts. Nick Szabo’s
Papers and Concise Tutorials, 6, 1997.

[60] Gavin Wood et al. Ethereum: A secure decentralised
generalised transaction ledger. Ethereum project yellow
paper, 151(2014):1–32, 2014.

[61] Pieter Wuille. libsecp256k1. URL:
https://github.com/bitcoin/secp256k1, 2018.

[62] Maofan Yin, Dahlia Malkhi, Michael K Reiter,
Guy Golan Gueta, and Ittai Abraham. Hotstuff: BFT
consensus with linearity and responsiveness. In
Proceedings of the 2019 ACM Symposium on Principles
of Distributed Computing, pages 347–356, 2019.

[63] Ted Yin and Dahlia Malkhi. GitHib - HotStuff.
https://github.com/hot-stuff/libhotstuff/commit/
df8328be09baeb81b7aaa037022eedaa7a416598.
(Accessed on 04/15/2021).

[64] Aydan R Yumerefendi and Jeffrey S Chase. The role
of accountability in dependable distributed systems. In
Proceedings of HotDep, volume 5, pages 3–3. Citeseer,
2005.

[65] Gengrui Zhang and Hans-Arno Jacobsen. Prosecutor:
An efficient BFT consensus algorithm with behavior-
aware penalization against Byzantine attacks. In
Middleware, 2021.

[66] Yunhao Zhang. GitHub - yhzhang0128/archipelago-
hotstuff: the artifact for our OSDI’20 paper.
https://github.com/yhzhang0128/archipelago-hotstuff.
(Accessed on 04/27/2021).

[67] Yunhao Zhang, Srinath Setty, Qi Chen, Lidong Zhou,
and Lorenzo Alvisi. Byzantine ordered consensus
without Byzantine oligarchy. In 14th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 20), pages 633–649, 2020.

[68] Wenchao Zhou, Qiong Fei, Arjun Narayan, Andreas
Haeberlen, Boon Thau Loo, and Micah Sherr. Secure
network provenance. In Proceedings of the twenty-third
ACM symposium on operating systems principles, pages
295–310, 2011.

A Proof of L-PBFT linearizability
We present a correctness proof for L-PBFT. In particular, we
show that early execution (Lemma 2) and the nonce commit-
ment scheme (Lemma 3) are equivalent to their counterpart
features in PBFT. In Thm. 1, we show linearizability of
L-PBFT.

482 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.panavia.de/company/introduction/
https://www.panavia.de/company/introduction/
https://github.com/ConsenSys/quorum
https://github.com/ConsenSys/quorum
https://github.com/hot-stuff/libhotstuff/commit/df8328be09baeb81b7aaa037022eedaa7a416598
https://github.com/hot-stuff/libhotstuff/commit/df8328be09baeb81b7aaa037022eedaa7a416598
https://github.com/yhzhang0128/archipelago-hotstuff

Lemma 1 (Rollback). Any honest L-PBFT replica can
roll back a suffix of the sequence of previously executed
transaction batches.

Proof. L-PBFT’s state is distributed across several entities:
a key-value store kv; a Merkle tree M; a ledger L; a set of
requests waiting to be ordered T ; a message store M ; and a
nonce store K . Therefore, to roll back a batch of transactions,
it must be possible to roll back all of these entities.

Key-value store kv. The key-value store maintains a roll back
transaction log. This enables transactions to be rolled back at
a single transaction granularity. Thus, the last executed batch
of transactions can be rolled back.

Merkle tree M. When a new node is added to L-PBFT’s
Merkle tree, it becomes the right-most leaf of the tree. The
value of a node in the tree is never updated, and a node can
only be deleted if it is the right-most node in the tree. Thus,
during roll back, it is possible to remove the nodes from
the right of the tree that represent the last batch of executed
transactions (in reverse order).

Ledger L . The ledger is represented by a file written to the
disk by each replica. L-PBFT stores the index of all entries
written to the ledger. To roll back the last executed batch,
a L-PBFT replica truncates the ledger file to just before the
first entry of the batch.

Transaction store T . It is not necessary to undo changes to
the transaction store. Transaction requests that are removed
can be retransmitted by the client or other replicas if needed.

Message store M , nonce store K . All items in the trans-
action and nonce stores are indexed by sequence number
and view. Since roll back occurs only during a view change,
and each item is associated with a view, it is not necessary
to modify the message and nonce stores, because honest
replicas never send more than one item of a given type for
the same sequence number and view.

Therefore, it is possible to roll back a suffix of the sequence
of transaction batches executed by L-PBFT replicas.

Lemma 2 (Early execution). L-PBFT’s early execution and
PBFT execution agree on all committed transactions.

Proof. In both PBFT and L-PBFT, the primary determines
the order of request execution by ordering requests into
batches and assigning numbers to batches in pre-prepare
messages. In PBFT, requests are executed after commit
and clients only accept results after transactions commit. In
L-PBFT, requests are executed earlier, before the request
even prepare, but the replicas only reply to clients after they
prepare the requests and clients wait for matching replies
from N− f replicas. This ensures that they only obtain the
transaction results after they commit as in PBFT.

As in PBFT, a faulty primary may cause requests for which
pre-prepares are sent not to commit. L-PBFT deals with this
case by rolling back early execution (see Lemma 1).

Lemma 3 (Nonce commitment). The nonce commitment
scheme is equivalent to replicas signing commit messages.

Proof. L-PBFT, like PBFT, signs pre-prepare and prepare
messages. Unlike PBFT, L-PBFT does not sign commit
messages. Replicas sample a fresh random nonce for each
pre-prepare or prepare message with sequence number s at
view v, and add a hash of this nonce to the signed payloads.
Later in the protocol, replicas include the nonce in the commit
message, instead of an extra signature.

We show that this provides the same standard crypto-
graphic security as the signature scheme (namely, resistance
to existential forgery against chosen-message attacks) as
long as the cryptographic hash function is second pre-image
resistant on random inputs. Since the addition of a nonce
to the signed payloads is injective, a forgery of a L-PBFT
authenticator for a pre-prepare or prepare message yields
a forgery against the signature scheme. A forgery of an
authenticator for a commit message, i.e., a value with the
same hash as a fresh random nonce that has not yet been
revealed, is a second pre-image collision.

Theorem 1. L-PBFT is linearizable.

Proof. L-PBFT changes the PBFT algorithm by adding early
execution and the nonce commitment scheme. Lemmas 2 and
3 show that these preserve the behavior of PBFT.

B Proof of auditing correctness
First, we present the correctness proof for auditing without
governance transactions and reconfiguration (§B.1). Then,
we extend the proof to include governance transactions and
reconfiguration (§B.2).

B.1 Correctness of auditing without reconfiguration

We begin with a description of terminology and notation.
In §B.1.1 and Lemma 4, we then prove that, given a set of
receipts, the auditor, with the help of the enforcer, can obtain
a ledger package that is complete in relation to the receipts
(or assign blame to f+1 misbehaving or slow replicas).
A complete ledger package contains all evidence that is
necessary for the auditor to assign blame to misbehaving
replicas if the receipts reflect any linearizability violation.
In §B.1.2 and Lemma 5, we show that, if a receipt does
not appear correctly in a ledger package that is complete in
relation to it, the auditor can assign blame to at least f+1
misbehaving replicas. In §B.1.3 and Lemma 6, using the
previous lemmas, we first prove that the auditor can assign
blame correctly if it is given a set of receipts that reflects a

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 483

serializability violation. Finally, Theorem 2 proves that, if a
set of receipts reflects any linearizability violation, the auditor
can assign blame to f+1 misbehaving or slow replicas.

Minimum ledger index. Each client transaction request
includes a field that specifies the minimum ledger index
that it can be executed at. Correct replicas do not order a
transaction t at ledger index i, unless i≥mi where mi is the
minimum index value of t. Correct clients set the minimum
index of a transaction to at least Mi+1 where Mi is the largest
value of the ledger index that they know of from the receipts
that they have collected. The minimum index value is used to
capture transaction dependencies efficiently and to reduce the
amount of information that needs to be stored and transmitted
to audit linearizability violations.

Ledger well-formedness and validity. A ledger fragment is
valid if it can be produced by a sequence of correct primaries
when there are at most f misbehaving replicas.

A ledger fragment is well-formed if either (i) it is valid,
or (ii) it would be valid if not for the incorrect execution of
one or more transactions, one or more incorrect checkpoint
digests, or one or more invalid signatures or nonces.

A well-formed ledger matches the structural specifications
of the L-PBFT protocol, i.e.,

• it specifies a serial ordering of transactions/entries, which
respects their minimum ledger indices; and

• it includes evidence, and checkpoints at the required places.

A valid ledger is always well-formed, but a well-formed
ledger can be invalid. A correct replica will never have
a malformed ledger fragment, because replicas check the
well-formedness of ledgers that they fetch. A correct replica
may have an invalid ledger fragment. A ledger fragment can
be well-formed but invalid only if there have at some point
existed more than N− f−1 misbehaving replicas.

Notation. Given a receipt ⟨⟨t j,i j,o j⟩,x j⟩, we denote ⟨t j,i j,o j⟩
by tio j. Unless explicitly defined otherwise, s j refers to the
sequence number in x j of the receipt ⟨tio j,x j⟩.

We say that a replica has “signed a receipt” if its signa-
ture is recorded in the receipt in the pre-prepare/prepare
signatures’ fields (σp or in ∑s).

Receipt validity. A receipt is valid if it is verifiable by Alg. 3.

Preparement evidence for a batch. The preparement
evidence for a batch is N− f signed pre-prepare/prepare
messages for the batch, i.e., P in §3.

Checkpoint sequence numbers. Let ⟨tio j, x j⟩ be a valid
receipt, dC j be the checkpoint digest in x j, and C be the
checkpoint interval. Anyone can calculate the sequence
number at which the digest of the checkpoint is expected to
be equal to dC j as follows: checkpoints are always taken at
sequence numbers that are multiples of C and the digest in
the receipt refers to the digest at the sequence number of the
penultimate checkpoint transaction before s j (except the first

C transactions, which have the digest at genesis). So given
s j, the sequence number with the corresponding checkpoint
digest, scp, can be calculated as

scp=

{
0 if s j <C
C
(
⌈ s j

C ⌉−2
)

otherwise.

Note that the value of the digest itself is recorded in
the last checkpoint transaction before s j (except the first
C transactions), i.e., the checkpoint transaction that follows
the one at scp. That checkpoint transaction is at{

0 if s j <C
scp+C otherwise.

We assume that the genesis transaction gt is at sequence
number 0.

Fetching checkpoints. Slow replicas can be brought up to
date by fetching checkpoints and ledger fragments. When a
correct replica fetches a checkpoint at sequence number s, it
retrieves the ledger up to s+C+P. It first verifies the signa-
tures in the evidence for the checkpoint transactions at s and
s+P. Note that the replicas that signed the checkpoint transac-
tion at s vouch for the validity of the ledger fragment between
s−C and s, whereas the replicas that signed the checkpoint
transaction at s+C vouch for the digest of the checkpoint at s.

A correct replica, then, verifies that the digest of the check-
point that it fetched matches the value recorded at s+C. It also
checks, for each checkpoint transaction at sequence number
s′ in the ledger, that the ledger’s Merkle root at s′ matches
the root in the evidence for the transaction at s′. Finally, the
replica replays the ledger fragment between s+1 and s+C.

As noted previously, a correct replica may have a well-
formed ledger fragment that includes invalid signatures as
replicas do not verify all signatures in the ledger fragments
that they fetch. Therefore, when contacted for an audit, a
correct replica never returns a ledger fragment that it fetched
with a checkpoint at sequence number s, without including
the checkpoint transaction at s+C and the evidence for that
transaction.

B.1.1 Obtaining the ledger

Ledger package. A ledger package from a replica consists
of one to four components:

1. a ledger fragment F that contains entries that locally
prepared at the replica;

2. an optional suffix U that contains entries that were
preprepared atomically after a view-change but not yet
prepared at the replica;

3. an optional message box E that contains some of the
messages from the replica’s message box M ; and

4. an optional checkpoint cp.

484 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Complete ledger package. Let R be a set of valid receipts;
smax be the maximum sequence number in R ; smin be the
sequence number of the checkpoint whose digest is expected
to equal the checkpoint digest in the receipt with the smallest
sequence number in R (smin can be calculated as described
in the previous section); vmin and vmax be the minimum and
maximum view numbers in the receipts in R , respectively.

A ledger package is complete in relation to R if all of the
following are true:

• F +U is well-formed;
• if smin=0, cp contains the checkpoint at genesis (empty);

otherwise, the digest of cp is equal to the one in the second
checkpoint transaction in F +U;

• F includes at least one set of view-change and new-view
messages for a view less than or equal to vmin + 1 (vmin
requirement), and one set of view-change and new-view
messages for a view greater than or equal to vmax (vmax
requirement);

• All signatures in F +U and E are valid.

and one of the following is true:

• F includes entries between smin and smax+P;
• F includes entries between smin and smax + c where

c∈ [0,P). E contains P−c valid preparement evidence for
entries from smax−c to smax; or

• F includes entries between smin and e=max(smin,smax−c)
where c∈ [1,P]. E contains valid preparement evidence for
entries from max(smin,e−P) to e. The suffix U contains
entries between e + 1 and smax that are preprepared but
not prepared in some view v′ ≥ vmax and E contains
preparement evidence from a view <v′ for entries between
e+1 and smax.

Lemma 4 (Obtaining a complete ledger package). Given a
set of valid receipts R , an auditor can either obtain a ledger
package that is complete in relation to R , or assign blame
to at least f +1 misbehaving or slow replicas.

Proof. Select from the receipts in R , the receipts with the
highest view number vmax. Then, from those receipts select
the receipts with the highest sequence number. Finally,
among those, let Rvmax be the receipt with the highest index
number. (We assume there is no tie; otherwise, the auditor
assigns blame to the replicas that signed both tied receipts.)

The enforcer asks all replicas that signed Rvmax for a ledger
package that is complete in relation to R . We assume that
correct replicas or members respond to the enforcer before
the agreed deadline. Once the enforcer has responses from
f +1 replicas, it relays the responses to the auditor; otherwise
at the deadline, the enforcer assigns blame to at least f +1
misbehaving or slow replicas.

We show that a correct replica can either respond with:
a ledger package that is complete in relation to R or a

ledger package with which the auditor can assign blame to
f +1 misbehaving replicas. Therefore, after checking f +1
responses, the auditor either finds a complete ledger package,
or assigns blame to f +1 misbehaving replicas.

Note that a correct replica that is contacted by the enforcer
can always satisfy the first three conditions of completeness:
(1) correct replicas always maintain well-formed ledgers
and they record/can recalculate checkpoints; (2) the vmin
requirement can always trivially be satisfied by including
the set of view-change and new-view messages for view 0
in F . In practice, for efficiency, correct replicas would satisfy
this requirement by including the set of view-change and
new-view messages for some view v′, where v′ is the latest
possible in [0,vmin + 1]; and (3) since the replicas that are
asked are the replicas that signed Rvmax, they must have view-
change and new-view messages for view vmax. Therefore, any
replica that returns a ledger package that violates any of the
first three conditions can be assigned blame.

The fourth condition of completeness requires that all
signatures and the matching nonces in the ledger package are
correct. Let ⟨F ,U,E ,cp⟩ be a ledger package returned by a
replica. If U or E contains a message or transaction with an
invalid signature, the auditor can assign blame to the replica.
E contains messages from the replica’s message box and U
contains batches that pre-prepared at the replica. A correct
replica never considers a message or pre-prepares a batch that
includes an invalid signature. Otherwise, let sw be a sequence
number where there is a transaction or message with an
invalid signature. The auditor can look for the first checkpoint
transaction that follows sw that has no invalid signatures in
its evidence. If one exists, the auditor can assing blame to
all N− f replicas that signed that checkpoint transaction. If
no such checkpoint transaction exists, the auditor can assign
blame to the responding replica, since a correct replica never
returns a ledger fragment that it has fetched with a checkpoint
without including the committed checkpoint transaction that
records that checkpoint’s digest. So given a ledger package
from a replica, the auditor can always verify all signatures
and nonces in the package or assign blame to the responding
replica or N− f misbehaving replicas. So below, for brevity,
we can assume that the ledger package that a replica returns
has no invalid signatures or nonces.

Additionally, for a correct replica that is contacted by the
enforcer, one of the following must hold:

• The correct replica has locally prepared entries up to
at least smax: In this case, the replica can form a complete
ledger package that includes either:

(i) a well-formed ledger fragment F that contains
entries from smin to smax+P; or

(ii) a well-formed F that contains entries from smin to
smax+c where c∈ [0,P), and E that contains P−c
valid preparement evidence for entries from smax−c
to smax.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 485

• The correct replica has not locally prepared entries up to
smax and it has locally prepared entries up to e=smax−c
where c≥1: In this case, (1) a correct replica can include
entries between smin and e in a well-formed ledger fragment
F , and it can include the necessary preparement evidence
in E (if smin≤e); and (2) if the replica has any batches that
it has preprepared but not prepared due to a view-change, it
can include the related view-change and new-view messages
in F and the batches in U. Let p be the last sequence
number for which there is a batch in F +U. If p> e, the
correct replica can include the preparement evidence for
entries between e+1 and p in E as well. A correct replica
can form a ledger package as described above. If p≥smax,
the ledger package is complete, and the replica can return it.
Otherwise, p<smax. Let Rsmax be the receipt in R with the
largest sequence number smax and let vsmax be the view num-
ber in Rsmax. Note that vsmax≤vmax by definition, and in the
correct replicas’ ledger, there must exist at least one set of
view-change and new-view messages for a view v′>vsmax
such that none of the view-change messages include a
pre-prepare message for any batch at smax. The correct
replica can return a ledger package that contains these view-
change and new-view messages. The auditor can use the
returned ledger package to assign blame to the intersection
of replicas that signed Rsmax and that sent the set of view-
change messages for v′, as these replicas have prepared a
batch at smax but did not report it during the view change.

Thus, for each of the f +1 responses, either the response
is complete in relation to R , or the auditor can assign blame
to the misbehaving responder, or at least f +1 misbehaving
replicas.

By definition of completeness, if a ledger package is
complete in relation to a set of valid receipts R , it is complete
in relation to any subset of R .
Finding preparement evidence. For a batch at sr, the auditor
can find the preparement evidence for the batch as follows:

• if F contains an entry at sr+P, it is collected from there;
• if F contains the entry at sr but not at sr+P, it is collected

from E ; and
• if F does not contain an entry at sr but U contains an entry

at sr, it is also collected from E , albeit it is for the same
batch from a prior view.

B.1.2 Incompatibility

Let R = ⟨tior,xr⟩ be a valid receipt at sequence number sr.
Let ⟨F ,U,E ,cp⟩ be a ledger package that is complete in
relation to R. Let Bl be the batch that is at sr in F +U. R is
incompatible with Bl if any of the following hold:

• tr does not appear in Bl ;
• it does not appear in the irth position; or
• or is different.

Lemma 5 (Receipt-ledger incompatibility). Let R=⟨tior,xr⟩
be a valid transaction receipt for sequence number sr.
Let ⟨F ,U,E ,cp⟩ be a ledger package that is complete in
relation to R. Let Bl be the batch in the package at sr. If R
is incompatible with Bl , the auditor can assign blame to at
least f +1 misbehaving replicas.

Proof. The auditor can calculate the set of replicas that
signed Bl using the preparement evidence that can be found
as described above. These replicas are called El .

Let Er be the set of replicas that have signed the receipt.
Let vr be the view number in the receipt and vl be the view
number in the preparement evidence of Bl .

• vr = vl: Correct replicas never sign pre-prepare or
prepare messages for different batches in the same view.
Therefore, the auditor can assign blame to the replicas in
the intersection of Er and El , and |Er∩El |≥ f +1.

• vl >vr: Correct replicas include the pre-prepare messages
for the last P prepared batches in their view-change
messages until the batches commit or a different batch is
prepared at the sequence number. A correct primary always
re-preprepares the latest batch that it finds in the set of
N− f view-change messages that it receives. Thus, there
exists at least one view vc ∈ [vr +1,vl] where zero of the
N− f view-change messages for vc contain a pre-prepare
message for the batch at sequence number sr that is refer-
enced in R. The ledger package is complete in relation to R,
so F includes at least one set of view-change and new-view
messages for a view less than or equal to vr +1 (the vmin
requirement). It must also include the set of view-change
and new-view messages for vc as vl≥vc≥vr+1.
Let Ec be the set of replicas that have sent the view-change
messages to the primary for view vc. The auditor can assign
blame to the replicas that are in the intersection of Er and
Ec and |Er∩Ec|≥ f +1.

• vl <vr: There exists at least one view vc∈ [vl+1,vr] where
zero of the N− f view-change messages for vc contains a
pre-prepare message for the batch at sequence number sr
that is referenced in R. The ledger package is complete in
relation to R so F includes at least one set of view-change
and new-view messages for a view greater than or equal to
vr, so it must include the set of view-change and new-view
messages for vc as vl +1≤ vc≤ vr (the vmax requirement).
Similar to previous case afterwards.

B.1.3 Violations

Ordering receipts. Given a set of valid receipts, the auditor
can order them lexicographically based on the correspond-
ing (sequence number, index number, view number) tuples.
(We can assume that there is no tie; otherwise, the auditor
assigns blame to the replicas that signed both tied receipts.)
We say that a receipt R1 is earlier/later than a receipt R2, if it

486 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

is ordered before/after R2 with this scheme, respectively. For
example, the earliest receipt in a set of valid receipts is the one
with the lowest view number, among those with the lowest
index number, among those with the lowest sequence number.

Lemma 6 (Serializability violations). Let R =
{(tio0, x0), ..., (tiok, xk))} be a set of valid receipts that
violates serializability. Then, the auditor can assign blame
to at least f +1 misbehaving or slow replicas.

Proof. First, the auditor can obtain a ledger package
⟨F ,U,cp,E⟩ that is complete in relation to R ; otherwise,
it can assign blame to at least f + 1 misbehaving or slow
replicas by Lemma 4. Note that, as the ledger package is
complete in relation to R , it is complete in relation to any
receipt R j∈R .

Since the receipts in R violate serializability, no serial
execution of t0, ..., tk can produce io0, ..., iok. F + U is
well-formed, so there are two options for its validity:

Valid ledger. F +U is a valid ledger, so every transaction
in it is ordered and executed serially. However, the receipts in
R violate serializability. Therefore, there must exist at least
one receipt ⟨tiow,xw⟩∈R that is incompatible with the batch
at sw in F +U. By Lemma 5, the auditor can assign blame
to at least f +1 misbehaving replicas.

Invalid ledger. F +U is a well-formed but invalid ledger. So
there exists at least one transaction tw (which does not have
to be in R) that was executed incorrectly in some batch sw,
or one checkpoint that was created incorrectly.

The auditor can order R as described above. Let Re be
the earliest receipt in R . Let dC0 be the checkpoint digest
in Re. Let sC0 be the sequence number with the expected
checkpoint digest dC0 , calculated by the auditor using se and
the checkpoint interval C as previously described. If sCO =0,
but the digest in Re is not equal to the digest in the genesis
transaction, the auditor can assign blame to all replicas that
signed Re. Otherwise, the ledger package is complete with
respect to Re, and F + U is thus well-formed, so: (i) the
entry at sC0 in F +U is a checkpoint transaction; and (ii) the
checkpoint transaction in sCO+C exists as sC0 <sCO+C<se
and contains the digest of cp. If the digest of cp in the ledger
package is not dC0 , the auditor can assign blame to the
replicas that signed both the checkpoint transaction at sCO+C
and Re. The digest in that checkpoint transaction is for the
previous checkpoint and the batches before the previous
checkpoint have already committed since C>P.

Otherwise, the auditor replays the ledger starting from the
checkpoint transaction at sC0 , creating checkpoints at check-
point sequence numbers. Doing so, the auditor either obtains
⟨tw,iw,oa⟩ ≠ ⟨tw,iw,ow⟩ or finds that an incorrect checkpoint
digest is recorded at sw. In either case, the auditor can assign
blame to all replicas that signed for the batch at sw.

Theorem 2 (Linearizability violations). Let R be a set of
receipts that violate linearizability. Then, the auditor can

assign blame to at least f +1 misbehaving or slow replicas.

Proof. If the receipts also violate serializability, the auditor
can assign blame to at least f + 1 misbehaving or slow
replicas by Lemma 6.

Otherwise, since the receipts violate linearizability but
not serializability, the ordering of the transactions in R must
violate the real-time ordering of the transactions. So there
exists at least two transactions, ta and tb, in R such that
the receipt for tioa was received by the client before tb was
sent, but ia ≥ ib. tb was sent after ⟨tioa, xa⟩ was received,
so a correct client sets the minimum index l of tiob to at
least ia+1. Since ib≤ ia, the auditor can assign blame to all
replicas who have sent the receipt for tiob.

B.2 Correctness of auditing with reconfiguration

In this section, we first summarize how reconfiguration
happens, introduce new terminology, and update prior termi-
nology. Then, in Lemma 7, we prove that, if the auditor detects
a fork in governance, it can assign blame to f +1 misbehav-
ing replicas. In §B.2.1, we update the prior discussion on
obtaining a complete ledger package. In §B.2.2 and Lemma 9,
we prove that, if a receipt and the corresponding batch in a
ledger package are prepared in different configurations, the
auditor can assign blame to f +1 misbehaving replicas. In
§B.2.3, using Lemma 9, we update the prior lemma about
incompatibility. Finally, §B.2.4 updates the prior proofs on
violations, and in Theorem 3, we prove the correctness of
auditing in the complete IA-CCF ledger system.

Summary of reconfiguration. A correct primary ends
the batch it is working on once it executes a governance
transaction. Therefore, each batch includes at most one
governance transaction and ig in a receipt refers to the last
governance transaction executed before the transaction in the
receipt. The final vote transaction that is necessary to pass
a referendum triggers the configuration change. 2P end-of-
config batches follow the final vote before the configuration
change. The governance sub-ledger consists of batches and
evidence for all governance transactions. It also includes,
for each configuration, the Pth and 2Pth end-of-config
batches, which commit the final vote transaction that triggers
reconfiguration and the Pth end-of-config batch respectively.
The Pth end-of-config batch links to the final vote transaction,
because its pre-prepare message includes the Merkle root
of the batch that includes the final vote transaction.

Updates to well-formedness and validity. A ledger
fragment is valid if it can be produced by a sequence of
correct primaries in a sequence of configurations where in
each configuration there are at most f failures.

In addition to the previous structural specifications,
governance changes are serialized and include the required
end-of-config and start-of-config messages.

Note that correct replicas check the validity of the
governance sub-ledger fragments that they fetch, so their

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 487

governance sub-ledgers are valid, in addition to well-formed.

Configuration number. The configuration number of a
configuration C is the distance that it is from the configuration
at the genesis. The genesis has configuration number 0. A
configuration that follows the genesis configuration has
number 1 and so on.

Supporting governance chain of a receipt. Every receipt R
includes the index of the latest governance transaction. A
correct client makes sure that it has a matching chain of valid
governance transaction receipts for each receipt that it has.
This includes the receipts for all governance transactions
from the genesis up to the latest governance transaction,
and the receipt for the Pth end-of-config batch for each
configuration change. The supporting governance chain of a
receipt R is the sequence of governance-related receipts that
starts from the genesis transaction receipt and ends with the
Pth end-of-config batch receipt before the configuration that
signed R takes effect.

A supporting governance chain of a receipt matches a gov-
ernance sub-ledger if each receipt in the chain is compatible
with the governance sub-ledger. (For end-of-config batches,
compatibility considers committed Merkle roots as well.)
Similarly, a supporting governance chain can be a prefix of
a governance sub-ledger.

Updates to receipt validity. A receipt is valid if it is
verifiable by Alg. 3, and it is attached a valid supporting
governance chain.

Updates to calculating checkpoint sequence numbers.
If a sequence number that is multiple of the checkpoint
interval C falls into an end-of-config/start-of-config sequence,
checkpointing is skipped. A checkpoint is taken at the
beginning of each new configuration, and the digest of the
first checkpoint in a configuration is included in the first
checkpoint transaction, as opposed to the one that follows
(this is similar to genesis).

Let ⟨tio j,x j⟩ be a valid receipt and sfv be sequence number
of the final vote transaction for the last configuration change
in the supporting governance chain of the receipt. The first
checkpoint of the configuration that prepared the receipt
is expected at sfcp = sfv + 2P + 1. (Except the genesis
configuration, for which sfcp=0.)

So given s j, the sequence number scp of the checkpoint
whose digest is in x j can be calculated with

scp=

{
sfcp if s j <sfcp+C

C
(
⌈ s j−sfcp

C ⌉−2
)

otherwise.

Updates to fetching checkpoints. Following a configuration
change, a correct new replica fetches the checkpoint at the
penultimate checkpoint sequence number s′ in the previous
configuration (or the first checkpoint sequence number
if there is only one). It also retrieves the full ledger. It

replays the ledger from s′ before creating a checkpoint at the
beginning of the configuration.

Equivalence of Pth end-of-config batches. Two Pth

end-of-config batches are equivalent if they:

(i) are at the same index and sequence number; and
(ii) are preceded by the same valid governance sub-ledger

(their pre-prepares include the same committed Merkle
root).

Two receipts for Pth end-of-config batches are equivalent
if the batches specified in them are equivalent.

Governance fork. There is a fork in governance if there is
a fork in the governance sub-ledger. That is, there are at least
two Pth end-of-config batches for the same configuration
number that belong in valid governance sub-ledgers, but that
are not equivalent.

We say that there is a fork between two valid supporting
governance chains if there are receipts for two Pth end-of-
config batches for the same configuration number that are
not equivalent.

We say that there is a fork between a valid supporting
governance chain and a valid governance sub-ledger, if for
the same configuration number, the Pth end-of-config batch
specified by the receipt in the chain is not equivalent to the
Pth end-of-config batch in the sub-ledger.

Lemma 7 (Governance fork). If there is a fork in governance,
the auditor can assign blame to at least f +1 misbehaving
replicas.

Proof. If there is a fork in governance, there are at least two
Pth end-of-config batches for the same configuration number
that are not equivalent, namely P1 and P2.

A correct replica only prepares a Pth end-of-config batch at
sequence number s once the final vote transaction that passes
the referendum is committed at sequence number s−P. Thus,
all governance transactions preceding it are committed too.
This final vote transaction triggers the configuration change.

So the auditor can assign blame to the replicas that
prepared both P1 and P2, because a correct replica that
prepares one will never prepare another non-equivalent Pth

end-of-config batch in the same configuration number.

Longest supporting governance chain. Let R be a set
of valid receipts. If there is a fork between the supporting
governance chains of the receipts in R , the auditor can assign
blame to at least f + 1 misbehaving replicas by Lemma 7.
So the auditor can always obtain a longest supporting
governance chain for the receipts in R . This chain is the
union of all supporting chains for receipts in R .

Onwards, we assume that, given any set of valid receipts,
the supporting governance chains are fork-free with each
other and that there is a longest supporting governance chain;

488 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

otherwise, the auditor can assign blame to f +1 misbehaving
replicas by Lemma 7.
Transaction receipts. Onwards, we assume that a receipt
is for a transaction and not for end-of-config/start-of-config
batches. If the receipts for end-of-config/start-of-config
indicate a fork in governance, misbehaving replicas can be
blamed using Lemma 7; otherwise, the end-of-config/start-
of-config batches do not have any usage and do not affect the
key-value store, so do not affect linearizability.

B.2.1 Updates to obtaining the ledger

Updated ledger package. A ledger package includes an
additional required field:

• the committed governance sub-ledger N of the replica.

Updated definition of completeness. Let R be a set of valid
receipts. Define smax,vmin,vmax as previously. Calculate smin
using the receipt with the smallest configuration number,
among those with the smallest sequence number in R . Let
ngmax be the longest supporting governance chain in R .

A ledger package is complete in relation to R if, in
addition to the prior conditions about well-formedness,
length, and vmin/vmax requirements:

• ngmax is a prefix of N (i.e. the package is obtained from
a replica in a configuration which is equal to or succeeds
all configurations in R);

• N is valid; and
• N matches F .

The condition for the checkpoint cp is updated as follows:

• if smin is calculated as the first checkpoint transaction in
a configuration (or zero), the digest of cp is equal to the
one in the checkpoint transaction at smin; otherwise, the
digest of cp is equal to the one in the second checkpoint
transaction in F +U.

Lemma 8 (Obtaining a complete ledger package with recon-
figuration). Given a set of valid receipts R , an auditor can ei-
ther obtain a ledger package that is complete in relation to R ,
or assign blame to at least f +1 misbehaving or slow replicas.

Proof. As mentioned before, we assume that there is no fork
between the supporting governance chains of the receipts in
R . Let Rgmax be the receipt with the highest index number,
among those with the highest sequence number, among
those with the highest view number, among those with the
longest supporting governance chain in R . Let ngmax be the
supporting governance chain of Rgmax.

We assume that there is a reliable mechanism to look up the
most recent system configuration. Using this mechanism, the
auditor looks up the most recent committed governance sub-
ledger and the set of replicas that signed the first checkpoint
transaction of the most recent configuration. If there is a fork

between ngmax and the governance sub-ledger that is looked-
up, the auditor can assign blame to at least f +1 misbehaving
replicas by Lemma 7; otherwise, the auditor checks whether
the sub-ledger that is looked up is longer than ngmax. If so, the
enforcer asks all the replicas that signed the first checkpoint
transaction of the most recent configuration for a ledger pack-
age; otherwise, the replicas that have signed Rgmax are asked.

As in Lemma 4, the enforcer asks replicas for a ledger
package that is complete in relation to R . At the deadline,
the enforcer relays the responses to the auditor. There are
at least f +1 responses, or the enforcer can assign blame to
f +1 misbehaving or slow replicas.

As before, we show that a correct replica can either
respond with: a ledger package that is complete in relation
to R , or a ledger package with which the auditor can assign
blame to f +1 misbehaving replicas.

First, note that a correct replica that is contacted by the
enforcer can always satisfy the updated completeness con-
ditions (related to N), because the replica is part of the most
recent configuration and the conditions all pertain to keeping
a valid governance sub-ledger. Of the conditions described
previously, the well-formedness and vmin conditions can
be satisfied, and invalid signatures in the package can be
handled, just as in Lemma 4. Since the replicas that are asked
are not necessarily the replicas that signed the receipt with
the highest view in R , it is possible that they cannot satisfy
the vmax requirement even if they are correct.

So, for a correct replica that is contacted by the enforcer
one of the following must hold:

• The replica cannot satisfy the vmax requirement: Let
Rvmax be the latest receipt when the receipts are ordered
lexycographically by (view number, configuration number,
sequence number, index number). Let nvmax be the
supporting governance chain of Rvmax. If there is a fork
between nvmax and the committed sub-ledger N of the
replica, the replica can return its governance sub-ledger and
the auditor can assign blame to at least f +1 misbehaving
replicas by Lemma 7. Otherwise, nvmax must be a prefix
of N since the enforcer asks replicas from the most
recent configuration. There are two possibilities for the
relationship between nvmax and N :

1. N = nvmax. So Rgmax = Rvmax.Therefore, the correct
replica signed Rvmax. Any correct replica that signed
Rvmax has the view-change and new-view messages for
vmax, so this case is a contradiction.

2. N is longer than nvmax. Let Pvmax+1 be the Pth

end-of-config batch that ends Rvmax’s configuration
C. Since the replica is correct and cannot satisfy the
vmax requirement, Pvmax+1 must be prepared in a view
<vmax. Any correct replica that prepared Pvmax+1 must
have committed a final vote transaction that triggers the
configuration change in their ledger in a view less than
vmax. Since correct replicas never reset their ledger by

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 489

more than P sequence numbers, they do not pre-prepare
any batch with view vmax in C. So, the auditor can
assign blame to the intersection of replicas that signed
Rvmax and prepared Pvmax+1.

• The replica can satisfy the vmax requirement: If,
additionally, the replica has prepared (or pre-prepared with
view changes) batches up to at least smax, it can return a
ledger package that is complete in relation to R just as in
Lemma 4.
Otherwise, let Rsmax be the receipt with the largest sequence
number smax. Let nsmax be the supporting governance
chain of Rsmax. If there is a fork between nsmax and the
replica’s N , the replica can return N and the auditor can
assign blame to at least f + 1 misbehaving replicas by
Lemma 7. Otherwise, nsmax must be a prefix of N since
the replicas asked by the enforcer are from the most recent
configuration. Again, there are two possibilities:

1. N is longer than nsmax: Let Psmax+1 be the Pth

end-of-config batch that ends Rsmax’s configuration.
Since the replica is correct and cannot satisfy the smax
requirement, Psmax+1 must be prepared at a sequence
number less than smax. Any correct replica that prepared
Psmax+1 must have committed a final vote transaction
that triggers the configuration change at latest at
sequence number smax − (P + 1). Since a correct
replica never resets its ledger by more than P sequence
numbers, the auditor can assign blame to the replicas
that signed both Rsmax and prepared Psmax+1.

2. N =nsmax: The group of replicas asked by the enforcer
are from the same configuration that signed Rsmax,
which is the most recent configuration. Since the
replica is correct and from the most recent configuration
vsmax≤ vmax by definition. In F , as before, there must
exist at least one set of view-change and new-view
messages for a view v′ > vsmax such that none of the
view-change messages includes a pre-prepare for any
batch at smax. Note that the configuration of the replicas
that have sent these view-change messages must be the
same as the configuration that signed the receipt, as
that is the most recent configuration in the system. So
just as in Lemma 4, the auditor can assign blame to the
replicas that signed both Rsmax and that sent the set of
view-change messages for v′.

So, for each of the f +1 responses, either the response is
complete in relation to R , or the auditor can assign blame
to the responder, or at least f +1 misbehaving replicas.

B.2.2 Mismatching configurations

Lemma 9 (Receipt-ledger configuration mismatch). Let
R = ⟨tior, xr⟩ be a valid receipt that was produced in a
configuration Cr. Let Bl be the batch that is at sr in a ledger
package that is complete in relation to R. Let Cl be the config-

uration of the replicas that signed Bl . If Cr ̸=Cl , the auditor
can assign blame to at least f +1 misbehaving replicas.

Proof. Since R is a valid receipt, it has a valid supporting
governance chain. Since the ledger package is complete, it
includes a valid governance sub-ledger N that leads to Cl ,
which is fork-free with the supporting governance chain of R.

One of the following must hold:

• Cr <Cl: Cr precedes Cl: Let Pr+1 be the Pth end-of-config
batch that ends the configuration Cr. This batch and its ev-
idence is included in N . Since the package is complete, N
is consistent with the ledger fragment in the package. Since
that ledger fragment is well-formed and Bl is at sr, Pr+1 is at
the latest at sequence number sr−(P+1). Any replica that
prepared Pr+1 must have committed a final vote transaction
that triggers the configuration change at the latest at se-
quence number sr−(2P+1). A correct replica that has pre-
pared a batch at sr in Cr never resets its ledger to earlier than
sr−P even with view changes. So the auditor can assign
blame to the replicas that both prepared Pr+1 and signed R.

• Cr > Cl: Cr succeeds Cl: We show that this case is
impossible given that R is valid, and there is no fork
between its supporting governance chain and N . Since the
ledger package is complete in relation to R, N includes
the Pth end-of-config batch leading to Cr and it matches the
well-formed ledger fragment in the package. Since Bl is at
sr, that batch can at earliest be at sequence number sr+P.
So there cannot be a valid receipt produced in Cr at sr.

B.2.3 Updates to incompatibility

Lemma 10 (Receipt-ledger incompatibility with reconfig-
uration). Let R = ⟨tior, xr⟩ be a valid transaction receipt
at sequence number sr. Let ⟨F ,U,E , cp,N ⟩ be a ledger
package that is complete in relation to R. Let Bl be the batch
in the package at sr. If R is incompatible with Bl , the auditor
can assign blame to at least f +1 misbehaving replicas.

Proof. Define El ,Er,vl ,vr as in Lemma 5. Note that we can
assume that both the receipt and Bl are prepared by the same
configuration C ; if not, the auditor can assign blame to f +1
misbehaving replicas by Lemma 9.

• vr =vl: Same as Lemma 5.
• vl > vr: Calculate Ec as described in Lemma 5. If the

replicas in Ec are also from the configuration C , the auditor
can assign blame just as in Lemma 5; otherwise, if the
replicas in Ec are from a preceding configuration, the first
checkpoint transaction of C is at the latest at sequence
number sr−(P+1) since Bl is prepared by C and F +U
is well-formed. Furthermore, that checkpoint transaction
is prepared in a view v′>vr. A correct replica never signs
the receipt at sr in a view vr and then resets its ledger by
more than P sequence numbers while view changing to v′.

490 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

So, the auditor can assign blame to the replicas that signed
both that checkpoint transaction and the receipt.

• vl < vr: Calculate Ec as described in Lemma 5. If the
replicas in Ec are also from the configuration C , the auditor
can assign blame just as in Lemma 5; otherwise the replicas
in Ec are from a configuration that succeeds C . In this case,
the Pth end-of-config batch that ends the configuration C
is at the earliest at sequence number sr + P, since Bl is
prepared by C and F +U is well-formed. Furthermore, that
batch is prepared in a view v′< vr. A correct replica that
prepares that Pth end-of-config batch commits to the con-
figuration change; it never resets its ledger to earlier than sr
and signs R. So, the auditor can assign blame to the replicas
that signed both that end-of-config batch and the receipt.

B.2.4 Updates to violations

Lemma 11 (Serializability violations with reconfiguration).
Let R = {(tio0,x0), ...,(tiok,xk))} be a set of receipts that
violates serializability. Then, the auditor can assign blame
to at least f +1 misbehaving or slow replicas.

Proof. First, the auditor can obtain a ledger package
⟨F ,U,cp,E ,N ⟩ that is complete in relation to R ; otherwise,
IA-CCF can assign blame to at least f + 1 misbehaving
or slow replicas by Lemma 8.

Just as in Lemma 6, since the receipts in R violate serial-
izability, no serial execution of t0,...,tk can produce io0,...,iok.
F is well-formed, so there are two options for its validity:

Valid ledger. Similar to Lemma 6. By Lemma 10, the auditor
can assign blame to at least f +1 misbehaving replicas.

Invalid ledger. Assume that receipts are ordered lexico-
graphically based on the corresponding (sequence number,
configuration number, index number, view number) tuples.
(We can assume that there is no tie; otherwise the auditor can
assign blame to the replicas that signed both tied receipts.)

Let Re be the earliest receipt in the ordered R . Let dC0

be the digest in Re. Let sC0 be the sequence number with
the expected checkpoint digest dC0 . sC0 can be calculated
by the auditor using se, the checkpoint interval C, and the
supporting governance chain. (Note that sC0 is equal to smin
that is calculated while obtaining the ledger.)

We can assume that the batch at se is prepared by the same
configuration that sent the receipt; otherwise the auditor can
assign blame to f + 1 misbehaving replicas by Lemma 9.
We also know that the supporting governance chain of Re
matches F + U and that F + U is well-formed. So, the
checkpoint transactions at sC0 (and sC0 +C if it exists) are
prepared by the same configuration as Re by definition of
sC0 . So, if the digest at sC0 is not dC0 , the auditor can assign
blame to f +1 misbehaving replicas similar to Lemma 6.

Since the supporting governance chains of all receipts
match the ledger fragment by definition of completeness, the

auditor can determine the correct stored procedures for each
transaction to replay the ledger as in Lemma 6.

Theorem 3 (Linearizability violations with reconfiguration).
Let R be a set of receipts that violate linearizability. Then,
the auditor can assign blame to at least f +1 misbehaving
or slow replicas.

Proof. If the receipts also violate serializability, the auditor
can assign blame to at least f + 1 misbehaving or slow
replicas by Lemma 11; otherwise, the minimum ledger index
argument in the proof of Theorem 2 holds.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 491

DispersedLedger: High-Throughput Byzantine Consensus
on Variable Bandwidth Networks

Lei Yang1, Seo Jin Park1, Mohammad Alizadeh1, Sreeram Kannan2, David Tse3

1MIT CSAIL 2University of Washington 3Stanford University

Abstract
The success of blockchains has sparked interest in large-

scale deployments of Byzantine fault tolerant (BFT) consen-
sus protocols over wide area networks. A central feature of
such networks is variable communication bandwidth across
nodes and across time. We present DispersedLedger, an asyn-
chronous BFT protocol that provides near-optimal throughput
in the presence of such variable network bandwidth. The core
idea of DispersedLedger is to enable nodes to propose, or-
der, and agree on blocks of transactions without having to
download their full content. By enabling nodes to agree on an
ordered log of blocks, with a guarantee that each block is avail-
able within the network and unmalleable, DispersedLedger
decouples bandwidth-intensive block downloads at different
nodes, allowing each to make progress at its own pace. We
build a full system prototype and evaluate it on real-world and
emulated networks. Our results on a geo-distributed wide-area
deployment across the Internet shows that DispersedLedger
achieves 2× better throughput and 74% reduction in latency
compared to HoneyBadger, the state-of-the-art asynchronous
protocol.

1 Introduction
State machine replication (SMR) is a foundational task
for building fault-tolerant distributed systems [25]. SMR
enables a set of nodes to agree on and execute a replicated
log of commands (or transactions). With the success of
cryptocurrencies and blockchains, Byzantine fault-tolerant
SMR (BFT) protocols, which tolerate arbitrary behavior from
adversarial nodes, have attracted considerable interest in
recent years [2, 5, 7, 15, 31, 39]. The deployment environment
for these protocols differs greatly from standard SMR use
cases. BFT implementations in blockchain applications must
operate over wide-area networks (WAN), among possibly
hundreds to thousands of nodes [2, 18, 31].

Large-scale WAN environments present new challenges
for BFT protocols compared to traditional SMR deployments
across a few nodes in datacenter. In particular, WANs are
subject to variability in network bandwidth, both across
different nodes and across time. While BFT protocols
are secure in the presence of network variability, their
performance can suffer greatly.

To understand the problem, let us consider the high-level

structure of existing BFT protocols. BFT protocols operate
in epochs, consisting of two distinct phases: (i) a broadcast
phase, in which one or all of the nodes (depending on whether
the protocol is leader-based [1, 39] or leaderless [17, 31])
broadcast a block (batch of transactions) to the others; (ii)
an agreement phase, in which the nodes vote for blocks to
append to the log, reaching a verifiable agreement (e.g., in the
form of a quorum certificate [11]). From a communication
standpoint, the broadcast phase is bandwidth-intensive while
the agreement phase typically comprises of multiple rounds
of short messages that do not require much bandwidth but
are latency-sensitive.

Bandwidth variability hurts the performance of BFT pro-
tocols due to stragglers. In each epoch, the protocol cannot
proceed until a super-majority of nodes have downloaded the
blocks and voted in the agreement phase. Specifically, a BFT
protocol on N = 3 f +1 nodes (tolerant to f faults) requires
votes from at least 2 f + 1 nodes to make progress [11].
Therefore, the throughput of the protocol is gated by the
(f +1)th slowest node in each epoch. The implication is that
low-bandwidth nodes (which take a long time to download
blocks) hold up the high-bandwidth nodes, preventing
them from utilizing their bandwidth efficiently. Stragglers
plague even asynchronous BFT protocols [31], which aim
to track actual network performance (without making timing
assumptions), but still require a super-majority to download
and vote for blocks in each epoch. We show that this lowers
the throughput of these protocols well below the average
capacity of the network on real WANs.

In this paper, we present DispersedLedger, a new approach
to build BFT protocols that significantly improves perfor-
mance in the presence of bandwidth variability. The key
idea behind this approach is to decompose consensus into
two steps, one of which is not bandwidth intensive and the
other is. First, nodes agree on an ordered log of commitments,
where each commitment is a small digest of a block (e.g.,
a Merkle root [30]). This step requires significantly less
bandwidth than downloading full blocks. Later, each node
downloads the blocks in the agreed-upon order and executes
the transactions to update its state machine. The principal
advantage of this approach is that each node can download
blocks at its own pace. Importantly, slow nodes do not impede

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 493

Block
Download Vote

Block Download Vote

Fast
nodes

Slow
nodes

(a) Traditional BFT

Block
Download Vote

Block Download Vote

Retrieval

Retrieval

Fast
nodes

Slow
nodes

(b) DispersedLedger

BW

VoteVID VoteVID

Retrieval. . .

. . .

...

BW

BW

BW

Retrieval

VoteVID VoteVID

Retrieval

VoteVID VoteVID VoteVID VoteVID

Retrieval

Time

Figure 1: Impact of bandwidth variability on overall per-
formance. Bcast: broadcast, Agmt: agreement. Fast nodes
currently have a high bandwidth, while slow nodes currently
have low bandwidth. (a) In traditional BFT protocols, the speed
of consensus is always limited by the slow nodes since they take
a long time to download the blocks. (b) DispersedLedger allows
each node to download blocks at its own pace as permitted by
its bandwidth.

the progress of fast nodes as long as they have a minimal
amount of bandwidth needed to participate in the first step.

The key to realizing this idea is to guarantee the data avail-
ability of blocks. When a node accepts a commitment into the
log, it must know that the block referred to by this commit-
ment is available in the network and can be downloaded at a
later time by any node in the network. Otherwise, an attacker
can put a commitment of an unavailable block into the log,
thus halting the system. To solve this problem, our proposal
relies on Verifiable Information Dispersal (VID) [10]. VID
uses erasure codes to store data across N nodes, such that
it can be retrieved later despite Byzantine behavior. Prior
BFT protocols like HoneyBadger [31] have used VID as
a communication-efficient broadcast mechanism [10], but
we use it to guarantee data availability. Specifically, unlike
HoneyBadger, nodes in DispersedLedger do not wait to
download blocks to vote for them. They vote as soon as they
observe that a block has been dispersed, and the next epoch
can begin immediately once there is agreement that dispersal
has completed. This enables slow nodes to participate in the
latest epoch, even if they fall behind on block downloads
(retrieval). Such nodes can catch up on retrievals when
their bandwidth improves. Figure 1 shows the structure of
DispersedLedger, contrasting it to traditional BFT protocols.

Enabling nodes to participate in a consensus protocol
with minimal bandwidth has applications beyond improving
performance on temporally fluctuating bandwidth links. It
also creates the possibility of a network with two types of

nodes: high-bandwidth nodes and low-bandwidth nodes.
All nodes participate in agreeing on the ordered log of
commitments, but only the high-bandwidth nodes retrieve all
blocks. Network participants can choose what mode to use at
any time. For example, a node running on a mobile device can
operate in the low-bandwidth mode when connected to a cel-
lular network, and switch to high-bandwidth mode on WiFi to
catch up on block retrievals. All nodes, both high-bandwidth
and low-bandwidth, contribute to the network’s security. Our
approach is also a natural way to shard a blockchain [27],
where different nodes only retrieve blocks in their own shard.

We make the following contributions:
• We propose a new asynchronous VID protocol, AVID-M

(§3). Compared to the current state-of-the-art, AVID-M
achieves 1–2 orders of magnitudes better communication
cost when operating on small blocks (hundreds of KBs to
several MBs) and clusters of more than a few servers.

• We design DispersedLedger (§4), an asynchronous BFT
protocol based on HoneyBadger [31] with two major
improvements: (i) It decomposes consensus into data
availability agreement and block retrieval, allowing nodes
to download blocks asynchronously and fully utilize their
bandwidth (§4.2). (ii) It provides a new solution to the
censorship problem [31] that has existed in such BFT pro-
tocols since [4] (§4.3). Unlike HoneyBadger, where up to
f correct blocks can get dropped every epoch, our solution
guarantees that every correct block is delivered (and exe-
cuted). The technique is applicable to similarly-constructed
protocols, and can improve throughput and achieve
censorship resilience without advanced cryptography [31].

• We address several practical concerns (§4.5): (i) how to
prevent block retrieval traffic from slowing down dispersal
traffic, which could reduce system throughput; (ii) how
to prevent constantly-slow nodes from falling arbitrarily
behind the rest of the network; (iii) how to avoid invalid
“spam” transactions, now that nodes may not always have
the up-to-date system state to filter them out.

• We implement DispersedLedger in 8,000 lines of Go (§5)
and evaluate it in multiple settings (§6), including two
global testbeds on AWS and Vultr, and controlled network
emulations. DispersedLedger achieves a throughput of 36
MB/s when running at 16 cities across the world, and a
latency of 800 ms that is stable across a wide range of load.
Compared to HoneyBadger, DispersedLedger has 105%
higher throughput and 74% lower latency.

2 Background and Related Work
2.1 The BFT Problem
DispersedLedger solves the problem of Byzantine-fault-
tolerant state machine replication (BFT) [25]. In general, BFT
assumes a server-client model, where N servers maintain N
replicas of a state machine. At most f servers are Byzantine
and may behave arbitrarily. Clients may submit transactions
to a correct server to update or read the state machine. A

494 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

BFT protocol must ensure that the state machine is replicated
across all correct servers despite the existence of Byzantine
servers. Usually, this is achieved by delivering a consistent,
total-ordered log of transactions to all servers (nodes) [31].
Formally, a BFT protocol provides the following properties:

• Agreement: If a correct server executes a transaction m,
then all correct servers eventually execute m.

• Total Order: If correct servers p and q both execute
transactions m1 and m2, then p executes m1 before m2 if
and only if q executes m1 before m2.

• Validity: If a correct client submits a transaction m to a cor-
rect server, then all correct servers eventually execute m.1

There are multiple trust models between BFT servers
and the clients. In this paper, we assume a model used for
consortium blockchains [2, 3,6,40], where servers and clients
belong to organizations. Clients send their transactions
through the servers hosted by their organization and trust
these servers. Many emerging applications of BFT like
supply chain tracing [14], medical data management [26], and
cross-border transaction clearance [22] fall into this model.

2.2 Verifiable Information Dispersal
DispersedLedger relies on verifiable information dispersal
(VID). VID resembles a distributed storage, where clients can
disperse blocks (data files) across servers such that they are
available for later retrieval. We provide a formal definition
of VID in §3.1. The problem of information dispersal was
first proposed in [37], where an erasure code was applied to
efficiently store a block across N servers without duplicating
it N times. [19] extended the idea to the BFT setting under
the asynchrony network assumption. However, it did not
consider Byzantine clients; these are malicious clients which
try to cause two retrievals to return different blocks. Verifiable
information dispersal (VID) was first proposed in [10], and
solved this inconsistency problem. However, [10] requires
that every node downloads the full block during dispersal,
so it is no more efficient than broadcasting. The solution was
later improved by AVID-FP [21], which requires each node
to only download an O(1/N) fraction of the dispersed data
by utilizing fingerprinted cross-checksums [21]. However,
because every message in AVID-FP is accompanied by the
cross-checksum, the protocol provides low communication
cost only when the dispersed data block is much larger than
the cross-checksum (about 37N bytes). This makes AVID-FP
unsuitable for small data blocks and clusters of more than a
few nodes. In §3, we revisit this problem and propose AVID-
M, a new asynchronous VID protocol that greatly reduces the
per-message overhead: from 37N bytes to the size of a single
hash (32 bytes), independent of the cluster size N, making
the protocol efficient for small blocks and large clusters.

1Some recent BFT protocols provide a weaker version of validity, which
guarantees execution of a transaction m only after being sent to all correct
servers. This is referred to by different names: “censorship resilience” in
HoneyBadger, and “fairness” in [8, 9].

2.3 Asynchronous BFT protocols
A distributed algorithm has to make certain assumptions
on the network it runs on. DispersedLedger makes the
weakest assumption: asynchrony [28], where messages can
be arbitrarily delayed but not dropped. A famous impossi-
bility result [16] shows there cannot exist a deterministic
BFT protocol under this assumption. With randomization,
protocols can tolerate up to f Byzantine servers out of a total
of 3 f +1 [24]. DispersedLedger achieves this bound.

Until recently [31], asynchronous BFT protocols have been
costly for clusters of even moderate sizes because they have a
communication cost of at least O(N2) [8]. HoneyBadger [31]
is the first asynchronous BFT protocol to achieve O(N) com-
munication cost per bit of committed transaction (assuming
batching of transactions). The main structure of HoneyBadger
is inspired by [4], and it in turn inspires the design of other
protocols including BEAT [15] and Aleph [17]. In these pro-
tocols, all N nodes broadcast their proposed blocks in each
epoch, which triggers N parallel Binary Byzantine Agreement
(BA) instances to agree on a subset of blocks to commit. [10]
showed that VID can be used as an efficient construction of
reliable broadcast, by invoking retrieval immediately after dis-
persal. HoneyBadger and subsequent protocols use this con-
struction as a blackbox. BEAT [15] explores multiple trade-
offs in HoneyBadger and proposes a series of protocols based
on the same structure. One protocol, BEAT3, also includes a
VID subcomponent. However, BEAT3 is designed to achieve
BFT storage, which resembles a distributed key-value store.

2.4 Security Model
Before proceeding, we summarize our security model. We
make the following assumptions:
• The network is asynchronous (§2.3).
• The system consists of a fixed set of N nodes (servers). A

subset of at most f nodes are Byzantine, and N≥3 f +1. N
and f are protocol parameters, and are public knowledge.

• Messages are authenticated using public key cryptography.
The public keys are public knowledge.

3 AVID-M: An Efficient VID Protocol
3.1 Problem Statement
VID provides the following two primitives: Disperse(B),
which a client invokes to disperse block B, and Retrieve,
which a client invokes to retrieve block B. Clients invoke
the Disperse and Retrieve primitives against a particular
instance of VID, where each VID instance is in charge of
dispersing a different block. Multiple instances of VID may
run concurrently and independently. To distinguish between
these instances, clients and servers tag all messages of each
VID instance with a unique ID for that instance. For each
instance of VID, each server triggers a Complete event to
indicate that the dispersal has completed.

A VID protocol must provide the following properties [10]
for each instance of VID:

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 495

• Termination: If a correct client invokes Disperse(B) and
no other client invokes Disperse on the same instance,
then all correct servers eventually Complete the dispersal.

• Agreement: If some correct server has Completed the
dispersal, then all correct servers eventually Complete the
dispersal.

• Availability: If a correct server has Completed the disper-
sal, and a correct client invokes Retrieve, it eventually
reconstructs some block B′.

• Correctness: If a correct server has Completed the disper-
sal, then correct clients always reconstruct the same block
B′ by invoking Retrieve. Also, if a correct client initiated
the dispersal by invoking Disperse(B) and no other client
invokes Disperse on the same instance, then B=B′.

3.2 Overview of AVID-M

At a high level, a VID protocol works by encoding the dis-
persed block using an erasure code and storing the encoded
chunks across the servers. A server knows a dispersal has
completed when it hears from enough peers that they have re-
ceived their chunks. To retrieve a dispersed block, a client can
query the servers to obtain the chunks and decode the block.
Here, one key problem is verifying the correctness of encod-
ing. Without verification, a malicious client may distribute in-
consistent chunks that have more than one decoding result de-
pending on which subset of chunks are used for decoding, vi-
olating the Correctness property. As mentioned in §2.2, AVID
[10] and AVID-FP solve this problem by requiring servers to
download the chunks or fingerprints of the chunks from all cor-
rect peers and examine them during dispersal. While this elim-
inates the possibility of inconsistent encoding, the extra data
download required limits the scalability of these protocols.

More specifically, while AVID-FP [21] can achieve
optimal communication complexity as the block size |B|
goes to infinity, its overhead for practical values of |B| and N
(number of servers) can be quite high. This is because every
message in AVID-FP is accompanied by a fingerprinted
cross-checksum [21], which is Nλ+(N−2 f)γ in size. Here,
λ,γ are security parameters, and we use λ=32 bytes, γ=16
bytes as suggested by [21]. The key factor that limits the
scalability of AVID-FP is that the size of the cross-checksum
is proportional to N. Combined with the fact that a node
receives O(N) messages during dispersal, the overhead
caused by cross-checksum increases quadratically as N
increases. Fig. 2 shows the impact of this overhead. At
N > 40, |B|= 100 KB, every node needs to download more
than the full size of the block being dispersed.

We develop a new VID protocol for the asynchronous net-
work model, Asynchronous Verifiable Information Dispersal
with Merkle-tree (AVID-M). AVID-M is based on one key
observation: as long as clients can independently verify the
encoding during retrieval, the servers do not need to do the
verification during dispersal. In AVID-M, a client invoking
Disperse(B) commits to the set of (possibly inconsistent)

Figure 2: Per-node communication cost during dispersal
of AVID-M and AVID-FP normalized over the size of the
dispersed block. At N = 128 (the biggest cluster size in our
evaluation), every node in AVID-M downloads as much as
1/32 of a block, while a node in AVID-FP downloads 1.2× the
size of the full block.

chunks using a short, constant-sized commitment H. Then
the server-side protocol simply agrees on H and guarantees
enough chunks that match H are stored by correct servers.
This can be done by transmitting only H in the messages,
compared to the O(N)-sized cross-checksums in AVID-FP.
During retrieval, a client verifies that the block it decodes
produces the same commitment H when re-encoded.

Since AVID-M’s per-message overhead is a small constant
(32 bytes), it can scale to many nodes without requiring a
large block size. In fact, AVID-M achieves a per-node commu-
nication cost of O(|B|/N+λN), much lower than AVID-FP’s
O(|B|/N+λN2+γN2). Fig. 2 compares AVID-M with AVID-
FP. At |B|=1 MB, AVID-M is close to the theoretical lower-
bound2 even at N>100, while AVID-FP stops to provide any
bandwidth saving (compared to every server downloading
full blocks) after N>120. Finally, we note that both AVID-M
and AVID-FP rely on the security of the hash. So with the
same hash size λ, AVID-M is no less secure than AVID-FP.

3.3 AVID-M Protocol
The Dispersal algorithm is formally defined in Fig. 3. A
client initiates a dispersal by encoding the block B using an
(N−2 f ,N)-erasure code and constructing a Merkle tree [30]
out of the encoded chunks. The root r of the Merkle tree is a
secure summary of the array of the chunks. The client sends
one chunk to each server along with the Merkle root r and a
Merkle proof that proves the chunk belongs to root r. Servers
then need to make sure at least N−2 f chunks under the same
Merkle root are stored at correct servers for retrieval. To do
that, servers exchange a round of GotChunk(r) messages
to announce the reception of the chunk under root r. When
N− f servers have announced GotChunk(r), they know at
least N − 2 f correct servers have got the chunk under the
same root r, so they exchange a round of Ready(r) messages
to collectively Complete the dispersal.

2Each node has to download at least 1
N−2 f -fraction of the dispersed data.

This is to prevent a specific attack: a malicious client sends chunks to all f
malicious servers plus N−2 f honest servers. For now the malicious servers
do not deviate from the protocol, so the protocol must terminate (otherwise
it loses liveness). Then the malicious servers do not release the chunks, so
the original data must be constructed from the N−2 f chunks held by honest
servers, so each honest server must receive an 1

N−2 f -fraction share.

496 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Disperse(B) invoker
1. Encode the input block B using an (N−2 f ,N)-erasure

code, which results in N chunks, C1,C2,...,CN .
2. Form a Merkle tree with all chunks C1,C2,...,CN , and

calculate the Merkle tree root, r.
3. Send Chunk(r,Ci,Pi) to the i-th server. Here Pi is the

Merkle proof showing Ci is the i-th chunk under root r.
Disperse(B) handler for the i-th server
• Upon receiving Chunk(r,Ci,Pi) from a client:

1. Check if Ci is the i-th chunk under root r by verifying
the proof Pi. If not, ignore the message.

2. Set MyChunk = Ci, MyProof = Pi, MyRoot = r (all
initially unset).

3. Broadcast GotChunk(r) if it has not sent a GotChunk
message before.

• Upon receiving GotChunk(r) from the j-th server:
1. Increment ShareCount[r] (initially 0).
2. If ShareCount[r]≥N− f , broadcast Ready(r).

• Upon receiving Ready(r) from the j-th server:
1. Increment ReadyCount[r] (inititally 0).
2. If ReadyCount[r]≥ f +1, broadcast Ready(r).
3. If ReadyCount[r] ≥ 2 f + 1, set ChunkRoot = r.

Dispersal is Complete.

Figure 3: Algorithm for Disperse(B). Servers ignore
duplicate messages (same sender and same type). When
broadcasting, servers also send the message to themselves.

The Retrieval algorithm is formally defined in Fig 4. A
client begins retrieval by requesting chunks for the block
from all servers. Servers respond by providing the chunk,
the Merkle root r, and the Merkle proof proving that the
chunk belongs to the tree with root r. Upon collecting N−2 f
different chunks with the same root, the client can decode
and obtain a block B′. However, the client must ensure that
other retrieving clients also obtain B′ no matter which subset
of N−2 f chunks they use – letting clients perform this check
is a key idea of AVID-M. To do that, the client re-encodes
B′, constructs a Merkle tree out of the resulting chunks, and
verifies that the root is the same as r. If not, the client returns
an error string as the retrieved content.

The AVID-M protocol described in this section provides
the four properties mentioned in §3.1. We provide a proof
sketch for each property, and point to Appendix B for
complete proofs.

Termination (Theorem B.2). A correct client sends
correctly encoded chunks to all servers with root r. The
N − f correct servers will broadcast GotChunk(r) upon
getting their chunk. All correct servers will receive the N− f
GotChunk(r) and send out Ready(r), so all correct servers
will receive at least N− f Ready(r). Because N− f >2 f +1,
all correct servers will Complete.
Agreement (Theorem B.4). A server Completes after
receiving 2 f +1 Ready(r), of which f +1 must come from
correct servers. So all correct servers will receive at least

Retrieve invoker
• Broadcast RequestChunk to all servers.
• Upon getting ReturnChunk(r, Ci, Pi) from the i-th

server:
1. Check if Ci is the i-th chunk under root r by verifying

the proof Pi. If not, ignore the messsage.
2. Store the chunk Ci with the root r.

• Upon collecting N−2 f or more chunks with the same
root r:
1. Decode using any N−2 f chunks with root r to get

a block B′. Set ChunkRoot=r (initially unset).
2. Encode the block B′ using the same erasure code to

get chunks C1
′,C2

′,...,CN
′.

3. Compute the Merkle root r′ of C′1,C
′
2,...,C

′
N .

4. Check if r′=ChunkRoot. If so, return B′. Otherwise,
return string “BAD_UPLOADER”.

Retrieve handler for the i-th server
• Upon receiving RequestChunk, respond with message
ReturnChunk(ChunkRoot, MyChunk, MyProof) if
MyRoot=ChunkRoot. Defer responding if dispersal is
not Complete or any variable here is unset.

Figure 4: Algorithm for Retrieve. Clients ignore duplicate
messages (same sender and same type).

f +1 Ready(r). This will drive all of them to send Ready(r).
Eventually every correct server will receive N− f Ready(r),
which is enough to Complete (N− f >2 f +1).
Availability (Theorem B.6). To retrieve, a client must collect
N−2 f chunks with the same root. This requires that at least
N−2 f correct servers have a chunk for the same root. Now
suppose that a correct server Completes when receiving
2 f + 1 Ready(r). When this happens, at least one correct
server has sent Ready(r). We prove that this implies that
at least N−2 f correct servers must have sent GotChunk(r)
(Lemma B.1),i.e., they have received the chunk. Assume the
contrary. Then there will be less than N − f GotChunk(r).
Now a correct server only sends Ready(r) if it either receives
(i) at least N− f GotChunk(r), or (ii) at least f +1 Ready(r).
Neither is possible (see Lemma B.1).

All correct servers agree on the same root upon Complete

by setting ChunkRoot to the same value (Lemma B.5). To
see why, notice that each server will only send one GotChunk
per instance. If correct servers Complete with 2 (or more)
ChunkRoots, then at least N − f servers must have sent
GotChunk for each of these roots. But 2(N − f) > N + f ,
hence at least one correct server must have sent GotChunk
for two different roots, which is not possible.
Correctness (Theorem B.9). First, note that two correct
clients finishing Retrieve will set ChunkRoot to be the
same, i.e., they will decode from chunks under the same
Merkle root r (Lemma B.5). However, we don’t know if two
different subsets of chunks under r would decode to the same
block, because a malicious client could disperse arbitrary
data as chunks. To ensure consistency of Retrieve across

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 497

m
client

Node 1

Input Q B1

VID1 VID2 VID3 VID4

BA1 BA2 BA3 BA4

B1 B2 B4past epochsCommit log

State machine

lazy retrieval &
delivery

Figure 5: DispersedLedger architecture with N = 4. During
this single epoch, 4 VIDs are initiated, one for each node, and
three blocks B1,B2 and B4 are committed.

different correct clients, every correct client re-encodes
the decoded block B′, calculates the Merkle root r′ of the
encoding result, and compares r′ with the root r. There are
two possibilities: (i) Some correct client gets r′= r. Then r
corresponds to the chunks given by the correct encoding of
B′, so every correct client decoding from any subset of blocks
under r will also get B′ and r′=r. (ii) No correct client gets
r′= r, i.e, all of them get r′ 6= r. In this case, they all deliver
the fixed error string. In either case, all correct clients return
the same data (Lemma B.8).

4 DispersedLedger Design
4.1 Overview

DispersedLedger is a modification of HoneyBadger [31], a
state-of-the-art asynchronous BFT protocol. HoneyBadger
runs in epochs, where each epoch commits between N− f
to N blocks (at most 1 block from each node). As shown in
Fig. 5, transactions submitted by clients are stored in each
node’s input queue. At the beginning of each epoch, every
node creates a block from transactions in its input queue, and
proposes it to be committed to the log in the current epoch.
Once committed, all transactions in the block will eventually
be retrieved and delivered to the state machine for execution.

DispersedLedger has two key differences with HoneyBad-
ger. First, unlike HoneyBadger, a node in DispersedLedger
does not broadcast its proposed block; instead, it disperses
the proposed block among the entire cluster using AVID-M
(which we will refer to as VID from here on). As shown in
Fig. 5, there are N instances of VID in every epoch, one for
each node. DispersedLedger then relies on N instances of Bi-
nary Agreement (BA, details below) [32] to reach a consensus
on which proposed blocks have been successfully dispersed
and thus should be committed in the current epoch. Once
committed, a block can be retrieved by nodes lazily at any
time (concurrently with future block proposals and dispersals).
The asynchronous retrieval of blocks allows each node to

Phase 1. Dispersal at the i-th server
1. Let Be

i be the block to disperse (propose) for epoch e.
2. Invoke Disperse(Be

i) on VIDe
i (acting as a client).

• Upon Complete of VIDe
j (1≤ j ≤ N), if we have not

invoked Input on BAe
j, invoke Input(1) on BAe

j.
• Upon Output(1) of least N− f BA instances, invoke
Input(0) on all remaining BA instances on which we
have not invoked Input.

• Upon Output of all BA instances,
1. Let (local variable) Se

i ⊂{1...N} be the indices of all
BA instances that Output(1). That is, j∈ Se

i if and
only if BAe

j has Output(1) at the i-th server.
2. Move to retrieval phase.

Phase 2. Retrieval
1. For all j∈Se

i , invoke Retrieve on VIDe
j to download

full block Be
j
′.

2. Deliver {Be
j
′| j∈Se

i } (sorted by increasing indices).

Figure 6: Algorithm for single-epoch DispersedLedger.

adapt to temporal network bandwidth variations by adjusting
the rate it retrieves blocks without slowing down other nodes.

In HoneyBadger, up to f correct blocks can be dropped
in every epoch (§4.3). This wastes bandwidth and can lead
to censorship where blocks from certain nodes are always
dropped [31]. DispersedLedger’s second innovation is a
new method, called inter-node linking, that guarantees every
correct block is committed.

DispersedLedger uses an existing BA protocol [32]
that completes in O(1) time (parallel rounds) with O(Nλ)
per-node communication cost, where λ is the security
parameter. In BA, each node provides a binary Input({0,1})
as input to the protocol, and may get an Output({0, 1})
event indicating the result of the BA instance. Formally, a
BA protocol has the following properties:

• Termination: If all correct nodes invoke Input, then every
correct node eventually gets an Output.

• Agreement: If any correct node gets Output(b) (b ∈
{0,1}), then every correct node eventually gets Output(b).

• Validity: If any correct node gets Output(b) (b∈{0,1}),
then at least one correct node has invoked Input(b).

4.2 Single Epoch Protocol
In each epoch, the goal is to agree on a set of (the indices of)
at least N− f dispersed blocks which are available for later
retrieval. An epoch contains N instances of VID and BA. Let
VIDe

i be the i-th (1≤ i≤N) VID instance of epoch e. VIDe
i

is reserved for the i-th node to disperse (propose) its block.3

Let BAe
i be the i-th (1≤ i≤N) BA instance of epoch e. BAe

i
is for agreeing on whether to commit the block dispersed by
the i-th node.

3Correct nodes ignore attempts from another node j (j 6= i) to disperse into
VIDe

i by dropping Chunk messages for VIDe
i from node j (j 6= i). Therefore,

a Byzantine node cannot impersonate and disperse blocks on behalf of others.

498 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Fig. 6 describes the single epoch protocol for the i-th node
at epoch e. It begins by taking the block Be

i to be proposed for
this epoch, and dispersing it for epoch e through VIDe

i . Note
that every block in the system is dispersed using a unique VID
instance identified by its epoch number and proposing node.

Nodes now need to decide which blocks get committed
in this epoch, and they should only commit blocks that have
been successfully dispersed. Because there are potentially f
Byzantine nodes, we cannot wait for all N instances of VID
to complete because Byzantine nodes may never initiate their
VID Disperse. On the other hand, nodes cannot simply wait
for and commit the first N− f VIDs to Complete, because
VID instances may Complete in different orders at different
nodes (hence correct nodes would not be guaranteed to
commit the same set of blocks). DispersedLedger uses a
strategy first proposed in [4]. Nodes use BAe

i to explicitly
agree on whether to commit Be

i (which should be dispersed
in VIDe

i). Correct nodes input 1 into BAe
i only when VIDe

i
Completes, so BAe

i outputs 1 only if Be
i is available for later

retrieval. When N− f BA instances have output 1, nodes give
up on waiting for any more VID to Complete, and input 0
into the remaining BAs to explicitly signal the end of this
epoch. This is guaranteed to happen because VID instances
of the N − f correct nodes will always Complete by the
Termination property (§3.1). Once the set of committed
blocks are determined, nodes can start retrieving the full
blocks. After all blocks have been downloaded, a node sorts
them by index number and delivers (executes) them in order.

The single-epoch DispersedLedger protocol is readily
chained together epoch by epoch to achieve full SMR, as
pictured in Fig. 5. At the beginning of every epoch, a node
takes transactions from the head of the input buffer to form
a block. After every epoch, a node checks if its block is com-
mitted. If not, it puts the transactions in the block back to the
input buffer and proposes them in the next epoch. Also, a node
delivers epoch e only after it has delivered all previous epochs.

4.3 Inter-node Linking

Motivation. An important limitation of the aforementioned
single-epoch protocol (and all protocols with a similar con-
struction [15, 31]) is that not all proposed blocks from correct
nodes are committed in an epoch. An epoch only guarantees
to commit N− f proposed blocks, out of which N−2 f are
guaranteed to come from correct nodes. In other words, at
most f blocks proposed by correct nodes are dropped every
epoch. Dropped blocks can happen with or without adversar-
ial behavior. Transmitting such blocks wastes bandwidth, for
example, reducing HoneyBadger’s throughput by 25% in our
experiments (§6.2). To make the matter worse, the adversary
(if present) can determine which blocks to drop [31], i.e. at
most f correct servers can be censored such that no block
from these servers gets committed. HoneyBadger provides a
partial mitigation by keeping the proposed blocks encrypted
until they are committed so that the adversary cannot censor

Epoch 1 2 3 4 current

C-IL

VID

V=(4,4,4,3)

V=(4,4,4,3)

node1

node2

node3

node4 V=(4,2,3,3)

Agreed VID
completion:
(4,4,4,3)

Figure 7: An example of commits by inter-node linking where
N = 4, f = 1. Each box indicates a block proposed by a node
at an epoch. Orange blocks are committed by BA. “VID”
indicates that the block is dispersed but not committed. “C-IL”
indicates a block committed by inter-node linking. Blue dotted
boxes indicate a VID in progress. In the current epoch, after
delivering the blocks from node 1, 2, and 4, the block proposed
in epoch 3 by node 2 will be delivered by inter-node linking.

blocks by their content. The adversary can, however, censor
blocks based on the proposing node.4 This is unacceptable for
consortium blockchains (§2.4), because the adversary could
censor all transactions from certain (up to f) organizations.
Moreover, HoneyBadger’s mitigation relies on threshold
cryptography, which incurs a high computational cost [15].
Our solution. We propose a novel solution to this problem,
called inter-node linking, that guarantees all blocks from cor-
rect nodes are committed. Inter-node linking eliminates any
censorship or bandwidth waste, and is readily applicable to
similarly constructed protocols like HoneyBadger and BEAT.
Notice that a block not committed by BA in a given epoch may
still finish its VID. For example, in Fig. 7, the block proposed
by node 2 in epoch 3 was dispersed but did not get selected by
BA in that epoch. The core idea is to have nodes identify such
blocks and deliver them in a consistent manner in later epochs.

Each node i keeps track of which VID instances have
Completed, in the form of an array V e

i of size N, which
stores the local view at that node. When node i starts epoch
e, it populates V e

i [j] (for all 1≤ j≤N) with the largest epoch
number such that all node j’s VID instances up to epoch
V e

i [j] have completed. For example, in Fig. 7, (4, 4, 4, 3)
would be a valid array V for the current epoch, and would
indicate that node 2’s VID for epoch 3 has completed but
node 4’s VID in epoch 4 has not.

Each node i reports its local array V e
i in the block Be

i it pro-
poses in each epoch (in addition to the normal block content).
As shown in Fig. 7, the BA mechanism then commits at least
N− f blocks in each epoch. During retrieval for epoch e, a
node first retrieves the blocks committed by BA in epoch e and
delivers (executes) them as in the single-epoch protocol (§4.2).
It then extracts the set of V arrays in the committed blocks, i.e.
{V e

j | j∈Se
i }, and combines the information across these arrays

to determine additional blocks that it should retrieve (and de-
liver) in this epoch. Note that Se

i =Se
j for any two correct nodes

i, j due to the Agreement property of BA, so all correct nodes

4HoneyBadger suggests sending transactions to all nodes to prevent
censorship, but this isn’t possible for consortium blockchains and still wastes
bandwidth due to dropped blocks (§6.2).

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 499

will use the same set of observations and get the same result.5

Using the committed V arrays, the inter-node linking
protocol computes an epoch number Ee[j] for each node j.
This is computed locally by each node i, but we omit the
index i since all (correct) nodes compute the same value.
Each node then retrieves and delivers (executes) all blocks
from node j until epoch Ee[j]. To ensure total order, nodes
sort the blocks, first by epoch number then by node index.
They also keep track of blocks that have been delivered so
that no block is delivered twice.

In computing Ee[j], we must be careful to not get misled
by Byzantine nodes who may report arbitrary data in their V
arrays. For example, naively taking the largest value reported
for node j across all V arrays, i.e., maxk∈Se

i
V e

k [j], would allow
a Byzantine node to fool others into attempting to retrieve
blocks that do not exist. Instead, we take the (f +1)th-largest
value; this guarantees that at least one correct node i has
reported in its array V e

i that node j has completed all its VIDs
up to epoch Ee[j]. Recall that by the Availability property
of VID (§3.1), this ensures that these blocks are available
for retrieval. Also, since all correct blocks eventually finish
VID (Termination property), all of them will eventually be
included in Ee and get delivered. We provide pseudocode for
the full DispersedLedger protocol in Appendix C.

4.4 Correctness of DispersedLedger
We now analyze the correctness of the DispersedLedger
protocol by showing it guarantees the three properties
required for BFT (§2.1). Full proof is in Appendix D.
Agreement and Total Order (Theorem D.7). Transactions

are embedded in blocks, so we only need to show Agreement
and Total Order of block delivery at each correct node. Blocks
may get committed and delivered through two mechanisms:
BA and inter-node linking. First consider blocks committed
by BA. BA’s Agreement and VID’s Correctness properties
guarantee that (i) all correct nodes will retrieve the same set
of blocks for each epoch, and (ii) they will download the
same content for each block. Now consider the additional
blocks committed by inter-node linking. As discussed in
§4.3, correct nodes determine these blocks based on identical
information (V arrays) included in the blocks delivered by
BA. Hence they all retrieve and deliver the same set of blocks
(Lemma D.2). Also, all correct nodes use the same sorting
criteria (BA-delivered blocks sorted by node index, followed
by inter-node-linked blocks sorted by epoch number and
node index), so they deliver blocks in the same order.
Validity (Theorems D.5, D.6). Define “correct transactions”
as ones submitted by correct clients to correct nodes (servers).
We want to prove every correct transaction is eventually
delivered (executed). This involves two parts: (i) correct
nodes do not hang, so that every correct transaction eventually
gets proposed in some correct block (Theorem D.5); (ii) all

5If a particular Retrieve returns string “BAD_UPLOADER” or the
block is ill formatted, we use array [∞,∞,...,∞] as the observation.

correct blocks eventually get delivered (Theorem D.6).
For part (i), note that all BAs eventually Output, since in

every epoch at least N− f BAs will Output(1) (Lemma D.3),
and then all correct nodes will Input(0) to the remaining BAs
and drive them to termination. Further, all blocks selected by
BA or inter-node linking are guaranteed to be successfully
dispersed, so Retrieve for them will eventually finish. By
BA’s Validity property, a BA only produces Output(1) when
some correct node has Input(1), which can only happen if
that node sees the corresponding VID Complete. Also, as
explained in §4.3, inter-node linking only selects blocks that
at least one correct node observes to have finished dispersal
(Lemma D.4). By the Availability property of VID (§3.1), all
these blocks are available for retrieval. For part (ii), note that
all correct blocks eventually finish VID (Termination prop-
erty). The inter-node linking protocol will therefore eventually
identify all such blocks to have completed dispersal (Lemma
D.4) and deliver them (if not already delivered by BA).

4.5 Practical Considerations

Running multiple epochs in parallel. In DispersedLedger,
nodes perform dispersal sequentially, proceeding to the
dispersal phase for the next epoch as soon as the dispersal
for the current epoch has completed (all BA instances have
Output). On the other hand, the retrieval phase of each epoch
runs asynchronously at all nodes. To prevent slow nodes from
stalling the progress of fast nodes, it is important that they
participate in dispersal at as high a rate as possible, using only
remaining bandwidth for retrieval. This effectively requires
prioritizing dispersal traffic over retrieval traffic when there is
a network bottleneck. Furthermore, a node can retrieve blocks
from multiple epochs in parallel (e.g., to increase network uti-
lization), but it must always deliver (execute) blocks in a serial
order. Ideally, we want to fully utilize the network but pri-
oritize traffic for earlier epochs over later epochs to minimize
delivery latency. Mechanisms to enforce prioritization among
different types of messages are implementation-specific (§5).
Constantly-slow nodes. Since DispersedLedger decouples
the progress of fast and slow nodes, a natural question is:
what if some nodes are constantly slow and do not have a
chance to catch up? The possibility of some nodes constantly
lagging behind is a common concern for BFT protocols. A
BFT protocol cannot afford to wait for the slowest servers,
because they could be Byzantine servers trying to stall
the system [20]. Therefore the slow servers (specifically
the f slowest servers) can be left behind, unable to catch
up. Essentially, there is a tension between accommodating
servers that are correct but slow, and preventing Byzantine
nodes from influencing the system.

DispersedLedger expands this issue beyond the f slowest
servers. We discuss two simple mitigations. First, the system
designer could mandate a minimum average bandwidth
per node such that all correct nodes can support the target
system throughput over a certain timescale T . Every node

500 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

must support the required bandwidth over time T but can
experience lower bandwidth temporarily without stalling
other nodes. Second, correct nodes could simply stop
proposing blocks when too far behind, e.g., if their retrieval
is more than P epochs behind the current epoch (P = 1 is
the same as HoneyBadger). If enough nodes fall behind
and stop proposing, it automatically slows down the system.
A designer can choose parameters T or P to navigate the
tradeoff between bandwidth variations impacting system
throughput and how far behind nodes can get.
Spam transactions. In DispersedLedger, nodes do not check
the validity of blocks they propose, deferring this check to
the retrieval phase. This creates the possibility of malicious
servers or clients spamming the system with invalid blocks.

Server-sent spam cannot be filtered even in conventional
BFT protocols, because by the time other servers download
the spam blocks, they have already wasted bandwidth.
Similarly, HoneyBadger must perform BA (and incur its
compute and bandwidth cost) regardless of the validity of
the block, because by design, all BAs must eventually finish
for the protocol to make progress [31]. Therefore, server-sent
spam harms DispersedLedger and HoneyBadger equally.
Fortunately, server-sent spam is bounded by the fraction of
Byzantine servers (f/N).

On the other hand, client-sent spam is not a major
concern in consortium blockchains (§2.1). In consortium
blockchains, the organization is responsible for its clients, and
a non-Byzantine organization would not spam the system.6

For these reasons, some BFT protocols targeting consortium
blockchains such as HyperLedger Fabric [2] forgo transaction
filtering prior to broadcast for efficiency and privacy gains.

In more open settings, where clients are free to contact
any server, spamming is a concern. A simple modification
to the DispersedLedger protocol enables the same level of
spam filtering as HoneyBadger. Correct nodes simply stop
proposing new transactions when they are lagging behind
in retrieval. Instead, they propose an empty block (with no
transactions) to participate in the current epoch. In this way,
correct nodes only propose transactions when they can verify
them. Empty blocks still incur some overhead, so a natural
question is: what is the performance impact of these empty
blocks? Our results show that it is minor and this variant of
DispersedLedger, which we call “DL-Coupled”, retains most
of the performance benefits (§6.2).

5 Implementation
We implement DispersedLedger in 8,000 lines of Go. The
core protocol of DispersedLedger is modelled as 4 nested
IO automata: BA, VID, DLEpoch, and DL. BA implements the
binary agreement protocol proposed in [32]. VID implements
our verifiable information dispersal protocol AVID-M

6A Byzantine organization could of course spam, but this is the same
as the server-sent spamming scenario, in which DispersedLedger is no worse
than HoneyBadger.

described in §3.3. We use a pure-Go implementation of
Reed-Solomon code [36] for encoding and decoding blocks,
and an embedded key-value storage library [23] for storing
blocks and chunks. DLEpoch nests N instances of VID and BA
to implement one epoch of DispersedLedger (§4.2). Finally,
DL nests multiple instances of DLEpoch and the inter-node
linking logic (§4.3) to implement the full protocol.
Traffic prioritization. Prioritizing dispersal traffic over
retrieval is made complicated because nodes cannot be certain
of the bottleneck capacity for different messages and whether
they share a common bottleneck. For example, rate-limiting
the low-priority traffic may result in under-utilization of the
network. Similarly, simply enforcing prioritization between
each individual pair of nodes may lead to significant priority
inversion if two pairs of nodes share the same bottleneck. In
our implementation, we use a simple yet effective approach to
achieve prioritization in a work conserving manner (without
static rate limits) inspired by MulTcp [13]. For each pair
of nodes, we establish two connections, and we modify
the parameters of the congestion control algorithm of one
connection so that it behaves like T (T > 1) connections .
We then send high-priority traffic on this connection, and
low-priority traffic on the other (unmodified) connection. At
all bottlenecks, the less aggressive low-priority connection
will back off more often and yield to the more aggressive
high-priority connection. On average, a high-priority con-
nection receives T times more bandwidth than a competing
low-priority connection at the same bottleneck.7 Note that in
DispersedLedger, high-priority traffic consists of only a tiny
fraction of the total traffic that a node handles (1/20 to 1/10
in most cases as shown in §6.4), and its absolute bandwidth
is low. Therefore our approach will not cause congestion
to other applications competing at the same bottleneck. In
our system, we set T =30. We use QUIC as the underlying
transport protocol and modify the quic-go [12] library to
add the knob T for tuning the congestion control.

To prioritize retrieval traffic by epoch, we order retrieval
traffic on a per-connection basis by using separate QUIC
streams for different epochs. We modify the scheduler
quic-go [12] to always send the stream with the lowest
epoch number.
Rate control for block proposal. DispersedLedger requires
some degree of batching to amortize the fixed cost of BA and
VID. However, if unthrottled, nodes may propose blocks too
often and the resulting blocks could be very small, causing
low bandwidth efficiency. More importantly, since dispersal
traffic is given high priority, the system may use up all the
bandwidth proposing inefficient small blocks and leave no
bandwidth for block retrieval. To solve this problem, our
implementation employs a simple form of adaptive batch-
ing [29]. Specifically, we limit the block proposal rate using
Nagle’s algorithm [33]. A node only proposes a new block if

7Similar approaches have been used in other usecases to control
bandwidth sharing among competing flows [34].

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 501

(i) a certain duration has passed since the last block was pro-
posed, or (ii) a certain amount of data has accumulated to be
proposed in the next block. In our implementation, we use 100
ms as the delay threshold, and 150 KB as the size threshold.
This setup works well for all of our evaluation experiments.

6 Evaluation
Our evaluation answers the following questions:
1. What is the throughput and the latency of DispersedLedger

in a realistic deployment?
2. Is DispersedLedger able to consistently achieve good

throughput regardless of network variations?
3. How does the system scale to more nodes?

We compare DispersedLedger (DL) with the original
HoneyBadger (HB) and our optimized version: HoneyBadger-
Link. HoneyBadger-Link (HB-Link) combines the inter-node
linking in DispersedLedger with HoneyBadger, so that every
epoch, all (instead of N−2 f) honest blocks are guaranteed
to get into the ledger. We also experiment with DL-Coupled,
a variant of DispersedLedger where nodes only propose new
transactions when they are up-to-date with retrievals (§4.5).

6.1 Experimental Setup
We run our evaluation on AWS EC2. In our experiments,
every node is hosted by an EC2 c5d.4xlarge instance with
16 CPU cores, 16 GB of RAM, 400 GB of NVMe SSD, and
a 10 Gbps NIC. The nodes form a fully connected graph, i.e.
there is a link between every pair of nodes. We run our ex-
periments on two different scenarios. First, a geo-distributed
scenario, where we launch VMs at 16 major cities across the
globe, one at each city. We don’t throttle the network. This
scenario resembles the typical deployment of a consortium
blockchain. In addition, we measure the throughput of the
system on another testbed on Vultr (details are in Appendix
A.2). Second, a controlled scenario, where we start VMs
in one datacenter and apply artificial delay and bandwidth
throttling at each node using Mahimahi [35]. Specifically, we
add a one-way propagation delay of 100 ms between each
pair of nodes to mimic the typical latency between distant
major cities [38], and model the ingress and egress bandwidth
variation of each node as independent Gauss-Markov
processes (more details in §6.3). This controlled setup allows
us to precisely define the variation of the network condition
and enables fair, reproducible evaluations. Finally, to generate
the workload for the system, we start a thread on each node
that generates transactions in a Poisson arrival process.

6.2 Performance over the Internet
First, we measure the performance of DispersedLedger on our
geo-distributed testbed and compare it with HoneyBadger.
Throughput. To measure the throughput, we generate a high
load on each node to create an infinitely-backlogged system,
and report the rate of confirmed transactions at each node.
Because the internet bandwidth varies at different locations,
we expect the measured throughput to vary as well. Fig. 8

Figure 8: Throughput of each server running different
protocols on the geo-distributed setting.

0
3.
5
G

By
te
s
C
on
fir
m
ed

Time0 2 min

(a) DispersedLedger

0
3.
5
G

By
te
s
C
on
fir
m
ed

Time0 2 min

(b) HoneyBadger with linking

Figure 9: The amount of confirmed data over time when
running DispersedLedger and HoneyBadger with inter-node
linking on the geo-distributed testbed, plotted on the same scale.
Each line represents one server.

shows the results. DispersedLedger achieves on average
105% better throughput than HoneyBadger. To confirm that
our scheme is robust, we also run the experiment on another
testbed using a low-cost cloud vendor. Results in §A.2 show
that DispersedLedger significantly improves the throughput
in that setting as well.

DispersedLedger gets its throughput improvement mainly
for two reasons. First, inter-node linking ensures all blocks
that successfully finish VID get included in the ledger, so
no bandwidth is wasted. In comparison, in every epoch of
HoneyBadger at most f blocks may not get included in
the final ledger. The bandwidth used to broadcast them is
therefore wasted. As a result, inter-node linking provides
at most a factor of N/(N − f) improvement in effective
throughput. To measure the gain in the real-world setting, we
modify HoneyBadger to include the same inter-node linking
technique and measure its throughput. Results in Fig. 8 show
that enabling inter-node linking provides a 45% improvement
in throughput on our geo-distributed testbed.

Second, confirmation throughput at different nodes are
decoupled, so temporary slowdown at one site will not affect
the whole system. Because the system is deployed across the
WAN, there are many factors that could cause the confirma-
tion throughput of a node to fluctuate: varying capacity at the
network bottleneck, latency jitters, or even behavior of the
congestion control algorithm. In HoneyBadger, the confirma-
tion progress of all but the f slowest nodes are coupled, so at
any time the whole system is only as fast as the f +1-slowest
node. DispersedLedger does not have this limitation. Fig. 9
shows an example: DispersedLedger allows each node to
always run at its own capacity. HoneyBadger couples the
performance of most servers together, so all servers can
only progress at the same, limited rate. In fact, notice that

502 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

every node makes more progress with DispersedLedger
compared to HoneyBadger (with linking) over the 2 minutes
shown. The reason is that with HoneyBadger, different nodes
become the straggler (the (f +1)th-slowest node) at different
time, stalling all other nodes. But with DispersedLedger, a
slow node whose bandwidth improves can accelerate and
make progress independently of others, making full use of
time periods when it has high bandwidth. Fig. 8 shows that
DispersedLedger achieves 41% better throughput compared
to HoneyBadger with linking due to this improvement.

Finally, DL-Coupled is 12% slower than DL on average,
but it still achieves 80% and 23% higher throughput on
average than HoneyBadger and HoneyBadger with linking.
Recall that DL-Coupled constrains nodes that can propose
new transactions to prevent spamming attacks. The result
shows that in open environments where spamming is a con-
cern, DL-Coupled can still provide significant performance
gains. In the rest of the evaluation, we focus on DL (without
spam mitigation) to investigate our idea in its purest form.
Latency. Confirmation latency is defined as the elapsed
time from a transaction entering the system to it being
delivered. Similar to the throughput, the confirmation latency
at different servers varies due to heterogeneity of the network
condition. Further, for a particular node, we only calculate
the latency of the transactions that this node itself generates,
i.e. local transactions. This is a somewhat artificial metric,
but it helps isolate the latency of each server in HoneyBadger
and makes the results easier to understand. In HoneyBadger,
a slow node only proposes a new epoch after it has confirmed
the previous epoch, so the rate it proposes is coupled with
the rate it confirms, i.e. it proposes 1 block after downloading
O(N) blocks. Due to this reason, an overloaded node does
not have the capacity to even propose all the transactions it
generates, and whatever transaction it proposes will be stale.
When these stale transactions get confirmed at a fast node,
the latency (especially the tail latency) at the fast nodes will
suffer. Note that DispersedLedger does not have this problem,
because all nodes, even overloaded ones, propose new
transactions at a rate limited only by the egress bandwidth.
In summary, choosing this metric is only advantageous to
HoneyBadger, so the experiment remains fair. In Appendix
§A.1, we provide further details and report the latency of all
servers calculated for both local only, and all transactions.

We run the system at different loads and report the latency
at each node. In Fig. 10, we focus on two datacenters:
Mumbai, which has limited internet connection, and Ohio,
which has good internet connection. We first look at the
median latency. At low load, both HoneyBadger and
DispersedLedger have similarly low median latency. But as
we increase the load from 6 MB/s to 15 MB/s, the median
latency of HoneyBadger increases almost linearly from
around 800 ms to 3000 ms. This is because in HoneyBadger,
proposing and confirming an epoch are done in lockstep. As
the load increases, the proposed block becomes larger and

Figure 10: The median latency of DispersedLedger (solid)
and HoneyBadger (dash) under different offered load. Error
bar shows the 5-th and the 95-th percentiles. Two locations
with good (Ohio) and limited (Mumbai) internet connection
are highlighted.

takes longer to confirm. This in turn causes more transactions
to be queued for the next block so the next proposed block
remains large. Actually, the batch (all blocks in an epoch)
size of HoneyBadger increases from 3.4 MB to 42.5 MB
(200 KB to 2.5 MB per block) as we increase the load from
6 MB/s to 15 MB/s. Note that the block size is not chosen by
us, but is naturally found by the system itself. In comparison,
the latency of DispersedLedger only increases by a bit when
the load increases, from 730 ms to 830 ms as we increase the
load from 2 MB/s to 23 MB/s. The batch size ranges between
0.85 MB to 11.9 MB (50 KB to 700 KB per block).

We now look at the tail latency, which is important for
service quality. At low load (6 MB/s), the 99-th percentile la-
tency of DispersedLedger is 1000 ms across all servers, while
that of HoneyBadger ranges from 1500 ms to 4500 ms. It sug-
gests that DispersedLedger is more stable. As we increase the
load, the tail (95-th percentile) latency of the Mumbai server
immediately goes up. This is because HoneyBadger does not
guarantee all honest blocks to be included in the ledger, and
slow nodes are more likely to see their blocks being dropped
from an epoch. When it happens, the node has to re-propose
the same block in the next epoch, causing significant delay to
the block. We note that the tail latency of the Ohio server goes
up as well. In comparison, the tail latency of DispersedLedger
at both Mumbai and Ohio stays low until very high load.

6.3 Controlled experiments
In this experiment, we run a series of tests in the controlled
setting to verify if DispersedLedger achieves its design goal:
achieving good throughput regardless of network variation.
We start 16 servers in one datacenter, and add an artificial one-
way propagation delay of 100 ms between each pair of servers
to emulate the WAN latency. We then generate synthetic
traces for each server that independently caps the ingress and
egress bandwidth of the server. For each set of traces, we mea-
sure the throughput of DispersedLedger and HoneyBadger.
Spatial variation. This is the situation where the bandwidth
varies across different nodes but stays the same over time. For
the i-th node (0≤ i<16), we set its bandwidth to constantly
be 10 + 0.5i MB/s. Fig. 11a shows that the throughput of

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 503

(a) Spatial variation (b) Temporal variation

Figure 11: Throughput of HoneyBadger (HB), HoneyBadger
with linking (HB-Link), and DispersedLedger (DL) in the
controlled experiments. Error bars in (b) show the standard
deviation.

HoneyBadger (with or without linking) is capped at the
bandwidth of the fifth slowest server, and the bandwidth avail-
able at all faster servers are not utilized. In comparison, the
throughput of DispersedLedger at different servers are fully
decoupled. The achieved bandwidth is proportional to the
available bandwidth at each server. DispersedLedger achieves
this because it decouples block retrieval at different servers.
Temporal variation. We now look at the scenario where the
bandwidth varies over time, and show that DispersedLedger is
robust to network fluctuation. We model the bandwidth vari-
ation of each node as independent Gauss-Markov processes
with mean b, variance σ, and correlation between consecutive
samples α, and generate synthetic traces for each node by
sampling from the process every 1 second. Specifically, we
set b=10 MB/s, σ=5 MB/s, α=0.98 and generate a trace for
each server, i.e. the bandwidth of each server varies indepen-
dently but have the same distribution with mean bandwidth
10 MB/s. (We show an example of such trace in §A.3.) As a
comparison, we also run an experiment when the bandwidth
at each server does not fluctuate and stays at 10 MB/s. In our
implementation (for all protocols), a node notifies others when
it has decoded a block to stop sending more chunks. This opti-
mization is less effective when all nodes have exactly the same
fixed bandwidth because all chunks for a block will arrive at
roughly the same time. So in this particular experiment, we
disable this optimization to enable an apple-to-apple compar-
ison of the fixed and variable bandwidth scenarios. Fig. 11b
shows that as we introduce temporal variation of the network
bandwidth, the throughput of DispersedLedger stays the same.
This confirms that DispersedLedger is robust to network fluc-
tuation. Meanwhile, the throughput of HoneyBadger and Hon-
eyBadger with linking dropped by 20% and 25% respectively.

6.4 Scalability
In this experiment, we evaluate how DispersedLedger scales
to a large number of servers. As with many evaluations of BFT
protocols [31,39], we use cluster sizes ranging from 16 to 128.
Throughput. We first measure the system throughput at
different cluster size N. For this experiment, we start all
the servers in the same datacenter with a 100 ms one-way
propagation delay on each link and a 10 MB/s bandwidth
cap on each server. We also fix the block size to 500 KB

Figure 12: Throughput at
different cluster size and block
size. Error bars show the
standard deviation.

Figure 13: Fraction of disper-
sal traffic versus total traffic at
different scale and block size.

and 1 MB. Fig. 12 shows that the system throughput slightly
drops when N grows 8 times bigger from 16 nodes to 128
nodes. This is because the BA in the dispersal phase has
a per-node cost of O(N2). With a constant block size, the
messaging overhead takes a larger fraction as N increases.
We notice that increasing the block size helps amortize the
cost of VID and BA, and results in better system throughput.
Traffic for block dispersal. A metric core to the design of
DispersedLedger is the amount of data a node has to download
in order to participate in block dispersal, i.e. dispersal traffic.
More precisely, we are interested in the ratio of dispersal
traffic to the total traffic (dispersal plus retrieval). The lower
this ratio, the easier it is for slow nodes to keep up with block
dispersal, and the better DispersedLedger achieves its design
goal. Fig. 13 shows this ratio at different scales and block
sizes. First, we observe that increasing the block size brings
down the fraction of dispersal traffic. This is because a large
block size amortizes the fixed cost in VID and BA. Mean-
while, increasing the cluster size reduces the lower bound
on the fraction of dispersal traffic. This is because in the VID
phase, every node is responsible for an 1/(N−2 f) slice of
each block, and increasing N brings down this fraction.

7 Conclusion
We presented DispersedLedger, a new asynchronous BFT
protocol that provides near-optimal throughput under
fluctuating network bandwidth. DispersedLedger is based
on a novel restructuring of BFT protocols that decouples
agreement from the bandwidth-intensive task of downloading
blocks. We implement a full system prototype and evaluate
DispersedLedger on two testbeds across the real internet and
a controlled setting with emulated network conditions. Our
results on a wide-area deployment across 16 major cities show
that DispersedLedger achieves 2× better throughput and 74%
lower latency compared to HoneyBadger. Our approach could
be applicable to other BFT protocols, and enables new ap-
plications where resilience to poor network condition is vital.

Acknowledgments
We would like to thank the National Science Foundation
grants CNS-1751009 and CNS-1910676, the Cisco Research
Center Award, the Microsoft Faculty Fellowship, and the
Fintech@CSAIL program for their support.

504 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] I. Abraham, D. Malkhi, K. Nayak, L. Ren, and M. Yin.

Sync HotStuff: Simple and practical synchronous state
machine replication. In 2020 IEEE Symposium on
Security and Privacy, pages 106–118. IEEE, 2020.

[2] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin,
K. Christidis, A. De Caro, D. Enyeart, C. Ferris,
G. Laventman, Y. Manevich, S. Muralidharan,
C. Murthy, B. Nguyen, M. Sethi, G. Singh, K. Smith,
A. Sorniotti, C. Stathakopoulou, M. Vukolić, S. W.
Cocco, and J. Yellick. Hyperledger Fabric: A distributed
operating system for permissioned blockchains. In
Proceedings of the Thirteenth EuroSys Conference,
pages 30:1–30:15. ACM, 2018.

[3] M. Belotti, N. Božić, G. Pujolle, and S. Secci. A
vademecum on blockchain technologies: When, which,
and how. IEEE Communications Surveys & Tutorials,
21(4):3796–3838, 2019.

[4] M. Ben-Or, B. Kelmer, and T. Rabin. Asynchronous
secure computations with optimal resilience. In
Proceedings of the Thirteenth Annual ACM Symposium
on Principles of Distributed Computing, pages 183–192.
ACM, 1994.

[5] E. Buchman. Tendermint: Byzantine fault tolerance
in the age of blockchains. PhD thesis, University of
Guelph, 2016.

[6] V. Buterin. On public and private blockchains.
https://blog.ethereum.org/2015/08/07/
on-public-and-private-blockchains/. Ac-
cessed: 2021-08-15.

[7] V. Buterin and V. Griffith. Casper the friendly finality
gadget. arXiv:1710.09437v4, 2019.

[8] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup.
Secure and efficient asynchronous broadcast protocols.
In Advances in Cryptology — CRYPTO 2001, pages
524–541. Springer, 2001.

[9] C. Cachin and J. A. Poritz. Secure intrusion-tolerant
replication on the internet. In 2002 International
Conference on Dependable Systems and Networks,
pages 167–176. IEEE, 2002.

[10] C. Cachin and S. Tessaro. Asynchronous verifiable
information dispersal. In 24th IEEE Symposium on Re-
liable Distributed Systems, pages 191–201. IEEE, 2005.

[11] M. Castro and B. Liskov. Practical Byzantine fault
tolerance. In Proceedings of the Third Symposium on
Operating Systems Design and Implementation, pages
173–186. USENIX Association, 1999.

[12] L. Clemente. quic-go: A QUIC implementation in
pure Go. https://github.com/lucas-clemente/
quic-go.

[13] J. Crowcroft and P. Oechslin. Differentiated end-to-end
internet services using a weighted proportional fair shar-
ing TCP. ACM SIGCOMM Computer Communication
Review, 28(3):53–69, 1998.

[14] M. Du, Q. Chen, J. Xiao, H. Yang, and X. Ma. Supply
chain finance innovation using blockchain. IEEE Trans-
actions on Engineering Management, 67(4):1045–1058,
2020.

[15] S. Duan, M. K. Reiter, and H. Zhang. BEAT: Asyn-
chronous BFT made practical. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 2028–2041. ACM, 2018.

[16] M. J. Fischer, N. A. Lynch, and M. S. Paterson.
Impossibility of distributed consensus with one faulty
process. Journal of the ACM, 32(2):374–382, 1985.

[17] A. Gągol and M. Świętek. Aleph: A leaderless, asyn-
chronous, Byzantine fault tolerant consensus protocol.
In Proceedings of the 1st ACM Conference on Advances
in Financial Technologies, pages 214–228. ACM, 2019.

[18] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zel-
dovich. Algorand: Scaling Byzantine agreements
for cryptocurrencies. In Proceedings of the 26th
Symposium on Operating Systems Principles, pages
51–68. ACM, 2017.

[19] G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K.
Reiter. Efficient Byzantine-tolerant erasure-coded stor-
age. In 2004 International Conference on Dependable
Systems and Networks, pages 135–144. IEEE, 2004.

[20] G. G. Gueta, I. Abraham, S. Grossman, D. Malkhi,
B. Pinkas, M. Reiter, D.-A. Seredinschi, O. Tamir, and
A. Tomescu. SBFT: a scalable and decentralized trust
infrastructure. In 49th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks,
pages 568–580. IEEE, 2019.

[21] J. Hendricks, G. R. Ganger, and M. K. Reiter. Verifying
distributed erasure-coded data. In Proceedings of the
Twenty-sixth Annual ACM Symposium on Principles of
Distributed Computing, pages 139–146. ACM, 2007.

[22] N. Kabra, P. Bhattacharya, S. Tanwar, and S. Tyagi.
Mudrachain: Blockchain-based framework for auto-
mated cheque clearance in financial institutions. Future
Generation Computer Systems, 102:574–587, 2020.

[23] A. Krylysov. pogreb: Embedded key-value
store for read-heavy workloads written in Go.
https://github.com/akrylysov/pogreb.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 505

https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/
https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/
https://github.com/lucas-clemente/quic-go
https://github.com/lucas-clemente/quic-go
https://github.com/akrylysov/pogreb

[24] K. Kursawe and V. Shoup. Optimistic asynchronous
atomic broadcast. In Automata, Languages and
Programming, pages 204–215. Springer, 2005.

[25] L. Lamport, R. Shostak, and M. Pease. The Byzantine
generals problem. In Concurrency: The Works of Leslie
Lamport, pages 203–226. ACM, 2019.

[26] J. Liu, T. Liang, R. Sun, X. Du, and M. Guizani. A
privacy-preserving medical data sharing scheme based
on consortium blockchain. In 2020 IEEE Global
Communications Conference, pages 1–6. IEEE, 2020.

[27] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert,
and P. Saxena. A secure sharding protocol for open
blockchains. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security,
pages 17–30. ACM, 2016.

[28] N. A. Lynch. Distributed Algorithms. Morgan
Kaufmann, 1996.

[29] J. C. McCullough, J. Dunagan, A. Wolman, and A. C.
Snoeren. Stout: An adaptive interface to scalable cloud
storage. In 2010 USENIX Annual Technical Conference.
USENIX Association, 2010.

[30] R. C. Merkle. A digital signature based on a conven-
tional encryption function. In Advances in Cryptology
— CRYPTO ’87, pages 369–378. Springer, 1987.

[31] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song. The
honey badger of BFT protocols. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 31–42. ACM, 2016.

[32] A. Mostéfaoui, M. Hamouma, and M. Raynal.
Signature-free asynchronous Byzantine consensus with
t < n/3 and O(n2) messages. In Proceedings of the
2014 ACM Symposium on Principles of Distributed
Computing, pages 2–9. ACM, 2014.

[33] J. Nagle. Congestion control in IP/TCP internetworks.
RFC 896, RFC Editor, 1984.

[34] V. Nathan, V. Sivaraman, R. Addanki, M. Khani,
P. Goyal, and M. Alizadeh. End-to-end transport
for video QoE fairness. In Proceedings of the 2019
Conference of the ACM Special Interest Group on Data
Communication, pages 408–423. ACM, 2019.

[35] R. Netravali, A. Sivaraman, S. Das, A. Goyal, K. Win-
stein, J. Mickens, and H. Balakrishnan. Mahimahi:
Accurate record-and-replay for HTTP. In 2015 USENIX
Annual Technical Conference, pages 417–429. USENIX
Association, 2015.

[36] K. Post. reedsolomon: Reed-Solomon erasure
coding in Go. https://github.com/klauspost/
reedsolomon.

[37] M. O. Rabin. Efficient dispersal of information for
security, load balancing, and fault tolerance. Journal
of the ACM, 36(2):335–348, 1989.

[38] WonderNetwork. Global ping statistics. https://
wondernetwork.com/pings/. Accessed: 2021-08-15.

[39] M. Yin, D. Malkhi, M. K. Reiter, G. Golan-Gueta, and
I. Abraham. HotStuff: BFT consensus with linearity
and responsiveness. In Proceedings of the 2019 ACM
Symposium on Principles of Distributed Computing,
pages 347–356. ACM, 2019.

[40] R. Zhang, R. Xue, and L. Liu. Security and privacy on
blockchain. ACM Computing Surveys, 52(3), 2019.

A Supplements to the Evaluations
A.1 Latency metric
Here we justify counting only local transactions when cal-
culating the confirmation latency. As mentioned in §6.2, we
choose this metric to prevent overloaded servers from impact-
ing the latency (especially the tail latency) of non-overloaded
servers. Fig. 14 shows the latency of DispersedLedger and
HoneyBadger under two metrics: counting all transactions,
and counting only local transactions. Each system is running
near its capacity. We observe that the latency (both the
median and the tail) of DispersedLedger is the same under
the two metrics, so choosing to count only local transactions
in no way helps our protocol. For HoneyBadger, we observe
that by counting all transactions, the median latency of the
overloaded servers decreased. This is because the overloaded
servers cannot get their local transactions into the ledger (so
the local transactions have high latency), but can confirm
some transactions from other non-overloaded servers. The
median latency mostly represents these non-local transactions.
Still, these servers are overloaded, and the latency numbers
are meaningless because they will increase as system runs
for longer. So the latency metric does not matter for the
overloaded servers. Meanwhile, we observe that the tail
latency of HoneyBadger on non-overloaded servers worsens
a lot as we switch to counting all transactions. This is due to
the transactions proposed by the overloaded nodes, and is the
main reason that we choose to count only local transactions.
In summary, counting only local transactions for latency
calculation does not improve the latency of DispersedLedger,
but helps improve the tail latency of non-overloaded servers
in HoneyBadger, so choosing this metric is fair.

A.2 Throughput on another testbed over the internet
To further confirm that DispersedLedger improves the
throughput of BFT protocols when running over the internet,
we build another testbed on a low-cost cloud provider called
Vultr. We use the $80/mo plan with 6 CPU cores, 16 GB of
RAM, 320 GB of SSD, and an 1 Gbps NIC. At the moment of
the experiment, Vultr has 15 locations across the globe, and

506 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/klauspost/reedsolomon
https://github.com/klauspost/reedsolomon
https://wondernetwork.com/pings/
https://wondernetwork.com/pings/

(a) DispersedLedger

(b) HoneyBadger

Figure 14: Confirmation latency of DispersedLedger and
HoneyBadger when counting all transactions (All Tx) or only
local transactions. Each system runs near its capacity (14.8
MB/s for HoneyBadger and 23.4 MB/s for DispersedLedger).
The error bar shows the 5-th and 95-th percentiles.

Figure 15: Throughput of each server running different
protocols on the Vultr testbed. HB stands for HoneyBadger,
HB-Link stands for HoneyBadger with inter-node linking, New
stands for DispersedLedger.

we run one server at each location and perform the same exper-
iment as in § 6.2. Fig. 15 shows the results. DispersedLedger
improves the throughput by at least 50% over HoneyBadger.

A.3 Example trace of temporal variation

We provide in Fig. 16 an example of the synthetic bandwidth
trace we used in the temporal variation scenario in §6.3.

Figure 16: A bandwidth trace we used in the temporal
variation scenario.

B Correctness proof of AVID-M
Notations. We use the symbol “·” as placeholders in message
parameters to indicate “any”. For example, Chunk(r, ·, ·)
means “Chunk messages with the first parameter set to r and
the other two parameters set to any value”.

Lemma B.1. If a correct server sends Ready(r), then at
least one correct server has received N− f GotChunk(r).

Proof. A correct server broadcasts Ready(r) in two cases:
1. Having received N− f GotChunk(r) messages.
2. Having received f +1 Ready(r) messages.
If a correct server sends out Ready(r) for the aforementioned
reason 1, then this already satisfies the lemma we want to
prove. Now assume that a correct server sends Ready(r)
because it has received f +1 Ready(r) (the aforementioned
reason 2). Then there must exist a correct server which has
sent out Ready(r) because of the aforementioned reason 1.
Otherwise, there can be at most f Ready(r) messages (forged
by the f Byzantine servers), and no correct server will ever
send Ready(r) because of reason 2, which contradicts with
our assumption. So there exists a correct server that has re-
ceived N− f GotChunk(r), and this satisfies the lemma.

Theorem B.2 (Termination). If a correct client invokes
Disperse and no other client invokes Disperse on the
same instance of VID, then all correct servers eventually
Complete the dispersal.

Proof. A correct client sends correctly encoded chunks to all
servers. Let’s assume the Merkle root of the chunks is r, then
all correct servers eventually receive Chunk(r,·,·). Because
there is no other client invoking Disperse, it is impossible
for a server to receive Chunk(r′, ·, ·) for any r′ 6= r, and no
correct server will ever broadcast GotChunk(r′) for any r′ 6=r.
So each correct server will send out GotChunk(r). Eventually,
all correct servers will receive N− f GotChunk(r).

All correct servers will broadcast Ready(r) upon receiving
these N − f GotChunk(r) messages or they have already
sent Ready(r). A correct server will Complete upon
receiving 2 f + 1 Ready(r). We have shown that all N − f

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 507

correct servers will eventually send Ready(r). Because
N− f ≥2 f +1, all correct servers will Complete.

Lemma B.3. If a correct server has sent out Ready(r), then
no correct server will ever send out Ready(r′) for any r′ 6=r.

Proof. Let’s assume for contradiction that two messages
Ready(r) and Ready(r′) (r 6= r′) have both been sent by
correct servers. By Lemma B.1, at least one correct server
has received N − f GotChunk(r), and at least one correct
server has received N− f GotChunk(r′) (r′ 6=r).

We obtain a contradiction by showing that the system
cannot generate N − f GotChunk(r) messages plus N − f
GotChunk(r′) messages for the two correct servers to receive.
Assume h GotChunk(r) messages come from correct servers,
h′ GotChunk(r′) come from correct servers, and there are β

Byzantine servers (β≤ f by the definition of f). Then we have

h+β≥N− f

h′+β≥N− f .

A correct server do not broadcast both GotChunk(r) and
GotChunk(r′), while a Byzantine server is free to send
different GotChunk messages to different correct servers, so
we have

h+h′+β≤N.

These constraints imply

β≥N−2 f .

However, β≤ f , so we must have N ≤ 3 f . This contradicts
with our assumption of N ≥ 3 f + 1 in our security model
(§2.4), so it is impossible, and the assumption must not
hold.

Theorem B.4 (Agreement). If some correct server
Completes the dispersal, then all correct servers will
eventually Complete the dispersal.

Proof. A correct server Completes if and only if it has
received 2 f +1 Ready(r) messages. We want to prove that
in this situation, all correct servers will eventually send
a Ready(r), so that they will all receive at least 2 f + 1
Ready(r) messages needed to Complete.

We now assume a correct server has Completed after
receiving 2 f + 1 Ready(r). Out of these messages, at
least f + 1 must be broadcast from correct servers, so all
correct servers will eventually receive these Ready(r). A
correct server will send out Ready(r) upon receiving f +1
Ready(r), so all correct servers will do so upon receiving the
aforementioend f +1 Ready(r) messages.

Because all correct servers will send Ready(r), eventually
all correct servers will receive N − f Ready(r). Because
N− f ≥2 f +1, all of them will Complete.

Lemma B.5. If a correct server has Completed, then all
correct servers eventually set the variable ChunkRoot to the
same value.

Proof. A correct server uses ChunkRoot to store the root of
the chunks of the dispersed block, so we are essentially prov-
ing that all correct servers agree on this root. Assume that a
server Completes, then it must have received 2 f +1 Ready(r)
messages. We now prove that no correct server can ever re-
ceive 2 f +1 Ready(r′) messages for any r′ 6=r. Because a cor-
rect server has received 2 f +1 Ready(r), there must be f +1
correct servers who have broadcast Ready(r). By Lemma
B.3, no correct server will ever broadcast Ready(r′) for any
r′ 6=r, so a correct server can receive at most f Ready(r′) for
any r′ 6=r, which are forged by the f Byzantine servers.

By Theorem B.4, all correct servers eventually Complete,
so they must eventually receive 2 f + 1 Ready(r), and will
each set ChunkRoot=r.

Theorem B.6 (Availability). If a correct server has
Completed, and a correct client invokes Retrieve, it
eventually reconstructs some block B′.

Proof. The Retrieve routine returns at a correct client
as long as it can collect N − 2 f ReturnChunk(r,Ci, Pi)
messages with the same root r and valid proofs Pi. A correct
server sends ReturnChunk(MyRoot,MyChunk,MyProof) to
a client as long as it has MyRoot, MyChunk, MyProof, and
ChunkRoot set, and MyRoot = ChunkRoot. Here, a server
uses MyRoot to store the root of the chunk it has received, uses
MyChunk to store the chunk, and uses MyProof to store the
Merkle proof (Fig. 3). We now prove that if any correct server
Completes, at least N − 2 f correct servers will eventually
meet this condition and send ReturnChunk to the client.

Assume that a correct server has Completed the VID
instance with ChunkRoot set to r. Then, by Lemmas B.4,
B.5, all correct servers will eventually Complete and set
ChunkRoot= r. Also, this server must have received 2 f +1
Ready(r) messages, out of which at least f +1 must come
from correct servers. According to Lemma B.1, at least one
correct server has received N − f GotChunk(r). At least
N − 2 f GotChunk(r) messages must come from correct
servers, so they each must have MyChunk, MyProof set, and
have set MyRoot=r.

We have proved that at least N− 2 f correct servers will
send ReturnChunk(r,Ci, Pi) messages. For each message
sent by the i-th server (which is correct), Pi must be a valid
proof showing Ci is the i-th chunk under root r, because the
server has validated this proof. So the client will eventually
obtain the N−2 f chunks needed to reconstruct a block.

Lemma B.7. Any two correct clients finishing Retrieve

have their variable ChunkRoot set to the same value.

Proof. A client uses variable ChunkRoot to store the root
of the N−2 f chunks it uses to reconstruct the block (Fig. 4),

508 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

so we are essentially proving that any two correct clients will
use chunks under the same root when executing Retrieve.
Let’s assume for contradiction that two correct clients finish
Retrieve, but have set ChunkRoot to r and r′ respectively
(r 6= r′). This implies that one client has received at least
N − 2 f ReturnChunk(r, ·, ·) messages, and the other has
received N − 2 f ReturnChunk(r′, ·, ·) messages. Out of
these messages, at least N−3 f ReturnChunk(r,·,·) and at
least N− 3 f ReturnChunk(r′,·,·) are from correct servers
(because N ≥ 3 f + 1 by our security assumptions in §2.4).
Since a correct server ensures MyRoot=ChunkRoot and uses
MyRoot as the first parameter of ReturnChunk messages,
there must exist some correct server with ChunkRoot set
to r, and some correct server with ChunkRoot set to r′.
Also, since a correct server only sends ReturnChunk when
it has Completed, there must be some server which has
Completed. This contradicts with Lemma B.5, which states
that all correct servers must have ChunkRoot set to the same
value. The assumption must not hold.

Extra notations. To introduce the following lemma, we
need to define a few extra notations. Let Encode(B) be the
encoding result of a block B in the form of an array of N
chunks. Let Decode(C) be the decoding result (a block) of an
array of N−2 f chunks. Let MerkleRoot(C) be the Merkle
root of an array of chunks.

Lemma B.8. For any array of N chunks C, exactly one of
the following is true:
1. For any two subsets D1, D2 of N − 2 f chunks in C,

Decode(D1)=Decode(D2).
2. For any subset D of N − 2 f chunks in C,

MerkleRoot(Encode(Decode(D))) 6=MerkleRoot(C).

Proof. We are proving that a set of chunks C is either:
1. Correctly encoded (consistent), so any subset of N−2 f

chunks in C decode into the same block.
2. Or, no matter which subset of N−2 f chunks in C are used

for decoding, a correct client can re-encode the decoded
block, compute the Merkle root over the encoding result,
and find it to be different from the Merkle root of C, and
thus detect an encoding error.
Case 1: Consistent encoding. Assume for any subset D of

N−2 f chunks in C, Decode(D)=B. We now want to prove
that MerkleRoot(Encode(Decode(D)))=MerkleRoot(C).
By our assumption, Encode(Decode(D)) = Encode(B),
so we only need to show C = Encode(B). This is clearly
true by the definition of erasure code: the Encode function
encodes B into a set of N chunks, of which any subset of
N − 2 f chunks will decode into B. C already satisfies this
property, and the Encode process is deterministic, so it must
be Encode(B)=C, and the lemma is satisfied in this case.

Case 2: Inconsistent encoding. Assume there ex-
ist two subsets D1, D2 of N − 2 f chunks in C, and
Decode(D1) 6= Decode(D2). Let Decode(D1) = B1

and Decode(D2) = B2 where B1 6= B2. We want to
prove that for any subset D of N − 2 f chunks in C,
MerkleRoot(Encode(Decode(D))) 6=MerkleRoot(C).

We prove it by showing there does not exist any block
B such that C = Encode(B). That is, C is not a consistent
encoding result of any block. Assume for contradiction that
there exists B′ such that C = Encode(B′). Because D1 is a
subset of N−2 f chunks in C and Decode(D1)=B1, it must
be B1=B′, otherwise the semantic of erasure code is broken.
For the same reason B2 = B′, so B1 = B2. However it con-
tradicts with B1 6=B2, so the assumption must not hold, and
there does not exist any block B such that C=Encode(B).

We now prove that MerkleRoot(Encode(Decode(D))) 6=
MerkleRoot(C) for any subset D of N − 2 f
chunks in C. Assume for contradiction that
MerkleRoot(Encode(Decode(D))) = MerkleRoot(C),
then it must be that C=Encode(Decode(D)) because Merkle
root is a secure summary of the chunks. This contradicts with
the result we have just proved: there does not exist any block
B such that C=Encode(B). So the assumption cannot hold,
and the lemma is satisfied in this case.

Theorem B.9 (Correctness). If a correct server has
Completed, then correct clients always reconstruct the same
block B′ by invoking Retrieve. Also, if a correct client
initiated the dispersal by invoking Disperse(B) and no
other client invokes Disperse, then B=B′.

Proof. We first prove the first half of the theorem: any two
correct clients always return the same data upon finishing
Retrieve. By Lemma B.7, any two clients will set their
ChunkRoot to the same value. Note that a client sets
ChunkRoot to the root of the chunks it uses for decoding.
This implies that any two correct clients will use subsets
from the same set of chunks. By Lemma B.8, either:
1. They both decode and obtain the same block B′.
2. Or, they each compute MerkleRoot(Encode()) on the

decoded block and both get a result that is different from
ChunkRoot.

In the first situation, both clients will return B′. In the
second situation, they both return the block containing string
“BAD_UPLOADER”. In either case, they return the same
block.

We then prove the second half of the theorem. Assume
a correct client has initiated Disperse(B) and no other
client invokes Disperse. By Theorem B.6, any correct
client invoking Retrieve will obtain some block B′.
We now prove that B′ = B. Assume for contradiction
that B′ 6= B. Then the client must have received N − 2 f
ReturnChunk(MerkleRoot(Encode(B′)),·,·) messages. At
least one of them must come from a correct server because
N−2 f > f , so at least one correct server have ChunkRoot

set to MerkleRoot(Encode(B′)). However, because there
is only invocation of Disperse(B), all correct servers
must have set ChunkRoot to MerkleRoot(Encode(B)).

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 509

Phase 1. Dispersal at the i-th server
1. For 1≤ j ≤ N, let V e

i [j] be the largest epoch number
t such that VID1

j ,VID2
j ,...,VIDt

j have Completed.
2. Let Be

i be the block to disperse (propose) for epoch e. Be
i

contains two parts: transactions T e
i and observation V e

i .
3. Invoke Disperse(Be

i) on VIDe
i as a client.

• Upon Complete of VIDe
j (1≤ j ≤ N), if we have not

invoked Input on BAe
j, invoke Input(1) on BAe

j.
• Upon Output(1) of least N− f BA instances, invoke
Input(0) on all remaining BA instances on which we
have not invoked Input.

• Upon Output of all BA instances,
1. Let local variable Se

i ⊂{1...N} be the indices of all
BA instances that Output(1). That is, j ∈ S if and
only if BAe

j has Output(1) at the i-th server.
2. Move to retrieval phase.

Phase 2. Retrieval
1. For all j∈Se

i , invoke Retrieve on VIDe
j to download

full block Be
j
′. Decompose Be

j
′ into transactions T e

j
′

and observation V e
j
′. Let V e

j
′ = [∞,∞, ... ,∞] if Be

j
′ is

ill-formatted.
2. Deliver {T e

j
′| j∈Se

i } (sorted by increasing indices). Set
Delivered[e][j]=1 (initially 0) for all j∈Se

i .
3. For 1≤ j ≤ n, let Ee

i [j] be the (f +1)th-largest value
among {V e

k
′[j]|k∈Se

i }.
4. For all 1 ≤ j ≤ N, for all 1 ≤ d ≤ Ee

i [j], check
if Delivered[d][j] = 0. If so, invoke Retrieve

on VIDd
j to download full block Bd

j
′, and set

Delivered[d][j]=1 (initially 0).
5. Deliver all blocks downloaded in step 4 (sorted by

increasing epoch number and node index).

Figure 17: Algorithm for DispersedLedger with inter-node
linking. The blue color indicates the changes from the
single-epoch algorithm.

So MerkleRoot(Encode(B)) = MerkleRoot(Encode(B′))
This contradicts with our assumption, so the assumption must
not hold, and B=B′.

C Specification of the full DispersedLedger
protocol with Inter-node Linking

Figure 17 describes how to modify the single-epoch protocol
to use inter-node linking. Blue color highlights the parts are
added compared to the single-epoch protocol.

D Correctness proof of DispersedLedger
Notations. Let H (H⊂{1,2,...,N}) be the set of the indices
of correct nodes. That is, i ∈ H if and only if the i-th node
is correct. In our proof, we use the variables in the full
algorithm defined in Fig. 17. We also use “phase x, step y”
to refer to specific steps in Fig. 17.

Lemma D.1. For any epoch e, any i∈H, and any 1≤ j≤N,
if j∈Se

i then VIDe
i has Completed at some correct node.

Proof. By the definition of Se
i (phase 1, step 3), j∈Se

i if and
only if BAe

j has Output(1) at the i-th node. By the Validity
property of BA (§4.1), BAe

j Output(1) at a correct node
implies that at least one correct node has invoked Input(1)
on BAe

j, which only happens when that node sees VIDe
j

Complete (phase 1, step 3).

Lemma D.2. For any epoch e, any i, j ∈ H, Se
i = Se

j and
Ee

i =Ee
j .

Proof. By the definition of Se
i (phase 1, step 3), k∈Se

i if and
only if BAe

k has Output(1) at the i-th node. By the Agree-
ment property of BA (§4.1), BAe

k will eventually Output(1)
at the j-th node. So k∈Se

i if and only if k∈Se
j, and Se

i =Se
j.

We now prove Ee
i = Ee

j . The i-th node (which is correct)
starts the computation of Ee

i by invoking Retrieve on all
VIDs in {VIDe

k|k ∈ Se
i }. These Retrieves are guaranteed

to finish by Lemma D.1 and the Availability property of
VID (Theorem B.6). The node then extracts the observations
{V e

k
′|k∈Se

i } from the downloaded blocks. Note that the j-th
node will download the same set of observations. This is
because Se

i =Se
j, and the VID Correctness property (Theorem

B.9) guarantees the j-th node will obtain the same blocks
when invoking Retrieve on {VIDe

k|k∈Se
j}.

To combine the observations into the estimation, the i-th
node runs phase 2, step 3. This process is deterministic, with
Ee

i being a function of the observations {V e
k
′|k ∈ Se

i } and
parameter f . Because we have just proved the j-th node will
obtain the same set of estimations, and by our security model
f is a protocol parameter known to all nodes (§2.4), the j-th
node will get the same results.

Lemma D.3. For any epoch e, and any i∈H, |Se
i | ≥N− f .

That is, Se
i contains at least N− f indices.

Proof. By the definition of Se
i (phase 1, step 3), this

lemma essentially states that at least N − f BAs among
{BAe

1,BAe
2,...,BAe

N} will Output(1) at the i-th node.
Assume for contradiction that |Se

i |<N− f . By Lemma D.2,
|Se

j|<N− f for all j∈H, i.e., less than N− f BAs eventually
Output(1) at every correct node. We now consider the
possible outcomes of the remaining BA instances, which do
not eventually Output(1).

One possibility is some of them Output(0). According
to phase 1, step 3, correct nodes will not invoke Input(0) on
any BA instance unless N− f BA instances have Output(1).
By our assumption, less than N− f BA Output(1), so the
latter is not happening and no correct nodes will Input(0)
on any BA instance. By the Validity property of BA (§4.1),
no BA instance can Output(0).

We have showed that the remaining BAs cannot Output(0),
so it must be that all of them never terminate. We will prove
it is also impossible. Assume for contradication that all BAs
that do not Output(1) never terminate. By our assumption,

510 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

less than N− f BAs Output(1), so there must exist k ∈ H
such that BAe

k never terminates. By the Termination property
of VID (Theorem B.2), VIDe

k eventually Completes on all
correct nodes. According to phase 1, step 3, because not all
BAs will terminate, all correct nodes will stay at this step.
All correct nodes will Input(1) to BAe

k upon seeing VIDe
k

Complete. By the Termination and Validity properties of BA
(§4.1), BAe

k will terminate and Output(1), which conflicts
with our assumption.

We have showed there is no valid outcome for the
remaining BA instances, so our assumption cannot hold,
and at least N− f BA instances eventually Output(1) at all
correct nodes.

Lemma D.4. For any epoch e, any i∈H, and any 1≤ j≤N,
there exist p,q∈H such that V e

p [j]≤Ee
i [j]≤V e

q [j].

Proof. The lemma states that if the i-th node (which is cor-
rect) computes the estimation Ee

i [j] for the j-th node, then the
estimation is lower- and upper-bounded by the observations
V e

p [j] and V e
q [j] of two correct nodes (with indices p and q).

That is, the estimation is not too high or too low.
Now assume for contradication that for some 1≤ j≤ N,

for all p ∈H, V e
p [j]> Ee

i [j]. That is, the estimation for j is
not lower bounded by the observations made by any correct
node. According to phase 2, step 3, the i-th node sets Ee

i [j] to
the (f +1)th-largest value among {V e

k
′[j]|k∈ Se

i }. Here, V e
k
′

is the observation of the k-th node downloaded by invoking
Retrieve on VIDe

k. By Lemma D.1 and VID Availability
property (Theorem B.6), the Retrieves will eventually
finish.

By our assumption, for all p∈H∩Se
i , V e

p [j]>Ee
i [j]. By the

VID Correctness property (Theorem B.9), the observations
of correct nodes will be correctly downloaded. That is,
V e

k
′ =V e

k for all k ∈H. So for all p∈H∩Se
i , V e

p
′[j]> Ee

i [j].
By Lemma D.3, |Se

i |≥N− f , so |H∩Se
i |≥N−2 f . So there

are at least N−2 f values in {V e
k
′[j]|k∈ Se

i } that are greater
than Ee

i [j]. However, Ee
i [j] is the (f + 1)th-largest value

among {V e
k
′[j]|k ∈ Se

i }, so there can be at most f values in
{V e

k
′[j]|k ∈ Se

i } that are greater than Ee
i [j]. Because N > 3 f

(§2.4), N−2 f > f , so the two conclusions are in conflict, and
the assumption cannot hold.

We can similarly prove it is impossible that for some
1≤ j≤N, for all q∈H, V e

q [j]<Ee
i [j].

Theorem D.5 (DispersedLedger is well-defined). For any
epoch e, any i∈H, the i-th node eventually finishes epoch e.

Proof. This lemma states that correct nodes will never be
stuck in any epoch e, so that our algorithm is well-defined.
To prove that, we go through Fig. 17 line by line and prove
each step will eventually finish.

Phase 1, steps 1–2. These are local computation and will
finish instantly.

Phase 1, step 3. This step finishes as soon as all BA
instances in that epoch Output. By Lemma D.3, all correct

nodes eventually see at least N− f BA instances Output(1).
At that point, each correct node will invoke Input(0) into
all BAs on which it has not invoked Input. This ensures that
all correct nodes eventually invoke Input on all BAs. By the
Termination property of BA (§4.1), all BAs will eventually
Output on all correct nodes, which ensures this step will
finish.

Phase 2, step 1. This step finishes as soon as Retrieves
on {VIDe

j| j∈Se
i } finish. By Lemma D.1, {VIDe

j| j∈Se
i } will

Complete on all correct nodes. Then by VID Availability
property (Theorem B.6), the Retrieves will finish.

Phase 2, steps 2–3. These are local computation and will
finish instantly.

Phase 2, step 4. This step will finish if for all 1≤ j≤N,
for all 1≤d≤Ee

i [j], Retrieve of VIDd
j finishes. By Lemma

D.4, there exists q∈H such that V e
q [j]≥Ee

i [j], and the q-th
node (which is correct) reports that VIDt

j has Completed for
all 1≤ t≤V e

q [j]. By VID Availability property (Theorem B.6),
the Retrieves will eventually finish, so this step will finish.

Phase 2, steps 5. This is local computation and will finish
instantly.

Theorem D.6 (Validity). All blocks proposed by correct
nodes are eventually delivered by all correct nodes.

Proof. Assume the i-th node (which is correct) proposes
block Be

i in epoch e. The i-th node invokes Disperse(Be
i)

on VIDe
i . By VID Termination property (Theorem B.2),

eventually all correct nodes will see VIDe
i Complete. So

there must exist an epoch t where for all j∈H, V t
j [i]≥e. That

is, in epoch t, all correct nodes report that the i-th node has
at least dispersed into VID1

i to VIDe
i . By Lemma D.4, for all

j∈H, Et
j[i]≥e. According to phase 2, steps 4–5, all correct

nodes either have already delivered Be
i in previous epochs,

or will deliver Be
i in epoch t.

Theorem D.7 (Agreement and Total Order). Two correct
nodes deliver the same sequence of blocks.

Proof. Let i, j∈H. We prove this theorem by induction on the
number of epochs the i-th and the j-th nodes have finished. In
other words, we prove that for any t≥0, the i-th and the j-th
nodes deliver the same sequence of blocks in the first t epochs.

Initial (t = 0). Both nodes have not delivered any block.
So the hypothesis clearly holds in this situation.

Induction step. Assume our hypothesis holds for t=e−1
(e ≥ 1). We now prove the hypothesis holds for t = e. We
first show the two nodes commit the same sequence of blocks
with BA. By Lemma D.2, Se

i = Se
j and Ee

i = Ee
j . According

to phase 2, step 1, both nodes will invoke Retrieve on the
same set of VIDs. By VID Correctness property (Theorem
B.9), they will get the same set of blocks and deliver them
in the same order in phase 2, step 2.

We now show the two nodes commit the same sequence of
blocks with inter-node linking. The local variable Delivered

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 511

stores whether a node has delivered a block (phase 2, steps 2,
4). By the induction hypothesis, the two nodes have delivered
the same sequence of blocks prior to epoch e, so the variable
Delivered is the same on the two nodes. By Lemma D.2,
Ee

i = Ee
j . So the two nodes will invoke Retrieve on the

same set of VIDs in phase 2, step 4 and get the same set
of blocks. Both nodes sort the blocks deterministically and
deliver them in the same order in phase 2, step 5.

We have proved that the i-th and the j-th nodes deliver
the same sequence of blocks in epoch e. By our induction
hypothesis, they deliver the same sequence until epoch e−1.
So they deliver the same sequence in the first e epochs. This
completes the induction.

512 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Re-architecting Traffic Analysis with Neural Network Interface Cards

Giuseppe Siracusano
NEC Laboratories Europe

Salvator Galea
University of Cambridge

Davide Sanvito
NEC Laboratories Europe

Mohammad Malekzadeh
Imperial College London

Gianni Antichi
Queen Mary University of London

Paolo Costa
Microsoft Research

Hamed Haddadi
Imperial College London

Roberto Bifulco
NEC Laboratories Europe

Abstract
We present an approach to improve the scalability of online
machine learning-based network traffic analysis. We first
make the case to replace widely-used supervised machine
learning models for network traffic analysis with binary neu-
ral networks. We then introduce Neural Networks on the NIC
(N3IC), a system that compiles binary neural network models
into implementations that can be directly integrated in the
data plane of SmartNICs. N3IC supports different hardware
targets, and it generates data plane descriptions using both
micro-C and P4 languages.

We implement and evaluate our solution using two use
cases related to traffic identification and to anomaly detection.
In both cases, N3IC provides up to a 100x lower classification
latency, and 1.5-7x higher throughput than state-of-the-art
software-based machine learning classification systems. This
is achieved by running the entire traffic analysis pipeline
within the data plane of the SmartNIC, thereby completely
freeing the system’s CPU from any related tasks, while for-
warding traffic at line rate (40Gbps) on the target NICs. En-
couraged by these results we finally present the design and
FPGA-based prototype of a hardware primitive that adds bi-
nary neural network support to a NIC data plane. Our new
primitive requires less than 1-2% of the logic and memory
resources of a VirteX7 FPGA. We show through experimental
evaluation that extending the NIC data plane enables more
challenging use cases that require online traffic analysis to be
performed in a few microseconds.

1 Introduction
Online traffic analysis is a fundamental building block in to-
day’s networks, as it enables traffic classification [2,5,14,26],
security [10,25,31] and application-specific traffic forwarding
strategies [40]. The complexity of network traffic patterns and
the use of encrypted communications are driving the wide-
spread adoption of traffic analysis based on Machine-Leaning
(ML), implemented on commodity servers [13]. However,
it is challenging to meet the throughput and latency require-
ments of modern networks while performing ML-based traffic

analysis [47]. Current high-performance solutions use pro-
grammable network interface cards (NICs) [12, 29, 48] to
offload parts of the traffic analysis (e.g., flow statistic col-
lection [1, 3, 28]) directly in their data plane, while still per-
forming machine learning inference on a separate executor,
e.g., the host’s CPU. Unfortunately, moving the collected flow
statistics across sub-systems introduces an important bottle-
neck [30], forcing high throughput solutions to send collected
data to the ML executor in batches, thus sensibly increasing
the processing latency (§ 2).

Recognizing that running ML inference within the network
data plane would avoid data movements and solve the issue,
state-of-the-art solutions implement widely used techniques,
i.e., Decision Trees and their ensembles (Random Forests),
using match-action tables, which are available within a NIC
data plane [8, 55]. However, these solutions rely on expen-
sive TCAM memories, and fitting Decision Trees in match-
action tables requires restricting their depth to a few levels,
thus impacting their accuracy. More specifically, [55] reports
a maximum of five levels implemented on the NetFPGA,
while [8] supports only Decision Trees of depth four on the
Barefoot Tofino. Therefore, currently, network operators have
to compromise between throughput, latency, or accuracy.

In this paper, we propose a new approach that efficiently
leverages programmable NICs’ hardware (and can achieve
high throughput and low latency) while maintaining com-
parable accuracy with respect to existing ML-based traffic-
analysis solutions implemented in software. The key insight
is to exploit binary neural networks (BNNs) [15], a recently-
proposed ML model targeting battery-powered edge devices.
We show that BNNs can provide better classification accu-
racy than Decision Trees and Random Forests on the tested
traffic analysis tasks (§ 3). Importantly, BNNs use single bits
to represent inputs and weights, which provides two critical
properties: (i) they exhibit a very compact memory footprint
even for larger models; (ii) unlike mainstream Deep Neu-
ral Networks (DNNs), BNNs require only simple operations
such as XOR and population count. This enables the imple-
mentation of efficient BNNs executors in a NIC’s data plane,

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 513

Labeled
dataset

Expert knowledge:
e.g. num. of bits per feature
(optional)

Binarized
labeled
datasetExpert knowledge:

e.g. list of models
(optional)

Model selection

Target selection

microC P4 HDL

X Y

Input features quantization

X Y

BNN model search

Target-specific BNN compiler

DP program integration
Integrated Data
Plane program

Model description:
- num. of layers
- num. of neurons per layer
- weights

Features extraction
and networking tasks
Data Plane program

N
3IC O

FFLIN
E PHASE

Input features extractionBNN inferenceNetworking tasks

N3IC ONLINE PHASE

1

2

Figure 1: N3IC overview. Users provide a labeled dataset.
N3IC uses it to generate a binary neural network model, which
is then compiled to a data plane program for a target NIC.

without requiring expensive resources, such as TCAMs.
Building on this insight, we developed N3IC, a com-

plete solution to perform network traffic analysis using
BNNs with commodity programmable NICs. N3IC com-
prises two key components (Figure 1, § 4): 1 a frame-
work to train a BNN using a labeled dataset provided by
the user, and 2 a compiler that translates the trained model
into target-specific executable code. To show the general-
ity of our approach, we implement two compiler backends:
one targeting micro-C, a subset of the C language used by
Netronome SoC-based NICs [29], and one targeting the P4
language [6]. The latter enables compiling to a growing set
of P4-enabled NICs [21], including FPGA-based NICs using
the P4->NetFPGA toolchain [16].

Furthermore, we evaluate the cost of providing BNN exe-
cution as a native hardware primitive that can be exposed to
high-level programming languages (e.g., using P4’s extern).
We prototype this on the NetFPGA using RTL description
language and show it only needs a modest 1-2% of a Xilinx
Virtex7 FPGA’s logic resources. While prior work has shown
the potential of implementing ML models on FPGA [24, 51],
they target ML models for application-level data processing,
which has millisecond-scale latency requirements (as opposed
to microsecond), and they are typically based on FPGA mono-
lithic implementations. To the best of our knowledge, we are
the first ones integrating a streamlined BNN executor, tailored
to network traffic analysis models, within the NIC data plane.

We evaluate N3IC across different hardware platforms us-
ing traffic classification, security anomaly detection and net-
work tomography as use cases (§ 6). Results show that N3IC
can perform traffic analysis with high accuracy and with la-

tency in the microseconds, for millions of network flows per
second, while processing packets at NICs’ line rate. Com-
pared to a similar system that implements the traffic analysis
on a general-purpose CPU (with packet forwarding and fea-
ture extraction still offloaded to the NIC), N3IC provides up
to 7x higher throughput and up to 100x lower latency.
Contributions. In this paper, we:
• demonstrate that BNNs provide high accuracy and low

memory footprint for the selected traffic analysis use cases.
• design and implement an end-to-end system that performs

traffic analysis in programmable NICs’ data plane: this
includes a framework to train BNNs and a compiler that
translates models into both P4 and Netronome’s micro-C.

• develop a new hardware primitive that enables BNN in-
ference as first-class-primitive for next-generation pro-
grammable NICs.

• evaluate our solution on three traffic analysis use cases: (i)
traffic classification, (ii) anomaly detection, and (iii) net-
work tomography.

• Source code to reproduce key results of our work is at:
https://github.com/nec-research/n3ic-nsdi22

2 Motivation and Challenges
Motivation. Modern data-center networks comprise a variety
of network appliances, e.g., traffic classifiers, load balancers,
and security middleboxes [34, 36]. They need to handle over
a million of flows per second while only incurring a few tens
of microseconds of processing latency per packet to avoid
affecting the end-to-end latency [11, 23].

To meet these tight requirements, mainstream systems of-
fload the packet capture and feature extraction steps to a
programmable NIC [1,28]. Periodically, the host system polls
the extracted features from the NIC, and performs the analysis
step. This approach relieves the load on the host’s CPU and
achieves higher throughput but at the cost of higher process-
ing latency. To illustrate this trade-off in practice, we set up an
experiment in which we offload the feature extraction on the
Netronome NFP4000 NIC while we execute the analysis on
an Intel E5-1630 v3 CPU. The results in Figure 2 (NIC+CPU
line) show that as the throughput increases, the processing
latency scales super-linearly. For instance, at 0.2M flows per
second, the latency is 42µs but if we increase the throughput
to 1M flows per second, the latency grows beyond 800µs.

There are two reasons for this. First, having the feature
extraction and analysis steps running on two different sub-
systems requires moving data, e.g. crossing the PCIe bus,
which can take up to a few microseconds [30]. Second, and
most critically, CPUs require input data batching to improve
the per-core processing efficiency. Batching improves data lo-
cality, avoiding stalls in the CPU pipeline due to data read de-
lay, and it allows to fill the CPU’s vector processing registers,
thereby increasing the overall throughput but at the expense
of much higher latency. This trade-off also applies to GPUs,
which extensively rely on batching to achieve high through-

514 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/nec-research/n3ic-nsdi22

0.0 0.2 0.5 0.8 1.0 1.2
Throughput [Million flow/s]

1

10

100

1k

10k

La
te

nc
y

[u
s]

NIC+CPU (1 core)
N3IC

Figure 2: Processing latency
when increasing throughput
(flows per second) for a base-
line performing feature ex-
traction on the NIC and anal-
ysis on the CPU (NIC+CPU)
and our system N3IC.

102 103 104 105 106

Per-packet operations

0

5

10

15

20

25

Gb
it/

s

1512
1024
512
256

Figure 3: Forwarding
throughput on a Netronome
NFP4000 NIC, for different
packet sizes when increasing
the number of operations per
packet.

put, and it explains why even network-attached GPUs [32]
are not well-suited for low-latency packet processing.

A way to address the above issues is to perform the analysis
directly within the subsystem that collects the data to be
analyzed, i.e., within the NIC data plane. This would allows us
to (i) avoid data movements from one subsystem to the other,
and (ii) leverage the architectures of programmable NICs
tailored to perform latency-efficient per-packet processing.
As we detail in the rest of the paper, this indeed enables
maintaining low latency (<40us) even at high throughput, as
shown by the performance of N3IC in Figure 2.
Challenges. Existing solutions advocating for performing ML
inference in the data plane of packet-processing hardware [8,
55] strictly rely on match-action tables that support ternary-
matching. These resources are (i) not always available in a
NIC data plane; (ii) costly, when available, since they use
ternary content-addressable memory (TCAM), which is about
6x more expensive in terms of silicon area than SRAM [7];
(iii) limited; thus enabling only Decision Trees with small
depth with an impact on the inference accuracy.1 While using
exact-matching tables may be a workaround, it would require
enumerating the values to match on. For instance, to handle a
single 16b feature, we may need to add 65k entries.

Enabling ML inference without the use of match-action
tables resources and doing so while guaranteeing high-
throughput, low latency, and high-accuracy requires solv-
ing three key challenges. First, existing programmable NICs
have at most few 10s of MBs of fast on-chip SRAM mem-
ory [29, 48, 49]. Most of this memory, though, is needed to
store forwarding and policy tables, leaving little space avail-
able for application data. This makes it hard to implement
ML models within the NIC, often requiring trading-off model
complexity for memory utilization. Second, to achieve high
throughput the application logic needs to be highly paralleliz-
able in order to fully utilize all compute resources on a NIC.

1Both IISY [55] and pforest [8] report an ability to run Decision Tree
models with depth capped to five and four layers, respectively.

In fact, the NIC may provide a good amount of available pro-
cessing resources if its architecture parallelism is leveraged.
We show this in Figure 3, which plots the throughput achieved
on the Netronome NFP4000 SmartNIC for different packet
sizes as we increase the number of operations performed per
packet. The larger the average packet size (and, hence, the
less packets per second need to be processed), the higher is
the number of operations that can be performed, before the
forwarding throughput is negatively impacted. Finally, some
ML models require complex arithmetic functions, such as
multiplications or floating-point operations, which usually are
not available on programmable NICs [45]. This limitation
does not only affect the implementation of the ML model, but
it also impacts the ability to perform pre-processing on the
input features, as required by some models such as Support-
Vector-Machine or K-Nearest-Neighbor.

3 Traffic Analysis with BNN
In this section, we show that binary neural networks (BNNs)
are a promising option to address these challenges. Originally
proposed for energy-efficient image processing on battery-
powered devices, BNNs are an extreme quantized version of
traditional DNNs in which each weight is encoded in just one
bit rather than the typical 8-, 16- or 32-bit values. This makes
them particularly appealing for our goals due to the following
reasons. First, the single-bit input and weights drastically
reduce their memory footprint. Second, the BNN’s neurons
perform a XOR between the input and weight vectors, and
use as activation function the sign function on the population
count (popcnt) performed on the bit vector resulting from the
XOR. Therefore, they can be implemented efficiently (and
with high performance) in hardware since XOR and popcnt
operations are commonly supported by most platforms.

Unsurprisingly, for complex tasks such as image recogni-
tion, BNNs exhibit 3-10% points lower prediction accuracy
than fully-fledged DNNs [20]. However, as we illustrate in
the rest of this section, network traffic analysis models are
usually much simpler and this enables BNNs to achieve an
accuracy comparable (if not better) than existing implementa-
tions relying on decision trees and random forests.

3.1 Use cases
We introduce two typical traffic analysis uses cases that we
use as running examples throughout the paper: IoT Traffic
Classification and Security Anomaly Detection. Both use
cases are general machine learning classification tasks, and
therefore they are representative of common analysis use
cases performed on network traffic. Further, they have open
datasets, which helps making our results reproducible.

IoT Traffic Classification assigns an IoT device type to an
observed network flow. For instance, this can be used in edge
networks by operators to assign IoT traffic to specific Quality-
of-Service classes. We focus on a 10-classes classification

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 515

1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 11 0 1 0 1 1 0 0 0 1 0 0 0 1 0 0

INPUT
FEATURES

BINARY
ENCODINGS

BINARY
INPUT VECTOR

BINARY
NEURAL

NETWORK
OUTPUT VECTOR

TTL KBYTES PKTS
253 44100 2015

1 1 1 1 1 1 0 1 1 0 1 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 0 1 1 1 1 1

Figure 4: The binary input vector is a concatenation of fea-
tures’ binary encodings. Each feature is represented using the
minimum required number of bits to represent its values range.
The number of bits per feature has to be fixed at training time.

task, where each flow is assigned to 9 possible device cate-
gories, such as home assistants, IoT cameras, sensors, or to
a 10-th class that includes anything else, e.g., smartphones
or laptops network traffic. We use 17 flow-level features to
perform the classification. Examples of features are the num-
ber of packets and bytes being transferred, the mean packet
interarrival time or the mean packet sizes. We remark that
the selected features are not specific to this use case: they are
widely supported in open source tools and used in production
settings [35]. We use the dataset published by [44].

Security Anomaly Detection is about flagging network flows
that are related to security issues, such as Denial-of-Service
attacks, port scans, etc. This is a network analysis task widely
applied in networks of any size, and in different scenarios
including telecom operators networks, datacenters, and en-
terprises. For this task, flows are classified into two classes,
i.e., good or bad. Usually, this kind of classification is used
to potentially trigger more expensive downstream analysis
on the traffic, and it has the goal to capture the large bulk of
potentially malicious network interactions, rather than guar-
anteeing complete protection. For this task, in addition to the
17 flow-level features reported earlier, we add 3 additional
features that look at the behavior of multiple flows. For in-
stance, we consider the number of flows from a single source
IP address. Like in the previous case, these features are well-
known and widely adopted in operational settings. We use the
dataset published by [27].

3.2 BNN Analysis Pipeline
To apply BNNs, we have to define the input features quantiza-
tion strategy, to convert float and integer numbers into BNN’s
binary features. Then, we perform the training of the binary
neural network using the labeled dataset. Finally, we evaluate
the classification performance with previously unseen data.
Input preparation Previous work on BNNs introduces a first
regular non-binary network layer that is trained together with
the remaining binarized layers. This enables "learning" the
quantization strategy for the features, but at the same time, it
introduces multiplication operations within the first layer. We
cannot afford to perform such operations in the data plane.
Therefore, we designed a different quantization approach (Fig-

ure 4): we use as input to the BNN the concatenation of the
flow feature values’ binary representations. For instance, an
input feature in the range 0-255 can be represented by an 8b
vector. Our approach has two advantages: it does not require
any additional processing since we reuse the hardware repre-
sentation of the features; and it allows to assign to the features
the number of bits their value ranges require. For instance, a
single vector of 64b can be used to represent 4 features on
16b, or 3 features on 16b and 2 features on 8b; and so on.
BNN Training Like other ML models, BNNs need to be
trained offline on a training dataset, in order to define the
values of the weights that will be used during the online anal-
ysis phase. We perform training using the technique from
Courbariaux and Bengio [9], which is based on a canonical
back-propagation algorithm. This solution trains the network
using float values, but it ensures that the BNN’s weights con-
verge to values included in the [-1, 1] range, and that they are
normally distributed around 0. This helps in reducing the loss
of information when the float weight values are mapped to
just two values, i.e., 0 and 1 [9].
BNN traffic analysis performance We test three different
BNNs architectures, each with 256 input binary features and
three fully-connected layers. The three models differ by the
number of neurons in the hidden layers: [32, 16, 10]; [64,
32, 10]; [128, 64, 10]. For both datasets, we use a 256b input
vector. Although we have 17 and 20 features for the two cases,
respectively, we can represent different number of features
with the same binary input vector size by changing the number
of bits used to represent each feature, as mentioned earlier (cf.
Figure 4). We compare the BNNs to Decision Trees (DT) and
Random Forests (RFs). For DTs, we vary the depth of the tree,
between 3 and 10. RFs are an ensemble of DTs, therefore
they have as an additional hyperparameter the number of
trees, which we vary between 3 and 5. For readability, since
the trends are similar, we only plot a subset of the results in
the figures, i.e., three depth values of 3, 6, and 9, and always
5 trees for the RF. In all the tests, we perform 5-fold cross-
validation, and report averaged results.2

In Figure 5 and Figure 6 we plot the classification accu-
racy vs the amount of memory required by the ML models,
for the IoT and Security use cases, respectively. In the top
plots, we do not make distinction between memory of type
SRAM, used by BNN implementations, and of type TCAM,
required by DT and RF implementations. Here, we can ob-
serve that the two larger BNNs achieve an accuracy that is
closer to that of DTs and RFs of at least depth 6. The two
larger BNNs achieve 96% and 97.4% using 2.5KB and 5.5KB
of SRAM, vs 97% and 96.9% accuracy of DT6 and RF6, us-
ing 1.3KB and 6.4KB of TCAM, respectively. The smaller
BNN achieves 92.4% accuracy using 1.2KB of SRAM. In
the Security dataset, the classification is harder, and only the

2The IoT dataset is balanced across the 10 classification categories, with
each category having 43k distinct flows. In the Security dataset, we have a
binary classification with 164k anomalous and 90k normal flows.

516 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0.70

0.85

1.00

DT3
DT6
DT9

RF3
RF6
RF9

BNN 32x16x10
BNN 64x32x10
BNN 128x64x10

35k 37k0.0 2k 4k 6k 8k
0.0
0.1Ac

cu
ra

cy

Memory [B]

0.70

0.85

1.00

DT3
DT6
DT9

RF3
RF6
RF9

BNN 32x16x2
BNN 64x32x2
BNN 128x64x2

16k 18k0.0 2k 4k 6k
0.0
0.1Ac

cu
ra

cy

Memory [B]

0.70
0.85
1.00

1k 10k 100k 1M
Memory [B]

0.0
0.1Ac

cu
ra

cy

Figure 5: Accuracy vs Mem-
ory (bytes) scatter plot for DT
and RF on the IoT dataset.
BNNs always use SRAM-
based implementations. DTs
and RFs use TCAM (top) and
SRAM (bottom) implementa-
tions.

0.70
0.85
1.00

1k 10k 100k 1M 10M 100M
Memory [B]

0.0
0.1Ac

cu
ra

cy

Figure 6: Accuracy vs Mem-
ory (bytes) scatter plot for
DT and RF on the Secu-
rity dataset. BNNs always
use SRAM-based implemen-
tations. DTs and RFs use
TCAM (top) and SRAM (bot-
tom) implementations.

larger DT9 and RF9 achieve accuracy above 90%, using re-
spectively 3.4KB and 16.9KB of TCAM. The smallest BNN
achieves 91.1% accuracy using just 1.2KB of SRAM. How-
ever, it should be noted that ternary matching with TCAM is
roughly 6x more expensive than binary matching with SRAM,
in terms of required silicon resources [7] and TCAM is often
not available on NICs.
SRAM implementations: To compare the memory require-
ments when targeting similar hardware, in the bottom plots
of Figure 5 and Figure 6 we show the memory consumption
of DTs and RFs when using SRAM-based implementations.
As described in [55], in the absence of TCAM support from
the hardware target, all the values of the features selected by
model fitting have to be enumerated as appearing in the data.
Given that some of our features are flow statistics, the values
they can potentially assume range from the minimum to the
maximum observed from the data. In fact the memory re-
quirements for DTs and RFs grow orders of magnitude larger
(in this case, the plots have the x axis in log scale). Even the
smallest DT3 model requires at least 40.2KB of SRAM for
the IoT case, and 173.3KB for the Security case.
F1-score and FPR: We now look more carefully at the classi-
fier performance, reporting F1-score and False Positive Rate
(FPR) for the tested models. The F1-score is a harmonic mean
of Precision and Recall, whereas the False Positive Rate tells
the quota of negative samples mis-classified as positive, in
a two-classes classifier. For this metric, in the IoT case that
has 10 classes, we use a 1-vs-all strategy. The BNN models
achieve always better F1-score when compared to the small-
est DT and RF models, in both use cases. For larger models,
the F1-score is in the range 88-91.6 in all cases, showing

DT
3

RF
3

32
x1

6x
10

DT
6

RF
6

64
x3

2x
10

DT
9

RF
9

12
8x

64
x1

00.0
0.2
0.4
0.6
0.8
1.0

F1
 sc

or
e

DT
RF
BNN

DT
3

RF
3

32
x1

6x
2

DT
6

RF
6

64
x3

2x
2

DT
9

RF
9

12
8x

64
x2

0.0
0.2
0.4
0.6
0.8
1.0

F1
 sc

or
e

DT
RF
BNN

DT
3

RF
3

32
x1

6x
10

DT
6

RF
6

64
x3

2x
10

DT
9

RF
9

12
8x

64
x1

00.0
0.1
0.2
0.3
0.4
0.5

FP
R

DT
RF
BNN

Figure 7: F1 score (top) and
FPR (bottom) of BNN mod-
els on the IoT dataset, com-
pared to DTs and RFs.

DT
3

RF
3

32
x1

6x
2

DT
6

RF
6

64
x3

2x
2

DT
9

RF
9

12
8x

64
x2

0.0
0.1
0.2
0.3
0.4
0.5

FP
R

DT
RF
BNN

Figure 8: F1 score (top) and
FPR (bottom) of BNN mod-
els on the Security dataset,
compared to DTs and RFs

relatively small variations among classifiers.
For the FPR, it is important to consider this metric in rela-

tion to the Recall of the classifier. In fact, a low FPR may be a
symptom of a classifier assigning very few samples to the pos-
itive class. We can see this in Figure 7. DT3 and RF3 appear
to have a relatively good FPR (3.0% and 2.1%). However,
these low FPRs are due to the classifiers inability to identify
the positive class. In particular, as captured also by F1-scores,
DT3 and RF3 have a low Recall of 73.1% and 81.5% for the
IoT case, whereas the smallest BNN has Recall at 92.4% with
an FPR of 0.8%. We can see a similar issue in the Security
use case (Figure 8). For instance, DT6 has FPR at 5.9% but
Recall at 88.2%, whereas the smallest BNN has a higher FPR
of 15.9% with a better Recall at 95.1%. Here, it should be
noted that in this use case a reasonably higher FPR is not
necessarily an issue. The anomaly detection is often used as
a filter, before performing more expensive analysis on the
flows classified as suspicious, e.g., diverting the traffic to a
Scrubbing Center [33]. We provide more results in Appendix.

4 System design and implementation
We now present the design and implementation of N3IC, our
end-to-end solution that enables to perform traffic analysis
within a NIC data plane using BNNs (cf. Figure 1).
N3IC operations N3IC takes a training labeled dataset as
input, and outputs programs that can be integrated into a
target device’s data plane. Currently, we support outputs in
micro-C and P4 languages, targeting SoC-based Netronome
SmartNICs and PISA-based architectures, respectively. N3IC
entirely automates the generation of the BNN model and its
implementation in the target data plane programming lan-
guage. However, programmers need to perform the final in-
tegration step, to connect the input features extracted from
the network packets with the programs generated by N3IC.
In fact, feature extraction may happen in different ways, and

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 517

IMEM
4MB

EMEM
3MB (Cache)

DRAM
DRAM

Island

ME

CLS
64KB

CTM
256KB

ME

Thread 1 Thread 2 Thread n

NN INPUT NN INPUT NN INPUT

EMEM
3MB (Cache)

DRAM
DRAM

Island

ME

CLS
64KB

CTM
256KB

ME
T1 T2
T3 T4
T5 T6
T7 T8

Figure 9: The architecture of a Netronome NFP4000’s pro-
grammable blocks and the BNN processing with N3IC-NFP.

it is generally dependent on the implemented data plane fea-
tures [3, 8]. Furthermore, since N3IC leverages the same hard-
ware in the switching chips’ data plane used also for other
tasks, the networking and traffic analysis functionality can
usually be intertwined, e.g., in the case of programs target-
ing the PISA architecture the same pipeline stages may take
forwarding decisions and compute BNN’s neurons. This is a
process that in the future may be automated too, as data plane
composability technology matures [46].

BNN model generation We described in § 3 the input feature
quantization and training processes for BNNs. N3IC applies
these processes on the provided labeled dataset. For input
quantization, N3IC takes hints from the programmer, who can
provide the number of bits that should be used to represent
each feature. For instance, the programmer may have expert
knowledge about what value ranges a given feature may have.
Otherwise, N3IC can perform an automatic assignment of
features to the binary input features vector, using the range
of values observed in the dataset as a guide. Once the fea-
ture quantization strategy is fixed, N3IC starts a model search
task. During this task several models are trained, and their
performance on the provided data set is tested using K-fold
cross validation. Also in this case the programmer can guide
the process, providing a list of models to test or limitations
on the maximum model size. Our current implementation
performs a simple exhaustive search over a predefined (or
programmer-provided) set of models, however, this step can
also be enhanced with techniques that implement more so-
phisticated ML architecture search solutions [38].

At the end of these two steps, N3IC generates a BNN model
implementing an MLP architecture, described by the num-
ber of layers, number of neurons per layer, and the corre-
sponding weights. This description is finally passed to the
target-specific BNN compilers, which generate the data plane
programs that implement the BNN executors. We describe
these implementations next.

4.1 SoC NIC: Netronome NFP4000
The NFP4000 architecture, shown in Figure 9, comprises
tens of independent processing cores, which in Netronome
terminology are named micro-engines (MEs). MEs are pro-
grammed with a high-level language named micro-C, a C
dialect. Each ME has 8 threads, which allow the system to
efficiently hide memory access times, e.g., context switching

Algorithm 1: BNN layer processing function.
Weights and inputs are in groups of block_size.

Input :x input vector, w weights matrix, n num. of
output neurons;

Output :y output vector
1 block_size← 32;
2 assert(n % block_size == 0);
3 sign_thr = (len(x) ∗ block_size)/2;
4 y[n/block_size]←{0};
5 for neur← 0 to n−1 by 1 do
6 tmp← 0;
7 for i← 0 to len(x)−1 by 1 do
8 tmp += popcnt(w[neur][i]⊙ x[i]);
9 end

10 if tmp >= sign_thr then
11 tmp_out |= (1 << (neur % block_size));
12 end
13 if (neur+1) % block_size == 0 then
14 y[neur]← tmp_out;
15 tmp_out← 0;
16 end
17 end

between threads as they process different packets. MEs are
further organized in islands, and each island has two shared
SRAM memory areas of 64KB and 256KB, called CLS and
CTM, respectively. Generally, these memory areas are used to
host data required for the processing of each network packet.
Finally, the chip provides a memory area shared by all is-
lands, the IMEM, of 4MB SRAM, and a memory subsystem
that combines two 3MB SRAMs, used as cache, with larger
DRAMs, called EMEMs. These larger memories generally
host forwarding tables, access control lists, and flow counters.
The BNN executor implementation has to share the MEs
and memory resources with packet processing tasks, thus, it
has to strike the right balance between the needs of quickly
forwarding network packets and running BNN inference. For
both processing tasks the main bottleneck is the memory
access time. Therefore, selecting the memory area to store
BNN’s weights plays a major role in our design.

If the BNN is small, like in our cases, it is worth consider-
ing the fastest available on-chip memories, i.e., the CTM and
CTS, with an access time of less than 100ns [29]. However,
the CTM memory is usually dedicated to packet processing
tasks, being the memory used by the NFP to store incom-
ing packets and making them available to the MEs. Thus,
using the CTM may impact packet processing and should be
avoided. Because of this, our implementation loads the NN’s
weights at configuration time in the CLS memory. Then, to
run the BNN, N3IC outputs a function that can be run within
an ME’s thread, and which performs Algorithm 1. This func-
tion implements the BNN executor, with input and weights
packed in 32b integers (i.e., block_size is 32). As a con-
sequence, multiple threads can perform BNN executions in

518 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 2: popcount implementation. X|y is the
y-times concatenation of the binary number X; Z||W is
the concatenation of the binary numbers Z and W.

Input :n input number;
Output :c output counter

1 B← ⌈log2(n+1)/8⌉∗8;
2 L← log2B;
3 bits[L]←{1,2,4, ...,B/2};
4 masks[L]←
{01|B/2,0011|B/4,00001111|B/8, ...,0|B/2||1|B/2};

5 c← n;
6 for i← 0 to L−1 by 1 do
7 c← (c & masks[i])+((c >> bits[i]) & masks[i]);
8 end

parallel (Figure 9), and it is up to the programmer to decide
when and how many threads to use for the BNN execution.

For example, a typical implementation would have, at boot
time, each of the MEs’ threads registering itself to be noti-
fied of packets reception. The NFP takes care of distributing
packets to threads on a per-flow basis. This is a standard ap-
proach when programming the NFP. Thus, whenever a new
packet is received, the NFP copies its content in an island’s
CTM, and notifies one of the island’s threads to start packet
processing. The notified thread can perform regular packet
processing tasks, such as parsing, counters update, forwarding
table lookups. The programmer can include in this context a
trigger condition to start the processing of the BNN executor,
by calling the function provided by N3IC. An example of trig-
gering condition is the the reception of a predefined number
of packets for a given flow.

4.2 BNN->P4->NetFPGA
P4 [6] is a domain-specific, platform-agnostic language for
the programming of packet processing functions. N3IC imple-
ments a compiler that transforms BNN descriptions into BNN
executors described with P4, targeting a PISA architecture. In
principle, a P4-based implementation allows us to separate the
N3IC’s BNN executors from the underlying hardware-specific
details, thus it should make the executor portable to any PISA
architecture. However, as we will discuss at the end of the
section, the target hardware architecture has still an important
impact on the final implementation.
Compiling BNN to P4. The NNtoP4 compiler takes as input
the BNN description created by the model generation step,
and generates P416 code for a generic P4 target based on the
PISA architecture. PISA is a spatial forwarding pipeline ar-
chitecture, with a number of match-action units (MAUs) in
series. A packet header vector (PHV), containing both the
input packet and metadata information, is passed through the
MAUs to perform the programmed processing tasks. Each
MAU combines a table memory structure, for quick lookups
using the PHV fields, with arrays of ALUs that perform oper-
ations on such fields. The code generated by NNtoP4 imple-

XNOR
W1

PHV

Replication XNOR
and Duplication

PHV PHV PHV

SIGN

PHV PHV

Population count
(multiple elements)

Sign Folding

PHV

X X

X

X

X1
X1

X2
X2

X3
X3

X1’
X1”

X2’
X2”

X3’
X3”

X1

X2

X3

Y Y1

Y2

Y3 SIGN

SIGN

+

+

+

>> &
>> &

>> &
>> &

>> &
>> &

~ =

XNOR
W2

XNOR
W3

Figure 10: The logical steps required to implement a BNN
using a PISA architecture.

ments a function, on top of the PISA architecture, which reads
the input value from the PHV, performs the NN execution and
writes back to a PHV’s field the result of the computation. The
NN weights are stored in the MAUs’ fast memories to enable
runtime reconfiguration. The generated P4 code also includes
headers definition, parser, de-parser and control blocks. The
code can therefore be easily extended to integrate with any
other required packet processing function.

The basic operations needed to implement Algorithm 1 are
(1) XNOR, (2) popcount and (3) SIGN function. Executing
a XNOR and a comparison (SIGN) is readily supported by
the P4 language. Unfortunately, the popcount operation is
not. The main issue is that its execution time depends on
the input size, which makes popcount difficult to implement
in networking hardware, and therefore not supported in the
PISA architecture. To overcome this issue using only current
P4 primitives, we adapted the solution proposed in [4] (Item
169), as shown in Algorithm 2. The idea is to implement the
popcount by combining basic integer arithmetic and logic
operations in a tree structure whose depth is dependent on
the input size.3 A tree structure can be easily pipelined, with
the processing of different tree’s levels assigned to different
pipeline’s stages, thus achieving pipeline-level parallelism.

Overall, the processing includes five steps, each one
mapped to a logical pipeline stage, except for the popcount
which requires multiple stages, depending on the input size
(cf. Figure 10). First, the NN input is replicated in as many
PHV fields as the number of neurons to exploit the parallel
processing on multiple packet header fields. Specifically, this
corresponds to an unrolling (or partial unrolling) of the first
for cycle of Algorithm 1. Second, each field, containing a
copy of the NN input, is XNORed with the corresponding
weight. The resulting value is further duplicated to additional
fields to implement the shift, AND and sum as described in
Algorithm 2. The outcome of each popcount is then compared
with a threshold to implement the SIGN function, whose re-
sult is the output of each neuron. Finally, the resulting bits,
stored in one PHV field for each neuron, are folded together in
a single field. Depending on the NN depth, NNtoP4 replicates
and concatenates the described operations as many times as
the number of layers to obtain the complete MLP execution.

For hardware targets, it is worth noticing that the PHV

3See [52], chapter 5, for a longer description of the algorithm.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 519

CAM
(Memory)

O
u

tp
u

t

XOR

R
e

gi
st

e
r

popcnt
(8b LT)

popcnt
(8b LT)

popcnt
(8b LT)

ADD SIGN
m

Stage 1 Stage 2 Stage 3

n

Block 1 Block K Block 2

Trigger

Weight buffer

In
p

u
t

se
le

ct
o

r O
u

tp
u

t
se

le
cto

r

Figure 11: Hardware design of the BNN Executor module.

size limits the number of neurons the pipeline can execute in
parallel. This is due to the need to replicate the input in the
PHV to enable parallelism at the MAU level.

Generating P4 code for the NetFPGA. The NetFPGA is a
4x10GbE FPGA NIC, incorporating a Xilinx Virtex-7 FPGA.
We integrate N3IC in the reference NIC project provided with
the NetFPGA-SUME code base. We used the P4->NetFPGA
workflow [16] to port the generated target-independent P4
code to the NetFPGA platform. The P4->NetFPGA workflow
is built upon the Xilinx P4-SDNet [54] compiler and the
NetFPGA-SUME code base. It translates P4 code to Verilog,
and integrates it within the NetFPGA pipeline.

The P4->NetFPGA workflow required several adaptations
to the NNtoP4 compiler, in order to meet the FPGA resources
and timing constraints. First, the P4-SDNet compiler does
not support if statements among the operations of a MAU.
Thus, we replaced all the if statements required by the SIGN
function using a combination of bitwise logic operations and
masks. Second, MAUs use the CAM IP core from Xilinx to
implement lookup tables, which restricts the maximum width
size that can be used for each entry. Consequently, a maxi-
mum of 32B can be fetched from memory every time a table
is called, limiting the number of neuron weights that could
be loaded in parallel by each table. To overcome this issue
we had to write the weights as constant values in the MAU’s
operations code, effectively trading the possibility to perform
runtime reconfiguration with the ability to compute more neu-
rons in parallel. Finally, P4-SDNet is capable of performing a
large number of operations on a field in a single MAU. This
is in contrast with ASIC targets, which are instead usually
constrained to execute a single operation per MAU [45]. This
allowed us to describe several steps of a BNN computation in
a single MAU, thus reducing the number of MAUs required
to implement the BNN computation.

5 Hardware support for BNNs
While N3IC can generate data plane programs that implement
a BNN executor, a native support for BNNs could enable
more challenging use cases. In this section, we present the
implementation of a data plane’s hardware primitive to run
BNN, and an example of a use case that can benefit from it.

5.1 BNN inference primitive
BNN executors have been presented in the past, however,
their implementations were more generally targeted to appli-
cations within devices dedicated to AI and ML workloads,
e.g., cameras. Instead, our target is to design a BNN executor
integrated within the data plane of a NIC. This changes the
implementation constraints. Most notably, our executor tar-
gets smaller models, and it is designed to fetch input data from
the internal data plane data buses. We target the NetFPGA
prototyping platform, and design our BNN executor in HDL.

Figure 11 shows the architecture of our BNN executor.
The module is composed of multiple blocks. Each of them
performs the computation of a single NN layer, and can be
parametrized providing the sizes n and m for the input and
output vectors, respectively. Together, the blocks build a BNN
Executor for specific BNN architectures. For instance, three
of these blocks are required to build a 3 layers MLP. The NN
layer weights are stored in the FPGA on-chip memories, i.e.,
Block RAM (BRAM). The BRAMs are organized as tables
with a number of rows dependent on the number of neurons,
and with a width of 256b. Each row can be read in 2 clock
cycles and, depending on the size n of the input vector, can
store one or multiple weights, e.g., 1x256b or 16x32b. The
BRAMs are shared by all the blocks of a BNN module.

A single block is a pipeline of three stages. The first reads
the weights from the BRAM and performs the XNOR with
the input. The second performs the first step of the popcount.
Here, we create Lookup-Tables (LTs) of 256 entries each, in
order to associate one 8b integer (address) to the correspond-
ing population count value. Each block has n/8 of these LTs.
As a consequence, for a 256b input we create 32 LTs that op-
erate in parallel. In the last stage, the LTs outputs are summed
together, the sign function is applied on the final sum and
its result is stored in one of the m bits of the output register.
If multiple weights are placed in a single BRAM’s row, the
module performs the execution of several neurons in parallel.

5.2 Enabling more challenging use cases
The BNN inference primitive can enable more challenging ap-
plications that have very low processing latency requirements.
To highlight this, we look at a recently presented network to-
mography solution: SIMON [14]. SIMON periodically sends
probe packets to measure network path delays, and then it uses
the collected delay measurements to infer congestion points
and the size of the related queues. The analysis of probe de-
lays is performed offline with neural networks (MLPs). The
high processing latency only enables post-mortem analysis.
Therefore, in its current implementation, SIMON cannot be
used to create a measurement and control loop, i.e., for path
selection. The probe periodicity defines the processing latency
constraint and it depends on the fastest link speed [14]. For
instance, probes have to be sent every 250µs and 100µs for
40Gb/s and 100Gb/s links, respectively. As a consequence, to
work at modern datacenters’ link speeds and in real-time, the

520 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

P
P

P P

P P

DELAY 1
…

DELAY n

Figure 12: N3IC enables the
real-time implementation of
SIMON [14], using BNNs in
the NIC to identify congested
queue from probes’ one-way
delays. This can be used to
implement new traffic steer-
ing policies in the data plane.

32x16x2 64x32x2 128x64x2
NN size

0.75
0.80
0.85
0.90
0.95
1.00

Ac
cu

ra
cy

NN
BNN

Figure 13: Box plot of the
accuracies for the predicted
queues in the network tomog-
raphy use case. BNNs makes
our approach practical while
trading just a tiny amount of
accuracy with respect to non-
binarized NNs.

execution latency has to be lower than few tens of µs.
We tested the use case simulating a CLOS-like Fat Tree

datacenter network with ns3 [50], using different link speeds
and traffic workloads. Following the methodology suggested
by [14], we split the problem of inferring queue sizes in multi-
ple sub-problems, each targeting a subset of the queues. This
allows us to run smaller MLPs on each of the NICs. Un-
like SIMON, our approach does not infer the actual size of a
queue, but it only infers which queues are bigger than given
thresholds levels. This information is usually sufficient for the
control plane to take a flow-steering decision (See Figure 12).

We implement SIMON with N3IC, providing as input fea-
tures 19 probes’ one-way delays per BNN. A NIC can run
multiple BNNs, since each of them infers the congestion sta-
tus of a specific queue. We show the accuracy of prediction
for each of the network queues in Figure 13, comparing the
BNNs accuracy to that of non-binarized neural networks. For
a BNN with three layers and 128, 64, 2 neurons per layer,
across all the queues of the simulated network, we achieve a
median accuracy in predicting a congested queue above 92%,
which is comparable with the non-binarized neural network
accuracy. As we will see in § 6, the introduced BNN hard-
ware primitive will enable running these BNNs within the
processing latency required for links faster than 400Gb/s.

6 System-level Evaluation
In this section, we present the experimental evaluation of
N3IC’s BNN executors. We report and discuss the end-to-end
performance of the use cases presented in § 3, and of the the
network tomography use case from § 5. Furthermore, we re-
port results for micro-benchmarks and resource requirements.

Testbed. Unless stated otherwise, the system-under-test (SuT)
uses a machine equipped with an Intel Haswell E5-1630 v3
CPU and either a Netronome Agilio CX, with an NFP4000
processor, or a NetFPGA-SUME4. The Haswell is clocked at

4The Haswell CPU was produced with a 22nm factory process, i.e., a tech-
nology comparable to the NFP4000 (22nm) and NetFPGA Virtex7 (28nm).

3.7GHz, the NFP at 800MHz, and the NetFPGA at 200MHz
for both the N3IC-P4 and N3IC-FPGA (i.e., using the hard-
ware primitive) implementations. The host system runs Linux,
kernel v.4.18.15. The SuT is connected back-to-back to a sec-
ond machine that hosts the traffic generators and receivers.
For stress tests, we use a 40Gb/s capable DPDK packet gen-
erator5, and we use HTTP clients and ngnix as receiver, both
hosted on the second machine. We always measure that the
SuT is the performance bottleneck, ensuring that the setup
achieves line-rate when removing the SuT from the loop.

Comparison term. We compared our prototypes with a traffic
analysis system (bnn-exec) that performs feature extraction
on the NIC and the analysis task in software, using binary
neural networks like those employed by N3IC. bnn-exec is
available at [43]. We wrote bnn-exec in C, and optimized it
for the Haswell CPU, with some parts in assembler to take full
advantage of the CPU’s architecture features, such as AVX2
instructions. bnn-exec is faster than any other software BNN
executor we tested, and performs the analysis task with per-
formance comparable to that of optimized libraries for DTs
and RFs [17]. We setup bnn-exec to read flows statistics/data
from the Netronome NIC and ran bnn-exec only with the
Netronome NIC since its driver is more mature than the NetF-
PGA’s: it can better handle fast communication between the
NIC and the host system. When performing analysis with
bnn-exec we took into account (1) the time to read one or
more flow statistics; (2) the time to run the BNN itself; and
(3) the time to write back the result on the NIC. This allows
us to perform a fair comparison against N3IC.

Feature extraction. Our end-to-end system need feature ex-
traction to be implemented in the NIC’s data plane.In fact, the
quality of the inference tasks performed by the downstream
ML model strictly depends on the quality of the extracted
features. In some use cases, feature extraction may be simpler
than in others. For instance, in the IoT use case the outcome
of the inference task assigns flows to QoS classes. While a
mis-classification is undesirable, its impact on the infrastruc-
ture is usually limited, and one may give priority to efficiency
of implementation vs accuracy. Instead, in security use cases
there may be a stricter need to ensure that feature extraction
is robust, e.g., to protect against adversarial attacks [37].

For the tests in this section, we use two different state-of-
the-art feature extraction strategies. In stress tests, we use a
simpler approach that allows us to evaluate the N3IC imple-
mentations, ensuring that N3IC is the actual system bottleneck.
In this case, the NIC stores the per-flow features in a hashtable,
using the flow’s 5-tuple as lookup key. When a packet is re-
ceived, the corresponding flow’s features are retrieved from
the hashtable and updated. If the lookup produces a miss,
the packet is considered as belonging to a new flow. Entries
are removed from the hashtable lazily, if no packets for the
corresponding flow are received in a given time window. In

5https://git.dpdk.org/apps/pktgen-dpdk/

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 521

https://git.dpdk.org/apps/pktgen-dpdk/

1 1 1 10 100 1K 10K
Batch size

0.0
0.25

0.5
0.75

1.0
1.25

1.5
1.75

2.0
2.25

Th
ro

ug
hp

ut
 [M

illi
on

 N
N

ex
ec

/s
]

N3IC-NFP
N3IC-P4
N3IC-FPGA
CPU

Figure 14: For IoT
and Security use cases,
N3IC is 1.5x-7x faster
than bnn-exec, while
forwarding packets at
40Gb/s.

1 1 1 10 100 1K 10K
Batch size

0.1

1

10

100

1k

10k

La
te

nc
y

[u
s]

N3IC-NFP
N3IC-P4
N3IC-FPGA
CPU

Figure 15: For IoT
and Security use cases,
N3IC implementations
can provide at least
10-100x lower latency
than bnn-exec.

500 1000 10000
Active flows

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Th
ro

ug
hp

ut
 [M

pp
s]

Feat. ext.
Feat. ext. + N3IC(10)

Figure 16: N3IC-NFP
throughput for the IoT
use case when analyzing
500, 1k, and 10k parallel
TCP flows.

32x16x2 64x32x2 128x64x2
NN size

0.1

1

10

100

1k

10k

La
te

nc
y

[u
s]

N3IC-NFP
N3IC-P4
N3IC-FPGA
CPU

Figure 17: N3IC-FPGA
can support the network
tomography use case
even in fast 400Gb/s net-
works with probes sent
every 25µs.

32 64 128
Layer size

0.1

1

10

100

Th
ro

ug
hp

ut
 [M

illi
on

 N
N

ex
ec

/s
]

N3IC-NFP
N3IC-P4
N3IC-FPGA

Figure 18: Maximum
throughput in number of
BNNs execution per sec-
ond for N3IC BNN ex-
ecutors.

this approach, only the TCP’s connection establishment is
tracked, and no further connection tracking is performed.

In a second approach, we use a more complex solution
performing full TCP-connection tracking. A connection track-
ing automaton validates that a received packet belongs to the
5-tuple flow (e.g., checking sequence numbers), before per-
forming the features update as in the simpler approach. We
used the TCP-connection tracking implementation of Flow-
blaze [36] that also allows us to change the behavior for
sequence number checking, e.g., using either window shifting
or window advancing solutions.

In both cases, we only track flow-level features. Collecting
the 3 host-level features used in the Security use case re-
quires more complex operations, which we did not implement
since the impact of such features on the BNN classification
accuracy is negligible (Cf. Appendix for a detailed report).
Flow-level features can be: directly extracted from the packet
headers (e.g. protocol number), computed by accumulating
values extracted from packet headers (e.g, total transferred
bytes) or derived from the calculation of flow level metrics
(e.g. packet interarrival, mean flow size). In the latter case
difference based metrics (e.g. flow duration) are computed for
each packet in the flow, while mean based metrics are only
partially computed (i.e. total and number of values are stored
separately) per packet and then finalized (i.e. total/number)
each time the feature is fed to the NN. Additional per flow
values are stored in order to compute the flow level metrics
(Table 4 in Appendix). The computation of the per-flow statis-
tics is a memory-bound operation so the extra overhead due to
the metric computation is negligible respect to the cost of ac-
cessing the flow tables. We implement the feature extraction
strategies both in the Netronome NFP and in the NetFPGA,
for which we report its resources consumption in Table 1. We
refer to the two Feature Extraction (FE) strategies as simple
FE and advanced FE, respectively.

6.1 End-to-end performance tests
In all the end-to-end tests, we measure the analysis throughput
and latency, while the system-under-test forwards network

traffic at 40Gb/s within the NIC (NFP4000 or NetFPGA).

Traffic analysis use cases We perform two different tests to
measure the end-to-end N3IC performance with the use cases
from Section 3. First, we run a stress test generating a large
number of small packets with the DPDK packet generator,
then we perform a performance test with real TCP flows
generated by HTTP clients and nginx. For the stress test, the
provided traffic contains 1.8M flows per second.6 This is a
challenging load for a single server, being more common in
ToR switches handling traffic for high throughput user-facing
services [23]. If N3IC can meet this performance goal, it is
likely to be capable of handling a large range of ordinary
use cases. For the TCP tests, we vary the number of flows
between 500 and 10k, and always generate 40Gb/s of traffic.
Baseline: We measured the NIC performance when only col-
lecting flow statistics with the simpler approach introduced
earlier. The Netronome provides its 40Gb/s line rate only with
packets of size 256B (18.1Mpps) or bigger. This is achieved
using 90 out of the 480 available threads, and it is in line with
the device’s expected performance for such class of applica-
tions. In fact, the NFP can efficiently hide hash-table lookup
latencies by distributing the processing on multiple threads,
while consistently assigning flows to different threads. This
avoids expensive locking of the hash-table, since different par-
allel executors do not access the same entry. The NetFPGA,
instead, is capable of forwarding 40Gb/s with minimum size
(64B) packets while collecting flow statistics, in any case.
Stress Tests: We use the smaller BNN models reported in § 3
to test N3IC performance, since they achieve comparable accu-
racy with the larger DTs and RFs models. We summarized the
throughput results in Figure 14. N3IC implementations can
all achieve the offered throughput of 1.81M flow analysis/s.
Instead, even if using larger batch sizes, bnn-exec is unable
to cope with such load, when running on a single CPU core.
bnn-exec maximum throughput is 1.18M analyzed flows/s,
when using very large batches of 10K flows. More interest-
ingly, Figure 15 shows that N3IC implementations provide
also a low processing latency, with a 95-th percentile of 42µs

6That is, an average of 10 packets per flow at 40Gb/s@256B.

522 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

for N3IC-NFP, and only 2µs and 0.5µs for N3IC-P4 and N3IC-
FPGA, respectively. In comparison, for bnn-exec to achieve
a throughput above the 1M flows/s, the processing latency is
1ms and 8ms with batch sizes 1K and 10K, respectively.
TCP Test: we run an additional experiment, using the IoT
application, to check the functionality of N3IC with flows
generated by HTTP clients and nginx, when using the second
feature extraction strategy with full TCP tracking. The HTTP
clients generate 40Gb/s distributed among 500, 1k, and 10k
parallel flows. Since TCP flows have larger average packet
size (close to the maximum of 1.5KB), this corresponds to
about 3.2Mpps at 40Gb/s line rate. We further instrument
N3IC to perform inference on a flow after every (10, 100,
1000) received flow’s packets. This corresponds to up to over
320k ML inferences per second. Figure 16 shows that N3IC
can forward all the received packets, while collecting statis-
tics and performing ML inference (we show only N3IC-NFP,
and for inferences every 10 flow’s packets, since results for
the other experiments and for N3IC-FPGA are similar). An
interesting observation is that the NFP’s throughput does not
change when adding N3IC inference load. This happens since
feature extraction requires memory lookups, whereas BNN
inference requires mostly processing power from the NFP’s
MEs, thus the two workloads can be efficiently co-located.
Network Tomography When testing the network tomogra-
phy use case, the NIC stores the one-way-delay value for the
received network probes, before passing them to the analy-
sis engine, i.e., either N3IC or bnn-exec. Here, processing
latency is the critical performance indicator. Figure 17 shows
that bnn-exec provides a processing latency of about 40µs,
which is within the budget of 100µs.7 However, upcoming
network links of 400Gb/s could not be supported, since they
would lower the periodicity of the probes to 25µs. N3IC pro-
cessing latency for SIMON’s BNNs with 128, 64, 2 neurons
is 170µs for N3IC-NFP and below 2µs for N3IC-FPGA. As
we further clarify next, N3IC-P4 cannot scale to run larger
BNNs, and can only run the smaller 32, 16, 2 neurons net-
works with about 2µs of delay, at the cost of reduced accuracy.
For upcoming 400Gb/s network speeds, the BNN hardware
primitive enables running more accurate BNN models, while
being within the processing latency requirement.

6.2 Scalability tests
We now evaluate the processing throughput and latency when
varying the size of the BNN. We performed this evaluation
fully loading N3IC, and by executing a single BNN layer with
256 binary inputs. We varied the number of neurons to be 32,
64, and 128.8 Figure 18 shows that the throughput decreases
linearly with the layer’s size for N3IC-NFP and N3IC-FPGA.
Latency, instead, increases linearly (not shown). This is ex-

7In this case high-throughput is not required, so we use a batch size of 1.
8The layer is fully-connected, therefore its size is the number of input

times the number of neurons: a layer with 128 neurons has 4KB of weights,
i.e., about 4x the size of the NN used for the traffic analysis use cases.

Design LUT BRAM
% tot # % tot

Reference NIC (RN) 49.4k 11.4% 194 13.2%
RN + simple Feature Extraction (FE) 50.0k 11.56% 258 17.6%

RN + simple FE + N3IC-FGPA 52.6k 12.16% 275 18.8%
RN + simple FE + N3IC-P4 145.1k 33.56% 582 39.6%

RN + advanced FE 92.0k 21.56% 458 32.6%
RN + advanced FE + N3IC-FPGA 95.0k 22.86% 475 33.8%

Table 1: NetFPGA resources usage. N3IC-FPGA requires lit-
tle additional resources. N3IC-P4 uses a large amount of NIC
resources due to the PISA computation model constraints.

pected given the design presented in § 4. In comparison,
N3IC-P4 throughput results are much higher for a layer with
32 and 64 neurons. Unfortunately, results for 128 neurons are
missing, since N3IC-P4 could not scale to handle such layers.
We provide more insight on this in the next subsection.

6.3 System resources usage
We quantify the resources needed by N3IC. Compared to state-
of-the-art systems like bnn-exec, N3IC does NOT use any
CPU cores and keeps the PCIe bus free. It does however use
additional resources on the NIC. We evaluate this referring to
the BNNs used in the traffic analysis use cases.

In the NFP case, N3IC has to store the NN’s weights in the
NFP4000’s memory system. The NNs used with the traffic
analysis use cases require 1.5% of the CLS memory, and 480
threads to face the offered load, instead of the 90 required to
achieve line-rate throughput when the NIC is only collecting
flow statistics. Here, it should be noted that it is possible
to use less threads, if a performance drop in NN inference
throughput is acceptable. For instance, using only 120 threads,
i.e., 30 additional threads compared to the baseline, reduces
the throughput of flows analyzed per second by 10x. This still
provides the ability to analyze over 100k flows per second,
which is sufficient for many workloads.

In the NetFPGA cases, we measured the hardware re-
sources required to synthesize N3IC on the Virtex7 FPGA,
and compare them to the standard NetFPGA reference NIC
design’s resources, including the resources required to im-
plement the feature extraction logic. Table 1 summarizes the
results. N3IC-FPGA requires only an additional 0.6% and
1.2% of the FPGA’s LUTs and BRAMs, respectively. The re-
source consumption is so small since we included in the data
plane a single BNN executor module, which was dimensioned
to achieve the analysis throughput measured in the tests re-
ported in this section. Instead, the N3IC-P4 implementation
requires a relatively large amount of resources, with an addi-
tional 22% for both LUTs and BRAMs. For comparison, the
implementation of DTs with depth 5 in the data plane reported
in [55] requires 27% and 40% of LUTs and BRAMs, respec-
tively. This is the case because the P4 implementation embeds
the BNN executor within a PISA-like pipeline targeted by
the P4->NetFPGA toolchain. That is, the computations of
the BNN are unrolled to be distributed on multiple PISA’s

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 523

match-action stages. While this has the effect of completely
pipelining the BNN execution, it also requires using a large
amount of FPGA resources. That is, like it is the case for other
P4 programs using the P4->NetFPGA toolchain, with N3IC-
P4 the successful compilation and synthesis of the P4 program
guarantees the NIC’s line rate during execution. Therefore,
N3IC-P4 can run a BNN inference for each received packet
and still match packet forwarding line rate (cf. Figure 18). For
this reason, it should also be noted that in N3IC-P4 most of
the resources can be reused to implement also regular packet
forwarding, since the pipeline stages required by N3IC can
host forwarding rules coming from other processing tasks.

7 Discussion
What are the limitations? Since N3IC BNNs run in the data
plane, only features that can be computed/extracted within the
data plane can be used as input. This limits the applicability
of N3IC to devices that offer such functionality. For instance,
porting N3IC to a switch’s data plane may be limited by the
availability of input features. For similar reasons, more com-
plex models that require application-level data, e.g., payload
of packets and with KBs of input size, are not well handled
by N3IC. For these kind of analysis tasks, more relevant so-
lutions may be previous work such as Brainwave [24] and
Taurus [47], or some recently presented NICs that combine
specialized executors for ML models, e.g., NVIDIA EGX
A100 [32] and Xilinx Alveo SN1000 [53]. In fact, although
these executors are not well suited for the low latency anal-
ysis tasks addressed by N3IC (cf. § 2), they are especially
designed to perform complex algorithms on larger data, with
processing latency in the ms.

Is it all about scalability and performance? While N3IC
improves the performance of existing traffic analysis systems,
we believe the ability to perform flow-level traffic analysis
entirely in the NIC can provide a tool to rethink system ar-
chitectures. For instance, the ability to track the queue status
of network switches in near real time (§ 5.2) would make it
practical the implementation of load-aware data center load
balancing schemes that take decision from the end host [18],
or it could enable new congestion control algorithms.

8 Related Work
Traffic analysis with machine learning is performed by sys-
tems in many operational settings [39], e.g., for traffic classifi-
cation [2, 5, 14, 26, 40] and security [3, 10, 19, 25]. Some solu-
tions scale traffic analysis performance using NICs [12,29,48]
that have the ability to perform feature extraction (e.g., flow
statistic collection [1, 3, 28]). Unlike these solutions, N3IC
enables also the execution of machine learning-based analy-
sis within the NIC’s data plane. Previous work presented a
similar idea when targeting switches [8, 55], and [8] covers
also the issue of selecting the subset of features that can be
efficiently collected within the data plane. In N3IC we lever-
age the flexibility of a NIC’s data plane, designed to process

significantly less traffic than a switch, to relax this issue.
The idea of using binary neural networks within the net-

work data plane was presented in some early works [41, 42].
[42] presents a conceptual design for RMT [7] switches. [41]
targets end-host ML applications, in which the NIC works as
a co-processor for Convolutional Neural Networks for image
classification that runs on the host. We build on similar in-
sights and extend those early ideas in many ways. First, we
show the suitability of BNNs for traffic analysis use cases,
comparing them with state-of-the-art ML techniques. Then,
we present an end-to-end system design that builds BNN ex-
ecutors for different NIC architectures, starting from a labeled
dataset. Finally, we present a complete evaluation of BNN
executors on two NICs, propose a dedicated hardware-native
implementation, and include an end-to-end evaluation of three
networking use cases, with related trade-offs.

Finally, while not directly related to N3IC, recent work on
the security of network applications that use machine learning
is likely to influence developments in this area [22, 31].

9 Conclusion
We addressed the problem of improving throughput, latency,
and efficiency of packet- and flow-level network traffic analy-
sis, usually performed by software middleboxes and network
functions. We first show that binary neural networks can re-
place widely-adopted decision trees and random forests, on
the tested network traffic analysis tasks. Then, we make the
case for implementing them in the data plane of commodity
programmable NICs.We design and implement an end-to-end
system composed of a binary neural network model gener-
ation module, and a compiler that generates data plane pro-
grams to execute the binary neural network model in the data
plane of commodity programmable NICs (i.e., Netronome
SmartNICs and P4-enabled NICs). Moreover, we also design
and prototype a new hardware primitive that allows a NIC
to perform BNN model execution directly. We evaluated our
approach using two different NICs, Netronome NFP4000 and
NetFPGA, and for a set of use cases representing a large va-
riety of current traffic analysis applications, including traffic
classification, anomaly detection and network tomography.
Our results show that our system can accurately perform anal-
yses for millions of flows per second, with low latency, while
processing packets at NICs’ line rates.

Acknowledgments. We thank our shepherd, Chuanxiong
Guo, and the anonymous reviewers for their feedback, which
have substantially improved this paper. Thanks also to
Manya Ghobadi for feedback on earlier version of the work.
This work is partially supported by the UK’s EPSRC un-
der the projects NEAT (EP/T007206/1), and EP/T023600/1
within the CHIST-ERA program, and the ECSEL Joint Un-
dertaking and the European Union’s H2020 Framework
Programme (H2020/2014-2020), under grant agreements n.
876967 (“BRAINE”) and n. 883335 (“PALANTIR”).

524 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Accolade Technology. ANIC Host CPU Of-
fload Features Overview, [Online; accessed 04-
March-2021]. https://accoladetechnology.com/
whitepapers/ANIC-Features-Overview.pdf.

[2] Giuseppe Aceto, Domenico Ciuonzo, Antonio Montieri,
and Antonio Pescapé. Mobile encrypted traffic classi-
fication using deep learning: Experimental evaluation,
lessons learned, and challenges. IEEE Transactions
on Network and Service Management, 16(2):445–458,
2019.

[3] Diogo Barradas, Nuno Santos, Lui Rodrigues, Salvatore
Signorello, Fernando M.V. Ramos, and Andre Madeira.
Flowlens: Enabling efficient flow classification for ml-
based network security applications. In Network and
Distributed Systems Security (NDSS). USENIX, 2021.

[4] M. Beeler, R.W. Gosper, and R. Schroeppel. Hakmem
AI Memo No. 239. In MIT Artificial Intelligence Labo-
ratory, Cambridge, US, 1972.

[5] Laurent Bernaille, Renata Teixeira, Ismael Akodkenou,
Augustin Soule, and Kave Salamatian. Traffic classifi-
cation on the fly. SIGCOMM Comput. Commun. Rev.,
36(2):23–26, April 2006.

[6] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick
McKeown, Jennifer Rexford, Cole Schlesinger, Dan
Talayco, Amin Vahdat, George Varghese, and David
Walker. P4: Programming Protocol-independent Packet
Processors. In Computer Communication Review, Vol-
ume: 44, Issue: 3. ACM, 2014.

[7] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Vargh-
ese, Nick McKeown, Martin Izzard, Fernando Mujica,
and Mark Horowitz. Forwarding Metamorphosis: Fast
Programmable Match-action Processing in Hardware
for SDN. In Special Interest Group on Data Communi-
cation (SIGCOMM). ACM, 2013.

[8] Coralie Busse-Grawitz, Roland Meier, Alexander Di-
etmüller, Tobias Bühler, and Laurent Vanbever. pfor-
est: In-network inference with random forests. arXiv
preprint arXiv:1909.05680, 2019.

[9] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran
El-Yaniv, and Yoshuao Bengio. Binarized neural net-
works: Training deep neural networks with weights and
activations constrained to+ 1 or-1. In Computing Re-
search Repository, Volume: abs/1602.02830, 2016.

[10] Luca Deri. Using ndpi for monitoring and secu-
rity, 2021. https://fosdem.org/2021/schedule/
event/nemondpi/.

[11] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody
Smith, Roman Kononov, Eric Mann-Hielscher, Ardas
Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-
nah Dylan Hosein. Maglev: A fast and reliable soft-
ware network load balancer. In 13th USENIX Sympo-
sium on Networked Systems Design and Implementa-
tion (NSDI 16), pages 523–535, Santa Clara, CA, March
2016. USENIX Association.

[12] Daniel Firestone, Andrew Putnam, Sambhrama Mund-
kur, Derek Chiou, Alireza Dabagh, Mark Andrewartha,
Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, Harish K. Chandrappa, Somesh Chaturmohta,
Matt Humphrey, Jack Lavier, Norman Lam, Fengfen
Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri,
Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva,
Madhan Sivakumar, Nisheeth Srivastava, Anshuman
Verma, Qasim Zuhair, Deepak Bansal, Doug Burger,
Kushagra Vaid, David A. Maltz, and Albert Greenberg.
Azure Accelerated Networking: SmartNICs in the Pub-
lic Cloud. In Networked Systems Design and Implemen-
tation (NSDI). USENIX, 2018.

[13] Gartner. Market guide for network detection and
response, 2020. https://www.gartner.com/doc/
reprints?id=1-25DOQJMT&ct=210304&st=sb.

[14] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji
Prabhakar, Mendel Rosenblum, and Amin Vahdat. SI-
MON: A Simple and Scalable Method for Sensing, In-
ference and Measurement in Data Center Networks. In
Networked Systems Design and Implementation (NSDI).
USENIX, 2019.

[15] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran
El-Yaniv, and Yoshua Bengio. Binarized neural net-
works. In Neural Information Processing Systems
(NIPS). Curran Associates Inc., 2016.

[16] Stephen Ibanez, Gordon Brebner, Nick McKeown, and
Noa Zilberman. The p4->netfpga workflow for line-rate
packet processing. In Field-Programmable Gate Arrays
(FPGA). ACM, 2019.

[17] intel. Daal, 2019. https://software.intel.com/
content/www/us/en/develop/tools/oneapi/
components/onedal.html.

[18] Naga Katta, Aditi Ghag, Mukesh Hira, Isaac Keslassy,
Aran Bergman, Changhoon Kim, and Jennifer Rexford.
Clove: Congestion-Aware Load Balancing at the Virtual
Edge. In Conference on Emerging Networking EXperi-
ments and Technologies (CoNEXT). ACM, 2017.

[19] Hongda Li, Hongxin Hu, Guofei Gu, Gail-Joon Ahn,
and Fuqiang Zhang. VNIDS: Towards Elastic Security

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 525

https://accoladetechnology.com/whitepapers/ANIC-Features-Overview.pdf
https://accoladetechnology.com/whitepapers/ANIC-Features-Overview.pdf
https://fosdem.org/2021/schedule/event/nemondpi/
https://fosdem.org/2021/schedule/event/nemondpi/
https://www.gartner.com/doc/reprints?id=1-25DOQJMT&ct=210304&st=sb
https://www.gartner.com/doc/reprints?id=1-25DOQJMT&ct=210304&st=sb
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onedal.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onedal.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onedal.html

with Safe and Efficient Virtualization of Network Intru-
sion Detection Systems. In ACM SIGSAC Conference
on Computer and Communications Security, CCS ’18,
page 17–34, New York, NY, USA, 2018. Association
for Computing Machinery.

[20] Xiaofan Lin, Cong Zhao, and Wei Pan. Towards accurate
binary convolutional neural network. In Neural Infor-
mation Processing Systems (NIPS). Curran Associates,
Inc., 2017.

[21] Francis Matus. Distributed services architecture. In
2020 IEEE Hot Chips 32 Symposium (HCS), pages 1–
17. IEEE Computer Society, 2020.

[22] Roland Meier, Thomas Holterbach, Stephan Keck,
Matthias Stähli, Vincent Lenders, Ankit Singla, and Lau-
rent Vanbever. (Self) Driving Under the Influence: In-
toxicating Adversarial Network Inputs. In Hot Topics in
Networks (HotNets). ACM, 2019.

[23] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun
Lee, and Minlan Yu. SilkRoad: making stateful layer-4
load balancing fast and cheap using switching ASICs.
In Special Interest Group on Data Communication (SIG-
COMM). ACM, 2017.

[24] Microsoft. Microsoft unveils project brainwave for
real-time ai, 2017. https://www.microsoft.com/en-
us/research/blog/microsoft-unveils-project-
brainwave/.

[25] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and
Asaf Shabtai. Kitsune: An ensemble of autoencoders
for online network intrusion detection. In 25th Annual
Network and Distributed System Security Symposium,
NDSS 2018, San Diego, California, USA, February 18-
21, 2018. The Internet Society, 2018.

[26] Andrew W. Moore and Denis Zuev. Internet Traffic
Classification Using Bayesian Analysis Techniques. In
Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS). ACM, 2005.

[27] Nour Moustafa and Jill Slay. UNSW-NB15: a compre-
hensive data set for network intrusion detection systems
(UNSW-NB15 network data set). In Military Communi-
cations and Information Systems Conference (MilCIS).
IEEE, 2015.

[28] Napatech. SmartNICs features overview,
[Online; accessed 04-March-2021]. https:
//www.napatech.com/support/resources/data-
sheets/napatech-smartnic-feature-overview/.

[29] Netronome. Netronome AgilioTM CX 2x40GbE
intelligent server adapter, 2018. https:
//www.netronome.com/media/redactor_files/
PB_Agilio_CX_2x40GbE.pdf.

[30] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo,
Yury Audzevich, Sergio López-Buedo, and Andrew W.
Moore. Understanding PCIe Performance for End Host
Networking. In Special Interest Group on Data Com-
munication (SIGCOMM). ACM, 2018.

[31] Carlos Novo and Ricardo Morla. Flow-Based Detection
and Proxy-Based Evasion of Encrypted Malware C2
Traffic. In ACM Workshop on Artificial Intelligence and
Security, AISec’20, New York, NY, USA, 2020. Associ-
ation for Computing Machinery.

[32] NVIDIA. Nvidia egx a100, 2018. https:
//www.nvidia.com/en-us/data-center/products/
egx-converged-accelerator/.

[33] OVH. Managing a ddos attack, 2021. https:
//www.ovh.com/world/anti-ddos/managing-ddos-
attacks.xml.

[34] OVH. What is anti-ddos protection?, 2021.
https://www.ovh.com/world/anti-ddos/anti-
ddos-principle.xml.

[35] Vern Paxon. The Zeek Network Security Monitor, [On-
line; accessed 04-Feb-2020]. https://www.zeek.org/.

[36] Salvatore Pontarelli, Roberto Bifulco, Marco Bonola,
Carmelo Cascone, Marco Spaziani, Valerio Bruschi, Da-
vide Sanvito, Giuseppe Siracusano, Antonio Capone,
Michio Honda, Felipe Huici, and Giuseppe Bianchi.
FlowBlaze: stateful packet processing in hardware. In
Networked Systems Design and Implementation (NSDI).
USENIX, 2019.

[37] Zhiyun Qian and Z. Morley Mao. Off-path tcp sequence
number inference attack - how firewall middleboxes
reduce security. In 2012 IEEE Symposium on Security
and Privacy, pages 347–361, 2012.

[38] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-yao
Huang, Zhihui Li, Xiaojiang Chen, and Xin Wang. A
comprehensive survey of neural architecture search:
Challenges and solutions. 54(4), 2021.

[39] Paulo Angelo Alves Resende and André Costa Drum-
mond. A survey of random forest based methods for
intrusion detection systems. ACM Comput. Surv., 51(3),
May 2018.

[40] Said Jawad Saidi, Anna Maria Mandalari, Roman Kol-
cun, Hamed Haddadi, Daniel J Dubois, David Choffnes,
Georgios Smaragdakis, and Anja Feldmann. A haystack
full of needles: Scalable detection of iot devices in the
wild. In Proceedings of the ACM Internet Measurement
Conference, pages 87–100, 2020.

526 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.microsoft.com/en-us/research/blog/microsoft-unveils-project-brainwave/
https://www.microsoft.com/en-us/research/blog/microsoft-unveils-project-brainwave/
https://www.microsoft.com/en-us/research/blog/microsoft-unveils-project-brainwave/
https://www.napatech.com/support/resources/data-sheets/napatech-smartnic-feature-overview/
https://www.napatech.com/support/resources/data-sheets/napatech-smartnic-feature-overview/
https://www.napatech.com/support/resources/data-sheets/napatech-smartnic-feature-overview/
https://www.netronome.com/media/redactor_files/PB_Agilio_CX_2x40GbE.pdf
https://www.netronome.com/media/redactor_files/PB_Agilio_CX_2x40GbE.pdf
https://www.netronome.com/media/redactor_files/PB_Agilio_CX_2x40GbE.pdf
https://www.nvidia.com/en-us/data-center/products/egx-converged-accelerator/
https://www.nvidia.com/en-us/data-center/products/egx-converged-accelerator/
https://www.nvidia.com/en-us/data-center/products/egx-converged-accelerator/
https://www.ovh.com/world/anti-ddos/managing-ddos-attacks.xml
https://www.ovh.com/world/anti-ddos/managing-ddos-attacks.xml
https://www.ovh.com/world/anti-ddos/managing-ddos-attacks.xml
https://www.ovh.com/world/anti-ddos/anti-ddos-principle.xml
https://www.ovh.com/world/anti-ddos/anti-ddos-principle.xml
https://www.zeek.org/

[41] Davide Sanvito, Giuseppe Siracusano, and Roberto Bi-
fulco. Can the network be the AI accelerator? In In-
Network Computing (NetCompute). ACM, 2018.

[42] Giuseppe Siracusano and Roberto Bifulco. In-network
neural networks. In Computing Research Repository,
Volume: abs/1801.05731, 2018.

[43] Giuseppe Siracusano, Salvator Galea, Davide San-
vito, Mohammad Malekzadeh, Gianni Antichi, Paolo
Costa, Hamed Haddadi, and Roberto Bifulco. N3ic
github repository, 2022. https://github.com/nec-
research/n3ic-nsdi22.

[44] Arunan Sivanathan, Hassan Habibi Gharakheili, Franco
Loi, Adam Radford, Chamith Wijenayake, Arun Vish-
wanath, and Vijay Sivaraman. Classifying iot devices in
smart environments using network traffic characteristics.
IEEE Transactions on Mobile Computing, 18(8):1745–
1759, 2018.

[45] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu,
Changhoon Kim, Mohammad Alizadeh, Hari Balakr-
ishnan, George Varghese, Nick McKeown, and Steve
Licking. Packet transactions: high-level programming
for line-rate switches. In Special Interest Group on Data
Communication (SIGCOMM). ACM, 2016.

[46] Hardik Soni, Myriana Rifai, Praveen Kumar, Ryan Do-
enges, and Nate Foster. Composing dataplane programs
with µp4. In Proceedings of the Annual conference of
the ACM Special Interest Group on Data Communica-
tion on the applications, technologies, architectures, and
protocols for computer communication, pages 329–343,
2020.

[47] Tushar Swamy, Alexander Rucker, Muhammad Shahbaz,
Neeraja Yadwadkar, Yaqi Zhang, and Kunle Olukotun.
Taurus: An Intelligent Data Plane. In P4 Workshop,
2019.

[48] Mellanox Technologies. BlueField Smart-
NIC, 2019. http://www.mellanox.com/
related-docs/prod_adapter_cards/
PB_BlueField_Smart_NIC.pdf.

[49] Mellanox Technologies. TILEncore-Gx72,
2019. https://www.mellanox.com/page/
products_dyn?product_family=231&mtag=
tilencore_gx72_adapter_mtag.

[50] The University of Washington NS-3 Consortium. NS3
official website, [Online; accessed 10-Jan-2020]. https:
//www.nsnam.org/.

[51] Yaman Umuroglu, Nicholas J. Fraser, Giulio Gam-
bardella, Michaela Blott, Philip Leong, Magnus Jahre,

and Kees Vissers. FINN: A Framework for Fast, Scal-
able Binarized Neural Network Inference. In Field-
Programmable Gate Arrays (FPGA). ACM, 2017.

[52] Henry S. Warren. Hacker’s Delight. Addison-Wesley
Professional, 2nd edition, 2012.

[53] XILINX. Xilinx sn1000, 2018. https:
//www.xilinx.com/applications/data-center/
network-acceleration/alveo-sn1000.html.

[54] Xilinx. SDNet compiler, 2019. https://
www.xilinx.com/sdnet.

[55] Zhaoqi Xiong and Noa Zilberman. Do switches dream
of machine learning? toward in-network classification.
In Proceedings of the 18th ACM workshop on hot topics
in networks, pages 25–33, 2019.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 527

https://github.com/nec-research/n3ic-nsdi22
https://github.com/nec-research/n3ic-nsdi22
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
https://www.mellanox.com/page/products_dyn?product_family=231&mtag=tilencore_gx72_adapter_mtag
https://www.mellanox.com/page/products_dyn?product_family=231&mtag=tilencore_gx72_adapter_mtag
https://www.mellanox.com/page/products_dyn?product_family=231&mtag=tilencore_gx72_adapter_mtag
https://www.nsnam.org/
https://www.nsnam.org/
https://www.xilinx.com/applications/data-center/network-acceleration/alveo-sn1000.html
https://www.xilinx.com/applications/data-center/network-acceleration/alveo-sn1000.html
https://www.xilinx.com/applications/data-center/network-acceleration/alveo-sn1000.html
https://www.xilinx.com/sdnet
https://www.xilinx.com/sdnet

A Appendix

We provide additional details and test results about the tested
machine learning (ML) models, and about the implementation
of the BNN executors.

A.1 Input Features

Table 2 reports the set of features used by the IoT Traffic
Classification use case to perform the classification, while
Table 3 reports the ones used by the Security Anomaly De-
tection use case. It should be noted that all the features used
by the former use case are also used by the latter. However,
some of the features shared by the two use cases differ in the
number of bits used for their binary encoding. For example,
feature dur in the IoT use case requires twice the number of
bits with respect to the Security use case.

For the Security use case, we tested the classification per-
formance of the ML models with and without the host-based
features. In fact, these features complicate significantly the
feature extraction process on the NIC. As we will see in the
next subsections, this impacts significantly the classification
performance of Decision Trees, while it has minimal impact
on BNNs. We speculate that this is the case since not only
BNNs perform classification using all the available features,
but they also naturally build intermediate features (i.e., feature
engineering) in their hidden layers; whereas DTs and RFs
use only a subset of the provided features. This observation
suggests that there maybe more advantages in using BNNs,
beyond those reported in the paper. E.g., BNNs may enable
to perform inference using a set of features that are cheaper
to collect. However, we leave more investigation into this for
future studies, and therefore we only report that this is indeed
the case for the Security use case.

Features number vs Memory requirements. Another aspect
we did not discuss in the paper is the memory requirement
associated with the features. This is usually a bigger issues
in switching devices that deal with larger amounts of traffic,
such as network switches and routers, while it is not a hard
constraint in NICs that are provided with larger (per-flow)
memories. In the use cases analyzed in the paper, we use
a 256b feature vector, i.e., each flow entry has a memory
occupation of 45B (13B for the flowkey, and 32B for the
features). That is, a features table for e.g., 10K active flows
needs less than 0.5MB of (SRAM) memory.

Feature extraction additional counters. Table 4 lists ad-
ditional counters that are needed for the feature extraction.
Indeed, in order to calculate duration and average input fea-
tures, five per flow counters have to be stored. Timestamps of
the flow start and the last packet sent by the source/destination
are used to calculate: the duration of the flow (dur Table 2, 3),
the average load (sload, dload), the interarrival times (sinpkt
and dinpkt) and TCP connection setup time (ackdat, synack).

Feature Description Bin. enc.
length

dur record total duration 16
proto transaction protocol 8
sbytes src -> dst transaction bytes 24
bytes dst -> src transaction bytes 24
sttl src -> dst TTL value 8
dttl dst -> src TTL value 8
sload source bits per second 24
dload destination bits per second 24
spkts src -> dst packet count 16
dpkts dst -> src packet count 16
smean Mean of the flow packet size tx by the src 16
dmean Mean of the flow packet size tx by the dst 16
sinpkt source interpacket arrival time 16
dinpkt destination interpacket arrival time 16
tcprtt TCP connection setup round-trip time the sum, 8

of ’synack’ and ’ackdat’.
synack TCP connection setup time, the time between, 8

the SYN and the SYN_ACK packets
ackdat TCP connection setup time, the time between 8

the SYN_ACK and the ACK packets.

Table 2: IoT Traffic Classification input features

While the source/destination total packet counters are used
only to calculate the mean flow size.

A.2 Machine Learning Models

A.2.1 Additional evaluation metrics

This section provides supplementary evaluation results to
complement the F1-score and False Positive Rate (FPR) met-
rics presented in Section 3 of the paper. TP, TN, FP and FN
indicate the True Positives, True Negatives, False Positives,
and False Negatives, respectively. We report here the follow-
ing metrics:

• Accuracy: computed as (T P+T N)/(T P+T N +FP+
FN), it quantifies the percentage of correct predictions.

• Precision (P): computed as T P/(T P+FP), it quanti-
fies the quota of positive class predictions that actually
belong to the positive class.

• Recall (R) or True Positive Rate (TPR): computed as
T P/(T P+FN), it quantifies the quota of positive sam-
ples that are correctly predicted as positive.

• F1-score: computed as 2T P/(2T P+FP+FN), it is the
harmonic mean of Precision and Recall.

• False Positive Rate (FPR): computed as FP/(FP+T N),
it quantifies the quota of negative samples that are
wrongly predicted as positive.

• False Negative Rate (FNR): computed as FN/(FN +
T P), it quantifies the quota of positive samples that are
wrongly predicted as negative.

• ROC-AUC: the Receiver Operating Characteristic (ROC)
curve captures the TPR-FPR tradeoff at different classifi-
cation thresholds. ROC-AUC is the area under the ROC
curve and provides an aggregate measure to quantify
the performance of a classification model across all the
classification thresholds.

528 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Feature Description Bin. enc.
length

dur record total duration 8
proto transaction protocol 8
sbytes src -> dst transaction bytes 16
bytes dst -> src transaction bytes 16
sttl src -> dst TTL value 8
dttl dst -> src TTL value 8
sload source bits per second 24
dload destination bits per second 24
spkts src -> dst packet count 16
dpkts dst -> src packet count 16
smean Mean of the flow packet size tx by the src 16
dmean Mean of the flow packet size tx by the dst 16
sinpkt source interpacket arrival time 16
dinpkt destination interpacket arrival time 16
tcprtt TCP connection setup round-trip time, 8

the sum of ’synack’ and ’ackdat’.
synack TCP connection setup time, the time 8

between the SYN and the SYN_ACK packets
ackdat TCP connection setup time, the time 8

between the SYN_ACK and the ACK packets
Host-based
features
ct_src_ltm No. of connections of the same dst address 8

in 100 connections according to the last time
ct_dst_ltm No. of connections of the same src address 8

in 100 connections according to the last time
ct_ds_src_ltm No of connections of the same src/dst address 8

in 100 connections according to the last time

Table 3: Security Anomaly Detection input features

Counter Description
flow start flow start timestamp
dst pkt count Total number of packets sent by dst
src pkt count Total number of packets sent by src
dts last pkt ts Timestamp of the last pkt sent by dst
src last pkt ts Timestamp of the last pkt sent by src

Table 4: Feature extraction additional counters

Here, we notice that the False Negative Rate (FNR) is
not reported in the results, since it is computed as FNR =
1−Recall, and we already report Recall for all the cases.

For each metric we report the average and standard devia-
tion resulting from a 5-fold cross-validation. In the IoT case
we are dealing with a 10-classes classification problem, thus,
we used a one-vs-rest strategy to evaluate the False Positive
and True Positive Rates. Following the description of Sec-
tion 3, we focused on 3 representative configurations for each
type of model. Specifically, for the Decision Tree (DT) and
Random Forest (RF) models we considered tree depths val-
ues of 3, 6, and 9, and always 5 trees for the RF. The BNN
models use a Multi-layer Perceptron architecture, with 256
input binary features and three fully-connected layers. The
three models differ by the number of neurons in the hidden
layers: [32, 16, n]; [64; 32; n]; [128, 64, n] where n = 10 for
the IoT use case and n = 2 for the Security use case.

We also include two additional columns (TCAM and
SRAM) reporting the memory consumption for the TCAM-
based and SRAM-based implementations. In the case of
BNNs, there is only an SRAM-based implementation, as re-

ported in the paper in Section 3.2.
The results for the IoT use cases are reported in Table 5,

while Table 6 reports the results for the Security use case.

A.2.2 Security Anomaly Detection without host features

For the Security use case, as mentioned earlier, we also run
the classifier tests to check that the implications of removing
the three additional non-flow level features is minimal for
the BNN accuracy: the three BNN models described in the
paper (32,16,2; 64,32,2; 128,64,2) achieve accuracy [0.9114,
0.9162, 0.9198] when including the 3 extra features, and
[0.9106, 0.9164, 0.9201] when not including them (a differ-
ence of at most 0.1% point). The results for Decision Trees
and Random Forests are instead more impacted, as shown in
Table 7.

A.2.3 Confusion Matrices

Figures 19 and 20 report the confusion matrices for the IoT
Traffic Classification and Security Anomaly Detection (with
all features) use cases, respectively. The matrices have been
normalized by dividing the counts by the sum of each row.
For each use case we selected a single fold for each of the 9
representative models. In the 3x3 grid, each row contains a
different type of model, i.e. Decision Trees (DT), Random
Forests (RF) and Binary Neural Networks (BNN). For a given
row, different columns contain an increasingly more complex
model of a same type, e.g. a more deep tree-based model or a
MLP with a larger number of neurons in the hidden layers.

The confusion matrices in the IoT use case confirm that
small DTs and RFs fail to properly classify samples belonging
to some classes. This is also a byproduct of using binary-
decision trees, which fail to identify all of the 10 classes when
so shallow. Performance improves as the complexity of the
model increases. BNNs are instead able to classify almost all
the classes even in the smallest configuration.

A.3 In-NIC Feature Extraction
As mentioned in the Section 6 of the paper, we implement two
different features extraction strategies in both the Netronome
NIC and NetFPGA. We give more details about these imple-
mentations in this subsection.

In both cases, we leverage the modern NIC’s ability to
host a large number of flow entries (several 10ks) in memory.
For instance, both the Netronome and the NetFPGA are also
equipped with relatively large DRAMs that can be leveraged
to host very large flow tables.

A.3.1 Feature Extraction without connection tracking

The simpler feature extraction strategy keeps a hashtable with
the active flows, and performs the following operations, on
packet reception: (i) packet parsing to extract the needed

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 529

0 1 2 3 4 5 6 7 8 9
Predicted label

0

1

2

3

4

5

6

7

8

9

Tr
ue

 la
be

l

0.00 0.01 0.15 0.10 0.02 0.00 0.34 0.12 0.13 0.13

0.00 0.98 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.03 0.95 0.00 0.00 0.00 0.00 0.01 0.00 0.00

0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.90 0.00 0.00 0.06 0.00 0.04

0.00 0.00 0.00 0.89 0.00 0.00 0.00 0.00 0.11 0.00

0.00 0.00 0.02 0.00 0.00 0.00 0.83 0.15 0.00 0.00

0.00 0.00 0.03 0.00 0.00 0.00 0.02 0.78 0.18 0.00

0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.90 0.08

0.00 0.00 0.01 0.03 0.00 0.00 0.00 0.00 0.00 0.96

0.0

0.2

0.4

0.6

0.8

DT3

0 1 2 3 4 5 6 7 8 9
Predicted label

0

1

2

3

4

5

6

7

8

9

Tr
ue

 la
be

l

0.87 0.00 0.01 0.00 0.00 0.01 0.02 0.05 0.01 0.02

0.02 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.02 0.00 0.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.95 0.00 0.00 0.04 0.00 0.00

0.01 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00

0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00

0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00

0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98 0.00

0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99

0.0

0.2

0.4

0.6

0.8

DT6

0 1 2 3 4 5 6 7 8 9
Predicted label

0

1

2

3

4

5

6

7

8

9

Tr
ue

 la
be

l

0.97 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.00

0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.01 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

0.0

0.2

0.4

0.6

0.8

1.0

DT9

0 1 2 3 4 5 6 7 8 9
Predicted label

0

1

2

3

4

5

6

7

8

9

Tr
ue

 la
be

l

0.06 0.10 0.12 0.09 0.04 0.11 0.06 0.05 0.22 0.15

0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.04 0.89 0.00 0.00 0.00 0.00 0.03 0.04 0.00

0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.03 0.00 0.91 0.00 0.00 0.02 0.00 0.04

0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

0.00 0.00 0.11 0.00 0.02 0.00 0.78 0.03 0.00 0.05

0.00 0.00 0.00 0.00 0.17 0.17 0.00 0.64 0.01 0.01

0.00 0.00 0.00 0.01 0.00 0.00 0.05 0.00 0.92 0.02

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.99

0.0

0.2

0.4

0.6

0.8

RF3

0 1 2 3 4 5 6 7 8 9
Predicted label

0

1

2

3

4

5

6

7

8

9

Tr
ue

 la
be

l

0.87 0.00 0.03 0.00 0.00 0.00 0.05 0.03 0.00 0.02

0.02 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.03 0.00 0.96 0.00 0.00 0.00 0.00 0.01 0.00 0.00

0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.93 0.00 0.00 0.03 0.00 0.04

0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00

0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.98 0.00 0.00

0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.97 0.02

0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99

0.0

0.2

0.4

0.6

0.8

RF6

0 1 2 3 4 5 6 7 8 9
Predicted label

0

1

2

3

4

5

6

7

8

9

Tr
ue

 la
be

l

0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00

0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.01 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00

0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00

0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

0.0

0.2

0.4

0.6

0.8

RF9

0 1 2 3 4 5 6 7 8 9
Predicted label

0

1

2

3

4

5

6

7

8

9

Tr
ue

 la
be

l

0.77 0.04 0.05 0.02 0.02 0.02 0.05 0.03 0.01 0.01

0.04 0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.06 0.01 0.91 0.00 0.00 0.00 0.01 0.00 0.00 0.00

0.02 0.00 0.00 0.98 0.00 0.00 0.00 0.00 0.00 0.00

0.02 0.00 0.01 0.00 0.93 0.00 0.01 0.01 0.00 0.02

0.02 0.00 0.00 0.00 0.00 0.98 0.00 0.00 0.00 0.00

0.02 0.00 0.01 0.00 0.00 0.00 0.96 0.01 0.00 0.00

0.08 0.00 0.01 0.01 0.00 0.00 0.01 0.89 0.00 0.00

0.02 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.95 0.00

0.03 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.95

0.0

0.2

0.4

0.6

0.8

BNN 32x16x10

0 1 2 3 4 5 6 7 8 9
Predicted label

0

1

2

3

4

5

6

7

8

9

Tr
ue

 la
be

l

0.82 0.04 0.03 0.01 0.03 0.02 0.02 0.03 0.01 0.01

0.01 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.02 0.00 0.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.01 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00

0.02 0.00 0.00 0.00 0.95 0.00 0.01 0.00 0.00 0.02

0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

0.02 0.00 0.00 0.00 0.01 0.00 0.96 0.00 0.00 0.01

0.02 0.00 0.00 0.00 0.01 0.00 0.00 0.95 0.00 0.00

0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.97 0.00

0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98

0.0

0.2

0.4

0.6

0.8

BNN 64x32x10

0 1 2 3 4 5 6 7 8 9
Predicted label

0

1

2

3

4

5

6

7

8

9

Tr
ue

 la
be

l

0.89 0.02 0.01 0.00 0.01 0.01 0.02 0.02 0.01 0.01

0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.01 0.01 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

0.01 0.00 0.00 0.00 0.95 0.00 0.00 0.00 0.00 0.03

0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

0.01 0.00 0.00 0.00 0.00 0.00 0.98 0.00 0.00 0.00

0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.98 0.00 0.00

0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.00

0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99

0.0

0.2

0.4

0.6

0.8

BNN 128x64x10

Figure 19: Confusion Matrices for the IoT use case

information, including the 5-tuple used as lookup key; (ii)
lookup in the hashtable to retrieve the corresponding flow
counters; (iii) update of the values to account for the new
packet reception.

To keep the implementation as simple as possible, we do
not perform any TCP connection tracking for TCP flows. To

measure the flow features that we need for traffic analysis,
in fact, in this simpler implementation it is enough to track
the initial TCP handshake (e.g., to extract SYN-ACK RTTs).
To measure flow duration, instead, we store the timestamp of
the first packet of a flow (recognized by the absence of a flow
entry in the flow hashtable) and check the timestamp of the

530 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 1
Predicted label

0

1

Tr
ue

 la
be

l 0.69 0.31

0.02 0.98

0.2

0.4

0.6

0.8

DT3

0 1
Predicted label

0

1

Tr
ue

 la
be

l 0.94 0.06

0.12 0.88

0.2

0.4

0.6

0.8

DT6

0 1
Predicted label

0

1

Tr
ue

 la
be

l 0.91 0.09

0.06 0.94

0.2

0.4

0.6

0.8

DT9

0 1
Predicted label

0

1

Tr
ue

 la
be

l 0.64 0.36

0.00 1.00

0.2

0.4

0.6

0.8

RF3

0 1
Predicted label

0

1

Tr
ue

 la
be

l 0.79 0.21

0.03 0.97

0.2

0.4

0.6

0.8

RF6

0 1
Predicted label

0

1

Tr
ue

 la
be

l 0.83 0.17

0.03 0.97

0.2

0.4

0.6

0.8

RF9

0 1
Predicted label

0

1

Tr
ue

 la
be

l 0.84 0.16

0.05 0.95

0.2

0.4

0.6

0.8

BNN 32x16x2

0 1
Predicted label

0

1

Tr
ue

 la
be

l 0.84 0.16

0.04 0.96

0.2

0.4

0.6

0.8

BNN 64x32x2

0 1
Predicted label

0

1

Tr
ue

 la
be

l 0.87 0.13

0.05 0.95

0.2

0.4

0.6

0.8

BNN 128x64x2

Figure 20: Confusion Matrices for the Security Anomaly Detection use case

last received flow’s packet.
Flow entries are removed from the hashtable if no packets

match them for a given amount of time. This is implemented
as a lightweight task that can be performed lazily. For in-
stance, when a new packet is received, if there is already
an entry for the corresponding flow, but current time -

last packet timestamp > timeout value, then the ex-
isting entry is discarded and the flow is considered as a new
flow, and the received packet as the first packet of this flow.
The timeout value should be configured depending on the
deployment environment, taking into account the properties
of the monitored traffic. For instance, in telecom operators

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 531

Figure 21: TCP Connection Tracking state machine, reported from [36]

networks that deploy Carrier-grade NATs, the timeout value
can be set strictly smaller than the CG-NAT (address,port)
re-use timeout, to avoid potential flow entries collision issues.

For the NFP, we implemented this functionality as part of
our micro-C programs. For FPGA NICs, this is a feature usu-
ally provided by the device vendor, i.e., collecting a small
set of flow statistics is usually a built-in function of the pro-
vided FPGA firmware. For our NetFPGA implementation, we
implemented this basic feature ourselves, using Verilog.

A.3.2 Feature Extraction with connection tracking

The simpler implementation presented earlier is not safe in
presence of misbehaving packets. For instance, an attacker
may forge packets to impact the measured flow’s features.
This is possible, since the flow counters are only retrieved
using the packet’s 5-tuple, which in a general case may be
e.g., forged. To avoid this class of issues, for TCP flows it is
possible to perform TCP Connection Tracking. Connection
tracking verifies that the flow’s behavior is consistent with the
TCP’s state machine, and it includes fine granular per-packet
checks, e.g., reading sequence and ack numbers.

We implement TCP connection tracking using the imple-
mentation presented in FlowBlaze [36], and the state machine
is reported in Figure 21. Here, it should be noted that the
state machine is in fact a sequential composition of two state
machines. This is a by-product of using the FlowBlaze ab-
straction, which implements state machines in a sequence of
stages that resemble a match-action pipeline similar to that of
devices supporting the P4 language.

The two state machines are always executed in sequence,
for each packet of an established connection. However, it is
possible to identify different responsibilities of each of the

two state machines. The first one tracks connection estab-
lishment, and computes the allowed sequence numbers (e.g.,
computing Rwin and Lwin). These values are forwarded to
the second state machine that performs the actual checks, and
which also implements the transitions to check the connection
termination.

We implemented this connection tracking solution both in
the NetFPGA and in the Netronome NIC. For the NetFPGA,
we add two FlowBlaze stages in front of the N3IC design.
These two stages are used to then to implement the state
machine of Figure 21. For the Netronome, we implement the
state machine of Figure 21 using micro-C, and extending the
N3IC’s Netronome firmware.

532 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Performance Memory
Accuracy Precision Recall FNR FPR F1-score ROC-AUC TCAM SRAM

DT(3) 73.1 ± 0.1 61.0 ± 0.0 73.1 ± 0.1 26.9 ± 0.1 3.0 ± 0.0 65.8 ± 0.1 85.1 ± 0.0 119 B 40.2 kB
DT(6) 97.0 ± 0.1 97.0 ± 0.0 97.0 ± 0.1 3.0 ± 0.1 0.3 ± 0.0 97.0 ± 0.1 98.3 ± 0.0 1.3 kB 161.9 kB
DT(9) 99.4 ± 0.0 99.4 ± 0.0 99.4 ± 0.0 0.6 ± 0.0 0.1 ± 0.0 99.4 ± 0.0 99.7 ± 0.0 7.2 kB 170.2 kB

RF(3,5) 81.5 ± 0.3 83.4 ± 0.2 81.5 ± 0.3 18.5 ± 0.3 2.1 ± 0.0 77.5 ± 0.6 89.7 ± 0.2 595 B 200.8 kB
RF(6,5) 96.9 ± 0.2 97.0 ± 0.1 96.9 ± 0.2 3.1 ± 0.2 0.3 ± 0.0 96.9 ± 0.2 98.3 ± 0.1 6.4 kB 809.3 kB
RF(9,5) 99.4 ± 0.1 99.4 ± 0.1 99.4 ± 0.1 0.6 ± 0.1 0.1 ± 0.0 99.4 ± 0.1 99.7 ± 0.0 35.9 kB 851.0 kB

BNN [32,16,10] 92.4 ± 0.2 92.4 ± 0.3 92.4 ± 0.2 7.6 ± 0.2 0.8 ± 0.0 92.4 ± 0.2 95.8 ± 0.1 - 1.2 kB
BNN [64,32,10] 96.0 ± 0.1 96.0 ± 0.1 96.0 ± 0.1 4.0 ± 0.1 0.4 ± 0.0 96.0 ± 0.1 97.8 ± 0.1 - 2.5 kB

BNN [128,64,10] 97.4 ± 0.2 97.5 ± 0.2 97.4 ± 0.2 2.6 ± 0.2 0.3 ± 0.0 97.4 ± 0.2 98.6 ± 0.1 - 5.5 kB
Table 5: IoT dataset

Performance Memory
Accuracy Precision Recall FNR FPR F1-score ROC-AUC TCAM SRAM

DT(3) 88.0 ± 0.2 85.3 ± 0.2 98.2 ± 0.0 1.8 ± 0.0 30.1 ± 0.4 86.0 ± 0.2 84.1 ± 0.2 102 B 173.3 kB
DT(6) 90.3 ± 0.1 96.3 ± 0.1 88.2 ± 0.2 11.8 ± 0.2 5.9 ± 0.1 89.8 ± 0.1 91.1 ± 0.1 677 B 18.9 MB
DT(9) 92.5 ± 0.2 95.0 ± 0.1 93.2 ± 0.2 6.8 ± 0.2 8.7 ± 0.3 91.9 ± 0.2 92.2 ± 0.2 3.4 kB 19.9 MB

RF(3,5) 87.3 ± 0.2 83.4 ± 0.3 99.9 ± 0.0 0.1 ± 0.0 35.2 ± 0.6 84.8 ± 0.3 82.4 ± 0.3 512 B 866.4 kB
RF(6,5) 90.5 ± 0.5 88.6 ± 1.3 97.7 ± 0.9 2.3 ± 0.9 22.2 ± 2.9 89.2 ± 0.7 87.7 ± 1.0 3.4 kB 94.7 MB
RF(9,5) 92.3 ± 0.3 92.7 ± 1.3 95.5 ± 1.1 4.5 ± 1.1 13.3 ± 2.7 91.6 ± 0.4 91.1 ± 0.8 16.9 kB 99.3 MB

BNN [32,16,2] 91.1 ± 0.1 91.4 ± 0.6 95.1 ± 0.6 4.9 ± 0.6 15.9 ± 1.2 90.2 ± 0.2 89.6 ± 0.4 - 1.2 kB
BNN [64,32,2] 91.6 ± 0.1 92.4 ± 0.6 94.7 ± 0.6 5.3 ± 0.6 13.8 ± 1.2 90.8 ± 0.1 90.4 ± 0.3 - 2.5 kB

BNN [128,64,2] 92.0 ± 0.1 92.8 ± 0.4 94.8 ± 0.4 5.2 ± 0.4 13.0 ± 0.8 91.2 ± 0.1 90.9 ± 0.2 - 5.4 kB
Table 6: Security dataset

Performance Memory
Accuracy Precision Recall FNR FPR F1-score ROC-AUC TCAM SRAM

DT(3) 88.0 ± 0.2 85.3 ± 0.2 98.2 ± 0.0 1.8 ± 0.0 30.1 ± 0.4 86.0 ± 0.2 84.1 ± 0.2 102 B 173.3 kB
DT(6) 89.9 ± 0.5 87.6 ± 1.4 98.2 ± 1.2 1.8 ± 1.2 24.7 ± 3.5 88.5 ± 0.7 86.8 ± 1.1 677 B 18.9 MB
DT(9) 91.2 ± 0.1 90.6 ± 0.5 96.2 ± 0.8 3.8 ± 0.8 17.7 ± 1.1 90.2 ± 0.1 89.2 ± 0.2 3.4 kB 19.9 MB

RF(3,5) 87.3 ± 0.2 83.4 ± 0.2 100.0 ± 0.0 0.0 ± 0.0 35.2 ± 0.6 84.8 ± 0.3 82.4 ± 0.3 512 B 866.4 kB
RF(6,5) 89.6 ± 0.4 86.7 ± 0.8 98.9 ± 0.8 1.1 ± 0.8 26.9 ± 2.2 88.0 ± 0.5 86.0 ± 0.7 3.4 kB 94.7 MB
RF(9,5) 91.4 ± 0.3 90.3 ± 0.7 97.0 ± 0.6 3.0 ± 0.6 18.5 ± 1.5 90.4 ± 0.4 89.3 ± 0.5 16.9 kB 99.3 MB

BNN [32,16,2] 91.1 ± 0.2 91.3 ± 0.6 95.1 ± 0.7 4.9 ± 0.7 16.1 ± 1.3 90.1 ± 0.2 89.5 ± 0.3 - 1.2 kB
BNN [64,32,2] 91.6 ± 0.1 92.7 ± 0.2 94.4 ± 0.3 5.6 ± 0.3 13.3 ± 0.5 90.9 ± 0.1 90.6 ± 0.1 - 2.5 kB

BNN [128,64,2] 92.0 ± 0.2 93.0 ± 0.5 94.6 ± 0.4 5.4 ± 0.4 12.6 ± 0.9 91.3 ± 0.2 91.0 ± 0.3 - 5.4 kB
Table 7: Security dataset when not including the three host features

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 533

Elixir: A High-performance and Low-cost Approach to Managing
Hardware/Software Hybrid Flow Tables Considering Flow Burstiness

Yanshu Wang?, Dan Li?, Yuanwei Lu†, Jianping Wu?, Hua Shao?, Yutian Wang?
?Tsinghua University, †Tencent

Abstract
Hardware/software hybrid flow table is common in mod-

ern commodity network devices, such as NFV servers, smart
NICs and SDN/OVS switches. The overall forwarding perfor-
mance of the network device and the required CPU resources
are considerably affected by the method of how to split the
flow table between hardware and software. Previous works
usually leverage the traffic skewness for flow table splitting,
e.g. offloading top 10% largest flows to the hardware can save
up to ∼90% CPU resources. However, the widely-existing
bursty flows bring more challenges to flow table splitting. In
particular, we need to identify the proper flows and proper
timing to exchange the flows between hardware and software
by considering flow burstiness, so as to maximize the overall
performance with low overhead.

In this paper we present Elixir, a high-performance and
low-cost approach to managing hardware/software hybrid
flow tables on commodity devices. The core idea of Elixir
includes three parts, namely, combining sampling-based and
counter-based mechanisms for flow rate measurement, sep-
arating the replacement of large flows and bursty flows, as
well as decoupling the flow rate identification window and
the flow replacement window. We have implemented Elixir
prototypes on both Mellanox ConnectX-5 NIC and Barefoot
Wedge100BF-32X/65X P4 Switch, with a software library
on top of DPDK. Our experiments based on real-world data
traces demonstrate that, compared with the state-of-the-art so-
lutions, Elixir can save up to ∼50% software CPU resources
while keeping the tail forwarding latency ∼97.6% lower.

1 Introduction
With more and more packet header fields taken as the input
for forwarding rules, the size of flow table in modern network
devices grows rapidly [3, 4, 59, 64, 71]. Although hardware
has fast forwarding speed, the hardware on-chip memory
(typically containing <6M flows [13, 49, 50]) usually can-
not serve all the concurrent flows (typically with an order of
O(10M) [31]). On the contrary, the software has large memory

and limited forwarding capacity. As a result, many commod-
ity network devices, such as NFV servers, smart NICs and
SDN/OVS switches, take a hardware/software hybrid way to
manage the large flow table [4, 15, 16, 61]. By using this kind
of hybrid flow table, the typical packet forwarding process
is as follows. Upon receiving traffic, the hardware extracts
certain fields from the received packet’s header. If an entry
in the hardware flow table is hit, the action associated with
the entry is executed on the packet; otherwise, the packet is
forwarded to CPU to match the software flow table.

In this scenario, it is important to figure out how to split
the flow table between hardware and software. The split-
ting method not only affects the forwarding performance,
but also determines the CPU resources reserved for software
forwarding, which is of particular importance for cloud en-
vironment. Previous works usually leverage the traffic skew-
ness for flow splitting [5, 15, 18, 53, 55, 61, 73], e.g. offload-
ing top 10% largest flows to the hardware can save up to
∼90% CPU resources. However, the wide existence of bursty
flows [19, 25, 33, 48, 52] brings more challenges to be ad-
dressed to flow table splitting, for maximizing the overall
forwarding performance with low overhead.

First, how to accurately measure all the flow rates with low
overhead on commodity devices?

The dynamic flow replacement between hardware and soft-
ware requires a timely and accurate identification of all the
flow rates including bursty ones. As the hardware flows by-
pass the software, the measurement cannot be done solely
by software. Commodity hardware devices, such as Mel-
lanox NICs and P4 Switches, support both putting a hardware
counter to every flow and sampling the hardware traffic to
software. The cost of using hardware counters for flow rate
measurement is very high (more discussion in Section 2). If
sampling a portion of the hardware traffic to software for
measurement, a too large sampling rate wastes many CPU
resources while a too small sampling rate might miss bursty
flows, which can result in packet loss. Given a certain sam-
pling rate, we should also set a proper window size for accu-
rate flow rate identification. Therefore, we need a method to

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 535

accurately measure all the flow rates with low overhead on
commodity devices, so as to identify the appropriate set of
flows for replacement.

Second, how to set the proper timing for flow replacement
between hardware and software?

Due to traffic dynamics, some flow table entries in hardware
and software should be exchanged over time. Conventional ap-
proaches make periodic replacement, i.e. if a software flow’s
rate becomes larger than a hardware flow’s rate within a time
window, the two flows are exchanged with each other. How-
ever, in practice we find it difficult to set the proper window
size for periodic replacement. In order to timely offload soft-
ware flows whose rates turn large, the window should be as
small as possible. However, the small window will lead to
frequent flow table replacement. In the high-speed packet
forwarding scenario, too frequent flow table replacement will
cause considerable performance degradation, in both hard-
ware and software. On the other side, if we set a large replace-
ment window to mitigate forwarding performance degrada-
tion, bursty flows with lower average rate than stable flows
might be kept in software. To prevent packet loss of these
bursty flows, we have to provision much more CPU resources
for the peak rate, which is usually several orders of magnitude
higher than the average rate. It is a considerable waste of CPU
resources. Therefore, we have to solve this dilemma of setting
the proper flow replacement window between hardware and
software.

In this paper, we propose Elixir, a high-performance and
low-cost approach to managing hardware/software hybrid
flow tables on commodity devices, by taking flow burstiness
into account. Elixir deals with the aforementioned challenges
as follows.

First, Elixir combines both sampling-based and counter-
based mechanisms for the rate measurement of large flows
and bursty flows, respectively. For large flows, packets are
sampled from hardware to software with a low sampling
rate, so as to reduce the processing overhead on CPU. For
bursty flows that are easy to be missed by low-rate sampling,
hardware counters are put to each flow, since the number
of concurrent bursty flows is not quite large (based on our
observation from real traces). By this method, Elixir leverages
the benefit of both hardware and software solutions to get the
balance between measurement accuracy and measurement
overhead.

Second, Elixir separates the replacement processes of large
flows and bursty flows. For large flows, due to their stable
rate changing pattern over time, Elixir periodically exchanges
large flows between hardware and software. A relatively large
replacement window is used to offload large flows with the
highest average rates during this window, so as to avoid the
throughput degradation caused by too frequent replacement.
Meanwhile, for bursty flows, as they appear in the system
at irregular basis, Elixir leverages an event-driven process
to offload them to hardware, i.e. bursty flows are offloaded

immediately when they are detected. By observing that the
size of software queue increases dramatically when a bursty
flow comes, Elixir uses it as a signal to trigger the bursty
flow offloading process. In this way, Elixir makes the tradeoff
between burst-aware offloading and forwarding performance
degradation caused by frequent replacement.

Third, Elixir decouples the flow rate identification window
and the flow replacement window. Previous works [6, 21, 66]
make no distinction between the two windows. In principle,
the flow rate identification window is determined by traf-
fic characteristics while the flow replacement window is de-
termined by hardware/software system limitations. Conse-
quently, using one size for the two windows may either sac-
rifice the flow rate identification accuracy, or lead to lagged
flow replacement. Elixir explicitly decouples the two and
independently decides the proper sizes for them. For large
flows, the flow replacement window is set to the minimum
replacement decision interval which brings affordable impact
on the forwarding performance; while the flow rate identi-
fication window is set to the minimum window which can
accurately identify flow rates, since the sampled traffic may
cause inaccurate rankings of large flow rates. For bursty flows,
the flow rate identification window is set to be small enough
to catch the flow burstiness and they are offloaded immedi-
ately once detected. By the decoupling, Elixir achieves the
tradeoff between timely flow replacement and accurate flow
identification.

We have implemented Elixir prototypes on both Mellanox
ConnectX-5 NIC and Barefoot Wedge100BF-32X/65X P4
Switch, with a software library on top of DPDK. We run ex-
periments based on the real-world traces from cloud gateways
of an Internet content provider. The results show that Elixir
can save up to ∼50% software CPU resources while keeping
the tail forwarding latency ∼97.63% lower compared with
TFO [61] and ∼97.61% lower compared with LFP [15].

2 Motivation and Challenges
In this section, we first describe the findings from traffic mea-
surement of typical cloud gateways, then we present the de-
sign challenges for a hardware/software hybrid flow table
management solution.

2.1 Traffic Measurement of Cloud Gateways
We examine three cloud gateways of an Internet content
provider. The gateways run on commodity servers using hard-
ware/software hybrid flow tables. We collect traffic traces
from all the three gateways. The data path of these gateways
manipulates packet headers and forwards them with tunnels,
e.g. GRE or VxLAN [17, 43]. For each gateway, we have col-
lected the real-time packet-level traces of a work day. In what
follows we describe our key findings from the traffic traces of
the three gateways. Due to page limits, we only present the
results for one gateway, since the traffic characteristics of the
other two are quite similar.

536 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 1: Accumulated change rate of large flows against
different flow rate identification window sizes.

Large flows constantly change over time: The rates of
flows dynamically change over time. For the traces, we set
the flow rate identification window to different sizes, i.e. from
1 second to 300 seconds. For each window size, we measure
the top 10% flows with the largest flow rates in every time
window (referred to as large flows), and count the number of
changed large flows between neighboring windows within a
10-minute period. Then we divide this number by the total
number of the flows to calculate the accumulated change rates
of large flows. Fig. 1 shows the accumulated change rates of
large flows within the 10-minute period. We find that large
flows constantly change over time. It indicates that, in order
to efficiently manage the hardware/software hybrid flow table
and offload large flows to hardware, the flow table entries
in hardware and software need to be periodically exchanged.
Moreover, given a fixed time period, a smaller flow rate identi-
fication window leads to higher accumulated changes of large
flows between neighboring windows.

Bursty flows are common: Previous works on flow table
splitting primarily consider offloading large flows, with a
focus on the average flow rates during a time period. They pay
little attention to bursty flows, of which the flow rates surge
to a high value quickly and last for a short time period before
dropping to a low rate. Bursty flows are very common in
both backbone and datacenter networks [19,25,33,48,48,52],
which may come from bursty applications (such as video
application), TCP incast, or batching operation of network
stacks [48].

Conceptually, a bursty flow can be or not be a large flow;
besides, a large flow can be either a bursty large flow during
some periods while a stable large flow during other periods.
In order to study the impact of bursty flows, we measure the
rate changing pattern for each individual flow in the cloud
gateway trace.

The results show that bursty flows are also quite common
in the trace. We use the ratio of a flow’s peak rate (in a second)
over its average rate, named burst ratio, to describe the level of
flow burstiness. We depict the CDF of burst ratio in Fig. 2(a).
As shown in the figure, ∼80% of the flows have a >20 burst
ratio, with the maximum ratio as high as 80. By examining
the data, we find that the peak rate duration of most bursty
flows is very short, e.g. several seconds. Moreover, we make

(a) Distribution of the burst ratio
(peak/average rate).

(b) Distribution of the numbers
of concurrent bursty flows.

Figure 2: The characteristics of bursty flows in the cloud
gateway trace.

(a) Queue size and latency. (b) Packet loss rate against dif-
ferent software-forwarding CPU
cores.

Figure 3: The cost of forwarding the bursty flow and the stable
flow by software.
statistics about the distribution of the numbers of concurrent
bursty flows (using bursty flows with a >10 burst ratio in the
case), shown in Fig. 2(b). We find that, although bursty flows
are common, their bursty times are usually not overlapped. In
other words, the number of concurrent bursty flows is limited,
e.g. with the largest number as 36 in our trace.

Bursty flows require more software forwarding re-
sources: We further carry on experiments to quantitatively
compare the cost of forwarding bursty flows and stable flows
by software. We use three servers, one as the sender, one as
the receiver and the third as the software forwarder. We pur-
posely generate a stable flow and a bursty flow at the sender.
Notably, the average rate of the stable flow is 5 times higher
than that of the bursty flow. Each flow is only forwarded by
the software.

We first use one CPU core at the software forwarder. We
separately run the two flows, and record the end-to-end latency
as well as the queue size at the software forwarder. The results
are shown in Fig. 3(a). It indicates that, for the stable flow
and the stable periods of the bursty flow, the queue size is
small and the end-to-end latency is low; but at the peak rate
period of the bursty flow, the queue size and the end-to-end
latency sharply increase, by a maximum of ∼30 and ∼28
times respectively.

Then we use different numbers of CPU cores at the soft-
ware forwarder to forward the two flows and measure the
packet loss rates. As demonstrated by Fig. 3(b), although the
average rate of the bursty flow is only one fifth of the stable
flow, the software forwarding resources required by the bursty
flow are 4 times of the stable flow to avoid packet loss. Specif-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 537

ically, to prevent packet loss from occurrence, at least 4 CPU
cores are required at the software forwarder for the bursty
flow, while only 1 CPU core is needed for the stable flow. In
conclusion, since the CPU resources should be reserved for
the peak rate of a flow instead of the average rate to prevent
packet loss, in practice bursty flows occupy remarkably more
software forwarding resources than stable flows.

2.2 Design Challenges
Previous works [15, 55, 61, 73] on managing hardware/soft-
ware hybrid flow tables usually leverage the traffic skewness
for flow table splitting, i.e. offloading a small portion of the
largest flows to the hardware can save most of the CPU re-
sources. However, by considering flow burstiness, more chal-
lenges have to be addressed, so as to maximize the overall
performance with low overhead.

Challenge 1: how to accurately measure all the flow
rates with low overhead on commodity devices?

An accurate and low-cost approach to measuring all the
flow rates is critical in hybrid flow table management on
commodity devices. Note that hardware can see all the flows
but software can only see the software-forwarded flows, hence
the flow rate measurement cannot be done without the support
of hardware. Knowledgeable readers may consider building a
sketch data structure [12,23,39,41,68–70,72,74] in hardware
to measure all the flow rates. However, commodity hardware
does not support this kind of functionality yet. Besides, a
sketch for so many flows consumes too many resources in
hardware, which can be saved for storing more forwarding
rules.

Modern commodity hardware devices, such as Mellanox
NICs and P4 Switches, support both putting a hardware
counter to every flow and sampling the hardware traffic to
software (Mellanox plans to support the sampling function-
ality in the new release). Hence, one candidate solution is to
place a hardware counter for each flow and use the counters
to accurately measure each flow’s rate. However, there are
two problems for this method. First, setting a counter for each
flow occupies additional hardware resources. Based on our
measurement, hardware counters result in ∼ 20% less space
for hardware (NIC and switch) forwarding rules, which will
result in much more traffic forwarded to software and much
more CPU resources consumed consequently. Second, the
speed for software to read the counters from commodity hard-
ware devices is slow, e.g. the speed is about 20k rules per
second for Mellanox ConnectX-5 NIC. It means that several
seconds are required for the software to read all the hardware
counters, which is too slow for timely flow replacement.

The final optional solution is to sample a portion of hard-
ware traffic to software and use the software to measure all the
flow rates. However, as the peak rate duration of bursty flows
is quite short, a high sampling rate is required in order not
to miss them; otherwise, bursty flows might not be correctly
identified to offload from software to hardware, or might be

Figure 4: Miss probability of bursty flows against different
sampling rates.

(a) Identification probability of
bursty flows.

(b) Replacement frequency of
large flows.

Figure 5: Identification probability of bursty flows and re-
placement frequency of large flows against different time
window sizes.

replaced from hardware to software by mistake. As shown in
Fig. 4, in the cloud gateway trace, a 20% sampling rate will
lead to a probability of 76% to miss bursty flows. However, if
we set a high sampling rate, much more CPU resources will
be occupied. Hence, it is a dilemma how to set the proper
sampling rate if we use a sampling-based measurement ap-
proach.

As a result, we have to design an accurate and low-cost flow
measurement method, by overcoming the problems above.

Challenge 2: How to set the proper timing for flow re-
placement between hardware and software?

Conventional approaches make periodic flow replacement
between hardware and software, i.e. if a software flow’s rate
becomes larger than that of a hardware flow within a periodic
time window, the two flows are exchanged with each other.
Following this approach, as discussed above, if we set a large
time window to replace flows between hardware and software,
bursty flows might have lower average rate than stable flows
during this window and thus be kept in software. It will result
in more CPU resources reserved for software forwarding.
Based on the cloud gateway trace, we make further analysis
to measure the probability for bursty flows to rank higher than
stable flows, i.e. bursty flows being identified as large flows to
offload by previous solutions, against different identification
window sizes. As shown in Fig. 5(a), for bursty flows to
rank higher than stable flows with >60% probability, the
identification window should be as small as <2 seconds.

On the other side, if we set a small time window for flow
replacement, it usually means much more flows to exchange
between hardware and software during a fixed time period

538 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Hardware throughput against
different replacement window
sizes and numbers of initialized
rules.

(b) Software throughput against
different replacement window
sizes.

Figure 6: Forwarding speed will be degraded by frequent flow
replacement between hardware and software.
(refer to Fig. 1). In other words, a small flow replacement
window results in high replacement frequency. It is validated
by Fig. 5(b), which shows the replacement frequency against
different replacement window sizes based on the cloud gate-
way trace, e.g. a 2-second replacement window results in a
replacement frequency of 3.25k/s.

Unfortunately, high replacement frequency causes forward-
ing speed degradation, in both hardware and software. For
hardware, it cannot keep forwarding traffic at a high rate
with too frequent rule replacement, due to the lock mech-
anism used. We measure the forwarding speed under differ-
ent replacement frequencies using a commodity Mellanox
ConnectX-5 NIC. As shown in Fig. 6(a), with 50k initial hard-
ware flows updated at a replacement frequency of 3.25k/s
(2-second time window), the NIC throughput drops by 50%.
For Barefoot P4 Switches, today the vendors limit the maxi-
mum replacement frequency to 2k/s, which can merely avoid
obvious performance degradation during replacement. For
software, frequent replacement leads to cache contention and
results in many cache misses, which can also degrade the
forwarding throughput. Specifically, in our trace, the soft-
ware throughput drops by 16% at a replacement frequency of
3.25k/s, as shown in Fig. 6(b).

Therefore, if a conventional periodic replacement method
is used, we have to resolve the dilemma of how to set the
proper size of the time window for high-performance hybrid
flow table management.

3 Design
In this section, we elaborate the design of Elixir. We first
describe the design overview, and then separately present
the design details of large flow replacement and bursty flow
replacement.

3.1 Design Overview
Elixir takes the following key ideas to address the challenges
discussed in Section 2.

First, Elixir uses different methods for measuring the rates
of bursty flows and large flows. As large flows usually com-
prise of many packets, a small portion of sampled traffic can
give relatively accurate information about flow characteristics.

Motivated by that, Elixir samples hardware traffic to software
with a low sampling rate, so as for large flow identification.
Observing that the number of concurrent bursty flows is small
(refer to Fig. 2(b)), Elixir associates each bursty flow with a
hardware counter and the software polls the counters for flow
rate measurement.

As different measurement techniques are used for large
flows and bursty flows, Elixir separates the hardware flow
table into two disjoint areas, i.e. a large flow area and a bursty
flow area. Large flows and bursty flows are inserted into cor-
responding areas accordingly. It is worth noting that, if a
flow is both a large flow and a bursty flow (as discussed in
Section 2), we insert the flow’s forwarding rule to the corre-
sponding hardware area where the replacement mechanism is
firstly triggered for the flow. In principle, no matter in which
hardware area is the forwarding rule stored, the flow will be
forwarded by hardware and will not cause packet loss in soft-
ware. Hence, when the flow turns from a bursty large flow to
a stable large flow or vice versa, it is unnecessary to move the
flow to other hardware area.

By this method, Elixir leverages the benefits of both hard-
ware and software solutions to get the balance between mea-
surement accuracy and measurement overhead.

Second, Elixir separates the replacement of large flows and
bursty flows, due to their distinct characteristics. As shown in
Fig. 1, large flows constantly change over time. If not adjusted
periodically, throughput of software traffic may gradually
increase, leading to higher CPU usage. It indicates that we
need a periodic process to exchange large flows between
hardware and software, and the replacement window can be
set relatively larger, so as to bring affordable impact on the
overall forwarding performance.

In contrast, bursty flows appear in the system at irregular
basis, and cause a sharp increase of the queue size and for-
warding latency. If not offloading software-forwarded bursty
flows quickly, it may result in severe packet loss. As a result,
we need to detect the existence of bursty flows quickly and
offload them as soon as possible, which is an event-driven
procedure.

Overall, Elixir handles large flows and bursty flows sep-
arately with distinct methods, i.e. large flows are offloaded
periodically while bursty flows are offloaded immediately
once detected. In this way, Elixir makes the tradeoff between
burst-aware offloading and forwarding performance degrada-
tion caused by frequent replacement.

Third, Elixir decouples the flow rate identification window
and the flow replacement window. Flow rate identification
window (referred to as identification window for short in the
rest of this paper) is the time window to measure the flow
throughput, i.e. flows that generate the most traffic within the
window are identified as the large flows. As a result, the size
of the identification window should be determined by traffic
pattern. Differently, flow replacement window (referred to
as replacement window for short in the rest of this paper) is

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 539

Figure 7: Architecture overview of Elixir.

the time window between two adjacent hardware/software
flow replacement decisions, which has close relationship with
hardware/software system characteristics, i.e. too frequent
flow replacement causes the performance degradation of both
hardware and software. Consequently, using one size for the
two windows may either sacrifice the flow rate identification
accuracy or lead to lagged flow replacement.

Based on the observation, Elixir explicitly decouples the
identification window and the replacement window. Specif-
ically, for large flows, the replacement window is set to the
minimum replacement decision interval which brings afford-
able impact on the forwarding performance; while the iden-
tification window is set to the minimum window which can
accurately identify flow rates, since the sampled traffic may
cause inaccurate rankings of large flow rates. For bursty flows,
the identification window is set to be small enough to catch
the flow burstiness, and they are offloaded immediately once
detected.

By this decoupling, Elixir achieves the tradeoff between
timely flow replacement and accurate flow identification.

Based on the key ideas above, the architecture overview
of Elixir is shown in Figure 7. Two different policies are
separately run for large flows and bursty flows. For large flows,
periodic replacement policy is used, with sampling-based rate
identification and a relatively large replacement window; for
bursty flows, event-driven replacement policy is adopted, with
counter-based rate identification and the software queue size
as the replacement signal.

3.2 Periodic Large Flow Replacement
As aforementioned, Elixir leverages a periodic procedure to
exchange large flows between hardware and software, and the
rates of large flows are identified using sampled traffic.

Setting the sampling rate and the identification win-
dow size: When sampling the hardware traffic to software,
in order to reduce the computation and storage overhead in
software, a low sampling rate is required. To further reduce

Figure 8: Identification accuracy against different sampling
rates and identification window sizes.

Figure 9: Percentage of software traffic increase against dif-
ferent identification window sizes and replacement window
sizes.

the hardware/software communication cost, the payload of
every packet is cut and only the packet header is delivered
from hardware to software. Since we use a low sampling
rate, a flow’s ranking in the sampled traffic may be different
from its ranking in the actual traffic, which leads to inaccurate
selection of flows to replace. Generally, a higher sampling
rate or a larger identification window not only results in more
accurate flow rate rankings as it sees more packets, but also
means that more CPU and memory resources are required for
flow rate identification in software. In a practical system, the
sampling rate and the identification window size should be
set by taking multiple factors into account, including CPU
overhead, memory overhead and identification accuracy.

For the cloud gateway trace, Fig. 8 shows the rate identifica-
tion accuracy 1 against different sampling rates and identifica-
tion window sizes. Based on the results, we set the sampling
rate to 20% and the identification window size to 30 seconds,
which can achieve an identification accuracy of ∼90%.

Setting the replacement window size: As aforemen-
tioned, Elixir decouples the identification window and the
replacement window. When setting the replacement window
size for large flows, if using a large window, some software
flows which turn large cannot be timely offloaded, and the
software-forwarded traffic may increase during the window,
which causes more CPU resource consumption. If setting
a small window, as shown in Fig. 6(a) and Fig. 6(b), the
high replacement frequency may cause considerable forward-
ing performance degradation in both hardware and software.

1The rate identification accuracy is defined as the ratio of the number of
top 10% largest flows that are correctly identified by our method over the
total number of top 10% largest flows.

540 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 10: Data structures used in large flow identification
and replacement algorithm.
Therefore, when setting the replacement window size, there
should be a tradeoff between timely offloading and forward-
ing performance degradation caused by frequent replacement.

Ideally, if we can replace large flows as quickly as pos-
sible, i.e. immediately offloading a software flow when its
rate becomes larger than a hardware flow, we can get the
smallest software traffic. In practice, a large replacement win-
dow will cause lagged offloading and thus the actual software
traffic will be larger than the smallest one. We measure the
percentage of traffic increase in software against different
identification window sizes and replacement window sizes, as
shown in Fig. 9. It is worth noting that, under different iden-
tification window sizes, the same replacement window may
also lead to different software traffic. For the identification
window size of 30 seconds we choose for the cloud gateway
trace, the additional software traffic is negligible when the
replacement window is smaller than 10 seconds.

From Fig. 6, we find that when the replacement window is
smaller than 10 seconds, the hardware and software forward-
ing speeds will degrade significantly. To make the tradeoff
between the two factors, we can set the replacement window
size to 10 seconds for the cloud gateway trace.

Identification and replacement algorithm for large
flows: Based on the window setting rules discussed above, in a
practical system the replacement window can be either smaller
or larger than the identification window. In most cases when
the replacement window is smaller than the identification
window (e.g. for the cloud gateway trace), the identification
window is actually a sliding window with the replacement
window as the sliding step size. When the replacement win-
dow is larger than the identification window, which should
be rare cases, we increase the identification window to the
replacement window, since more information about the traffic
results in more accurate flow rate rankings.

As shown in Fig. 10, we employ sketch and min-heap data
structures to estimate the sizes of flows2 received in an iden-
tification window. Assuming L is the identification window
size and T is the replacement window size, there is N = d L

T e.
Elixir uses N two-dimensional arrays to record a flow’s re-

2The flow rate is obtained via dividing the flow size by the identification
window size.

ceived packets in N sub-windows respectively, with the sub-
window size set to the replacement window size T . Each
two-dimensional array consists of d groups of buckets. A
sampled packet is hashed into one of the buckets in differ-
ent groups of the same two-dimensional array in the sketch
structure, and each bucket contains a counter which will be
increased by one upon packet arrival. The flow size can be
calculated from the sums of all the corresponding counters in
each sub-window. The minimum value of the counter sums
associated with a flow is considered as the flow size. All the
flows are then fed into a min-heap data structure for sorting,
which yields the largest flows. Of course, if N = 1, which
means that the replacement window is larger than or equal
to the identification window, there is only one array in the
identification window.

Algorithm 1 The identification and replacement algorithm
for large flows.
Input: The identification window L, the replacement window T , the

flow f of the incoming packet, a set of hash functions h j(j =
1,2,3...d), an array A[.][.][.], the current replacement window t
initialized as 0, and a min-heap min_heap.

1: N ← d L
T e

2: for j=1 to d do
3: A[j][h j(f)][t]++
4: end for
5: flow_size← 0
6: for j=1 to d do
7: C = ∑t=1,2,...,N A[j][h j(f)][t]
8: if C < flow_size then
9: flow_size = C

10: end if
11: end for
12: if f ∈ min_heap then
13: min_heap[f]← flow_size
14: else if min_heap has empty buckets then
15: min_heap.insert(f , flow_size)
16: else if flow_size > min_heapmin then
17: min_heap.delete_root()
18: min_heap.insert(f , flow_size)
19: end if
20: if (time.now() − pre_time_r) ≥ T then
21: pre_time← time.now()
22: current_flows← min_heap.all_flows
23: replace_rules(previous_flows, current_flows)
24: previous_flows← current_flows
25: t← (t + 1) mod N
26: min_heap.reset()
27: A[.][.][t]← 0
28: end if

The flow replacement operation is enforced at every T time.
When flow replacement is finished, the identification window
moves over T time and forgets the counters for the oldest
replacement window (if the identification window is smaller
than or equal to the replacement window, all the counters
are reset). As there are several groups of counters, a naive

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 541

design would require a touch at each counter in each group
when resetting the counters, which will heavily decrease the
processing performance. Instead, Elixir arranges the coun-
ters of the same replacement window into an array. Thus
each time the identification window moves, only the array
which records the oldest counters needs to be reset, which is a
piece of continuous memory and can be processed fast. When
the identification window updates, the heap which keeps the
rankings of the large flows is rebuilt using the latest packet
counters. We use a bloom filter [7] to record the offloaded
hardware flows, which are compared with identified large
software flows to determine which software flows to offload
to hardware as well as which hardware flows to upload to
software.

Algorithm 1 presents the pseudo code of the identification
and replacement algorithm for large flows. Lines 1 calculates
the number of the two-dimensional arrays, lines 2–4 describe
the update process of the sketch data structure, lines 5–19
show the update process of the min-heap data structure, lines
20–24 illustrate the flow replacement process, and lines 25–28
demonstrate the update process of the identification window.

3.3 Event-Driven Bursty Flow Replacement
Elixir leverages an event-driven process to detect and offload
bursty flows, i.e. when the software queue size exceeds a
pre-defined threshold (K), one or more bursty flows in the
software need to be offloaded to the hardware. It indicates that,
if there is a bursty flow in the software but the queue size is
smaller than the threshold, Elixir does not trigger event-driven
replacement (instead, only periodic large flow replacement is
carried on), so as to reduce the potential performance degra-
dation caused by the frequent replacement. It is also worth
noting that, Elixir can never promise there is no packet loss
in the software forwarding system; instead, Elixir can only
try its best to offload bursty flows that may cause packet loss.
For an extreme example, if all the flows are bursty at the same
time, it is impossible to offload all the flows immediately to
avoid packet loss.

When triggering the bursty flow offloading process, hard-
ware counters of the flows which are maintained in the hard-
ware bursty area are polled to software. By a small identifica-
tion window to compare the hardware and software flows, the
corresponding flows are determined for replacement.

Setting the threshold of software queue size: Many mod-
ern practical software forwarding systems use high perfor-
mance packet IO frameworks like DPDK [24] for packet pro-
cessing. In these frameworks, the hardware and software com-
municate via a ring buffer and the hardware directly places
packets into the ring buffer. When the software forwarding
speed cannot catch up with the traffic receiving rate during
the traffic burst period, packets will be lost at the NIC ring
buffer and the queue size will become large. Apparently, a
sudden increase of the ring buffer queue size is a clear signal
of the existence of bursty flows.

Algorithm 2 The identification and replacement algorithm
for bursty flows.
Input: The queue size threshold K.

1: if get_queue_size() ≥ K then
2: fbursty ← get_hardware_bursty_flows()
3: cbursty ← poll_flow_counters(fbursty)
4: freplaced ← get_the_smallest_flow(fbursty, cbursty)
5: fo f f loaded ← get_offloaded_flow()
6: if (fo f f loaded .size > freplaced .size) then
7: replace_hardware_flow(freplaced , fo f f loaded)
8: end if
9: end if

One problem here is how to set the threshold K for trig-
gering bursty flow offloading. We borrow the idea used in
setting the headroom size in the PFC mechanism [1]. In PFC,
the headroom should be large enough to store the packets
received by a switch between the time when the PFC pause
message is sent and the time when the PFC pause message
takes effect. Similarly, when setting the threshold K in Elixir,
a headroom should be reserved to store the packets received
by the NIC between the time when bursty flow offloading
is triggered and the time when the flows responsible for the
burst are successfully offloaded. Following this principle, the
threshold K is set to K = queue_capacity −(tidenti f ication +
to f f loading) × NIC_speed, where tidenti f ication is the time re-
quired for identifying the bursty flows and to f f loading is the
time taken for completing the offloading process. With this
queue-based detection mechanism, Elixir can detect bursty
flows in a fast way while avoiding packet loss during offload-
ing.

Setting the identification window size: When the queue
size indicates the occurrence of bursty traffic, Elixir should
identify the exact flow that causes the bursty traffic and re-
place it with a hardware flow that is no longer bursting. To
achieve the purpose, Elixir not only associates each offloaded
bursty flow with a hardware counter in the bursty flow area
of the hardware as aforementioned, but also uses a counter to
measure the accurate rate of each software-forwarded flow. In
order to catch the flow burstiness, the identification windows
of both software counters and hardware counters are small, i.e.
they are reset every small time window. For the cloud gateway
trace, we set the identification window for the counters to 1
second. As shown in Fig. 5(a), an identification window of 1
second can make bursty flows rank higher than stable flows
with >60% probability.

It also indicates that, the additional cost of software coun-
ters is not high, since the total traffic volume forwarded by
software is much smaller than that forwarded by hardware,
and the software only needs to maintain a identification win-
dow of 1 second.

Identification and replacement algorithm for bursty
flows: When traffic burst is detected in software, Elixir imme-
diately polls the hardware counters to software. The process

542 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

is fast since the number of hardware counters in the bursty
flow area is small. All the hardware counters and the software
counters are sorted together to find the flows with the highest
flow rates. A software flow will be offloaded if its rate is larger
than that of a flow in the bursty flow area of hardware.

Algorithm 2 presents the pseudo code of identification
and replacement algorithm for bursty flows in Elixir. Line 1
shows the queue-based bursty detection, lines 2–3 describe
the process of polling the counters from the bursty flow area in
hardware, and lines 4–9 demonstrate the replacement process
of bursty flows.

It is worth noting that, the replacement processes of large
flows and bursty flows are independent. Although their hard-
ware flow tables are separated, the software flow table is
shared between the two processes. Therefore, it may happen
that both processes decide to offload a bursty and large soft-
ware flow. In this case, the faster process will complete the
offloading process, while the slower process will fail in flow
offloading. It will not impact the correctness of flow replace-
ment, and it does not matter which process finishes the flow
offloading.

4 Implementation
We have implemented two Elixir prototypes. One is imple-
mented on a server with an offloading-capable Mellanox
ConnectX-5 NIC, and the other is implemented on a server
connecting a Barefoot Wedge100BF-32X/65X P4 Switch.
The switch supports both traffic sampling and hardware coun-
ters. The NIC only supports hardware counters currently,
although Mellanox company plans to support the sampling
functionality in the new release based on our knowledge. In
our implementation, we direct the NIC traffic to a switch for
sampling.

On the software side, we develop an Elixir library on top of
DPDK (version 20.08), with∼3k lines of C codes. The library
has three primary components, namely, software queue moni-
tor, traffic analyzer and flow table manager. For offloading the
flow tables to the NIC, Elixir manages the NIC hardware flow
table with DPDK rte_flow API to support hairpin function, i.e.
a flow bypasses the software when a hardware flow table entry
is matched. For switch offloading, all the switch functions are
implemented by programming the switch pipeline with PD
API (Program Dependent API) [60].

Software queue monitor: Elixir leverages the software
queue size as an indicator to offload software bursty flows.
The queue size of the ring buffer can be calculated by polling
several NIC pointers. We use the software consumer in-
dex pointer (rq_ci) and the hardware producer index pointer
(rq_pi) to calculate the queue size as queue_capacity− (rq_ci
− rq_pi). To achieve real-time bursty flow detection, Elixir
reads the pointers upon each packet’s arrival. For this rea-
son, we implement the NIC pointer reading logic inside the
DPDK packet receiving logic. Once a bursty flow is detected,
the signal is passed to the flow table manager via a lockless

queue.
Flow table manager: The flow table manager is respon-

sible for managing the flow table entries in the hardware,i.e.
offloading the flows selected by the traffic analyzer to hard-
ware. For the NIC prototype, we leverage the rte_flow_create
and rte_flow_destroy of the DPDK rte_flow API to insert and
replace flow table entries in the NIC. For the switch prototype,
we implement an RPC service in switch ONL (Open Network
Linux) system, which modifies flow table entries via PD API
when receiving offloading instructions from the flow table
manager.

Traffic analyzer: Elixir implements the traffic analyzer
component to identify the proper flows to offload. As afore-
mentioned, the traffic analyzer identifies large flows through
the sketch and min-heap data structures. In our implementa-
tion, it takes ∼10ms to rebuild the heap after each replace-
ment operation. For the NIC prototype, we leverage DPDK
rte_flow_query to read the hardware flow counters from the
NIC. For the switch prototype, the RPC service queries the
flow counters and reports the results to the traffic analyzer.

5 Evaluation
In this section, we evaluate Elixir based on the prototypes we
have developed. We first carry on a series of micro-benchmark
experiments and then demonstrate the overall performance of
Elixir.

5.1 Experimental Setup

Testbed: We build a testbed of 3 servers, namely, a packet
sender, a packet receiver and a forwarder. The forwarder
uses either the Elixir-NIC prototype (called the Elixir-NIC
forwarder) or the Elixir-switch prototype (called the Elixir-
switch forwarder), as described in Section 4. Each of the
three servers is equipped with two 14-core Intel CPUs,
128GB RAM and 100GbE NICs. The OS of each server
is ubuntu 16.04.5 LTS. For the Elixir-NIC forwarder, the
NIC is Mellanox ConnectX-5 NIC with the firmware of
16.28.1002. For the Elixir-switch forwarder, the switch is
Barefoot Wedge100BF-32X/65X P4 Switch, with one 4-core
Intel CPU and 8GB RAM. We employ dpdk_pkg_gen ver-
sion 20.08.0 together with DPDK version 20.05 to generate,
forward and receive packets.

Comparison: We compare Elixir with three other solu-
tions, namely, Traffic-aware Flow Offloading (TFO) [61],
Large Flow Predictor (LFP) [15] and Pure Software For-
warding (PSF). TFO and LFP represent the state-of-the-art
hybrid flow table management solutions which only periodi-
cally replace large flows (without particular attention to bursty
flows). TFO employs a sliding window to identify and re-
place large flows. LFP uses a learning method to predict
and replace large flows. To keep consistency with the origi-
nal papers [15, 61], we implement TFO in the Elixir-switch
forwarder, while implement LFP in both the Elixir-switch

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 543

forwarder and the Elixir-NIC forwarder. PSF represents a
baseline solution which forwards all the traffic by software,
so it is only implemented in software.

Trace: We use the packet-level trace collected from the
cloud gateway throughout this paper. The traffic shows a
highly skewed pattern, namely, the top 10% largest flows
comprise 91% of the total traffic. Besides, the packet sizes
vary from 64 bytes to 1500 bytes. We use 10 minutes of the
traffic trace for our experiments. When replaying the traffic
trace, we control the average sending rate of the trace by
dpdk_pkt_gen, so as to match different testing scenarios.

Elixir parameters: In the performance evaluation, we set
the identification window of large flows to 30 seconds, the
identification window of bursty flows to 1 second, the replace-
ment window of large flows to 10 seconds, and the sampling
rate to 20%. For Elixir, the large flow area in the hardware is
set to contain at most 50k flows, while the bursty flow area
in the hardware is set to contain at most 100 flows. For fair
comparisons, in TFO and LFP, the hardware flow table is set
to support 50.1k flows. The queue capacity of DPDK ring
buffer is set to 64k packets. The queue threshold K is set to
28k packets for the Elixir-switch forwarder and 51k packets
for the Elixir-NIC forwarder, according to the analysis in Sec-
tion 3.3. For TFO, we use the default parameters in [61]. For
LFP, we employ the J48 implementation 3 as the learning
method and the first packet of each flow to predict the large
flows, because this setting can achieve the best performance
for LFP.

5.2 Micro-benchmarks
In the micro-benchmark experiments, we demonstrate that
Elixir can identify the bursty flows timely and replace the
identified bursty flows in a fast way. In addition, we show
the advantage of Elixir over previous burst-oblivious replace-
ment algorithms (TFO and LFP) with regard to bursty flow
replacement.

Queue-based bursty flow detection: We purposely gener-
ate flows with the same average rate (∼5 Mpps) but different
peak rates. When a flow sent from the sender begins to burst,
we inject a special signal packet into the flow. The burst de-
tection time is just the time interval between the time when
the forwarder receives the signal packet and the time when
the software queue size exceeds the threshold.

As shown in Fig. 11, the average detection time of bursty
flows for Elixir-switch forwarder is 0.5∼6.0ms, while that for
Elixir-NIC forwarder is 1.1∼11.0ms. The detection time is
generally much lower than the peak rate duration of bursty
flows, i.e. one or several seconds. The fast detection of the
bursty flows gives us enough time to select and replace the
bursty flows.

We also find out that the detection time of Elixir-switch
forwarder is larger than that of Elixir-NIC forwarder, since it

3The Java implementation of the C4.5 algorithm [56].

Figure 11: Detection time of bursty flows against different
peak rates.

Figure 12: Software traffic rate of bursty flow replacement.

takes more time for a bursty flow to exceed the larger queue
threshold in the Elixir-switch forwarder. Besides, the detec-
tion time decreases as the flow peak rate increases. This is
because it takes less time for the software queue size to exceed
the threshold when the flow rate is larger.

Bursty flow identification and replacement: Elixir iden-
tifies the flow that is responsible for the bursty traffic and
exchange it with a hardware flow which is no longer bursting.
In this experiment, we verify that the bursty flow identifica-
tion and replacement algorithm can accurately select the flow
responsible for the bursty traffic and replace it timely. We
purposely generate 30-minute traffic, with 1000 bursty flows
bursting at different times. The average rate of the traffic is
∼5 Mpps. The peak rates of the bursty flows follow a uni-
form distribution from 6 Mpps to 50 Mpps. The experimental
results show that 984 out of the 1000 bursty flows can be
successfully identified. Of the 16 bursty flows that are not
identified, 13 flows have been offloaded to the hardware and
do not cause the queue size to increase, and 3 flows are not
identified due to the measurement errors.

We also measure the time between the detection of the
bursty traffic and the replacement of the bursty flow. The re-
sults show that the Elixir-NIC forwarder requires∼0.0666 ms
and the Elixir-switch forwarder needs ∼0.184 ms to replace
the bursty flow. Hence, Elixir can provide timely bursty flow
replacement.

Software-forwarded traffic: To intuitively demonstrate
the effectiveness of Elixir in offloading bursty traffic, we
measure the rate of software-forwarded traffic under Elixir-

544 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 1: Latency, queue size and packet loss rate of different flow table management solutions.

Methods
Case 1: without packet loss Case 2: fixed sending rate

Latency (µs) Queue size (Packet) Latency (µs) Queue size (Packet) Loss rateAve Tail Ave Tail Ave Tail Ave Tail
Elixir-NIC 63.6 102.5 663.1 1121.6 63.6 102.5 663.1 1121.6 0%

Elixir-switch 78.0 137.5 863.1 1620.1 78.0 137.5 863.1 1620.1 0%
TFO 70.6 3970.5 726.2 53283.1 1396.3 5055.9 18610.8 64231.8 25.6%

LFP-NIC 46.2 3948.1 613.8 52865.9 1338.5 5003.8 17752.3 64173.2 22.9%
LFP-switch 69.8 3966.2 653.3 53197.6 1361.2 5032.1 18113.4 64214.5 24.1%

PSF 88.1 4392.6 1041.8 59488.7 4857.5 5071.1 64220.4 64285.2 81.3%

NIC forwarder, Elixir-switch forwarder, TFO forwarder, LFP-
NIC forwarder and LFP-switch forwarder respectively. As
shown in Fig. 12, Elixir can successfully keep the software-
forwarded traffic at a stable and low rate, while there are many
software traffic bursts in other methods.

5.3 Overall Performance
We evaluate the overall performance of Elixir by comparing
it with TFO, LFP and PSF on the cloud gateway trace.

CPU consumption with fixed forwarding capability: To
evaluate the resource consumption of Elixir, we set a fixed
average sending rate (56 Mpps) and measure the packet loss
rate of these solutions in software against different numbers of
CPU cores consumed. The least number of CPU cores which
can forward the traffic without packet loss is the minimum
required CPU resources of each solution. Note that in Elixir,
TFO and LFP, CPU cores are required not only for software
forwarding, but also for flow rate measurement and sorting.
For fair comparisons, we count all the required CPU cores.
Of course in PSF, all the CPU cores are used for forwarding
only.

As shown in Fig. 13, in our experiment Elixir needs only 2
cores to forward the traffic without packet loss. In contrast,
TFO and LFP need 4 forwarding cores to prevent packet loss,
while PSF needs 11 cores. It indicates that, for forwarding
the same traffic without packet loss, Elixir can save 81.8%
CPU resources compared with PSF while saving 50.0% CPU
resources compared with the state-of-the-art solutions. Al-
though in our experiment the traffic sending rate is not very
high, in operational networks, a network device, such as a
cloud gateway or a NFV device, needs to process traffic with
the speed of up to terabits per second. Dozens or even hun-
dreds of servers with multiple CPU cores need to be deployed
to support the high traffic rate. Hence in practice, Elixir can
significantly save the CPU resources, which is extremely im-
portant in cloud environment.

Forwarding capability with fixed CPU consumption:
We then measure the maximum forwarding rate of the hard-
ware/software hybrid forwarder when there is no packet loss,
by using only two CPU cores. For Elixir, TFO and LFP, the
two cores are used for both packet forwarding and flow rate
measurement; while for PSF, the two cores are both used
for packet forwarding. As shown in Table 2, the maximum
forwarding rate of Elixir (∼56 Mpps) is almost twice higher

Figure 13: Packet loss rate against different numbers of CPU
cores.

Table 2: Maximum forwarding rate of each solution by 2 CPU
cores.

Maximum forwarding rate (Mpps)
Elixir-NIC 56.2

Elixir-switch 56.1
TFO 26.4

LFP-NIC 28.3
LFP-switch 27.6

PSF 9.8

than that of TFO and LFP (∼27 Mpps). It indicates that, by
burst-aware offloading, Elixir makes much higher utilization
of the hardware forwarding capability. PSF has the lowest
maximum forwarding rate (∼9.8 Mpps), since it does not
leverage hardware offloading at all.

Latency, queue size and packet loss rate: We also com-
pare Elixir with TFO, LFP and PSF by measuring the per-
packet latency, software queue size and the packet loss rate
if using two CPU cores at the forwarder. We test two differ-
ent scenarios for these solutions. In the first case, for each
solution the sender generates the highest-speed traffic if there
is no packet loss at the forwarder. Specifically, the average
sending rates of Elixir, TFO, LFP and PSF are 56.15 Mpps,
26.40 Mpps, 28.0Mpps and 9.80 Mpps, respectively. In the
second case, a fixed sending rate of 56.15 Mpps is set for each
solution, which is the maximum traffic rate for Elixir to avoid
packet loss in the software.

Table 1 shows the results. In the first case, we find that
Elixir has larger average latency and larger average queue
size than TFO and LFP in the same hardware, since the traffic
sending rate of Elixir is more than twice that of TFO and LFP.
However, even in this case, the tail latency and tail queue size

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 545

of Elixir are orders-of-magnitude lower than that of TFO and
LFP, due to the capability to timely detect and offload bursty
flows. The gap is even amplified in the second case, where
the same traffic sending rate is applied to all these solutions.
Specifically, the tail latency of Elixir in the second case is
∼97.63% lower compared with TFO and ∼97.61% lower
compared with LFP.

6 Related Works
Hardware/software hybrid flow table management: Pre-
vious works on hardware/software hybrid flow table manage-
ment focus on two aspects, i.e. the application of the hybrid
flow table and reasonable separation of the flow table between
the hardware and software.

For the former aspect, most works focus on designing a
network application based on the hybrid flow table [2, 31, 55].
TEA [31] designs a system architecture to enable pro-
grammable switches to query large virtual tables built on
external DRAM. FlexGate [55] design a getaway to offload
most of the traffic by the principle of traffic skewness. VPN
Gateway [2] designs a getaway that can connect hundreds of
enterprises to their thousands of VMs on the cloud.

The latter aspect is closer to Elixir, i.e. managing the hybrid
flow table by splitting the flow table between the hardware and
software [15, 29, 61]. TFO [61] leverages traffic skewness to
split the flow table. CacheFlow [29] leverages traffic skewness
and handles the dependencies between rules with overlapping
patterns when splitting the flow table. LFP [15] introduces a
machine-learning based approach to predict large flows with
the first packet of each flow, and offload the predicted large
flows. Hence, previous works on flow table splitting primarily
focus on identifying and exchanging large flows between
the hardware and software. Differently, Elixir pays special
attention to bursty flows, and takes both large flows and bursty
flows into consideration, which can make better utilization of
the hardware resources compared to previous burst-oblivious
solutions.

Traffic measurement to identify large flows and bursty
flows: A line of previous works focus on traffic measurement
to identify large flows [21, 23, 36, 41, 68, 69, 72] or bursty
flows [9, 10].

For the large flow identification, they primarily adopt two
kinds of approaches, which use exponentially decay and a
sliding window separately. The works that employ a sliding
window [6, 21, 66] record the flow sizes in a time window
and update the flow sizes periodically. The works that adopt
exponentially decay [11,44,62] apply a decay function which
assigns weights to flow sizes based on their ages, and the his-
tory of the flow sizes is fading away. The flow sizes recorded
by these approaches are used to identify large flows.

The identification of bursty flows is primarily based on
a sliding window [9, 10], because exponentially decay is
too coarse-grained to measure the fine-grained queue size.
ConQuest [9] and Snappy [10] employ multiple snapshots

(sketches) to record the flow sizes in a sliding window. They
slide the window and reset the sketches periodically to mea-
sure the number of packets in the queue.

Elixir also identifies the large flows and bursty flows us-
ing an identification window with fixed size. Different from
previous works, the large flows and bursty flows should be
measured in hardware/software at the same time, which is
achieved by sampling and hardware counters. Moreover,
Elixir decouples the replacement window from the identi-
fication window due to system limitations, which is not con-
sidered by previous works.

NFV Optimization: Existing works on NFV optimization
include e.g. elastic scaling [28,57,65], NFV chaining [51,63],
management [8, 51], hardware acceleration [18, 20, 22, 26, 27,
30, 34, 35, 40, 45–47, 53–55, 67], etc.. The works on hardware
acceleration can be divided into two major directions: one
is to offload all the network functions to the hardware with
NICs [22,30,34,35,40,46,47,54], switches [26,27,45,47,67]
or GPUs [20], while the other is to only offload flow table
entries to the hardware [2, 15, 29, 31, 55, 61]. Elixir can be
applied in the latter case of hardware acceleration and make
much higher utilization of the hardware capability than the
state-of-the-art solutions.

Flow table compression and optimization: Many recent
efforts have been taken on how to improve the utilization
efficiency of flow table storage [4,16,32,37,38,42,59,64,71]
and how to improve the lookup speed of the flow table [3, 14,
16,32,37,38,42,58,71]. They focus on the optimization of the
organization of a single flow table. Differently, Elixir focuses
on the management of both hardware and software flow tables
to make better utilization of the hardware resources.

7 Conclusion
In this paper we design Elixir, a high-performance and low-
cost approach to managing hardware/software hybrid flow
tables. Compared with previous solutions which only offload
large flows to the hardware, Elixir takes both large flows and
bursty flows into consideration. Specifically, Elixir combines
both sampling-based mechanism and counter-based mecha-
nism for large flow and bursty flow rate measurement, sep-
arates the replacement processes of large flows and bursty
flows, and decouples the identification window and the re-
placement window. By these techniques, Elixir not only con-
siderably saves CPU resources required for software forward-
ing, but also achieves much lower tail forwarding latency.

Acknowledgement
We thank our shepherd Dr. Brighten Godfrey, and the anony-
mous reviewers for their constructive comments. Dan Li is the
corresponding author. This work is supported by the National
Key R&D Program of China (2019YFB1802600), Tsinghua
University-China Mobile Communications Group Co.,Ltd.
Joint Institute, and the National Natural Science Foundation
of China (U21B2022).

546 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] 802.1Qbb. 802.1Qbb - Priority-based Flow Control.
http://www.ieee802.org/1/pages/802.1bb.html, 2008.

[2] Mina Tahmasbi Arashloo, Pavel Shirshov, Rohan
Gandhi, Guohan Lu, Lihua Yuan, and Jennifer Rexford.
A scalable vpn gateway for multi-tenant cloud services.
ACM SIGCOMM Computer Communication Review,
48(1):49–55, 2018.

[3] Hirochika Asai and Yasuhiro Ohara. Poptrie: A com-
pressed trie with population count for fast and scalable
software ip routing table lookup. ACM SIGCOMM
Computer Communication Review, 45(4):57–70, 2015.

[4] Subhasis Banerjee and Kalapriya Kannan. Tag-in-tag:
Efficient flow table management in sdn switches. In
10th International Conference on Network and Service
Management (CNSM) and Workshop, pages 109–117.
IEEE, 2014.

[5] Antonin Bas. Leveraging stratum and tofino fast refresh
for software upgrades. ONF CONNECT, 2018.

[6] Ran Ben-Basat, Gil Einziger, Roy Friedman, and Yaron
Kassner. Heavy hitters in streams and sliding windows.
In IEEE INFOCOM 2016-The 35th Annual IEEE In-
ternational Conference on Computer Communications,
pages 1–9. IEEE, 2016.

[7] Burton H Bloom. Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM,
13(7):422–426, 1970.

[8] Anat Bremler-Barr, Yotam Harchol, and David Hay.
Openbox: a software-defined framework for develop-
ing, deploying, and managing network functions. In
Proceedings of the 2016 ACM SIGCOMM Conference,
pages 511–524, 2016.

[9] Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jennifer
Rexford, and Ori Rottenstreich. Catching the microburst
culprits with snappy. In Proceedings of the Afternoon
Workshop on Self-Driving Networks, pages 22–28, 2018.

[10] Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jen-
nifer Rexford, Ori Rottenstreich, Steven A Monetti, and
Tzuu-Yi Wang. Fine-grained queue measurement in the
data plane. In Proceedings of the 15th International
Conference on Emerging Networking Experiments And
Technologies, pages 15–29, 2019.

[11] Graham Cormode, Flip Korn, and Srikanta Tirthapura.
Exponentially decayed aggregates on data streams. In
2008 IEEE 24th International Conference on Data En-
gineering, pages 1379–1381. IEEE, 2008.

[12] Graham Cormode and Shan Muthukrishnan. An im-
proved data stream summary: The count-min sketch
and its applications. In latin american symposium on
theoretical informatics, pages 29–38. Springer, 2004.

[13] Intel Corporation. Explore the Power of Intel Pro-
grammable Ethernet Switch Products. https://www.
intel.com/content/www/us/en/products/network-io/
programmable-ethernet-switch.html, 2021.

[14] James Daly, Valerio Bruschi, Leonardo Linguaglossa,
Salvatore Pontarelli, Dario Rossi, Jerome Tollet, Eric
Torng, and Andrew Yourtchenko. Tuplemerge: Fast soft-
ware packet processing for online packet classification.
IEEE/ACM transactions on networking, 27(4):1417–
1431, 2019.

[15] Raphael Durner and Wolfgang Kellerer. Network func-
tion offloading through classification of elephant flows.
IEEE Transactions on Network and Service Manage-
ment, 2020.

[16] Will Eatherton, George Varghese, and Zubin Dittia. Tree
bitmap: hardware/software ip lookups with incremental
updates. ACM SIGCOMM Computer Communication
Review, 34(2):97–122, 2004.

[17] Dino Farinacci, T Li, S Hanks, D Meyer, and P Traina.
Rfc2784: Generic routing encapsulation (gre), 2000.

[18] Daniel Firestone, Andrew Putnam, Sambhrama Mund-
kur, Derek Chiou, Alireza Dabagh, Mike Andrewartha,
Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, et al. Azure accelerated networking: Smart-
nics in the public cloud. In 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
18), pages 51–66, 2018.

[19] Romain Fontugne, Patrice Abry, Kensuke Fukuda, Dar-
ryl Veitch, Kenjiro Cho, Pierre Borgnat, and Herwig
Wendt. Scaling in internet traffic: a 14 year and 3 day
longitudinal study, with multiscale analyses and random
projections. IEEE/ACM Transactions on Networking,
25(4):2152–2165, 2017.

[20] Younghwan Go, Muhammad Asim Jamshed, Young-
Gyoun Moon, Changho Hwang, and KyoungSoo Park.
Apunet: Revitalizing gpu as packet processing accelera-
tor. In 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17), pages 83–96,
2017.

[21] Xiangyang Gou, Long He, Yinda Zhang, Ke Wang, Xilai
Liu, Tong Yang, Yi Wang, and Bin Cui. Sliding sketches:
A framework using time zones for data stream process-
ing in sliding windows. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 1015–1025, 2020.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 547

[22] Sangjin Han, Keon Jang, Aurojit Panda, Shoumik Palkar,
Dongsu Han, and Sylvia Ratnasamy. Softnic: A software
nic to augment hardware. EECS Department, University
of California, Berkeley, Tech. Rep. UCB/EECS-2015-
155, 2015.

[23] Qun Huang, Xin Jin, Patrick PC Lee, Runhui Li,
Lu Tang, Yi-Chao Chen, and Gong Zhang. Sketchvisor:
Robust network measurement for software packet pro-
cessing. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, pages
113–126. ACM, 2017.

[24] DPDK Intel. Data plane development kit, 2014.

[25] Hao Jiang and Constantinos Dovrolis. Why is the inter-
net traffic bursty in short time scales? In Proceedings of
the 2005 ACM SIGMETRICS international Conference
on Measurement and Modeling of Computer Systems,
pages 241–252, 2005.

[26] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster,
Jeongkeun Lee, Robert Soulé, Changhoon Kim, and Ion
Stoica. Netchain: Scale-free sub-rtt coordination. In
15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 18), pages 35–49, 2018.

[27] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé,
Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion
Stoica. Netcache: Balancing key-value stores with fast
in-network caching. In Proceedings of the 26th Sympo-
sium on Operating Systems Principles, pages 121–136,
2017.

[28] Murad Kablan, Azzam Alsudais, Eric Keller, and Franck
Le. Stateless network functions: Breaking the tight cou-
pling of state and processing. In 14th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 17), pages 97–112, 2017.

[29] Naga Katta, Omid Alipourfard, Jennifer Rexford, and
David Walker. Cacheflow: Dependency-aware rule-
caching for software-defined networks. In Proceedings
of the Symposium on SDN Research, pages 1–12, 2016.

[30] Antoine Kaufmann, SImon Peter, Naveen Kr Sharma,
Thomas Anderson, and Arvind Krishnamurthy. High
performance packet processing with flexnic. In Proceed-
ings of the Twenty-First International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 67–81, 2016.

[31] Daehyeok Kim, Zaoxing Liu, Yibo Zhu, Changhoon
Kim, Jeongkeun Lee, Vyas Sekar, and Srinivasan Se-
shan. Tea: Enabling state-intensive network functions
on programmable switches. In Proceedings of the An-
nual conference of the ACM Special Interest Group on

Data Communication on the applications, technologies,
architectures, and protocols for computer communica-
tion, pages 90–106, 2020.

[32] Kirill Kogan, Sergey Nikolenko, Ori Rottenstreich,
William Culhane, and Patrick Eugster. Sax-pac (scalable
and expressive packet classification). In Proceedings of
the 2014 ACM conference on SIGCOMM, pages 15–26,
2014.

[33] Georgios Y Lazarou, Julie Baca, Victor S Frost, and
Joseph B Evans. Describing network traffic using the
index of variability. IEEE/ACM Transactions On Net-
working, 17(5):1672–1683, 2009.

[34] Yanfang Le, Hyunseok Chang, Sarit Mukherjee, Limin
Wang, Aditya Akella, Michael M Swift, and TV Lak-
shman. Uno: uniflying host and smart nic offload for
flexible packet processing. In Proceedings of the 2017
Symposium on Cloud Computing, pages 506–519, 2017.

[35] Bojie Li, Kun Tan, Layong Luo, Yanqing Peng, Ren-
qian Luo, Ningyi Xu, Yongqiang Xiong, Peng Cheng,
and Enhong Chen. Clicknp: Highly flexible and high
performance network processing with reconfigurable
hardware. In Proceedings of the 2016 ACM SIGCOMM
Conference, pages 1–14, 2016.

[36] Jizhou Li, Zikun Li, Yifei Xu, Shiqi Jiang, Tong Yang,
Bin Cui, Yafei Dai, and Gong Zhang. Wavingsketch: An
unbiased and generic sketch for finding top-k items in
data streams. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, pages 1574–1584, 2020.

[37] Wenjun Li, Tong Yang, Ori Rottenstreich, Xianfeng Li,
Gaogang Xie, Hui Li, Balajee Vamanan, Dagang Li, and
Huiping Lin. Tuple space assisted packet classification
with high performance on both search and update. IEEE
Journal on Selected Areas in Communications, 2020.

[38] Eric Liang, Hang Zhu, Xin Jin, and Ion Stoica. Neural
packet classification. In Proceedings of the ACM Special
Interest Group on Data Communication, pages 256–269.
2019.

[39] Lingtong Liu, Yulong Shen, Yibo Yan, Tong Yang,
Muhammad Shahzad, Bin Cui, and Gaogang Xie. Sf-
sketch: A two-stage sketch for data streams. IEEE
Transactions on Parallel and Distributed Systems,
31(10):2263–2276, 2020.

[40] Ming Liu, Simon Peter, Arvind Krishnamurthy, and
Phitchaya Mangpo Phothilimthana. E3: energy-efficient
microservices on smartnic-accelerated servers. In 2019
USENIX Annual Technical Conference (USENIX ATC
19), pages 363–378, 2019.

548 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[41] Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron Kass-
ner, Vladimir Braverman, Roy Friedman, and Vyas
Sekar. Nitrosketch: Robust and general sketch-based
monitoring in software switches. In Proceedings of the
ACM Special Interest Group on Data Communication,
pages 334–350. ACM, 2019.

[42] Zhi Liu, Xiang Wang, Baohua Yang, and Jun Li. Bitcuts:
Towards fast packet classification for order-independent
rules. In Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication, pages
339–340, 2015.

[43] Mallik Mahalingam, Dinesh G Dutt, Kenneth Duda,
Puneet Agarwal, Lawrence Kreeger, T Sridhar, Mike
Bursell, and Chris Wright. Virtual extensible local area
network (vxlan): A framework for overlaying virtualized
layer 2 networks over layer 3 networks. RFC, 7348:1–
22, 2014.

[44] Sergiy Matusevych, Alex Smola, and Amr Ahmed.
Hokusai-sketching streams in real time. arXiv preprint
arXiv:1210.4891, 2012.

[45] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun
Lee, and Minlan Yu. Silkroad: Making stateful layer-
4 load balancing fast and cheap using switching asics.
In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, pages 15–28,
2017.

[46] YoungGyoun Moon, SeungEon Lee, Muhammad Asim
Jamshed, and KyoungSoo Park. Acceltcp: Accelerating
network applications with stateful tcp offloading. In
17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 20), pages 77–92, 2020.

[47] Daniele Moro, Manuel Peuster, Holger Karl, and Anto-
nio Capone. Fop4: Function offloading prototyping in
heterogeneous and programmable network scenarios. In
2019 IEEE Conference on Network Function Virtualiza-
tion and Software Defined Networks (NFV-SDN), pages
1–6. IEEE, 2019.

[48] Xena network. White paper: Is your network prepared
for microbursts? https://www.xenanetworks.com/wp-
content/uploads/2019/11/Microburst_WP.pdf, 2009.

[49] NoviFlow. NoviSwitch: SDN Switch, Switching Made
Programmable. https://noviflow.com/noviswitch, 2021.

[50] NVIDIA. Mellanox ConnectX-5: Advanced Offload
Capabilities for the Most Demanding Applications.
https://www.nvidia.com/en-us/networking/ethernet/
connectx-5, 2021.

[51] Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang,
Aurojit Panda, Sylvia Ratnasamy, Luigi Rizzo, and Scott
Shenker. E2: a framework for nfv applications. In Pro-
ceedings of the 25th Symposium on Operating Systems
Principles, pages 121–136, 2015.

[52] Konstantina Papagiannaki, Rene Cruz, and Christophe
Diot. Network performance monitoring at small time
scales. In Proceedings of the 3rd ACM SIGCOMM
conference on Internet measurement, pages 295–300,
2003.

[53] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jack-
son, Andy Zhou, Jarno Rajahalme, Jesse Gross, Alex
Wang, Joe Stringer, Pravin Shelar, et al. The design
and implementation of open vswitch. In 12th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 15), pages 117–130, 2015.

[54] Phitchaya Mangpo Phothilimthana, Ming Liu, Antoine
Kaufmann, Simon Peter, Rastislav Bodik, and Thomas
Anderson. Floem: a programming system for nic-
accelerated network applications. In 13th USENIX Sym-
posium on Operating Systems Design and Implementa-
tion (OSDI 18), pages 663–679, 2018.

[55] Kun Qian, Sai Ma, Mao Miao, Jianyuan Lu, Tong Zhang,
Peilong Wang, Chenghao Sun, and Fengyuan Ren. Flex-
gate: High-performance heterogeneous gateway in data
centers. In Proceedings of the 3rd Asia-Pacific Work-
shop on Networking 2019, pages 36–42. ACM, 2019.

[56] J Ross Quinlan. C4. 5: programs for machine learning.
Elsevier, 2014.

[57] Shriram Rajagopalan, Dan Williams, Hani Jamjoom,
and Andrew Warfield. Split/merge: System support for
elastic execution in virtual middleboxes. In Presented
as part of the 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 13), pages
227–240, 2013.

[58] Alon Rashelbach, Ori Rottenstreich, and Mark Silber-
stein. A computational approach to packet classification.
arXiv preprint arXiv:2002.07584, 2020.

[59] Gábor Rétvári, János Tapolcai, Attila Kőrösi, András
Majdán, and Zalán Heszberger. Compressing ip for-
warding tables: Towards entropy bounds and beyond.
ACM SIGCOMM Computer Communication Review,
43(4):111–122, 2013.

[60] Yavuz Yetim Samar Abdi, Waqar Mohsin. P4
Program-Dependent Controller Interface for SDN Appli-
cations. https://p4.org/assets/p4-ws-2017-p4-program-
dependent-api-for-sdn-applications.pdf, 2017.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 549

[61] Nadi Sarrar, Steve Uhlig, Anja Feldmann, Rob Sher-
wood, and Xin Huang. Leveraging zipf’s law for traffic
offloading. ACM SIGCOMM Computer Communication
Review, 42(1):16–22, 2012.

[62] Anshumali Shrivastava, Arnd Christian Konig, and
Mikhail Bilenko. Time adaptive sketches (ada-sketches)
for summarizing data streams. In Proceedings of the
2016 International Conference on Management of Data,
pages 1417–1432, 2016.

[63] Chen Sun, Jun Bi, Zhilong Zheng, Heng Yu, and
Hongxin Hu. Nfp: Enabling network function paral-
lelism in nfv. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication,
pages 43–56, 2017.

[64] Zartash Afzal Uzmi, Markus Nebel, Ahsan Tariq, Sana
Jawad, Ruichuan Chen, Aman Shaikh, Jia Wang, and
Paul Francis. Smalta: practical and near-optimal fib
aggregation. In Proceedings of the Seventh COnference
on emerging Networking EXperiments and Technologies,
pages 1–12, 2011.

[65] Shinae Woo, Justine Sherry, Sangjin Han, Sue Moon,
Sylvia Ratnasamy, and Scott Shenker. Elastic scaling
of stateful network functions. In 15th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 18), pages 299–312, 2018.

[66] Fangjia Xing, Fan Zhang, Xuxiang Tian, Wenyao Li,
Hanhua Chen, and Hai Jin. Identifying the most recent
heavy hitters in large-scale streams using block-wise
counting. In 2017 IEEE 10th Conference on Service-
Oriented Computing and Applications (SOCA), pages
239–244. IEEE, 2017.

[67] Ji Yang, Xiaowei Yang, Zhenyu Zhou, Xin Wu,
Theophilus Benson, and Chengchen Hu. Focus: Func-
tion offloading from a controller to utilize switch power.
In 2016 IEEE Conference on Network Function Virtu-
alization and Software Defined Networks (NFV-SDN),
pages 199–205. IEEE, 2016.

[68] Tong Yang, Junzhi Gong, Haowei Zhang, Lei Zou, Lei
Shi, and Xiaoming Li. Heavyguardian: Separate and
guard hot items in data streams. In Proceedings of
the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 2584–
2593. ACM, 2018.

[69] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi
Gong, Yang Zhou, Rui Miao, Xiaoming Li, and Steve
Uhlig. Elastic sketch: Adaptive and fast network-wide
measurements. In Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communi-
cation, pages 561–575. ACM, 2018.

[70] Tong Yang, Lingtong Liu, Yibo Yan, Muhammad
Shahzad, Yulong Shen, Xiaoming Li, Bin Cui, and Gao-
gang Xie. Sf-sketch: A fast, accurate, and memory ef-
ficient data structure to store frequencies of data items.
In 2017 IEEE 33rd International Conference on Data
Engineering (ICDE), pages 103–106. IEEE, 2017.

[71] Tong Yang, Gaogang Xie, YanBiao Li, Qiaobin Fu,
Alex X Liu, Qi Li, and Laurent Mathy. Guarantee ip
lookup performance with fib explosion. In Proceed-
ings of the 2014 ACM conference on SIGCOMM, pages
39–50, 2014.

[72] Tong Yang, Haowei Zhang, Jinyang Li, Junzhi Gong,
Steve Uhlig, Shigang Chen, and Xiaoming Li. Heavy-
keeper: An accurate algorithm for finding top-k ele-
phant flows. IEEE/ACM Transactions on Networking,
27(5):1845–1858, 2019.

[73] Kok-Kiong Yap, Murtaza Motiwala, Jeremy Rahe, Steve
Padgett, Matthew Holliman, Gary Baldus, Marcus Hines,
Taeeun Kim, Ashok Narayanan, Ankur Jain, et al. Tak-
ing the edge off with espresso: Scale, reliability and
programmability for global internet peering. In Pro-
ceedings of the Conference of the ACM Special Interest
Group on Data Communication, pages 432–445. ACM,
2017.

[74] Yang Zhou, Tong Yang, Jie Jiang, Bin Cui, Minlan Yu,
Xiaoming Li, and Steve Uhlig. Cold filter: A meta-
framework for faster and more accurate stream process-
ing. In Proceedings of the 2018 International Confer-
ence on Management of Data, pages 741–756, 2018.

550 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Gearbox: A Hierarchical Packet Scheduler for Approximate Weighted Fair
Queuing

Peixuan Gao
New York University

Anthony Dalleggio
New York University

Yang Xu *

Fudan University
H. Jonathan Chao

New York University

Abstract

Bandwidth allocation and performance isolation are crucial
to achieving network virtualization and guaranteeing ser-
vice quality in data centers as well as other network sys-
tems. Weighted Fair Queuing (WFQ) can achieve cus-
tomized bandwidth allocation and flow isolation; however,
its implementation in large-scale high-speed network sys-
tems is very challenging due to the high complexity of the
scheduling and the large number of queues required.

This paper proposes Gearbox, a scheduler primitive for
next-generation programmable switches and smart NICs that
practically approximates WFQ. Gearbox consists of a logi-
cal hierarchy of queuing levels, which accommodate a wide
range of packet departure times using a relatively small
number of FIFOs. Gearbox’s enqueue and dequeue opera-
tions have O(1) time complexity, which makes it suitable to
cope with high-speed line rates. Gearbox provides its sim-
plicity and performance advantages by allowing slight dis-
crepancies in packet departure time from strict WFQ. We
show that Gearbox’s normalized departure time discrepancy
is bounded and has a negligible impact on bandwidth alloca-
tion and flow completion time (FCT).

We implement Gearbox in NS2 and in VHDL, targeted
to a Xilinx Alveo U250 card with an XCVU13P FPGA.
The NS2 evaluation results show that Gearbox closely ap-
proximates WFQ and achieves weighted max-min fairness
in bandwidth allocation as well as flow isolation. Gearbox
provides FCT performance comparable to ideal WFQ. The
Gearbox FPGA prototype runs at 350MHz and achieves full
line rate for 100GbE with packets larger than 123 bytes.
Gearbox consumes less than 1% of the FPGA’s logic re-
sources and less than 4% of its internal block memory.

1 Introduction

Bandwidth allocation and isolation are key to network vir-
tualization in data centers and the performance of network
systems (e.g., FCT, packet tail latency, and QoS guarantee).
WFQ is an ideal packet scheduling scheme that can achieve
bandwidth guaranties and performance isolation, as well as
other objectives, such as minimizing average FCT and re-
ducing tail packet latency.

*Corresponding author

However, it is very challenging to implement a WFQ
packet scheduler in large-scale high-speed network systems
(e.g., systems with millions of active flows and link capaci-
ties of hundreds of Gbps). Although several hardware sched-
ulers have been proposed in the past to sort or sequence pack-
ets based on their departure times, most of them do not scale
well with system size [8] [9] [10] [4] [17], except for a few
cutting-edge SoC chips [11] [5]. Push-in First-out (PIFO)
[27] [28] is a viable solution but it does not scale easily due
to the large number of parallel rank comparisons. More re-
cent works such as AFQ [24] and PCQ [25] are based on the
idea of calendar queues [7] [31] and have been implemented
on emerging programmable switches. However, to provide
the packet serving order of an ideal scheduler, AFQ requires
a large number of queues while PCQ suffers from additional
memory accesses due to frequent packet re-circulation and
packet migration between queues.

We observe that by allowing a slight packet departure or-
der skew in the WFQ, we have the opportunity to greatly sim-
plify its implementation. We define departure time discrep-
ancy (DTD) as the difference between the system time when
a packet is served and its departure time assigned by WFQ
and normalized DTD as DTD normalized to the expected de-
lay 1. In fact, packets with different expected delays in ideal
WFQ scheduling have different tolerances to such DTD.
Packets with longer expected delays can tolerate larger DTD
than those with shorter expected delays. By taking advan-
tage of this observation, we propose a new packet scheduler,
called Gearbox, that approximates WFQ with a bounded nor-
malized packet DTD. Gearbox adopts the idea of calendar
queues [7] [31] and places packets with different expected
delays in different logical levels of the calendar queues upon
their arrival. When implemented physically, the queues are
in fact individual FIFOs arranged into independent group-
ings. Gearbox can accommodate a very large range of depar-
ture times while using a relatively small number of FIFOs.
The simplicity of Gearbox’s approach makes it suitable for
implementation on next-gen programmable switches as well
as smart NICs which typically include FPGAs [15]. Note
that by changing the ‘departure time’ in WFQ to other pri-
ority ranks calculated by other scheduling schemes (e.g., re-

1The departure time refers to the virtual departure time in WFQ [14] [22]
[23]. The system time refers to the virtual system time in WFQ. When all
the admitted flows are active, the virtual system time runs as fast as the real
time.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 551

maining flow size in pFabric [2]), Gearbox can approximate
other scheduling schemes as a programmable scheduler. We
summarize the contributions of this paper as follows:

• Provide a close approximation of WFQ with bounded
normalized DTD for packets. Gearbox schedules pack-
ets with different expected delays using calendar queues
with different granularities. Such tiered granularity al-
lows Gearbox to closely approximate ideal WFQ with a
relatively small number of FIFOs while guaranteeing a
bounded normalized DTD.

• Offer scalability with simple implementation. Gearbox
is implemented using queues (FIFOs) from a flat array
that are arranged into logical levels. This non-hierarchical
FIFO-based physical implementation allows Gearbox to
admit a large number of packets and does not presume the
existence of queue hierarchy in next-gen programmable
switches [24] [25].

• Implement Gearbox in NS2 with extensive packet-
based evaluations. We implement Gearbox in NS2 [21]
and perform extensive packet-based evaluations. The re-
sults show that Gearbox closely approximates ideal WFQ
and achieves a good weighted max-min fairness with per-
flow isolation even in a short time scale. Our simulations
based on a fat-tree topology show that Gearbox has an
FCT performance closely matching the ideal WFQ using a
PIFO.

• Implement Gearbox in VHDL targeting an FPGA.
We implement a Gearbox VHDL prototype and target
a Xilinx Alveo U250 FPGA card with a mid-speed
grade XCVU13P FPGA. The Gearbox prototype runs at
350MHz and reaches full 100GbE line rate with packets
larger than 123 bytes2. Based on the implementation re-
port, Gearbox uses less than 1% of the target FPGA logic
resources and less than 4% of its block random access
memories (BRAM) as detailed further in Section 4.

The rest of the paper is organized as follows. Section
2 introduces the background and motivation of our work.
Section 3 presents the detailed mechanism of the Gearbox
scheduler and its extensions. Section 4 presents NS2 evalua-
tion and the Gearbox hardware prototype. We discuss related
works in Section 5 and conclude the paper in Section 6.

2 Background and Motivation

2.1 Weighted Fair Queuing
Bandwidth allocation and isolation are critical in data cen-
ters as well as other network systems [13] [18] [30] [3] [19].

2The VHDL design runs at 350 MHz in the target FPGA and performs
enqueues and dequeues every 4 clock cycles, sustaining a packet rate of 87.5
Mpkts/sec. For Ethernet with a Preamble of 8 bytes and IFG of 12 bytes, the
line bit rate for 123-byte packets is: 87.5M×(8+123+12)×8≈ 100Gb/s.

These attributes are also essential to network performance
such as max-min fairness, FCT, and tail latency [20].

WFQ [14] [22] [23] is the most effective algorithm to allo-
cate bandwidth among flows and provide per-flow isolation.
WFQ assigns a departure time to each packet and guarantees
bandwidth allocation by scheduling packets in ascending or-
der of their departure time3. For each packet scheduled by
WFQ, its expected delay is its packet size divided by its as-
signed rate provided that the flow’s traffic has been shaped.
The expected delay is equal to the difference between the as-
signed departure time and the system time when the packet
arrives.

2.2 Challenges of a WFQ Packet Scheduler

The major challenge of implementing WFQ on high-speed
switches is the limited time to process each packet. For 64-
byte packets, a scheduler for a 100GbE link has a processing
time of only 6.72 ns4. In addition, sorting packets accord-
ing to their departure time usually has a time complexity
of O(logN) [12], where N is the number of total packets or
flows and could be on the order of several thousands. Main-
taining a sorted list of packets in the limited packet process-
ing time on high-speed links is very challenging.

An ASIC-based hardware sorter called Sequencer [8] [9]
[10] inserts each arriving packet into a proper position in
a queue according to its departure time. However, the Se-
quencer is not very scalable due to its high power consump-
tion and chip area cost to support the parallel comparison
of every arriving packet’s departure time to all others’ in
the queue. The limited scalability of Sequencer precludes
it from being used in a typical shared-memory switch in a
data center [6] (e.g., with buffer size of ∼60K packets). The
pipeline heap (P-heap) [4] [17] implements a WFQ scheduler
with better scalability, but it is required for each output port,
which results in significant chip area consumption [27], mak-
ing a P-heap based WFQ scheduler on commodity switches
less practical. Recent work on Pushed-in First-out (PIFO)
[27] [28] performs parallel packet rank comparisons (similar
to above-mentioned Scheduler), which limits its applicabil-
ity in large high-speed switches.

A calendar queue, introduced by Randy Brown [7] and
used in Timer Wheels [31] and used in Approximate Fair
Queuing (AFQ) [24] and Programmable Calendar Queues
(PCQ) [25], is scalable due to its implementation simplicity
(only uses FIFOs). As a trade-off, calendar queues relax the
packet sorting order compared to an ideal WFQ scheduler.
Unlike in ideal WFQ, a calendar queue only sorts packets ap-
proximately in the ascending order of their departure times

3In a WFQ scheduler, the packet with the smallest departure time leaves
the scheduler first.

4It is possible to reduce the scheduling rate by using input queuing to
combine small packets into a single larger packet. E.g., two 64-byte packets
belonging to the same flow can be scheduled as a single 128-byte packet.

552 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

since its accuracy is limited by the granularity of the sorting
buckets. Moreover, calendar queues also suffer from calen-
dar range overflow when the available number of queues can-
not accommodate the wide range of departure times. To ad-
dress the range overflow problem, modifications to calendar
queues have been proposed to accept packets with larger de-
parture times instead of dropping them [7][25]. These mod-
ifications consist of recirculating out-of-range packets to the
end of the queues to delay them until they reach their de-
parture times. When implemented on high-speed switches,
calendar queue packet schedulers with packet recirculation
impose additional demands on memory bandwidth due to the
accesses for both incoming and recirculated packets. We dis-
cuss this further in Section 2.4.

2.3 Granularity of the Scheduler and Depar-
ture Time Discrepancy

The calendar queue scheduler trades some packet serving or-
der accuracy for simplicity and scalability. Rather than sort-
ing packets perfectly in the ascending order of their depar-
ture times, the calendar queue scheduler only sorts packets
approximately compared to ideal WFQ. This approximation
is due to the FIFO-based structure of the calendar queue [7]:
a calendar queue only sorts packets by placing them into dif-
ferent FIFOs or buckets. Each FIFO in a calendar queue can-
not differentiate the departure times of the packets in it. Here
we quantify the scheduling precision of a calendar queue
scheduler as the ‘granularity of the scheduler’.

Granularity of the scheduler: the minimal departure
time difference that a scheduler can discriminate, noted as
g.

Consider the example in Figure 1. For the scheduler in
Figure 1(a), each queue represents one virtual time unit and
the scheduler can discriminate between the departure times
with a difference of 1, which means it has a granularity g= 1.
The scheduler in Figure 1(b) applies a coarser granularity
g= 10. This scheduler can only discriminate between packet
departure times based on the tens digit of their departure
time.

With tiered granularities, calendar queue schedulers sort
packets into different approximate orders when compared
with ideal WFQ. We formally define the concept of ‘depar-
ture time discrepancy (DTD)’ to quantify the difference be-
tween the approximate serving order and that of ideal WFQ.

Departure time discrepancy (DTD): the difference be-
tween the system time when a packet leaves the scheduler
and its departure time as scheduled by WFQ. We denote the
kth packet in flow i as P(i,k) and its DTD as d(i,k).

d(i,k) =

{
D(i,k)−F(i,k) ,D(i,k) > F(i,k)
0 , otherwise

(1)

Here F(i,k) is the ideal departure time as calculated by the

Figure 1: Different granularities

WFQ scheduler for P(i,k) and D(i,k) is the actual departure
time of packet P(i,k).

DTD shows the difference of the packet serving order be-
tween a calendar queue scheduler and an ideal WFQ. It indi-
cates how well a calendar queue scheduler approximates an
ideal WFQ from a packet’s perspective. A small DTD indi-
cates that the scheduler approximates an ideal WFQ closely
and a large DTD, that a packet may experience a delay larger
than its expected delay, which further leads to increased FCT
or other consequences.

For a calendar-queue-based scheduler with a limited num-
ber of queues and fixed granularity [24] [25], different lev-
els of granularity have pros and cons. Schedulers with finer
granularity provide smaller DTDs. However, they only ac-
commodate a narrow range of departure times and are there-
fore more prone to calendar range overflow. A rotating cal-
endar scheduler consisting of M queues covers only M ∗ g
future virtual time units. Packets with departure times be-
yond this bound will be dropped due to calendar range over-
flow, as shown in Figure 1(a). With a small number of
available queues, we can consider the scheduler as having
a shallow buffer, which is easy to overflow. For services re-
quiring a certain amount of burstiness tolerance, this shal-
low buffer could lead to frequent packet drops. Further-
more, flows assigned relatively low bandwidths, which lead
to large departure times, could experience excessive packet
drops. This makes such fine-grained schedulers unsuitable
to handle large variations in weighted bandwidth allocation.
Schedulers with a coarser granularity alleviate the calendar
range overflow issue by covering a wider range of departure
times in the future. However, one obvious downside of using
a coarse granularity is larger DTDs. Consequently, packets
in the same queue may not be scheduled according to the
order of their departure times. For example, in Figure 1(b)
the green packet departs after packets with larger departure
times in the coarse-grained scheduler.

As shown in the examples in Figure 1, scheduler granular-
ity leads to a trade-off between fewer calendar range over-
flows and smaller DTDs.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 553

2.4 Normalized DTD

How do we determine an appropriate granularity for the
scheduler? One could argue that it is always better to have
a scheduler with finer granularity. But is it necessary to
achieve such a small DTD for all packets?

If we need to maintain a fine granularity while covering
a wide departure time range, the total number of queues re-
quired would become very large. This design approach con-
flicts with the goal of a simple implementation. The time
complexity of managing thousands of queues is very high
and most switches may not have the required number of
queues.

Another approach for providing fine scheduler granular-
ity while preventing calendar range overflow is packet re-
circulation. The classic calendar queue [7] and Timer Wheel
[31] place all packets into their queues. Packets scheduled
too far in the future are simply enqueued in a queue roughly
determined by the departure time modulo the total number
of queues, and recirculated before their departure times be-
come due. This will lead to additional memory bandwidth
consumption, where memory bandwidth is very often the
limiting factor in a networking equipment [32] [16]. Exces-
sive packet recirculation can use up valuable shared memory
bandwidth and lead to a significant drop in switch through-
put. A recent work, PCQ [25], implements an alternative
packet recirculation scheme. PCQ arranges calendar queues
in multiple levels with different granularities. When PCQ
finishes serving all the packets in the lower level, it recircu-
lates and deposits all packets from a head queue in the higher
level to appropriate queues in the lower level. Such a packet
recirculation scheme can still lead to throughput reduction
on high-speed switches.

Based on the above analysis, providing fine granularity
with a wide range of packet departure times is resource inten-
sive. But is it really necessary? We observe that packets have
different tolerances to DTDs depending on their expected de-
lays upon arrival as mentioned in Section 2.1. Packets with
a smaller expected delay usually expect to be served shortly
and are sensitive to small differences in the scheduling order.
For these packets, a fine-grained scheduler is necessary to
guarantee a small DTD. However, packets with larger depar-
ture times upon arrival can tolerate larger DTDs. These pack-
ets usually belong to flows with low assigned bandwidths:
WFQ assigns these packets with large departure times to
achieve bandwidth weighted max-min fairness in the long
run. For these packets, their large expected delay makes it
unnecessary to schedule them with fine granularity.

According to the above analysis, it is more appropriate to
consider a packet’s DTD based on its tolerance to it. We
therefore normalize a packet’s DTD to its expected delay.

Normalized DTD: the DTD normalized to the packet’s
expected delay, noted as dn(i,k).

Figure 2: Gearbox System-level Application

dn(i,k) =

{D(i,k)−F(i,k)
F(i,k)−A(i,k)

,D(i,k) > F(i,k)
0 , otherwise

(2)

Here A(i,k) is the system time ts when packet P(i,k) arrives at
the scheduler, F(i,k) is the ideal departure time for packet P(i,k)
determined by the WFQ scheduler, and D(i,k) is the actual
departure time of packet P(i,k).

For example, say that packet P(A,1) and packet P(B,1) ar-
rive at the scheduler when system time ts = 10. Packet P(A,1)
has an ideal departure time F(A,1) = 11 and packet P(B,1) has
an ideal departure time F(B,1) = 91. Assume the scheduler
applies a coarse granularity g = 10. Due to the coarse granu-
larity, packet P(A,1) leaves the scheduler at ts = 19 and packet
P(B,1) leaves the scheduler at ts = 99. Both of the packets
have a DTD of 8. Although the two packets have the same
DTD, they have different tolerances to it. The expected delay
of packet P(A,1) and P(B,1) is 11− 10 = 1 and 91− 10 = 81
respectively. When we evaluate their normalized DTD, we
have dn(A,1) = 8/1 = 8 and dn(B,1) = 8/81≈ 0.1. This means
packet P(A,1) is experiencing a delay that is 8 times its ex-
pected delay while packet P(B,1) has a delay only 1.1 times
its expected delay. This indicates such granularity is appro-
priate for packet P(B,1) but is too coarse for packet P(A,1). This
example shows that it is difficult to find an appropriate fixed
granularity to schedule packets with different expected de-
lays while satisfying DTD bounds.

3 Gearbox: Hierarchical Packet Scheduler

3.1 Basic Idea of Gearbox
Based on our analysis in Section 2.4, it is more appropriate
to guarantee different DTD bounds for packets with different
expected delays. In this case, we need a scheduler with flex-
ible granularity to serve different packets. Thus, the sched-
uler must guarantee a low normalized DTD while keeping
the implementation simple. We introduce Gearbox, a hierar-
chical packet scheduler that closely approximates WFQ and
is simple to implement.

Figure 2 shows a simplified system-level application of
Gearbox. Incoming packets are stored in the Packet Buffer.
The packet header is sent to the packet Parser & Classifier to
identify the flow (e.g., using 5-tuple classification) and deter-
mine the packet length. The Departure Time Calculator com-

554 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 3: Gearbox: Hierarchical FIFO-based scheduler

putes the packet’s departure time and forwards it along with
the packet descriptor (length, departure time, and enqueue
Packet Pointer from Packet Buffer) to Gearbox to enqueue
the packet. Upon request from a controller (not shown) Gear-
box dequeues stored packet descriptors according to a calen-
dar order described in detail below and forwards the descrip-
tors to the Packet Buffer that outputs the packets. We further
present the smart NIC use case and multi-pipeline use case
of Gearbox in Appendix B.

Gearbox arranges FIFO-based calendar queues into ‘log-
ical levels’ with different granularities, achieving the bene-
fits of calendar queue schedulers with different granularities
to serve packets with different expected delays. Lower log-
ical levels with finer granularity provide smaller DTD for
packets with departure times that are close to current system
time upon arrival. Higher logical levels with coarser gran-
ularity serve packets with large departure times and cover a
wider departure time range, reducing packet loss due to cal-
endar range overflow. By providing tiered scheduling gran-
ularity, Gearbox guarantees a low normalized DTD for all
packets with a relatively small number of queues. Moreover,
Gearbox eliminates packet recirculation by directly serving
packets at all levels based on our ‘Compound FIFO’ con-
cept introduced in Section 3.2. This eliminates the additional
memory accesses due to recirculation and allows Gearbox to
achieve a high packet processing rate efficiently.

Figure 3 shows an example of the Gearbox hierarchical
scheduler. Consider a scheduler with 30 available queues.
Gearbox arranges them into 3 logical levels with different
granularities, each logical level containing 10 queues. Level
1 has the finest granularity g1 = 1 , level 2 has a coarser
granularity, g2 = 10 and level 3 has the coarsest granularity,
g3 = 100. In this example, packets with a departure time
within 10 virtual time units in the future upon arrival are
enqueued in level 1 and are scheduled with the granularity
of g = 1. Packets with a departure time larger than 10 but
smaller than 100 virtual time units in the future upon arrival
are enqueued in level 2. Other packets with departure time
between 100 and 1000 virtual time units in the future upon

Table 1: TERMS AND NOTATIONS

Notation Description
P(i,k) kth packet in flow i
F(i,k) Departure time of packet P(i,k) assigned by WFQ
A(i,k) System time when packet P(i,k) arrives at the scheduler
D(i,k) System time when packet P(i,k) leaves the scheduler
d(i,k) Departure time discrepancy (DTD) of packet P(i,k)
dn(i,k) Normalized DTD of packet P(i,k)
ts Current system virtual time
L Total levels of the scheduler
Ml Total number of FIFOs at level l
gl Granularity of level l
Q(l, f) FIFO f at level l

arrival are enqueued in level 3.
Note that the ‘levels’ in Gearbox are logical concepts.

When implemented physically, they are in fact individual
queues (FIFOs) arranged into independent groupings, which
means Gearbox only requires a single level of queues in the
hardware. We’ll further discuss this in Sections 3.2 and 3.3.
As a result, Gearbox can be implemented on devices that do
not support hierarchy.

In section 3.4, we prove that Gearbox guarantees a low
normalized DTD for all packets. Our evaluation shows
that Gearbox closely approximates ideal WFQ from a user’s
point of view. Gearbox can be thought of as a clock. The
lower logical level with finer granularity is like the second
hand, serving packets in units of seconds. The higher logical
levels are like the minute hand or the hour hand, admitting
more packets with a larger departure time and serving them
with a coarser granularity. Each logical level of the sched-
uler cooperates to schedule packets with different granulari-
ties, which makes the scheduler just like a gearbox shifting
between different gears.

To better illustrate the detailed schemes in Gearbox, we
summarize the related concepts and notations in Table 1. We
further generalize the multi-level architecture of the Gearbox
scheduler. The scheduler contains L logical levels of calen-
dar queues, each one with a different granularity gl . Each
logical level of the scheduler contains Ml FIFOs and covers
a departure time range of [ts, ts +(Ml ∗gl)).

3.2 Compound FIFO

Researchers have tried to arrange the calendar queues in hi-
erarchical structures, however, their implementations are not
suitable for the ultra-high-speed switches due to packet re-
circulation and the short packet processing time.

To eliminate packet re-circulation, Gearbox applies the
concept of a ‘Compound FIFO’ to directly schedule pack-
ets in different levels efficiently. As Figure 3 shows, the
compound FIFO consists of the current serving FIFO in
each level. In the example, the compound FIFO consists of
FIFO1 at level 3, FIFO2 at level 2 and FIFO3 at level 1,

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 555

representing the current system time ts = 123. Note that all
the FIFOs in the compound FIFO cover the current system
time ts, which means that the individual FIFOs that make up
the compound FIFO possibly contain packets that need to be
served at the current system time.

Gearbox serves packets in the compound FIFO using a
factor that is inversely proportional to the granularity of the
level that each queue belongs to. Gearbox serves packets
from the lowest-level queue to the highest-level queue in the
compound FIFO. Since the lowest-level has the finest gran-
ularity, the departure time of all the packets in this queue
equals the current system time ts. Gearbox serves all the
packets in the queue in the lowest level. After draining the
packets in the lowest-level queue, Gearbox starts to serve the
queue at the next higher level. At each of the higher levels,
we serve a number of bytes (rounded up to a whole number
of packets) that is inversely proportional to the level’s gran-
ularity gl

5. Gearbox finishes serving the compound FIFO
when it finishes serving all the queues within it according to
their levels. After serving the compound FIFO, Gearbox up-
dates current system time ts to the next non-empty compound
FIFO.

As an illustration of serving packets from the different lev-
els, the FIFOs in the pink box in Figure 3 are dequeued as
follows. Gearbox first drains all the packets in FIFO3 at
level 1. After that, since level 2 has the granularity of g2 = 10
and FIFO2 at level 2 covers the time range from 120 to 129,
Gearbox serves 1/10 packets in this queue. Likewise, Gear-
box serves 1/100 of the packets in FIFO1 at level 3. After
serving the correct proportion of packets in the queue at each
level, Gearbox increases its current system time ts by 1 and
updates the compound FIFO based on the new system time
ts = 124.

The key contribution of the ‘Compound FIFO’ is freeing
the scheduler from packet recirculation. By directly serving
queues in different levels using a factor that inversely pro-
portional to their granularity, Gearbox eliminates the need
to recirculate packets. This means Gearbox’s dequeue pro-
cess is as simple as popping from a FIFO. This allows Gear-
box to easily achieve a high packet processing rates on core
switches. The trade-off is increased DTD in the higher lev-
els.

3.3 Enqueue and Dequeue Processes

Enqueue Process The Gearbox packet enqueue process is
straightforward. To enqueue a packet, Gearbox needs to de-
termine the correct level and the destination FIFO for the
arriving packet. Gearbox first finds the level to enqueue us-
ing the difference between the current system time ts and the
departure time of the packet F(i,k). The packet will enqueue

5In the VHDL implementation the granularity gl of each level is a power
of 2, to implement the inverse proportional calculation using bit shifting.

the lowest possible level that covers this interval. After find-
ing the enqueue level, Gearbox simply divides the interval
mentioned above by granularity gl at this level to find the
corresponding FIFO to enqueue.

Figure 3 shows an example of Gearbox’s enqueue process.
In the example, Gearbox has 3 levels covering the depar-
ture time range [ts, ts + 9], [ts, ts + 99], [ts, ts + 999], respec-
tively. The pink packet with a departure time of 135, arrives
at the scheduler when ts = 123. Upon the packet’s arrival,
the scheduler calculates the interval F(i,k)− ts = 12. This in-
terval falls into the virtual time range covered by level 2.
When we divide the interval 12 by the granularity g2, we
have b12/10c = 1, which indicates that this packet is en-
queued in the FIFO next to the current serving FIFO in this
level. The enqueue process is summarized in Algorithm 1.

Algorithm 1 Enqueue Process

1: function ENQUEUE PACKET(P(i,k))
2: for level l from 1 to L do
3: if d(F(i,k)− ts)/gle ≤Ml then
4: f = b(F(i,k)− ts)/glc
5: P(i,k) enqueue f th FIFO following the

current serving FIFO
6: return
7: Drop packet P(i,k)

Dequeue Process As we have introduced the compound
FIFO in Section 3.2, the dequeue process of Gearbox was
described above as serving the compound FIFO. We gen-
eralize Gearbox’s dequeue process with the pseudo-code in
Algorithm 2, where fl is the FIFO of level l in the compound
FIFO

Algorithm 2 Dequeue Process

1: function DEQUEUE PROCESS
2: for level l from 1 to L do
3: if Q(l, fl) is not empty then
4: dequeue Q(l, fl) up to Size(Q(l, fl))/gl

3.4 Normalized DTD Analysis
We previously defined the normalized DTD dn(i,k) as the
DTD normalized to the packet’s expected delay in equation
(2). Now we need to determine its bound in Gearbox. Based
on the above expression, the maximum value of dn(i,k) oc-
curs when DTD is at the maximum value and the expected
delay is at the minimum value. For a packet at level l, the
maximum DTD equals the level’s granularity gl . Then we
have:

max{D(i,k)−F(i,k)}= gl (3)

556 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

We need to find the minimal expected packet delay pos-
sible at level l. Based on the enqueue process described in
section 3.3, packets enqueue at different levels based on their
expected delay. Only packets with an expected delay be-
tween gl and gl ∗Ml will enqueue at level l. Therefore, we
have minimal expected delay:

min{F(i,k)−A(i,k)}= gl (4)

From equation (3) and (4), we have maximum delay:

max{D(i,k)−A(i,k)}= 2gl (5)

Then from (4) and (5) we have maximum normalized
DTD:

max{dn(i,k)}= max{
D(i,k)−F(i,k)
F(i,k)−A(i,k)

}= 2gl−gl

gl
= 1 (6)

The maximum normalized DTD has an upper bound of
1, which means, in the worst case, that a packet scheduled
by Gearbox will have a maximum delay that is twice its ex-
pected delay in WFQ. In other words, a packet that expects
t microseconds delay in a WFQ scheduler will experience at
most 2t microseconds delay in Gearbox in the worst case6.
We evaluate the normalized DTD in actual time using simu-
lations and provide our evaluation results in Section 4.

3.5 The Packet Out-of-order Issue
Packets in the hierarchical calendar queue scheduler may ex-
perience a packet out-of-order issue. According to the archi-
tecture of Gearbox, FIFOs at different levels might cover an
overlapping virtual time range. As a result, a packet P(i,k)
with a departure time F(i,k) may enqueue at any level of the
scheduler, depending on its arrival time A(i,k). Similarly, a
subsequent packet P(i,k+1) from the same flow may enqueue
at a different level. When two packets from the same flow
enqueue in different levels in the scheduler, the relative or-
der of the packets is not deterministic. It is possible that
packet P(i,k) leave later than the subsequent packet P(i,k+1) if
it is enqueued at a different level in the scheduler, causing
the packets to be dequeued out of order.

Figure 4 shows an example of the packet out-of-order is-
sue. In the figure, packets A1 and A2 arrive at the scheduler
when ts = 0. Since both packets have a departure time ex-
ceeding ts + 9, they cannot be enqueued at level 1 and are
thus enqueued in FIFO1 at level 2. Later, the system time
ts updates to ts = 10. A new packet A3 from the same flow
arrives at the scheduler with a departure time of F(A,3) = 12.
At this moment, F(A,3)− ts = 2 < 10 and the scheduler places
A3 in FIFO2 at level 1. At this point, packets from flow A

6The delay discrepancy may be smaller than 2x if all the flows are not
active and the packet has an earlier opportunity to be dequeued

Figure 4: The packet out-of-order issue

are placed at different levels. As the scheduler starts to serve
packet A3 when ts = 12, packets A1 and A2 are still queued
up at the tail of FIFO1 at level 2. In this case, packet A3
leaves before packets A1 and A2.

3.6 Solution to the Packet Out-of-order Issue
We introduce two modifications to eliminate the uncertainty
in the packet serving order. First, we do not ‘wrap around’
FIFOs in the same level. This means that after the scheduler
drains a FIFO and starts to serve the next one, the drained
FIFO does not enqueue any packets until the scheduler fin-
ishes serving all the packets in the entire level. Second, we
track the ‘last packet enqueued level’ for each flow, noted as
Li, where i is the flow id. When a new packet P(i,k) arrives
at the scheduler, it is enqueued in a level equal to or higher
than level Li.

Let’s consider the same example in Figure 4 after applying
the solution. When packet A1 and A2 enqueue level 2 of the
scheduler, Gearbox marks flow A’s last packet enqueue level
as LA = 2. When packet A3 arrives at the scheduler, although
F(A,3)− ts = 2 < 10, the scheduler will only place packet A3
into a level equal or larger than LA = 2. In this case, Gearbox
places packet A3 in FIFO1 at level 2 right after packet A1
and A2. As a result, it is scheduled after its preceding packets
A1 and A2. Consequently, these modifications eliminate the
packet out-of-order issue.

The modifications mentioned above may lead to side ef-
fects that could potentially increase the DTD of packets. The
flows with input rates higher than their allocated rates will
enqueue and stay in a higher level, where they will suffer
from a coarser granularity and higher DTD. We further in-
troduce the ‘Step-down FIFO’, an extension of Gearbox to
solve these side effects. We present the details of this exten-
sion in Appendix A.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 557

Figure 5: Single-node topology

4 Implementation and Evaluation

In this section, we describe the design and implementation
of Gearbox in NS2, a packet-based simulator [21], and in
VHDL as a hardware prototype (targeted to Xilinx’s Alveo
U250 card[34]), along with the extensive simulations to eval-
uate the performance of Gearbox. The two implementations
and their associated verification environments enabled us to
explore different aspects of Gearbox including its perfor-
mance in networks, the performance of the hardware pro-
totype, and the hardware resource utilization.

4.1 Packet-based Evaluation
To evaluate Gearbox’s performance in a large-scale network
topology with real-world data traffic, we implemented Gear-
box in NS2 [21] and conducted extensive packet-based sim-
ulations.

4.1.1 Evaluation Setup

Network topology We set up two different network
topologies in NS2: (1) a single-node star topology for band-
width allocation and fairness evaluation, and (2) a fat-tree
topology to evaluate FCT and normalized DTD.

For the single-node topology, we connect five servers to a
switch as shown in Figure 5. All the links have equal band-
width of 10 Gbps and a delay of 3µs. We later use this simple
star topology to form a classic incast traffic pattern to ob-
serve the bandwidth share of individual flows and evaluate
the fairness of the scheduler.

We built a three-level fat-tree topology for large-scale sim-
ulation. As shown in Figure 6, there are 4 Core switches,
8 Aggregation switches, 8 Top-of-Rack (ToR) switches and
256 servers. The links between servers and ToR switches are
10Gbps with 10 ns delay. Other links have a bandwidth of
40Gbps and a 1µs propagation delay. We apply Gearbox and
other scheduler schemes on every ToR/Aggregation/Core
switch to evaluate the FCT performance.

Traffic loads We generate empirical traffic workloads
based on the datacenter flow size distribution from an oper-
ational datacenter that supports web-search service [2]. The
traffic follows a heavy tail distribution as Figure 7 shows.
The flows arriving in a Poisson process with different arrival

Figure 6: Three-level fat-tree topology

Figure 7: Web-search flow size distribution

intervals result in different traffic loads. Each flow randomly
selects the source and the destination hosts in the topology
in a uniform distribution.

Alternative approaches We compare Gearbox with
single-level calendar queues [24]. All the schedulers in our
evaluation have 56 FIFOs and are evaluated with different
granularities as discussed in section 2.3. Table 2 provides de-
tails of the Gearbox and calendar queue schedulers. We also
compared Gearbox with an ideal PIFO-based WFQ sched-
uler as well as a simple drop tail queue. In our packet-based
simulation, all packets have the same size of 1,500 bytes 7

and the number of bytes per virtual time unit is set to 750
bytes (the finest supported granularity).

4.1.2 Single-node Microbenchmark

Gearbox can reach good max-min fairness We observe
that Gearbox can reach satisfactory max-min fairness in
bandwidth allocation, close to that of PIFO-based WFQ. In

7In NS2 packet based simulations, packet size is not a factor that affects
switch performance.

Table 2: PACKET SCHEDULER SET UP

Packet Scheduler Granularity
Gearbox g1 = 1, g2 = 8, g3 = 64
CQ-1 g = 1
CQ-10 g = 10
CQ-100 g = 100

558 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 8: Real-time throughput of Gearbox

our single-node microbenchmark evaluation, we used four
TCP flows, each sending traffic to one destination node with
different starting times and ending times. Based on the re-
sults shown in Figure 8, Gearbox allows the TCP flows to
reach a bandwidth max-min fairness with good flow isola-
tion. When a new flow joins, Gearbox quickly adjusts the
bandwidth allocated to all the active flows and reaches the
max-min fairness. After a flow ends, Gearbox also allows
the remaining flows to ramp up quickly.

Normalized Fairness Metric To better evaluate fairness in
bandwidth allocation, we use the Normalized Fairness Met-
ric (NFM). Shreedhar and Varghese first measured fairness
in bandwidth allocation using the Fairness Metric (FM) [26].
FM reflects the maximum difference in the number of served
bytes between two flows during a time period. By defini-
tion, FM’s values vary significantly based on the bandwidth
assigned to each flow and the total shared bandwidth.

To normalize the influence of this factor, Brent Stephens
introduced a better metric: the Normalized Fairness Met-
ric (NFM) [29]. NFM normalizes the Fairness Metric ac-
cording to the number of bytes that each flow should serve.
In a scenario where 4 flows are sharing a link of 4 Mbps
with equal weights, each flow is assigned a bandwidth of
1 Mbps. During 1 second, each flow should have 128
kbytes of data served. If the measured Fairness Metric
FM(1sec) = 32kbytes, then the Normalized Fairness Metric
NFM(1sec) = 32kbytes/128kbytes = 0.25.

Gearbox has a good NFM even for short time scales. By
definition, a lower NFM indicates better fairness in band-
width allocation. In our evaluation, we observed the NFM
of flows with 4 different weight sets (shown in Table 3) in
different time scales. From the results shown in Figure 9,
Gearbox outperforms coarse-grained calendar queues with
different bandwidth allocations. When flows are assigned
with weights that differ significantly, the fine-grained calen-
dar queues suffer from packet loss while Gearbox maintains
good fairness performance. From the perspective of max-
min fairness, Gearbox’s performance matches closely that of
PIFO-based WFQ.

Table 3: Flow Weight Sets

Weight Set 1 1 : 1 : 1 : 1
Weight Set 2 2 : 2 : 1 : 1
Weight Set 3 50 : 50 : 1 : 1
Weight Set 4 100 : 100 : 1 : 1

4.1.3 Large-scale Simulation

We extend our simulation to a three-level fat-tree topology
with more servers and higher link rates as described in sec-
tion 4.1.1. We focus on the normalized FCT performance of
different size flows. 8

Figure 10(a) shows the average normalized FCT across
different traffic loads and Figures 10(b) and 10(c) show the
average normalized FCT of different size flow groups under
70% and 90% load, respectively. The 95th percentile nor-
malized FCT under various traffic loads is shown in Figure
10(d). Figures 10(e) and 10(f) show the 95th percentile nor-
malized FCT broken down per flow size under 70% and 90%
traffic load, respectively.

Short flows benefit from low DTD Gearbox closely ap-
proximates WFQ and provides per-flow isolation, which re-
sults in low DTD, a key factor for short flow FCT perfor-
mance. With WFQ, different flows are isolated from each
other and packets from large flows will not block packets
from small flows. As we discussed in section 2.3, the lower
level of Gearbox provides a fine scheduling granularity, guar-
anteeing that packets from short flows depart according to
their departure times without a large discrepancy. Figures
10(b), 10(c), 10(e) and 10(f) show that short flows that are
less than 80 kbytes have a small normalized FCT. According
to Figure 10, Gearbox can achieve a low normalized FCT
close to ideal PIFO-based WFQ and the calendar queue with
the finest granularity. On the other hand, packets from short
flows would suffer a large DTD in the coarse-grained calen-
dar queues and the drop tail queues.

Short flows consist only of a few packets. Therefore, DTD
can cause delays that has a negative effect on their FCT.
To further observe the delay of short flows under different
scheduler schemes, we measure the average end-to-end de-
lay. As shown in Figure 11, the extra delay in the coarse-
grained calendar queues leads to a large normalized FCT for
short flows. In contrast, Gearbox has a low delay that is close
to that of PIFO-based WFQ.

As stated in section 3.4, Gearbox guarantees a low nor-
malized DTD for all packets. We evaluated the normalized
DTD of Gearbox 9 as shown in Figure 12. The normalized
delay shown in the figure is the actual delay normalized to

8“Normalized FCT” means a flow’s actual FCT normalized to its ideal
FCT when no other flows are active in the network.

9Normalized delay was measured in actual (not virtual) time

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 559

(a) NFM, 48 µs, weight set 1 (b) NFM, 48 µs, weight set 2 (c) NFM, 120 µs, weight set 3 (d) NFM, 120 µs, weight set 4

Figure 9: Normalized Fairness Metric

(a) Average normalized FCT (b) Breakdown normalized FCT, 70% load (c) Breakdown normalized FCT, 90% load

(d) 95th percentile normalized FCT (e) 95th percentile normalized FCT - per flow
size, 70% load

(f) 95th percentile normalized FCT - per flow
size, 90% load

Figure 10: Normalized FCT in fat-tree topology

the delay of the ideal WFQ using a PIFO. In Figure 12, the
red dashed line represents the normalized delay with a value
of 1, which indicates that the delay is equal to that of ideal
WFQ. The simulation results show that Gearbox has a sat-
isfactory normalized delay that is close to 1 for flows with
different sizes, indicating that Gearbox has a delay perfor-
mance closely matching that of ideal WFQ.

Large flows benefit from low packet loss rate Gearbox
not only provides a small normalized FCT for short flows,
but it also reduces packet loss and re-transmission for large
flows. Thanks to its higher levels, Gearbox can schedule
packets with large departure times with a very low drop rate.

Figure 10 shows Gearbox can achieve good normalized
FCT performance for mid-sized flows around 200 kbytes or
larger. We further measured the average packet loss of dif-
ferent flow groups. As shown in Figure 13, the single-level
calendar queues with fine granularity drop packets frequently
for the mid-sized and large flows, triggering a large number

of re-transmissions and leading to a high normalized FCT.
However, Gearbox and other coarse-grained calendar queues
have low packet loss rates that are close to zero. Gearbox
reduces packet loss related to calendar range overflows and
guarantees a low normalized FCT for mid-sized and large
flows.

As shown in the above simulation results, Gearbox com-
bines the benefits of both fine and coarse calendar queue
granularities. Consequently, Gearbox provides satisfactory
normalized FCT performance for flows with different sizes
as discussed in Section 3. The evaluation results show that
Gearbox provides performance comparable to PIFO-based
WFQ.

4.2 Hardware Prototype Design

Overview We implemented Gearbox in VHDL with mul-
tiple parameters (generics) for easy scalability including:

560 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 11: Average end-to-end delay of
short flows

Figure 12: 99th percentile normalized de-
lay

Figure 13: Average packet loss percentage

• Number of levels

• Number of FIFOs per level

• Number of flows

• Other sizing parameters for memories and logic

The VHDL code, test bench, and FPGA imple-
mentation files are available at https://github.com/

Gearbox-NSDI/Gearbox_NSDI

Hardware prototype architecture A high-level block di-
agram of the VHDL implementation of Gearbox is shown in
Figure 14.

Figure 14: Gearbox Block Diagram - VHDL Implementation

At the top level, Gearbox consists of a parameterized num-
ber of instances of the Gearbox Level sub-block along with
the Enqueue and Dequeue Controller blocks. Each level ex-
cept the highest consists of two Gearbox Level sub-blocks
denoted (A) and (B). The A and B sub-blocks form a ping-
pong scheme to guarantee access to a full set of FIFOs (cor-
responding to virtual time units) while maintaining packet
order. The highest level consists only of a single Gearbox
Level sub-block because a wraparound of the FIFO index
does not cause out-of-order packets.

The Gearbox Level sub-block shown in Figure 15 consists
of a parameterized number of FIFOs along with Enqueue and
Dequeue logic blocks.

The enqueue and dequeue operations are described below.
The packet descriptor is formatted as follows:

Packet Pointer (15) Address of packet in packet buffer

Packet Length (11) Packet length in bytes

Packet Time (20) Packet transmission time, i.e., the time it
takes to transmit the packet at the given
flow rate

Flow ID (10) Flow identification number

Packet ID (16) Packet identification number (used only
to detect out of order events)

Figure 15: Gearbox Level - VHDL Implementation

The width of each descriptor subfield is parameterized.
The numbers in parentheses denote example widths for a
given configuration.

Enqueue Operation Upon receipt of an enqueue com-
mand, Gearbox performs the following steps:

1. Calculate the packet’s departure time based on the
packet transmission time and the system time ts

2. Determine the enqueue level and enqueue FIFO within
that level

3. Store the packet descriptor in the calculated level and
FIFO

Gearbox completes an enqueue operation in three clock cy-
cles.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 561

Dequeue Operation Upon receipt of a dequeue com-
mand, Gearbox performs the following steps:

1. Find first non-empty level and FIFO and update the sys-
tem time ts

2. Calculate number of bytes to serve from each level

3. Dequeue from each level a number of descriptors to
reach or exceed the number of bytes to serve

Gearbox completes a dequeue operation in four clocks when
performing steps 1 through 3 and in two clock cycles if per-
forming only step 3 (i.e., dequeuing from each non-empty
level once steps 1 and 2 are completed).

Math Operations The VHDL implementation of Gear-
box is scalable using generics that are powers of 2, notably
for the number of levels, granularity of each level, and the
number of FIFOs within each level. This enables calcu-
lations that require division operations to be implemented
using bit shifting or truncation, which are much more effi-
ciently implemented in logic gates.

Targeting to an FPGA We targeted the Gearbox VHDL
design configured with 4 levels and 16 FIFOs per level, 256
locations (packet descriptors) per FIFO, and 1K flows to a
Xilinx Alveo U250 board [34], which uses an UltraScale+
VU13P FPGA with mid-speed grade. Using Vivado 2020.2
[33], we obtained the utilization and performance shown in
Table 4.

Table 4: FPGA prototype utilization and performance

Frequency LUTs FFs BRAM

Units 350 MHz 12331 9953 96

Device Util Pct 0.71% 0.29% 3.6%

With an enqueue and a dequeue every four clocks, the
design sustains a packet rate of 350÷ 4 = 87.5 Mpkts/sec,
which is equivalent to a line rate of 100 Gigabit Ethernet for
123-byte packets or larger, taking into account a Preamble of
8 bytes and an IFG of 12 bytes.

5 Related Work

After the proposal of numerous bandwidth allocation algo-
rithms such as WFQ, PGPS, and SCFQ, academia and in-
dustry have worked to implement packet schedulers sup-
porting these algorithms. This trend first begins with the
ASIC design. In the 1990s, the Sequencer [8] [9] [10] was
an ASIC-based hardware packet scheduler that sorts pack-
ets into ascending order based on their departure time with
limited scalability. In the 2000s, a specialized data structure:

pipeline heap (P-heap) [4] [17] provided fine-grained prior-
ity queues in hardware, which improves the scalability but is
required for each egress port [27] [28] and therefore uses sig-
nificant chip area on high-speed switches. The recent work
PIFO [27] [28] provides a programmable packet scheduler,
which has a very small chip area overhead and is relatively
easy to implement. However, it requires special hardware
support (such as TCAM) and has limited scalability.

The limitations of the ASIC-based hardware packet sched-
ulers we mentioned in section 2 motivated research in
approximate schedulers based on strict-priority queues.
Among them are the Approximate Fair Queuing (AFQ) [24]
and Programmable Calendar Queues (PCQ) [25]. AFQ
and PCQ perform well in bandwidth allocation with the
same weights. However, when flow weights vary over a
wide range, AFQ and PCQ’s fixed granularity leads to low
scheduling precision or packet drops. The authors of PCQ
discuss a hierarchical architecture in their paper, but its de-
queuing scheme might lead to starvation of flows in the lower
level. SP-PIFO [1] is another recent work that uses a unique
algorithm to adjust the priority between FIFOs to minimize
scheduling errors. However, SP-PIFO may cause misorder-
ing of packets within a single flow, which would lead to prob-
lems for TCP-based flows.

6 Conclusion

In this paper, we propose Gearbox, a hierarchical packet
scheduler that practically approximates WFQ. Gearbox is
a FIFO-based packet scheduler targeted to next-gen pro-
grammable switches and smart NICs. Its tiered granularity
allows Gearbox to achieve an adequate normalized DTD and
FCT performance with a relatively small number of queues.
Gearbox eliminates packet recirculation and has a stream-
lined operation that allows it to achieve high packet process-
ing speed. From our evaluation, Gearbox achieves weighted
max-min fairness in bandwidth allocation and FCT perfor-
mance comparable to that of ideal WFQ. We implement
Gearbox in an NS2 simulator and a VHDL-based hardware
prototype, targeting a Xilinx ALVEO U250 FPGA card. Our
Gearbox hardware prototype runs at 350 MHz, which is
equivalent to a maximum throughput of 58.8 Gbps with 64-
byte packets over 100GbE and full line rate 100GbE with
packets larger than 123 bytes.

Acknowledgements

We thank the anonymous reviewers for their valuable com-
ments and advice. We also acknowledge Xilinx for support-
ing our hardware prototype implementation.

562 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] ALCOZ, A. G., DIETMÜLLER, A., AND VANBEVER, L. Sp-pifo:

Approximating push-in first-out behaviors using strict-priority queues.
In 17th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 20) (2020), pp. 59–76.

[2] ALIZADEH, M., YANG, S., SHARIF, M., KATTI, S., MCKEOWN,
N., PRABHAKAR, B., AND SHENKER, S. pfabric: Minimal near-
optimal datacenter transport. In ACM SIGCOMM Computer Commu-
nication Review (2013), vol. 43, ACM, pp. 435–446.

[3] ALJAEDI, A., CHOW, C. E., ELGZIL, A., ALAMRI, N., AND
BAHKALI, I. Network virtualization with openflow for large-scale
datacenter networks. IJCSNS 17, 9 (2017), 10.

[4] BHAGWAN, R., AND LIN, B. Fast and scalable priority queue archi-
tecture for high-speed network switches. In Proceedings IEEE INFO-
COM 2000. Conference on Computer Communications. Nineteenth
Annual Joint Conference of the IEEE Computer and Communications
Societies (Cat. No. 00CH37064) (2000), vol. 2, IEEE, pp. 538–547.

[5] BROADCOM. Broadcom StrataDNX™ BCM88480 Traffic Man-
agement Architecture. https://docs.broadcom.com/doc/

88480-DG1-PUB, 2021.

[6] BROADCOM. High Capacity StrataXGS®Trident II Ethernet Switch
Series. http://www:broadcom:com/products/Switching/

Data-Center/BCM56850-Series., 2021.

[7] BROWN, R. Calendar queues: a fast 0 (1) priority queue implemen-
tation for the simulation event set problem. Communications of the
ACM 31, 10 (1988), 1220–1227.

[8] CHAO, H. J. Architecture design for regulating and scheduling user’s
traffic in atm networks. In ACM SIGCOMM Computer Communica-
tion Review (1992), vol. 22, ACM, pp. 77–87.

[9] CHAO, H. J., CHENG, H., JENQ, Y.-R., AND JEONG, D. Design of
a generalized priority queue manager for atm switches. IEEE Journal
on Selected Areas in Communications 15, 5 (1997), 867–880.

[10] CHAO, H. J., JENQ, Y.-R., GUO, X., AND LAM, C.-H. Design of
packet-fair queuing schedulers using a ram-based searching engine.
IEEE Journal on Selected Areas in Communications 17, 6 (1999),
1105–1126.

[11] CISCO. Cisco Silicon One Product Family White Paper. https:

//www.cisco.com/c/en/us/solutions/silicon-one.html,
2021.

[12] CORMEN, T. H., LEISERSON, C. E., RIVEST, R. L., AND STEIN,
C. Introduction to algorithms. MIT press, 2009.

[13] DALTON, M., SCHULTZ, D., ADRIAENS, J., AREFIN, A., GUPTA,
A., FAHS, B., RUBINSTEIN, D., ZERMENO, E. C., RUBOW, E.,
DOCAUER, J. A., ET AL. Andromeda: Performance, isolation, and
velocity at scale in cloud network virtualization. In 15th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
18) (2018), pp. 373–387.

[14] DEMERS, A., KESHAV, S., AND SHENKER, S. Analysis and sim-
ulation of a fair queueing algorithm. In ACM SIGCOMM Computer
Communication Review (1989), vol. 19, ACM, pp. 1–12.

[15] FIRESTONE, D., PUTNAM, A., MUNDKUR, S., CHIOU, D.,
DABAGH, A., ANDREWARTHA, M., ANGEPAT, H., BHANU, V.,
CAULFIELD, A., CHUNG, E., ET AL. Azure accelerated network-
ing: Smartnics in the public cloud. In 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 18) (2018),
pp. 51–66.

[16] HASAN, J., CHANDRA, S., AND VIJAYKUMAR, T. Efficient use of
memory bandwidth to improve network processor throughput. ACM
SIGARCH Computer Architecture News 31, 2 (2003), 300–313.

[17] IOANNOU, A., AND KATEVENIS, M. G. Pipelined heap (priority
queue) management for advanced scheduling in high-speed networks.
IEEE/ACM Transactions on Networking (ToN) 15, 2 (2007), 450–461.

[18] KIM, D., YU, T., LIU, H. H., ZHU, Y., PADHYE, J., RAINDEL, S.,
GUO, C., SEKAR, V., AND SESHAN, S. Freeflow: Software-based
virtual rdma networking for containerized clouds. In 16th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
19) (2019), pp. 113–126.

[19] MEDEIROS, B., SIMPLICIO, M. A., AND ANDRADE, E. R. Design-
ing and assessing multi-tenant isolation strategies for cloud networks.
In 2019 22nd Conference on Innovation in Clouds, Internet and Net-
works and Workshops (ICIN) (2019), IEEE, pp. 214–221.

[20] NAGARAJ, K., BHARADIA, D., MAO, H., CHINCHALI, S., AL-
IZADEH, M., AND KATTI, S. Numfabric: Fast and flexible bandwidth
allocation in datacenters. In Proceedings of the 2016 ACM SIGCOMM
Conference (2016), ACM, pp. 188–201.

[21] NETWORK SIMULATOR DEVELOPMENT GROUP, T. The network sim-
ulator 2. In https://www.isi.edu/nsnam/ns/. 2000, 2000, p. 1.

[22] PAREKH, A. K., AND GALLAGER, R. G. A generalized processor
sharing approach to flow control in integrated services networks: the
single-node case. IEEE/ACM transactions on networking, 3 (1993),
344–357.

[23] PAREKH, A. K., AND GALLAGER, R. G. A generalized proces-
sor sharing approach to flow control in integrated services networks:
the multiple node case. IEEE/ACM transactions on networking 2, 2
(1994), 137–150.

[24] SHARMA, N. K., LIU, M., ATREYA, K., AND KRISHNAMURTHY,
A. Approximating fair queueing on reconfigurable switches. In 15th
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 18) (2018), pp. 1–16.

[25] SHARMA, N. K., ZHAO, C., LIU, M., KANNAN, P. G., KIM, C.,
KRISHNAMURTHY, A., AND SIVARAMAN, A. Programmable calen-
dar queues for high-speed packet scheduling. In 17th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 20)
(2020), pp. 685–699.

[26] SHREEDHAR, M., AND VARGHESE, G. Efficient fair queuing using
deficit round-robin. IEEE/ACM Transactions on networking, 3 (1996),
375–385.

[27] SIVARAMAN, A., SUBRAMANIAN, S., AGRAWAL, A., CHOLE, S.,
CHUANG, S.-T., EDSALL, T., ALIZADEH, M., KATTI, S., MCKE-
OWN, N., AND BALAKRISHNAN, H. Towards programmable packet
scheduling. In Proceedings of the 14th ACM workshop on hot topics
in networks (2015), ACM, p. 23.

[28] SIVARAMAN, A., SUBRAMANIAN, S., ALIZADEH, M., CHOLE, S.,
CHUANG, S.-T., AGRAWAL, A., BALAKRISHNAN, H., EDSALL, T.,
KATTI, S., AND MCKEOWN, N. Programmable packet scheduling at
line rate. In Proceedings of the 2016 ACM SIGCOMM Conference
(2016), ACM, pp. 44–57.

[29] STEPHENS, B., SINGHVI, A., AKELLA, A., AND SWIFT, M. Ti-
tan: Fair packet scheduling for commodity multiqueue nics. In 2017
USENIX Annual Technical Conference (USENIX ATC 17) (2017),
pp. 431–444.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 563

[30] THIMMARAJU, K., RÉTVÁRI, G., AND SCHMID, S. Virtual network
isolation: Are we there yet? In Proceedings of the 2018 Workshop on
Security in Softwarized Networks: Prospects and Challenges (2018),
pp. 1–7.

[31] VARGHESE, G., AND LAUCK, A. Hashed and hierarchical timing
wheels: efficient data structures for implementing a timer facility.
IEEE/ACM transactions on networking 5, 6 (1997), 824–834.

[32] WANG, Z., HUANG, H., ZHANG, J., AND ALONSO, G. Shuhai:
Benchmarking high bandwidth memory on fpgas. In 2020 IEEE
28th Annual International Symposium on Field-Programmable Cus-
tom Computing Machines (FCCM) (2020), IEEE, pp. 111–119.

[33] XILINX. Vivado Design Suite, Integrated Design Environ-
ment. https://www.xilinx.com/products/design-tools/

vivado.html, 2021.

[34] XILINX. Xilinx Alveo U250 Data Center Accelerator Card.
https://www.xilinx.com/products/boards-and-kits/

alveo/u250.html, 2021.

Appendix

A Step-down FIFO

The solution to the packet out-of-order issue in Section 3.6
may increase the DTD of specific flows. Normally, packets
will enqueue at the appropriate level with a granularity that is
appropriate for their expected delays. As long as the packets
from a flow arrive at the allocated rate, its packets will always
enqueue at the appropriate level with a guaranteed low DTD.
However, when a flow’s input data rate exceeds its allocated
bandwidth, its packets may queue up at higher levels. As the
scheme in Section 3.6 maintains the ‘Last packet enqueued
level’ Li, such flows would only enqueue their subsequent
packets in the higher levels from that point on. As previously
discussed, when packets that belong to a lower level enqueue
at a higher level, they suffer from a coarser granularity and
higher DTD. This leads to larger packet delays and increases
FCT. In this case, flows need to step back to the lower level
in which they are supposed to enqueue so they can restore
the lower DTD. Is it possible for a flow that queues up to a
higher level to step down to a lower level when its arrival rate
decreases to its admitted bandwidth?

The answer is yes: we introduce the ‘Step-down FIFO’,
which allows flows at a higher level to go to a lower level. To
understand the design of the Step-down FIFO, we must first
understand why we need to enqueue packets into a higher
level. According to Section 3.4, we can secure the serving
order of packets as long as we serve them with the same gran-
ularity. In other words, if we can serve packets at the higher
level with the same granularity at the lower level, it would be
safe to enqueue the subsequent packets into the lower level
without causing packet misordering. At this point, ‘Step-
down FIFO’ serves as a special FIFO at a higher level that
provides the same granularity of a lower level. A ‘Step-
down FIFO’ expands a FIFO at the higher level into mul-
tiple queues with finer granularity, preserving the departure

Figure 16: Step-down FIFO

time difference between the packets. When a flow’s latest
packet enqueues into a ‘Step-down FIFO’ at level l, Gearbox
schedules it with the granularity of level (l− 1). Thus, we
can mark the ‘Last packet enqueued level’ Li = (l−1). As a
result, we can enqueue the subsequent packets from the same
flow into level (l−1).

Figure 16 illustrates how a ‘Step-down FIFO’ works. FI-
FOs marked in yellow at level 2 and 3 are ‘Step-down FI-
FOs’, which maintain the same granularity as the next lower
level. In this example, Gearbox uses 10 FIFOs to achieve a
Step-down FIFO with the finer granularity. Packets A1 and
A2 enqueue the ‘Step-down FIFO’ and preserve their depar-
ture times F(A,1) = 10 and F(A,2) = 11 with the granularity of
g1 = 1. By doing so, Gearbox will schedule packets A1 and
A2 with the same granularity at level 1 and the packets will
leave the scheduler at ts = 10 and 11. In this case, it is safe
to place packet A3 at level 1 without causing packet out-of-
order issues. In this example, ‘Step-down FIFO’ makes it
possible for flow A to step down from level 2 to level 1.

With a ‘Step-down-FIFO’, the flows that follow their al-
located rate will eventually get back to the level they belong
to and restore their DTD. Assume flow i belongs to level l,
where the departure time of its packets increases by gl . Due
to prior burstiness, packets from flow i queue up at a higher
level l′ and need to step back down to level l. Since flow
i now follows its admitted rate ri, its packets arrive with a
departure time interval of gl without accumulation. Based
on the basic idea of Gearbox in Section 3.1, each FIFO at
level l′ (including the ‘Step-down FIFO’) covers a departure
time range of gl′ and gl′ >> gl . Since F(i,k) increases by gl ,
eventually there will always be a packet that enqueues in the
‘Step-down FIFO’ at level l′. As the ‘Step-down FIFO’ at
level l′ schedules packets with the granularity of gl , Gearbox
will mark the last enqueue level of flow i as Li = l and the
subsequent packets from flow i will get back to level l. In
this way, the Step-down-FIFO enables the flows that follow
their allocated rates to eventually get back to the lower level
to which they belong.

564 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 17: Gearbox’s Application in a NIC (egress only shown)

Figure 18: Gearbox’s Application in Multi-pipeline Systems

B Gearbox’s Application in NIC and Multi-
pipeline Systems

Figure 17 shows a Gearbox application in a NIC with only
the egress path shown. Packets from the server arrive over
PCIe and are stored in the Packet Buffer. The packet head-
ers are parsed and classified in the Parser & Classifier block
to extract the flow id and the packet length. The Depar-
ture Time Calculator computes the departure time using the
packet length and forwards it to Gearbox for enqueue. Gear-
box dequeues descriptors and forwards the packet pointers to
the Packet Buffer to output the packets.

Figure 18 shows a Gearbox application in a multi-pipeline
switch. After the parsing stage, the classification (flow iden-
tification) is done in the first stage. The second stage com-
putes the departure times, which are fed to multiple Gear-
boxes for enqueue. Dequeued packets are output by the de-
parser.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 565

Performance Interfaces for Network Functions
Rishabh Iyer, Katerina Argyraki, George Candea

EPFL, Switzerland

Abstract
Modern programmers routinely use third-party code,
and infrastructure operators deploy software they did
not write. This would not be possible without semantic
interfaces—documentation, header files, specifications—
that succinctly describe what that third-party code does.

We propose performance interfaces as a way to de-
scribe a system’s performance, akin to how a semantic in-
terface describes its functionality. We concretize this idea
in the domain of network functions (NFs) and present a
tool (PIX) that automatically extracts performance inter-
faces from NF implementations. We evaluate PIX on 12
NFs, including several used in production. The resulting
performance interfaces are accurate yet orders of mag-
nitude simpler than the code itself and take minutes to
extract. We show how developers and operators can use
performance interfaces to identify performance regres-
sions, diagnose and fix performance bugs and identify
the latency impact of NIC offloads.

PIX is available at https://github.com/dslab-epfl/pix.

1 Introduction
Semantic interfaces (e.g., abstract classes, specifications,
header files, documentation) succinctly describe a pro-
gram’s externally visible functional behavior, enabling
engineers to use the system productively. This makes it
possible for programmers to use a lot of third-party code
and makes infrastructure operators comfortable with de-
ploying software they did not write.

We do not know of an equivalent construct for describ-
ing performance behavior in a way that is simultaneously
succinct, precise, complete, and human-readable. Engi-
neers reason about performance in terms of envelopes
(e.g., “runs in O(n) time”) and benchmarks, which im-
plies that they deploy their system without understanding
the entire spectrum of performance it can exhibit. As a re-
sult, untested inputs can exercise mysterious code paths
that lead to unexpected performance behavior [4, 36, 39]
and a perpetual need to fix performance bugs [35, 43].

In this paper, we explore the idea of a performance
interface: a description of a system’s performance behav-
ior that is simultaneously succinct, precise, and human-
readable. What should such an interface look like? Like a
good semantic interface, it should be “much smaller and
simpler than the code” [48], so it must abstract away cer-
tain details—but which ones? Performance problems of-
ten lie in low-level implementation details as well as the

code’s interaction with the environment (e.g., specifics
of the underlying hardware’s cache hierarchy). Is it pos-
sible to capture all the relevant performance behaviors of
a system while being “much smaller and simpler” than
the system itself?

We propose that the performance interface of a system
be a program that accepts the same inputs as the system
and outputs how long the system would take to process
the given input1. A performance interface has a resolu-
tion, which quantifies the smallest change in performance
that it specifies (e.g., 50 ns, 1 mem-op)—the coarser the
resolution, the simpler the interface. We distinguish a
deployment-specific interface from a general-case one:
The former is much simpler and of greater interest to an
operator, who wants to understand the system’s perfor-
mance behavior in her specific environment, while the
latter is most useful to developers. This distinction, along
with resolution, makes it possible to have performance
interfaces that capture only those behaviors that are rele-
vant to the case at hand. In other words, the two concepts
enable abstraction of performance behavior.

We concretize our proposal in the context of network
functions (NFs), i.e., load balancers, firewalls, NATs, etc.
NFs are typically on the critical path of serving a user re-
quest and often face unpredictable traffic coming from
the outside world. For instance, any packet that enters a
service provider’s data center traverses at least one load
balancer/reverse proxy and typically also a firewall—the
latency that each NF adds to the packet directly impacts
the user-perceived latency. A recent survey [54] of net-
work operators found NF performance degradation to be
a frequent pain point, and such performance bugs to be
among the hardest to diagnose.

To make NF performance interfaces useful today, we
developed PIX (Performance Interface eXtractor). PIX
takes as input NF code written in C and outputs general-
case performance interfaces in the form of small Python
programs that it can then specialize into deployment-
specific interfaces for individual deployments. PIX cur-
rently supports three latency-related metrics: number of
instructions, number of memory operations, and num-
ber of CPU cycles. For each metric, PIX outputs one set
of Python programs; each set contains one Python pro-
gram per relevant range of resolutions. All PIX-extracted
performance interfaces are specific to the CPU’s ISA.

1In this paper we focus on system latency, not throughput.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 567

https://github.com/dslab-epfl/pix

Further, the interfaces for CPU cycles are specific to
the micro-architecture of the underlying hardware and
assume that the NF does not contend for hardware re-
sources with other processes (i.e., assume either smart
process co-location [12, 31, 52] or process isolation, us-
ing techniques such as cache partitioning [77]). Under
the covers, PIX employs symbolic program analysis tech-
niques to reason about the NF’s performance behaviors.

We evaluate PIX on 12 open-source NFs, including the
Katran load balancer [71] used at Facebook, the Natasha
NAT [58] used at Scaleway and the XDP packet filter
from the Cilium project [14]. All 12 NFs were written
using either the Linux kernel’s eBPF XDP [82] frame-
work or the DPDK [21] kernel-bypass framework, two of
the most popular ways to develop high-performance NFs.
Our evaluation shows that the extracted performance in-
terfaces are accurate yet orders of magnitude simpler
than the code, and take minutes to obtain. We show how
performance interfaces extracted by PIX can be used to
identify performance regressions, diagnose and fix per-
formance bugs, and identify the latency impact of NIC
offloads.

In summary, we make two contributions in this paper:

• We propose the concept of performance interfaces,
which leverages the notions of performance resolu-
tion and deployment-specific interfaces to enable
abstraction of performance behavior.

• We demonstrate that it is feasible to build a tool
that automatically extracts performance interfaces
from NF code, and that these interfaces can be
accurate-yet-simple enough to help understand and
debug performance.

In the rest of the paper, we describe how we think a
performance interface should look like (§2). Then, we
describe PIX (§3) and use it to evaluate the feasibility and
utility of performance interfaces for NFs (§4). Finally,
we discuss how PIX can generalize to systems beyond
NFs (§5), related work (§6), and conclude (§7).

2 Performance Interfaces
In this section, we present our proposal for performance
interfaces, and describe how we envision them being
used.

Target audience: We target two categories of audi-
ence for any system: The developers write the code for
the system and are familiar with its low-level implemen-
tation details, but not necessarily with all possible per-
formance behaviors it can exhibit. The operators did not
write the code but instead seek to use/deploy/build on
top of the system in their respective environments. They

are unfamiliar with and do not necessarily want to under-
stand its low-level details. Further, unlike the develop-
ers who care about the system’s performance in all set-
tings, they care primarily about its performance in their
specific use-case/deployment. These categories can vary
from system to system—the developer of an application
A might themselves be building upon on a network stack
B, making them an operator for that stack.

Design goals: We envision that a “performance inter-
face” must describe the system’s externally visible perfor-
mance behaviors, just as a semantic interface describes a
system’s externally visible functionality [48].

The primary challenge in summarizing performance
is that systems typically expose a greater variety of per-
formance behaviors than semantic ones. Hence, a per-
formance interface that perfectly predicts every possible
performance behavior would likely be so complex that it
wouldn’t deserve to be called an interface.

We look for a compromise, i.e., a way to summarize
performance that achieves a good balance between the
following properties: (1) Accuracy, i.e., the ability to
summarize performance completely (for every possible
input) and precisely (with a small error). (2) Simplic-
ity, i.e., being smaller than the code and as abstract as
possible—summarize performance in terms of primitives
appropriate for a semantic interface of the system, and
reveal implementation details only when necessary.

We also aim for (3) Portability. A system’s perfor-
mance may depend significantly on its environment (e.g.,
workload, hardware). For instance, adversarial traffic
causing L3 cache misses can degrade NF latency by
3× [64]. The interface should make it easy to quantify
the impact of a particular environment on performance,
enabling porting of the interface across deployments.

State of the art: Today, performance is typically sum-
marized through upper bounds—Big-Oh notation or worst-
case execution time [79]—and statistics (e.g., x-th per-
centile latency). These descriptions maximize simplicity
at the cost of accuracy—there are many inputs for which
they do not provide accurate predictions.

We draw inspiration from two recent proposals that de-
scribe a system’s performance behavior as performance
annotations [69] and performance contracts [41] respec-
tively. Freud [69] describes a method’s performance as a
performance annotation: a set of ⟨input/global-variable
constraints, performance formula⟩ tuples, and each for-
mula is a mathematical function of the method’s input
and/or global variables. Bolt [41] describes an NF’s la-
tency as a “performance contract:” a set of ⟨input con-
straints, performance formula⟩ tuples, where each for-
mula is a function of the system input and “Performance-
Critical Variables” (PCVs).

568 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Since we reuse the idea of PCVs from performance
contracts [41], we elaborate upon them here. A PCV is a
parameter that captures the influence on performance of
all factors other than the input packet (e.g., NF configu-
ration, state built up by prior packets, hardware charac-
teristics, etc). A PCV is not always an explicit variable
in the NF implementation, rather it can be an implicit
“ghost” variable [29, 32]. For instance, if an NF employs
a hash table, a PCV could be the “number of collisions”
encountered by the current packet—this ghost variable
allows latency to be expressed as a function of, among
other things, the number of collisions. Independent prior
work [37, 38] on symbolic bounds has also argued for
the use of a PCV-like abstraction to succinctly summa-
rize the performance behavior of stateful programs.

However, neither annotations nor contracts were de-
signed to be “performance interfaces”. Contracts sacri-
fice simplicity for accuracy—they include a list of input
constraints, which can be as many as the number of ex-
ecution paths through the system and reveal low-level
implementation details even when unnecessary. Annota-
tions do not meet our accuracy goal as they do not cap-
ture how performance depends on state built from past
inputs, e.g., the contents of a hash table or a hardware
cache (Appendix A).

Definition: The performance interface of a program P
with procedures p1,p2, ... is a program SP = {p ′1,p

′
2, ...}.

A procedure p ′i ∈ SP takes the same inputs as the corre-
sponding pi ∈ P and returns the performance of execut-
ing pi . This return value corresponds to a performance
metric (e.g., # of x86 instructions, # of CPU cycles). The
resolution r of SP is the smallest difference in perfor-
mance that SP can specify: if P(pi (I)) is pi ’s performance
given input I , then |p ′i (I) − P(pi (I))| < r , ∀pi , I .

A performance interface can be for the “general case”
or specific to a deployment.

In a general-case performance interface, the proce-
duresp ′i compute performance as a function of PCVs [41].
PCVs ensure that the interface can describe the perfor-
mance of each p ′i in full generality, i.e., for arbitrary
workloads and hardware configurations.

A deployment-specific performance interface is sim-
pler than the general-case one and does not contain PCVs.
Instead, procedure p ′i returns performance as a statis-
tic (e.g., median, max, 99th percentile), computed for a
given joint probability distribution of the PCVs that de-
scribes P’s environment for a particular deployment. In
this work, an NF’s deployment environment is defined
by its configuration read at startup, a representative work-
load, and the specific hardware it runs on.

Example: We illustrate with an example implemen-
tation of a MAC learning bridge (Fig. 1) that uses a

void bridge(pkt* p, time_t now) {
expire_stale_ports(now);
if (invalid_hdr(p)) {

DROP(p);
return;

}
/* Learning source MAC addr */
if(!slow_MACtable_get(p->src_mac, &p->port))

slow_MACtable_put(p->src_mac,&p->port);
else

slow_MACtable_update(p->src_mac, now);
/* Forwarding based on dest MAC addr */
if (fast_MACtable_get(p->dst_mac,&out_port))

FORWARD(p,out_port);
else if (slow_MACtable_get(p->dst_mac,&

out_port))
FORWARD(p,out_port);

else
BROADCAST(p,p->port);

}

Figure 1. Example implementation of a MAC learning bridge

fast MAC table, implemented in hardware, and a slow
software-based table, based on a cuckoo hash table. Ta-
ble 1 shows the performance cost of this implementa-
tion’s procedures in terms of executed lines of pseu-
docode (LOP), a performance metric we use for illustra-
tion only. For now, we assume these costs, we elaborate
on how they are obtained in §3.

Operation Performance [LOP]
expire_stale_ports() 40 + 60× n_stale
invalid_hdr() 5
DROP 1
FORWARD 60
BROADCAST 200
fast_MACtable_get() 10
slow_MACtable_get() 50
slow_MACtable_update() 70
expire_stale_ports() 40 + 60 × n_stale

slow_MACtable_put() 110 + 80 × n_evicted

+ 120 × occ × rehashing

Table 1. General-case performance of procedures called by the
code in Fig. 1. Two have non-constant performance: expiring
learned ports is linear in the number of stale ports, and doing a
put() in the cuckoo hash table depends on the number of keys
that must be evicted and whether rehashing is necessary.

Fig. 2 shows two performance interfaces of this im-
plementation. Since it exposes a single procedure, the
performance interface also has a single procedure. The
resolution of the performance interfaces is r = 50 LOP.

The general-case interface gives performance as a
function of 4 PCVs: number of stale flows (n_stale),
hash-table occupancy (occ), number of hash-table evic-
tions triggered by this input (n_evictions), and whether
rehashing is needed (rehashing=1 if yes, 0 otherwise).
Since the performance metric LOP is independent of
the underlying hardware, all 4 PCVs are specific to the

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 569

def perf_bridge_gc(p,now):

Metric: LOP, Resolution: 50

NF state: slow_MACtable, fast_MACtable

if invalid_hdr(p):

return 46 + 60* n_stale

if fast_MACtable_get(p->dst_mac) or

slow_MACtable_get(p->dst_mac):

return 280 + 60* n_stale + 80*
n_evictions + (120* occ) * rehashing

else

return 445 + 60* n_stale + 80*
n_evictions + (120* occ) * rehashing

def perf_bridge_ds(p,now):

Metric: LOP, Resolution: 50

Statistic: 50th percentile

NF state: slow_MACtable, fast_MACtable

if invalid_hdr(p):

return 106 #(46+60)

if fast_MACtable_get(p->dst_mac) or

slow_MACtable_get(p->dst_mac):

return 340 #(280+60)

else

return 505 #(445+60)

Figure 2. General-case (left) and deployment-specific (right) performance interfaces for the bridge (Fig. 1). Each return value in the
latter is the median LOP executed for the assumed PCV distribution.

bridge’s implementation. If the bridge stored the MAC
table using a binary tree instead of a cuckoo hash table,
the interface would describe performance using different
PCVs (tree_depth instead of rehashing).

The deployment-specific interface gives the median la-
tency for a deployment where the expected workload is
such that 50% of input packets encounter no hash colli-
sions and expire ≤ 1 stale ports. The interface produces
concrete numbers corresponding to this deployment-specific
PCV distribution. Note, the deployment-specific inter-
face does not restrict the inputs (e.g., the types of pack-
ets), it only instantiates the PCVs.

This performance interface captures all the perfor-
mance behaviors of the bridge that are externally visible
at resolution r=50. It is accurate, in that it correctly pre-
dicts performance (at the given resolution) for every pos-
sible input. It is smaller and simpler than the implemen-
tation: each procedure considers only three operations
(invalid header check, fast table lookup, and slow table
lookup), since these are the only ones that affect perfor-
mance at r=50. Unlike the general-case interface, the
deployment-specific interface makes assumptions about
the expected workload.

Why represent the interface as a Python program?
We believe that an interface that presents performance
like the system itself—through code that branches on the
input—is more intuitive than a list of input constraints
for developers and operators. We chose Python due to its
ubiquitous use [33].

Resolution: Often, developers and operators do not
care about certain performance differences, either be-
cause they do not affect their performance targets, or be-
cause they are masked by the environment. For example,
developers building minute-scale applications may not
care about µs-scale variability in the networking stack,
while those building µs-scale ones typically do.

The notion of resolution enables the developer/opera-
tor reading the interface to choose between multiple lev-
els of abstraction (trading off accuracy for simplicity) in
a controlled manner. A performance interface at a speci-
fied resolution only differentiates between input classes
whose performance differs by more than the resolution—
implementation details that cause variability relevant to
the specific developer/operator are abstracted away. In
our bridge example, a performance interface with a reso-
lution of 1 LOP must report the performance of each for-
warding behavior separately; an interface with resolution
>= 45 LOP can abstract away the difference between a
fast and slow lookup, and an interface with resolution
>= 115 LOP can abstract away the difference between a
successful and unsuccessful lookup.

Picking the right resolution: We envision developer-
s/operators picking their respective resolutions based on
the performance variability they are willing to tolerate
in their deployment scenarios. In §3, we show how PIX
goes a step further for those unsure of the “right” reso-
lution, by identifying a minimal set of resolution thresh-
olds that yield all the possible different performance in-
terfaces. This is possible since the performance interface
can only elide each implementation detail at a distinct
resolution threshold, which results in it not changing be-
tween two such thresholds. In our bridge example, {1, 20,
45, 115, 210} is such a minimal set of resolution thresh-
olds, i.e., other resolutions don’t yield different interfaces
(e.g., the interface at r = 50 is identical to that at r = 46).
By identifying these resolution thresholds, PIX enables
developers and operators to easily pick the resolution
(and corresponding interface) that achieves the desired
trade-off between accuracy and simplicity.

Deployment-specific interfaces: We chose to have sep-
arate general-case and deployment-specific interfaces to

570 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

provide a different balance between accuracy and sim-
plicity for operators and developers respectively.

General-case interfaces are meant for developers. De-
velopers cannot always predict where/how their code will
be deployed, and are hence often interested in the perfor-
mance of their system when deployed in arbitrary envi-
ronments. The general-case interface provides them with
such a description by summarizing the impact of the envi-
ronment on the system’s performance using PCVs. While
PCVs do reveal implementation details (e.g., n_evicted,
rehashing reveal the use of a cuckoo-hash table), these
details are necessary to summarize performance for an
arbitrary workload, so they must be represented in the
general-case interface.

We designed the deployment-specific interface for op-
erators. Since operators are unfamiliar with the system’s
implementation and only care about the system’s perfor-
mance behavior in their particular deployment environ-
ment, the deployment-specific interface does away with
the hard-to-understand PCVs by instantiating them with
a distribution specific to that deployment. This enables
the deployment-specific interface to summarize perfor-
mance in an NF-generic way—any NF would normally
involve a header check and state lookups—and be under-
stood by almost any NF operator. Of course, it does re-
veal one important aspect of the implementation, namely
the distinct fast and slow tables. However, this aspect
(which would have no place in a semantic interface) is
crucial to any bridge operator interested in performance.

That said, we do not envision the separation between
the general-case and the deployment-specific interfaces
being set in stone—developers may refer to the deployment-
specific interface to understand performance in the face
of specific workloads, while operators may refer to the
general-case interface to understand performance beyond
their expected workload.

3 Extracting Performance Interfaces
We now describe PIX, which takes as input an NF im-
plemented in C and automatically extracts performance
interfaces in the form of Python programs.

We designed PIX to meet two goals: (1) miniminal de-
veloper effort: developers/operators should not need to
write performance test suites or proof lemmas, and (2) al-
low for proprietary NFs: NF vendors typically provide
operators with only binaries [55]; it’s ok for them to pro-
vide a performance interface, but not source code.

Fig. 3 presents an overview of PIX. The NF developer
gives the PIX back-end the NF source, augmented with
a few single-line annotations akin to instantiating a type
in a higher-level language. PIX combines this with a pre-
analysis of the data structures used by the NF and extracts
the general-case interfaces for all meaningful resolution

B
ol

t (
ES

E)

Py
 T

ra
ns

la
tio

n

N
F

H
W

 m
od

el

R
es

ol
ut

io
n-

ba
se

d
m

er
ge

GC
interface

PIX Back-end

NF
 source

R
un

 b
y

N
F

de
ve

lo
pe

rs

M
ea

su
re

 P
C

V
di

st
rib

ut
io

ns

C
om

bi
ne

di

st
rib

ut
io

ns

DS
 interface

PIX Front-end

NF binary

GC
interface

Pkt traces

R
un

 b
y

N
F

op
er

at
or

s

Fr
om

 N
F

op
Fr

om
 N

F
de

v

Figure 3. Overview of PIX. GC and DS refer to general-case
and deployment-specific respectively.

ranges. The NF operator provides the PIX front-end with
an NF binary and general-case interface (provided by
the NF developer), along with a (set of) packet trace(s)
that represent the expected workload in their deployment.
From these, PIX extracts the deployment-specific inter-
faces for all meaningful resolution ranges. NF developer-
s/operators can also query PIX with a specific resolution,
to get the interface at that resolution.

Limitations and Assumptions: The PIX back-end uses
exhaustive symbolic execution (ESE) [45] to automati-
cally analyze the NF code. For this to work, the NF needs
to be single-threaded, all its loops except the top-level
event loop must have statically computable bounds, and
it must keep all history-dependent state in data structures
with clear interfaces. PIX cannot extract performance in-
terfaces for NFs that do not meet these requirements.

Many (not all) data-plane NFs meet these require-
ments. For instance, many NFs are written using the
eBPF [82] framework as stateless modules that keep
their state in cleanly separated, kernel-maintained eBPF
maps [24]. Other examples include recently proposed
NF frameworks that build upon the DPDK kernel-bypass
framework [21] like FastClick [5] and Vigor [83], which
impose the use of a specific set of well-separated data
structures to store NF state. Counterexamples include In-
trusion Detection Systems (IDSes) and TCP-terminating
NFs; in general PIX cannot extract interfaces for them
and we describe this limitation in more detail in §5.

PIX-extracted interfaces only summarize the process-
ing latency for each packet and do not reason about queu-
ing latencies. Reasoning about these latencies would re-
quire PIX to reason about multiple inputs together, and
for this, we need to employ techniques more sophisti-
cated than ESE [83]. Reasoning only about processing

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 571

latency allows PIX to avoid reasoning about load-based
variability since processing latency (unlike queueing la-
tency) does not vary with load.

To capture how hardware affects performance with rea-
sonable accuracy, PIX assumes that the NF runs pinned
to a core and does not significantly contend for hardware
resources, e.g., due to smart process isolation [12, 31, 52,
77]. We believe network operators keen on predictable
performance are likely to employ such techniques.

Implementation: PIX builds on the KLEE symbolic
execution engine [9]. We extended KLEE with 4629 lines
of C++ code to implement the first two steps of the back-
end. We synthesize the Python-based interfaces using
1825 lines of OCaml. We implemented resolution-based
merging and the PIX front-end in 1221 lines of Python.

3.1 Extracting general-case interfaces
We now describe how the PIX back-end extracts general-
case interfaces from NF source code.

Step 0: Pre-processing: This step outputs the perfor-
mance of each execution path of the NF in terms of
hardware-independent metrics as a function of PCVs
specific to the NF’s implementation (we refer to these
PCVs as hardware-independent PCVs henceforth). PIX
currently supports two hardware-independent metrics—
instruction count and memory-access count. We call this
Step 0 because it is not part of our contribution, we
largely reuse the approach and tool from Bolt [41].

Bolt relies on the observation that data-plane NFs tend
to use the same, relatively few data structures, mainly
hash tables/maps and buffers/rings. One can therefore
collect these data structures in a library, have an expert
“pre-analyze” them once, and then amortize this analy-
sis cost across all NFs that use the library. Bolt’s pre-
analysis consists of two manual tasks for each call in the
library’s interface: (1) identify the PCVs relevant to that
call, and (2) write a simple symbolic model of the call.
Such manual effort is reasonable because it is a rare effort
(e.g., once per update to the Linux kernel’s eBPF maps)
and it is done by the maintainer of the data structure li-
brary instead of its users. To illustrate, there were 34 new
commits in Linux’s eBPF maps last year [23] while the
Cilium project [14] alone—just one among hundreds of
projects that leverage eBPF maps—had an order of mag-
nitude more commits during that same period [13]. Fur-
ther, independent prior work [38] has observed that most
data structures require only a “few” PCVs, and identi-
fying them is “straightforward”. Our experience as the
“experts” for this work corroborated this observation—
identifying PCVs required only single-line loop annota-
tions which took ≤ 1 person-hour for someone familiar
with the data structure code.

The Bolt tool takes as input the NF source code, as
well as the symbolic models and loop annotations for the
state-accessing calls made by the NF; and outputs the
performance of each execution path through the NF as a
function of the hardware-independent PCVs.

In Step 0, PIX uses the Bolt tool as stated above, and
also automatically instruments the NF code such that it
can log the values of the hardware-independent PCVs for
each input packet encountered.

Step 1: NF-domain hardware model: This step char-
acterizes the performance of each execution path of the
NF in terms of hardware-dependent metrics (CPU cy-
cles), by introducing hardware-dependent PCVs; i.e.,
PCVs that capture the interaction between NF and hard-
ware.

PIX uses the notion of a CPI (Cycles Per Instruction)
stack [27] to compute the number of CPU cycles of an ex-
ecution path. A CPI stack breaks down the average CPI
for a program executing on a given microprocessor into a
base CPI plus various CPI components that reflect "lost"
cycle opportunities due to miss events such as branch
mispredictions and cache/TLB misses. In general, repli-
cating a perfect CPI stack is infeasible—it is equivalent
to analyzing each execution path to the depth provided
by a cycle-accurate simulator.

We leverage NF-domain knowledge to eliminate CPI
components and pick only the necessary set of hardware-
dependent PCVs. When an NF runs pinned to a core and
with limited contention for hardware resources, the dom-
inant hardware factor that influences its performance is
the last-level cache (LLC) [20, 52, 77]. Hence, PIX intro-
duces only two hardware-dependent PCVs—base_CPI
and LLC_miss_latency—and expresses a path’s CPU
cycle count as instructions · base_CPI + LLC_misses ·
LLC_miss_latency. Note, while PIX uses the same two
PCVs for all NFs, the values of these PCVs vary with
each <NF, HW> pair (§3.2). To track possible LLC
misses, PIX leverages taint-analysis [70] to identify in-
dependent heap accesses specific to the current input; it
then branches on each such access, with one outcome be-
ing an LLC miss and the other an LLC hit.

Step 2: Python program: The previous steps specify
an NF execution path as a set of symbolic constraints
on the input packet and symbols arising from calls to
data structures; this step translates these constraints into
human-readable python code and outputs a general-case
performance interface of the NF with a resolution of 1.

PIX translates symbolic constraints on the input packet
using knowledge of the header format of the popular net-
working protocols (e.g., IPv4, TCP, QUIC). For instance,
the constraint pkt[23 : 24] == 6 on a non-tunnelled IPv4
packet is translated to pkt.isTCP.

572 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 # Developer annotation:
2 DS_INIT(&map,"macTable","ethaddr", struct

eth_addr,"port", int);
3
4 # Starting condition derived from implem:
5 if bpf_map.unnamed_symbol
6 # Transform based on called library function
7 if bpf_map.contains(pkt[7:12])
8 # Transform based on developer annotation
9 if macTable.contains(pkt.src_mac)

Figure 4. Example of PIX’s constraint rewriting.

PIX translates symbols arising from calls to data struc-
tures using call context and developer-provided anno-
tations (one annotation per instantiated data structure).
Fig. 4 illustrates such a translation: Line 2 shows a de-
veloper’s annotation for a data structure of type map: it
indicates that this NF uses this map as a "macTable",
which maps "ethaddr" keys to "port" values; these are
human-friendly terms chosen by the developer to help
the generation of simple performance interfaces. Line 5
shows a constraint derived from the NF code that con-
cerns this map. Line 7 shows how PIX rewrites this con-
straint because it knows that this is a call to bpf_map_-

lookup_elem() with an argument corresponding to bytes
7 − 11 of the input packet. Line 9 shows how PIX further
rewrites the constraint because the developer’s annota-
tion enables PIX to identify the given bytes as the input
packet’s source MAC address.

The annotation on Line 2 is the only annotation that
the NF developer needs to provide. We believe such one-
line annotations are reasonable since they are similar to
instantiating a type in a higher-level language.

Step 3: Resolution-based merging: This step uses the
notion of resolution to simplify the performance inter-
face: First, it calculates the maximum performance im-
pact of each constraint, i.e., the maximum performance
difference between two execution paths that only differ
w.r.t this constraint. The set of distinct "maximum per-
formance impacts" forms the minimal set of resolution
thresholds. Second, it eliminates all constraints with an
impact smaller than the target resolution.

3.2 Extracting deployment-specific interfaces
To extract a deployment-specific interface, the PIX front-
end takes as input the NF binary and its general-case
interface2, provided by the NF developer/vendor; along
with a (set of) deployment-specific packet trace(s), pro-
vided by the NF operator. It then runs the NF binary using
the packet trace(s) as input, infers the deployment’s PCV

2The operator cannot be certain that this general-case interface is ac-
curate for the production binary, but we do not see this as a barrier to
adoption: operators routinely deploy NF binaries while relying only on
non-attested configuration interfaces and vendor manuals [55].

distributions, and instantiates the deployment-specific in-
terface. Running the NF allows PIX to extract accurate
deployment-specific interfaces since it can precisely mea-
sure the performance impact of the NF’s environment as
opposed to modeling it.

PIX infers three PCV distributions per NF, deploy-
ment:

Hardware-independent PCVs: PIX leverages the in-
strumentation introduced in Step 0 to measure the values
of these PCVs encountered by each packet in the pro-
vided trace(s). It then computes a joint probability distri-
bution of these PCVs, since they tend to be highly cor-
related (e.g., in Table 1, n_stale and n_evictions are
both functions of occ).

Base CPI: PIX measures this using hardware perfor-
mance counters [75] available on all major processors to-
day. Since the packet trace(s) may not exercise all execu-
tion paths, PIX assumes the same base-CPI distribution
across all paths, and it provides warnings if it detects sig-
nificant differences (e.g, some paths use expensive x86
instructions, like integer divide, while others don’t). We
think this is a reasonable assumption because the base
CPI is only a function of the instruction mix (it does not
include any miss events). In §4.1, we experimentally val-
idate this.

LLC miss latency: Measuring the distribution of LLC
miss latency ideally requires sophisticated NF-specific
testing [64], to account for the NF’s particular instruction-
and memory-level parallelism. PIX avoids this because it
targets NFs that keep all their state in a relatively small set
of pre-analyzed data structures. For each data structure,
we craft a microbenchmark that triggers LLC misses.3

PIX estimates the LLC-miss-latency distribution of each
data-structure call in a given deployment, by running
the corresponding microbenchmark on the deployment’s
hardware. In §4.1, we experimentally show that our ap-
proximation, performs well in practice (avg. error of <
10%). Note, our approximation concerns the latency intro-
duced by LLC misses, not the number of LLC misses—
the PIX back-end tracks LLC misses per path in Step 1.

Finally, PIX instantiates each formula in the general-
case interface with these inferred distributions to com-
pute the requested latency statistic (e.g., 50th percentile
in Fig. 2). We show examples of deployment-specific in-
terfaces and their distributions in §4.

3The expert must do this once per data structure, like the pre-analysis.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 573

Framework NF Functionality

eBPF
XDP

Katran LB Per-flow state, per-VIP state, consistent
hashing, IPv6, ICMP, QUIC, tunneling

Cilium filter Longest prefix matching, IPV6
CRAB LB Read-only state

hXDP firewall Per-flow state

DPDK

Natasha NAT Per-flow state, handles fragmentation,
UDPLite, ICMP, ARP

Maglev LB Per-flow state, consistent hashing
VigNAT Per-flow state, header rewriting
Bridge Packet duplication
Router Longest prefix matching
Policer Per-flow state, fine-grained timing

DPDK NAT Per-flow state, header rewriting, cksum offload
DPDK firewall Per-flow state

Table 2. Network functions used to evaluate PIX.

4 Evaluation
In this section, we address two main questions: (1) does
PIX extract good performance interfaces, and (2) can per-
formance interfaces make NF developers and NF oper-
ators more productive? To answer the former, we quan-
titatively evaluate the complexity of PIX-extracted in-
terfaces, their accuracy, and the time it takes to obtain
them (§4.1). We find that they are one to two orders of
magnitude simpler and more accurate than prior work.
To answer the latter question, we show how developers
can use PIX-extracted interfaces to catch performance re-
gressions and fix performance bugs (§4.2). We then show
how operators can use interfaces to pick the NF variant
best suited for their target hardware and to perform root-
cause diagnosis of performance anomalies (§4.3).

We evaluate PIX on 12 dataplane NFs that cover a wide
variety of functionality and network protocols (Table 2).
These include the Katran load balancer used in produc-
tion at Facebook [71], the Natasha NAT used in produc-
tion at Scaleway [58], the XDP packet filter from the Cil-
ium project [14] and an implementation of Google’s Ma-
glev load balancing algorithm [25]. The NFs were writ-
ten using DPDK [21] and eBPF XDP [82], arguably the
two most popular frameworks today for building high-
performance software NFs. VigNAT, Policer, Router and
Bridge come from the Vigor project [83], the CRAB
load balancer from [46], and the hXDP firewall from [8].
The Vigor and eBPF NFs are written in the commonly
used stateless/stateful split model, which makes them
amenable to exhaustive symbolic execution. We modi-
fied Natasha and DPDK NAT to also have such a clean
split; this took ∼3 person-days per NF.

The performance metrics we use for DPDK-based
NFs are x86 instruction count, x86 memory access count,
and x86 CPU cycles (thus wall-clock time). Note, PIX
is not specific to x86 and can just as easily predict the
corresponding metrics for another ISA (e.g., ARM) if
the PIX front-end is given the corresponding binary. For
eBPF NFs, we only analyze the NF itself, and not the
eBPF maps that are part of Linux, so we only report
hardware-independent metrics.

NF Implementation HW-independent
interface (PIX)

HW dependent
interface (PIX) Bolt contract

LOC CC LOC CC LOC CC LOC CC
Natasha 2932 192 1.8% 8.9% 2.8% 15.1% 17.4% 97.3%
Maglev 3168 29 0.9% 37.9% 1.6% 65.5% 2.1% 82.7%
VigNAT 2770 22 0.7% 36.3% 0.9% 52% 1.8% 81%
Bridge 2837 219 0.5% 2.7% 2.1% 10.5% 22.7% 98.6%
Router 1260 17 0.4% 17.6% 1.0% 29.4% 3.0% 82.3%
Policer 2466 16 0.4% 31.2% 0.6% 37.5% 1.4% 81.2%
DPDK FW 2508 21 0.8% 38% 1.0% 45% 2.0% 85.7%
DPDK NAT 1780 35 0.6% 27% 0.9% 39% 4.5% 80%
Katran 2661 3226 2.8% 0.8% - - 363% 100%
Cilium filter 784 42 3.2% 14.3% - - 10.7% 100%
CRAB 437 4 2.0% 100% - - 2% 100%
hXDP FW 312 33 3.8% 15.1% - - 30% 100%

Table 3. Complexity of extracted interfaces and Bolt contracts
vs NF implementation. “(x%)” means “x% of implementation”.
For each NF, the complexity is calculated for an interface with
resolution equal to 10% of the maximum latency variability the
NF can exhibit. Since Bolt computes the worst-case perfor-
mance for HW-dependent metrics (not shown), the numbers
are identical to those for HW-independent metrics.

Our testbed consists of two directly connected servers:
a device under test (DUT) and a traffic generator and
sink (TG). The servers are identical, with an Intel Xeon
E5-2667 v2 processor @ 3.30 GHz, 32 GB of DRAM,
and Intel 82599ES 10-Gbps NICs. The DUT runs one
of the NFs and measures the performance, while the TG
uses MoonGen [26] to generate traffic.

4.1 Does PIX Work?
In this section, we show that extracted interfaces are 1−2
orders of magnitude simpler than both the NF implemen-
tations and the equivalent Bolt contracts (§4.1.1). Their
accuracy is 100% for reasonable resolutions, while at the
finest resolution they are still practical and considerably
better than Bolt, the state of the art (§4.1.2). Extracting a
performance interface typically takes minutes (§4.1.3).

4.1.1 Are performance interfaces user-friendly?
To evaluate the “human palatability” of the performance
interfaces, we (1) measure their complexity in terms of
both lines of code (LOC) and cyclomatic complexity
(CC) [78], and (2) evaluate whether the primitives ex-
posed by the performance interfaces are those that NF
developers and operators are familiar with.

Table 3 compares the complexity of the PIX-extracted
interfaces and the Bolt contracts, measured as a fraction
of LOC and CC of the implementation. In a nutshell, the
extracted interfaces have 26−210× fewer LOC than the
corresponding implementations and are 3−124× less cy-
clomatically complex, ignoring CRAB, which is already
simple to start with. The performance resolution allows
PIX-extracted interfaces to be 2.3−129× shorter than the
Bolt contracts, and 2.1−124× less cyclomatically com-
plex, by abstracting away irrelevant details. The more
complex an NF, the higher this reduction in complexity,

574 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

which argues for the real-world utility of performance
interfaces.

Fig. 5 illustrates the impact of varying resolution on
the complexity of Katran’s performance interface. At the
finest granularity, Katran’s instruction-count interface,
like the Bolt contract, is fairly complex (LOC=9675,
CC=3226 independent paths). Since no two packets in
Katran can incur an instruction count that differs by more
than 854 instructions (number determined by PIX and
verified by us), for resolutions above 854 the interface
becomes a simple upper bound. In between these two
extremes, we see how low-level details get abstracted
away—for instance, at resolution=50 instructions, we
see a 125× drop in complexity (LOC=75, CC=26). The
Bolt contract, however, lacks the notion of resolution
and thus remains 3.6× longer and just as cyclomatically
complex as the implementation.

363.59%

50

Resolution in number of instructions

2.82%

0.81%

Figure 5. Impact of varying resolution on the size (LOC) and
complexity (CC) of Katran’s performance interface.

We conclude that PIX-extracted performance inter-
faces are significantly simpler than the NF implemen-
tations, which argues for them making it easier to un-
derstand performance behaviors by reading the interface
than reading the code. The notion of resolution succeeds
in abstracting a performance interface, giving the reader
a knob with which to control the amount of detail con-
tained in the interface.

Another aspect of palatability is how familiar the inter-
face looks to a human reader. To illustrate this, we show
an example of the general-case interface for VigNAT
in Fig. 6, restricted to TCP/UDP packets for space con-
siderations. The interface is a succinct, self-descriptive
Python program. The conditions in if statements are
expressed in terms of fields in the input packet header
(e.g., pkt.port) or semantic operations on data struc-
tures (e.g., nat_flowtable.contains), which are primi-
tives we expect both developers and operators to under-
stand. Being a stateful NF, VigNAT’s performance is in-
fluenced by NF state, and the interface reflects this via

def perf_vignat_gc(pkt):
Perf metric: x86 instructions
Resolution: 10
NF state:
flowtable
PCVs:
e - expired flows
t - bucket_traversals
c - hash_collisions

x = 19*e*t + 40*e*c + 227*e + 123

if not (pkt.is_IP) or not(pkt.is_TCP or pkt.
is_UDP):
return x + 7

else:
if pkt.port != internal_network_port:

if flowtable.contains(pkt.flow):
return x + 289

else:
return x + 68

else:
if flowtable.contains(pkt.flow):

return x + 18*t + 30*c + 395
else:

return x + 31*t + 30*c + 547

Figure 6. Extracted general-case interface for VigNAT.

PCVs, documented in the header. Bolt, on the other hand,
does not translate low-level details and exposes primi-
tives such as the starting condition on line 4 of Fig. 4.
While such details are understandable to the NF’s devel-
oper, they make the contract hard to read for those unfa-
miliar with the code.

Finally, we illustrate the impact of deployment-specific
instantiation of interfaces on their palatability. Fig. 7
shows the interfaces for VigNAT’s 50th and 95th per-
centile latencies and the distribution underlying them,
for a particular <workload, HW> pair. The deployment-
specific instantiation turns each formula (expressed in
terms of PCVs in the general-case interface) into con-
crete values specific to the environment and workload,
thus tailoring the interface to an operator’s needs. The
latency CDF also enables interested operators to under-
stand how VigNAT’s percentile latency varies.

4.1.2 Accuracy of performance interfaces
We now evaluate the prediction error of PIX-extracted
interfaces, i.e., the difference between the latency pre-
dicted by the interfaces and the measured latency.

To do so, we use PIX to extract interfaces for all 8
DPDK NFs4 for two hardware-independent metrics (x86
instructions and memops) and one hardware-dependent
one (x86 cycles). For each NF, we instantiate two deployment-
specific interfaces corresponding to two very different
deployments—typical traffic representative of university
networks [6] and adversarial traffic that seeks denial-of-
service [64]. The above deployments represent opposite
ends of the spectrum for absolute NF latencies [64]—
e.g., adversarial traffic incurs 2.1× greater latency than
typical traffic in VigNAT. To instantiate each deployment-
specific interface, we use PCAP traces of 100M packets
each. These traces are similar to what an operator could

4PIX does not support HW-dependent metrics for eBPF NFs

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 575

1 def perf_vignat_ds(pkt):
2 # Metric: CPU cycles, Resolution: 200
3 # Percentile: 50
4 # NF state - flowtable
5
6 if flowtable.contains(pkt.flow):
7 return 301
8 else:
9 if pkt.port != internal_network_port:

10 return 92
11 else:
12 return 558

1 def perf_vignat_ds(pkt):
2 # Metric: CPU cycles, Resolution: 200
3 # Percentile: 95
4 # NF state - flowtable
5
6 if flowtable.contains(pkt.flow):
7 return 395
8 else:
9 if pkt.port != internal_network_port:

10 return 97
11 else:
12 return 1037

0

200

400

600

800

1000

0 20 40 60 80 100

La
te

nc
y (

cy
cl

es
)

Percentile

New flow Existing flow External dropped

Figure 7. Common-case interfaces for VigNAT (50th and 95th percentile) and the latency CDF (resolution=200 cycles).

Finally, we illustrate the impact of deployment-specific
instantiation of interfaces on their palatability. Fig. 7
shows the interfaces for VigNAT’s 50th and 95th per-
centile latencies and the distribution underlying them,
for a particular <workload, HW> pair. The deployment-
specific instantiation turns each formula (expressed in
terms of PCVs in the general-case interface) into con-
crete values specific to the environment and workload,
thus tailoring the interface to an operator’s needs. The
latency CDF also enables interested operators to under-
stand how VigNAT’s percentile latency varies.

4.1.2 Accuracy of performance interfaces

RI Entire subsection been reworked.
We now evaluate the prediction error of PIX-extracted

interfaces, i.e., the difference between the latency pre-
dicted by the interfaces and the measured latency.

To do so, we use PIX to extract interfaces for all 8
DPDK NFs4 for two hardware-independent metrics (x86
instructions and memops) and one hardware-dependent
one (x86 cycles). For each NF, we instantiate two deployment-
specific interfaces corresponding to two very different
deployments — typical traffic representative of univer-
sity networks [5] and adversarial traffic that seeks denial-
of-service [52]. The above deployments result in signifi-
cantly different absolute NF latencies — e.g., adversarial
traffic incurs 2.1× greater latency than typical traffic in
VigNAT (further details in Appendix C). To instantiate
each deployment-specific interface, we use PCAP traces
of 100M packets each. These traces are similar to what
an operator could obtain with tcpdump on their domain
gateway and are not specific to any particular NF imple-
mentation.

For ground-truth measurements, we manually generate
synthetic packet traces for each <NF, deployment> pair
akin to Scaleway’s NAT test suite [47]). We play back
these traces against the NF and measure the latency of
each packet (the ground truth). Note, the synthetic traces

4PIX does not support HW-dependent metrics for eBPF NFs

are only used to measure the ground truth and not for
predicting performance, thus avoiding any overfitting.

To compare to Bolt [34], the closest prior work, we use
their published code [1]. We run each deployment trace
through the Bolt distiller, which computes the PCVs and
concretizes the performance contracts. For a comparison
to Freud [54], please see Appendix A.

We present here the prediction error for the 50th per-
centile (median), 90th percentile and 99th percentile laten-
cies; Appendix C provides the details for the entire spec-
trum. We compute all prediction errors by subtracting
the relevant statistic of the measured latency distribution
from that of the predicted latency distribution. The results
reported are at resolution 1, where PIX does the worst.

Median latency: Table 3 describes the maximum and
average error for median latencies across all NFs for each
metric and deployment regime. Note, despite the abso-
lute NF latency differing widely (Appendix C), PIX’s pre-
diction accuracy remains similar for both deployments,
showing that the PIX front-end correctly instantiates a
deployment-specific interfaces.

Instr’s error Memops error Cycles error
Typ Adv Typ Adv Typ Adv

PIX 1.8% 1.7% 4% 3.7% 26% 24%
(1.5%) (1.2%) (1.6%) (1.5%) (11%) (9%)

Bolt 7.5% 7.6% 7.5% 7.6% 308% 186%
(3.7%) (4.0%) (3.7%) (4.0%) (164%) (103%)

PIX 4.1× 4.4× 1.8× 2.0× 11.8× 7.7×
improvement (2.4×) (3.3×) (2.3×) (2.6×) (14.9×) (11.4×)

Table 3. Max (average) median latency prediction error for PIX
and Bolt for typical (Typ) and adversarial (Adv) traffic.

We find that, even in the worst case for PIX (i.e., finest
resolution), the error for hardware-independent metrics
is ≤4%, which is small enough to make PIX practical.
At any reasonable resolution, the error vanishes and PIX
becomes 100% accurate. PIX outperforms Bolt by 4.4×.

For the CPU cycles, PIX has a maximum error of 26%.
This is due to the overhead of the instrumentation used to

9

0

200

400

600

800

1000

0 20 40 60 80 100

La
te

nc
y (

cy
cl

es
)

Percentile

New flow Existing flow External dropped

Figure 7. Common-case interfaces for VigNAT (50th and 95th percentile) and the latency CDF (resolution=200 cycles).

obtain with tcpdump on their domain gateway and are
not specific to any particular NF implementation.

For ground-truth measurements, we manually generate
synthetic packet traces for each <NF, deployment> pair
akin to Scaleway’s NAT test suite [57]. We playback
these traces against the NF and measure the latency of
each packet (the ground truth). Note, the synthetic traces
are only used to measure the ground truth and not for
predicting performance, thus avoiding any overfitting.

To compare to Bolt [41], the closest prior work, we use
their published code [1]. We run each deployment trace
through the Bolt distiller, which computes the PCVs and
concretizes the performance contracts. For a comparison
to Freud [69], please see Appendix A.

We present here the prediction error for the 50th per-
centile, 90th percentile and 99th percentile latencies (which
is the point at which PIX’s limitations become evident). Ap-
pendix B provides the details for the entire spectrum. We
compute all prediction errors by subtracting the relevant
statistic of the measured latency distribution from that of
the predicted latency distribution. The results reported
are at resolution 1, where PIX does the worst.
50th percentile (median) latency: Table 4 describes

the maximum and average error for median latencies
across all NFs for each metric and deployment regime.
Note, despite the absolute NF latency differing widely,
PIX’s prediction accuracy is similar for both deploy-
ments, showing that the PIX front-end correctly instanti-
ates each deployment-specific interface.

Instr’s error Memops error Cycles error
Typ Adv Typ Adv Typ Adv

PIX 1.8% 1.7% 4% 3.7% 26% 24%
(1.5%) (1.2%) (1.6%) (1.5%) (11%) (9%)

Bolt 7.5% 7.6% 7.5% 7.6% 308% 186%
(3.7%) (4.0%) (3.7%) (4.0%) (164%) (103%)

PIX 4.1× 4.4× 1.8× 2.0× 11.8× 7.7×
improvement (2.4×) (3.3×) (2.3×) (2.6×) (14.9×) (11.4×)

Table 4. Max (average) median latency prediction error for PIX
and Bolt for typical (Typ) and adversarial (Adv) traffic.

We find that, even in the worst case for PIX (i.e., finest
resolution), the error for hardware-independent metrics
is ≤4%, which is small enough to make PIX practical.

At any reasonable resolution, the error vanishes and PIX
becomes 100% accurate. PIX outperforms Bolt by 4.4×.

For the CPU cycles, PIX has a maximum error of 26%.
This is due to the overhead of the instrumentation used
to measure the CPI and LLC miss latencies. Neverthe-
less, PIX’s accuracy is an order of magnitude better than
Bolt’s since PIX reasons about hardware performance as
a distribution, while Bolt only models the worst case.

90th percentile latency: Table 5 describes the predic-
tion error for 90th percentile latencies. The results are
similar to those for median latency with PIX outperform-
ing Bolt by up to an order of magnitude. This is once
again due to PIX reasoning about each of the PCVs as a
distribution, while Bolt only models the worst-case.

Instr’s error Memops error Cycles error
Typ Adv Typ Adv Typ Adv

PIX 1.4% 1.2% 3.2% 2.8% 22% 19%
(0.9%) (0.9%) (1.4%) (1.2%) (10%) (7%)

Bolt 5.9% 5.3% 6.6% 6.1% 234% 153%
(2.4%) (3.1%) (2.9%) (3.2%) (122%) (94%)

PIX 4.2× 4.4× 2.0× 2.1× 10.6× 8×
improvement (2.6×) (3.4×) (2.1×) (2.6×) (12.2×) (13.4×)

Table 5. Max (average) prediction error for 90th percentile
latencies for typical (Typ) and adversarial (Adv) traffic.

99th percentile latency: PIX cannot accurately predict
the latency at the very end of the tail (nor can Bolt). PIX’s
predictions have an error of ≤61% (average 22%), while
Bolt’s predictions have an error of ≤45% (average 14%).

It is interesting to note that PIX underestimates the
99th percentile latency while Bolt overestimates it; this
contrasting behavior is due to the different hardware mod-
els underlying the two tools. PIX underestimates the 99th
percentile latency since its simple hardware model (in-
structions * CPI + LLC_misses * miss_latency) is invalid
at this percentile where other hardware aspects also im-
pact latency significantly. Bolt, on the other hand, over-
estimates the 99th percentile latency since its hardware
model is designed to estimate the absolute worst-case la-
tency. However, PIX’s simple hardware model enables
it to accurately predict performance at all percentiles ex-
cept the tail (details in Appendix B); a task that Bolt’s
worst-case-only model is incapable of.

576 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

4.1.3 Time to extract performance interfaces
Table 6 shows the time it takes PIX to extracts the general-
case interfaces for all the NFs in this evaluation. We
believe that these numbers make it feasible to incorporate
performance interfaces extraction part of the regular NF
development cycle, e.g., as part of continuous integration.

NF N
at

as
ha

M
ag

le
v

V
ig

N
A

T

B
ri

dg
e

R
ou

te
r

Po
lic

er

D
PD

K
FW

D
PD

K
N

A
T

K
at

ra
n

C
ili

um
fil

te
r

C
R

A
B

hX
D

P
FW

PIX 15 5 4 17 0.73 3 4 6 32 0.43 0.15 0.23
BOLT 6 4 2 7 0.35 1.7 2 3 28 0.26 0.1 0.13

Table 6. Time, in minutes, for PIX and Bolt to extract the
general-case interfaces and contracts, respectively.

The time required to obtain the deployment-specific
interface is largely a function of the time required to run
the provided workload. In our experiments, we ran PCAP
files with 100M packets, and it took PIX <= 5 mins to
generate the deployment-specific interface for a given
<workload, HW> pair from the general-purpose inter-
face, regardless of NF. We conclude that PIX fulfills the
portability requirement (§3) well: operators can down-
load an NF with its general-case interface, provide a
PCAP file specific to their deployment, and PIX quickly
produces the deployment-specific interface.

4.2 Are interfaces useful to NF developers?
In this section, we present two workflows that NF devel-
opers can use to understand (§4.2.1) and debug (§4.2.2)
the performance behavior of their code.

4.2.1 Flagging performance regressions
Programmers often introduce involuntarily performance
regressions. Using performance test suites to catch such
regressions is not easy, because they require environment
setup, are fragile, and take long to run. We show here
how a developer or a tool can instead compare the per-
formance interface before and after a commit to identify
performance regressions more quickly, conveniently, and
precisely than with a performance test suite.

We wrote a script that retrieves each Katran commit
and uses PIX to extract the corresponding instruction-
count interface, at resolution=1. For each pair of commits
a and b, there is a corresponding pair of interfaces Sa and
Sb . The script finds the maximum latency (in terms of
LLVM instruction count) predicted by each of the two
interfaces and compares the two. We report LLVM (not
eBPF bytecode) instructions since PIX builds on KLEE
which interprets LLVM IR. Reporting eBPF instructions
would require us to build on a tool that interprets eBPF
bytecode (e.g., Serval [59])—this is an engineering task

we leave to future work. We run PIX on all commits to
the eBPF portion of Katran’s code.

Table 7 shows the commits where a performance re-
gression occurs. Over the past three years, the maximum
latency for new flows regressed by 14.6%.

Commit ID Perf before
[LLVM instr’s]

Perf after
[LLVM instr’s]

Performance
regression [%]

Orig commit - 1771 -
873d0501695c 1765 1896 7.42%
39e58b530a8a 1896 1914 0.95%
458aa0907b68 1914 1933 0.99%
15f81d0e7ec6 1930 1946 0.83%
74c3338c2f7e 1952 1983 1.59%
d0790d3a3823 1983 2030 2.37%
All commits 1771 2030 14.62%

Table 7. Perf regressions in Katran (handling new flows).

We imagine using this workflow as part of continuous
integration (CI) to automatically identify unintended per-
formance regressions. The CI system can present to the
developer a before-and-after comparison of performance
that directly highlights for which classes of inputs the
regression occurs and what the magnitude of the regres-
sion is. Compared to performance tests, this workflow
consumes less developer time and fewer resources and
offers better completeness.

4.2.2 Fixing performance bugs
By helping developers understand the code’s performance
more quickly and deeply, interfaces can help fix perfor-
mance bugs. We illustrate this with two examples of per-
formance bugs in the map used by Vigor NFs [50].

The top of Fig. 8 shows a snippet of the performance
interface of the contains operation in libVig’s map.

if map.contains(key): # --- BEFORE ---
if not(cached(key)):
Warning: 2*t integer divides
return (4*t)*miss_latency + (21*t+27)*CPI

....

if map.contains(key): # --- AFTER ---
if not(cached(key)):
return (1*t)*miss_latency + (18*t+27)*CPI

....

Figure 8. Interface for map_contains() before and after the
bug fix. t is the PCV for traversals in the hash ring.

The first red flag is the warning issued by PIX itself,
based on tracking of expensive x86 instructions that ad-
versely impact CPI. Looking for integer divides in the
map code, we found that, on each traversal, it uses two
costly modulo operations. To fix the issue, we replaced
them with one bitwise and.

The second red flag is that each traversal requires 4
independent heap accesses (4*t). It turns out that key
metadata is being stored in four distinct arrays of int

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 577

https://github.com/facebookincubator/katran/commit/24e832c3e53cd929b7fca474b757590d9acb67d5#diff-1fe4cd2e8c82be13181a400cabad55e87193ad7f16fc5004597ec3d26c708630
https://github.com/facebookincubator/katran/commit/873d0501695cbfb4518afc3f54685f66b09f4a2e#diff-1fe4cd2e8c82be13181a400cabad55e87193ad7f16fc5004597ec3d26c708630
https://github.com/facebookincubator/katran/commit/39e58b530a8a2e26b7797da72037f6645370c7e7#diff-1fe4cd2e8c82be13181a400cabad55e87193ad7f16fc5004597ec3d26c708630
https://github.com/facebookincubator/katran/commit/458aa0907b68496bbf3a7be0996e5440d560c1fb#diff-1fe4cd2e8c82be13181a400cabad55e87193ad7f16fc5004597ec3d26c708630
https://github.com/facebookincubator/katran/commit/15f81d0e7ec60a6e96dc40a3397f3a1f28c6cf71#diff-1fe4cd2e8c82be13181a400cabad55e87193ad7f16fc5004597ec3d26c708630
https://github.com/facebookincubator/katran/commit/74c3338c2f7ea4d305e2f9440a668d4454643235#diff-1fe4cd2e8c82be13181a400cabad55e87193ad7f16fc5004597ec3d26c708630
https://github.com/facebookincubator/katran/commit/d0790d3a3823d34373a94ff41dc9b6435e3f7ba7#diff-1fe4cd2e8c82be13181a400cabad55e87193ad7f16fc5004597ec3d26c708630

elements. Our fix was to encapsulate key’s metadata in
a single struct and use a single array with elements of
this struct type. The rest remained unchanged.

Table 8 shows the impact of our fixes, based on Vigor’s
benchmarks: the two fixes, together, improve NF latency
by 22% on average, and throughput by 19%.

NF Throughput [Mpps] Latency [ns]
Orig Fix 1 Fix 2 Change Orig Fix 1 Fix 2 Change

VigNAT 3.88 4.36 4.68 20.62% 317 276 236 25.55%
Bridge 3.05 3.59 3.62 18.69% 410 332 323 21.22%
Maglev 2.58 2.86 3.04 17.83% 482 423 391 18.88%

Table 8. Throughput and latency of three NFs using map, shown
before/after each performance bug fix.

4.3 Are interfaces useful to NF operators?
Operators typically care about how an NF performs in
their specific deployment, not in general for everyone’s
deployment. We show how operators can use perfor-
mance interfaces to pick the NF variant best suited to
their hardware (§4.3.1) and to do a root-cause diagnosis
of deployment-specific performance anomalies (§4.3.2).

4.3.1 Which NF variant for my NIC?
Modern NICs provide the ability to offload specific tasks
(like checksums and encryption) to specialized hardware.
It is therefore useful to know which variant of an NF
takes max advantage of the offloads available on a NIC.

Fig. 9 shows the interfaces for two variants of a NAT,
and the interaction with checksum offload on Mellanox
ConnectX-4 [15] and Intel Ixgbe [40] NICs. The for-
mally verified VigNAT does not do any offloading, whereas
DPDK NAT does. The strings in the if conditions on
lines 3 and 6 are identical to the one used by the NIC dri-
ver to identify itself [22]. The interface also shows the
difference in latency: Ixgbe requires the software to com-
pute a pseudo-header checksum, whereas ConnectX-4
allows full offload, so it has lower latency.

Based on this performance interface, an operator can
make an informed deployment decision: if using Ixgbe
NICs, choosing the verified VigNAT makes sense; else,
it’s a trade-off to make carefully.

4.3.2 Why do I get bad performance?
NFs running in production can face workloads that trig-
ger surprising performance degradation. To address such
anomalies, operators must first diagnose the root cause,
and this often takes a lot of work.

PIX helps the search for a root cause by providing
a list of possible explanations for the observed perfor-
mance, ranked by likelihood. Given a problematic work-
load and an NF (or its general-case interface), PIX in-
stantiates the PCVs in a deployment-specific manner and
then measures the distributions for each PCV and the NF

Snippet from VigNAT interface
if flowtable.contains(pkt.flow):
return 18*t + 30*c + 518 # No offload
else:
....

Snippet from DPDK NAT interface
if flowtable.contains(pkt.flow):
if(NIC_family == "net_mlx5"):
return 18*t + 30*c + 265 + cksum_offload()
else:
if(NIC_family == "net_ixgbe"):
return 18*t + 30*c + 478 + cksum_offload()
else:
return 18*t + 30*c + 564

else:
....

Figure 9. Interfaces for VigNAT and DPDK NAT: VigNAT
does checksums in software, while DPDK NAT offloads check-
sums to the NIC as much as possible.

latency. It then ranks the PCVs based on the correlation
between the latency distribution and that of the PCV (us-
ing least-square fit linear regression).

To illustrate this workflow, we refer to three perfor-
mance bugs that span both hardware and software root
causes, shown in Table 9. The first bug occurs due to the
uniform random workload causing hash collisions in a
widely used hash function [42] used by Bridge; typical
workloads with Zipfian distributions do not suffer from
hash collisions. The second bug is caused by VigNAT’s
batches expiry of flows, which results in a latency spike
that only becomes evident for traffic with high churn.
The third bug occurs when the active flowtable in Maglev
overflows the last-level cache of the server; this makes the
latency spike be highly dependent on LLC configuration.

Bug Root cause Identified as
most-likely cause?

Spike in median latency of Bridge
hash-collisions Yesfor uniform random workload

Spike in tail latency of VigNAT expired-flows Yesdue to high churn (batched)

Spike in median latency of Maglev active-flowtable- Yeson a particular x86 server size

Table 9. Performance bugs used for root-cause diagnosis.

For each bug, we generated a workload that triggers
it and provided the PCAP file to PIX, along with the
general-case interface of the corresponding NF. For each
bug, PIX correctly reported the culprit PCV as the most
likely root cause. Of course, PIX can only track bugs that
arise from PCVs it accounts for. It would be unable, for
instance, to identify the root cause for a latency spike due
to LLC evictions caused by a noisy neighboring process,
since PIX does not account for contention.

This example illustrates how PIX can help focus the
operators’ attention on likely explanations for the per-
formance they observe, thereby reducing the amount of
work needed to find the root cause.

578 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

In conclusion, our evaluation shows that PIX is practi-
cal: the complexity of extracted interfaces is significantly
lower than the NF implementation, their accuracy is high,
and the time taken to extract them is reasonable. Further,
NF developers and operators can use these interfaces to
identify performance regressions, diagnose and fix per-
formance bugs, and pick the NFs that are best suited to
their hardware.

5 Does PIX Generalize?
In this section, we explore how PIX can generalize in
two directions: (1) programs other than NFs, that are
nevertheless still amenable to ESE; and (2) NFs that are
not amenable to ESE. Overall, we find that the design of
PIX—split into a modular back-end and front-end that
produce general-case and deployment-specific interfaces,
respectively—enables generalization by adapting just the
necessary modules in the PIX pipeline.

Beyond NFs: We have successfully applied PIX to the
OpenSSL library, to uncover digital side-channels, and
to eBPF extensions for user-space file systems.

Extracting interfaces for finding digital side-channels
required modifying only PIX’s hardware model (i.e., step
1 in the back-end). Implementing a new model focused
on sources of constant-time violations (using the exhaus-
tive list in [3]) took us 2 person months. We ran PIX on
12 cryptographic primitives from OpenSSL 3.0 [61] and
found a constant-time violation in the AES cipher un-
padding function. This violation was acknowledged by
the OpenSSL maintainers [62]. We have submitted a pull
request [63] that has undergone multiple rounds of re-
view and is in the final stages of getting merged.

Our experience with OpenSSL reinforced our belief
(from §4.2.1) that a tool that automatically extracts per-
formance interfaces would be of great use to develop-
ers. For example, we learned that the violation we uncov-
ered had been latent since OpenSSL 1.1.1 because the
developer “just reused the code” and had somehow been
missed despite the extremely thorough code reviews that
OpenSSL goes through. If performance interfaces of the
OpenSSL code were extracted regularly, e.g., as part of
continuous integration, it is unlikely that this violation
would have persisted for this long.

Extracting interfaces for eBPF file system extensions
was more straightforward since the code is similar to
that of eBPF NFs. Here, we only had to add translation
rules (step 2 in the PIX back-end) corresponding to the
supported system calls. This took 4 person-days, after
which PIX was able to automatically extract interfaces
for the extFUSE extensions [7].

Code not amenable to ESE: To evaluate the limits of
PIX’s ESE-based approach, we used PIX on Snort [73],

a popular IDS that independent prior work has shown to
not be amenable to ESE [53, 81]. Our results corrobo-
rated those from prior work; while PIX did extract perfor-
mance interfaces for the networking stack and all detec-
tion rules that look only at packet headers, attempting to
extract a complete interface caused PIX to time out. Ex-
tracting an interface from Snort with PIX requires either
that we modify its code to cleanly separate the stateful
components, or that we replace Bolt in the PIX back-end
with a manual theorem prover.

6 Related Work
We compared PIX to Bolt [41] w.r.t the design (in §2)
and results (in §4.1). We do not do so again here.

Here we provide a qualitative comparison of PIX against
Freud, Appendix A provides a detailed quantitative one.
Freud treats code almost as a black box and relies on
developers to provide comprehensive performance test
suites in order to guide the exploration of performance be-
haviors and ensure prediction accuracy. PIX is white-box
because it analyzes source code. Analyzing the source
ensures that PIX can analyze the system once, and in-
stantiate the interface for different deployments, while
Freud users must re-run the tool for each new <workload,
hardware> pair. Lastly, Freud’s performance formulae
are limited to being expressed in terms of program vari-
ables, but the performance of stateful code typically de-
pends on (implicit) PCVs instead [37, 38].

Performance upper bounds and adversarial work-
loads: Worst-Case Execution Time (WCET) Analysis
derives formal upper bounds on performance; [79] pro-
vides an overview of the state of the art. These bounds
are particularly popular in the domain of real-time and
safety-critical systems where performance guarantees
are a part of functional correctness. While WCET only
looks at one aspect of the performance profile—the ab-
solute worst-case—performance interfaces characterize
performance in the face of any arbitrary input, whether
typical, ideal, or adversarial. Further, to enable stringent
upper bounds, real-time systems tend to avoid dynamic
data structures and input-dependent memory accesses—
aspects that are commonplace in NFs.

Considerable prior work focuses on generating and an-
alyzing adversarial workloads that attack software perfor-
mance [2, 18, 49, 60, 64, 65, 67, 72, 76]. As with WCET,
all of this work focuses only on worst-case inputs, while
interfaces reflect the entire performance profile.

Performance profilers: Traditional profilers [51] mea-
sure the execution cost (e.g., running time, executed in-
structions, cache misses) of a piece of code. Trend Profil-
ing [34], Algorithmic Profiling [85] and Input-Sensitive
Profiling [16, 17] take this one step further: by extracting
a cost function defining the relationship between input

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 579

size and execution cost. However, like Freud, these tools
treat the code as a black-box and require developers to
provide comprehensive performance test suites to guide
the exploration of performance behavior.

Performance analysis for SmartNIC-based NFs: Krude
et al. [47] use SMT solvers to analyze NF code writ-
ten for processor-based SmartNICs and provide lower
bounds on throughput. Focussing solely on throughput
lower bounds results in their approach being limited to an-
alyzing worst-case latency, much like WCET. Clara [68]
uses machine learning to analyze NF code written in C to
identify “effective porting strategies” that result in low la-
tency when the NF is ported to a SmartNIC. Unlike PIX
that focusses on accurately predicting the NF latency,
Clara focusses on identifying how the NF implementa-
tion can make best use of the SmartNIC hardware (e.g.,
accelerator usage, NF state placement strategies, etc).

Program analysis for NF code running on commod-
ity hardware: Several instances of prior work have pro-
posed using program analysis to help understand, debug,
and verify the semantic behavior of software NFs [10, 11,
19, 44, 66, 74, 84, 86]. PIX builds upon the experience
of all of this prior work, but analyzes NF performance.

NF performance monitoring and diagnosis: Sev-
eral instances of prior work [28, 35, 56, 80] diagnose per-
formance issues such as packet drops or low throughput
in NF deployments. Such work is complementary to PIX
since it helps diagnose performance issues once they oc-
cur in production, while PIX provides a summary of NF
performance before the NF is deployed.

7 Conclusion
We proposed the notion of a performance interface—
a program that accepts the same inputs as the system
and outputs the latency incurred by the given input. For
the interface to be simultaneously simple, accurate and
human-readable we proposed (a) the notion of a perfor-
mance resolution to eliminating unnecessary details, and
(b) separate deployment-specific interfaces to tailor the
interface to particular <workload, environment> pairs.

We described a tool (PIX) that automatically extracts
performance interfaces from NF implementations. and
evaluated it on 12 NFs, including several used in produc-
tion. Our results show that PIX is practical—the com-
plexity of extracted interfaces is significantly lower than
the NF implementation, their accuracy is high, and the
time to extract them is reasonable. Finally, we show how
NF developers and operators can use these interfaces to-
day, to identify performance regressions, diagnose and
fix performance bugs, and pick the NFs that are best
suited to their hardware.

8 Acknowledgements
We thank our shepherd Theo Benson and the anony-
mous OSDI, SOSP and NSDI reviewers for their detailed
feedback that significantly improved the paper. We are
also grateful to the many people who provided helpful
feedback on drafts of the paper at various stages—Solal
Pirelli, Arseniy Zaostrovnykh, Marios Kogias, Adrien
Ghosn, Can Cebeci, Yugesh Kothari, Ayoub Chouk, Jo-
hannes Kinder, Jonas Wagner, Ed Bugnion and James
Larus.

References
[1] Bolt source code. https://github.com/bolt-perf-contracts/bolt.
[2] AFEK, Y., BREMLER-BARR, A., HARCHOL, Y., HAY, D., AND

KORAL, Y. Making DPI engines resilient to algorithmic com-
plexity attacks. IEEE/ACM Trans. on Networking (2016).

[3] ALMEIDA, J. B., BARBOSA, M., BARTHE, G., DUPRESSOIR,
F., AND EMMI, M. Verifying constant-time implementations. In
USENIX Security Symp. (2016).

[4] WSJ: Facebook, google and apple hit by unusual outages.
https://www.wsj.com/articles/facebook-and-instagram-
suffer-lengthy-outages-11552539752.

[5] BARBETTE, T., SOLDANI, C., AND MATHY, L. Fast userspace
packet processing. In ACM/IEEE Symp. on Architectures for
Networking and Communications Systems (2015).

[6] BENSON, T., AKELLA, A., AND MALTZ, D. A. Network traffic
characteristics of data centers in the wild. In Internet Measure-
ment Conf. (2010).

[7] BIJLANI, A., AND RAMACHANDRAN, U. Extension framework
for file systems in user space. In USENIX Annual Technical Conf.
(2019).

[8] BRUNELLA, M. S., BELOCCHI, G., BONOLA, M.,
PONTARELLI, S., SIRACUSANO, G., BIANCHI, G., CAM-
MARANO, A., PALUMBO, A., PETRUCCI, L., AND BIFULCO,
R. hxdp: Efficient software packet processing on FPGA NICs. In
Symp. on Operating Sys. Design and Implem. (2020).

[9] CADAR, C., DUNBAR, D., AND ENGLER, D. R. KLEE: Unas-
sisted and automatic generation of high-coverage tests for com-
plex systems programs. In Symp. on Operating Sys. Design and
Implem. (2008).

[10] CANINI, M., KOSTIC, D., REXFORD, J., AND VENZANO, D.
Automating the testing of OpenFlow applications. Intl. Workshop
on Rigorous Protocol Engineering (2011).

[11] CANINI, M., VENZANO, D., PEREŠÍNI, P., KOSTIĆ, D., AND

REXFORD, J. A NICE way to test openflow applications. In
Symp. on Networked Systems Design and Implem. (2012).

[12] CHEN, S., DELIMITROU, C., AND MARTINEZ, J. F. PARTIES:
QoS-Aware Resource Partitioning for Multiple Interactive Ser-
vices. In Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems (2019).

[13] Commits to the eBPF code in the Cilium project. https://
github.com/cilium/cilium/commits/master/bpf.

[14] Cilium Project. https://cilium.io.
[15] Mellanox ConnectX-4 Network Adapter Cards. https://

downloadcenter.intel.com/download/14687.
[16] COPPA, E., DEMETRESCU, C., AND FINOCCHI, I. Input-

sensitive profiling. In Intl. Conf. on Programming Language De-
sign and Implem. (2012).

580 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/bolt-perf-contracts/bolt
https://www.wsj.com/articles/facebook-and-instagram-suffer-lengthy-outages-11552539752
https://www.wsj.com/articles/facebook-and-instagram-suffer-lengthy-outages-11552539752
https://github.com/cilium/cilium/commits/master/bpf
https://github.com/cilium/cilium/commits/master/bpf
https://cilium.io
https://downloadcenter.intel.com/download/14687
https://downloadcenter.intel.com/download/14687

[17] COPPA, E., DEMETRESCU, C., FINOCCHI, I., AND MAROTTA,
R. Estimating the empirical cost function of routines with dy-
namic workloads. In Intl. Symp. on Code Generation and Opti-
mization (2014).

[18] CROSBY, S. A., AND WALLACH, D. S. Denial of service via al-
gorithmic complexity attacks. In USENIX Security Symp. (2003).

[19] DOBRESCU, M., AND ARGYRAKI, K. Software dataplane ver-
ification. In Symp. on Networked Systems Design and Implem.
(2014).

[20] DOBRESCU, M., ARGYRAKI, K., AND RATNASAMY, S. Toward
predictable performance in software packet-processing platforms.
In Symp. on Networked Systems Design and Implem. (2012).

[21] DPDK: Data plane development kit. https://dpdk.org.
[22] Ethtool Driver Identifier. https://

docs.huihoo.com/doxygen/linux/kernel/3.7/
include2uapi2linux2ethtool8hsource.html#l00085.

[23] Commits to eBPF maps in the Linux Kernel. https://github.com/
torvalds/linux/commits/master/kernel/bpf.

[24] eBPF maps. https://prototype-kernel.readthedocs.io/en/
latest/bpf/ebpfmaps.html.

[25] EISENBUD, D. E., YI, C., CONTAVALLI, C., SMITH, C.,
KONONOV, R., MANN-HIELSCHER, E., CILINGIROGLU, A.,
CHEYNEY, B., SHANG, W., AND HOSEIN, J. D. Maglev: A fast
and reliable software network load balancer. In Symp. on Net-
worked Systems Design and Implem. (2016).

[26] EMMERICH, P., GALLENMÜLLER, S., RAUMER, D., WOHL-
FART, F., AND CARLE, G. MoonGen: A scriptable high-speed
packet generator. In Internet Measurement Conf. (2015).

[27] EYERMAN, S., EECKHOUT, L., KARKHANIS, T., AND SMITH,
J. E. A performance counter architecture for computing accurate
CPI components. In Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems (2006).

[28] FAYAZBAKHSH, S. K., CHIANG, L., SEKAR, V., YU, M., AND

MOGUL, J. C. Enforcing network-wide policies in the presence
of dynamic middlebox actions using flowtags. In Symp. on Net-
worked Systems Design and Implem. (2014).

[29] FILLIÂTRE, J., GONDELMAN, L., AND PASKEVICH, A. The
spirit of ghost code.

[30] Freud source code repository. https://github.com/usi-systems/
freud.

[31] FRIED, J., RUAN, Z., OUSTERHOUT, A., AND BELAY, A. Cal-
adan: Mitigating interference at microsecond timescales. In Symp.
on Operating Sys. Design and Implem. (2020).

[32] Ghost variables in software verification. http://whiley.org/
2014/06/20/understanding-ghost-variables-in-software-
verification/.

[33] GITHUB. The 2020 state of the Octoverse. https://
octoverse.github.com, Dec. 2020.

[34] GOLDSMITH, S., AIKEN, A., AND WILKERSON, D. S. Measur-
ing empirical computational complexity. In Symp. on the Founda-
tions of Software Eng. (2007).

[35] GONG, J., LI, Y., ANWER, B., SHAIKH, A., AND YU, M. Mi-
croscope: Queue-based performance diagnosis for network func-
tions. In ACM SIGCOMM Conf. (2020).

[36] Google cloud storage incident. https://
status.cloud.google.com/incident/storage/19002.

[37] GULWANI, S. SPEED: symbolic complexity bound analysis. In
Intl. Conf. on Computer Aided Verification (2009).

[38] GULWANI, S., MEHRA, K. K., AND CHILIMBI, T. M. SPEED:
precise and efficient static estimation of program computational
complexity. In Symp. on Principles of Programming Languages
(2009).

[39] GUNAWI, H. S., HAO, M., LEESATAPORNWONGSA, T.,
PATANA-ANAKE, T., DO, T., ADITYATAMA, J., ELIAZAR, K. J.,
LAKSONO, A., LUKMAN, J. F., MARTIN, V., AND SATRIA,
A. D. What bugs live in the cloud? A study of 3000+ issues in
cloud systems. In Symp. on Cloud Computing (2014).

[40] Intel Network AdIntel 82599 10 GbE Controller Datasheetapter
Driver for PCIe Intel 10 Gigabit Ethernet Network Connections.
https://downloadcenter.intel.com/download/14687.

[41] IYER, R., PEDROSA, L., ZAOSTROVNYKH, A., PIRELLI, S.,
ARGYRAKI, K., AND CANDEA, G. Performance contracts for
software network functions. In Symp. on Networked Systems
Design and Implem. (2019).

[42] Java String hashCode. https://docs.oracle.com/javase/6/docs/
api/java/lang/String.html#hashCode().

[43] JIN, G., SONG, L., SHI, X., SCHERPELZ, J., AND LU, S. Un-
derstanding and detecting real-world performance bugs. In Intl.
Conf. on Programming Language Design and Implem. (2012).

[44] KHALID, J., GEMBER-JACOBSON, A., MICHAEL, R., AB-
HASHKUMAR, A., AND AKELLA, A. Paving the way for NFV:
Simplifying middlebox modifications using statealyzr. In Symp.
on Networked Systems Design and Implem. (2016).

[45] KING, J. C. Symbolic Execution and Program Testing. J. ACM
19, 7 (1976).

[46] KOGIAS, M., IYER, R., AND BUGNION, E. Bypassing the load
balancer without regrets. In Symp. on Cloud Computing (2020).

[47] KRUDE, J., RÜTH, J., SCHEMMEL, D., RATH, F., FOLBORT, I.,
AND WEHRLE, K. Determination of throughput guarantees for
processor-based smartnics. In Intl. Conf. on Emerging Networking
Experiments and Technologies (2021).

[48] LAMPSON, B. Hints and principles for computer system de-
sign. https://www.microsoft.com/en-us/research/uploads/
prod/2019/09/Hints-and-Principles-v1-full.pdf, November
2020.

[49] LEMIEUX, C., PADHYE, R., SEN, K., AND SONG, D. Perffuzz:
automatically generating pathological inputs. In Intl. Symp. on
Software Testing and Analysis (2018).

[50] libVig source code . https://github.com/vigor-nf/vigor/tree/
master/libvig/verified.

[51] The Linux Perf Tool. https://en.wikipedia.org/wiki/Perf(Linux).
[52] MANOUSIS, A., SHARMA, R. A., SEKAR, V., AND SHERRY, J.

Contention-aware performance prediction for virtualized network
functions. In ACM SIGCOMM Conf. (2020).

[53] MEHROTRA, P., AND GOSWAMI, S. Analyzing Snort. Tech. rep.,
University of British Columbia, 2018.

[54] Microscope survey form and results. https://
www.dropbox.com/s/66cp4k3wl8zm0q5/survey.pdf?dl=0.

[55] MOON, S., HELT, J., YUAN, Y., BIERI, Y., BANERJEE, S.,
SEKAR, V., WU, W., YANNAKAKIS, M., AND ZHANG, Y. Alem-
bic: Automated model inference for stateful network functions.
In Symp. on Networked Systems Design and Implem. (2019).

[56] NAIK, P., SHAW, D. K., AND VUTUKURU, M. NFVPerf: Online
performance monitoring and bottleneck detection for NFV. In
IEEE Conf. on Network Function Virtualization and Software
Defined Networks (2016).

[57] Performance Tests for Natasha. https://github.com/scaleway/
natasha/tree/master/test/perf.

[58] Scaleway Natasha. https://github.com/scaleway/natasha.
[59] NELSON, L., BORNHOLT, J., GU, R., BAUMANN, A., TORLAK,

E., AND WANG, X. Scaling symbolic evaluation for automated
verification of systems code with Serval. In Symp. on Operating
Systems Principles (2019).

[60] OLIVO, O., DILLIG, I., AND LIN, C. Detecting and exploiting
second order denial-of-service vulnerabilities in web applications.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 581

https://docs.huihoo.com/doxygen/linux/kernel/3.7/include_2uapi_2linux_2ethtool_8h_source.html#l00085
https://docs.huihoo.com/doxygen/linux/kernel/3.7/include_2uapi_2linux_2ethtool_8h_source.html#l00085
https://docs.huihoo.com/doxygen/linux/kernel/3.7/include_2uapi_2linux_2ethtool_8h_source.html#l00085
https://github.com/torvalds/linux/commits/master/kernel/bpf
https://github.com/torvalds/linux/commits/master/kernel/bpf
https://prototype-kernel.readthedocs.io/en/latest/bpf/ebpf_maps.html
https://prototype-kernel.readthedocs.io/en/latest/bpf/ebpf_maps.html
https://github.com/usi-systems/freud
https://github.com/usi-systems/freud
http://whiley.org/2014/06/20/understanding-ghost-variables-in-software-verification/
http://whiley.org/2014/06/20/understanding-ghost-variables-in-software-verification/
http://whiley.org/2014/06/20/understanding-ghost-variables-in-software-verification/
https://octoverse.github.com
https://octoverse.github.com
https://status.cloud.google.com/incident/storage/19002
https://status.cloud.google.com/incident/storage/19002
https://downloadcenter.intel.com/download/14687
https://docs.oracle.com/javase/6/docs/api/java/lang/String.html#hashCode()
https://docs.oracle.com/javase/6/docs/api/java/lang/String.html#hashCode()
https://www.microsoft.com/en-us/research/uploads/prod/2019/09/Hints-and-Principles-v1-full.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2019/09/Hints-and-Principles-v1-full.pdf
https://github.com/vigor-nf/vigor/tree/master/libvig/verified
https://github.com/vigor-nf/vigor/tree/master/libvig/verified
https://en.wikipedia.org/wiki/Perf_(Linux)
https://www.dropbox.com/s/66cp4k3wl8zm0q5/survey.pdf?dl=0
https://www.dropbox.com/s/66cp4k3wl8zm0q5/survey.pdf?dl=0
https://github.com/scaleway/natasha/tree/master/test/perf
https://github.com/scaleway/natasha/tree/master/test/perf
https://github.com/scaleway/natasha

In Conf. on Computer and Communication Security (2015).
[61] OpenSSL. https://github.com/openssl/openssl.
[62] Github issue raising constant-time violation in OpenSSL’s Ci-

pherblock Unpadding. https://github.com/openssl/openssl/
issues/16230.

[63] Pull request to fix constant-time violation in OpenSSL’s Ci-
pherblock Unpadding. https://github.com/openssl/openssl/
pull/16323.

[64] PEDROSA, L., IYER, R., ZAOSTROVNYKH, A., FIETZ, J., AND

ARGYRAKI, K. Automated synthesis of adversarial workloads
for network functions. In ACM SIGCOMM Conf. (2018).

[65] PETSIOS, T., ZHAO, J., KEROMYTIS, A. D., AND JANA, S.
Slowfuzz: Automated domain-independent detection of algorith-
mic complexity vulnerabilities. In Conf. on Computer and Com-
munication Security (2017).

[66] PIRELLI, S., VALENTUKONYTĖ, A., ARGYRAKI, K., AND CAN-
DEA, G. Automated verification of network function binaries. In
Symp. on Networked Systems Design and Implem. (2022).

[67] PUSCHNER, P., AND NOSSAL, R. Testing the results of static
worst-case execution-time analysis. In Real-Time Systems Symp.
(1998).

[68] QIU, Y., XING, J., HSU, K.-F., KANG, Q., LIU, M.,
NARAYANA, S., AND CHEN, A. Automated smartnic offloading
insights for network functions. In Symp. on Operating Systems
Principles (2021).

[69] ROGORA, D., CARZANIGA, A., DIWAN, A., HAUSWIRTH, M.,
AND SOULÉ, R. Analyzing system performance with probabilis-
tic performance annotations. In ACM EuroSys European Conf. on
Computer Systems (2020).

[70] SCHWARTZ, E. J., AVGERINOS, T., AND BRUMLEY, D. All you
ever wanted to know about dynamic taint analysis and forward
symbolic execution (but might have been afraid to ask). In IEEE
Symp. on Security and Privacy (2010).

[71] SHIROKOV, N., AND DASINENI, R. Open-sourcing Katran, a
scalable network load balancer. https://engineering.fb.com/
2018/05/22/open-source/open-sourcing-katran-a-
scalable-network-load-balancer, May 2018.

[72] SMITH, R., ESTAN, C., AND JHA, S. Backtracking algorithmic
complexity attacks against a NIDS. In Annual Computer Security
Applications Conf. (2006).

[73] Snort. https://www.snort.org.
[74] STOENESCU, R., POPOVICI, M., NEGREANU, L., AND RAICIU,

C. Symnet: Scalable symbolic execution for modern networks.
In ACM SIGCOMM Conf. (2016).

[75] TERPSTRA, D., JAGODE, H., YOU, H., AND DONGARRA, J. J.
Collecting performance data with PAPI-C. In Workshop on Paral-
lel Tools for High Performance Computing (2009).

[76] TOFFOLA, L. D., PRADEL, M., AND GROSS, T. R. Synthesizing
programs that expose performance bottlenecks. In Intl. Symp. on
Code Generation and Optimization (2018).

[77] TOOTOONCHIAN, A., PANDA, A., LAN, C., WALLS, M., AR-
GYRAKI, K. J., RATNASAMY, S., AND SHENKER, S. Resq: En-
abling slos in network function virtualization. In Symp. on Net-
worked Systems Design and Implem. (2018).

[78] WATSON, A. H., AND MCCABE, T. J. Structured Testing: A
Testing Methodology Using the Cyclomatic Complexity Metric.
Computer Systems Laboratory, National Institute of Standards
and Technology, 1996.

[79] WILHELM, R., ENGBLOM, J., ERMEDAHL, A., HOLSTI, N.,
THESING, S., WHALLEY, D., BERNAT, G., FERDINAND,
C., HECKMANN, R., MITRA, T., MUELLER, F., PUAUT, I.,
PUSCHNER, P., STASCHULAT, J., AND STENSTRÖM, P. The
worst-case execution-time problem — overview of methods and

survey of tools. ACM Trans. Embed. Comput. Syst. (2008).
[80] WU, W., HE, K., AND AKELLA, A. PerfSight: Performance

diagnosis for software dataplanes. In Internet Measurement Conf.
(2015).

[81] WU, W., ZHANG, Y., AND BANERJEE, S. Automatic synthesis
of nf models by program analysis. In ACM Workshop on Hot
Topics in Networks (2016).

[82] Express data path. https://en.wikipedia.org/wiki/
ExpressDataPath.

[83] ZAOSTROVNYKH, A., PIRELLI, S., IYER, R. R., RIZZO, M.,
PEDROSA, L., ARGYRAKI, K. J., AND CANDEA, G. Verifying
software network functions with no verification expertise. In
Symp. on Operating Systems Principles (2019).

[84] ZAOSTROVNYKH, A., PIRELLI, S., PEDROSA, L., ARGYRAKI,
K., AND CANDEA, G. A formally verified NAT. In ACM SIG-
COMM Conf. (2017).

[85] ZAPARANUKS, D., AND HAUSWIRTH, M. Algorithmic profiling.
In Intl. Conf. on Programming Language Design and Implem.
(2012).

[86] ZENG, H., KAZEMIAN, P., VARGHESE, G., AND MCKEOWN,
N. Automatic test packet generation. In Intl. Conf. on Emerging
Networking Experiments and Technologies (2012).

Appendix A Using Freud on NFs
In this section, we describe our experience experiment-
ing with Freud. We used the publicly available Freud
code [30] at commit ID e6e7a91006.

Freud takes as input a binary and a test suite, and out-
puts an expression of performance (runtime) as a function
of input and global variables. So, by design, it strikes a
different generality/accuracy balance than PIX: It is more
general, in the sense that it can run on any program—
not just NFs that are amenable to ESE—and requires no
source code and no data-structure pre-analysis. It is less
accurate, in two ways: (a) It cannot reason about the per-
formance of execution paths that are not triggered by the
test suite (since it does not symbex the program, and it
does not analyze the source code). (b) It cannot reason
about how past inputs affect performance in stateful code
(since it does not know anything about the data structures
where the state is stored).

To assess Freud’s generality/accuracy balance, espe-
cially in the context of NFs, we used it on three classes of
programs: (a) A stateless program that spins for a period
of time proportional to the input length. (b) Data struc-
tures commonly used by NFs: a longest prefix match
(LPM) trie and a hash map. (c) NFs: VigNAT (academic
prototype), Natasha (production NAT used at ScaleWay),
and Maglev (DPDK implementation of Google’s load
balancer). Natasha comes with an open-source perfor-
mance test suite [57], making it an ideal fit for Freud. For
the remaining programs, we used as test suites the packet
traces on which we evaluated PIX.

Table 10 summarizes our results, discussed below.

582 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/openssl/openssl
https://github.com/openssl/openssl/issues/16230
https://github.com/openssl/openssl/issues/16230
https://github.com/openssl/openssl/pull/16323
https://github.com/openssl/openssl/pull/16323
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer
https://www.snort.org
https://en.wikipedia.org/wiki/Express_Data_Path
https://en.wikipedia.org/wiki/Express_Data_Path
https://github.com/usi-systems/freud/tree/e6e7a91006972a6d0a390c5cb66617105426bee6

Freud mode Program Accurate annotation?

Freud-vanilla
Synthetic stateless NF Yes
LPM trie No
Hashmap No
Real NFs No

Freud-nf
Synthetic stateless NF Yes
LPM trie Yes
Hashmap No
Real NFs No

Table 10. Summary of our experiments with Freud.

Freud-vanilla: First, we ran Freud on unmodified pro-
grams, and it behaved as expected: It successfully char-
acterized the spinning program’s runtime as a function
of the input length, but it could not produce meaningful
performance annotations for the data structures or NFs.
This is normal, since, in the latter programs, runtime is a
function of implicit variables that capture the interaction
between current and past inputs (e.g., number of itera-
tions of while(bucket[i].is_full ==1)).

Freud-nf: Next, to compare with PIX more fairly, we
explicitly modified our programs to work with Freud:
we identified conditions that we knew impacted perfor-
mance (essentially PCVs) and manually added them as
global variables (which Freud tracks). For instance, in
the hashmap, we added a global variable to explicitly
track the number of collisions; in the LPM trie, we added
a global variable to explicitly track the depth traversed.

The results for the data structures were mixed: For the
LPM trie, Freud produced an accurate performance anno-
tation. For the hashmap, Freud mistook a correlation for
a causation: when a test caused every packet to experi-
ence a collision, Freud concluded that runtime was deter-
mined by occupancy, as opposed to the number of colli-
sions. We expect that this issue can be resolved at the cost
of extra developer effort (to produce a smarter test suite).

For the real NFs, Freud could not produce meaningful
performance annotations (despite our modifications to
the NF source code). This is not surprising, given that
Freud does not analyze the source code, hence is unable
to track how a sequence of state-accessing calls affects
runtime. For instance, in Maglev, known client packets
that are destined to a now-stale backend-server undergo
consistent hashing once again, to pick a new backend.
Since Freud does not analyze the source code, it cannot
track how this call sequence affects runtime, looking
instead to express runtime as a function of individual
variables—which does not work. We observed similar
scenarios in the other NFs.

Conclusion: In its current form, Freud cannot produce
accurate performance annotations for stateful NFs. To
do so, it would need to track how a sequence of state-
accessing calls affects performance. We think that that
would necessarily require (a) some assumption about the

structure of the code (akin to our clean state assumption),
(b) a nuanced test suite for the NF’s data structures to
reveal which aspects of state affect performance (which
is done, in our approach, with the manual extraction
of PCVs during pre-analysis), and (c) leveraging call
context. We think that adding these elements to Freud
would bring it very close to PIX; we expect it would
achieve similar accuracy, but at the cost of its current
generality.

Appendix B Accuracy of performance
interfaces

This section provides more detailed answers to the fol-
lowing questions: (1) What is the prediction error for
both PIX and Bolt for each individual NF? (2) What is
the prediction error for both PIX and Bolt as a function
of the percentile latency?

Prediction error for individual NFs: Table 11 pro-
vides detailed per-NF results for PIX’s prediction accu-
racy for hardware-independent metrics, i.e., x86 instruc-
tion count and x86 memory accesses. We see that the re-
sults are similar across all the NFs, with PIX consistently
outperforming Bolt.

NF Spade Prediction Error Bolt Prediction Error
x86 instructions x86 mem-ops x86 instructions x86 mem-ops

VigNAT 1.2% 1.3% 3.1% 4.0%
Bridge 0.8% 1.1% 3.6% 3.6%
Maglev 1.1% 1.1% 5.1% 4.2%
Router 1.7% 3.9% 6.8% 6.1%
Policer 1.4% 1.7% 4.2% 5.1%
Natasha 2.6% 3.2% 5.1% 5.6%
DPDK NAT 0.9% 1.1% 2.3% 2.9%
DPDK FW 1.1% 1.4% 2.7% 3.7%

Table 11. Prediction error for median latency for x86 instruc-
tion count and memory accesses for all 8 DPDK NFs in the
deployment characterized by the typical traffic. The numbers
for adversarial traffic are similar.

Latency percentile

 P
re

di
ct

io
n

E
rr

or
 (%

)

-20.00%

-10.00%

0.00%

10.00%

20.00%

0 25 50 75 100

Typical traffic Adversarial traffic

Figure 10. PIX’s average prediction error for CPU cycles
across two deployments as a function of the percentile latency

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 583

Percentile latency

P
re

di
ct

io
n

E
rr

or
 (%

)

-200.00%

0.00%

200.00%

400.00%

600.00%

800.00%

1000.00%

0 25 50 75 100

Typical traffic Adversarial traffic

Figure 11. Bolt’s average prediction error for CPU cycles
across two deployments as a function of the percentile latency

Prediction error as a function of the percentile la-
tency: Fig. 10 illustrates PIX’s average prediction er-
ror across all 8 NFs for each deployment. First, we see
that the average error shows similar trends across deploy-
ments, proving that PIX characterises the deployment-
specific workload correctly. Second, we see that for both

deployments the average error is more or less stable at
around 8% up to the 95th percentile showing that for
these percentiles, PIX characterises the interaction of the
NF with the hardware correctly. Lastly, we see that at the
tail, the prediction errors become negative. This is due
to the fact that the simple HW model that PIX employs
(instructions * CPI + LLC_misses * miss_latency) is in-
valid at the tail, where other hardware aspects kick in.

Fig. 11 illustrates Bolt’s average prediction error across
all 8 NFs for each deployment. Bolt estimates only worst-
case latency and this is evident in the results—note the
change in scale on the y-axis from Fig. 10. For all per-
centiles except the tail, Bolt is widly inaccurate with er-
rors up to 900%. On the other hand, Bolt does not under-
estimate latency at the tail since it accounts for myriad
worst-case scenarios in the underlying hardware worst-
cases that PIX ignores to ensure accuracy across the re-
mainder of the spectrum.

584 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Automated Verification of Network Function Binaries

Solal Pirelli+ Akvilė Valentukonytė°* Katerina Argyraki+ George Candea+
+EPFL °Citrix Systems

Abstract

Formally verifying the correctness of software network func-
tions (NFs) is necessary for network reliability, yet existing
techniques require full source code and mandate the use of
specific data structures.

We describe an automated technique to verify NF binaries,
making verification usable by network operators even on
proprietary code. To solve the key challenge of bridging the
abstraction levels of NF implementations and specifications
without special-casing a set of data structures, we observe
that data structures used by NFs can be modeled as maps,
and introduce a universal type to specify both NFs and their
data structures, the “ghost map”. In addition, we observe
that the interactions between an NF and its environment
are sufficient to infer control flow and types, removing the
requirement for source code.

We implement our technique in Klint, a tool with which
we verify, inminutes, that 7 NF binaries satisfy their specifica-
tions, without limiting developers’ choices of data structures.
The specifications are written in Python and use maps to
model state. Klint can also verify an entire NF binary stack,
all the way down to the NIC driver, using a minimal operat-
ing system. Operators can thus verify NF binaries, without
source code or debug symbols, without requiring developers
to use specific programming languages or data structures,
and without trusting any software except Klint.

1 Introduction

Network operators are moving from hardware network func-
tions to software ones for flexibility, but still deploying them
as black boxes. Historically, network functions such as fire-
walls, NATs, and load balancers used special-purpose hard-
ware for performance at the cost of flexibility, but this trade-
off does not always make sense any more thanks to the per-
formance of modern general-purpose hardware. Developers
write software network functions using programming lan-
guages such as C or Rust and frameworks such as DPDK [15]
or BPF [11, 33]. Marketplaces for distribution of software
network functions are emerging [18], andmost network func-
tions on these marketplaces are proprietary and distributed
in binary form.

Developers and operators currently test network functions
hoping to catch bugs, but this is not enough especially in light
of frequent software updates. For instance, network address
translators from Microsoft [36], Linux [37], and Cisco [38]
have had headline-causing bugs and vulnerabilities.

*Work done while at EPFL

function Firewall_Check(packet, flow_table)
if packet.device.is_internal then

assert packet.is_forwarded
if packet.flow not in flow_table then

assert flow_table.was_full
else

if packet.is_forwarded then

assert packet.flow in flow_table
Algorithm 1: Specification for a firewall. The firewall
must remember flows exiting the network and must only
allow packets in an existing flow to enter the network.

Operators need guarantees that the software network
functions they deploy conform to specifications, instead of
relying on tests. Consider the specification for a firewall in
Algorithm 1, which will be our running example. This spec-
ification restricts what a firewall can do but does not state
exactly how a firewall should be implemented. It also hides
details irrelevant to operators such as packet parsers and
policies to expire old flows. If an implementation could be
verified to conform to this specification no matter what, an
operator could deploy that implementation with confidence.
Developers need to provide proofs of functional correct-

ness but do not always want to disclose their source code,
meaning verification must be done on binaries. This require-
ment is driven by theway software is distributed to operators,
but it also means developers do not need to restrict which
programming languages they use nor worry about latent
bugs in the tools they use such as compilers. A tool that
can verify binaries can be used by operators regardless of
whether they have access to source code and regardless of
which language and toolchain developers used. Thus, even
for open-source code, verifying binaries helps developers by
enabling them to use any language and toolchain, even those
considered experimental, since they can provide guarantees
about the compiled binary to operators.
Developers currently cannot provide proofs (1) of func-

tional correctness, (2) without source code, and (3) without
verification expertise. They can use the Linux kernel’s auto-
mated BPF verifier, but only for low-level properties such as
memory safety. They can use Vigor [53] or Gravel [55] to
automatically prove functional specifications, but both rely
on typing information and thus require source code or an
intermediate representation that can be reverse-engineered.
Vigor and Gravel also limit developers to specific data struc-
tures; while developers could add new ones to the tools, they
generally lack the verification expertise to do so. What re-
mains is conventional testing, which can only show that a
binary works in specific cases, not provide guarantees.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 585

Verification of data structures is out of scope for this pa-
per. We assume that data structure code in binaries is clearly
delineated and that it correctly implements its API and spec-
ification. Developers should then be able to write code using
any data structure they want. A verification tool for network
functions must understand the semantics of data structures
through some form of contract, and automatically reason
about their contents without requiring proof annotations.
Developers who wish to provide maximal guarantees can
manually verify their data structures, or use existing verified
ones, but this should not be required for network function
code to be automatically verifiable.
Our goal is to design a tool to automatically prove that a

network function binary conforms to a specification, given
data structures assumed to be correct. The inputs to this tool
are a binary with explicit calls to data structure operations,
contracts for these operations, and a specification such as a
formalization of an RFC or IEEE standard. The output is a
proof that the binary refines the specification or a counter-
example that demonstrates otherwise.

Verifying arbitrary binaries is hard since type and control
flow information are critical to verification but hard to obtain
without debug symbols. However, network functions are
not arbitrary. They commonly confine complex code to well-
defined data structures, such as BPFmaps [2], and only have a
handful of well-defined interactions with their environment,
such as transmitting packets and reading system time. These
two observations lead to two ideas enabling us to verify
network function binaries.

First, we use maps as a “universal” data structure to spec-
ify network functions and data structures. We define the
abstract state of both network function specifications and
data structure contracts in terms of maps from keys to values
using a programming language such as Python. We call these
maps ghost maps by analogy to “ghost variables” that exist
only in proofs, not in implementations. Contracts can be
written even for data structures that cannot be implemented
in terms of maps, by using “for all” quantifiers to describe
an operation’s effects on the data structure in a declarative
manner without describing its implementation. Verification
is thus proving that the binary manipulates concrete data
structures in a way that conforms to the manipulation of
abstract maps in the specification, using contracts to match
concrete operations with abstract ones.

Ghost maps enable efficient and automated invariant infer-
ence. Inferring invariants ensures automated analysis does
not explore impossible program states, which would cause
spurious verification failures. The sweeping simplification
of maps enables our tool to reason about invariants across
any data structures instead of limiting itself to specific ones.
It also leads to the tool being simpler, as there is only one
kind of data structure to reason about, the map. The tool
translates data structure operations into map operations and
infers invariants on the resulting maps.

Second, we infer typing and control flow information from
environment interactions. Modeling network functions’ envi-
ronment precisely is feasible since it is small andwell-defined.
Typing information at the boundaries between a binary and
its environment is enough, since specifications are defined in
terms of environment interactions: maps and fundamental
operations such as packet transmission.

We have built Klint, a prototype of our technique. It takes
in a binary without debug symbols, a Python specification
of its semantics, and Python contracts for its data structures.
The contracts only need to be written once per data structure
implementation, as a more precise form of the documenta-
tion developers currently write. Klint always terminates
with either a proof or a counter-example, unless the pro-
cessing of a single packet does not terminate, in which case
Klint fails after a user-defined limit. Klint can verify an
entire software stack using a minimal operating system if
needed. Klint can verify code written in different languages,
such as C or Rust, on different frameworks, such as DPDK
or BPF, and deployed in different contexts, such as virtual
machines, containers, or raw hardware. Developers can use
any data structure as long as it has Python contracts, even if
the data structure implementation is not verified. The code of
the verified network functions is verification-agnostic: only
the standard programming practice of separating data struc-
tures from other code and documenting their specifications
is necessary.

We use Klint to verify network functions we write based
on those from Vigor [53] and to verify existing BPF net-
work functions such as Facebook’s Katran [47]. Klint can
prove a range of properties, from full functional correctness
according to a specification, to memory safety and crash free-
dom for functions without a high-level specification such as
Katran. For instance, we extract a specification from IEEE
802.1D [30] for a bridge we write. We provide a detailed list
of properties we verify using Klint in Appendix A. Using
Klint gives operators guarantees about the correctness of
any binary they deploy: either Klint finds bugs, which can
be reported to developers, or it finds no bugs, providing a
guarantee the binary conforms to its specification.
In summary, our contributions are (1) a technique to rea-

son about data structures and infer invariants based on the
idea of “ghost maps” and (2) Klint, a prototype that uses
map-based reasoning to automatically and efficiently verify
network function binaries that use trusted data structures
with map-based contracts. We use Klint to verify the func-
tional correctness of 7 binaries, 6 written in C and 1 in Rust,
in minutes. These verified binaries run faster than previous
verified ones thanks to relaxing restrictions imposed by pre-
vious work. We also verify the memory safety and crash
freedom of 5 existing BPF network functions using Klint,
though we have no specifications for them.

The code for Klint and our network functions is publicly
available at https://github.com/dslab-epfl/klint.

586 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/dslab-epfl/klint

2 Design Insights

We formalize what we mean by a “network function” in §2.1,
explain how environment interactions are enough to infer
typing and control flow information of binaries in §2.2, and
describe how we bridge the gap between implementations
and specifications through the indirection of maps in §2.3.

2.1 Network functions we target

We restrict ourselves to network functions that use mutable
state to process packets and contain two phases: initialization
and packet processing. When processing a packet, network
functions decide whether to transmit packets in response
and what data to transmit based on state and on the packet’s
contents and metadata, such as its length. We assume that
network functions are single-threaded, and that they only
execute code when initializing and receiving packets. We do
not support timers as triggers to run code; they must instead
be checked during packet processing.
To create, read, and update state, network functions ac-

quire and use data structure capabilities through an environ-
ment, such as the DPDK [15] framework. These capabilities
correspond to opaque pointers in C, preventing network
functions from directly accessing data structure internals.

Acquiring capabilities is only allowed during initialization,
and may fail due to external factors, for instance running
out of memory. Using capabilities is allowed at any time, and
may only fail through incorrect use, for instance indexing
arrays out of bounds. Packet processing may also use other
environment calls that cannot fail from external factors, such
as obtaining the current time.

Our assumptions about data structures correspond to good
programming practices: developers should use data struc-
tures in a modular fashion for maintainability, and network
functions should not allocate memory while processing pack-
ets, to avoid performance issues and out-of-memory errors
that could allow for denial-of-service attacks.

We represent our model of a network function in Figure 1.
This is only a formalization of what developers already do,
not a proposal of a new model.

Init Processing

ClockData struct 3Data struct 2Data struct 1

Read Write

Data struct 3Data struct 2Data struct 1

Create
Config

…

St
at

el
es

s
co

de
En

vi
ro

nm
en

t

Figure 1. Network function components: initialization al-
locates state, packet processing reads and writes state and
may also use other utilities. Arrows represent control flow.

2.2 Information from environment interactions

The first limitation of previous work that we overcome is the
need for source code, thanks to the insight that environment
interactions are sufficient to infer all necessary information
about network function code, i.e., types and control flow.
As we described in §2.1, the only way for a program to

hold state and interact with the external world is through its
environment, such as displaying information or receiving a
packet from the network. That is, we define the environment
to be low-level enough that programs can be modeled as
pure functions that compose environment interactions.
A tool can precisely infer all possible behaviors of a pro-

gram by replacing the program’s environment with one that
can exhibit any allowed environment behavior, not a specific
one. This verification-only environment can be written by
hand or inferred from machine-readable documentation.
Writing an exhaustive model of the environment is not

feasible for general-purpose software because its environ-
ment is large and ill-defined. There is no formal definition
of large environments such as operating systems, and docu-
mentation often omits implementation details of high-level
operations that programs may rely on in practice.

However, a complete environment description is feasible
for network functions, because their environments are small
and well-defined. Formally defining all environment inter-
actions is manual work but must only be done once by an
environment’s developers, and the operations are low-level
enough that emulating all possible implementation-specific
behaviors is feasible. Having a small and well-defined envi-
ronment also means that its modules can be formally verified
manually if its developers choose to do so, enabling verifica-
tion of the entire software stack.
For instance, our example firewall calls a data structure

library to perform a lookup in its flow table and calls a net-
working framework such as DPDK to forward or drop the
packet based on the lookup result. Both the data structures
and the networking framework are part of the environment,
and both can be precisely replaced by a tool as long as the
network function uses dynamic linking.
Environment interactions can be observed on binaries

without loss of information, since the tool knows the num-
ber of parameters and their types. For instance, when a bi-
nary calls DPDK’s packet transmission function, the tool
uses the current architecture’s calling convention, which is
known, and the data types in DPDK’s headers, which are pub-
licly available, to extract the arguments to the transmission
function from the current machine state, such as the packet
buffer and metadata. Thus, source code is not necessary for
automated software network function verification.
The control flow information necessary for verification

can be similarly extracted by observing which branches are
taken or not between environment interactions, which pro-
duces an “unrolled” version of the true control flow graph.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 587

2.3 Using maps to bridge the gap

Verifying the correctness of a network function that satisfies
the definition in §2.1 consists of showing that the seman-
tics of the code, obtained from environment interactions
as described in §2.2, match the semantics of the specifica-
tion. However, there is a gap between the variety of data
structures that exist in the code and the restricted set of
abstractions that any given tool can reason about, as we
illustrate in Figure 2.
For instance, our firewall may use a “least recently used”

data structure to keep track of which packet flows should be
expired due to a lack of activity, with operations such as “add
a new item” and “remove and return the oldest item”. The
firewall may also combine the use of this data structure with
other structures, such as a map tracking per-flow statistics
or a configurable set of ports that are open to the external
world at all times.

Previous work proposed two ways to bridge the gap be-
tween implementation and specification: Vigor [53] requires
the use of specific data structures in both implementation
and specification, while Gravel [55] requires the use of spe-
cific data structures that it knows how to model in terms of
high-level operations that can be used in specifications.

Vigor imposes two constraints to verify our firewall. First,
the firewall must be written using data structures that Vigor
knows about, either by modifying the firewall’s code to only
use Vigor data structures or by modifying Vigor itself to
handle new data structures, including proof annotations for
invariants that can hold across these data structures such as
“all flows in the LRU are also in the map”. Second, the fire-
wall specification must be written in terms of the same data
structures used in the implementation. These two constraints
limit both developers and operators. Developers must restrict
themselves to specific data structures or learn verification
techniques to add new ones, and operators must learn the
semantics of the data structures used in an implementation
to understand its specification.
Gravel removes the second limitation: it translates data

structure operations to a small set of high-level operations
for use in specifications, thus operators do not need to learn
all data structure semantics.

map->get(pkt->flow, &v)

if packet.flow in table:
assert sent == [packet]

lru->update(v, time())

transmit(pkt)

?

Implementation Specification

Figure 2. There is a gap between the abstractions used in
the implementation and the specification.

However, the restriction on developers remains. Develop-
ers must either modify the firewall’s code to only use existing
Gravel data structures or modify Gravel itself to handle new
data structures.
Fundamentally, tools that handle a specific set of data

structures do not scale. Adding support for a new data struc-
ture requires not only encoding the data structure’s oper-
ations, but also its interactions with other data structures,
such as invariants that can exist across structures. Even if a
tool is limited to invariants across two data structures, adding
the Nth structure requires adding N kinds of invariants, one
for each data structure including the new one.

We introduce a level of conceptual indirection: we express
the semantics of both data structures and specifications in
terms of one data structure, the map. Operations on data
structures such as arrays, hash tables, longest-prefix-match
tables, and port allocators can be defined in terms of map
operations, regardless of how they are implemented. Verifi-
cation tools can use contracts to translate any data structure
operation into map operations, which become the only kind
of operation the tool needs to reason about for invariant
inference and verification.

We refer to such maps as ghost maps, by analogy to “ghost
variables” which are variables only used in proofs.We present
an example of contracts for a “least recently used” data
structure in Listing 1. Using this contract, a verification
tool can translate the LRU semantics into maps, and thus
does not need special knowledge of what an LRU data struc-
ture is, only knowledge of maps. Importantly, contracts can
be declarative, not just imperative. Ghost maps can define
even data structures that cannot be implemented using maps
thanks to the “for all” quantifier. LRU_expire’s contract only
describes what it does, not how: the returned value is the old-
est, but the contract does not need to explain how this value
is found. We explain how a verification tool can efficiently
reason with maps in §3.
This sweeping simplification also makes invariant infer-

ence easier since there is only one kind of data structure, as
we show in §4.

1 # struct LRU;

2 LRU = namedtuple('LRU', ['items '])

3 # void LRU_add(struct LRU* lru ,

4 # void* item , int age);

5 assert item not in lru.items

6 lru.items[item] = age

7 # void* LRU_expire(struct LRU* lru);

8 age = lru.items[result]

9 assume(lru.items.forall(lambda k, v: v <= age))

10 lru.items.remove(result)

Listing 1. Contracts defined using maps, in Python, for a
“least recently used” data structure, in C. result is the return
value from LRU_expire.

588 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

3 Ghost Maps

To verify network functions automatically, we use symbolic
execution to analyze all their paths, which we summarize in
§3.1. Since data structure implementations have too many
paths to enumerate, we abstract them using contracts instead,
to obtain paths such as “key found” and “key not found”
instead of one path per cell in which a key might be.
We introduce ghost maps as a “vocabulary” in contracts

to describe the semantics of data structures and network
functions to both verification tools and human readers. Ghost
maps only exist within contracts, not implementations.

We describe our goals for ghost maps in §3.2, our proposed
representation of ghost maps in §3.3, and our proposed trans-
lation of their operations into logical formulas in §3.4.

3.1 Symbolic execution background

A symbolic execution engine executes code with symbols as
inputs instead of concrete values. Whenever it encounters a
branch on a symbolic condition, it explores both alternatives,
remembering the choices it made in a path constraint. This
leads to a set of paths, which are sequences of choices that
each represent one possible program execution. For instance,
instead of executing an “absolute value” operation on −5 and
obtaining 5, a symbolic execution engine will execute it on
𝛼 and obtain two paths: one with path constraint 𝛼 ≥ 0 and
result 𝛼 , and one with path constraint 𝛼 < 0 and result −𝛼 .
Some code has too many paths to explore in reasonable

time. For instance, consider looking for a value in an array.
The value could be in the first position, or the second, or
the third, and so on, until the array length. The number of
paths is limited by the array length, which could be, e.g.,
232. If the code which looked up the value then looks up
another value, each path resulting from the first lookup will
lead to new paths for the second lookup, squaring the total
number of paths. This problem is known as path explosion.
While the number of paths can sometimes be reduced by
merging related paths at the expense of producing more
complex constraints [29], the paths to be merged must still
be partially explored, which does not solve path explosion.

If the number of paths in a program is “reasonably” small,
a symbolic execution engine can exhaustively enumerate
them and verify the program by verifying that each path
satisfies the program’s specification.

Decidability ceiling

Ghost
Maps

Arrays
+

quantifiersBit vectors

Expressive power

Figure 3. Ghost maps are more expressive than bitvectors
while remaining decidable, unlike more powerful theories
such as arrays with universal quantifiers.

length(𝑀) → Int

get (𝑀,𝐾) → 𝑉 | None
set (𝑀,𝐾,𝑉) → 𝑀 ′

remove(𝑀,𝐾) → 𝑀 ′

forall
(
𝑀, 𝜆(𝑘, 𝑣) → Bool

)
→ Bool

Listing 1. Ghost map operations.𝑀 and𝑀 ′ are maps; 𝐾,𝑉
are keys and values. Int denotes bitvector-based integers,
and Bool Booleans. None is the lack of value.

3.2 Expressivity, decidability, and completeness

We propose the ghost map abstraction in Listing 1 which
is expressive enough to define data structures and network
functions, while still enabling a tool to reason in a decidable,
sound, and “complete enough” manner. We describe each of
these properties next.
Ghost maps are expressive enough to abstract the data

structures we care about. Simpler abstractions require too
much detail in contracts to be practical for either humans or
tools. For instance, representing a hash table as a sequence
of 0s and 1s is possible but impractical. We are concerned
with data structures used in network functions, such as hash
tables and port allocators, thus we limit our vocabulary to
what they need, not to all possible code.

However, expressiveness is at odds with decidability. Sym-
bolic execution engines use a solver to tell whether a logical
formula is satisfiable, i.e., whether there exists an assign-
ment of variables such that the formula holds. For instance,
if “the firewall’s variables, given the firewall’s constraints,
violate its specification” is satisfiable, then the assignment of
variables is a counter-example to the firewall’s correctness.
Logical formulas are written using theories, which are the
“vocabulary” of solvers. Some theories are decidable, mean-
ing that a correct solver will always return a correct answer.
Some are not, meaning that the answer may be “unknown”
instead of yes or no. Evenwith decidable theories, “unknown”
may be returned if the solver is given a timeout and cannot
find an answer in time.
Verification tools must be sound and as complete as pos-

sible. A tool is sound if it verifies only correct programs. A
tool is complete if it verifies all correct programs. Due to
the Halting Problem [49], verification of general-purpose
programming languages must be incomplete, thus the goal
is to verify “interesting” correct programs, i.e., those that
humans actually write, even if some contrived theoretical
examples cannot be verified.
Ghost maps are an intermediate step between quantifier-

free bit vectors, which are decidable due to their finite size but
not expressive enough, and arrays with universal quantifiers,
which are more than expressive enough but undecidable, as
we illustrate in Figure 3.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 589

3.3 Representing ghost maps

To remain as decidable as the theory of bit vectors while
offering more expressivity, we present a translation of ghost
maps to bit vectors in the context of symbolic execution.
Notably, ghost maps’ “for all” quantifier, which enables non-
imperative contracts for data structures that cannot be imple-
mented with maps, can be translated without using universal
quantifiers. Ghost maps can be more expressive despite be-
ing translated to bit vectors because the symbolic execution
engine internally uses data structures, such as lists, to build
the logical formulas it sends to the solver.

We expect the code to manipulate maps of large size, but
to only interact with a small number of items in any given
map. This is true of network functions, which by nature only
perform a small number of operations for each packet to
remain within their performance budget.

Tracking known and unknown items separately is
our key insight to handle maps of arbitrary size. That is,
none of the map operations require “forking” the current
path, and the engine handles map operations in a time linear
in the number of known items, not total items.

Thus, instead of keeping track of every item in every map,
the engine only needs to track the specific items that are
explicitly used in one iteration of the network function’s
packet-processing loop. Other items are “summarized” into
a single pseudo-item that tracks their constraints, such as
“all unknown values are non-zero”.

This scheme naturally enables ghost map lengths to be
symbolic, since their actual size does not matter as much
as the number of known items. A verification tool can thus
represent maps whose length is determined by configuration
parameters using a symbolic configuration, instead of verify-
ing only one specific configuration as is for instance done in
Vigor [53]. The tool can thus catch all bugs that only occur in
specific configurations, such as the maximum capacity of the
firewall’s flow table being zero, without requiring developers
to think of which configurations to try.
Counter-intuitively, the engine must mutate its internal

representation of maps during read-only operations on maps.
Known items must include those that have been retrieved
from the map, even if they have not explicitly been set before.
For instance, consider the following:

get (𝑀,𝐾1) → 𝑉1
get (𝑀,𝐾2) → 𝑉2

If 𝐾1 = 𝐾2, then 𝑉1 = 𝑉2 by definition. But the engine must
remember the first get in some way in order to guarantee
the implication, and it cannot store high-level map opera-
tions in the path constraint, thus it must modify its internal
representation of𝑀 . From an outside perspective,𝑀 has not
changed, but internally the engine must remember this get.
We informally describe each operation first, then add ad-

ditional details to handle subtleties, then provide a formal
algorithm for the core get operation.

The engine tracks each map’s length explicitly.
Known items are triples: (key, value, presence bit). If

the presence bit is false, the value is ignored and the key is
considered absent from the map. None only exists conceptu-
ally; the theory of bit vectors cannot represent it.
Known items may be redundant, but their values and

presence bits must match if their keys match. This is because
their keys may be symbolic, thus the engine cannot know
for sure whether two items have equal keys.

Unknown items are represented by an invariant that
they all satisfy. The unknown items invariant only concerns
unknown items. Known items need not satisfy it. For in-
stance, a map may have as invariant “all unknown values are
non-zero” and two known items, (𝐾1, 0, true) , (𝐾2, 1, 𝛼). The
first known item is definitely present, whereas the second
may or may not be present depending on the value of 𝛼 .

The unknown items invariant is represented as a formula
on a special unknown item, unique to each map. For instance,
the non-zero invariant example is represented as UP𝑀 ⇒
UV𝑀 ≠ 0, where UP𝑀 and UV𝑀 are the presence bit and
value of 𝑀’s unknown item. Including the presence bit in
the invariant allows it to be constrained for cases such as
arrays. For instance, a zero-based array of length 𝐿 described
using a ghost map 𝐴 would have UP𝐴 = (0 ≤ UK𝐴 < 𝐿) as
part of its unknown items invariant, indicating that keys are
in 𝐴 if and only if they are between 0 and 𝐿, matching the
semantics of array indexing in languages such as C.

3.4 Translating ghost map operations

We use ITE(𝑐, 𝑡, 𝑓) to denote “if 𝑐 then 𝑡 else 𝑓 ”, and fresh
to mean a symbol that was not used before, i.e., that is not
constrained in any way. “Applying” the unknown invariant
of a map to an item means substituting the map’s unknown
item for the item.

𝑙𝑒𝑛𝑔𝑡ℎ(𝑀): Return the map’s length, which the engine
tracks explicitly.

𝑔𝑒𝑡(𝑀,𝐾): Create a fresh tuple (𝑉 , 𝑃). Add (𝐾,𝑉 , 𝑃) to
the map’s known items. Add constraints to the current path
to encode that, within the map, (1) if 𝐾 matches a known
item then so do 𝑉 and 𝑃 , (2) if 𝐾 does not match any known
item then the unknown items invariant applies on (𝐾,𝑉 , 𝑃),
and (3) the number of unique known items cannot exceed its
length. Return (𝑉 , 𝑃), which encodes “if 𝑃 then𝑉 else None”.

𝑠𝑒𝑡(𝑀,𝐾,𝑉): Let (_, 𝑃) = get (𝑀,𝐾). Return a new map
whose length is length(𝑀) + ITE(𝑃, 0, 1), whose known items
are

(
𝐾 ′, 𝐼𝑇𝐸 (𝐾 = 𝐾 ′,𝑉 ,𝑉 ′), 𝑃 ′ ∨ (𝐾 = 𝐾 ′)

)
for each known

item (𝐾 ′,𝑉 ′, 𝑃 ′) in𝑀 , plus (𝐾,𝑉 , true), and whose unknown
items invariant is the same. That is, (1) the length only grows
if 𝐾 was not in𝑀 , and (2) known items must match if they
are redundant.

𝑟𝑒𝑚𝑜𝑣𝑒(𝑀,𝐾): The opposite of set, i.e., the length change
is ITE(𝑃,−1, 0), the new known item is (𝐾,𝑉 , false), where
𝑉 is any arbitrary value, and the known items are changed
to

(
𝐾 ′, 𝐼𝑇𝐸 (𝐾 = 𝐾 ′,𝑉 ,𝑉 ′), 𝑃 ′ ∧ (𝐾 ≠ 𝐾 ′)

)
.

590 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

𝑓𝑜𝑟𝑎𝑙𝑙(𝑀, 𝐹): The result is true iff 𝑃 ⇒ 𝐹 (𝐾,𝑉) for each
known item (𝐾,𝑉 , 𝑃) in the map andUP𝑀 ⇒ 𝐹 (UK𝑀 ,UV𝑀)
for the unknown item of the map. That is, the result indi-
cates whether the predicate holds on known items and on
unknown items. Add to the map’s invariant that if the re-
sult of this operation is true, then the predicate holds on
unknown items if their presence bit is true, ensuring that
even if the result is not yet known, it will be consistently
applied in the future. If the result is false, future items are
not constrained, which is sound but not complete.

Layers are necessary to handle dependencies that arise
when code uses multiple versions of a map at once. Consider:

set (𝑀,𝐾,𝑉) → 𝑀 ′ get (𝑀,𝐾 ′) → 𝑉 ′

get (𝑀 ′, 𝐾 ′) → 𝑉 ′′

If 𝐾 ≠ 𝐾 ′, then 𝑉 ′ and 𝑉 ′′ must be the same, since only
the value associated with 𝐾 is affected by the set. However,
the representation described earlier cannot guarantee this,
because the known items of𝑀 and𝑀 ′ are independent.

To handle this issue, set and remove return layers instead
of entirely new maps, as the example in Figure 4 illustrates.
That is, they return a map which includes the newly added or
removed item among its known items, but which links to the
previous map for the other known items, transforming them
when necessary, instead of evaluating the new known items
at creation time. Items and invariants created by get and
forall are always added to the bottom-most layer. Map layers
also share the unknown items invariant, and the associated
“unknown item”, of their base map.

Thus, in our example above, the known items “seen” by
the second get operation include the result of the first one,
and thus the second get will return a result that lets a tool
prove 𝐾 ≠ 𝐾 ′ ⇒ 𝑉 ′ = 𝑉 ′′.
Invariant recursion must be explicitly handled to

avoid infinite recursion when two maps’ invariants refer
to each other. For instance, a bi-directional map may be rep-
resented as two maps whose contents are inverses: for each
key-value pair (𝐾,𝑉) in map 𝑀1, there is a pair (𝑉 , 𝐾) in
map𝑀2, and vice versa. The invariants are:

forall
(
𝑀1, 𝜆(𝑘, 𝑣). get (𝑀2, 𝑣) = 𝑘

)
forall

(
𝑀2, 𝜆(𝑘, 𝑣). get (𝑀1, 𝑣) = 𝑘

)
Consider what would happen using the representation de-

scribed earlier when the engine handles get (𝑀1, 𝐾) for some
𝐾 . As part of adding the invariant on the newly-known item
of𝑀1 to the path constraint, the engine will call get (𝑀2,𝑉)
with the fresh 𝑉 from the original get. As part of adding
the invariant on the newly-known item of 𝑀2 to the path
constraint, the engine will call get (𝑀1,𝑉

′) with the fresh 𝑉 ′

from the second get. The engine then calls get on𝑀2, and so
on, leading to infinite recursion.
Solving this issue requires the engine to recognize that

in the third get call, the 𝑉 ′ argument is equal to 𝐾 , which it
knows from the first get call. The result should thus be the
existing 𝑉 , not some fresh 𝑉 ′′.

M [(K’, V’, P’)]

M’
λ(k,v,p). (k, ITE(K=k,V,v), p ∨ K=k)

[(K, V, true)]

[(K, V, true), (K’, ITE(K=K’,V,V’), P’ ∨ K=K’)]

Figure 4. Example of a set layer𝑀 ′ on top of a map𝑀 , and
the resulting known items of𝑀 ′.

The engine thus tracks a condition and a value hint during
ghost map operations, which are set when handling invari-
ants and used to stop recursion when handling get.
When handling a map invariant of the form get (...) = ...,

the engine adds to the condition the presence bit given as
argument to the invariant and sets the value hint to the value
expected by the invariant. These changes are reverted when
the engine is finished handling the invariant.

get (𝑀,𝐾) needs two changes at the start: First, if𝐾 cannot
be different from an existing item’s key assuming the condi-
tion holds, return that item’s value and presence bit. Second,
after creating the fresh 𝑉 , if there is a condition, add “the
condition implies 𝑉 = 𝑣𝑎𝑙𝑢𝑒_ℎ𝑖𝑛𝑡” to the path constraint.

Applying this logic to our example solves the issue. When
handling get (𝑀2,𝑉), the value hint is 𝐾 and the condition
is 𝑃 , both from the newly-known item of 𝑀1. When 𝑀2’s
invariant calls get (𝑀1,𝑉

′), the path constraint contains 𝑃 ⇒
𝑉 ′ = 𝐾 , thus the get on𝑀1 will start by checking whether its
known item (𝐾,𝑉 , 𝑃)’s key is equal to𝑉 ′ assuming 𝑃 , which
it is, and return (𝑉 , 𝑃), ending the recursion.
This strategy avoids recursion in common cases such as

our example of maps with reciprocal keys and values, but
it is not complete, as the engine may recurse infinitely. For
instance, “𝑀1 has min(𝐾 − 1, 0) for all 𝐾 in𝑀2, and𝑀2 has
min(𝐾 − 1, 0) for all 𝐾 in 𝑀1” could hold, but will lead to
infinite recursion in the engine given our implementation.
We present the final get algorithm, which is the core of

our ghost map technique, in Appendix B. Our technique is
decidable and expressive but not complete, unlike prior work
that focused on completeness at the expense of expressive-
ness [3, 13]. Our technique enables a symbolic execution
engine to translate ghost map operations into formulas on
quantifier-free bit vectors. This enables the engine to by-
pass the path explosion caused by data structure code by
executing the code’s contract instead.

The universal “forall” quantifier on ghost maps allows con-
tracts even for operations that cannot be implemented using
maps by describing what they do instead of how. However,
we believe some data structures are not a good fit for ghost
maps, specifically ordered ones. While queues and stacks can
be viewed as maps from indexes to elements, the resulting
contracts are unlikely to be conducive to invariant inference.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 591

4 Invariant inference

Handling data structures by translating them to ghost maps
is not sufficient for automated verification. Developers use
data structures in well-defined patterns, named invariants,
but these patterns are not always explicit in the code.

Verification tools must infer such invariants to avoid fail-
ures. When executing a contract instead of an implementa-
tion, the tool must have enough information to prove the
contract’s precondition. Previous tools bypassed this prob-
lem by special-casing data structures and their invariants.

The ghost maps representation we proposed in §3 enables
tools to infer invariants without special-casing templates.

Consider these motivating examples in pseudo-code:
if packet.flow in table:

statistics.increment(packet.flow)

If increment’s contract requires the item to be in statistics,
symbolic execution will fail if it cannot prove this fact.

device = destinations.get(packet.flow)

transmit_packet(packet , device)

If transmit_packet’s contract requires the device to exist, sym-
bolic execution will fail if it cannot prove this fact.

if not items.full:

items.add(x)

metadata.add(x, y)

If add’s contract requires free space, symbolic execution will
fail if it cannot prove not metadata.full in the second add call.
All three examples could be bugs depending on how the

data structures they deal with are updated. If the first exam-
ple is in code that always adds packet.flow to both statistics

and table, the code is valid. If the second example always
puts a device known to be valid in devices, such as the incom-
ing device of a packet, the code is valid. If the third example
is the only occurrence of add in the code and both structures
have the same length, the code is valid.

To infer invariants, our algorithm starts from the strongest
possible ones then iterates by relaxing them as needed until
it finds a fixed point, as we illustrate in Algorithm 2. The
starting point is the program states resulting from symboli-
cally executing the network function’s initialization code. At
this point, the invariants are the strongest possible ones: “all
maps will always be exactly as they are after initialization”.

function FindFixedPoint(code)
𝑖𝑛𝑣𝑠 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝐼𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠 (𝑐𝑜𝑑𝑒)
𝑠𝑡𝑎𝑡𝑒𝑠 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑡𝑎𝑡𝑒𝑠 (𝑐𝑜𝑑𝑒)
do

𝑖𝑛𝑣𝑠 = 𝑅𝑒𝑙𝑎𝑥 (𝑖𝑛𝑣𝑠, 𝑠𝑡𝑎𝑡𝑒𝑠)
𝑠𝑡𝑎𝑡𝑒𝑠 = 𝑆𝑦𝑚𝑏𝑜𝑙𝑖𝑐𝑎𝑙𝑙𝑦𝐸𝑥𝑒𝑐𝑢𝑡𝑒 (𝑠𝑡𝑎𝑡𝑒𝑠, 𝑖𝑛𝑣𝑠)

while 𝑖𝑛𝑣𝑠 do not hold on 𝑠𝑡𝑎𝑡𝑒𝑠
return 𝑖𝑛𝑣𝑠

Algorithm 2: Core of the invariant inference algorithm.

The initial invariants are unlikely to hold on the packet
processing code, unless the code does nothing. After symbol-
ically executing the packet processing code for one iteration
of the network function’s infinite packet-processing loop, the
engine relaxes the invariants to match the program states
that result from the iteration. For instance, the initial in-
variant “the firewall’s flow_table is always empty” could be
relaxed into “the flow_table may have items, and its length
is always the same as the statistics”. The engine then sym-
bolically executes a packet-processing iteration again using
these new invariants, which may lead the engine to explore
new paths in the code such as a path in which the packet’s
flow is found in the flow_table, previously infeasible as the
table was assumed to be empty. The engine then relaxes
the invariants again, and executes an iteration with these
new invariants, until the invariants no longer need relaxing
after an iteration. By definition, the final relaxation yields
invariants that hold on the initial state as well, thus the result
is a correct set of invariants. The algorithm is guaranteed
to converge since the set of invariants can only shrink. It
may converge towards the empty set of invariants because
the code has no invariants or because the engine could not
infer any. The goal is not to find some “ideal” set of perfect
invariants, only enough invariants to be able to symbolically
execute and verify the code. If some properties happen to
hold but are not necessary, inference need not find them.

The key to inferring useful invariants is to use ghost maps’
known items to form invariant candidates, and then check
whether these candidates hold using the unknown items.
Thus, instead of using low-level invariant templates such
as “the value is nonzero” as in Houdini [20], the tool can
find invariants based on the constraints that hold on known
items. For instance, the tool does not need a definition of a
“device” to solve our second motivating example.

Besides finding invariants among map items and lengths,
tools can also find invariants acrossmaps. Such invariants are
of the form “if𝑀1 associates key𝐾 with value𝑉 , then𝑀2 has
some key and possibly value related to 𝐾,𝑉 ”. For instance,
in the first motivating example, finding the invariant “all
keys of table are also keys in statistics” enables the tool
to prove that the code uses increment correctly. Inferring
such invariants requires finding functions 𝐹𝐾 , 𝐹𝑉 , 𝐹𝑃 for two
maps 𝑀1, 𝑀2 such that ((get (𝑀1, 𝐾) = 𝑉) ∧ 𝐹𝑃 (𝐾,𝑉)) ⇒
(get

(
𝑀2, 𝐹𝐾 (𝐾,𝑉)

)
= 𝐹𝑉 (𝐾,𝑉)), or alternatively find only

𝐹𝐾 , 𝐹𝑃 and merely infer that𝑀2 contains 𝐹𝐾 (𝐾,𝑉) without
inferring the associated value. Candidates for 𝐹∗ are found
using the known items and confirmed using the unknown
items invariant.

In summary, the representationwe propose for ghost maps
also enables an elegant invariant inference algorithm based
on finding candidate invariants and relaxing them as neces-
sary. Representing known items explicitly lets a verification
tool find useful candidates for invariants, instead of limiting
itself to special-cased low-level templates.

592 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

5 Implementation

We implement our technique in Klint, a tool which uses the
angr [48] symbolic execution engine and the Z3 [12] solver.

Klint takes a network function binary and a Python
specification as inputs and proves that the binary satisfies
the specification or produces a counter-example. Klint can
also be used without a specification to check that no path in
the code crashes or accesses memory out of bounds.
Klint first identifies all environment interactions in the

binary, which correspond to data structure operations or
networking operations, using the symbols that the binary
must export since it dynamically links the environment code.
Then, Klint maps these operations to their contracts, pro-
vided by the developers of the data structures and of the net-
working environment. Data structure contracts are written
in terms of ghost maps, as defined in §3, while the handful of
fundamental networking operations such as transmitting a
packet have manually written contracts for Klint. When the
binary calls its environment, Klint symbolically executes
the corresponding contract instead of the implementation,
inferring types and control flow information as described in
§2.2: Klint knows the types of parameters to environment
interactions, and extracts control flow in the form of path
constraints. This enables Klint to understand the semantics
of the binary under verification in terms of its environment.
Klint symbolically executes the network function’s ini-

tialization code, as defined in §2.1, then infers invariants that
hold in all packet-processing paths by symbolically execut-
ing the packet-processing code until it finds a fixed point,
as described in §4. Klint then checks whether all packet-
processing paths satisfy the specification, which indicates
whether the network function binary as a whole does.

Specifications are Python programs that use ghost maps,
which Klint interprets using peer symbolic execution [6] on
each state resulting from symbolic execution of the binary.
The binary may abstractly manipulate more than one ghost
map, since it may use multiple data structures and individual
data structures may be modeled by contracts as multiple
maps. Thus, when the specification refers to a map, Klint
must infer which of the maps it is, using heuristics to try
likely candidates first, and only fail verification if the specifi-
cation is violated for all possibilities. For instance, a firewall
can track outgoing flows and maintain statistics per IP ad-
dress. Klint must infer that the flow table in Algorithm 1 is
the abstract form of the former data structure, not the latter.
Developers must comply with good programming prac-

tices such as state separation if they want verification to
succeed, and Klint enforces this during verification. If de-
velopers do not separate data structure code from the rest
of the network function, Klint will encounter too many
paths and fail once it has executed a configurable instruction
threshold. Developers already follow even stricter practices
to write BPF programs due to the strict Linux verifier [10].

Klintmodels heap memory with ghost maps, treat-
ing memory as just another kind of data structure and in-
cluding it in invariant inference. Developers use a standard
calloc-like interface to allocate memory. During symbolic
execution, memory allocations return symbolic pointers, en-
suring that Klint will explore all paths even if some paths
depend on the value of pointers. This is not the case in a tool
such as Vigor [53], which uses concrete pointers.
To ensure that developers cannot “hide” memory from

Klint, all memory outside of the stack and themaps-modeled
heap is read-only after initialization. This is not a limitation
on sensible developers, who allocate on the heap through
the environment and cleanly separate mutable state.

Our memory model is similar to Memsight [9] and KLEE’s
segmented memory [26], but it requires almost no effort to
implement thanks to the flexibility of ghost maps.

Klint can do full-stack verification, verifying the en-
tire software stack, including the network driver and most
of a minimal operating system.
To verify the network driver, Klint matches hardware

accesses to the actions they correspond to, using a hardware
description of the network card written in a domain-specific
language and based on publicly available data. Klint in-
tercepts reads and writes to network card registers, which
usually go through port- or memory-mapped I/O. When the
network driver writes a value to a register, Klint reverse-
engineers what the driver might be doing by finding all
actions that could match the write, and checking which ones
are feasible in the current hardware state. For instance, if
the driver sets the “enable promiscuous mode” flag in the
network card, Klint looks up the corresponding action and
checks its precondition, which states packet reception must
be disabled. If the precondition does not hold, or if no action
matches the write performed by hardware, Klint aborts ver-
ification. Actions can also have postconditions describing
what happens to the hardware as the result of an action, such
as a self-clearing bit in a register.
The only environment operations for which Klint uses

contracts instead of implementations during full-stack ver-
ification are the data structures and the memory allocator
due to their complexity. We verified that they obey their
contracts using machine-checked proofs.

Full-stack binary verification does impose one constraint:
while the network function and its network driver can be
compiled together, the environment has to be compiled sep-
arately and then linked together without link-time optimiza-
tions, ensuring the symbols corresponding to environment
operations exist and can be given as an input to Klint.

Our trusted computing base is made up of Klint itself,
including angr and Z3; the bootloader; the hardware; and the
VeriFast [25] theorem prover we use to verify the memory
allocator and data structures. Since VeriFast verifies source
code, we trust the C compiler for the data structures and
memory allocator, but this is not a fundamental limitation.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 593

6 Evaluation

We evaluate Klint using the binaries, without debug sym-
bols, of 6 network functions: an Ethernet bridge with a span-
ning tree protocol, a firewall, an implementation of Google’s
Maglev [16], a network address translator, a traffic policer,
and an IPv4 router with longest prefix matching. The first
five are based on publicly available code from the Vigor [53]
project, which verified source code.
We show that Klint can quickly verify binaries in §6.1,

that it reduces the trusted base and enables developers to
write faster code in §6.2, and that it is applicable to real-world
code including BPF in §6.3.

6.1 Verifying network functions

We summarize the time it takes Klint to verify our network
functions in Table 1, split into the time to symbolically exe-
cute the code, infer invariants, and verify the resulting paths.
Klint runs multiple iterations of symbolic execution and
invariant inference to find a fixed point, thus we report the
total time spent in each category.
We measure all times on an Intel i7-7700HQ CPU run-

ning at 3.60GHz. Klint is single-threaded, though invariant
inference is embarrassingly parallelizable. We prototyped
parallelization but ran into a complex bug between angr
and Z3 due to garbage collection [1], and since Klint is fast
enough we did not investigate further.

Overall, even the most complex of our network functions,
the bridge, takes about 2 minutes to verify, which we believe
is reasonable. We could further reduce verification time by
reducing the redundancy in some invariants, and by using
less flexible tools than angr and Z3, since we do not use
their full power. The router uses a single data structure, the
longest-prefix-match table, thus it only has one invariant.

We caution against over-interpreting the exact results, as
most of the time is spent by the Z3 solver, and we noticed
that the time Z3 takes to solve queries can vary significantly
with small changes in queries, due to the heuristic-based
nature of solving. Thus, total verification time can vary by
dozens of seconds with minor changes in Klint or Z3.

Time (seconds)

#invs

Sym. ex. Inv. inf. Verif. Total

Bridge 82 18 19 119 32
Firewall 26 7 10 43 20
Maglev 36 11 10 57 25
NAT 43 7 8 58 20
Policer 53 10 6 69 25
Router 0 0 1 1 1

Table 1. Our network functions, the time Klint takes to
verify them, and the number of invariants it finds.

1 def spec(pkt , config , sent_pkt):

2 if pkt.ipv4 is None or pkt.tcpudp is None:

3 assert sent_pkt is None

4 return

5 if pkt.device == config["external device"]:

6 flow = {

7 'src_ip ': pkt.ipv4.dst ,

8 'dst_ip ': pkt.ipv4.src ,

9 'src_port ': pkt.tcpudp.dst ,

10 'dst_port ': pkt.tcpudp.src ,

11 'protocol ': pkt.ipv4.protocol

12 }

13 # there must exist a map that tracks flows ,

14 # regardless of what it maps them to

15 table = Map(typeof(flow), ...)

16 if sent_pkt is not None:

17 assert flow in table.old

18 assert sent_pkt.data == pkt.data

19 assert sent_pkt.device == 1 - pkt.device

Listing 2. Partial specification of a firewall with 2 devices.
This specification can be given to Klint unmodified.

We show the Klint equivalent of Algorithm 1, our run-
ning example of a specification, in Listing 2. The full speci-
fication is too long to show here, but Klint can also verify
this partial specification.
The specification abstracts away implementation details

such as the type of values in the firewall’s flow table, as
seen in line 15. This uses Python’s “ellipsis” literal, meant
for domain-specific languages.
This specification is actual Python code run in the stan-

dard Python interpreter by Klint, thus developers can write
specifications using their existing programming knowledge.
Klint currently requires the order of fields in specification
structures such as the flow declared in line 6 to match the or-
der in the corresponding implementation structure. Having
Klint try all possible orders would not finish in reasonable
time, but there may be better strategies.

We found and fixed two implementation bugs using spec-
ifications we wrote based on standards. First, section 7.8 of
the IEEE 802.1D standard [30] forbids adding Ethernet group
addresses to the filtering table, which we originally forgot to
implement. Second, our NAT originally misused its port allo-
cator if configured to use only a sub-range of ports. This was
already present in the Vigor NAT, because Vigor requires a
concrete size for data structures during verification, and its
authors only verified it for the full port range.
Verifying the entire stack requires an additional 15 min-

utes per network function, most of which is spent inferring
the network driver’s actions because the driver performs
thousands of writes to registers and each of these writes
requires work from Klint. This could be improved by rec-
ognizing simple loops, since most initialization operations
are performed in loops over categories of registers.

594 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

6.2 Faster verified network functions

Klint enables developers to write faster verified network
functions in two ways: developers can quickly prototype
changes to data structures without having to verify them
first, and they can use the abstractions they want instead of
verification-specific ones. In practice, we expect developers
to either use existing verified data structures or write con-
tracts for existing “trusted” data structures such as BPF maps.
Klint enables this workflow by only requiring contracts and
not proofs for these trusted data structures, whereas previous
tools required an all-or-nothing approach.

First, ghost maps and invariant inference enable quick pro-
totyping of new data structures. For instance, we rewrote our
port allocator to have different performance characteristics
with slightly different semantics, including stricter precon-
ditions as we believed our network functions did not need
the generality of the existing ones. Using an approach such
as Vigor or Gravel, even when prototyping, we would have
needed to add a model of the new port allocator to the veri-
fication tool, including annotations for invariants, to check
whether our network functions would still be correct when
using it. With Klint, we wrote new contracts, automati-
cally verified that our network functions already satisfied
the new stricter preconditions, then manually verified the
implementation once we finished prototyping.

Second, verifying binaries enables simpler and faster code
by removing abstractions over low-level hardware features
that existed for the sake of verification. For instance, using a
tool such as Vigor, obtaining the time from the environment
requires calling a C function that the tool replaces with a
model at verification time. Unless the compiler can inline this
function, the developer will pay the performance cost at run
time. With Klint, the code can use inline assembly to read
the CPU’s time stamp counter, which Klint handles in the
same way as other assembly instructions. Furthermore, in
the Vigor model, the C function must be verified separately
using a different tool, a problem Klint does not have.

Vigor Klint

Tput Latency (us) Tput Latency (us)
(Gb/𝑠) 50% 99% (Gb/𝑠) 50% 99%

Bridge 5.54 3.98 4.25 10* 3.84 4.26
Firewall 7.77 3.92 4.26 10* 3.84 4.25
Maglev 6.34 3.96 4.28 10* 3.90 4.27
NAT 3.47 3.97 4.32 10* 3.87 4.27
Policer 9.12 3.87 4.25 10* 3.83 4.24

Table 2.Maximal single-link throughput without loss, and
latency with 1 Gb/s background load of the original Vigor
network functions and our versions. * = link saturated

0 2 4 6 8 10 12 14
Throughput (Gb/s)

0

2

4

6

8

10

12

M
ed

ia
n

la
te

nc
y

(μ
s)

Vigor on DPDK (verified source)
Vigor on TinyNF (verified source)
Click (unverified)
Klint on DPDK (unverified)
Klint on TinyNF (verified binary)

Figure 5. Throughput without loss vs. median latency of dif-
ferent bridges. Shaded areas delimit 5th and 95th percentiles.

We benchmark our network functions using the Vigor
ones as baselines, with the TinyNF [45] driver instead of the
original DPDK subset since it is faster and is the base for
our own network driver. We use the same setup as Vigor
to make the comparison useful: two machines as in RFC
2544 [4], one running a network function and one running
the MoonGen packet generator [17]. Both machines have
Intel Xeon E5-2667 v2 CPUs at 3.30GHz, Intel 82599ES NICs,
and run Ubuntu 18.04. These network cards are the ones
we modeled for Klint’s full-stack verification. We measure
throughput with minimally-sized packets, filling network
functions’ flow tables to 90% of their capacity.

We first run the same benchmark used in the Vigor paper:
find the maximum throughput the network functions can
sustain without dropping packets using one 10 Gb/s link and
measure their latency when fed 1 Gb/s of background load.
All our network functions can handle 10 Gb/s whereas the
Vigor ones cannot, as we show in Table 2.

Since the Ethernet link is a bottleneck in the Vigor bench-
marks, we use two links, for a theoretical maximal through-
put of 20 Gb/s. To obtain more details about performance, we
measure latency at increments of 1 Gb/s until the network
function drops packets. We focus on the bridge for lack of
space. We included the original Vigor bridge running on its
verified DPDK subset, the Vigor bridge running on the veri-
fied TinyNF driver, the Click [28] bridge originally used as a
baseline by Vigor, our bridge running on our verified driver,
and our bridge running on DPDK, which is not verified. We
do not know of any “standard” network functions we could
use as a baseline beyond Click.

Despite our bridge having extra features compared to the
Vigor one, such as support for a spanning tree protocol, it can
reach more throughput before dropping packets than any of
the other bridges, including the bridge from the widely used
Click toolchain, as we show in Figure 5.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 595

Language Data structures Extra inputs Pointer arith. Unbounded loops Precise

Gravel [55] LLVM C++ STL Intermediate specs Limited No Yes

Prevail [21] BPF BPF maps No need If safe Yes No

Vigor [53] LLVM Custom “libVig” NF-specific models No No Yes

Klint x86_64 Any, w/ contracts No need If safe No Yes

Table 3. Comparison of this work with previous network function verification efforts.

6.3 Applicability

Klint is applicable to real-world network functions: it does
not require additional inputs from developers, it enables
operators to verify the entire stack of network functions, its
network function model is a superset of the widely used BPF,
and it enables developers to use any programming language
including those not considered mature enough to be trusted.
As we show in Table 3, Klint operates on binaries, can

handle any data structure for which map-based contracts
are provided, does not require intermediate inputs, does not
limit developers’ use of pointer arithmetic beyond memory
safety, and precisely tracks the contents of data structures
and packets enabling functional correctness proofs.

Previous work falls into two categories. Vigor and Gravel
prove functional correctness but require a typed interme-
diate language, extra inputs, and specific data structures.
Prevail [21] handles BPF bytecode and maps, which BPF de-
velopers must use anyway, and can even handle unbounded
loops, but can only prove memory safety and crash freedom.
Prevail can be viewed as a superset of the Linux BPF verifier.
Klint provides the best of both worlds: it requires neither
a typed intermediate representation nor extra inputs, and
it does not limit data structures, while also enabling proofs
of functional correctness. As an example of unnecessary in-
puts, we were able to remove around 3000 lines of proofs for
invariants when porting Vigor network functions to Klint.

Operators can verify the entire software stack, and
thus do not need to trust software such as network drivers,
using Klint’s full-stack verification. Developers can thus
tune the drivers for performance by removing features they
do not need, or even rewrite their own driver to suit it to
a specific usage pattern. PacketMill [19] showed that such
transformations can be done with developer hints to increase
network function performance.

Klint can be used to verify network functions in contain-
ers, i.e., statically linked with a Linux implementation of the
environment abstraction and running within Docker [34].
Containers are a convenient way to deploy and manage pro-
grams and have been proposed as a deployment model for
network functions [50]. Klint can verify such network func-
tions in the same way it verifies full-stack ones, although
the trusted code base is larger since operators need to trust
the container runtime as well as the Linux environment
implementation running inside the container.

Our network function model is a superset of BPF.

The Linux kernel verifies that BPF programs are memory
safe and have no unbounded loops. Klint verifies functional
correctness, though it also requires a lack of unbounded
loops. BPF requires developers to use a fixed set of data
structures, mostly maps. Klint enables developers to use
any data structure that has contracts based on ghost maps.
To show that Klint’s model is at least as expressive as

BPF’s, we use five existing BPF programs: Facebook’s Ka-
tran [47] load balancer, the CRAB [27] load balancer, a filter
from Suricata [44], a firewall from hXDP [5], and a bridge
from Polycube [35]. We extend Klint to analyze the assem-
bly code compiled by the kernel after dumping it through a
Linux debugging facility, using contracts we wrote for the
BPF maps. Since we have no specifications for these BPF pro-
grams, Klint only verifies memory safety and crash freedom.
Klint verifies the bridge and firewall in seconds, and CRAB
and the Suricata filter in less than 2 minutes, but Katran
requires almost 4 hours. This is due to our choice to model
packet contents with a ghost map for simplicity, even though
packet contents do not factor into invariant inference. Ka-
tran reads and writes to dozens of fields in the packet, which
means the ghost map representing the packet has too many
items to be efficient. This could be fixed by using a different
way to model packet memory, such as Z3 arrays.

Developers canuse anyprogramming language, even
if that language is considered too “exotic” or “immature” for
operators to blindly trust it, since Klint verifies binaries,
and thus can catch errors resulting from compiler bugs.
For instance, the Rust [39] programming language is a

promising direction for writing low-level systems code, in-
cluding networking, but a developer or an operator might be
concerned about its maturity level. Indeed, as of this writing
there are currently 69 issues in the Rust bug tracker [46]
marked with the “unsound” tag, meaning the compiler al-
lows code that violates Rust’s safety guarantees. Further-
more, some Rust features such as removing unused parts of
the standard library are currently experimental.
However, we are able to write a traffic policer in Rust,

compile it using these experimental features, and verify it
using Klint with the same specification as our C implemen-
tation. We can thus be confident that no matter what bugs
lie in the Rust compiler, our binary is correct.

596 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

7 Limitations

Klint’s main limitation is that it cannot handlemulti-threaded
network functions that share state across threads. As we
stated in §2, parallel code causes path explosion due to the
amount of possible interleavings among threads. Running
isolated instances of a network function in parallel can work
by steering flows to cores, in which case Klint can verify
the instances, but this has skew issues.
Klint imposes the following performance limitation on

network functions: data structures must be dynamically
linked so that Klint can identify their operations by map-
ping the symbols left undefined in the binary to the contracts
it is given as inputs. This can lead to slower function calls
and lost opportunities for inlining.
Klint also has the non-fundamental limitation of only

supporting packet arrival as a trigger to run code and not
timers or other events. Extending Klint to support this is
engineering work, replacing the restricted event handler
model of packet reception with a more general one that
branches on the event type.

Verifying network functions is only one part of the puzzle.
Klint can verify that a network function implements a pro-
tocol, but not that the protocol itself satisfies properties such
as avoiding infinite message loops. Specialized techniques
exist to verify protocols, such as IronFleet [22].
The remaining part of the puzzle is data structure imple-

mentations, for which manual verification tools currently
remain necessary. We used VeriFast [25], which uses anno-
tation for C, but other approaches exist such as Dafny [31],
a programming language designed for verification.

8 Related work

Runtime verification is a related but distinct area of work,
focusing on checking behavior at runtime. This catches bugs
even in code currently beyond the reach of formal verifica-
tion, for instance due to complex parallelism. Tools such as
Aragog [52] trade completeness and performance for appli-
cability. They only look at input and output packets and view
network functions as “black boxes”, thus they impose no con-
straints on code. But they cannot guarantee the absence of
bugs, and in distributed environments cannot prevent bugs
that can only be detected after compiling information from
different machines. They also impose runtime overheads,
unlike Klint, due to the runtime nature of checks.
Symbolic execution is themain techniquewe build upon,

and ghost maps may be useful beyond network functions.
Symbolic execution is often used for bug finding instead
of verification because of path explosion, but it can be aug-
mented with techniques to bypass path explosion. Indeed,
KLEE [7] and angr [48] were both designed primarily to
find bugs, yet Vigor [53] and Klint show that they can be
used for verification. S2E [8] was also designed to find bugs
but reused for network function verification by Dobrescu

and Argyraki [14]. Serval [40] is a symbolic execution en-
gine enhanced with verification techniques and can prove
systems such as a security monitor, at the cost of requiring
some human annotations. Klint could have used Serval as a
base; we chose angr mostly because it is designed for quick
prototyping. Path explosion can also be bypassed by writing
code with few paths, as in the Hyperkernel [42].
Using maps as part of analyzing programs has been pro-

posed before, though previous approaches were not aimed
at functional verification, such as the Memsight [9] memory
model for symbolic execution, or the technique proposed by
Dillig et al. [13] to verify memory safety.

Network function verification tools such as Vigor [53],
Gravel [55], and Prevail [21], which require source code, all
inspired our design. Bolt [24] and Pix [23] verify performance
instead of correctness, and require source code, though we
believe they could use our techniques to only require binaries.
While verifying binaries provides key advantages, verifying
source code makes debugging failed verification easier since
compiler optimizations can make it hard to match what the
binary does wrong to what the code does wrong.

BPF is a more applicable but weaker form of network
function verification: an in-kernel “verifier” checks memory
safety and crash freedom, allowing untrusted code to run
in kernel mode for performance without safety risks. BPF
verifiers are fast, at the cost of restricting the code developers
may write. BPF code cannot contain unbounded loops, must
use specific data structures, and must include explicit checks
for out-of-bounds memory accesses, even if a “smarter” and
slower verifier might not need these checks. Internet infras-
tructure companies such as Cloudflare [32] use BPF as a
core part of their infrastructure. Prevail [21] showed that
formal methods can help BPF verification scale. Verified in-
terpreters [51] and just-in-time compilers [41] for BPF exist,
but they make no promises about functional correctness.

9 Conclusion

We presented Klint, an automated tool to formally verify
that network function binaries satisfy specifications with nei-
ther source code nor debugging symbols, given contracts for
trusted data structures. This enables developers to provide
guarantees about proprietary code to operators, removing a
key barrier for adoption of formally verified network func-
tions. Klint uses maps as “universal” data structures for
both specifications and contracts, enabling a sweeping sim-
plification in reasoning including invariant inference. Using
Klint, we verified the functional correctness of 6 network
function binaries written in C and 1 in Rust, and the memory
safety and crash freedom of 5 existing BPF programs.

Acknowledgments

We thank the anonymous reviewers and our shepherd Jay
Lorch for improving this paper, and angrmaintainer Audrey
Dutcher for her quick fixes to the few issues we encountered.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 597

References

[1] Angr contributors. angr issue 938: SEGFAULT libz3. https://github.
com/angr/angr/issues/938.

[2] BPF authors and contributors. bpf-helpers(7) Linux manual page.
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html.

[3] Bradley, A. R., Manna, Z., and Sipma, H. B. What’s decidable about
arrays? In Intl. Conf. on Verification, Model Checking, and Abstract
Interpretation (2006).

[4] Bradner, S., and McQuaid, J. Benchmarking methodology for net-
work interconnect devices. RFC 2544, RFC Editor, 1999.

[5] Brunella, M. S., Belocchi, G., Bonola, M., Pontarelli, S., Siracu-
sano, G., Bianchi, G., Cammarano, A., Palumbo, A., Petrucci, L.,
and Bifulco, R. hxdp: Efficient software packet processing on FPGA
NICs. In Symp. on Operating Systems Design and Implementation (OSDI)
(2020).

[6] Bruni, A., Disney, T., and Flanagan, C. A peer architecture for
lightweight symbolic execution. http://hoheinzollern.files.wordpress.
com/2008/04/seer1.pdf, Unpublished.

[7] Cadar, C., Dunbar, D., and Engler, D. R. KLEE: Unassisted and
automatic generation of high-coverage tests for complex systems pro-
grams. In Symp. on Operating Systems Design and Implementation
(OSDI) (2008).

[8] Chipounov, V., Georgescu, V., Zamfir, C., and Candea, G. Selective
symbolic execution. In Workshop on Hot Topics in Dependable Systems
(HOTDEP) (2009).

[9] Coppa, E., D’Elia, D. C., and Demetrescu, C. Rethinking pointer
reasoning in symbolic execution. In ACM Intl. Conf. on Automated
Software Engineering (ASE) (2017).

[10] Corbet, J. Bounded loops in BPF programs. https://lwn.net/Articles/
773605/.

[11] Corbet, J. The BPF system call API, version 14. https://lwn.net/
Articles/612878/.

[12] de Moura, L. M., and Bjørner, N. Z3: An efficient SMT solver. In
Intl. Conf. on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS) (2008).

[13] Dillig, I., Dillig, T., and Aiken, A. Precise reasoning for programs
using containers. In ACM SIGPLAN-SIGACT Symp. on Principles of
Programming Languages (POPL) (2011).

[14] Dobrescu, M., and Argyraki, K. Software dataplane verification. In
Symp. on Networked Systems Design and Implementation (NSDI) (2014).

[15] DPDK: Data plane development kit. https://dpdk.org.
[16] Eisenbud, D. E., Yi, C., Contavalli, C., Smith, C., Kononov, R., Mann-

Hielscher, E., Cilingiroglu, A., Cheyney, B., Shang, W., and Ho-
sein, J. D. Maglev: A fast and reliable software network load balancer.
In Symp. on Networked Systems Design and Implementation (NSDI)
(2016).

[17] Emmerich, P., Gallenmüller, S., Raumer, D., Wohlfart, F., and
Carle, G. MoonGen: A scriptable high-speed packet generator. In
Internet Measurement Conf. (IMC) (2015).

[18] Eqinix. Network edge | Equinix edge services. https://www.equinix.
se/services/edge-services/network-edge.

[19] Farshin, A., Barbette, T., Roozbeh, A., Maguire Jr., G. Q., and
Kostić, D. PacketMill: Toward per-core 100-Gbps networking. In
Intl. Conf. on Architectural Support for Programming Languages and
Operating Systems (ASPLOS) (2021).

[20] Flanagan, C., and Leino, K. R. M. Houdini, an annotation assistant
for ESC/Java. In Intl. Symp. on Formal Methods Europe (2001).

[21] Gershuni, E., Amit, N., Gurfinkel, A., Narodytska, N., Navas, J. A.,
Rinetzky, N., Ryzhyk, L., and Sagiv, M. Simple and precise static
analysis of untrusted Linux kernel extensions. In Intl. Conf. on Pro-
gramming Language Design and Implementation (PLDI) (2019).

[22] Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J., Parno, B.,
Roberts, M. L., Setty, S., and Zill, B. IronFleet: Proving practical
distributed systems correct. In ACM Symp. on Operating Systems

Principles (SOSP) (October 2015), ACM.
[23] Iyer, R., Argyraki, K., and Candea, G. Performance interfaces for

network functions. In Symp. on Networked Systems Design and Imple-
mentation (NSDI) (2022).

[24] Iyer, R., Pedrosa, L., Zaostrovnykh, A., Pirelli, S., Argyraki, K.,
and Candea, G. Performance contracts for software network func-
tions. In Symp. on Networked Systems Design and Implementation
(NSDI) (2019).

[25] Jacobs, B., and Piessens, F. The VeriFast program verifier, 2008.
[26] Kapus, T., and Cadar, C. A segmented memory model for symbolic

execution. In ACM SIGSOFT Intl. Symp. on the Foundations of Software
Engineering (FSE) (2019).

[27] Kogias, M., Iyer, R., and Bugnion, E. Bypassing the load balancer
without regrets. In Symp. on Cloud Computing (SOCC) (2020).

[28] Kohler, E., Morris, R., Chen, B., Jannotti, J., and Kaashoek, M. F.
The Click modular router. ACM Transactions on Computer Systems
(TOCS) 18, 3 (2000).

[29] Kuznetsov, V., Kinder, J., Bucur, S., and Candea, G. Efficient state
merging in symbolic execution. In Intl. Conf. on Programming Language
Design and Implementation (PLDI) (2012).

[30] LAN/MAN Standards Committee. IEEE standard for local and met-
ropolitan area networks: Media access control (MAC) bridges. Tech.
rep., IEEE Standards Association, 2014. IEEE Std 802.1D-2004.

[31] Leino, K. R. M. Dafny: An automatic program verifier for functional
correctness. In Intl. Conf. on Logic for Programming Artificial Intelli-
gence and Reasoning (LPAR) (2010).

[32] Majkowski, M. Cloudflare architecture and how BPF eats the
world. https://blog.cloudflare.com/cloudflare-architecture-and-how-
bpf-eats-the-world/.

[33] McCanne, S., and Jacobson, V. The BSD packet filter: A new architec-
ture for user-level packet capture. In USENIX Winter 1993 Conference
(San Diego, CA, Jan. 1993), USENIX Association.

[34] Merkel, D. Docker: Lightweight Linux containers for consistent
development and deployment. Linux Journal (2014).

[35] Miano, S., Bertrone, M., Risso, F., Bernal, M. V., Lu, Y., Pi, J., and
Shaikh, A. A service-agnostic software framework for fast and effi-
cient in-kernel network services. In ACM/IEEE Symp. on Architectures
for Networking and Communications Systems (2019).

[36] MITRE Corporation. MS13-064. Available from CVE Details, CVE-ID
MS13-064., 2013.

[37] MITRE Corporation. CVE-2014-9715. Available from CVE Details,
CVE-ID CVE-2014-9715., 2014.

[38] MITRE Corporation. CVE-2015-6271. Available from CVE Details,
CVE-ID CVE-2015-6271., 2015.

[39] Mozilla Research. Rust programming language. https://www.rust-
lang.org/.

[40] Nelson, L., Bornholt, J., Gu, R., Baumann, A., Torlak, E., andWang,
X. Scaling symbolic evaluation for automated verification of systems
code with Serval. In ACM Symp. on Operating Systems Principles (SOSP)
(2019).

[41] Nelson, L., Geffen, J. V., Torlak, E., and Wang, X. Specification and
verification in the field: Applying formal methods to BPF just-in-time
compilers in the Linux kernel. In Symp. on Operating Systems Design
and Implementation (OSDI) (2020).

[42] Nelson, L., Sigurbjarnarson, H., Zhang, K., Johnson, D., Bornholt,
J., Torlak, E., and Wang, X. Hyperkernel: Push-button verification
of an OS kernel. In ACM Symp. on Operating Systems Principles (SOSP)
(2017).

[43] Network Working Group. RFC 1812, requirements for IP version 4
routers. https://www.rfc-editor.org/rfc/rfc1812.txt, 1995.

[44] Open Information Security Foundation. Suricata website. https:
//suricata.io/.

[45] Pirelli, S., and Candea, G. A simpler and faster NIC driver model
for network functions. In Symp. on Operating Systems Design and

598 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/angr/angr/issues/938
https://github.com/angr/angr/issues/938
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
http://hoheinzollern.files.wordpress.com/2008/04/seer1.pdf
http://hoheinzollern.files.wordpress.com/2008/04/seer1.pdf
https://lwn.net/Articles/773605/
https://lwn.net/Articles/773605/
https://lwn.net/Articles/612878/
https://lwn.net/Articles/612878/
https://www.equinix.se/services/edge-services/network-edge
https://www.equinix.se/services/edge-services/network-edge
https://blog.cloudflare.com/cloudflare-architecture-and-how-bpf-eats-the-world/
https://blog.cloudflare.com/cloudflare-architecture-and-how-bpf-eats-the-world/
https://www.rust-lang.org/
https://www.rust-lang.org/
https://www.rfc-editor.org/rfc/rfc1812.txt
https://suricata.io/
https://suricata.io/

Implementation (OSDI) (2020).
[46] Rust authors and collaborators. Issues - rust-lang/rust. https:

//github.com/rust-lang/rust/issues.
[47] Shirokov, N., and Dasineni, R. Open-sourcing Katran, a scalable

network load balancer. https://engineering.fb.com/2018/05/22/open-
source/open-sourcing-katran-a-scalable-network-load-balancer,
May 2018.

[48] Shoshitaishvili, Y., Wang, R., Salls, C., Stephens, N., Polino, M.,
Dutcher, A., Grosen, J., Feng, S., Hauser, C., Kruegel, C., and
Vigna, G. SOK: (state of) the art of war: Offensive techniques in
binary analysis. In IEEE Symp. on Security and Privacy (S&P) (2016).

[49] Turing, A. M. On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the LondonMathematical Society
(01 1937).

[50] Wang, J., Lévai, T., Li, Z., Vieira, M. A. M., Govindan, R., and Ragha-
van, B. Galleon: Reshaping the square peg of NFV, 2021.

[51] Wang, X., Lazar, D., Zeldovich, N., Chlipala, A., and Tatlock, Z.
Jitk: A trustworthy in-kernel interpreter infrastructure. In Symp. on
Operating Systems Design and Implementation (OSDI) (2014).

[52] Yaseen, N., Arzani, B., Beckett, R., Ciraci, S., and Liu, V. Aragog:
Scalable runtime verification of shardable networked systems. In Symp.
on Operating Systems Design and Implementation (OSDI) (2020).

[53] Zaostrovnykh, A., Pirelli, S., Iyer, R. R., Rizzo, M., Pedrosa, L.,
Argyraki, K. J., and Candea, G. Verifying software network functions
with no verification expertise. In ACM Symp. on Operating Systems
Principles (SOSP) (2019).

[54] Zaostrovnykh, A., Pirelli, S., Pedrosa, L., Argyraki, K., and Can-
dea, G. A formally verified NAT. In ACM SIGCOMM Conf. (SIGCOMM)
(2017).

[55] Zhang, K., Zhuo, D., Akella, A., Krishnamurthy, A., and Wang,
X. Automated verification of customizable middlebox properties with
Gravel. In Symp. on Networked Systems Design and Implementation
(NSDI) (2020).

Appendix A Verified properties

We used Klint to verify both network functions we wrote
and existing BPF network functions. We summarize the prop-
erties we proved for our network functions in this appendix.
The BPF network functions have no formal specification and
writing one would require a discussion with their authors
to understand which edge cases are intended and which are
not, so we instead chose to only verify that they are memory
safe and free of crashes.
The full specifications are available on our repository:

https://github.com/dslab-epfl/klint.
Bridge: we wrote a specification by manually extracting

properties from the IEEE 802.1D [30] standard. For instance,
section 7.7.1 of the standard, “Active topology enforcement”,
states that “Each Port is selected as a potential transmission
Port if, and only if [...] The Port considered for transmission
is not the Port on which the frame was received [...]”, thus
our specification checks that if the packet was transmitted,
the transmission port must not be the reception port. As
we explain in Section 6.1, we found a bug after translating
section 7.8 of the standard, “The Learning Process”, which
states a condition for learning an address in the filtering
database: “the source address field of the frame denotes a
specific end station (i.e., is not a group address)”.

Klint helps us write this specification by allowing us
to write properties that must hold on packets and on state
without having to explicitly depend on the bridge’s internals.
For instance, we do not need to specify the data type that
the bridge uses to store metadata about Ethernet addresses,
only that the bridge conceptually has a map with Ethernet
addresses as keys, and that the source address of an incoming
packet is or is not added depending on specification-related
factors.

Firewall: beyond the partial specification of Listing 2, we
wrote a full specification that is an evolution of the one from
Vigor [53]. We model the firewall’s state as a map from flows
to last update time and ensure that the firewall (1) adds flows
from the internal network to the state if possible, refreshing
their last update time if necessary, and (2) only lets packets
from the external network through if their flow belongs to
the state. The specification also ensures that the firewall
does not modify packet contents and does not drop packets
unless they are incoming packets with no matching flow in
the state.
Our specification is not concerned with how the firewall

“remembers” flows, nor with when exactly this happens in
packet processing, only that outgoing packets flows must
be remembered if there is space and that incoming packets
must be of a known flow if they are forwarded.

As we show in §6.1,Klint can also verify a more restricted
specification that is only concerned with what happens when
a packet is transmitted, including the fact that its flow must
have been known previously.

Maglev: while we do not know of a formal specification
for Maglev, our specification is an evolution of the one from
Vigor [53], which was written according to the behavior
described by the Google paper [16]. We model the state
as two maps, one from flows to backends and one from
backends to last heartbeat time. Packets from backends are
heartbeats and must update the corresponding last heartbeat
time and then be dropped. Packets from clients must be
routed to a backend and must not be dropped unless there
are no available backends.

NAT: our specification is an evolution of the one from
VigNAT [54], which fully describes the behavior of the NAT.
We model the state as a map from flows to last update time,
in a similar fashion to the firewall specification. Packets must
only be dropped if they are not IP or TCP/UDP, as the NAT
does not support other protocols (for now), or if they come
from the external network but do not belong to a known
flow. Packet headers must be updated according to the state,
and packets from the internal network must trigger state
updates.

One interesting aspect of Klint with regards to the NAT
is invariant inference: Vigor’s original NAT required about
3000 lines of manually written proof annotations for the
invariants between the three data structures the NAT uses
internally, and the Vigor specification was dependent on

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 599

https://github.com/rust-lang/rust/issues
https://github.com/rust-lang/rust/issues
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer
https://github.com/dslab-epfl/klint

these data structures. Klint instead infers these invariants
automatically, and our specification defines the NAT in terms
of maps.

Policer: our specification is an evolution of the one from
Vigor [53], which fully describes the behavior of the policer.
We model the state as one map from buckets to tokens, and
one map from IP addresses to buckets. The specification then
enforces that the policer must update the state according
to incoming packets and their size and drop packets if their
bucket is too full.

Router: we wrote a specification based on RFC 1812 [43],
“Requirements for IP Version 4 Routers”. We model the state
as a map from CIDR blocks to devices. We enforce the header
validation requirements from section 5.2.2 of the RFC, the
time to live requirements from section 4.9.9.2, and most im-
portantly the longest-prefix-match property to find the next
hop address from section 5.2.4.3.

Appendix B Ghost maps get algorithm
We present here the algorithm for the get operation on ghost
maps. PC is the Path Constraint. UK𝑀 , UV𝑀 , and UP𝑀 are
the triple forming map 𝑀’s unknown item, as we explain
in §3.3. The condition and value_hint are those required to
handle invariant recursion, as we explain in §3.4.

function KnownSize(M)
𝑟𝑒𝑠𝑢𝑙𝑡 = 0, 𝑘𝑛𝑜𝑤𝑛 = ∅
for (𝑘, 𝑣, 𝑝) in𝑀’s known items do

𝑟𝑒𝑠𝑢𝑙𝑡 += ITE(𝑘 ∉ 𝑘𝑛𝑜𝑤𝑛 ∧ 𝑝, 1, 0)
𝑘𝑛𝑜𝑤𝑛 += 𝑘

return 𝑟𝑒𝑠𝑢𝑙𝑡

function Get(M, K)
for (𝑘, 𝑣, 𝑝) in𝑀’s known items do

if unsatisfiable(condition ∧ 𝐾 ≠ 𝑘) then
return (𝑣, 𝑝)

if unsatisfiable(condition ∧ 𝐾 ≠ UK𝑀) then
return (UV𝑀 ,UP𝑀)

Let (𝑉 , 𝑃) be a fresh value and presence bit
if condition is set then

Add condition ⇒ 𝑉 = value_hint to the PC
Let U =

∧(𝐾 ≠ 𝐾 ′) for each known key 𝐾 ′ in𝑀
Add (𝐾,𝑉 , 𝑃) to𝑀’s known items
for (𝑘, 𝑣, 𝑝) in𝑀’s items do

Add 𝐾 = 𝑘 ⇒
(
(𝑉 = 𝑣) ∧ (𝑃 = 𝑝)

)
to the PC

Add𝑈 ⇒ invariant𝑀 (𝐾,𝑉 , 𝑃) to the PC
Add 𝐾𝑛𝑜𝑤𝑛𝑆𝑖𝑧𝑒 (𝑀) ≤ length(𝑀) to the PC
return (𝑉 , 𝑃)

600 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Differential Network Analysis

Peng Zhang∗, Aaron Gember-Jacobson], Yueshang Zuo∗, Yuhao Huang∗, Xu Liu∗, and Hao Li∗
∗Xi’an Jiaotong University,]Colgate University

Abstract
Networks are constantly changing. To avoid outages, opera-

tors need to know whether prospective changes in a network’s
control plane will cause undesired changes in end-to-end for-
warding behavior. For example, which pairs of end hosts are
reachable before a configuration change but unreachable after
the change? Control plane verifiers are ill-suited for answering
such questions because they operate on a single snapshot to
check its “compliance” with “explicitly specified” properties,
instead of quantifying the “differences” in “affected” end-to-
end forwarding behaviors. We argue for a new control plane
analysis paradigm that makes differences first class citizens.
Differential Network Analysis (DNA) takes control plane
changes, incrementally computes control and data plane state,
and outputs consequent differences in end-to-end behavior.
We break the computation into three stages—control plane
simulation, data plane modeling, and property checking—and
leverage differential dataflow programming frameworks, in-
cremental data plane verification, and customized graph al-
gorithms, respectively, to make each stage incremental. Eval-
uations using both real and synthetic control plane changes
demonstrate that DNA can compute the resulting differences
in reachability in a few seconds—up to 3 orders of magnitude
faster than state-of-the-art control plane verifiers.

1 Introduction

Networks are frequently in flux. Configurations are modified
monthly, or even weekly: e.g., two large universities change
up to 55 stanzas per router per month [27], and Facebook
conducts an average of 12.5 changes per device per week in
their backbone [41]. External peers update routes daily: e.g.,
four tier-1 ISPs each experience a median of ∼100K route
updates per day [12]. Links and routers fail intermittently: e.g.,
a large online service provider’s data centers have a median
of 18.5 link outages per day [17], and the CENIC research
network has a median of 38.5 outages per link per year [42].

Each change poses a risk of introducing catastrophic net-
work outages [28, 31, 46]. To avoid outages, operators need

to know whether prospective changes in the control plane
(i.e., changes in configurations, external routes, or available
links/routers) will cause (un)desired changes in end-to-end
forwarding behavior. For example, would a link failure break
isolation? Would a configuration change reduce reachability?
Would an external route withdrawal degrade load balancing?

At first glance, existing verifiers [1,4,6,7,13–15,18,22–24,
26, 33, 37, 40, 43, 45, 48] seem to address this need. However,
data plane verifiers [18,19,23,24,26,33,44,48] cannot directly
answer these questions, because they operate on changes in
the control plane’s output, rather than the control plane itself.
Existing control plane verifiers [1, 4, 6, 7, 13–15, 22, 37, 40, 43,
45] are also ill-suited for this task, because of the following
limitations: (1) they focus on checking a single control plane
snapshot instead of differences between snapshots and (2)
they require a list of properties to check, but it is difficult for
operators to determine which properties may be affected by a
change and hence need to be checked.

For the first limitation, a possible workaround is to apply
a control plane verifier to both the old and new snapshots
and compare the verifier’s output. But analyzing both snap-
shots from scratch is wasteful, because many control plane
changes have a limited impact on the data plane. For example,
fewer than 100 forwarding (ACL) rules are changed for >80%
(>90%) of configuration changes in the backbone network at
a large university (Figure 1), and Steffen et al.’s experiments
with 90 ISP topologies show that only one-third of link fail-
ures impact the forwarding path between a randomly chosen
ingress node and destination prefix [40].

For the second limitation, a possible workaround is to check
reachability (or other properties) for all pairs of end hosts. But
checking all possible properties is wasteful, because the space
of all properties is large [9] and the set of properties affected
by a change is often small. Policy-mining tools [8, 9, 25] can
help narrow the space of properties, but the set of inferred
properties may still be large—e.g., Config2Spec returns over
3K properties for a national research and education (R&E)
network with only 10 routers [9].

Since control plane verifiers can be quite inefficient for

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 601

assessing whether control plane changes cause changes in
end-to-end behavior, we argue for a new control plane analy-
sis paradigm which makes differences first class citizens. Dif-
ferential Network Analysis (DNA) takes as input differences
in configurations, external routes, and available links/routers,
incrementally computes control and data plane state, and out-
puts the consequent differences in end-to-end behavior (e.g.,
reachability, waypointing, load balancing, etc.). This aligns
with the small size/impact of many control plane changes and
avoids duplicate and unnecessary computations.

To incrementally compute differences in forwarding behav-
ior based on differences in the control plane, DNA breaks the
computation into three modular stages—control plane simula-
tion, data plane modeling, and property checking—and makes
each stage “differential”. In other words, each stage consumes
differences (control plane changes, data plane changes, and
forwarding graph changes, respectively), incrementally up-
dates its network model, and produces differences (data plane
changes, forwarding graph changes, and property changes,
respectively). To achieve incremental computation for each
of these stage, DNA leverages differential dataflow program-
ming frameworks [2, 35], incremental data plane verifica-
tion [48], and customized graph algorithms, respectively.

We implement a version of DNA that supports differen-
tial analysis of two widely-used routing protocols (BGP and
OSPF) and widely important properties (reachability, way-
pointing, and load balancing). Our implementation of DNA is
publicly released under an open source license. We evaluate
DNA using both synthetic and real control plane changes, and
demonstrate that DNA can compute differences in reachabil-
ity induced by control plane changes in a few second—up to 3
orders of magnitude faster than state-of-the-art control plane
verifiers [1,4,6]. Second-level verification time can enable on-
the-fly checking of operator-proposed configuration changes,
similar to syntax checkers integrated into most programming
IDEs, as well as quickly validating automatically-generated
changes due to dynamic control [30].

In summary, we make the following three contributions:
• We propose differential network analysis (DNA), a new

paradigm that helps operators better understand the im-
pact of changes in the control plane.

• We design and implement DNA based on recent ad-
vances in differential dataflow programming and incre-
mental data plane verification, and apply optimizations
to overcome their inefficiencies.

• We use both synthetic and real control plane changes
to show DNA computes consequent differences in end-
to-end behavior up to 3 orders of magnitude faster than
state-of-the-art control plane verifiers [1, 4, 6].

2 Motivation

In this section, we discuss in detail why invoking a control
plane verifier before and after a change, and for all inferred

 1

 10

 100

 1000
 3000

 10 100 1000

#
C

h
a
n
g
e
d
 R

u
le

s

#Changed Configuration Lines

Forwarding Rules ACL Rules

Figure 1: The number of changed (forwarding and ACL)
rules, and the number of changed configuration lines for the
backbone network at a large university.

properties, is an inefficient way to assess whether changes in
the control plane cause changes in end-to-end behavior. In
particular, we highlight: (1) the prevalence of small control
plane changes, and (2) the difficulty of identifying which
properties may be impacted by a change.

2.1 Control plane changes are often small

Control plane verifiers operate on full snapshots of the control
plane, but the delta between snapshots is often small, which
leads to significant amounts of unnecessary re-computation.

Configuration changes. Several prior studies have examined
router configurations across various organizations/networks
and found that changes are often small: e.g., two large uni-
versities each change (on average) ≤20 lines of configuration
at the same time [36]; changes in Facebook’s backbone and
data center networks impact an average of 157 and 738 lines
of configuration, respectively, which is relatively small com-
pared to the scale of these networks [41]; and in 75% of the
networks operated by a large online service provider, the me-
dian change includes only three devices [16]. Consequently,
we expect control plane verifiers’ inputs and outputs to be
similar before and after such changes.

To validate this hypothesis, we analyze 3 months of con-
figuration changes from the backbone network at a large uni-
versity [36]. The network has 28 routers and 50 links and
runs OSPF. On average, the network has ∼75K total lines of
configuration, which generate ∼25K total forwarding rules.
The configuration changes include adding/removing subnets,
access control lists (ACLs), OSPF routes, etc. Figure 1 depicts
the size of each configuration change and the corresponding
number of changes in forwarding rules and ACL rules. On
average, 228 lines of configuration (∼0.3%) are changed,
causing 146 forwarding rules (∼0.6%) and 34 ACL rules
(∼0.9%) to change. Except for two updates, all configuration
changes result in <600 changes in forwarding rules.

External route changes. Prior studies have shown that au-
tonomous systems (ASes) may experience a high rate of BGP
updates—e.g., four tier-1 ISPs each experience a median of
∼100K route updates per day [12]—yet only 1% (10%) of
next-hops in the Internet change each day (month) [10]. Con-

602 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

sequently, we expect external route changes to have a small
impact on a network’s control and data planes.

To validate this hypothesis, we analyze 1 year of hourly
RIB snapshots from a national R&E network [3]. We exclude
hours in which a configuration change was made to ensure we
only capture RIB changes caused by external route changes.
We find <15% of hours have at least one RIB entry change,
and <4% of hours have more than 10 RIB entries change.

Link/router availability changes. Link/router failures—
caused by software upgrades, hardware faults, etc.—are com-
mon: e.g., the CENIC Digital California and High Perfor-
mance Research networks experience a median of 5.1 and
38.5 failures per link per year, respectively [42], and tens of
geographically distributed data centers operated by a large on-
line service provider experience a median of 18.5 link failures
and 3 device failures per day [17]. However, Steffen et al.’s
experiments with 90 ISP topologies showed that for a ran-
domly chosen ingress node and destination prefix, two-thirds
of link failures do not impact the forwarding path from the
ingress to the destination [40]. In other words, we expect only
a fraction of FIB entries to change when links/routers fail.

2.2 Identifying behaviors to (re-)verify is hard
Identifying how changes in the control plane impact end-to-
end forwarding behavior is important for assessing whether
the changes: (1) have the intended effect, and (2) have any
undesirable side-effects.

For the former, it is easy to identify which behaviors to
examine, because these behaviors are effectively the “design
requirements” for the change. For example, operators may
propose a change in filters to restrict access to a new subnet;
the effectiveness of the change can be assessed by examining
reachability between the restricted and new subnet(s).

In contrast, it is difficult to identify which behaviors should
be examined to determine whether a change is “safe.” Some
behaviors may be obvious, because they relate directly to the
change: e.g., to assess the safety of the proposed change in
route filters, operators should examine reachability from non-
restricted subnets to the new subnet. However, a change can
also impact seemingly unrelated behaviors—e.g., reachability
from non-restricted subnets to existing subnets—or behaviors
outside of an operator’s purview—e.g., changes in a single
data center may affect how a WAN load balances traffic across
multiple data centers. The latter can arise especially when dif-
ferent teams manage different aspects of a network, networks
are merged (e.g., due to an acquisition), or operators with
historical knowledge of the network leave an organization.

A simple way to ensure a change does not negatively impact
seemingly unrelated behaviors is to examine all categories
of end-to-end behaviors for all (pairs of) prefixes. However,
this is prohibitively expensive [9], and likely results in lots
of unnecessary computation—e.g., if access from a subnet
was already restricted, then further restrictions in access are

unlikely to impact reachability. Ideally, only behaviors that
could potentially be impacted should be examined.

In summary, repeatedly analyzing full snapshots of the
control plane is wasteful, and determining which end-to-end
behaviors to analyze is hard.

3 Overview

This section overviews DNA, a modular network analysis
framework which can incrementally compute the “differences”
in forwarding behavior that arise from “differences” in the
control plane. We will first present the framework of DNA,
and use an example to show its workflow. After that, we
discuss three challenges when realizing DNA.

3.1 The DNA workflow
DNA is a modular framework with three stages, where each
stage consumes and produces some forms of differences.

• The first stage consumes control plane changes and sim-
ulates the control plane to generate differences in data
plane state (i.e., insertions/deletions of forwarding rules).

• The second stage updates a data plane model to generate
differences in forwarding graphs (i.e., insertions/dele-
tions of packet equivalence classes on edges).

• The third stage identifies and checks relevant end-to-end
forwarding behaviors to generate differences in end-to-
end properties (e.g., changes in reachability).

We use an example to show how these three stages work.

An example network. Figure 2(a) shows an example network
which is used throughout the paper. The network has five
routers running BGP. Router E announces two /24 prefixes
and one /16 prefix. There is an outbound route filter at port
2 of router E, which filters routes for the /16 prefix, and an
inbound ACL at port 2 of router D, which drops all traffic to
the two /24 prefixes. The green and yellow arrows represent
the best routes selected at each router.

To simulate a change, we consider a single link failure, i.e.,
the link between router C and E fails. As a result, router A can
no longer reach the two /24 networks. We show how DNA
can uncover this change in reachability.

Stage 1. Differential control plane simulation (§4). This
stage takes as input differences in control plane state, incre-
mentally simulates the control plane, and outputs differences
in data plane state. Differences in control plane state are in-
sertions/deletions of configuration lines, external routes, or
links/routers, and differences in data plane state are insertion-
s/deletions of forwarding/ACL rules. Generally, simulating a
control plane entails modeling the route propagation, filtering,
and selection behaviors within and across distributed routing
protocols to compute the converged control plane state and
produce a concrete data plane [1, 7, 14, 34, 37, 38]. To be in-
cremental, we must transition from one converged state to

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 603

A C

B D

Networks
1.1.1.0/24
1.1.2.0/24
1.2.0.0/16

E

outbound route-map
filter 1.2.0.0/16

inbound ACL
deny 1.1.1.0/24
deny 1.1.2.0/24

1

1

12

3

1

2

3

2

1

3

4

2 3
4

2

3

- Link(C, 1, E, 2)

- FIB(C, 1.1.1.0/24, 1)
+ FIB(C, 1.1.1.0/24, 2)
- FIB(C, 1.1.2.0/24, 1)
+ FIB(C, 1.1.2.0/24, 2) - Reach(A1, E1, a)

A C

B D

E

+a

a,b -a

,b

+a,b

A C

B D

E

+a

a,b -a

,b

+a,bDifferential
Control Plane

Simulation
(§4)

Differential
Data Plane
Modeling

(§5)

Differential
Property
Checking

(§6)

The DNA System

Data Plane
Changes

Data Plane Model
Changes

 Control Plane
Changes

Property Changes

(a) A walkthrough example for DNA (b) The workflow of DNA

/24
/16

Figure 2: An example demonstrating the workflow of DNA.

another, accounting for the impact of control plane changes
on route propagation, filtering, and/or selection across routers.

In our example, the link failure between port 1 of C
and port 2 of E will be encoded as a deletion of a record
Link(C,1,E,2), which is the input the Stage 1. Given this
input, DNA simulates the control plane and generates FIB
differences: e.g., at router C, the two /24 routes whose output
port is 1 (2) are deleted (inserted), as shown Figure 2.

Stage 2. Differential data plane modeling (§5). This stage
takes as input differences in data plane state, incrementally
constructs a data plane model, and outputs differences in the
data plane model. Generally, a data plane model partitions
the packet space into Equivalence Classes (ECs), each of
which represents a set of packets with the same forwarding
behavior through the network [26]. Then, the model concisely
encodes the forwarding behavior of packets with a forwarding
graph, where each edge is labelled with ECs that can traverse
it [18, 48], as shown in Figure 2. When rules are inserted or
deleted, ECs are split, merged, and transferred among edges,
to reflect the forwarding behavior change.

In our example, there are three ECs in total, where a repre-
sents [1.1.1.0,1.1.2.255], b represents [1.2.0.0,1.2.255.255],
and c represents all other IP addresses (which are not shown
here). Since forwarding rules for the two /24 prefixes which
output to port 1 are deleted, and those which output to port
2 are inserted, EC a “transfers” from edge (C,E) to edge
(C,D) and from edge (B,C) to edge (B,D), as shown in Fig-
ure 2. Thus, the differences of data plane model consist of
two insertions and two deletions for EC a on these four edges.

Stage 3. Differential property checking (§6). This stage
takes as input differences in the data plane model (i.e., inser-
tions and deletions of ECs on the forwarding graph), incre-
mentally computes relevant forwarding behaviors, and outputs
the differences in properties. Here, the differences in proper-
ties, which we term as differential properties, are defined as
insertions and deletions of forwarding properties, including
reachability, waypointing, load balancing, etc. DNA computes
differential properties by traversing the forwarding graphs
from edge ports, which are ports that connected to the hosts,
servers, or other networks. The traversal starts with a set of
all affected ECs, which are updated by intersecting with those
ECs labelled on the edge. The traversal ends when the set of
ECs becomes empty or another edge port is reached.

In our example, we have three edge ports, i.e., port 1 of
A, B, and E. By traversing from these edge ports, we get the

differential reachability as −Reach(A1,E1,a), meaning that
packets belonging to EC a can no longer reach port 1 of E
from port 1 of A. As will be shown in §6.2, DNA optimizes
the above computation by traversing directly from the change
points, where network forwarding behaviors change (B and
C in this example). Note that network invariants like loop-
freedom and blackhole-freedom are covered by differential
reachability, since loops or blackholes will result in some
pairs of end points becoming unreachable.

3.2 Challenges in realizing DNA
Realizing each of the three stages of DNA requires addressing
the following three challenges, respectively.
(1) How to achieve control plane simulation in a way that
is easy to extend? Network control plane has complex seman-
tics, and simulating a control plane to cover all relevant feature
often lead to complex code base. Generally, an incremental al-
gorithm can be much more complex than its non-incremental
counterpart [39]. Thus, incremental control plane simulation
can be difficult to build. In addition, this is not a once-for-all
task, considering the semantics of the control plane are still
evolving, and new vendor-specific features emerge. Therefore,
DNA needs to realize incremental control plane simulation in
an easy-to-extend way.
(2) How to efficiently update data plane model for
batched rule updates? Existing data plane verifiers are de-
signed to consume single-rule updates—i.e., for each rule
insertion or deletion, they individually update the model. For
DNA, however, the differences in data plane state consist of
a batch of rule updates. As an example, a link failure causes
deletions of rules for multiple prefixes which are previously
forwarded through the failed link. In such a setting, consum-
ing single-rule updates can result in redundant computation,
since these rule updates are often correlated. Therefore, DNA
needs to optimize the data plane model update algorithm for
batched rule updates.
(3) How to determine and only re-check affected proper-
ties? Existing data plane verifiers can incrementally check
invariants like blackhole-freedom and loop-freedom by only
re-verifying the ECs affected by a FIB update. DNA, how-
ever, needs to check all properties of some type (e.g., all-pairs
reachability), and re-checking all these properties is wasteful
since often only a small portion of the properties are affected.
Therefore, DNA needs a way to determine which properties

604 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

are affected, which is not easy: e.g., it is unclear which reach-
ability properties may be affected by a change in OSPF cost.

We describe how we address these challenges in §4–§6.

4 Differential Control Plane Simulation

As the first stage, DNA maps differences in configurations,
external routes, and available links/routers to differences in
FIBs. In the following, we show how DNA achieves this
mapping in an incremental and easy-to-extend manner.

4.1 Modeling the control plane
A network control plane computes routes in a recursive way:
each router receives routes from neighboring routers, filters
and/or modifies the routes, locally ranks the routes to select
the best routes, and advertises the best routes (which may
be filtered/modified) to neighboring routers. The steps are
repeated until routing converges—i.e., no more changes are
made to any routing information bases (RIBs).

Leveraging differential dataflow for automatic differen-
tial computation. The aforementioned process fits well into
the dataflow programming model. A dataflow program corre-
sponds to a directed graph where vertices represent operators
(i.e., functions that transform data), and edges represent the
flow of data between operators [20]. For control planes, fil-
tering, modifying, and selecting routes can be modeled with
operators, and the propagation of routes between RIBs corre-
sponds to the flow of data.

Differential Dataflow (DD) [35] is one dataflow program-
ming framework which supports general incremental compu-
tation for recursive dataflows. This is achieved with a set of
differential operators like join, count, etc. which efficiently
produce differences in outputs from differences in inputs.

The left of Figure 3 shows a part of the dataflow program
for OSPF route propagation using operators offered by DD. It
joins the routes stored in a collection BestOSPFRoute with
another collection OSPFNeighbor to model the propagation
of routes from one router to another router; filters the
routes where the origin of the route is the router itself (in order
to prevent loops); joins with the collection OSPFCost to get
the OSPF cost configured on the interface where the route is
received; maps the routes to new routes with the OSPF cost
updated by adding the interface’s cost; and finally joins with
InterfaceIP to get the IP of the interface to produce routes
OSPFRoute, which will be further be processed to produce
the BestOSPFRoute (omitted here).

Leveraging differential Datalog for better extensibility.
As can be seen in the above example, modeling route com-
putation directly using low-level operators offered by DD is
less intuitive and can take a lot of effort, making the model
hard to extend to new (vendor-specific) protocols or features.
Therefore, we leverage Differential Datalog (DDlog) [2], a

Datalog programming language built on top of DD. In the fol-
lowing, we give some preliminary to Datalog, and introduce
our DDlog-based control plane model.

A Datalog program consists of a set of facts and rules.
A fact is a statement like “interface intf of router X
has OSPF cost cost”. This fact can be represented with
OSPFCost(X , intf ,cost), where OSPFCost is termed a rela-
tion. A rule takes the form of R1(u1) : −R2(u2), . . . ,Rn(un),
where each Ri is a relation, meaning R1(u1) holds if
R2(u2), . . . ,Rn(un) hold. Given some base facts, one can de-
rive new facts by firing the Datalog rules.

DDlog-based control plane model. The right of Figure 3
shows the corresponding DDlog rule for the corresponding
dataflow model on the left. As we can see, DDlog allows us
to only focus on how routes (i.e., facts) are derived, without
caring about the sequence to join, map, or filter routes. Addi-
tionally, unlike other Datalog languages [5, 21], DDlog offers
several useful data structures, such as vectors, which make
the modeling of route computation much easier.

Figure 4 shows the flow of data in our DDlog-based control
plane model. If relations A and B appear on the left and right
side of a rule, respectively, then there is an edge from B to A
in the graph. If multiple relations appear on the right side of a
rule to derive relation A, we merge their edges to A.

There are three types of relations: input relations, output re-
lations, and intermediate relations. The input relations contain
base facts including: (1) configurations for routing protocols,
e.g., BGPNet contains the subnets imported to BGP; (2) net-
work topology, e.g., Link contains L3 links; and (3) external
routes, e.g., ExtRoute contains routes announced by ISPs
that are out of scope of our model. There is a single output
relation, i.e., FIB, and multiple intermediate relations, e.g.,
GlobalRIB which contain derived facts, e.g., routes.

The DDlog-based control plane model treats changes in
the control plane as insertions and deletions of facts in input
relations. For example, modifying the OSPF cost on inter-
face 3 of router D from 10 to 100, is treated as two changes
−OSPFCost(D,3,10) and +OSPFCost(D,3,100). The resul-
tant changes in data plane state are insertions and deletions
of facts in the output relation, i.e., FIB.

4.2 Executing the control plane model
The control plane model, which is a DDlog program, will
be compiled into a DD program for execution. When execut-
ing the DD program, changes are propagated in the dataflow
graph, and at each operator the changes in input will be
mapped to changes in output. Since the dataflow is recur-
sive, the propagation continues for multiple iterations, until
there are no more changes (fixed point is reached). The inser-
tions and deletions in the output relation FIB will be returned,
and will be fed to Stage 2 (§5).

Figure 5 shows the execution of the control plane model for
our example network. We have over-simplified the execution

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 605

join joinfilterBestOSPFRoute

OSPFNeighbor OSPFCost

map

InterfaceIP

join OSPFRoute

OSPFRoute(node, prefix, next_hop, next_hop_ip, cost, type, origin) : -
 BestOSPFRoute(next_hop, prefix, _, _, sub_cost, type, origin),
 OSPFNeighbor(node, intf, next_hop, next_hop_intf),
 node != origin,
 OSPFCost(node, intf, node_int_cost),
 cost = sub_cost + node_int_cost,
 InterfaceIP(next_hop, next_hop_intf, next_hop_ip).

(a) The dataflow graph (b) The Datalog program

Figure 3: Part of dataflow graph with the corresponding Datalog program snippet for OSPF route propagation.

FIB

GlobalRIB

BGPNet

OSPFRIB OSPFRouteBestOSPFRoute

OSPFNeighbor

OSPFCost

MinAdmin

BGPRIB

StaticRoute

NeedMatchRIBOut

BGPNeighRouteMapOut

AdjRIBOut

AdjRIBIn

RouteMapIn

MatchedRIBIn BGPBestRoute

The BGP Loop

The OSPF Loop

Input Relation

Output Relation

Intermediate Relation

Link

Link

ExtRoute

Figure 4: The flow of data in our control plane model. For simplicity, only the core relations are shown.

-(C, 1.1.1/24, [E])
-(C, 1.1.2/24, [E])
(C, 1.1.1/24, [DE])
(C, 1.1.2/24, [DE])

AdjRIBIn BGPRIB

-(C, 1.1.1/24, [E])
-(C, 1.1.2/24, [E])

+(C, 1.1.1/24, [DE])
+(C, 1.1.2/24, [DE])

-(C, E)

Link

 (E, 1.1.1/24, [])
 (E, 1.1.2/24, [])
 (E, 1.2/16, [])

BGPRIB

-(C, 1.1.1/24, 1)
-(C, 1.1.2/24, 1)
+(C, 1.1.1/24, 2)
+(C, 1.1.2/24, 2)

FIB

(C, E, 1, connected)

GlobalRIB

-(C, 1.1.1/24, [E])
-(C, 1.1.2/24, [E])
(C, 1.1.1/24, [DE])
(C, 1.1.2/24, [DE])

AdjRIBIn BGPRIB

-(C, 1.1.1/24, [E])
-(C, 1.1.2/24, [E])

+(C, 1.1.1/24, [DE])
+(C, 1.1.2/24, [DE])

-(C, E)

Link

 (E, 1.1.1/24, [])
 (E, 1.1.2/24, [])
 (E, 1.2/16, [])

BGPRIB

-(C, 1.1.1/24, 1)
-(C, 1.1.2/24, 1)
+(C, 1.1.1/24, 2)
+(C, 1.1.2/24, 2)

FIB

(C, E, 1, connected)

GlobalRIB

Figure 5: Control plane simulation for the example network.

by removing changes to a lot of intermediate relations and
only focusing on changes to Link, AdjRIBIn, BGPRIB, and
FIB. Here, the link failure −(C,E) is input to the DD compu-
tation engine. The deletion will be joined with existing facts
in BGPRIB to derive new facts. Since the change is a deletion
so the changes it derives are also deletions. After multiple in-
termediate steps, the change derives −(C,1.1.1/24, [E]) and
−(C,1.1.2/24, [E]) in AdjRIBIn, meaning deletions of the
received routes for prefixes 1.1.1.0/24 and 1.1.2.0/24 with
AS path [E] at router C. These two deletions in AdjRIBIn
will trigger deletions of the old best routes and insertions of
the new best routes for router C in BGPRIB. The changes in
BGPRIB will then be joined with GlobalRIB to generate four
changes in the output relation FIB. For simplicity, only the
join of two deletions in BGPRIB and the corresponding fact in
GlobalRIB are shown in Figure 5.

4.3 Optimizations

Customizing functions for efficiency. As noted above, using
operators like join and map in DD can express simple opera-
tions like route propagation (routes are sent to neighboring
routers, costs are updated, etc.). However, directly modeling
more complex operations—e.g., BGP best route selection, ap-
plying route policies, etc.—using these DD operators requires
a lot of operators, making the evaluation less efficient.

For example, suppose we select best routes from received
routes R based on two conditions: local preference (LocPref)
and path length (PathLen). Using DD, we need to group routes
in R by prefix and use the aggregation function max to com-
pute the highest LocPref value for each prefix, and then join
the resultant collection R1 with R to obtain another collection
R2 which contains routes with the highest LocPref. Similarly,
we need to compute another two collections for PathLen. Cor-
respondingly, if we use DDlog, we need to declare two rules
and two relations for each condition. The original Datalog-
based version of Batfish [14] used the above approach to
realize BGP best route selection. Since there are many criteria
for BGP best route selection (Cisco uses 13 criteria), we need
a lot of DD operators, or correspondingly a lot of DDlog rules,
making the model inefficient to evaluate.

To make the model efficient to evaluate, we realize complex
operations (e.g., best route selection and route policies) with
customized functions, which can be wrapped inside a Reduce
operator offered by DD. Appendix C gives the code snippet
of the function for best routes selection. In our experiments,
by just customizing the process of best route selection, we
can achieve a ∼40% speedup (§8.1).
Partitioning routes for parallel simulation. For the same
routing protocol, the propagation of different routes (prefixes)
are largely independent. In the absence of route aggregations,
two BGP routes 1.1.1.0/24 and 1.1.2.0/24 propagate inde-
pendently through the network. Therefore, we partition the
routes of the same routing protocol into groups, for parallel
evaluation, and merge their results to obtain the RIBs for this
protocol. In the following, we discuss why this works when
there are multiple protocols and route aggregations.

(1) Route Dependency. When there are multiple routing
protocols, routes may have dependencies. For example, BGP
routes may depend on the OSPF routes for the loopback inter-

606 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

- R1: 1.1.1.0/24, port1
+ R3: 1.1.1.0/24, port2
- R2: 1.1.2.0/24, port1
+ R4: 1.1.2.0/24, port2

cc

R2

R3port2

port1

a''a'cc

R2R1

port2

port1

a

(a) forwarding graph
(before update) (b) FIB changes @C

(c) ECs before change (e) ECs after +R3

c

port2

port1

a''

(d) ECs after -R1

R2R1

c

R2

R3port2

port1

a'

(f) ECs after -R2

cc

R3port2

port1

a

(g) ECs after +R4

R4

(h) forwarding graph
(after update @C)

A C

B D

E

+a

a,b -a

,b

b

A C

B D

E
a,b a

b
b

c

c a'

a''

Figure 6: Data plane model update for the example network.

faces of all iBGP peers in the same AS. We adopt a simple
approach where we group BGP routes and OSPF routes sepa-
rately, and schedule BGP groups only after all OSPF groups
are finished. More sophisticated scheduling [37] can be used
to handle more complex dependencies.

(2) Route Aggregation. Sometimes, different routes may be
correlated due to route aggregation. For example, a router
can aggregate routes for 1.1.1.0/24 and 1.1.2.0/24 into a single
route (1.1.0.0/16) when advertising to its neighbors. Although
it may seem this correlation prevents routes for 1.1.1.0/24 and
1.1.2.0/24 from being computed separately, our method is not
affected since each instance has all the rules and base facts
describing route aggregation. Thus, even if these two routes
are in different groups, both of them can be aggregated into
1.1.0.0/16. We can remove the duplicated routes of 1.1.0.0/16
when merging the routes of multiple instances.

5 Differential Data Plane Modeling

As the second stage, DNA maps differences in data plane
state to differences in the data plane model. We accomplish
this using APKeep [48], a state-of-the-art data plane model.

In the following, we first show that updating the model
by treating each data plane update separately can result in
redundant computation, and then show how DNA can leverage
correlation among rule updates to reduce such redundancy.

5.1 Single-rule model update

We return to the example network to show how APKeep up-
dates the data plane model. We only consider the rule updates
at Router C, as shown in Figure 6(b). The rule updates at
Router B are quite similar and thus not discussed here.

Step 1. Identifying forwarding behavior changes. For each
rule update, APKeep identifies the packets that change for-

warding behavior1 by analyzing rule dependency. Returning
to the example, after removing R1, APKeep determines that
packets which previously match destination IP addresses in
1.1.1.0/24 will not match any lower-priority rule, and thus
will be dropped. Then, the forwarding behavior change will
be a 3-tuple (1.1.1.0/24, port1,drop) which specifies the af-
fected packets, old, and new output port, respectively.

Step 2. Updating the forwarding graph. For each change,
APKeep updates the ECs, and transfers the updated ECs on the
forwarding graph. Specifically, APKeep iterates over all ECs
assigned to the old port, and check whether each EC belongs
to or intersects with the affected packets. For the former, the
EC will be transferred directly; while for the latter, the EC
needs to be split before the transfer. In this example, the
affected packets 1.1.1.0/24 will split EC a into two ECs, a′

for 1.1.1.0/24, and a′′ for 1.1.2.0/24, as shown in Figure 6(d).
Then, a′ will be transferred from port 1 to port drop (a default
port not shown here).

Figure 6(e) shows the insertion of R3, where step 1 iden-
tifies a behavior change (1.1.1.0/24,drop, port2), and step
2 transfers a′ from port drop to port 2. Figure 6(f) shows
the deletion of R2, and Figure 6(g) shows the insertion of
R4, after which EC a′ and EC a′′ have the same forward-
ing behavior and are merged into a single EC a. Figure 6(h)
shows the resulting differences of data plane model which are
insertions/deletions of EC a on two edges.

In large networks, a configuration change may produce
hundreds or thousands of rule updates, and performing the
above two steps for each of them is slow. For example, failing
a link in a fat tree with 180 routers results in over 3K rule
updates. Even though a single rule update takes only 1ms, it
still amounts to 3 seconds.

5.2 Batched model update

We observe that even when there are many rule updates, they
are highly correlated, such that we can batch them to reduce
redundant computation. In the following, we consider two
types of correlations.

Correlation among rule insertions and deletions. Rule
deletions are often accompanied by rule insertions for the
same IP prefix. Many configuration changes like changing a
BGP local preference or OSPF link cost will make the router
change the best routes for some destination prefixes. Each
change of best route would translate into a deletion of the old
rule and an insertion of a new rule.

Based on the above correlation, we can batch rule dele-
tions and insertions for step 1. Returning to our example,
deleting R1 and inserting R3 requires updating the data
plane model twice. However, by batching the deletion of
R1 and insertion of R3, we can directly identify the change

1In this section “forwarding behavior” refers to hop-by-hop forwarding,
not end-to-end forwarding.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 607

as (1.1.1.0/24, port1, port2). Therefore, we only need to run
step 1 once. Moreover, step 1 will be more efficient since we
do not need to analyze rule dependency. Similarly, by batch-
ing the deletion of R2 and insertion of R4, we can use another
run of step 1 to identify a change (1.1.2.0/24, port1, port2).

Correlation among rule updates on the same device. Rule
updates on the same device are often quite similar, e.g., route
deletions/insertions have the same output port. Many configu-
ration changes like bringing down/up an interface will delete
routes that output to the interface, and add new routes that
output to other interfaces.

Based on the above correlation, we can batch forwarding
behavior changes on the same device for step 2. Returning
to the example, the two changes (1.1.1.0/24, port1, port2)
and (1.1.2.0/24, port1, port2) have the same old port and
the same new port. Instead of performing step 2 for each
of these two changes, we can batch them as a single one
(1.1.1.0/24∨1.1.2.0/24, port1, port2), and run step 2 only
once. Moreover, we can directly transfer EC a from port1
to port2, without splitting a, further reducing computation
overhead. Since step 2 needs to check all ECs of the old port,
each involving a BDD operation, it dominates the overall
running time of model update, and by batching changes for
step 2, we can significantly reduce the overall running time.

In sum, APKeep needs to run the above two steps for each
of the four rule updates, while after batching DNA only needs
to run step 1 twice (without analyzing rule dependency), and
step 2 once (without splitting and merging of ECs). As a
result, DNA can directly update the model as Figure 6(g),
avoiding intermediate steps shown in Figure 6(d)-(f).

Note that some of the batching methods can also be applied
to other data plane verifiers. For example, Delta-net [18] can
also be modified to leverage the first correlation. However, it
is not clear how Delta-net can leverage the second correlation.

6 Differential Property Checking

This stage tracks network properties and returns differences,
which we call differential properties. We focus on differential
reachability, differential waypointing, and differential load
balancing. In this section, we define these differential proper-
ties, and introduce an algorithm to efficiently compute them.

6.1 Defining differential properties

A network can be viewed as a big switch providing connec-
tivity among entities including hosts, servers, middleboxes,
external networks, etc. We term the ports at which these enti-
ties connect to the network as edge ports. We are interested
in analyzing forwarding properties between the edge ports.

A forwarding property is defined in terms of a pair of edge
ports (es, ed), an equivalence class (ec), and other property-
specific parameters. We focus on three types of properties:

A C

B D

E
a,b a

b

(a) old forwarding graph

1

1

1

b

a,b
E1 A C

B D

E
a,b1

1

1

a,b

a,b
E1

a,b

{B1}

{A1,-B1} {-A1,-B1}

{B1}

{A1}

{+B1}

(b) new forwarding graph

{-A1,-B1} {+B1} {+B1}

deny a

Figure 7: Differential reachability computation for the exam-
ple network.

• Reach(es,ed ,ec)—packets in ec can reach ed from es.
• Waypoint(es,ed ,ec,w)—packets in ec can reach ed from

es, traversing waypoint w.
• LoadBalance(es,ed ,ec,n)—packets in ec can reach ed

from es and are load balanced among n forwarding paths.
Other properties like isolation, bounded path length, etc. [4,
6], can be similarly defined. Propertiesc denotes the set of
properties control plane c satisfies.

Given two control planes c1 and c2, the differences in
properties are defined as ∆Propertiesc1→c2 :=Propertiesc2−
Propertiesc1 . ∆Propertiesc1→c2 is a multiset, where each
item can have multiplicity +1 or −1. In the follow-
ing, we consider the change of configuration c1 → c2,
and omit the subscripts. For example, ∆Properties =
{−Reach(A1,E1,1.2/16)}, then we know this prefix is previ-
ously reachable from A1 to E1, but becomes unreachable after
the change. This is perhaps what the operators desire if they
want to prevent A1 from reaching the prefix at E1, or it can be
a violation of operator intent if it is unexpected. As another
example, ∆Properties = {−Waypoint(A1,E1,1.2/16,C)}
means this prefix will no longer traverse the waypoint C,
which may violate security policies. Finally, ∆Properties =
{−LoadBalance(B1,E1,1.2/16,2),+LoadBalance(B1,E1,
1.2/16,1)} means the number of (disjoint) paths between B1
and E1 decreases from 2 to 1, which may cause congestion.
By looking at differences in properties, instead of compliance
of (all or user-specified) properties, operators can better un-
derstand the impact of prospective changes to their networks.

6.2 Computing differential properties

In this section, we show how DNA incrementally computes
differential properties. We use differential reachability as an
example, and discuss how to extend to the other two properties.
The left of Figure 7 shows the forwarding graph of the running
example. There are three edge ports, and here we only show
the reachability from port 1 of A and B (denoted as A1 and
B1), to port 1 of E (denoted as E1).

A straightforward way to compute differential reachabil-
ity is to compute the reachability for the old forwarding
graph (before change) and the new forwarding graph (after
change), and compute the difference. The reachability for
the old graph is computed as follows. First, we start from
each edge port with all ECs. Then, at each node, we com-

608 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

pute the conjunction of these ECs with the ECs marked
on the edges, and move to the next hop with the conjunc-
tion of ECs. The traversal stops until another edge port is
reached. For example, starting from A1, ECs a and b can reach
E1, therefore we have a reachability Reach(A1,E1,{a,b});
similarly, we also have Reach(B1,E1,{a,b}). The reachabil-
ity for the new graph is computed in a similar way, result-
ing in Reach(A1,E1,{b}) and Reach(B1,E1,{a,b}). There-
fore ∆Propertiesc1→c2 = {−Reach(A1,E1,a)}. We name this
straightforward method as TraverseAll.

According to our experiment, the TraverseAll method can
take tens to thousands of seconds to compute the differen-
tial rechability. To reduce the running time, we apply the
following two optimizations.

(1) Only traversing with ECs whose forwarding behav-
iors are affected. In this example, we only need to start the
traversal with EC a, since EC b is not affected. This optimiza-
tion has been used by exiting realtime data plane verifiers,
which check loops or blackholes by only traversing with those
affected ECs. We name this method as TraverseAll-Inc. How-
ever, even there are only few ECs affected, TraverseAll-Inc
still needs to enumerate all the pairs of edge ports, which can
still take a long time if the network is large.

(2) Directly traversing from change points instead of from
all edge ports. Here change points refer to nodes whose
forwarding behaviors change (B and C in the example). Since
the traversals before the change points are not affected, it is
not necessary to start the traversal from each edge port, e.g., in
this example we can start the traversal from B and C with EC
a. To make this optimization work, we need to incrementally
maintain intermediate state recording the traversal before the
change points, that is, for each node, which edge ports can
reach this node. For example, on the old forwarding graph,
node C should know that EC a can reach C from A1 and B1,
such that when the traversal from C reaches E1, we can know
the reachability from A1 and B1 to E1.

DNA enables both these optimizations, where optimiza-
tion (2) is enabled as follows. For each node and ec, DNA
maintains a set EdgeSet(ec,node), which stores all edge ports
from which ec can reach node. In this example the content
of EdgeSet(a,node) is marked aside node on the forward-
ing graphs. When traversing, we need to update EdgeSet
according to the rule that if an n1 ∈ EdgeSet(ec,n2), and ec
can reach n3 from n2, then we have n1 ∈ EdgeSet(ec,n3). In
this example, when traversing from C to E on the old for-
warding graph, since A1,B1 ∈ EdgeSet(a,C), we can derive
A1,B1 ∈EdgeSet(a,E). Since we are traversing the old graph,
A1,B1 should be deleted from EdgeSet(a,E), as shown on
the right of Figure 7. On the contrary, when traversing the new
graph, the derived entries should be inserted into EdgeSet.
Interested reader can refer to Appendix A for the algorithm
to compute differential reachability.

Computing differential waypointing and load balancing.
Unlike reachability, computing differential waypointing and

load balancing requires tracking the forwarding paths be-
tween edge ports. Therefore, instead of maintaining the
edge ports from which ec can reach node, EdgeSet should
maintain the forwarding path taken by ec before reaching
node. When traversing, we need to update EdgeSet accord-
ing to the rule that if p1 ∈ EdgeSet(ec,n1), and ec can
reach n2 from n1, then we have p1||n1 ∈ EdgeSet(ec,n2),
where p1 is a forwarding path, and p1||n1 appends n1 to
p1. For the running example, (B1,B,C,E) will be deleted
from EdgeSet(a,E1), and (B1,B,D,E) will be inserted into
Edge(a,E1) after the change. Suppose C is a waypoint, then
the change in EdgeSet(a,E1) indicates that packets belonging
to EC a, sent from B1 will no longer traverse the waypoint C.

Computing properties under link failures. We can lever-
age differential property to compute properties under link
failures. For example, we can compute reachability properties
that hold when any single link can fail. First, we compute a
set R of all reachability properties when no links fail, Then,
we fail each link one by one, and after each failure we com-
pute differential reachability. For each deletion of reachability
property, we remove it from the set R. After failing each sin-
gle link, R contains all reachability properties that hold under
any single link failure.

7 Implementation

We implement DNA in Java. First, we use Batfish [1] to parse
the configuration files into vendor-neutral configuration ob-
jects, and write a parser to generate a set of insertions of base
facts for the DDlog program.

For stage 1, we model the control plane with 800 LOC
in DDlog. The model currently supports BGP, OSPF, static
routes, routing policies, redistribution, reflector, communities,
etc. The control plane model is compiled by the DDlog com-
piler into a DD program for execution. For stage 2, we extend
APKeep [48] to optimize the model update algorithm for
batched rule updates. For stage 3, we implement an algorithm
to compute differential reachability (Appendix A).

Additionally, we implement a scheduler in Python to par-
allelize the data plane generation. The scheduler uses the
DDlog’s CLI, and maintains multiple instances of the DDlog
program, each of which is responsible for a group of prefixes.

8 Experiments

We evaluate DNA with both real and synthetic updates. We
are interested in the following questions: (1) can DNA speed
up differential property checking (§8.1 and §8.2)? (2) is incre-
mentally simulating the control plane always better when the
changes are large, and can parallelization help DNA better
scale to large changes (§8.3)? (3) can DNA also speed up
property checking under link failures (§8.4)?

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 609

Table 1: Types of synthesized changes.

ID Update Explanation

1 InterfaceUp Bring up an interface
2 InterfaceDown Shut down an interface
3 NetworkAdd Add a subnet to advertise to BGP
4 NetworkDel Delete a subnet to advertise to BGP
5 NeighborAdd Add a BGP neighbor
6 NeighborDel Delete a BGP neighbor
7 LocalPref Change the local preference
8 MultiPath Allow to select up to k paths
9 Aggregation Add an aggregation rule
10 StaticRoute Add a static route

10-2
10-1
100
101
102
103
104
105

1 2 3 4 5 6 7 8 9 10

Timeout

Batfish
Minesweeper

Tiramisu

init
DNA

Ti
m

e
 (

s)

(#nodes=180, #links=864)
(#nodes=320, #links=2048)
(#nodes=500, #links=4000)

Figure 8: The time for DNA to compute differential reacha-
bility for synthetic changes on fat trees.

Setup. We run all the experiments on a server with two 12-
core Intel Xeon CPUs @ 2.3GHz and 256G memory. Unless
otherwise specified, a single core is used for these methods
(except Batfish which is multi-threaded).

8.1 Synthetic changes

First, we evaluate the running time of DNA with synthetic
changes. Specifically, we use different sizes of fat trees run-
ning BGP, where each node is assigned a distinct AS number
and peers with all its adjacent nodes. We synthesize 10 dif-
ferent types of change, as shown in Table 1. Updates (1) and
(2) can be used to simulate link failures and recovery, respec-
tively. Updates (3) and (4) can be used to simulate changes
in external routes. Update (7) adds a route map to change the
local preference for routes received at one interface from 100
to 150 (more preferred).

Figure 8 reports the running time for DNA to compute
differential reachability. For comparison, we also include
the results for computing all-pair reachability using Batfish,
Minesweeper, and Tiramisu. These tools can then compute
differences of the all-pair reachability afterwards (the time
to compute difference is not counted here). As we can see,
DNA achieves a second-level running time for each control
plane update, which is at least 3 orders of magnitude faster
than existing tools—Minesweeper’s [6] and Tiramisu’s [4]
main bottleneck is the number of links and end-host pairs,
respectively. Here, init corresponds to the time for DNA to ini-
tialize, i.e., taking the original configuration snapshot as input,

and running the three stages in the same way as processing a
configuration update.

Figure 9 shows a breakdown of running time for the three
stages, on fat tree (#node=500, #links=4000). As shown in
Figure 9(a), DNA’s control plane simulation takes less than 1
second for all updates except Update 8, while Batfish, which
is not incremental, always takes 24 seconds. We also compare
against a version of DNA without customized functions for
best route selection (§4) (DNA−), and observe the simulation
is ∼40% faster with our customized functions. Although the
absolute savings for a large fat tree is only∼100ms, the differ-
ence is substantial when we consider link failures: e.g., control
plane simulations for all single link failures (not shown) take
∼6 minutes longer with DNA−.

As shown in Figure 9(b), directly running APKeep can take
as long as 0.2 seconds, while DNA can achieve running time
mostly less than 0.01 seconds. In most types of changes, DNA
is 10× faster than directly running APKeep.

As shown in Figure 9(c), the TraverseAll method (travers-
ing from all edge ports with all ECs) can takes as long as
400 seconds to recompute the all reachability properties. For
TraverseAll-Inc (Traverse from all edge ports with only af-
fected ECs) method runs mostly around 1 seconds, but can
take more than 10 seconds for update 7 and 8. The reason is
that in these two updates, the affected ECs appear at all edge
ports, and TraverseAll-Inc still needs to traverse from all edge
ports. In contrast, DNA takes around 0.1 seconds, a speedup
of 1-2 orders of magnitude compared to TraverseAll-Inc. For
Updates 9 and 10, DNA and TraverseAll-Inc take roughly
the same small amount of time. The reason is that there are a
small number of affected ECs, but a large number of change
points. For example, adding a static route only affects ECs
overlapping with the route. However, since the route will be
advertised by BGP, the ECs will change forwarding behav-
ior at all nodes in the network. Therefore, both DNA and
TraverseAll-Inc need to traverse from all edge ports.

We also experiment on fat trees running OSPF, and the
trend is similar. The results can be found in Appendix §B.

8.2 Real changes

In addition to synthesized change, we also experiment with a
real trace of configuration changes collected from the back-
bone network of a university campus. In total, the network
consists of 28 routers and 50 physical links, running OSPF.
The trace consists of 67 configuration snapshots spanning over
three months. We compute the differences among consecutive
snapshots to create 66 updates, which are fed to DNA for
verification. The statistics on the network updates has already
been shown in Figure 1.

Figure 10 shows the running time for the three stages of
DNA. We compare the overall running time with Batfish,
since Minesweeper times out (>1h per update). Also, we
include the results for Baseline, which uses Batfish to generate

610 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

10-2
10-1
100
101
102

1 2 3 4 5 6 7 8 9 10

Ti
m

e
 (

s)

Type

Batfish DNA- DNA

(a) Stage 1. Control Plane Simulation

10-4
10-3
10-2
10-1
100

1 2 3 4 5 6 7 8 9 10

Ti
m

e
 (

s)

Type

APKeep DNA

(b) Stage 2. Data Plane Modeling

10-2
10-1
100
101
102

1 2 3 4 5 6 7 8 9 10

Ti
m

e
 (

s)

Type

TraverseAll
TraverseAll-Inc

DNA

(c) Stage 3. Property Checking

Figure 9: The breakdown of running time for synthetic changes on fat tree (#nodes=500, #links=4000).

 0
 0.2
 0.4
 0.6
 0.8

 1

10-3 10-2 10-1 100 101 102 103

C
D

F

Time (s)

Batfish
Baseline
DNA

(a) Overall running time

 0
 0.2
 0.4
 0.6
 0.8

 1

10-4 10-3 10-2 10-1 100 101

C
D

F

Time (s)

Batfish
DNA

(b) Control Plane Simulation

 0
 0.2
 0.4
 0.6
 0.8

 1

10-3 10-2 10-1 100 101 102

C
D

F

Time (s)

APKeep
DNA

(c) Data Plane Modeling

 0
 0.2
 0.4
 0.6
 0.8

 1

10-5 10-4 10-3 10-2 10-1 100

C
D

F

Time (s)

TraverseAll
TraverseAll-Inc
DNA

(d) Property Checking

Figure 10: The time to verify configuration changes of campus network.

the new data plane, APKeep to update the data plane model,
and Traverse-All to compute differential reachability. We
can see that DNA takes <1 second per update for 90% of
all updates, while Batfish takes >500 seconds per update.
Baseline is faster than Batfish by using realtime verifier (i.e.,
APKeep), but still takes tens of seconds per update on average.

Also note that for ∼20% of updates, the running time of
DNA is less than 10ms. The reason is that for these updates,
some interfaces or ACL rules are added without taking effect,
and the output of the first stage is empty. The second and third
stage are not even invoked. However, it is hard and risky to
manually determine whether a change in configuration files
has effect on the network, and without DNA we still need to
check them using tools like Batfish or Minesweeper.

For control plane simulation, we compare the results of
DNA with those of Batfish. For more than 90% of changes,
the generation time is less than 0.12 seconds. While Batfish
takes more than 4 seconds for each single change. This shows
that incrementally generating data plane state is much faster
than from scratch in real networks. For model update, DNA
takes less than 1 second for 90% of changes, 10× faster than
APKeep. For reachability verification, DNA takes strictly less
than 0.1 second, while traversing from all edge points with
all or affected ECs can take several seconds.

Compared to the synthesized changes on fat trees, where
stage 1 dominates the overall running time, here stage 2 dom-
inates the overall running time. The reason is that the largest
fat tree (500 nodes, running BGP) has only 5K ECs, while the
campus network has 45K ECs, due to the existence of ACLs.

8.3 Large changes and parallel simulation
In the previous two experiments, we mainly focus on small
configuration changes. However, a network can occasionally
experience large-scale changes [27], which may affect a large
number of devices. We simulate large changes by shutting
down a large number of interfaces in the campus network.

Figure 11 reports the time for DNA to incrementally simu-
late the control plane when failing a different number of links.
For comparison, we also include the results of Batfish. As
we can see, when failing a small number of links (say <10),
incrementally simulating the control plane is much faster;
while when the number increases to over 25 (single core), the
incremental simulation becomes even slower than generation
from scratch. This means that incremental simulation outper-
forms from-scratch simulation as long as the change sizes are
smaller than some threshold (in our case, 50%). While since
most of real changes are small (§2.1), incremental simulation
would mostly be a better choice.

We also note that parallelizing the control plane simula-
tion can increase such a threshold. Specifically, incremental
simulation with 24 cores has larger improvement for larger
changes. Even all links in the network were disconnected, the
incremental simulation time is still comparable with from-
scratch generation using Batfish.

We further study the effect of parallelizing control plane
simulation on different size fat trees. For both BGP and OSPF,
we randomly fail one node as well as all links connected to
this node. Figure 12 reports the control plane simulation time
for DNA with different number of cores. We can see the sim-
ulation speed increases with the number of cores. Due to the
overhead of parallel simulation, the speed-up is not significant
when the total time is already small (e.g., <1 second).

8.4 Enumerating link failures
One verification task is to check reachability under any single
link failure. Using Batfish we need to enumerate each link
failure and Minesweeper relies on SMT solvers to search for a
counterexample where a link failure breaks reachability. DNA
can leverage the similarity between the no link failure and
single link failure to enumerate all link failures efficiently.

In this experiment, we evaluate the time to check reacha-
bility policies with any single link failure, i.e., whether two

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 611

 0

 2

 4

 6

 0 5 10 15 20 25 30 35 40 45 50

Ti
m

e
 (

s)

#Link failure

Batfish

 0

 2

 4

 6

 0 5 10 15 20 25 30 35 40 45 50

Ti
m

e
 (

s)

#Link failure

DNA-1 DNA-24

Figure 11: The running time
for control plane simulation
on the campus network.

 0

 0.3

 0.6

 0.9

 1.2

 1.5

1 2 4 8 12 16 20 24

BGP

#Cores

Ti
m

e
 (

s)

(180, 864) (320, 2048) (500, 4000)

 0

 5

 10

 15

 20

 25

1 2 4 8 12 16 20 24

OSPF

Figure 12: The running time for control plane
simulation on fat trees, for one node failure
with multiple cores.

10-1
100
101
102
103
104
105

BGP OSPF
BGP OSPF

BGP OSPF
BGP OSPF

BGP OSPF

Ti
m

e
 (

s)

Batfish
Minesweeper

Config2Spec
Tiramisu

DNA

US CarrierColumbusBICS(80, 256)(20, 32)

Figure 13: The total time for checking reachabil-
ity under any single link failure. (n1,n2) repre-
sents fat tree with n1 nodes and n2 links.

hosts or ports are always reachable if any link can fail. We
use two sizes of fat trees with 20 and 80 nodes, and three ISP
topologies from Config2Spec. For each topology, we fail a
link each time, and let DNA compute differential reachability.

For comparison, we run Batfish, Minesweeper, and
Tiramisu to check the reachability between each pair of hosts
on the same networks. We also include Config2Spec for
comparison, since it is shown to outperform both Batfish and
Minesweeper when checking all-pair reachability under link
failures. Since Config2Spec also checks other properties like
load balancing, we modify it to let it only compute all-pair
reachability for a fair comparison.

As shown in Figure 13, DNA is at least 10× faster than
Batfish and Minesweeper, 3× faster than Config2Spec, on
all topologies. DNA is also faster than Tiramisu by 10× on
the 80-node fat tree. The speedup of DNA on the three ISP
topologies is not as remarkable as on fat trees. The reason is
that the links on the ISP topologies are not as redundant as
on fat trees, and a single link failure has a larger impact on
reachability. The above results imply that by leveraging the
similarity among network snapshots with and without a failed
link, DNA can check reachability policies under any single
link failure faster than existing control plane verifiers.

9 Related Work

Control plane simulation/emulation. Control plane veri-
fiers have employed several approaches for simulating the
control plane including: a Datalog engine [14], an explicit
state model checker [37], a generalized variant of Dijkstra’s
algorithm [34], abstract interpretation [7], and custom simula-
tion engines [1, 38, 45]. However, all these approaches restart
the simulation from scratch when the control plane changes,
and do not reuse any of the state from prior simulations. The
preliminary version of this paper [47] introduces incremental
network configuration verification, but does not parallelize
incremental control plane simulation, and has limited support
for incremental data plane modeling and property checking.
Control plane emulators [32] can accommodate control plane
changes in an incremental manner, but they scale poorly due
to their use of actual routing protocol implementations.

Symbolic control plane verifiers. Symbolic control plane
verifiers characterize the space of data planes the control

plane may produce using graph algorithms [4, 15], SMT
constraints [6, 43], or binary decision diagrams [13]. Even
though some incremental graph algorithms exist [29] and
SMT solvers offer some support for incremental solving [11],
these capabilities are not sufficient to accommodate arbitrary
control plane changes.
Data plane verifiers. Realtime data plane verifiers [18, 23,
26, 44, 48] can quickly analyze data plane changes (e.g., for-
warding rule insertions), but cannot directly analyze config-
uration changes. DNA uses a realtime data plane verifier,
APKeep [48], as one of its building blocks, and modifies AP-
Keep to batch data plane changes for efficient processing,
Other realtime data plane verifiers could also be modified to
batch data plane changes and be used in DNA. NoD [33]
uses Datalog, but NoD is not realtime.
Specification mining. Policy Units [8], Config2Spec [9], and
Anime [25] infer a network’s end-to-end behaviors from its
configurations. We could compute differences in end-to-end
behavior by applying such tools before and after a configu-
ration change. However, due to the prevalence of small con-
figuration changes (§2.1), such an approach unnecessarily
duplicates computation in the same manner as applying a
control plane verifier before and after changes (§1).

10 Conclusion

Differential Network Analysis (DNA) addresses a critical gap
in control plane analysis: efficiently and effectively identi-
fying differences in end-to-end forwarding behaviors aris-
ing from control plane changes. DNA uses a three-stage
process that leverages advances in differential dataflow pro-
gramming frameworks and data plane verifiers, along with
domain-specific optimizations. Our evaluations using real and
synthetic control plane changes show that DNA is able to
compute differences in reachability in a few seconds—up
to 3 orders of magnitude faster than state-of-the-art control
plane verifiers. Thus, DNA provides a promising approach
for operators to assess the impact of control plane changes.
Acknowledgements. We would like to thank the anonymous
NSDI reviewers and our shepherd Brighten Godfrey for their
valuable feedback. This work is partially supported by the Na-
tional Natural Science Foundation of China (No. 61772412)
and the National Science Foundation (No. 1763512).

612 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Batfish. https://github.com/batfish/batfish.

[2] Differential Datalog (DDlog). https://github.com/
vmware/differential-datalog.

[3] Internet2 - visible backbone. https://vn.net.
internet2.edu/Internet2/.

[4] A. Abhashkumar, A. Gember-Jacobson, and A. Akella.
Tiramisu: Fast and general network verification. In
USENIX NSDI, 2020.

[5] M. Aref, B. ten Cate, T. J. Green, B. Kimelfeld,
D. Olteanu, E. Pasalic, T. L. Veldhuizen, and G. Wash-
burn. Design and implementation of the LogicBlox
system. In ACM SIGMOD, 2015.

[6] R. Beckett, A. Gupta, R. Mahajan, and D. Walker. A
general approach to network configuration verification.
In ACM SIGCOMM, 2017.

[7] R. Beckett, A. Gupta, R. Mahajan, and D. Walker.
Abstract interpretation of distributed network control
planes. In ACM POPL, 2020.

[8] T. Benson, A. Akella, and D. A. Maltz. Mining policies
from enterprise network configuration. In ACM IMC,
2009.

[9] R. Birkner, D. Drachsler-Cohen, L. Vanbever, and
M. Vechev. Config2Spec: Mining network specifica-
tions from network configurations. In USENIX NSDI,
2020.

[10] G. Comarela, G. Gürsun, and M. Crovella. Studying
interdomain routing over long timescales. In ACM IMC,
2013.

[11] L. De Moura and N. Bjørner. Z3: An efficient SMT
solver. In International conference on Tools and Al-
gorithms for the Construction and Analysis of Systems,
2008.

[12] A. Elmokashfi, A. Kvalbein, and C. Dovrolis. BGP
churn evolution: A perspective from the core.
IEEE/ACM Transactions on Networking, 20(2):571–
584, 2012.

[13] S. K. Fayaz, T. Sharma, A. Fogel, R. Mahajan, T. Mill-
stein, V. Sekar, and G. Varghese. Efficient network reach-
ability analysis using a succinct control plane represen-
tation. In USENIX OSDI, 2016.

[14] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan,
R. Govindan, R. Mahajan, and T. Millstein. A general
approach to network configuration analysis. In USENIX
NSDI, 2015.

[15] A. Gember-Jacobson, R. Viswanathan, A. Akella, and
R. Mahajan. Fast control plane analysis using an abstract
representation. In ACM SIGCOMM, 2016.

[16] A. Gember-Jacobson, W. Wu, X. Li, A. Akella, and
R. Mahajan. Management plane analytics. In ACM
IMC, 2015.

[17] P. Gill, N. Jain, and N. Nagappan. Understanding net-
work failures in data centers: measurement, analysis,
and implications. In ACM SIGCOMM, 2011.

[18] A. Horn, A. Kheradmand, and M. R. Prasad. Delta-net:
Real-time network verification using atoms. In USENIX
NSDI, 2017.

[19] K. Jayaraman, N. Bjørner, J. Padhye, A. Agrawal,
A. Bhargava, P. C. Bissonnette, S. Foster, A. Helwer,
M. Kasten, I. Lee, A. Namdhari, H. Niaz, A. Parkhi,
H. Pinnamraju, A. Power, N. M. Raje, and P. Sharma.
Validating datacenters at scale. In ACM SIGCOMM,
2019.

[20] W. M. Johnston, J. P. Hanna, and R. J. Millar. Advances
in dataflow programming languages. ACM Computing
Surveys, 36(1):1–34, 2004.

[21] H. Jordan, B. Scholz, and P. Subotić. Soufflé: On synthe-
sis of program analyzers. In International Conference
on Computer Aided Verification, 2016.

[22] S. K. R. Kakarla, A. Tang, R. Beckett, K. Jayaraman,
T. D. Millstein, Y. Tamir, and G. Varghese. Finding net-
work misconfigurations by automatic template inference.
In USENIX NSDI, 2020.

[23] P. Kazemian, M. Chan, H. Zeng, G. Varghese, N. McKe-
own, and S. Whyte. Real time network policy checking
using header space analysis. In USENIX NSDI, 2013.

[24] P. Kazemian, G. Varghese, and N. McKeown. Header
space analysis: Static checking for networks. In USENIX
NSDI, 2012.

[25] A. Kheradmand. Automatic inference of high-level
network intents by mining forwarding patterns. In ACM
Symposium on SDN Research, 2020.

[26] A. Khurshid, W. Zhou, M. Caesar, and P. Godfrey. Ver-
iFlow: Verifying network-wide invariants in real time.
In USENIX NSDI, 2013.

[27] H. Kim, T. Benson, A. Akella, and N. Feamster. The evo-
lution of network configuration: a tale of two campuses.
In ACM IMC, 2011.

[28] H. Kim, J. Reich, A. Gupta, M. Shahbaz, N. Feamster,
and R. Clark. Kinetic: Verifiable dynamic network con-
trol. In USENIX NSDI, 2015.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 613

https://github.com/batfish/batfish
https://github.com/vmware/differential-datalog
https://github.com/vmware/differential-datalog
https://vn.net.internet2.edu/Internet2/
https://vn.net.internet2.edu/Internet2/

[29] Y. Li, J. Jia, X. Hu, and J. Li. Real time control plane ver-
ification. In Proceedings of the ACM SIGCOMM 2019
Workshop on Networking and Programming Languages,
pages 2–2, 2019.

[30] B. Liu, A. Kheradmand, M. Caesar, and P. B. Godfrey.
Towards verified self-driving infrastructure. In ACM
HotNets, 2020.

[31] H. H. Liu, X. Wu, W. Zhou, W. Chen, T. Wang, H. Xu,
L. Zhou, Q. Ma, and M. Zhang. Automatic life cycle
management of network configurations. In SIGCOMM
Workshop on Self-Driving Networks, 2018.

[32] H. H. Liu, Y. Zhu, J. Padhye, J. Cao, S. Tallapragada,
N. P. Lopes, A. Rybalchenko, G. Lu, and L. Yuan. Crys-
talnet: Faithfully emulating large production networks.
In ACM SOSP, 2017.

[33] N. P. Lopes, N. Bjørner, P. Godefroid, K. Jayaraman, and
G. Varghese. Checking beliefs in dynamic networks. In
USENIX NSDI, 2015.

[34] N. P. Lopes and A. Rybalchenko. Fast BGP simulation
of large datacenters. In International Conference on Ver-
ification, Model Checking, and Abstract Interpretation,
2019.

[35] F. McSherry, D. G. Murray, R. Isaacs, and M. Isard.
Differential dataflow. In CIDR, 2013.

[36] D. Plonka and A. J. Tack. An analysis of network con-
figuration artifacts. In Proceedings of the 23rd Large
Installation System Administration Conference, 2009.

[37] S. Prabhu, K.-Y. Chou, A. Kheradmand, P. Godfrey, and
M. Caesar. Plankton: Scalable network configuration
verification through model checking. In USENIX NSDI,
2020.

[38] B. Quoitin and S. Uhlig. Modeling the routing of an au-
tonomous system with C-BGP. IEEE Network, 19(6):12–
19, 2005.

[39] L. Ryzhyk and M. Budiu. Differential Datalog. In
International Workshop on the Resurgence of Datalog
in Academia and Industry, 2019.

[40] S. Steffen, T. Gehr, P. Tsankov, L. Vanbever, and
M. Vechev. Probabilistic verification of network config-
urations. In ACM SIGCOMM, 2020.

[41] Y. E. Sung, X. Tie, S. H. Y. Wong, and H. Zeng.
Robotron: Top-down network management at facebook
scale. In ACM SIGCOMM, 2016.

[42] D. Turner, K. Levchenko, A. C. Snoeren, and S. Sav-
age. California fault lines: understanding the causes and
impact of network failures. In ACM SIGCOMM, 2010.

[43] K. Weitz, D. Woos, E. Torlak, M. D. Ernst, A. Krishna-
murthy, and Z. Tatlock. Scalable verification of border
gateway protocol configurations with an SMT solver. In
ACM OOPSLA, 2016.

[44] H. Yang and S. S. Lam. Real-time verification of net-
work properties using atomic predicates. In IEEE ICNP,
2013.

[45] F. Ye, D. Yu, E. Zhai, H. H. Liu, B. Tian, Q. Ye, C. Wang,
X. Wu, T. Guo, C. Jin, et al. Accuracy, scalability, cov-
erage: A practical configuration verifier on a global wan.
In ACM SIGCOMM, 2020.

[46] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown.
Automatic test packet generation. In ACM CoNEXT,
2012.

[47] P. Zhang, Y. Huang, A. Gember-Jacobson, W. Shi,
X. Liu, H. Yang, and Z. Zuo. Incremental network con-
figuration verification. In ACM HotNets, 2020.

[48] P. Zhang, X. Liu, H. Yang, N. Kang, Z. Gu, and H. Li.
APKeep: Realtime verification for real networks. In
USENIX NSDI, 2020.

A An Algorithm for Computing Differential
Reachability

Algorithm 1 summarizes how DNA traverses the new forward-
ing graph while avoiding redundant traversal. The traversal
for the old forwarding graph is the same except Lines 6, 7,
and 10. For ease of notation, we represent each edge port
as a special node termed edge node. We traverse from each
change point loc with all the affected ECs pkts (Lines 2-3).
Suppose we are traversing from v to w, then we generate pkts′

by intersecting pkts with the ECs that can be forwarded to w
according to the data plane model (Line 15), and record this
information in R (Line 16). (loc,w, pkts)∈R if pkts can reach
w from the change point loc. If w is another change point,
where the affected ECs are pkts′′, the traversal continues to
w with pkts′\pkts′′ (Line 17-18). In this sense, we delegate
the traversal of common ECs pkts′ ∩ pkts′′ to the traversal
starting from w, therefore avoiding the redundant traversal of
common ECs. If w is not a change point, the traversal contin-
ues to w with pkts′ (Line 19-20). The traversal ends when the
set of ECs becomes empty (Line 12-13).

After all traversals finish, the algorithm iterates over all
affected EC δ, and for each EC, extracts the forwarding paths
of δ (Line 5). Then, for each link (loc,w) on the path, it
updates EdgeSet(δ,w) according to topological order of w
(Line 6-7). If w is an edge node, it updates the reachability
matrix Reach (Line 8-10).

614 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 1: DiffReach(Graph, Changes)
Input: Graph: the forwarding graph; Changes: the set of

data plane model changes.
Output: Di f f : the differential reachability.

1 R←{};
2 foreach (loc, pkts) ∈Changes do
3 Traverse(loc, loc, pkts);

4 foreach δ ∈
⋃
(loc,pkts)∈Changes pkts do

5 Path(δ)←{(loc,w)|(loc,w, pkts) ∈ R,δ ∈ pkts};
6 foreach (loc,w) ∈ Path(δ) do
7 EdgeSet(δ,w)← EdgeSet(δ,w)∪EdgeSet(δ, loc);
8 if w is an edge node then
9 foreach e ∈ EdgeSet(δ, loc) do

10 Di f f ← Di f f ∪{+Reach(e,w,δ)};

11 Function Traverse(loc,v, pkts):
12 if pkts = /0 then
13 return;

14 foreach (v,w) ∈ Graph do
15 pkts′← pkts∩EC(v,w);
16 R← R∪{(loc,w, pkts′)};
17 if (w, pkts′′) ∈Changes then
18 Traverse(loc,w, pkts′ \ pkts′′);

19 else
20 Traverse(loc,w, pkts′);

Table 2: Types of synthesized changes (OSPF). The IDs con-
tinue after Table 1.

ID Update Explanation

11 InterfaceUp Bring up an interface
12 InterfaceDown Shutdown an interface
13 LinkCost Change the cost of one link
14 MultiPath Allow to select up to k paths

10-1

100

101

102

103

11 12 13 14

Ti
m

e
 (

s)

Type

Batfish DNA

(a) Stage 1. Control
Plane Simulation

10-3

10-2

10-1

100

101

11 12 13 14

Ti
m

e
 (

s)

Type

APKeep DNA

(b) Stage 2. Data Plane
Modeling

10-1
100
101
102
103

11 12 13 14

Ti
m

e
 (

s)

Type

TraverseAll
TraverseAll-Inc

DNA

(c) Stage 3. Property
Checking

Figure 14: The breakdown of running time for synthetic
changes on fat tree (#nodes=500, #links=4000).

B Experiments for Fat Tree Running OSPF

Figure 14 shows the breakdown of running time for DNA, on
fat tree running OSPF. The updates are described in Table 2.

C Customized function for BGP best route se-
lection in DDlog-based model

The following shows the code snippet of the function for best
routes selection (simplified for ease of presentation).

BestRoute(route.node, route.dst, route.nexthop, ...) :-
MatchedRIBIn[route1],
var node = route1.node,
var dst = route1.dst,
var route = Aggregate((node, dst), select_best(route1))

.

function select_best(g: Group<’K, AdjRIBIn>): AdjRIBIn {
var route = group_first(g);
for (route1 in g) {
if (route1.LocalPref > route.LocalPref) route = route1
else if (route1.LocalPref == route.LocalPref) {
if (len(route1.path) < len(route.path)) route =

route1
// origin, MED, eBGP < iBGP, router-id, ...

}};
route // return the best route

}

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 615

KATRA: Realtime Verification for Multilayer Networks

Ryan Beckett
Microsoft

Aarti Gupta
Princeton University

Abstract
We present a new verification algorithm to efficiently and
incrementally verify arbitrarily layered network data planes
that are implemented using packet encapsulation. Inspired by
work on model checking of pushdown systems for recursive
programs, we develop a verification algorithm for networks
with packets consisting of stacks of headers. Our algorithm is
based on a new technique that lazily “repairs” a decomposed
stack of header sets on demand to account for cross-layer
dependencies. We demonstrate how to integrate our approach
with existing fast incremental data plane verifiers and have
implemented our ideas in a tool called KATRA. Evaluating
KATRA against an alternative approach based on equipping
existing incremental verifiers to emulate finite header stacks,
we show that KATRA is between 5x-32x faster for packets
with just 2 headers (layers), and that its performance advan-
tage grows with both network size and layering.

1 Introduction

The success of networks is in part due to their layered de-
sign where different protocol layers are delegated different
responsibilities. For instance, many networks, including vir-
tual networks [3, 16, 31], are designed in an overlay/underlay
pattern that is implemented by encapsulating packets, e.g. us-
ing IP-in-IP [34], IP GRE [18], or VXLAN [30] tunnels. In a
wide-area network (WAN), routing protocols such as iBGP
and SDN solutions such as SWAN [19] rely on an underly-
ing label-switching protocol like MPLS. In routers, Ethernet
frames are encapsulated in IP headers to implement forward-
ing, and new and emerging technologies such as SD-WAN
can connect two WANs together by tunneling packets to each
other securely using IPSEC [28].

However, while this layered design has proven successful,
allowing each layer to hide many details from others, it also
makes operating networks reliably a challenge as many bugs
can sit in the intersection of one or more of these layers [37].
Given the pervasiveness of layering as a fundamental design
pattern in networks, it is critical that we be able to ensure
the reliability of networks using this design. In practice, the
implementation of layering is often extraordinarily complex.
For instance, packets going over AT&T’s backbone network
consist of as many as eleven encapsulated headers [44].

To ensure the safe operation of multilayer networks, a nat-
ural technology to employ is that of network verification,
which has emerged as a viable technique to proactively catch
bugs and misconfigurations related to automation and hu-
man error. Employed by nearly all major cloud providers
now [5,17,21,39,45], network verification has witnessed sub-
stantial practical use in industry as researchers have iteratively
improved upon the scalability, responsiveness, and expressive-
ness of the underlying verification tools and techniques. Many
of these tools are engineering marvels – through complex data
structures and algorithms, they enable efficient verification of
new network changes in milliseconds.

While recent progress in network verification has been
substantial, existing tools typically analyze a single layer or
component of the network stack. For example, most verifi-
cation tools in use today analyze only the simple IP-based
forwarding tables and ACLs [4,7,20,21,26,27,29,41,42,46]
governed by the control plane. To verify a network with N lay-
ers using verification tools today, one possibility is to model
packets in the network as consisting of N duplicate copies of
different headers (e.g., an IPv4 header). While this approach
is possible, and researchers have proposed this approach in
some prior work [42, 46], it suffers from two major problems.

The first problem is that the number of layers N may not be
known a priori by the user of the verification tool. For instance,
a network making use of the MPLS fast reroute (FRR) [14,
25, 33] protects links against failure by rerouting traffic that
would have gone over the failed link along a predetermined
backup tunnel. FRR schemes may encapsulate a packet’s
header a number of times that depends on the number of
failures encountered by the packet along its path. Moreover,
if a user provides an incorrect (low) estimate of N, then the
verifier may report both false positives and false negatives.

The second problem is that, even when the user is able to
statically determine N, modeling this many packet headers
simultaneously leads to a highly inefficient representation.
Most network verifiers work by modeling the sets of packets
that are reachable from each ingress and egress point in the
network [27,41,42,46], and such sets may grow substantially
larger and more complex to process when capturing the de-
pendencies between different headers in the packet. In our
experiments (§7), even with just two layers, this simple ap-
proach can be anywhere from 5x-32x slower than necessary.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 617

IPSEC
Tunnel

GRE
Tunnel

Web Server

DB server

Datacenter
(IP underlay)

WAN
(MPLS underlay)

Internet
(IP underlay)

bug

TE Server

VXLAN
Tunnel

Figure 1: A user attempts to access a corporate web service.

To address these problems, in this paper, we present KA-
TRA, the first tool for real-time verification of layered net-
works – those networks that manipulate stacks of headers
through packet encapsulation. Inspired by recent work on ana-
lyzing MPLS [22,23], we leverage ideas from the verification
of pushdown systems [36] used to model recursive programs.
A key new idea is to keep a decomposed representation of the
set of header stacks as a stack of header sets where the set of
headers at one layer in the stack are treated as independent
of those in another. When an operation modifies and later re-
stricts packets at a given layer, it may be necessary to go back
and “repair” the sets of packets representative of previous
headers in the stack to account for this change.

We demonstrate how we can integrate our ideas with ex-
isting incremental data plane verifiers, and we implement
KATRA as an extension to the state-of-the-art verifier AP-
Keep [46]. In addition to being able to reason about arbitrarily
large header stacks, for networks consisting of just two lay-
ers, we further demonstrate that KATRA can verify properties
5x-32x faster than an approach based on extending existing
algorithms with a finite header stack encoding.

Our contributions with KATRA are the following:

• We present a new formal model, and its semantics, for lay-
ered networks that supports arbitrarily nested packet encap-
sulations and decapsulations.

• We develop an efficient algorithm for verifying layered net-
works in our model. The algorithm is based on a new notion
of partial equivalence class as well as a new decomposed
representation for symbolic header stacks.

• We implement our ideas in a tool called KATRA, which inte-
grates our new model and algorithm with the state-of-the-art
incremental verification approach based on APKeep [46].

• We evaluate KATRA against a baseline based on a finite
header stack representation and demonstrate that KATRA is
5x-32x faster with this speedup growing larger with both
network size and the number of network layers.

Networking example Layering mechanism

campus network isolation [44] VLAN, VXLAN [30]
virtual private network [15] IP-IP [34], IP GRE [18]
3G/4G mobile packet core [38] GPRS tunneling [1]
interior gateway protocol [32] LSPs, MPLS [35]
performance proxy [8] IPSEC [28]
traffic engineering [43] IP GRE [18]
software-defined WAN [13] IPSEC [28]

Table 1: Example network services features with layering.

2 Motivation and Background

Protocol layering in networks is used pervasively as a way to
separate concerns and build new features and services atop
existing infrastructure. Consider the scenario depicted in Fig-
ure 1. In the example, an employee of a company attempts
to access a corporate web service, that is hosted in the cloud,
from their home. The employee uses a secure VPN connec-
tion so their traffic is encapsulated in an IPSEC [28] tunnel
before being forwarded over the Internet. When the traffic
traverses the cloud provider’s wide area network (WAN), a
traffic engineering server selects an egress point for a nearby
data center. The WAN forwards packets to this egress using
an IP-GRE tunnel over its MPLS-based core. Once the traffic
reaches the data center, it is forwarded to the requested web
server. The web server must now access data from a database
(DB) server configured in the same virtual overlay network.
The web server thus sends traffic to the DB server using a
VXLAN tunnel configured atop an IP-based datacenter fabric.

In the example, layer 2 and layer 3 forwarding elements
are combined to implement several abstractions. While this
approach to protocol layering is powerful, if any one of the
forwarding policies at any layer in the example is miscon-
figured, then the user will not be able to reach the intended
service. For instance, if there were a misconfigured security
rule in the overlay network between the web and DB servers
then the user may lose connectivity to the web service. Simi-
larly, a misconfiguration in the datacenter’s IP-based underlay
network could break connectivity. To make matters worse,
when network forwarding bugs span multiple layers, iden-
tifying the root cause of the issue can be complicated as it
may require coordination between multiple different teams
spread across one or more organizations [37], each with only
a partial view of the network as a whole.

Multilayer verification. Network verification is a natural fit
to ensure the correctness of multilayer networks, yet verifiers
today were not built with layering in mind. Existing verifiers
assume that packets have a fixed size header rather than an
expandable stack of headers. While it is sometimes possible to
retroactively analyze such multilayer networks using existing
verifiers by pessimistically modeling a “worst case” fixed size
header stack, doing so is often highly inefficient.

618 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

3 Layered Network Model

Rather than model networks with fixed size headers, as is
done by existing network verifiers, in this section we define a
new network model that includes protocol layering as a first
class concern. We model multilayer networks as operating
on an unbounded stack of headers. We then demonstrate that
one can view both single-layer and multi-layer networks as
instances of our general model.

3.1 Notation and Preliminaries

Before defining our network model, we first introduce some
notation and preliminary definitions.

Definition 3.1 (Sequences). For a set X, we use the notation
X∗ to mean the set of all possible sequences of elements
of X. We define a sequence σ ∈ X∗ inductively as either ε

representing the empty sequence, or the concatenation (σ′ ·x)
of another sequence σ′ ∈ X∗ together with an element x ∈ X.

For simplicity of notation, we sometimes write a sequence
σ ∈ X∗ as σ = x0 · x1 · · · · · xn where xi ∈ X and x0 is the first
element of the sequence and xn is the last element, and we
omit writing out the ε. Concatenation of two sequences is
defined recursively as σ ·ε = σ and σ · (σ′ ·x) = (σ ·σ′) ·x As
a shorthand, for a sequence σ = σ′ · x we define top(σ) = x
and bot(σ) = σ′. These two partial functions are undefined
when σ = ε. Finally, we write |σ| to mean the length of a
sequence such that |ε|= 0 and |σ · x|= 1+ |σ|. A stack is a
sequence σ where the top of the stack is given by top(σ).

For sets X and Y , we use the standard notation Y X or X→Y
to mean the set of functions from X to Y . Similarly, we use
the notation X ↪→ Y to represent partial functions from X
to Y . Given a (potentially partial) function f from X to Y
and function g from Y to Z, we write f ◦ g to define their
composition, from X to Z.

3.2 Formal network model

We define a network N as a tuple 〈V,E,H ,T ,R 〉 where:

• V is a set of vertices, and E ⊆ 2V×V is a set of edges.
Edges are unidirectional and we represent bidirectional
edges with a pair of edges. For edge e = 〈u,v〉, we use
the notation src(e) = u and tgt(e) = v.

• H is a set of valid headers for the protocols in use.

• T is a set of transformations, which are partial functions
over packet headers of type T ⊆ 2H ↪→H .

• R is a set of rules R ⊆N×E×2H ×T . For rule r ∈ R
where r = 〈p,e,m,τ〉. We use the notation priority(r) =
p, edge(r)= e, match(r)=m, and modify(r)= τ to refer
to the components of the rule.

Intuitively, lower priority rules take precedence over those
with higher priority at a given node. The best rule for a given
header at a node is the rule with lowest priority at that node
that also matches the header.
Definition 3.2 (Best rule). For a node u ∈ V and a header
h ∈ H , we define the best matching rule at u as: Ω(u,h) =
minpriority{r ∈ R | src(edge(r)) = u, h ∈match(r)}

For simplicity, we assume that there is always a unique
best rule for a given header. This is ensured by requiring
that (1) rule priorities must be unique, and (2) all headers are
matched by at least one rule. In practice, one can ensure this
requirement is met by adding a maximum priority default rule
that matches all other unmatched headers.

3.3 Network semantics
Given a header h ∈ H and an initial node u ∈ V , which we
call a located packet L =V ×H , the network produces a se-
quence of new located packets to capture the packet’s history
as it goes through the network. Specifically, we define the
semantics of a network N as a function JN Ki : L → L∗ that
takes an initial located packet to a trace of located packets
through the network for a given number of steps i ∈ N:

JN Ki〈u,h〉=

ε · 〈u,h〉 if i = 0
σ elif τ(h′) undefined
σ · 〈v,τ(h′)〉 otherwise

where σ = JN Ki−1〈u,h〉 and top(σ) = 〈u′,h′〉 and:

τ = modify(Ω(u′,h′))
v = tgt(edge(Ω(u′,h′)))

Definition 3.3 (Packet termination). We say network N
has terminated a located packet ` after i steps, written
N ⊗〈i, `〉, if the trace no longer changes: JN Ki`= JN Ki−1`.

3.4 Lifting networks to layered networks
To implement layering, conceptually packets contain an un-
bounded stack of headers to which the network can push or
pop. A layered network is just an instance of a network that
processes stacks of headers:
Definition 3.4 (Multilayer network). A multilayer network
is an instance of a network N = 〈V,E,H ∗,T ,R 〉 over se-
quences of headers H ∗ with some restrictions on T and R .

Primarily, we require that every transformation τ ∈ T and
every rule match set match(r) for r ∈R only inspects or mod-
ifies the top of the stack1. In other words, we often write
that τ(σ · x) = σ · τ(x). And that σ · h ∈ match(r) ⇐⇒ h ∈
match(r) as though τ and match(r) were defined over H . The

1This restriction can express encapsulation and decapsulation in real
networks yet also makes verification tractable.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 619

tunnel

v1 v2 v3c1 c2

10.0.1.0/24

ts td

rule p e m τ

r0 100 〈c1,v1〉 H ∗ τid
r1 100 〈v1,v1〉 φdst(23.1.4.0/24) τpush ◦ τtunl
r2 200 〈v1,v2〉 φdst(10.0.1.0/24) τid
r3 300 〈v1,v1〉 H ∗ τdrop
r4 100 〈v2,v3〉 φdst(10.0.1.0/24) τid
r5 200 〈v2,v2〉 H ∗ τdrop
r6 100 〈v3,v3〉 φsrc(ts)∩φdst(td) τpop
r7 200 〈v3,c2〉 H ∗ τid
r8 100 〈c2,c2〉 H ∗ τdelv

Figure 2: Example formulation of a network with a single
tunnel between v1 and v3. We use the notation φ f (P) for
set P as a shorthand to mean packets where the field f is
contained in P. Thus φdst(P) = {σ∈H ∗ | 〈d,s〉 ∈ top(σ),d ∈
P}. Tunneled packets are encapsulated by first executing τpush
to duplicate the top-most header before modifying this header
copy with τtunl to set to source ip to ts = 10.0.2.0 and the
destination ip to td = 10.0.1.0. Packets are then forwarded
according to the underlay network towards td ∈ 10.0.1.0/24
hosted at v3. Packets at v3 are decapsulated by popping the
top-most header and then delivered to client c2.

only exception to this restriction is for two special transfor-
mations τpush, which makes a new copy of the current top of
the stack, and τpop, which drops or decapsulates the top of
the stack. More specifically, we define τpush(σ · x) = σ · x · x
and we define τpop(σ · x · y) = σ · x. Both transformations are
undefined otherwise and may be composed with other trans-
formations (e.g., τ◦ τpush).

Example Network. To make the model more concrete, we
show an example of its instantiation in Figure 2. The net-
work in the figure is given by the tuple N = 〈V,E,H ∗,T ,R 〉
where the nodes and edges are defined by the sets:

V = {c1,v1,v2,v3,c2}
E = {〈c1,v1〉,〈v1,v1〉,〈v1,v2〉,〈v2,v3〉,〈v3,v3〉,〈v3,c2〉}

Note that the edges include self edges (e.g., 〈v1,v1〉) to model
recursive lookup for forwarding and tunneling.

The set of headers H = {〈d,s〉 | d,s ∈ {0, . . . ,232− 1}}
defines headers consisting of two 32-bit IP address fields for
destination and source IP, and H ∗ is all sequences (stacks) of
such headers. The set of transformations for the network is
given by T = {τid,τdrop,τdelv,τpush ◦τtunl,τpop}. The transfor-
mation τid is the identity transformation such that τid(σ) = σ,
τdrop and τdelv are transformations that are undefined for all
inputs and thus terminate traffic, τtunl is a transformation that

i top(JN Ki〈c1,〈d,s〉〉) description

0 〈c1,〈d,s〉〉 forward to v1
1 〈v1,〈d,s〉〉 encapsulate
2 〈v1,〈d,s〉 · 〈ts, td〉〉 forward to v2
3 〈v2,〈d,s〉 · 〈ts, td〉〉 forward to v3
4 〈v3,〈d,s〉 · 〈ts, td〉〉 decapsulate
5 〈v3,〈d,s〉〉 forward to c2

≥ 6 〈c2,〈d,s〉〉 delivered

Table 2: Trace of a packet with source s and destination d
from client node c1 in the network shown in Figure 2.

rewrites the source IP address to ts and the destination IP
address to td . The composed transformation τpush ◦ τtunl first
creates a copy of the top of the stack and then rewrites the IP
addresses according to τtunl for the encapsulated header.

A trace through the network given by the semantics (see
§3.3) represents the packet forwarding in the network. Con-
sider sending an initial packet from client c1 with some des-
tination address d ∈ φdst(23.1.4.0/24) and some arbitrary
source address s. The top of the trace given by the semantics
JN Ki〈c1,〈d,s〉〉 is shown in Table 2.

4 Realtime Verification of Layered Networks

Given a network N = 〈V,E,H ∗,T ,R 〉 over stacks of headers
H ∗ and a new rule r being inserted or removed from R , our
goal is to incrementally verify the correctness of N with
respect to some user defined properties of interest.

In this section we first give a brief overview of how exist-
ing incremental verification algorithms work for finite header
sets H (§4.1). We then show how this notion of equivalence
class falls apart for the infinite space of header stacks H ∗,
which leads existing algorithms to not terminate. To solve
this problem, we define a new notion of partial equivalence
class based on only the top of the header stack (§4.2). Par-
tial equivalence classes can be computed efficiently, however
they do not necessarily guarantee equivalent network-wide
behavior. Instead, we develop an algorithm that lazily refines
these classes while verifying properties (§4.3 and §4.4).

4.1 Existing incremental verifiers
Most incremental data plane verifiers today work by analyzing
the network rules R and, based on that analysis, dividing
the headers H into subsets that have the same forwarding
behavior, which can then be checked using graph algorithms.
More specifically equivalence classes are defined as:

Definition 4.1 (Trace hops). Given a trace σ (from §3.3)
consisting of located packets L , we define function hops(σ),
which produces only the nodes in the trace, inductively over
σ as hops(ε) = ε and hops(σ′ · 〈u,h〉) = hops(σ′) ·u.

620 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Definition 4.2 (Equivalence classes). A set of header sets
{H1, . . . ,Hn} are equivalence classes for a network N =
〈V,E,H ,T ,R 〉 if the following conditions hold:

• H = H1∪ . . .∪Hn (complete)
• ∀i, j ∈ {1, ..,n}, i 6= j⇒Hi∩H j = /0 (disjoint)
• ∀ j ∈ {1, ..,n}, ∀h1,h2 ∈H j, ∀u ∈V, ∀i ∈ N, (g-equiv)

hops(JN Ki〈u,h1〉) = hops(JN Ki〈u,h2〉)
Existing incremental verification tools compute an over-

approximate set of equivalence classes {H1, . . . ,Hn} using
intricate data structures such as multi-dimentional tries [29]
and Binary Decision Diagrams (BDDs) [46]. While early
work on incremental verification such as Veriflow [29] and
Deltanet [20] could not handle rule transformations (i.e.,
all transformations must be τid), more recent work such as
AP [42] and APKeep [46] can account for transformations.

At a high-level, these tools work as follows. First, they
compute a set of equivalence classes {H1, . . . ,Hn} based on
the rule match fields. Next, for each transformation τ ∈ T
and each i ∈ {1, ..,n}, they compute τ(Hi) = {τ(h) | h ∈Hi}.
Since the transformed sets may now violate the disjoint condi-
tion, the resulting set {H1, . . . ,Hn,τ(H1), . . . ,τ(Hn)} is made
disjoint by dividing up these sets. This process is iterated with
all transformations until no more changes occur.

The problem with equivalence classes. There are several
problems that occur when trying to lift this approach to equiv-
alence class generation to stacks of headers. One problem is
that the space of header stacks H ∗ is infinite and symbolic
data structures in existing tools cannot represent and manipu-
late infinite sets of values. This is generally a hard problem,
which we solve in §4.3.

Even with data structures to manipulate such infinite sets,
the algorithm discussed previously does not necessarily termi-
nate in this infinite space. For instance, an equivalence class
for stacks with a single header: H ∗i = {ε ·h | h∈H } does not
terminate with τpush – one would compute a new equivalence
class for packets with two headers, then three, and so on.

4.2 Partial equivalence classes
To solve this problem, we introduce a new notion of partial
equivalence classes. Partial equivalence classes capture sets
of packets that will have the same forwarding behavior at
every node in the network but may not be transformed un-
ambiguously by transformations to other partial equivalence
classes. Formally, we define them as:
Definition 4.3 (Partial Equivalence Classes). A set of
header sets {H1, . . . ,Hn} are partial equivalences classes
for a network N = 〈V,E,H ,T ,R 〉 if the following hold:

• H = H1∪ . . .∪Hn (complete)
• ∀i, j ∈ {1, ..,n}, i 6= j⇒Hi∩H j = /0 (disjoint)
• ∀ j ∈ {1, ..,n}, ∀h1,h2 ∈H j, ∀u ∈V, (l-equiv)

edge(Ω(u,h1)) = edge(Ω(u,h2)) ∧
modify(Ω(u,h1)) = modify(Ω(u,h2))

The difference between partial equivalence classes and
equivalence classes (Definition 4.2) is subtle. We demonstrate
the difference in Figure 3. In the example, packet headers con-
sist of a destination IP field and time-to-live (TTL) field. If
we ignore the layering transformations τpush and τpop, which
make the example not terminate, existing tools AP and AP-
Keep would compute the equivalence classes shown in Fig-
ure 3b according to Definition 4.2. There are 257 equivalence
classes. This large number comes from repeatedly applying
τttl to compute the transitive closure of equivalence classes as
described in §4.1. In contrast, there are only 3 partial equiva-
lence classes for the example, shown in Figure 3c since they
depend only on local forwarding behavior.

Note that partial equivalence classes do not guarantee equiv-
alent end-to-end behavior of packets, only local forwarding.
For instance the packets 〈10.7.1.2, 255〉 and 〈10.7.1.2, 1〉
belong to the same partial equivalence class (2) in Figure 3c.
Yet when sent from v1, the latter packet will be dropped at v2
while the former will be forwarded to v3.

Of importance is that the definition of partial equivalence
classes depends only on the rule transformations τ applied
rather than the application of τ(Hi) to some set of packets.
This means that we can compute partial equivalence classes
efficiently for header stacks using techniques similar to that
of prior work [46] by looking only at the top of the stack.

4.3 Verification algorithm overview
Given a set of (changed) partial equivalence classes and a
property P, our objective is to check whether P holds for all
packets in all of the (changed) partial equivalence classes.

Our approach is as follows: given a set of partial equiva-
lence classes {H1, . . . ,Hn} we start by exploring the reach-
able paths from every source node using a depth-first search.
At each node u, packets in the partial equivalence class for
Hi will all have the same next hop v and transformation τ

(by definition). We proceed to apply τ(Hi) to get some new
set of packets H ′i . Because H ′i may partially overlap with
one or more existing partial equivalence classes, we identify
all other partial equivalence classes Hi1 , . . . ,Him such that
∀ j ∈ {1, ..,m},H ′i ∩Hi j 6= /0. We then continue the search
with each subset (H ′i ∩Hi j).

Representing header stacks. We still have the problem of
symbolically representing the infinite space of stacks of head-
ers H ∗. To do so, we use a decomposed representation where
we model a set of header stacks as a concrete stack of sym-
bolic header sets. For instance, suppose the set of reachable
header stacks at a given node is {ε · h1 · h2, ε, ·h3 · h4}. We
instead represent this set as the stack of header sets given by
the stack ε · {h1,h3} · {h2,h4}.

Of course, this decomposed representation naturally over
approximates the set of headers (e.g., it would appear that
ε ·h1 ·h4 is a reachable header stack). However, by carefully
tracking the transformations that modify the stack (e.g., that

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 621

v1 v2 v3

rule p e m τ

r0 100 〈v1,v1〉 φttl({0}) τdrop
r1 200 〈v1,v2〉 φdst(10.7.1.0/24) τpush ◦ τttl
r2 300 〈v1,v2〉 H ∗ τdrop
r3 100 〈v2,v2〉 φttl({0}) τdrop
r4 200 〈v2,v3〉 φdst(10.7.1.0/24) τpop ◦ τttl
r5 300 〈v2,v2〉 H ∗ τdrop
r6 100 〈v3,v3〉 φttl({0}) τdrop
r7 200 〈v3,v3〉 H ∗ τdelv

(a) Example network topology and rules.

(1) φdst(10.7.1.0/24) ∩ φttl({0})
(2) φdst(10.7.1.0/24) ∩ φttl({1})
.
(256) φdst(10.7.1.0/24) ∩ φttl({255})
(257) H −φdst(10.7.1.0/24)

(b) Equivalence classes computed by APKeep [46].

(1) φttl({0})
(2) φdst(10.7.1.0/24) ∩ φttl({1, ..,255})
(3) H −φdst(10.7.1.0/24) ∩ φttl({1, ..,255})

(c) Partial equivalence classes computed by KATRA.

Figure 3: Running example of computing reachability in a simple multilayer network. Example network has headers consisting of
a destination IP and a time-to-live (TTL) field: h ∈H = 〈d, t〉 where d ∈ {0, ..,232−1} and t ∈ {0, ..,255}. The transformation
τttl decrements the TTL field. (a) shows APKeep equivalence classes for the single-layer version of the network and (b) Katra’s
partial equivalence classes for the multi-layer version.

only h1 leads to h2 and only h3 leads to h4), this represen-
tation remains precise. On the other hand, the decomposed
representation is convenient because it allows for modeling
arbitrary sized stacks and can execute τpush and τpop cheaply
on the symbolic representation since it is just a concrete stack
operation. It also lets us leverage existing efficient data struc-
tures such as those based on BDDs, to manipulate the stacks
despite not having a fixed size.

Given a decomposed stack of header sets σ = ε ·H1 · . . . ·Hn
the usual definitions for τpush and τpop apply, and we use a
definition of a transformation τ applied to stacks: τ(σ ·h) = σ ·
τ(H). One drawback with this definition is that the headers at
different layers of the stack lose dependencies between them.
For instance, if the stack ε ·H1 ·H1 is filtered and becomes
ε ·H1 ·H2, it may be that the new stack should be ε ·H2 ·H2
since only those packets with the inner header in H2 would
have pushed to headers that later survived the filter. In general,
we track the transformations applied to the headers at each
layer of the stack, and then “repair” the stack on demand
whenever our representation is at risk of losing precision.

4.4 Layered verification algorithm
The algorithm for verifying arbitrarily layered networks is
shown in Algorithm 1. CheckProperty takes as input the net-
work N , the partial equivalence class (e.g., one that changed
after a rule insertion or deletion) Hi, a set of source nodes S,
a destination node d, and a path property P to check for each
pair of source and destination.

The algorithm starts by running a depth-first search from
each source node s ∈ S (line 7) and tracking the visited nodes.
Each node in the algorithm contains (i) a topology node, (ii)
the current partial equivalence class (initially Hi), and (iii) the
current symbolic stack (initially ε ·Hi). An invariant of the

algorithm is that the top of the symbolic stack is a subset of
the current partial equivalence class.

The depth-first search first looks up the next hop (edge and
transformation τ on line 11) for the current partial equivalence
class Hi and node u. It then applies the transformation τ to the
current stack (line 12). If τ is undefined for this stack, then
the trace is terminated and the algorithm checks the property
P on the path (stored in the previous pointers starting at u on
line 14). If the property fails, it returns a counter example.

Otherwise, the algorithm inspects the new top of the stack
σ and finds all new overlapping partial equivalence classes
Hi j (line 16). For each, it computes a new stack σ′ (line 17)
obtained by restricting the top of the stack to this new partial
equivalence class. If the top of the stack changed it then “re-
pairs” the rest of the stack (line 20). We go into this operation
in more detail in §4.5. Afterwards, the algorithm creates a
new node for the next hop v with the new partial equivalence
class Hi j and the new stack σ′ (line 20).

At this point the algorithm marks u as visited (line 22)
checks if the new node creates an infinite loop (line 25). The
details of this check are complex and are covered in detail
in §5.1. Finally, if the new node v has not yet been visited, it
recursively calls Dfs from this new node (line 28).

Example. We can see an application of Algorithm 1 in
Figure 4. This shows the DFS trace produced for the ear-
lier example network shown in Figure 3 that uses a time-
to-live field. The execution is shown for the partial equiv-
alence class Hi = (2), which corresponds to packets in the
set H0 = φdst(10.7.1.0/24)∩φttl({1, ..,255}). Initially the al-
gorithm starts in partial equivalence class (2) with the stack
ε ·H0. From here, the algorithm discovers that the next hop is
v2 and the transformation is τpush ◦ τttl. The result of applying
this transformation to ε ·H0 is two new sets of stacks corre-

622 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 1: Reachability for layered networks.
Input: Network N , partial equivalence class Hi,

Source locations S, Property P
Output: Counterexample, or null if none

1 Procedure CheckProperty(N , Hi, S, P)
2 visited← /0

3 for s in S do
4 u← new Node(s, Hi, ε ·Hi)
5 if u 6∈ visited then
6 u.previous← null
7 trace← Dfs(N , P, visited, u, 0)
8 if trace 6= null return trace

9 return null

10 Procedure Dfs(N , P, visited, u, i)
11 〈edge,τ〉 ← Forward(N , u.loc, u.ec)
12 σ← τ(u.stack)
13 if σ undefined then
14 return (if P(u) then null else GetTrace(u))

15 nexthops← /0

16 for Hi j in OverlappingEcs(top(σ)) do
17 σ′← bot(σ) ·

(
top(σ)∩Hi j

)
18 if top(σ) 6= top(σ′) or |σ| 6= |σ′| then
19 σ′← Repair(σ′)

20 v← new Node(tgt(edge), Hij , σ′)

21 nexthops← nexthops ∪ {〈τ,v〉}
22 visited← visited ∪ {u}
23 for 〈τ,v〉 in nexthops do
24 v.previous← 〈τ,u〉
25 if HasLoop(v, visited) then
26 return GetTrace(v)

27 if v 6∈ visited then
28 trace← Dfs(N , P, visited, v, i+1)
29 if trace 6= null return trace

30 return null

sponding to different partial equivalence classes. The first is
ε ·H0 ·H1, which remains in partial equivalence class (2). The
second is ε ·H0 ·H2, which now falls into partial equivalence
class (1) since the TTL field reaches zero. In both cases, we
“repair” the stack since the first header may be wrong. The
results are given by ε ·H3 ·H1 and ε ·H4 ·H2. Those packets
in partial equivalence class (1) are now dropped since the
TTL field is 0. And the remaining packets are forwarded to
v3, decapsulated, and eventually delivered.

4.5 Repairing the stack
Recall in the example in Figure 4, the initial state is
〈v1,(2),H0〉 capturing all packets for the destination pre-

Algorithm 2: Unbounded loop check.
Input: Graph node u, and visited nodes visited
Output: Boolean for if there is an infinite/finite loop.

1 Procedure HasLoop(u, visited)
2 C ←{n | n ∈ visited,n.loc = u.loc}
3 c← u.previous
4 µ← |u.stack|
5 while c 6= null and C 6= /0 do
6 µ←Min(µ, |c.stack|)
7 if c ∈ C then
8 C ← C −{c}
9 γ← LCS(u.stack, c.stack)

10 if µ > |c.stack|− γ then
11 return true

12 c← c.previous

13 return false

〈v1,(2), ε ·H0〉

〈v2,(2), ε ·H0 ·H1〉 〈v2,(1), ε ·H0 ·H2〉

〈v2,(2), ε ·H3 ·H1〉 〈v2,(1), ε ·H4 ·H2〉

〈v3,(2), ε ·H1〉

τpush ◦ τttl

repair repair

τpop ◦ τttl

H0 = φdst(10.7.1.0/24) ∩ φttl({1, ..,255})
H1 = φdst(10.7.1.0/24) ∩ φttl({1, ..,254})
H2 = φdst(10.7.1.0/24) ∩ φttl({0})
H3 = φdst(10.7.1.0/24) ∩ φttl({2, ..,255})
H4 = φdst(10.7.1.0/24) ∩ φttl({1})

Figure 4: Example execution of Algorithm 1 for the partial
equivalence class Hi = (2) from the example in Figure 3.

fix with TTL greater than zero. After being transformed by
τpush ◦ τttl, the resulting headers for partial equivalence class
(2) are given by the stack ε ·H0 ·H1. Regrettably, H0 is no
longer correct because it contains a packet with a TTL field
of 1, which would be 0 after the TTL decrement and thus no
longer be part of H1, which has TTL values in {1, ..,254}.

The problem generally is that after restricting the top of
the stack (Algorithm 1, line 17), the bottom of the stack may
contain too many headers. To repair the stack, we reverse all
transformations applied to the current stack to recover the
initial set of packets from the source that will eventually lead
to the new restricted stack. We then replay the transformations
forward with the correct initial set to simulate the construction

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 623

of the repaired stack as though we had started with the set
that takes into account the later restriction.
Definition 4.4 (Transformation Inverse). Given a transfor-
mation τ for sets of stacks, we define its inverse as τ−1(H∗) =
{σ ∈H ∗ | τ(σ) ∈ H∗}.

Assume we have a sequence of stacks and transformations
starting from the initial state of the depth-first search: σ1

τ1−→
σ2

τ2−→ . . .σn−1
τn−1−−→ σn. We compute:

σinit = (τ−1
1 ◦ . . .◦ τ−1

n)(σn)
σrepair = (τn ◦ . . .◦ τ1)(σinit)

Example. We clarify this idea through an example. In the
DFS shown in Figure 4, at node 〈v2,(2),H0 ·H1〉 we perform
a stack repair operation. To do so, we compute σinit:

σinit compute σinit
= (τpush ◦ τttl)

−1(H0 ·H1) unfold definition
= τ

−1
push(τ

−1
ttl (H0 ·H1)) function composition

= τ
−1
push(H0 ·H3) inverse of τttl

= H3 inverse of τpush

σrepair compute σrepair
= (τpush ◦ τttl)(H3) unfold definition
= τttl(τpush(H3)) function composition
= τttl(H3 ·H3) definition of τpush
= H3 ·H1 definition of τttl

This result is given by node 〈v2,(2),H3 ·H1〉 in Figure 4.

4.6 Property expressiveness
For efficiency, our algorithm concerns itself primarily with
checking path properties P that are “subpath closed”:
Definition 4.5 (Subpath Closed). A property P is subpath
closed if whenever P holds on a sequence of nodes u0, . . . ,un,
it also holds on any subsequence u j,u j+1, . . . ,un for j ≥ 0.

Subpath-closed properties include reachability to a desti-
nation, loop-freedom, and network isolation. We focus on
this subset of properties because they permit an efficient im-
plementation by avoiding exploring previously visited nodes
(Algorithm 1, line 5). However, this is not an inherent limi-
tation of our algorithm – with only minor changes it can be
used to check any path properties for packets, albeit at greater
cost since we can not reuse previously visited nodes.

5 Algorithm Correctness

We now prove that Algorithm 1 is sound with respect to our
concrete packet semantics from §3.3. But first we must define
what it means for a DFS state to contain a located packet:
Definition 5.1 (DFS overapproximation). For a located
packet ` and Dfs node u, we write ` ∈ u if ` = 〈v,σ〉 and
u.loc = v and σ ∈ u.stack and top(σ) ∈ u.ec.

u1 u2 u3

rule p e m τ

r0 100 〈u1,u1〉 φdst(10.0.1.0/24) τpush ◦ τd ◦ τpush
r1 100 〈u2,u2〉 φdst(d) τpop
r2 200 〈u2,u3〉 φdst(10.0.1.0/24) τpush
r3 300 〈u2,u3〉 H ∗ τdrop
r3 100 〈u3,u2〉 H ∗ τpush

Figure 5: Example network with an infinite loop for the
10.0.1.1 address. The value d can be any other IP address.

Now given this definition, we state the soundness of Algo-
rithm 1 as follows by relating the concrete semantics to the
DFS calls made in the algorithm. For the simplicity of the
proof, we elide the visited set optimization (lines 5 and 27)
and the loop check (line 25). We revisit the loop check for
termination in §5.1

Theorem 5.1 (Soundness). For any network N , partial
equivalence class H j, node v, header h ∈H j, located packet
`= 〈v,ε ·h〉, and step i≥ 0, if not N ⊗〈i, `〉 then after calling
CheckProperty(N ,H j,{v},P) there will eventually be a call
to Dfs(N ,P,_,u, i) for some node u such that top(JN Ki`)∈ u.

Proofs are included as extra material in the appendix.

Corollary 5.1 (Property checking). If i is the smallest step
such that N ⊗〈i, `〉 then Algorithm 1 checks P(u) for some
DFS node u such that top(JN Ki`) ∈ u.

5.1 Infinite Loops and Termination

While Theorem 5.1 says that Algorithm 1 is sound, it says
nothing about whether it will terminate. Intuitively, a network
N contains a loop for a header h, whenever that packet will
visit a node infinitely often in the future2. Catching infinite
loops is vital since otherwise Algorithm 1 may not terminate.
Finding loops in layered networks is surprisingly challenging
since the space of header stacks is infinite and no stack need
repeat to have an infinite loop.

We start by defining a loop for a given header:

Definition 5.2 (Network Loop). Given a network N , an in-
put located packet ` induces a loop if there exists a step index
i ∈ N for the start of the loop such that for all steps j ∈ N
where j ≥ i, there exists a future k ∈ N such that:

(1) |JN K j`|< |JN Kk`|
(2) top(hops(JN K j`)) = top(hops(JN Kk`))

2Note: networks modeling the TTL field like in Figure 7 do not have
a loop in the algorithmic sense because the packet will eventually expire
after a finite number of steps. Such issues can be caught with an appropriate
property P that looks for packets that eventually expire with TTL 0.

624 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

In other words, a loop exists if beyond some point in the
trace (i) the trace will continue to grow forever and repeatedly
visit the same nodes in the network.

Example. We demonstrate the difficulty of detecting infi-
nite loops in Figure 5. Unlike in single layer networks, loops
in multi-layer networks may be transient even when the top
of the stack repeats at the same node because of implicit state
lower in the header stack. Further, any given stack may not
repeat even when an infinite loop exists since the stack can
keep growing. Consider a trace for the example in Figure 5
for traffic sent from u1 with the 10.0.1.1 destination.

〈u1,10.0.1.1〉 encapsulate twice
〈u2,10.0.1.1 ·d ·d〉 pop
〈u2,10.0.1.1 ·d〉 pop
〈u2,10.0.1.1〉 forward to u3
〈u3,10.0.1.1 ·10.0.1.1〉 forward to u2
〈u2,10.0.1.1 ·10.0.1.1 ·10.0.1.1〉 forward to u3
. . .

Note that the top of stack d is repeated at node u2, how-
ever, this is not the cause of the infinite loop since eventually
this outer header is removed and the forwarding proceeds
according to the inner header for the 10.0.1.1 address. Later,
however, there is an infinite loop despite the stack never re-
peating exactly at any node in the trace.

Necessary and sufficient conditions. Suppose we have a
current header stack σ ·h at node u, and later on we arrive at u
once more, but with header stack σ ·σ′ ·h with the same shared
prefix σ. Moreover, assume that between visiting u twice, the
rules never examine the contents of σ. If these conditions
hold then the top of the stack h “regenerates” itself without
needing context from σ. In this case, we can infer that there
will be an infinite loop at u given by: 〈u,σ ·h〉 −→ 〈u,σ ·σ′ ·
h〉 −→〈u,σ ·σ′ ·σ′ ·h〉 −→ . . . This idea is similar to repeating
heads from the verification of pushdown systems [36] and we
prove that this condition is both sufficient and necessary for a
permanent loop:
Theorem 5.2 (Loop conditions). Given a network N over
H ∗, an input ` induces a loop if and only if there exists i,k∈N,
σ,σ′ ∈H ∗, and h ∈H such that:

(1) top(JN Ki`) = 〈u,σ ·h〉
(2) top(JN Kk`) = 〈u,σ ·σ′ ·h〉
(3) ∀ j, i < j < k⇒∃v,σ′′, top(JN K j`) = 〈v,σ ·σ′′〉

Loop detection algorithm. Based on the insights from The-
orem 5.2, we develop an efficient procedure for checking
loops during traversal, which is described in Algorithm 2.
Given the current node (u) in the DFS, and the visited nodes
(visited) the procedure checks for a loop by looking up all
candidate nodes (C) for the same current topology location
(u.loc, line 2). The algorithm walks backwards through the
current path (line 5) and computes the longest common suffix
(LCS) γ between the tops of the stacks for the two nodes u

1 // instantiate a new network verifier
2 var headerType = new HeaderType(
3 ("dstip", 32), ("srcip", 32));
4 var nv = new NetworkVerifier(headerType);
5

6 // build the network topology
7 var (n1, n2) = nv.GetOrAddNodes("n1", "n2");
8 var (e12, e21) = nv.GetOrAddBiEdge(n1, n2);
9

10 // register the properties we want to monitor
11 nv.AddCheck(new LoopCheck(nv.AllHeaders()));
12

13 // create new prioritized forwarding rules
14 var r = nv.CreateRange(
15 (10, 20), (0, uint.MaxValue));
16 var t = nv.Seq(nv.Push(), nv.Set("dstip", 10));
17 var rule1 = new Rule(100, e12, r, t);
18 var rule2 = new Rule(100, e21, r, nv.Pop());
19

20 // find violations from adding rules.
21 var violations1 = nv.AddRule(rule1);
22 var violations2 = nv.AddRule(rule2);
23 Assert.AreEqual(1, violations2.Count);

Figure 6: Example use of the KATRA verification API.

and c (line 9) while also tracking the minimum stack size
µ between the two nodes. If µ is greater than |c.stack| − γ

(where γ generalizes h in the loop conditions) then there is
a loop (line 11). If the set of candidate loop nodes has been
exhausted, the algorithm terminates early.

6 Implementation

We have built an incremental verification system, KATRA
for layered networks based on the idea presented. KATRA
is implemented as a C# library and is written in around 8K
lines of code. KATRA’s implementation for computing header
equivalence classes is based on the algorithm from [46], but is
modified to incrementally compute the minimal set of partial
equivalence classes (see §4.2). An example of an API for the
tool is shown in Figure 6. The tool is programmable and is pa-
rameterized by the format of the header (e.g., MPLS vs. IPv4)
that the user wants to check (line 1)3. Our implementation
extends §3.2 to support mulipath routing.

Optimizations. KATRA makes use of several optimizations
to scale. One key challenge is that the use of partial equiv-
alence classes (§4.2) means that we must find overlapping
equivalence classes during traversal (Algorithm 1, line 16). To
make this operation fast, for every packet set H we keep a pair
of 〈b,H〉 where H is the set itself modeled as a BDD [10], and
b is a multi-dimensional bounding box that overapproximates

3To model different headers in different layers (e.g., Ethernet and IPv4
headers), one can define a “master” header with the union of fields across
headers along with a field indicating which header is currently being used.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 625

a
b

c

d
e

f
g

h

i

j

Figure 7: Example of a layered benchmark network with
layers `= 2 and nodes n = 5.

the set of headers in H. When sets are unioned or intersected,
the corresponding bounding boxes are grown or shrunk to
remain safe overapproximations for the sets of headers.

Keeping bounding boxes for header sets allows for the
use of fast collision detection data structures. We leverage
bounding volume hierarchies [40], which are hierarchical
balanced trees of bounding volumes used in game engines to
quickly eliminate possible collisions.

Our implementation also examines header sets H and de-
termines if the fields lie on prefix boundaries (e.g., for IPv4
prefix-based forwarding). If so, it uses an optimized trie data
structure to accelerate the collision detection.

7 Evaluation

We are primarily interested in evaluating the performance of
KATRA relative to a straightforward extension of prior work
that models packets with a fixed (bounded) number of headers
N. Of course, this approach requires a user to specify N and
may be unsound when N is not large enough to handle the
maximum stack possible in the network. However, if N is
chosen carefully this provides a reasonable comparison point.

7.1 Different implementations
To compare the approach in KATRA with that of duplicate
headers (DUP), we instantiate our framework (§6) with two
types of headers. For DUP, we instantiate the verifier with a
header that is similar to that of Figure 6 (line 2) but extended
to a full IPv4 header, and replicated N times. We choose
N to account for the maximum amount of layering in each
benchmark and do not evaluate DUP on networks that contain
unbounded loops, since it will give incorrect results.

Each field in the DUP header has versions f1 to fN and
f1 represents the outermost header (top of stack). The push
operation is implemented by copying each field fi to fi+1, its
next layer version, and the bottom header is lost in the process
if the stack exceeds size N. The pop operation is implemented
similarly by copying each field fi+1 to fi.

Single layer performance. APKeep was demonstrated to
outperform prior incremental verifiers while also being more

robust to multi-dimensional rules [46]. However, since AP-
Keep is not open source, we instead use our implementation
of KATRA, which uses a similar base algorithm to compare
results. We ran KATRA on the same datasets reported on in
the APKeep paper and originally released by Deltanet [20].
We found the performance for these single layer networks to
be similar to the times reported on by APKeep, and as such
do not report on the results here. Since the implementation
performance is comparable, going forward we report only the
times from different instantiations of KATRA.

Moreover, instantiating DUP in KATRA allows us to di-
rectly compare our algorithm to a naive solution without other
factors coming into play. For example, DUP also makes use
of our partial equivalence class reduction, our fast collision
detection data structure, and other optimizations.

7.2 Performance on multilayer networks
To measure the performance of KATRA for multilayer net-
works (i.e., with stack size greater than 1), we generated a
parameterized set of benchmark networks.

Benchmark description. The benchmarks have two param-
eters: the number of layers ` in the network, and the number
of nodes per layer n. The first layer represents the physical
network, while each layer i > 1 represents an overlay net-
work built on top of layer i− 1. Each link in the layer i in
the network is implemented by encapsulating a packet and
forwarding it according to the destination prefix for the tunnel
endpoint in layer i− 1. Routing in each layer is configured
to announce and propagate routes along shortest paths. For
each 〈`,n〉 pair, we generate the topologies as random con-
nected graphs and map nodes in each overlay to nodes in the
underlay for the purpose of establishing tunnel endpoints.

An example of such a network with ` = 2 and n = 5 is
shown in Figure 7. In the example, to forward traffic between
layer 2 nodes b and e, traffic is encapsulated and forwarded
from i to f via h in layer 1. For such networks, there are a
total of O(` ·n2) forwarding rules.

The first property we check is reachability between all
source and destination nodes in the outermost layer ` for all
advertised subnets. This strategy forces KATRA to reason
about the forwarding behavior at every single layer. Because
these reachability properties are violated while tunnels are
being established at different layers, for this benchmark we
disable property checking while connectivity is not expected.

Performance of KATRA compared to DUP. We show the
total verification time of KATRA and DUP in Figure 8 and
Figure 9. Figure 8 shows the total time spent recomputing
partial equivalence classes for both approaches. KATRA is
faster than DUP because DUP must represent significantly
larger headers in order to capture the full stack. This leads to
larger packet set representations in the BDD library and more
expensive set and transform operations.

Similarly, Figure 9 shows the total time spent checking

626 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

20 40 60 80 100
0
1
2
3
4

Nodes per layer (`=2)

Ti
m

e
(s

ec
) DUP

KATRA

20 40 60 80 100
0

10

20

Nodes per layer (`=4)

Ti
m

e
(s

ec
) DUP

KATRA

20 40 60 80 100
0

20

40

60

Nodes per layer (`=6)

Ti
m

e
(s

ec
) DUP

KATRA

20 40 60 80 100
0

50
100
150

Nodes per layer (`=8)

Ti
m

e
(s

ec
) DUP

KATRA

Figure 8: Total time spent recomputing partial equivalence classes for an approach based on duplicate headers DUP vs. KATRA.

20 40 60 80 100
0

0.2

0.4

Nodes per layer (`=2)

Ti
m

e
(s

ec
) DUP

KATRA

20 40 60 80 100
0
2
4
6

Nodes per layer (`=4)

Ti
m

e
(s

ec
) DUP

KATRA

20 40 60 80 100
0

10
20
30

Nodes per layer (`=6)

Ti
m

e
(s

ec
) DUP

KATRA

20 40 60 80 100
0

50

100

Nodes per layer (`=8)

Ti
m

e
(s

ec
) DUP

KATRA

Figure 9: Total time spent checking end-to-end reachability for an approach based on duplicate headers DUP vs. KATRA.

reachability for KATRA and DUP. There is a similar trend,
with KATRA’s decomposed stack set representation leading to
a large speedup over that of DUP. In both cases, the speedup
of KATRA grows with both the number of layers ` and the
number of nodes per layer n in the graph. For instance, at
`= 6 and n = 100, property checking is nearly 50x faster.

KATRA rule update time. The total verification time grows
quickly in part because the number of rules needed to imple-
ment the network design is proportional to the square of the
size of the network. However, looking at the time for each
individual rule update in Figure 10, essentially all updates
execute in under 1ms. The graphs show the CDF for rule
insertion time in milliseconds. In particular, the insertion time
is relatively independent of ` yet increases slightly with n.

7.3 Performance of loop checking

To evaluate the performance of Algorithm 2, we used example
networks with ` = 2 and replaced the reachability checks
for each destination subnet with a single loop check for all
packets. Unlike with reachability, this property gets rechecked
after every single rule insertion. Since each link in layer 2
crosses many of the same previous nodes in layer 1, this forces
Algorithm 2 to check for potential loops frequently.

A CDF of the rule insertion and loop checking time for
each update are shown in Figure 11. We vary n from 20 to 80
in increments of 20 and compare the results. Figure 11a shows
the checking time when rules are inserted in an arbitrary order.
The time grows with the size of the network and can become
high at the tail (e.g., around 40ms).

The reason why is that if a rule r with transformation τpop
is inserted early, then every other rule insertion will affect
the partial equivalence class for r. In other words, after a
decapsulation a packet may now be in any partial equivalence

10−2 10−1 100 101
0

0.2
0.4
0.6
0.8

1

Insertion Time (ms)

C
D

F

n = 20
n = 40

(a) Layers `=2

10−210−1 100 101
0

0.2
0.4
0.6
0.8

1

Insertion Time (ms)

C
D

F

n = 20
n = 40

(b) Layers `=4

Figure 10: CDF of rule insertion time for (a) `=2 and (b) `=4.
Both show results for nodes per layer n = 20 and n = 40.

class, so when any other partial equivalence class changes,
the partial equivalence class for r must also be rechecked. At
the extreme, this means that every rule insertion can require
rechecking the entire network from scratch. This is inherent
in the problem and is not unique to KATRA (e.g., APKeep
suffers a similar blowup for these networks).

However, by slightly reordering rule updates, we can im-
prove the performance significantly. In Figure 11b, we show
the same results but where the rule insertion order is done in
a way to delay the insertion of decapsulation rules. From the
figure, we can see that in the latter case, the checking time
remains well below 1ms for nearly all rules.

Since this benchmark requires checking the loop property
after all rule updates, the performance improvement of KA-
TRA grows substantially over that of DUP. Figure 12 shows
the total time to verify the loop-free property for all rules up-
dates. It shows the performance for `= 2 layers where we cap
the total verification time at 4 minutes. DUP times out after
n = 100 with 20K rules while KATRA can verify networks up
to n = 300 with 180K rules. The relative speedup of KATRA
over DUP for n = 20 to n = 100 is shown in Figure 12b.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 627

10−1 100 101 102
0

0.2
0.4
0.6
0.8

1

Checking Time (ms)

C
D

F

(a) Random order

10−2 100 102
0

0.2
0.4
0.6
0.8

1

Checking Time (ms)

C
D

F n = 20
n = 40
n = 60
n = 80

(b) Delayed decap

Figure 11: CDF of rule insertion time for `=2 and n = 20 to
n = 80 in increments of 20. Total checking time for loops is
low when decapsulation rule insertion is delayed.

0 100 200 300
0

100

200

Nodes per layer (`= 2)

Ti
m

e
(s

ec
)

(a) Total time

20 40 60 80 100

10

20

30

Nodes per layer (`= 2)

Sp
ee

du
p

(b) Relative speedup

Figure 12: (a) Total verification time for DUP (blue) vs. KA-
TRA (red) for `= 2 when checking for forwarding loops on
every change. (b) Speedup ranges from 5x to 32x.

8 Related Work

KATRA is related to several threads of prior work:
Data plane verification. There is a long line of work on

data plane verification, starting from the seminal work of Xie
et. al. [27, 41, 42], and incremental verification starting with
Veriflow [20,26,29,46]. Most work on data plane verification
has assumed stateless and transformation-free forwarding,
with the exception of AP [42] and APKeep [46], which han-
dle transformations (see §4). However, none of these works
consider layered networks where encapsulation and decapsu-
lation are pervasive. AP and APKeep can model finite header
stacks (e.g., DUP from §7) but this approach can be unsound
and can have poor performance, particularly when encapsu-
lation is common. KATRA builds on prior work to enable
incremental verification with transformations and layering.

Layered network verification. There has been little work
on verifying multilayer networks. One related work in this
area is Tiramisu [2], which can verify some combinations of
layer 2 and 3 control plane routing protocols (e.g., BGP, iBGP,
OSPF). However, Tiramisu is only superficially related to
KATRA: (i) Tiramisu verifies control plane routing while KA-
TRA verifies data plane forwarding, (ii) Tiramisu focuses on
specific layering mechanisms (e.g., between iBGP and eBGP)
while KATRA focuses on arbitrarily layered data planes, and
(iii) KATRA is interested in real-time (millisecond) verifica-

tion time for incremental changes.
Recent works on verifying MPLS label switching with

fast failover [22–24] were the first to leverage the insight
that label-based forwarding can be viewed as pushdown au-
tomata. The works use polynomial time algorithms to answer
reachability questions for all possible failures using overap-
proximation. While they focus on reasoning about failures,
we similarly leverage this insight that ideas from pushdown
automata are useful for reasoning about stacks of headers. We
generalize this reasoning from concrete label-based forward-
ing to symbolic forwarding (e.g., prefix-based forwarding)
and also focus on realtime verification for changes.

There are significant differences in the actual algorithms.
These prior works use saturation-based procedures to iter-
atively compute automata representations of (backward or
forward) reachable configurations of the pushdown system.
In contrast, our algorithm is an on-the-fly depth-first search
over symbolic configurations, which include (partial) equiva-
lence classes over the header space.

One work [24] considers abstractions based on network
labels to reduce PDS size and proposes a CEGAR-style re-
finement procedure, which improves performance in many
practical examples. Our symbolic configurations are also ab-
stractions of the network state space, where the control state
is a partial equivalence class in the header space located at a
particular node in the network, and the stack is a word over
these classes. These abstractions are refined lazily on-the-fly
in our novel method for stack repair, such that any trace in
our algorithm follows the specified network semantics.

Model checking of pushdown systems. More broadly, our
work builds on prior work in model checking of pushdown
systems [6, 9, 36], which can naturally represent sequential
programs with recursive procedures. Similar to symbolic
procedures for pushdown systems [12, 36], we also utilize
BDDs [11] for efficient representation of the state space and
use a notion similar to repeating heads [36] for detecting
loops. However, rather than computing sets of reachable con-
figurations, our procedure performs on-the-fly verification to
soundly check reachability of located packets.

9 Conclusion

In this paper we have presented KATRA, the first real-time
verifier for layered networks. KATRA extends incremental
data-plane verification to the setting with unbounded header
stacks. To do so, we introduced a new network model for
layered networks and presented an efficient algorithm for
such networks. The algorithm leverages a new idea of partial
equivalence classes and keeps a decomposed symbolic stack
representation that it lazily “repairs” as needed. Comparing
KATRA against a solution based on header duplication, we
showed that KATRA is 5x-32x faster for just 2 layers, and that
its benefits grow with network size and layering.

628 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] 3GPP. General Packet Radio Service (GPRS); GPRS
Tunnelling Protocol (GTP) across the Gn and Gp inter-
face, January 1999.

[2] Anubhavnidhi Abhashkumar, Aaron Gember-Jacobson,
and Aditya Akella. Tiramisu: Fast multilayer network
verification. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pages
201–219, Santa Clara, CA, February 2020. USENIX
Association.

[3] Amazon. Amazon ec2 secure and resizable compute
capacity to support virtually any workload. https://
aws.amazon.com/ec2/, 2021.

[4] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-
Baptiste Jeannin, Dexter Kozen, Cole Schlesinger, and
David Walker. Netkat: Semantic foundations for net-
works. In Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’14, pages 113–126, New York, NY, USA,
2014. ACM.

[5] John Backes, Sam Bayless, Byron Cook, Catherine
Dodge, Andrew Gacek, Alan J. Hu, Temesghen Kah-
sai, Bill Kocik, Evgenii Kotelnikov, Jure Kukovec, Sean
McLaughlin, Jason Reed, Neha Rungta, John Sizemore,
Mark Stalzer, Preethi Srinivasan, Pavle Subotić, Carsten
Varming, and Blake Whaley. Reachability analysis for
aws-based networks. In Isil Dillig and Serdar Tasiran,
editors, Computer Aided Verification, pages 231–241,
Cham, 2019. Springer International Publishing.

[6] Thomas Ball and Sriram K. Rajamani. Bebop: a path-
sensitive interprocedural dataflow engine. In Proceed-
ings of the 2001 ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis For Software Tools and Engineering
(PASTE), pages 97–103. ACM, 2001.

[7] Nikolaj Bjørner, Garvit Juniwal, Ratul Mahajan, San-
jit A. Seshia, and George Varghese. ddnf: An efficient
data structure for header spaces. In Haifa Verification
Conference, 2016.

[8] J. Border, M. Kojo, J. Griner, G. Montenegro, and
Z. Shelby. Performance Enhancing Proxies Intended to
Mitigate Link-Related Degradations. Internet Request
for Comments, June 2001.

[9] Ahmed Bouajjani, Javier Esparza, and Oded Maler.
Reachability analysis of pushdown automata: Applica-
tion to model-checking. In CONCUR ’97: Concurrency
Theory, Proceedings, volume 1243 of Lecture Notes in
Computer Science, pages 135–150. Springer, 1997.

[10] Karl S. Brace, Richard L. Rudell, and Randal E. Bryant.
Efficient implementation of a bdd package. In Proceed-
ings of the 27th ACM/IEEE Design Automation Con-
ference, DAC ’90, pages 40–45, New York, NY, USA,
1990. ACM.

[11] Randal E. Bryant. Graph-based algorithms for boolean
function manipulation. IEEE Transactions on Comput-
ers, 35(8):677–691, 1986.

[12] Javier Esparza and Stefan Schwoon. A BDD-based
model checker for recursive programs. In Computer
Aided Verification, International Conference, CAV, Pro-
ceedings, volume 2102 of Lecture Notes in Computer
Science, pages 324–336. Springer, 2001.

[13] FlexiWAN. The world’s first open source sd-wan &
sase. https://flexiwan.com/, 2021.

[14] Klaus-Tycho Foerster, Yvonne-Anne Pignolet, Stefan
Schmid, and Gilles Tredan. Local fast failover routing
with low stretch. SIGCOMM Comput. Commun. Rev.,
48(1):35–41, apr 2018.

[15] B. Gleeson, A. Lin, J. Heinanen, Telia Finland, G. Ar-
mitage, and A. Malis. A Framework for IP Based Vir-
tual Private Networks. Internet Request for Comments,
February 2000.

[16] Google. Google cloud: Cloud computing services.
https://cloud.google.com/, 2021.

[17] Google. Network intelligence center: Connectivity tests
overview. https://cloud.google.com/network-
intelligence-center/docs/connectivity-
tests/concepts/overview, 2021.

[18] S. Hanks, Ltd. NetSmiths, T. Li, D. Farinacci, and
P. Traina. Generic Routing Encapsulation (GRE). Inter-
net Request for Comments, October 1994.

[19] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming
Zhang, Vijay Gill, Mohan Nanduri, and Roger Watten-
hofer. Achieving high utilization with software-driven
wan. SIGCOMM Comput. Commun. Rev., 43(4):15–26,
August 2013.

[20] Alex Horn, Ali Kheradmand, and Mukul Prasad. Delta-
net: Real-time network verification using atoms. In
14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), pages 735–749, Boston,
MA, March 2017. USENIX Association.

[21] Karthick Jayaraman, Nikolaj Bjorner, Jitu Padhye, Amar
Agrawal, Ashish Bhargava, Paul-Andre C Bissonnette,
Shane Foster, Andrew Helwer, Mark Kasten, Ivan
Lee, Anup Namdhari, Haseeb Niaz, Aniruddha Parkhi,
Hanukumar Pinnamraju, Adrian Power, Neha Milind
Raje, and Parag Sharma. Validating datacenters at scale.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 629

https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://flexiwan.com/
https://cloud.google.com/
https://cloud.google.com/network-intelligence-center/docs/connectivity-tests/concepts/overview
https://cloud.google.com/network-intelligence-center/docs/connectivity-tests/concepts/overview
https://cloud.google.com/network-intelligence-center/docs/connectivity-tests/concepts/overview

In Proceedings of the ACM Special Interest Group on
Data Communication, SIGCOMM ’19, pages 200–213,
New York, NY, USA, 2019. ACM.

[22] Jesper Stenbjerg Jensen, Troels Beck Krøgh, Jonas Sand
Madsen, Stefan Schmid, Jiří Srba, and Marc Tom Thorg-
ersen. P-rex: Fast verification of mpls networks with
multiple link failures. In Proceedings of the 14th Inter-
national Conference on Emerging Networking EXperi-
ments and Technologies, CoNEXT ’18, page 217–227,
New York, NY, USA, 2018. Association for Computing
Machinery.

[23] Peter Gjøl Jensen, Dan Kristiansen, Stefan Schmid,
Morten Konggaard Schou, Bernhard Clemens Schrenk,
and Jiří Srba. Aalwines: A fast and quantitative what-if
analysis tool for mpls networks. In Proceedings of the
16th International Conference on Emerging Network-
ing EXperiments and Technologies, CoNEXT ’20, page
474–481, New York, NY, USA, 2020. Association for
Computing Machinery.

[24] Peter Gjøl Jensen, Stefan Schmid, Morten Konggaard
Schou, Jirí Srba, Juan Vanerio, and Ingo van Duijn.
Faster pushdown reachability analysis with applications
in network verification. In Automated Technology for
Verification and Analysis (ATVA), Proceedings, volume
12971 of Lecture Notes in Computer Science, pages 170–
186, 2021.

[25] Andrzej Kamisiński. Evolution of ip fast-reroute strate-
gies. In 2018 10th International Workshop on Resilient
Networks Design and Modeling (RNDM), pages 1–6,
2018.

[26] Peyman Kazemian, Michael Chang, Hongyi Zeng,
George Varghese, Nick McKeown, and Scott Whyte.
Real time network policy checking using header space
analysis. In 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 13), pages
99–111, Lombard, IL, April 2013. USENIX Associa-
tion.

[27] Peyman Kazemian, George Varghese, and Nick McK-
eown. Header space analysis: Static checking for net-
works. In 9th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 12), pages 113–
126, San Jose, CA, April 2012. USENIX Association.

[28] S. Kent and K. Seo. Security Architecture for the Inter-
net Protocol. Internet Request for Comments, August
2005.

[29] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew
Caesar, and P. Brighten Godfrey. Veriflow: Verifying
network-wide invariants in real time. In Presented as

part of the 10th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 13), pages 15–
27, Lombard, IL, 2013. USENIX.

[30] M. Mahalingam, D. Dutt, K. Duda, P. Agarwal,
L. Kreeger, T. Sridhar, M. Bursell, and C. Wright. Vir-
tual eXtensible Local Area Network (VXLAN): A
Framework for Overlaying Virtualized Layer 2 Net-
works over Layer 3 Networks. Internet Request for
Comments, August 2014.

[31] Microsoft. Microsoft azure: Cloud computing services.
https://azure.microsoft.com/en-us/, 2021.

[32] J. Moy. Open Shortest Path First Protocol Version 2.
Internet Request for Comments, April 1998.

[33] A. Atlas P. Pan, G. Swallow. Fast Reroute Extensions
to RSVP-TE for LSP Tunnels. Internet Request for
Comments, May 2005.

[34] C. Perkins. IP Encapsulation within IP. Internet Request
for Comments, July 1996.

[35] E. Rosen, A. Viswanathan, and R. Callon. Multiproto-
col Label Switching Architecture. Internet Request for
Comments, January 2011.

[36] Stefan Schwoon. Model checking pushdown systems.
PhD thesis, Technical University Munich, 2002.

[37] Oliver Spatscheck. Layers of success. IEEE Internet
Computing, 17(1):3–6, 2013.

[38] 3GPP The Mobile Broadband Standard. 3gpp a global
initiative. https://www.3gpp.org/, 2021.

[39] Bingchuan Tian, Xinyi Zhang, Ennan Zhai,
Hongqiang Harry Liu, Qiaobo Ye, Chunsheng
Wang, Xin Wu, Zhiming Ji, Yihong Sang, Ming Zhang,
Da Yu, Chen Tian, Haitao Zheng, and Ben Y. Zhao.
Safely and automatically updating in-network acl
configurations with intent language. In Proceedings of
the ACM Special Interest Group on Data Communica-
tion, SIGCOMM ’19, page 214–226. Association for
Computing Machinery, 2019.

[40] Ingo Wald. On fast construction of sah-based bound-
ing volume hierarchies. In 2007 IEEE Symposium on
Interactive Ray Tracing, pages 33–40, 2007.

[41] G. G. Xie, Jibin Zhan, D. A. Maltz, Hui Zhang, A. Green-
berg, G. Hjalmtysson, and J. Rexford. On static reach-
ability analysis of ip networks. In Proceedings IEEE
24th Annual Joint Conference of the IEEE Computer
and Communications Societies., volume 3, pages 2170–
2183 vol. 3, March 2005.

630 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://azure.microsoft.com/en-us/
https://www.3gpp.org/

[42] Hongkun Yang and Simon S. Lam. Real-time verifi-
cation of network properties using atomic predicates.
IEEE/ACM Trans. Netw., 24(2):887–900, April 2016.

[43] Kok-Kiong Yap, Murtaza Motiwala, Jeremy Rahe, Steve
Padgett, Matthew Holliman, Gary Baldus, Marcus Hines,
Taeeun Kim, Ashok Narayanan, Ankur Jain, Victor Lin,
Colin Rice, Brian Rogan, Arjun Singh, Bert Tanaka,
Manish Verma, Puneet Sood, Mukarram Tariq, Matt Tier-
ney, Dzevad Trumic, Vytautas Valancius, Calvin Ying,
Mahesh Kallahalla, Bikash Koley, and Amin Vahdat.
Taking the edge off with espresso: Scale, reliability and
programmability for global internet peering. In Pro-
ceedings of the Conference of the ACM Special Interest
Group on Data Communication, SIGCOMM ’17, page
432–445, New York, NY, USA, 2017. Association for
Computing Machinery.

[44] Pamela Zave and Jennifer Rexford. The composi-

tional architecture of the internet. Commun. ACM,
62(3):78–87, February 2019.

[45] Hongyi Zeng, Shidong Zhang, Fei Ye, Vimalkumar
Jeyakumar, Mickey Ju, Junda Liu, Nick McKeown, and
Amin Vahdat. Libra: Divide and conquer to verify for-
warding tables in huge networks. In 11th USENIX Sym-
posium on Networked Systems Design and Implementa-
tion (NSDI 14), pages 87–99, Seattle, WA, April 2014.
USENIX Association.

[46] Peng Zhang, Xu Liu, Hongkun Yang, Ning Kang,
Zhengchang Gu, and Hao Li. Apkeep: Realtime verifica-
tion for real networks. In 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
20), pages 241–255, Santa Clara, CA, February 2020.
USENIX Association.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 631

Appendix

Theorem 5.1 (Soundness). For any network N , partial equivalence class H j, node v, header h∈H j, located packet `= 〈v,ε ·h〉,
and step i≥ 0, if not N ⊗〈i, `〉 then after calling CheckProperty(N ,H j,{v},P) there will eventually be a call to Dfs(N ,P,_,u, i)
for some node u such that top(JN Ki`) ∈ u.

Proof. The proof is by induction on the step i. For the sake of simplicity, we assume that lines 5 and 27 of Algorithm 1, which
are optimizations using the visited set, are removed for the remainder of the proof.

Base case (i = 0) By assumption we have ` = 〈v,ε ·h〉. From unfolding the definition of the semantics JN K for the (i = 0)
step, we obtain the following equality:

top(JN K0`) = top(ε · `) = `= 〈v,ε ·h〉

Thus we must prove that there is a call to Dfs(N ,P,_,u,0) such that u.loc = v and ε · h ∈ u.stack and top(ε · h) ∈ u.ec. This
trivially follows from line 7 of Algorithm 1. Since S = {v} (line 3), we see that s = v (line 3) and therefore u.loc = v as expected,
and u.stack = ε ·H j (line 4), which implies that ε · h ∈ u.stack since ε · h ∈ ε ·H j ⇐⇒ h ∈ H j by definition and this is an
assumption. Finally, we have that top(ε ·h) = h ∈ u.ec or h ∈H j again by assumption.

Inductive case (i > 0) The proof proceeds by using the inductive hypothesis for step i−1 to prove that the statement holds
for step i. We list out our assumptions from the proof statement as well as the induction hypothesis below:

• not N ⊗〈i, `〉
• not N ⊗〈i−1, `〉
• top(JN Ki`) = 〈v1,σ1〉
• top(JN Ki−1`) = 〈v2,σ2〉
• there was a call to Dfs(N ,P,_,u2, i−1) for some u2
• u2.loc = v2
• σ2 ∈ u2.stack
• top(σ2) ∈ u2.ec

Given these assumptions, we must prove that each of the following statements holds as a result:

• there is a call to Dfs(N ,P,_,u1, i) for some u1
• u1.loc = v1
• σ1 ∈ u1.stack
• top(σ1) ∈ u1.ec

We walk through the lines of code in Algorithm 1 starting from the call to Dfs(N ,P,_,u2, i−1) that we know must have taken
place. By our assumption that top(σ2) ∈ u2.ec, and from the definition of a partial equivalence class (same local forwarding for
all packets in the equivalence class), we know the 〈edge,τ〉 pair returned in line 11 must be equivalent to those of the semantics:
τ = modify(Ω(v2,σ2)) and edge = edge(Ω(v2,σ2)) from the semantic definition in §3.3. Evaluating JN Ki` there are two cases:

Case 1: if τ(σ2) is undefined, then we compute: JN Ki` = JN Ki−1` and we observe that N ⊗〈i− 1, `〉. In this case, the
algorithm executes line 14 and terminates. Note that we do not call Dfs again, however, in this case the semantics were terminated
at step i−1 which contradicts the assumptions. Further, note that this is the minimal time step i at which N ⊗〈i, `〉 since we
assumed not N ⊗〈i−1, `〉.

Case 2: if τ(σ2) is defined, then we compute

〈v1,σ1〉= top(JN Ki`) = top(JN Ki−1` · 〈tgt(edge),τ(σ2)〉) = 〈tgt(edge),τ(σ2)〉

By the definition of τ lifted to sets, we know that because σ2 ∈ u.stack then it follows that τ(σ2) ∈ τ(u.stack) (line 12) and
therefore σ1 ∈ τ(u.stack). The algorithm proceeds on line 16 to iterate over all partial equivalence classes that can intersect
τ(u.stack). Because partial equivanence classes are disjoint and complete (see §4.2), there will be exactly one such H jk such that
top(σ1) ∈H jk . From this we can deduce line 17 will compute a new set of stacks σ′ that must contain σ1 – that is σ1 ∈ σ′ by
construction.

Line 19 of the algorithm updates σ′ as Repair(σ′). Because σ1 ∈σ′ we must show that that σ1 ∈Repair(σ′) as well. To compute
Repair(σ′) we first compute (τ−1

1 ◦ . . .◦τ−1
n)(σ′), which is equivalent to σinit = {σ′′ | (τn◦ . . .◦τ1)(σ

′′)∈σ′}. Since σ1 is the result

632 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

of applying (τn ◦ . . .◦ τ1) to the initial header ε ·h, it follows that ε ·h ∈ σinit. Because Repair(σ′) = σrepair = (τn ◦ . . .◦ τ1)(σinit)
and because ε ·h ∈ σinit, it follows that (τn ◦ . . .◦ τ1)(ε ·h) ∈ (τn ◦ . . .◦ τ1)(σinit) and therefore (τn ◦ . . .◦ τ1)(ε ·h) ∈ Repair(σ′).

Finally from lines 20 and 21 a new nexthop is added to the set of nexthops that contains the node u1 where u1.loc = tgt(edge)
and u1.ec = H jk and u1.stack = σ′. Line 23 iterates over the nexthops and calls Dfs on line 28 with this new node.

To complete the proof, we put together the pieces to show that the 4 conditions above hold.

• line 28 calls Dfs(N ,P,_,u1, i) for the u1 described previously
• we know that u1.loc = tgt(edge) = v1
• we know that σ1 ∈ u1.stack because σ1 ∈ σ′ and σ′ = u1.stack
• we know that top(σ1) ∈ u1.ec because top(σ1) ∈H jk and u1.ec = H jk

Corollary 5.1 (Property checking). If i is the smallest step such that N ⊗〈i, `〉 then Algorithm 1 checks P(u) for some DFS
node u such that top(JN Ki`) ∈ u.

Proof. The proof follows directly from Theorem 5.1. At the i− 1 step, we know that there must have been a call to
Dfs(N ,P,_,u, i− 1) for some u such that top(JN Ki−1`) ∈ u From the proof we can see that the algorithm will proceed to
line 14, where it will check P(u).

Theorem 5.2 (Loop conditions). Given a network N over H ∗, an input ` induces a loop if and only if there exists i,k ∈ N,
σ,σ′ ∈H ∗, and h ∈H such that:

(1) top(JN Ki`) = 〈u,σ ·h〉
(2) top(JN Kk`) = 〈u,σ ·σ′ ·h〉
(3) ∀ j, i < j < k⇒∃v,σ′′, top(JN K j`) = 〈v,σ ·σ′′〉

Proof. First, we require that no rule transformations τ ever both pop and push in the same transformation. For instance, the
transformation τpop ◦ τpush is disallowed, whereas τpush ◦ τpush is allowed. Note that this does not change the expressive power of
KATRA since one can always separate such a transformation into multiple transformations across nodes to get the same effect.

Sufficient (⇐) Assume that the conditions (1), (2), and (3) above hold. We must prove that ` induces a loop. From (1) and (2),
we know that there is a trace for JNKk` to step k of the form:

〈u1,σ1〉︸ ︷︷ ︸
step 1

→ 〈u2,σ2〉︸ ︷︷ ︸
step 2

→ . . .→ 〈ui−1,σi−1〉 → 〈u,σ ·h〉︸ ︷︷ ︸
step i

→ 〈ui+1,σi+1〉 → 〈ui+2,σi+2〉 → . . .︸ ︷︷ ︸
steps i< j<k

→ 〈u,σ ·σ′ ·h〉︸ ︷︷ ︸
step k

We observe that from (1), (2), (3), the stack retains the prefix σ for all steps between i and k. From the assumption that
transformations don’t both push and pop the stack, and our model requirement that transformations can only match the top of the
stack, this means that the forwarding for the stack at these steps does not depend on σ, and thus forall σ the subtrace starting at
step i:

〈u,σ ·h〉︸ ︷︷ ︸
step i

→ 〈ui+1,σi+1〉 → 〈ui+2,σi+2〉 → . . .︸ ︷︷ ︸
steps i< j<k

→ 〈u,σ ·σ′ ·h〉︸ ︷︷ ︸
step k

would be the same for any such σ. For this reason, expanding out the trace from k steps to 2k− i steps, we observe the following
continuation of the original trace:

〈u,σ ·h〉︸ ︷︷ ︸
step i

→ 〈ui+1,σi+1〉 → 〈ui+2,σi+2〉 → . . .︸ ︷︷ ︸
steps i< j<k

→ 〈u,σ ·σ′ ·h〉︸ ︷︷ ︸
step k

→ . . .→ 〈u,σ ·σ′ ·σ′′ ·h〉︸ ︷︷ ︸
step 2k−i

In other words, because the forwarding between steps i and k did not depend on σ, it similarly will not depend on (σ ·σ′) for the
same top of stack h between steps k and k+(k− i) = 2k− i for the same loop interval. Moreover, we know that σ′′ = σ′. This
same reasoning applies inductively with the new prefix (σ ·σ′ ·σ′). Thus we have an infinite loop.

Necessary (⇒) Let us assume there is an input ` that induces a loop in the network N . We must prove that there exist i,k ∈ N
and σ,σ′ ∈H ∗ and h ∈H such that conditions (1), (2), and (3) hold. By way of contradiction, we assume ` induces a loop in N
but that no such i,k,σ,σ′,h exist to satisfy (1-3). Because the input ` induces a loop, we know that there is an infinite trace:

〈u1,σ1〉 → 〈u2,σ2〉︸ ︷︷ ︸
t1

→ 〈u3,σ3〉 → 〈u4,σ4〉 → 〈u5,σ5〉︸ ︷︷ ︸
t2

→ 〈u6,σ6〉 → . . .

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 633

Because the set of headers H comprising the hops in H ∗ is itself finite and because there is a permanent loop, there must be an
infinite number of time steps t1, t2, t3, . . . where the stack never goes below the size at time ti in the future – i.e., ∀ j, j ≥ ti⇒
|σti | ≤ |σ j|. If there were no such infinite sequence, then there could not be a permanent loop since at some point t∗, the stack
would have to continue to shrink forever (∀ j1, j1 ≥ t∗⇒∃ j2, j2 > j1∧|σ j1 |< |σ j2 |) and would eventually become empty since
stacks are finite. This would contradict the fact that there is a permanent loop since the packet would eventually be dropped when
the stack becomes ε.

From the sequence of t1, t2, t3, . . . and the finiteness of the topology, eventually there must eventually be a subset of ti which
we will call tm1 , tm2 , tm3 . . . that repeat at the same node with the same top of stack:

〈u1,σ1〉 → 〈u2,σ2〉︸ ︷︷ ︸
t1

→ 〈u3,σ3〉 → 〈u4,σ4〉 → 〈u5,σ5〉︸ ︷︷ ︸
t2

→ 〈u6,σ6〉 → . . .→ 〈ui,σi〉︸ ︷︷ ︸
tm1

→ . . .→ 〈uk,σk︸ ︷︷ ︸
tm2

〉 → . . .

where utm1
= utm2

, and top(σtm1
) = top(σtm2

) and so on for all tmi . Because we know that at time tm1 the stack σtm1
never again

goes below this size, if σtm1
= σ ·h, then every stack in the trace from this time on must start with σ. The earliest two times

tm1 and tm2 capture exactly i,k in the theorem, and σtm1
captures σ ·h (condition 1). The trace retains the prefix σ after time tm1

(conditions 2, 3). And the nodes and top of stacks are the same at each time tmi being h (condition 2).

634 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Enabling In-situ Programmability in Network Data Plane:
From Architecture to Language

Yong Feng1, Zhikang Chen1, Haoyu Song2, Wenquan Xu1,
Jiahao Li1, Zijian Zhang1, Tong Yun1, Ying Wan1, and Bin Liu1

1Tsinghua University, China, 2Futurewei Technologies, USA

Abstract
In-situ programmability refers to the capability for network

devices to update data plane functions and protocol process-

ing logic at runtime without interrupting the services, driven

by dynamic and interactive network operations towards au-

tonomous networks. The existing programmable switch archi-

tecture (e.g., PISA) and programming language (e.g., P4) were

designed for monolithic and static implementation, which re-

quires a complete programming and deployment cycle for

functional update, incurring long delay and service interrup-

tion. Addressing the fundamental reasons for such inflexibil-

ity, we design a new In-situ Programmable Switch Architec-

ture (IPSA) and the corresponding design flow using rP4, a

P4 language extension, as a fix. The compiler contains algo-

rithms to support efficient resource mapping for both base

design and incremental updates. To manifest the in-situ pro-

gramming feasibility, we demonstrate several practical use

cases on both a software switch, ipbm, and an FPGA-based

prototype. Our experiments and analysis show that IPSA in-

curs moderate hardware cost which can be justified by its

benefits and compensated by newer chip technologies. The

in-situ programmability enabled by IPSA and rP4 advances

the state of the art of programmable networks and opens a

promising new design space.

1 Introduction

High-performance networking devices are usually built with

hardware centered on a forwarding chipset [1–5]. The di-

verse network types require varied feature sets; new protocols

(e.g., SRv6 [6]) and functions (e.g., INT [7]) keep emerging;

meanwhile, the demand for higher throughput never relents.

It becomes increasingly uneconomical or even infeasible to

integrate all needed features and functions in a single chip at

design time. While the future networks are expected to evolve

to be autonomous with the capability of self-provisioning,

self-diagnosing, and self-healing, the network operations will

become more dynamic and interactive, aggravating the per-

formance and flexibility pressure on network data plane.

We argue that the network data plane requires the in-situ

programmability, which refers to the capability for network

devices to update data plane functions and protocol processing

logic at runtime without interrupting the services. Specifically,

it ensures that (1) the on-demand and incremental part can

be patched into the existing system in service without full de-

sign recompiling and reloading, (2) unused functions can be

removed to preserve resource and energy, and (3) the update

process has near-zero impact on network services and incurs

little delay, permitting realtime interactive control loops. The

need for in-situ programmability is evidenced by the follow-

ing non-exhaustive list of applications:

Network slicing. A network device can be programmed to

support multi-tenancy using network slicing [8,9]. Due to the

resource limitation and the application dynamics, tenants with

custom policy and processing logic may be added, removed,

or updated at runtime. Modifications for any tenant cannot

affect the other tenants.

Network telemetry and measurement. Dynamic visibility

is particularly useful to support closed control loops in au-

tonomous networks based on realtime network conditions.

However, such functions are either hard to foresee at design

time or too expensive to keep permanent (e.g., sketch [10]),

so it is better to make them on-demand at runtime. For ex-

ample, the sketch size can be changed to get better traffic

visibility as network pattern changes (e.g., DREAM [11] and

SCREAM [12]); iterative debugging and query installation

can be supported (e.g., Marple [13] and Path Query [14]);

flows specification and associated actions can be refined and

updated (e.g., Sonata [15] and ProgME [16]).

Trial on new protocols/algorithms. It was difficult to con-

duct live trials for new protocols/algorithms in production

networks, in fear of disturbing or even disrupting network

operation and incurring irrevocable damages. On the other

hand, there is no better way to understand their impact and

gain confidence. The dilemma can be dissolved by enabling

inserting new protocols/algorithms to in-service network de-

vices with a reliable failback procedure. Even better, a proven

update can be made permanent without a network overhaul.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 635

In-network Computing. Network devices can integrate a

partial function for applications such as caching [17], aggre-

gation [18], and coordination [19], to boost their performance

and reduce system cost. Such a function can be resource-

consuming but not always needed, and new functions may

emerge, so it is better to make them pluggable at runtime.

Memory refactoring and repurposing. As the scarcest re-

source in a switch, the on-chip memory is shared by lookup

tables, data cache, and packet buffers. The change of traffic

pattern and network scale may raise new network optimization

requirements or demand new functions, making it necessary

to enlarge or shrink a table’s width or depth, provision new

tables, or change a search key.

State preserving for stateful functions. Conventional device

updates can be destructive to the states of stateful functions

stored in registers and memory tables, which need to be re-

built from scratch or refreshed from the control plane. The

detriments can be avoided if the states are preserved through

hitless incremental updates.

Network data plane programmability has come a long way.

The reconfigurable chips (e.g., FPGA and Network Proces-

sor) were the earlier attempts to make network devices pro-

grammable. In recent years, data plane programmability was

pushed to a new height by two new developments. The packet

processing and forwarding architecture was abstracted as a

generic match-action pipeline (i.e., RMT-based PISA [20,21]),

enabling a new type of programmable ASIC conforming to

the architecture [3]; further, a high-level domain-specific lan-

guage P4 [22] was developed as the chief programming lan-

guage for such an architecture, which helps to accelerate the

development life cycle and support design reuse and cross-

platform migration. The flexibility has triggered numerous

innovations, such as in-network computing [17, 23, 24] and

programmable network visibility [7, 10, 25].

However, such programmability still falls short of the re-

quirements of the aforementioned applications. The funda-

mental issue is that such programmability is static and limited

to design time. The packet processing pipeline, once compiled

and installed, cannot be changed any more during the runtime.

Any new function update, no matter how minor it is, requires

modifying and recompiling the complete source code, swap-

ping in the resulting monolithic “binary”, and repopulating

all the tables, which inevitably introduce delay and service

interruption.

Several attempts have been made from different angles to

achieve higher flexibility for data-plane programmability [9,

26–29]. However, none of them can realize the desired in-situ

programmability in hardware. To this end, we reason a new

chip architecture other than PISA is needed, as well as the

corresponding programming model. Specifically, we make

the following contributions:

• We develop a new In-situ Programmable Switch Archi-

tecture (IPSA) with four key components to provide enough

flexibility for in-situ programming (Sec. 2).

• We design a P4 language extension, reconfigurable P4

(rP4) (Sec. 3.1), and develop the corresponding design flow

and compilers for IPSA-based device programming (Sec. 3.2);

we integrate in the rP4 compiler efficient algorithms to solve

the resource mapping issues raised by IPSA and incremen-

tal updates (Sec. 3.3); we detail the non-disruptive update

deployment procedure (Sec. 3.4).

• We implement an IPSA-complying software behavioral

model, ipbm, used as a tool to verify the rP4 compiler and test

applications, similar to the role of bmv2 to P4. We also imple-

ment an FPGA-based IPSA prototype and use it to demon-

strate several use cases (Sec. 4). We open source the rP4 spec-

ification, compiler, and ipbm [30]. Through experiments and

analysis, we confirm that IPSA/rP4 supports non-disruptive

and low-latency in-service updates, and exhibit the hardware

cost and potential trade-offs (Sec. 5).

After discussing the limitations, potentials, and future work

(Sec. 6), we brief the related work (Sec. 7) and conclude the

paper (Sec. 8)*.

2 In-situ Programmable Switch Architecture

2.1 Motivation
To make in-situ programmability possible, it is crucial to

understand why the current programmable switch architecture

and programming model are incapable. We summarize the

main reasons as follows:

• The packet header parser and the corresponding process-

ing logic are decoupled. The parsing states in the standalone

front parser are entangled with different pipeline stages, and

a function block cannot be made self-contained and indepen-

dent. Hence, an update may need to modify multiple places in

a program, which is cumbersome and error-prone. Moreover,

without knowing the actual processing a packet undergoes,

the front parser may parse fields that the pipeline never uses,

wasting parsing cycles and header vector storage.

• The pipeline stages are hardwired into a chain, on which

the actual packet processing pipeline is mapped in order, re-

sulting in several unfavorable consequences: (1) the maxi-

mum number of ingress and egress stages is fixed, limiting

the design flexibility; (2) unused stages are kept in the chain,

potentially increasing latency and power consumption; (3)

even if each physical stage can be programmed individually,

an update (e.g., inserting a stage into the pipeline) requires

to reprogram all the affected stages (e.g., pushing all stages

back to make room), which could be time-consuming.

• The memories for lookup tables are prorated over physical

stages, implying that (1) the processing logic migration results

in the associated table migration as well which increases

the update delay, and (2) if the table size required exceeds

*This paper extends our workshop paper [31] with updates including the

introduction of virtual pipeline, detailed resource mapping algorithms, non-

disruptive deployment procedure, and more evaluation results.

636 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

what is provisioned in a single stage, more stages need to be

combined, which reduces the effective pipeline stages.

• A pipeline-oriented P4 program can only be compiled into

a monolithic “binary” file in which the individual functions

are unextractable and the actual pipeline mapping is opaque to

programmers, making incremental updates impossible. Some

switches nominally support on-line reprogramming, suffering

from considerable service interruption and packet loss.

To overcome the inflexibility of PISA and support in-situ

programming, while retaining its match-action pipeline ab-

straction, we design a new switch architecture, IPSA, with

four major architectural changes. The overview of IPSA is

illustrated in Fig. 1.

Interconnection network

... ...

TM

Crossbar Switch

TCAM Table
Pool

TCAM Table
Pool

TCAM Table
Pool

TCAM Table
Pool

TCAM Table
Pool

SRAM Table
Pool

Disaggregated
Memory Pool

Virtual Pipeline

TSP TSPTSSP TSP TSP
Distributed

Parser

Templated
Stage Processor

I/O

TSP

executor
executor

m
atcher

m
atcher

parser
parser

Figure 1: Overview of IPSA.

2.2 Distributed On-demand Parsing
In-situ programming implies a modular design style in which

functions are self-contained. IPSA eliminates the front parser.

The complete parsing graph is split into sub-graphs and dis-

tributed just in time to each pipeline stage, ensuring the self-

sufficiency of each pipeline stage and avoiding unnecessary

parsing. The parsing cost is amortized over active pipeline

stages, making the design more scalable.

A parsing sub-graph in each stage instructs the local pars-

ing process. Instead of a Packet Header Vector (PHV), a win-

dow of packet header bytes plus some metadata pass through

the pipeline. The parsing result at each stage is recorded as

{hdr_id, hdr_offset, hdr_length}, which is also passed to sub-

sequent stages to avoid unnecessary re-parsing. A field in

a header can be obtained using the configured {fld_offset,
fld_length}. The design eliminates the need for deparsing at

the end of a pipeline. The offset management module is re-

sponsible for adjusting the parsed header offsets in the case

of header length change (e.g., MPLS label push and pop).

In the example shown in Fig. 2, the complete parser for

Ethernet, VLAN, and IPv4 is distributed into the first and the

third stages. To add IPv6 support later, we can write a stan-

dalone function module which takes care of its own parsing

need. There is no need to modify the other modules except for

configuring the branching gateway or flow actions in the new

module’s direct predecessors (see Fig. 2). The distribution of

 IPv6
Routing

0 (ethernet) 0 14 B
1(vlan) 14 B 4 B

0 0 14 B
1 14 B 4 B

0 0 14 B
1 14 B 4 B

2 (ipv4) 18 B 20 B

IPv4

Source MAC
Learning

Routable

IPv4
Routing

gateway

Ethernet
VLAN

<NONE>

IPv4

Stage 1

Stage 2

Stage 3

Extracted
Information

IPv6

header id offset length

PacketPacket

header id offset length

header id offset length

Add IPv6

Offset
Management

Figure 2: Distributed on-demand parsing.

a parser for a specific design is determined by the compiler.

The algorithm is provided in Sec. 3.3.

2.3 Templated Stage Processor
Due to the distributed parsing, each pipeline stage processor

now contains three sub-modules: a parser, a matcher, and

an executor. The matcher and executor conduct the similar

match-action function as in PISA.

IPSA pipeline stages are just loosely coupled, and each

stage is individually programmable. By separating primitive

and parameter [27, 29], each processor appears to be a param-

eterized container in which three abstractions are applied: (1)

header fields are abstracted as offset and length; (2) flow tables

are abstracted as type, size, and key; (3) actions are abstracted

as an ordered set of primitives and their parameters. Pro-

gramming a Templated Stage Processor (TSP) simply means

downloading the template configurations, such as header field

indicator, match type, table specification, and action, to it. TSP

is a key mechanism to enable local and independent updates,

allowing us to modify the function of each TSP at runtime.

2.4 Virtual Pipeline
In IPSA, the TSP interconnections are not hardwired. Instead,

a reconfigurable non-blocking interconnection network (e.g.,

crossbar) is used. When including the packet I/O and Traffic

Manager (TM) in the interconnection, we can dynamically

generate arbitrary virtual pipelines in which a TSP can be

allocated to any stage in either ingress or egress, regardless of

its physical location, or excluded from the pipeline if unused,

which can be kept in low power state to reduce heat. As long

as the total number of required pipeline stages is no more than

the number of TSPs, the design can be supported.

I/O TM

TSP5TSP4TSP3TSP2TSP1

Packet In Packet Out

Figure 3: A virtual pipeline example.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 637

We make a trade-off between the latency and scalability by

choosing either a crossbar or a multi-stage network for TSP

interconnection. Virtual pipeline maximizes the flexibility

in constructing a pipeline and simplifies runtime updates.

When needing to insert or remove a TSP in the pipeline, one

just needs to reconfigure the interconnection network. In the

example shown in Fig. 3, TSP1-TSP4-TSP2 forms the ingress

pipeline, TSP5 forms the egress pipeline, and TSP3 remains

in idle. The algorithm for logical stage to TSP mapping, as

part of the compiler, is provided in Sec. 3.3.

2.5 Disaggregated Memory Pool

IPSA disaggregates the memory from TSPs to a shared mem-

ory pool as in dRMT [32]. A crossbar switch fabric is stati-

cally configured for each design to provide interconnection

between TSPs and memory blocks. Updates on either TSPs

or tables may require a reconfiguration of the crossbar. To

cope with the scalability, different optimizations [32] can be

used as a trade-off between flexibility and resource consump-

tion. Specifically, we partition the TSPs and memory blocks

into multiple clusters and each cluster has a crossbar for TSP-

memory interconnection. In each cluster we can also apply

the segment optimization [32] to further improve the scala-

bility. Note that the clustering optimization is inapplicable

to dRMT because its Run-to-Completion (RTC) processors

require table replication in each cluster. The one-to-one map-

ping between processor and table in our architecture frees it

of processor synchronization and crossbar scheduling.

Each SRAM table is mapped to some memory blocks

which are not necessarily adjacent. The TCAM table vir-

tualization technique is similar to that in RMT [20, 32]. The

compiler determines memory allocation for the initial design

and incremental updates. Once deployed, network operators

use the APIs provided by the compiler to access the logical

tables at runtime. If a logical stage is deleted, the memory

blocks for its associated table are recycled.

Disaggregated memory pool allows multiple TSPs to read

or write the same logical table, enabling single-pass stateful
data-plane functions which was difficult or even impossible

to realize in PISA.

3 rP4 Language and Compiler

IPSA makes local function updates possible while keeping

the other incumbent functions and states intact. While IPSA

paves the hardware foundation for in-situ programmability,

software tools adapting to it are needed. The language should

be a high-level one to ease programming, yet a paradigm shift,

i.e., using a modular and stage-oriented design to replace the

monolithic and pipeline-oriented design, is required. Mean-

while, we should try the best to take advantage of existing

assets (e.g., P4) and avoid reinventing the wheel.

3.1 rP4 Language Overview
In IPSA, the packet processing pipeline consists of stages

with each performing some parse-match-action triad. The

incremental parts are inserted into the pipeline as new stages.

To this end, we design a P4 language extension, rP4, dedicated

to programming IPSA-based devices. The reason is multifold:

P4 is familiar and supported by a mature community; we can

reuse most of the existing language features; potentially we

can mix rP4 code to P4 program for co-design optimization.

In rP4, each function contains one or more stages, and each

stage includes a parser, a matcher, and an executor module.

The table information can be extracted from the matcher. The

grammar of rP4 is given in Appendix A.

3.2 rP4 Design Flow
Illustrated in Fig. 4, the rP4 design flow comprises two parts:

the base design and incremental updates upon it.

.p4 P4
front-end

rP4
front-endHLIR .rp4 rP4

back-end

.json

cmd+.rp4

In-situ
programming

Runtime
control

IPSA Control Plane

IPSA Data Plane

Mapper Driver

rP4 Compiler

Figure 4: The complete rP4 design flow.

3.2.1 Flow for Base Design

We use P4 instead of rP4 for the original base design because

P4 code is easier to write and many proven designs in P4

exist. Moreover, a design in P4 can be mapped into both PISA

and IPSA-based devices, albeit the former does not support

runtime incremental updates.

The rP4 front-end compiler, rp4fc, transforms P4 code

into rP4 code. Specifically, rp4fc takes the HLIR, the target-

independent output of p4c, as input, and outputs the semanti-

cally equivalent rP4 code. rp4fc also produces the APIs for

network operators to access the tables at runtime.

To generate the final TSP and table mapping, we develop

an rP4 back-end compiler, rp4bc. It takes rP4 code as input,

analyzes the dependency of different logical stages, optimizes

the predicates to merge some independent stages into a single

TSP, allocates tables, and computes the best stage mapping

layout. The output of rp4bc is the TSP templates in JSON

format, which are used to configure the data-plane devices.

3.2.2 Flow for Incremental Updates

In-situ programming uses rp4bc as well. With the help of the

rP4 base design, users gain insight into the pipeline and decide

638 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the location for updates. To insert a new function, we write the

rP4 code snippet. We then feed the commands, which stipulate

the operation and location, plus the rP4 code to rp4bc. rp4bc
generates two outputs: the first output is the updated base

design as the reference for future updates, and the second

output is the new TSP templates and switch configuration. We

use another command and an rP4 function name as parameters

for function deletion. Similarly, the base design is updated and

new data-plane templates and configurations are generated.

3.3 Algorithms in rP4 Compiler

The rP4 compiler needs to solve two problems: the parser

distribution and the mapping from logical stage to physical

processor.

3.3.1 Parser Distribution and Mapping

A parser is essentially a Finite State Machine (FSM) which

can be represented as a Header Parsing Graph (HPG). Fig. 5(a)

shows an example of HPG in which each node represents a

header. The packet processing flow is partitioned into logical

stages to form a Processing Flow Graph (PFG). Each node in

PFG represents a logical stage which contains a set of headers

needed either for table lookup or packet processing. A PFG

example is shown in Fig. 5(c).

The parser distribution problem is to determine which

header(s), if available, should be parsed at each logical stage

while obeying the just-in-time principle. Obviously, at each

logical stage, a needed header, as well as all its predecessors

in HPG, should be parsed on each path in PFG leading to the

current stage. The parser distribution algorithm determines

the mapping of a minimum sub-graph of HPG to each logical

stage in PFG. We have two cases: the mapping for the base

design and for incremental updates.

1

2 3 4

567

98

10

(a) HPG.

4 c g

6 e f g 5 c g

2 b e f

9 f h

7 b e f

3 a

1 a

8 g h

10 h

f

f ggf

g

(b) Reverse mapping from

header to logical stages.

a
[1, 3]

[2,7][2
b d

[]

h
[8, 9, 10]

e
[2, 6, 7]

[4, 5][4
c

f
[2, 6, 7, 9]

g
[4, 5, 6, 8]

[, ,

]6 7 9]6]
9

9 10]9
10

5 6 8]5
86 7]6

4, 6

[]
2

4 5]4
5

3]
1, 3

2 7]2
7

(c) PFG. Below each node is the resulting dis-

tributed parser states.

Figure 5: Mapping of distributed just-in-time parser.

Base Mapping. We construct a distributed parser for each

logical stage s in the topological order of PFG. At s, for each

reverse path p tracing back to the root of PFG, if a needed

header i in s has been parsed, we extract a sub-graph contain-

ing i and all its predecessors in HPG which have not been

parsed on p. At last, the sub-graphs for all the reverse paths

are merged to generate the distributed parser for s. Fig. 5(c)

shows the final mapping result for each stage if the PFG nodes

is processed in the order of a-b-c-d-e- f -g-h.

To fit the internal pipeline structure of a TSP, the maximum

parsing depth of a distributed parser is limited to a pre-defined

value h. In case the depth H of a resulting parser exceeds h,

the original logical stage is split into �H/h� sub-stages and

the parser is divided into �H/h� sections to fit in them. Only

the last sub logical stage contains the original matcher and

executor. Although mapping to different TSPs, these sub-

stages jointly serve as the original logical stage.

It is trivial to prove that the algorithm can guarantee the just-

in-time parsing. The complexity of the algorithm is O(VH +
EH +VP +EP +Vd), where VH , EH , VP, EP, and Vd represent

the number of vertices and edges in HPG, the number of

vertices and edges in PFG, and the total number of needed

headers by the logical nodes in PFG, respectively.

Incremental Update Mapping. On the basis of HPG and

PFG, we can avoid rebuilding the parser mapping each time

an incremental update occurs, to reduce the compiling time

and update cost. However, both HPG and PFG may change as

a result of the changes on protocol header, logical stage, and

stage transition. To solve the problem, we establish a reverse

mapping from HPG nodes to PFG nodes. Each HPG node i is

associated with a set of logical stages in which the header i is

parsed. The result for our example is shown in Fig. 5(b).

In PFG, the parser change on s does not influence its prede-

cessors. If a removed header i in s may cause another header

j in some predecessor stage s′ to become redundant, it means

j is not needed in s′ in the first place. The just-in-time parsing

makes this case impossible. If a new header i is added to s, s
is solely responsible for parsing all i’s predecessors in HPG

that are not parsed yet on all the paths leading to s in PFG.

Therefore, we have the following procedure for two cases of

HPG change. (1) A header i insertion or deletion in s: find all

the direct successors of i in HPG and get their corresponding

logical stages from the reverse mapping. Update the parsers

in s and these logical stages as well as their successors in

topological order of PFG. (2) A topology change in HPG: get

the corresponding logical stages from the reverse mapping

for all the influenced headers and update the parsers in these

stages and their successors in the topological order of PFG.

During the update, if all the direct predecessors of s′ do not

change their parsers, then s′ does not need to change its parser

either, so the update process can stop earlier.

Similarly, for a change in PFG, we have the following two

cases. (1) A logical stage s insertion or deletion: update the

parsers in all s’s successors in topological order of PFG. (2)

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 639

A topology change in PFG: find all the influenced stages and

their successors, and update the parsers in these stages in

topological order of PFG. Although the time complexity is

the same as the base mapping, in practice the incremental

update mapping is much faster.

3.3.2 Logical-to-physical Topology Mapping

Unlike the logical-to-physical pipeline mapping problem in

PISA [20, 33], the PFG-to-TSP mapping in IPSA faces differ-

ent freedom and constraint due to virtual pipeline and disag-

gregated memory cluster. The high level goal is to minimize

the number of required TSPs and maximize the potential to

support incremental updates.

Assume there are m TSP clusters, C= (C1,C2, ...,Cm), and

each cluster i has n TSPs Pi = (pi,1, pi,2, ..., pi,n) sharing s
SRAM blocks and t TCAM blocks.

Base Mapping. Let P(v) denote the TSP to which the logical

stage represented by node v in PFG is mapped and V (p)
denote the set of independent logical stages mapping to the

TSP p. We model the mapping from PFG to TSP as an ILP

problem with the following constraints and objectives:

Constraint 1: Successor Exclusion. Any two logical stages

cannot be mapped to the same TSP if they are on the same

path in PFG. That is,

P(vi) �= P(v j), i f vi � v j or v j � vi (1)

in which “�" denotes the successor relationship.

Constraint 2: Path Order. The active TSPs form a pipeline

on which the logical stages on the same path in PFG must

follow the pipeline order. That is,

∀ vi,v j ∈V, i f vi � v j ⇒ P(vi) � P(v j) (2)

Constraint 3: TSP Capacity. The number of parallel logical

stages that can be mapped to a single TSP is limited to a

predefined value, K, depending on the TSP resource. That is,

∀ p ∈ P, |V (p)| ≤ K (3)

Constraint 4: Flow Table. The total number of memory

blocks required by the logical stages mapped to the TSPs in a

cluster should not exceed the available resource. That is,

∀ Ci, ∑
1≤ j≤n

s(pi, j)≤ s, ∑
1≤ j≤n

t(pi, j)≤ t (4)

in which s(p) and t(p) denote the number of SRAM and

TCAM blocks required by the TSP p, respectively.

Objective 1: To save more TSPs for future updates, the

number of active TSPs should be minimized by mapping

independent logical stages to the same TSP. Let a(p) be 1 if

p is active and otherwise be 0. The objective is therefore,

min ∑
1≤i≤m,1≤ j≤n

a(pi, j) (5)

Objective 2: The initial mapping should satisfy the proces-

sor and memory requirements with as few clusters as possible,

so as to concentrate the unused resources in some clusters

to make logical stage and table allocation for future updates

easier. Approximately, the objective is expressed as,

max ∑
Ci∈C

m2
i ∑

1≤ j≤n
(

K −ui, j

K
)3 (6)

in which mi is the ratio of free memory blocks in cluster Ci,

and ui, j is the number of used stage resources in pi, j. The

formula favors more free processors.

We use the open-source ILP solver YALMIP [34] to solve

the problem. For the example in Fig. 6(a), the base map-

ping result is shown in Fig. 6(b), and the virtual pipeline is

(a)→(c)→(b,f)→(d,e)→(g)→(h).
Incremental Update Mapping. To make incremental

changes for each runtime update (e.g., insertion or deletion

of a function), we use a greedy mapping algorithm other than

ILP to obtain a local optimal solution, because ILP is not only

slower but also possible to significantly change the mapping

result which requires excessive stage and table migrations.

Greedy Mapping. We maintain a profile for each cluster to

record its free SRAM blocks, TCAM blocks, and the usage

of TSPs (Fig. 6(b)). The logical stage insertion performs the

following steps: first, exclude the clusters without enough

free memory blocks required by the new stage; second, check

whether any processor in the remaining clusters can accom-

modate the new stage under the constraints (1), (2), and (3);

third, in the feasible clusters, choose the one based on the

objective (6). In Fig. 6(a), a new stage i which needs 2 SRAM

blocks is inserted. p3,2 is selected as the greedy mapping

result shown in Fig. 6(c).

3.4 Non-disruptive Update Deployment
After update compiling, the update deployment handles the

device configuration. Since an update may need to insert

or delete multiple logical stages on multiple TSPs, the de-

vice configuration involves multiple tasks: initialize the TSP

templates and logical tables, reconfigure the TSP-memory

crossbar and the virtual pipeline, and modify the transitional

logic of the affected predecessor stages. The update deploy-

ment needs to meet three requirements. (1) Consistency: any

packet in pipeline must be processed either before or after

an update takes effect; (2) Non-disruption: the deployment

process should not cause service interruption or packet drop;

(3) Low latency: the time taken should be minimized.

The deployment procedure we use is named Big Bubble

Update (BBU). BBU can make an update take effect within a

fixed time window at the cost of a small buffer in front of the

processing pipeline. As illustrated in Fig. 7, any update can

be decomposed into a set of three basic operations:

MOD. When needing to modify logical stages in TSP2

(and any other TSPs after TSP2), TSP1 is first stopped from

640 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

a
S: 2d*2w

b

c

d

e

f

g
h

S: 3d*2w

T: 1d*2w
S: 1d*3w

T: 2d*1w
S: 2d*3w

S: 2d*2w

T: 4d*1w
S: 4d*1w

S: 3d*3w

S: 1d*4w

TT:
S:

2w2

S:

TT:

2w2
3w

S: S:

SS:

2w2w

1w1
1w

SS:

i
S: 1d*2w

(a) PFG with SRAM (S)/TCAM (T) requirements

for each stage. ‘d’ and ‘w’ denote the depth and

width of a memory block, respectively.

, , , ,

, , , ,
TCAMSRAM

,
a

,
g c d

,
e

b f h

S T , ,
C1 3 4 a g
C2 3 0 c d/e
C3 2 0 b/f h
C4 16 4 - -

Profiles

C1 C2

C3 C4

a gg

h

(b) Base mapping result. There are 4 clusters with each having 2

TSPs, 16 SRAM blocks, and 4 TCAM blocks.

, , , ,

, , , ,

,
a

,
g c d

,
e

b f h

C1 C2

C3 C4
i

(c) The result mapping after insert-

ing stage i.

Figure 6: The base and runtime update mapping from logical stages to physical processors.

moving packets to TSP2 to drain TSP2 in time T . After

that, d more clock cycles are used to configure TSP2. Then

the packet flowing resumes. The other TSPs that need to be

modified will take turn when the created bubble arrives.

DEL. The gateway in a TSP determines in which following

TSP and logical stage a packet should be processed. When

needing to deleting a logical stage s in TSP3, the preceding

TSPs need to modify their gateways if their direct target is s.

INS. It is much easier to insert a new TSP with new logical

stages into the pipeline. There is no need to halt any part

of the pipeline during the d clock cycles used for new TSP

configuration. Both DEL and INS just need one clock cycle

to reconfigure the pipeline interconnection as the last step.

... TSP1 TSP2 TSP3 TSP4

Front Buffer
gatewaybubble

Figure 7: BBU example. When TSP1 is halted, new arrival

packets are accumulated in the front buffer.

BBU guarantees the update consistency (i.e., any packet

cannot be partially processed by an updated function). A

MOD update takes effect after at most (T+d) clock cycles,

and DEL and INS updates take much shorter time, meaning

that an update can be performed as soon as there is enough

space for (T+d) packets in the front buffer. A complex ex-

ample in Fig. 8 shows that multiple updates can be achieved

with one big bubble as well.

4 Implementation and Use Case Demo

To verify the architecture and programming flow, we build

both software and hardware IPSA prototypes, on which sev-

eral use cases are demonstrated.

4.1 IPSA Prototypes
Software Switch: We implement a behavioral model, ipbm,

on Ubuntu 20.04 LTS as a reference software switch con-

TSP5TSP1 TSP2 TSP3 TSP4

TSP5TSP1 TSP2 TSP3 TSP4

2. Modify A with new configuration in TSP3
3. Configure TSP3 gateway: delete B

TSP5TSP1 TSP2 TSP4TSP3
4. Delete configuration of
 function B in TSP4

TSP5TSP1 TSP2 TSP4TSP3
5. Modify A with new
 configuration in TSP5

Front Buffer

1. Stop TSP1, TSP2, and drain TSP3

TSP5TSP1 TSP2 TSP4TSP3

6. Buffer is drained

(a)

(b)

(c)

(d)

(e)

Figure 8: Function A resides in TSP3 and TSP5; Function B

resides in TSP4. To modify A and delete B, the updates are

performed in order when the target TSP is in the big bubble.

forming to IPSA. ipbm takes 8,361 lines of C++ code. ipbm
consists of four modules: the Communication Module (CM)

supports OS kernel bypass and direct packet I/O; the Pipeline

Module (PM) simulates the TSPs; the Control Channel Mod-

ule (CCM) communicates with the controller for runtime

configuration; the Storage Module (SM) realizes the disag-

gregated memory pool.

Hardware Switch: We build a hardware prototype on a Xil-

inx Alveo U280 accelerator card. The Xilinx 16nm Ultra-

Scale+ FPGA contains 8GB of HBM2 memory with 460G/s

bandwidth [35]. We implement both IPSA (2,366 lines of

Scala code) and PISA (1,942 lines). Each prototype contains

12 physical processors (K=2). The TM is omitted for sim-

plicity. Each IPSA TSP supports a 192-byte packet window,

64-byte metadata, and a 4-level pipelined parser. The TSPs

are partitioned into 3 clusters, each with 64 256×64b memory

blocks. The maximum bus-width for memory access is lim-

ited to 256-bit (i.e., four memory ports) for both prototypes.

Each executor contains four primitives which are sufficient

to our use cases. We implement both memory blocks and

virtual pipeline interconnections with a 12×12 full crossbar.

The PISA prototype realizes a 256-byte PHV which com-

prises 32x 8-bit, 48x 16-bit, and 32x 32-bit containers. Each

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 641

B: domain_bind

A: port_map

C: routable

D: ipv4_host E: ipv6_host

F: ipv4_lpm G: ipv6_lpm

H: nexthop

J: dmacI: smac

C3 LegendBase C1 C2
inserted path

L ecmp

M srv6_end

N srv6_transit

P sIP_probe

Q dIPPort_probe

K: port_retrieve

K

J

I

H

F G

D E

C

B

A

K

J

I

F G

D E

C

B

A

L

M

N

K

J

I

F G

D E

C

B

A

H

P Q

K

J

I

H

F G

D E

C

B

A

G

EDD E

GGGFFFF

IIII

L

M

CC

G

EE

FFFF

HHHH

hit path
miss path

Figure 9: The packet processing flow and TSP pipeline mapping for the use cases.

processor in PISA can access 16 memory blocks.

Compiler and Controller: rp4c is implemented with 3,772

lines of C++ code. The controller is used for runtime con-

figuration and in-situ programming. We implement a simple

command-line interface in C++, allowing users to load or

offload on-demand protocols and functions at runtime.

4.2 Base Design Compiling Results
We compile several open source P4 projects [17, 36–39] for

ipbm and bmv2. Table. 1 shows the number of logical stages

(LS) and the number of logical pipeline levels (LPL) on ipbm.

bmv2 produces the same LPL results. The table also shows

the average depth of the distributed parsers (ADP) and the

percentage of the distributed parsers whose depth is under 5

(U5), confirming 4 is a good trade-off for the supported parser

depth in a TSP.

LS LPL ADP U5 (%)

switch.p4 [36] 130 31 0.28 100

DC.p4 [37] 38 19 0.45 97.37

ONTAS [38] 22 8 0.36 100

P4SRv6 [39] 17 5 0.53 100

NetCache [17] 96 14 0.21 100

Table 1: Design compiling results.

4.3 In-situ Programming Use Cases
To fit in our hardware prototype, the base design, as shown

in Fig. 9, is extracted from switch.p4, which includes L2

switching with IP subnet-based VLAN and L3 forwarding

based on IPv4/IPv6. The workflow is as follows: (1) get in-

terface index via port mapping table (A), (2) bind the Bridge

Domain (BD) and the Virtual Routing Forwarding (VRF) ta-

ble (B), (3) determine L2 or L3 forwarding (C), (4) derive

the egress interface index via BD and dMAC (J), (5) process

IPv4/v6 header and get the next-hop (D, E, F, G), (6) update

BD and dMAC via nexthop (H), (7) update sMAC via updated BD
(I), (8) get the egress port via egress interface index (K). As

shown in Fig. 9, the resulting PFG contains 11 logical stages

mapping to 9 TSPs. To showcase the in-situ programming

capability, we select three representative applications which

introduce new functions or protocols to the switch at runtime.

C1: Equal-Cost Multi-Path Routing (ECMP). While there

are multiple network load balancing algorithms, we choose

ECMP [40, 41] as an example to augment the base design.

After the FIB lookup, the function chooses a forwarding link

based on the next-hop and flow ID hashing. ECMP does not

introduce new protocols, but two new tables and process-

ing logic. The rP4 code for the ECMP function is shown in

Fig. 10(a). ECMP applies for both IPv4 and IPv6. Since they

are independent, only one physical stage is needed. The func-

tion also covers and therefore replaces the stage H. To insert

the ECMP function into the original switch, we first com-

pile the function code and the associate configuration script

(Fig. 10(b)) into template parameters and required topology

modifications, and then apply the configurations on the de-

vice. In this case, users need to link IPv4 forwarding and

IPv6 forwarding with ecmp. The links from and to the origi-

nal nexthop are removed through ‘delete_link’ command to

eliminate the old function from the pipeline.

C2: IPv6 Segment Routing (SRv6). SRv6 [42] is an IPv6-

based source routing protocol. It uses a new IPv6 extension

header (i.e., SRH) to carry the forwarding path information [6,

43]. The SRv6 function has two sequential logical stages,

srv6_end and srv6_transit, for SR end-point and transit-

node processing, respectively. A packet first goes through the

srv6_end stage. If the packet’s SID matches the local SIDs of

the switch, the end-point function is executed; otherwise, the

transit-node function in the srv6_transit stage is executed,

which could insert an SRH to the packet or simply forward the

packet. In this case, the script for loading the function needs

to link the new header into the original header list (Fig. 10(c)).

Since the switch should still support pure L3 forwarding,

the linkage between routable and ipvx is reserved. After

rp4bc compiling and configuration downloading, the target

is renewed with SRv6 support.

C3: Dynamic Flow Probe. To realize dynamic network mea-

surement [11, 14], we insert an event-triggered probe at run-

time and later the probe can be updated to change the object

642 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

/***** table definition: ecmp_ipv4, ecmp_ipv6 *****/

ffield_list ecmp_v4 {ipv4.src_addr; ipv4.dst_addr; ipv4.ip_proto}

 // action profile definition same as P4

table ecmp_ipv4 {

key = { meta.nexthop: exact; }

action_profile: ecmp_v4_profile; // do hash on ecmp_v4

size = 256;

}

table ecmp_ipv6 { } // similar with ecmp_ipv4

/***** stage/function definition: ecmp function *****/

stage ecmp { // parser => matcher => executor

parser { ipv4, ipv6 }; // define headers ecmp needs

matcher {

if(ipv4.isValid()) ecmp_ipv4.apply();

else if(ipv6.isValid()) ecmp_ipv6.apply();

else;

};

executor { // execute actions according to matching result

1: set_bd_dmac;

default: NoAction;

}

}

/***** action definition: set egress bridge and dmac *****/

action set_bd_dmac(bit<16> bd, bit<48> dmac) {

meta.routed = true; // table hit, the packet can be routed

meta.bd = bd;

ethernet.dst_addr = dmac;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

(a) The rP4 code for the ECMP function.

lload ecmp.rp4 --func_name ecmp

del_link ipv4_host nexthop

del_link ipv4_lpm nexthop

add_link ipv4_host ecmp

add_link ipv4_lpm ecmp

del_link nexthop smac

add_link ecmp smac

 // omit IPv6 topology change similar with IPv4

1

2

3

4

5

6

7

8

(b) The script for loading ECMP to rp4bc.

lload srv6.rp4 --func_name srv6

 // omit stage topology change

link_header --pre IPv6 --next SRH --tag 43

link_header --pre SRH --next IPv6 --tag 41 // inner IPv6

link_header --pre SRH --next IPv4 --tag 4 // inner IPv4

1

2

3

4

5

(c) The script for loading SRv6 to rp4bc.

Figure 10: Code and script for runtime programming.

and trigger criteria. Specifically, we implement a heavy hitter

detector based on SIP. Once a flow’s traffic exceeds a thresh-

old, the probe is triggered and user can apply pre-defined ACL

or QoS rules to the flow. After a while, we switch the monitor-

ing focus by using {DIP, DPORT} as the key, which requires

policy update and table refactoring. The TSP mapping result

is shown in Fig. 9. Since the probe works for IPv4, a link

from IPv4 forwarding to the probe is added.

Due to space limitations, we omit the case for func-

tion/protocol removal, which is usually simpler than insertion.

5 Evaluation

First, we study the hardware cost for IPSA-based chips based

on the FPGA prototype, theory analysis, and empirical ev-

idence from previous study [20, 32]. Second, we conduct

experiments on the prototypes for IPSA and PISA using the

aforementioned use cases to examine the performance such

as forwarding throughput and latency, compiling time and

configuration time for incremental updates, and power con-

sumption. Due to the lack of real ASIC implementations, for

some aspects, we can only gain the relative performance by

comparing the IPSA and PISA prototypes.

5.1 Hardware Cost Analysis
We first analyze the cost of each key component and then

provide an overall evaluation.

TSP. Table. 2 compares the FPGA resource (LUT and FF)

consumption for a processor and shows that an IPSA TSP

consumes 0.581% fewer LUTs and 0.847% more FFs than a

PISA processor. The higher register consumption of IPSA is

due to the need for template parameter storage.

Unit LUT (%) FF (%)

PISA IPSA PISA IPSA
Parser - 1.256% - 0.684%

Matcher
4.131%

0.697%
0.295%

0.243%

Executor 1.597% 0.215%

Total 4.131% 3.550% 0.295% 1.142%

Table 2: Processor resource in FPGA prototypes.

Interconnection network for virtual pipeline. The number

of TSPs determines the scale of the interconnection network.

Different types of interconnection networks have different

scalability and latency trade-offs. For N TSPs, we consider

four types of non-blocking networks, i.e., Crossbar, Clos [44],

Benes [45], and Batcher Banyan (BB) [46–48], which have

characteristics in Table. 3.

Type Cross-points Latency (cycles)
Crossbar N2 1

Clos 2Nc+N2/c 3

Benes 4(Nlog2N −N/2) 2log2N −1

BB Nlog2
2N log2N(1+ log2N)/2

Table 3: Cross-point comparison. c is the number of sub-

switches in the second stage of Clos.

Clos is a good compromise between resource and latency.

It is easy to derive that when c =
√

N/2, the minimum num-

ber of cross-points is achieved. For 32 TSPs, Clos can save

50% cross-points of Crossbar when c = 4. The network is

composed of sixteen 4×4 crossbars and four 8×8 crossbars.

Comparing to the internal latency of a TSP (21 ∼ 29 clock

cycles), the Clos network only adds three more cycles per

stage. Based on the same assumption as in dRMT [32] (e.g.,

200mm2 die size on 28nm technology for the entire chip), for

an ASIC implementation, the die size of the Clos with 4Kb

data bus width would be about 4.173mm2.

IPSA prototype implements a 12×12 crossbar for TSP

interconnection. The data bus comprises 192-byte headers, 64-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 643

byte metadata, 32-byte extracted information, 4-byte parsing

states, and 6-bit configuration information (2,090 bits in total).

The crossbar consumes 17.48% LUTs and 1.02% FFs of

the FPGA, which account for 27.93% LUTs and 6.92% FFs

consumed by all the TSPs, respectively.

Crossbar between TSPs and memory. Crossbar is used for

memory access mainly due to the latency concern. dRMT uses

a one-to-many segment crossbar to trade off the flexibility for

scalability [32]. Equivalent to the configuration of RMT [20],

it has 32 collections of memory blocks and 32 processors

with each owning eight 80-bit memory access ports. Each

matching key of a processor connects to a port in each memory

collection, so the number of cross-points is 32×8×32 = 213.

For IPSA, if we partition the 32 TSPs and memory collec-

tions into 8 clusters, and allow each TSP to connect to all ports

in a memory collection, the number of cross-points would

be 4×8× (8×4)×8 = 213 as well. As a generalization, if

we have M TSPs and M memory collections which are parti-

tioned into m clusters, and each TSP connects to k memory

ports, the number of cross-points is M2k2/m. When M = 32

and k = 8, by varying m, we get results in Table. 4, in which

the flexibility indicates the number of memory collections

each TSP can access.

Type m Cross-points Flexibility

IPSA

2 215 16

4 214 8

8 213 4

16 212 2

dRMT 1 213 4

Table 4: Crossbar cross-point and flexibility comparison.

IPSA offers a wide design space for crossbar configuration.

Higher memory flexibility (e.g., the capability to support large

tables and the freedom for table mappings) can be gained with

larger crossbar area. The crossbar in dRMT can be considered

as a special case for IPSA. However, due to the lack of clus-

tering, each of dRMT’s processors needs to reach all the 32

memory collections, which increases the chip wiring latency

and complexity. In contrast, to achieve the same number of

cross-points, IPSA allows 8 clusters, and each TSP only needs

to reach four memory collections.

Our IPSA prototype splits 12 processors into 3 clusters,

resulting in 768 cross-points. The crossbar consumes 3.08%

LUTs and 0.01% FFs of the FPGA, which account for 4.92%

LUTs and 0.07% FFs of the IPSA prototype, respectively.

Similarly, for an ASIC implementation with 32 TSPs, 8 clus-

ters, eight 80-bit matching width, and return data containing

eight 10-bit action pointers and 96-bit action data segments,

the chip area of the crossbar is about 1.728mm2, similar to

the result of dRMT.

Put everything together. The consumption of SRAM and

TCAM is the same for IPSA and PISA, so the comparison

is omitted. Front parser and deparser are unique for PISA.

The overall comparison of the two prototypes is shown in

Table. 5. The IPSA prototype consumes 12.09% more LUTs

and 9.69% more FFs than the PISA prototype.

Protoype PISA IPSA
Resource LUT FF LUT FF

Parsers/Deparsers 0.94% 1.54% - -

Processors 49.55% 3.52% 42.02% 13.72%

Crossbar - - 3.08% 0.01%

Inter-Network - - 17.48% 1.02%

Total 50.49% 5.06% 62.58% 14.75%

Table 5: FPGA resource for PISA and IPSA prototypes.

5.2 Experiment Settings

IPSA/PISA
Prototype

Traffic
Generator

Switch Server

NIC port 2

NIC port 1

Controller
Server

Traffic Path
Configuration Path

Figure 11: Testbed configuration.

Testbed. As shown in Fig. 11, the testbed is composed of

the FPGA-based switch prototype, a server as the controller

for switch configuration and control, a Spirent SPT-N4U-220

traffic generator [49] to generate test traffic, a server equipped

with a Mellanox ConnectX-5 dual-port 100G NIC, and an

Edgecore Wedge100BF-32X [50] switch to connect the de-

vices. The FPGA has two 100Gbps QSFP28 Ethernet ports

for data path traffic and one PCIe 4.0 interface supporting

up to 16GT/s to the controller server. The Spirent SPT-N4U

can generate up to 400Gbps packet trace with the accuracy

of 10ns per frame. The traffic generator sends packets to the

server through the FPGA. Because the FPGA has only one

egress port, the Edgecore switch is used to split the traffic to

the two NIC ports in order to demonstrate the ECMP func-

tion.The Edgecore switch is also programmed to timestamp

the packets to and from the FPGA for latency measurement.

Packet Trace. Based on the use cases in Sec. 4.3, three types

of packets shown in Table 6 are generated to test the proto-

types. All the packets are 192-byte long with different num-

bers of padding bytes as payload. Each type of packet amounts

to one third of the generated traffic.

5.3 Performance Evaluation
5.3.1 Switch Throughput and Latency

Throughput. With Vivado Design Suite [51], the synthesized

clock frequency for IPSA is 110.45MHz and for PISA is

644 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Header format Header length (bytes)

Ethernet-VLAN-IPv4-UDP 46

Ethernet-VLAN-IPv6-UDP 66

Ethernet-VLAN-IPv6-SRv6-UDP 112

Table 6: Test packet types.

153.30MHz. The lower clock frequency for IPSA is due to

the wiring complexity of the interconnection networks, which

can be improved by the ASIC implementation. Benefited

from the full pipelined design, theoretically, the IPSA and

PISA prototypes can support a throughput of 169.65Gbps

and 235.47Gbps, respectively. However, because the FPGA

only has a 100Gbps interface, the peak throughput of the two

prototypes is limited to 100Gbps.

Latency. We measure the forwarding pipeline latency based

on the ingress and egress timestamps on packets. The results

are shown in Fig. 12(a). The longer latency of the IPSA proto-

type is due to field and flow table profile fetching, match key

assembly, and primitive loading. The gap can be mitigated

and even reversed if the number of processors is large and the

number of active processors is relatively small.

Base C1 C2 C3
0.0

0.4

0.8

1.2

1.6

2.0

2.4

Pi
pe

lin
e

La
te

nc
y

(
s)

Use Cases

IPSA PISA

(a) Forwarding latency.

B +C1C1 -C1 B +C2C2 -C2 B +C3C3 -C3 B
0.0

0.4

0.8

1.2

1.6

2.0

2.4 B: Base +: insert -: delete

A
ve

ra
ge

La
te

nc
y

(
s)

Updating Actions

(b) IPSA average pipeline latency.

Figure 12: Pipeline forwarding latency.

5.3.2 Incremental Update Deployment Delay

In addition to the rP4 design flow, we also implement the

use cases in P4 design flow for comparison. Each time the

updated source code is compiled by p4c and a PISA-based

back-end compiler, and the FPGA prototype is loaded with

the updated design.

The update process of PISA consists of two phases: com-

piling the updated code and reflashing the device. The latter

causes pipeline interruption. In contrast, IPSA decomposes

the second phase into two parts: configuration loading and

update executing. Only the second part halts the pipeline. We

use tC, tL and tH to denote code compiling time, configura-

tion loading time, and pipeline halting time, respectively. The

update performance of PISA and IPSA is shown in Fig. 13.

Similar comparison between bmv2 [52] and ipbm is also in-

cluded in terms of compiling time and halting time.

As shown in Fig. 13(a), since IPSA only compiles the up-

dated code segment, it takes much shorter time than PISA.

Fig. 13(b) shows that tL of IPSA is much shorter than tC.

Fig. 13(c) exhibits that IPSA’s pipeline halting time is only

C1 C2 C3
10-1

100

101

102

103

104

105

C
om

pi
lin

g
Ti

m
e

(
s)

Use Cases

IPSA PISA ipbm bmv2

(a) Compiling time tC .

C1 C2 C3
10-3

10-2

10-1

Lo
ad

in
g

Ti
m

e
(

s)

Use Cases

IPSA

(b) Loading time tL of IPSA.

C1 C2 C3
10-3
10-2
10-1
100
101
102
103
104
105
106

H
al

tin
g

Ti
m

e
(

s)

Use Cases

IPSA PISA ipbm bmv2

(c) Pipeline halting time tH .

C1 C2 C3
10-1

100

101

102

103

104

105

106

O
ve

ra
ll

Ti
m

e
(

s)

Use Cases

IPSA PISA ipbm bmv2

(d) Overall update time.

Figure 13: Update performance.

0.34% of PISA’s, allowing a small front buffer of 22 packets.

Fig. 13(d) sums tC, tL, and tH as the overall update time, show-

ing that IPSA has much better update performance than PISA.

The time comparisons between ipbm and bmv2 in Fig. 13 lead

to the same conclusion.

Fig. 12(b) shows the average pipeline latency before, dur-

ing, and after each update in IPSA. C1, C2, and C3 are inserted

and removed sequentially. While no packet drop is observed,

the latency fluctuation is also small, revealing that the update

deployment process of IPSA has negligible impact on packet

forwarding. In contrast, any update in PISA needs to take

the device offline and repopulate the tables, incurring longer

latency and higher impact on packet forwarding.

5.3.3 Power Consumption

As a side benefit, the virtual pipeline in IPSA helps reduce the

chip power consumption. We extend the number of processors

to 32 and infer the power consumption of IPSA and PISA

with different number of active processors using the Vivado

Design Suite. We assume that the unused TSPs in IPSA are

put in idle state while all the processors in PISA are active

in the pipeline. As shown in Fig. 14, IPSA consumes less

power when the number of active processors is smaller than

18. Since the extra interconnection networks in IPSA are both

passively configured, we expect the ASIC implementation

can achieve even better power efficiency.

6 Discussion and Future Work

Whenever possible we try to reuse the fruition of P4 and PISA

in our design unless the issue is unique to our architecture.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 645

0 4 8 12 16 20 24 28 32
10

20

30

40

50

60

70

80

90

Po
w

er
C

on
su

m
pt

io
n

(W
)

Number of Active Processors

IPSA PISA

Figure 14: Power consumption in terms of active processors.

Numerous design details omitted due to space limit in this

paper are documented on the open source website.

In addition to the concurrency-based processor reduc-

tion [33], the resource mapping algorithm for updates can

also be enhanced. To accommodate a new stage with memory

requirement exceeding the free memory in any cluster, it is

possible to relocate some existing stages to different clusters

or split the new stage into multiple clusters.

The resource penalty for supporting IPSA can be offset by

its unique properties and compensated by newer chip tech-

nologies: (1) A typical forwarding chip is usually built with

multiple parallel pipelines. While PISA requires table repli-

cations in each pipeline, which reduces the effective memory

resource, IPSA allows multiple pipelines to share a single

copy of each table if multi-port memory blocks are provided.

(2) In PISA, a big flow table requires combining multiple

physical processors, reducing the effective pipeline stages. In

IPSA, a logical stage can always map into a single TSP as

long as its memory requirement can be satisfied by a cluster.

(3) Since only active TSPs are kept in the pipeline in IPSA,

the pipeline latency can be reduced, which offsets the extra

latency introduced by the interconnection networks. (4) In

IPSA, the statically configured interconnections for virtual

pipeline and memory are more power-efficient than the dy-

namic switching network in dRMT. (5) The disaggregated

architecture of IPSA also allows homogeneous components to

be built on separate silicon chips and integrated with the 3D-

IC technology [53–55], effectively expanding the available

resource and reducing the memory access latency. It is con-

ceivable to have a three layer chip architecture composed of

processor, interconnection fabric, and memory. The detailed

chip design and evaluation will be attended as future work.

The interconnection network allows the processors to be

organized into a directed graph instead of a pipeline, which

brings new design possibilities and challenges for parallel

processing, deserving further research. On the other hand,

while the full interconnection is resource intensive, we can

explore the design space leaning to better resource efficiency

but less flexibility as a trade-off (e.g., partial interconnection,

blocking network, or bypassable pipeline stages).

It is also interesting to explore the possibility to automate

the rP4 code generation by comparing the difference between

the old and updated P4 programs. A GUI-based development

environment would help visualize the pipeline and ease the

programming process.

7 Related Work

dRMT [32] also decouples processors and memory, demon-

strating the feasibility of resource pooling and crossbar-based

interconnection; however, the RTC mode of processors ex-

cludes the possibility of incremental updates. POF [56] allows

runtime table and function insertion into data-plane devices,

but only applies on software-reprogrammable network proces-

sors rather than ASIC. IPSA adopts the similar approach as in

POF to support distributed parsing. Some software switches

(e.g., VPP [57]) support runtime updates as well but the tech-

niques cannot be ported to hardware. daPIPE [58] allows

users to integrate custom functions into the preexisting data-

plane program, but still requires recompiling the integrated

program. Mantis [59] supports predefined malleable values,

fields, and tables whose semantics can be changed during run-

time for reactive programming. While this is a step towards

runtime behavior changing, the flexibility is limited and fine-

grained, and the behavior must be predefined at design time.

Hyper4 [9] virtualizes the data plane to adapt to various for-

warding applications. Newton [29] supports a query template

for dynamic telemetry, which is hard to extend. Some other

works [8,27,60] virtualize network functions and match tables,

but cannot support runtime data-plane programming. Limited

to FPGA, Partial Reconfiguration (PR) [61] allows users to

reconfigure pre-allocated regions at runtime. However, the

performance and scalability issues make FPGA unsuitable for

core switching chip, and the flexibility and deployment delay

of PR still cannot match that of IPSA. Designed for smart

NIC, PANIC [62] also uses a switching fabric for flexible

compute unit interconnection, but a scheduler is needed to

schedule the service chain for each packet.

8 Conclusion

IPSA and rP4 open a new design space for network pro-

grammability, enabling new applications in the era of au-

tonomous networks. Our implementation and evaluation have

demonstrated the feasibility and benefits of the new chip ar-

chitecture and programming model. We open source the rP4

specification and compiler along with ipbm, with the expecta-

tion that our work can inspire a new breed of switch ASICs,

engage the community to advance the language support, and

help gestate novel in-situ programmable applications.

Acknowledgement. We thank the anonymous reviewers and

our shepherd Manya Ghobadi for their insightful comments

and suggestions which help improve this paper. The authors

from Tsinghua University are supported by NSFC (62032013,

61872213, 61432009) and NSFC-RGC (62061160489). Bin

Liu (liub@tsinghua.edu.cn) is the corresponding author.

646 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] BCM56960 Series. https://www.broadcom.com/
products/ethernet-connectivity/switching/
strataxgs/bcm56960-series.

[2] Innovium TERALYNX. https://www.innovium.
com/teralynx.

[3] Intel Tofino 2. https://ark.intel.com/
content/www/us/en/ark/products/210608/
intel-tofino-2.html.

[4] NVIDIA Mellanox SPECTRUM-2. https:
//www.mellanox.com/files/doc-2020/
pb-spectrum-2.pdf.

[5] Trident3-X7 / BCM56870 series. https://www.
broadcom.cn/products/ethernet-connectivity/
switching/strataxgs/bcm56870-series.

[6] Clarence Filsfils, Darren Dukes, Stefano Previdi, John

Leddy, Satoru Matsushima, and Daniel Voyer. IPv6

Segment Routing Header (SRH). RFC 8754, March

2020.

[7] In-band Network Telemetry (INT) Dataplane

Specification. https://github.com/p4lang/
p4-applications/blob/master/docs/INT_v2_1.
pdf.

[8] Peng Zheng, Theophilus Benson, and Chengchen Hu.

P4visor: Lightweight virtualization and composition

primitives for building and testing modular programs.

In Proceedings of the 14th International Conference on
Emerging Networking EXperiments and Technologies,

pages 98–111, 2018.

[9] David Hancock and Jacobus Van der Merwe. Hyper4:

Using p4 to virtualize the programmable data plane. In

Proceedings of the 12th International on Conference on
emerging Networking EXperiments and Technologies,

pages 35–49, 2016.

[10] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi

Gong, Yang Zhou, Rui Miao, Xiaoming Li, and Steve

Uhlig. Elastic sketch: Adaptive and fast network-wide

measurements. In Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communi-
cation, pages 561–575, 2018.

[11] M. Moshref, Minlan Yu, R. Govindan, and Amin Vahdat.

DREAM: Dynamic Resource Allocation for Software-

Defined Measurement. In SIGCOMM, 2014.

[12] Masoud Moshref, Minlan Yu, Ramesh Govindan, and

Amin Vahdat. SCREAM: Sketch Resource Allocation

for Software-Defined Measurement. In Proceedings

of the 11th ACM Conference on Emerging Networking
Experiments and Technologies (CoNEXT), 2015.

[13] S. Narayana, Anirudh Sivaraman, V. Nathan, Prateesh

Goyal, V. Arun, M. Alizadeh, V. Jeyakumar, and

Changhoon Kim. Language-Directed Hardware De-

sign for Network Performance Monitoring. Proceedings
of the Conference of the ACM Special Interest Group on
Data Communication (SIGCOMM), 2017.

[14] Srinivas Narayana, Mina Tahmasbi, Jennifer Rexford,

and David Walker. Compiling Path Queries. In 13th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 16), 2016.

[15] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feam-

ster, Jennifer Rexford, and Walter Willinger. Sonata:

Query-driven streaming network telemetry. In ACM
SIGCOMM, 2018.

[16] Lihua Yuan, Chen-Nee Chuah, and Prasant Mohapa-

tra. ProgME: Towards Programmable Network MEa-

surement. IEEE/ACM Transactions on Networking,

19(1):115–128, 2011.

[17] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé,

Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion

Stoica. Netcache: Balancing key-value stores with fast

in-network caching. In Proceedings of the 26th ACM
Symposium on Operating Systems Principles, Shanghai,
China, 2017.

[18] Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan,

Marco Canini, and Panos Kalnis. In-network compu-

tation is a dumb idea whose time has come. In Pro-
ceedings of the 16th ACM Workshop on Hot Topics in
Networks (HotNets), 2017.

[19] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster,

Jeongkeun Lee, Robert Soulé, Changhoon Kim, and Ion

Stoica. Netchain: Scale-free sub-rtt coordination. In

Proceedings of the 15th USENIX Conference on Net-
worked Systems Design and Implementation (NSDI),
2018.

[20] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Vargh-

ese, Nick McKeown, Martin Izzard, Fernando Mujica,

and Mark Horowitz. Forwarding Metamorphosis: Fast

Programmable Match-Action Processing in Hardware

for SDN. ACM SIGCOMM Computer Communication
Review, 43(4):99–110, 2013.

[21] N McKeown. Protocol-independent switch architecture

(PISA). https://forum.stanford.edu/events/
2016/slides/plenary/Nick.pdf.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 647

[22] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick

McKeown, Jennifer Rexford, Cole Schlesinger, Dan

Talayco, Amin Vahdat, George Varghese, et al. P4:

Programming Protocol-Independent Packet Processors.

ACM SIGCOMM Computer Communication Review,

44(3):87–95, 2014.

[23] Zhaoqi Xiong and Noa Zilberman. Do switches dream

of machine learning? toward in-network classification.

In Proceedings of the 18th ACM workshop on hot topics
in networks, pages 25–33, 2019.

[24] ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi

Chen, Wenfei Wu, Aditya Akella, and Michael M Swift.

ATP: In-network aggregation for multi-tenant learning.

In 18th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 21), 2021.

[25] Tian Pan, Enge Song, Zizheng Bian, Xingchen Lin, Xi-

aoyu Peng, Jiao Zhang, Tao Huang, Bin Liu, and Yunjie

Liu. INT-Path: Towards Optimal Path Planning for In-

Band Network-wide Telemetry. In IEEE INFOCOM
2019-IEEE Conference on Computer Communications,

pages 487–495. IEEE, 2019.

[26] Johannes Krude, Jaco Hofmann, Matthias Eichholz,

Klaus Wehrle, Andreas Koch, and Mira Mezini. On-

line reprogrammable multi tenant switches. In Proceed-
ings of the 1st ACM CoNEXT Workshop on Emerging
in-Network Computing Paradigms, pages 1–8, 2019.

[27] László Molnár, Gergely Pongrácz, Gábor Enyedi,

Zoltán Lajos Kis, Levente Csikor, Ferenc Juhász, At-

tila Kőrösi, and Gábor Rétvári. Dataplane specialization

for high-performance openflow software switching. In

Proceedings of the ACM SIGCOMM Conference, 2016.

[28] Cheng Zhang, Jun Bi, Yu Zhou, Abdul Basit Dogar, and

Jianping Wu. HyperV: A High Performance Hypervi-

sor for Virtualization of the Programmable Data Plane.

In 2017 26th International Conference on Computer
Communication and Networks (ICCCN). IEEE, 2017.

[29] Yu Zhou, Dai Zhang, Kai Gao, Chen Sun, Jiamin Cao,

Yangyang Wang, Mingwei Xu, and Jianping Wu. New-

ton: Intent-Driven Network Traffic Monitoring. In

Proceedings of the 16th International Conference on
emerging Networking EXperiments and Technologies
(CoNEXT), 2020.

[30] In-situ Programmable Behavioral Model. https://
github.com/jijinfanhua/IPSA-ipbm.

[31] Yong Feng, Haoyu Song, Jiahao Li, Zhikang Chen, Wen-

quan Xu, and Bin Liu. In-situ programmable switching

using rp4: Towards runtime data plane programmability.

In Proceedings of the Twentieth ACM Workshop on Hot
Topics in Networks, pages 69–76, 2021.

[32] Sharad Chole, Andy Fingerhut, Sha Ma, Anirudh Sivara-

man, Shay Vargaftik, Alon Berger, Gal Mendelson, Mo-

hammad Alizadeh, Shang-Tse Chuang, Isaac Keslassy,

et al. dRMT: Disaggregated Programmable Switching.

In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication (SIGCOMM),
pages 1–14, 2017.

[33] Lavanya Jose, Lisa Yan, George Varghese, and Nick

McKeown. Compiling packet programs to reconfig-

urable switches. In 12th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 15),
pages 103–115, 2015.

[34] J. Löfberg. YALMIP : A toolbox for modeling and

optimization in MATLAB. In In Proceedings of the
CACSD Conference, Taipei, Taiwan, 2004.

[35] Xilinx. Alveo U280 Data Center Accelera-

tor Card. https://www.xilinx.com/products/
boards-and-kits/alveo/u280.html.

[36] switch.p4. https://github.com/p4lang/switch/
tree/master/p4src.

[37] Anirudh Sivaraman, Changhoon Kim, Ramkumar Krish-

namoorthy, Advait Dixit, and Mihai Budiu. Dc. p4: Pro-

gramming the forwarding plane of a data-center switch.

In Proceedings of the 1st ACM SIGCOMM Symposium
on Software Defined Networking Research, pages 1–8,

2015.

[38] Hyojoon Kim and Arpit Gupta. ONTAS: Flexible and

Scalable Online Network Traffic Anonymization Sys-

tem. In Proceedings of the 2019 Workshop on Network
Meets AI & ML, pages 15–21, 2019.

[39] P4SRv6. https://github.com/ebiken/p4srv6.

[40] Jaeyoung Kim and Byungjun Ahn. Next-hop Selection

Algorithm over ECMP. In 2006 Asia-Pacific Conference
on Communications, pages 1–5. IEEE, 2006.

[41] Sumet Prabhavat, Hiroki Nishiyama, Nirwan Ansari, and

Nei Kato. On load distribution over multipath networks.

IEEE Communications Surveys & Tutorials, 14(3):662–

680, 2011.

[42] Cisco. Segment Routing over IPv6 dataplane.

https://www.segment-routing.net/tutorials/
2017-12-05-srv6-introduction/.

[43] Clarence Filsfils, Stefano Previdi, Les Ginsberg, Bruno

Decraene, Stephane Litkowski, and Rob Shakir. Seg-

ment Routing Architecture. RFC 8402, July 2018.

[44] Charles Clos. A study of non-blocking switching net-

works. Bell System Technical Journal, 32(2):406–424,

1953.

648 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[45] Václav E Beneš. On rearrangeable three-stage con-

necting networks. The Bell System Technical Journal,
41(5):1481–1492, 1962.

[46] Madihally J Narasimha. The batcher-banyan self-

routing network: universality and simplification. IEEE
Transactions on Communications, 36(10):1175–1178,

1988.

[47] LR Gokr and GJ Lipovski. Banyan networks for parti-

tioning multiprocessing systems. In Proc. First Annual
Computer Architecture Conference, pages 21–28, 1973.

[48] Kenneth E Batcher. Sorting networks and their appli-

cations. In Proceedings of the April 30–May 2, 1968,
spring joint computer conference, pages 307–314, 1968.

[49] Spirent. Spirent spt-n4u compact chassis.

https://www.spirent.com/assets/spirent_
n4u_chassis_datasheet.

[50] Edgecore. Wedge 100bf-32x. https:
//www.edge-core.com/productsInfo.php?cls=1&
cls2=5&cls3=181&id=335.

[51] Xilinx Vivado Design Suite. https://www.xilinx.
com/products/design-tools/vivado.html.

[52] Behavioral Model of PISA (bmv2). https://github.
com/p4lang/behavioral-model.

[53] Kun Cao, Junlong Zhou, Tongquan Wei, Mingsong

Chen, Shiyan Hu, and Keqin Li. A survey of optimiza-

tion techniques for thermal-aware 3d processors. Jour-
nal of Systems Architecture, 97, 2019.

[54] Wen-Wei Shen and Kuan-Neng Chen. Three-

dimensional integrated circuit (3d ic) key technology:

through-silicon via (tsv). Nanoscale research letters,

12(1):1–9, 2017.

[55] Xilinx. 3D ICs. https://www.xilinx.com/
products/silicon-devices/3dic.html.

[56] Haoyu Song. Protocol-oblivious forwarding: Unleash

the power of sdn through a future-proof forwarding

plane. In Proceedings of the second ACM SIGCOMM
workshop on HotSDN, 2013.

[57] Vector Packet Processing Platform. https://fd.io/
vppproject/vpptech.

[58] M. Baldi. daPIPE: a Data Plane Incremental Program-

ming Environment. In 2019 ACM/IEEE Symposium
on Architectures for Networking and Communications
Systems (ANCS), pages 1–6, 2019.

[59] Liangcheng Yu, John Sonchack, and Vincent Liu. Man-

tis: Reactive Programmable Switches. In ACM SIG-
COMM, 2020.

[60] Teemu Koponen, Keith Amidon, Peter Balland, Martín

Casado, Anupam Chanda, Bryan Fulton, Igor Ganichev,

Jesse Gross, Paul Ingram, Ethan Jackson, et al. Net-

work virtualization in multi-tenant datacenters. In 11th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 14), pages 203–216, 2014.

[61] J.D. Hadley and B.L. Hutchings. Design Methodologies

for Partially Reconfigured Systems. In Proceedings
IEEE Symposium on FPGAs for Custom Computing
Machines, 1995.

[62] Jiaxin Lin, Kiran Patel, Brent E. Stephens, Anirudh

Sivaraman, and Aditya Akella. PANIC: A High-

Performance programmable NIC for multi-tenant net-

works. In 14th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 20), 2020.

A rP4 Grammar

The rP4 grammar in Extended Backus-Naur Form (EBNF) is

shown in Fig. 15, in which the non-terminals mutual to P4

are omitted.

{ }

{ }

{ }

{ }

[]

{ }

{

{ }

{ }

{ }

{ }

{ }

Figure 15: rP4 EBNF.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 649

Runtime Programmable Switches
Jiarong Xing Kuo-Feng Hsu Matty Kadosh† Alan Lo†

Yonatan Piasetzky† Arvind Krishnamurthy‡ Ang Chen

Rice University †Nvidia ‡University of Washington

Abstract
Programming the network to add, remove, and modify func-
tions has been a longstanding goal in our community. Un-
fortunately, in today’s programmable networks, the velocity
of change is restricted by a practical yet fundamental barrier:
reprogramming network devices is an intrusive change, requir-
ing management operations such as draining and rerouting
traffic from the target node, re-imaging the data plane, and
redirecting traffic back to its original route. This project in-
vestigates design techniques to make future networks runtime
programmable. FlexCore enables partial reconfiguration of
switch data planes at runtime with minimum resource over-
heads, without service disruption, while processing packets
with consistency guarantees. It involves design considerations
in switch architectures, partial reconfiguration primitives, re-
configuration algorithms, as well as consistency guarantees.
Our evaluation results demonstrate the feasibility and benefits
of runtime programmable switches.

1 Introduction
Programming the network to add, remove, and modify func-
tions has been a longstanding goal in the networking commu-
nity. Programmable switches [3, 8] represent the latest step
toward this vision. Using high-level languages like P4 [3],
network operators can customize packet processing behaviors
at the switch program level. To change network processing,
operators can deploy a different P4 program to the data plane,
without the need for hardware changes or device upgrades.
Programmable switches have enabled a host of new network
applications in telemetry [15, 27, 35], measurement [40], se-
curity [39], and application offloading [18, 19].

Unfortunately, in today’s programmable networks, the ve-
locity of change is restricted by a practical yet fundamental
barrier: switch functions are only programmable at compile-
time, but they effectively become fixed functions at runtime.
The switch program cannot be easily modified at runtime
without reflashing the data plane hardware and carefully man-
aging network-wide changes. To reprogram a network switch,
operators need to first drain and reroute traffic from the target,
install the new program image, and then redirect traffic back
to its route. The error-prone nature of network maintenance
procedures, the amount of manual coordination required, and
the need to satisfy stringent SLAs pose severe constraints

on runtime program changes. To the extent that functions
can be “hard-coded” in the device, they can be invoked for
runtime response [41]. However, new functions that haven’t
been accounted for, or functions that cannot fit into the switch
resources, are difficult to deploy at runtime. This stands in
stark contrast to software data planes on host servers, where
changes are easily accommodated and functions go through
frequent upgrades [12]. The ultimate vision of programmable
networks that seamlessly incorporates function changes at
any time (e.g., based on traffic workloads or multi-tenancy
requirements) still remains an elusive goal.

In this project, we pave the way toward runtime pro-
grammable switches by investigating the necessary build-
ing blocks and proposing concrete designs for each of them.
FlexCore enables switch functions to be continuously pro-
grammable throughout the lifetime of the network. It devel-
ops a new set of control plane API to modify P4 program
elements—match/action tables, control flow branches, and
parsing graphs—while the switch data plane serves live traf-
fic. These operations precisely instrument the switch program
using partial reconfiguration primitives without affecting the
rest of the data plane. This new modality of network pro-
grammability introduces an array of applications:

• Just-in-time network optimizations: When an optimiza-
tion (e.g., network-accelerated multicast) is needed, it
can be added just-in-time to serve the traffic workloads,
and removed soon afterwards to keep the network lean.

• Real-time attack mitigation: If network attacks (e.g.,
DDoS, data exfiltration) are detected, we can inject mit-
igation modules exactly where needed; new attack pat-
terns would trigger removal of expired modules and the
insertion of new program components.

• Scenario-specific network extensions: A tenant can in-
ject switch program extensions to the network. VM mi-
gration will carve out and graft the relevant program
components to a different location of the network.

Also, telemetry applications do not have to commit to a fixed
set of queries [27]; new network protocols can be added and
removed dynamically; load-aware routing algorithms can be
injected when needed [17]; different versions of switch pro-
grams can be deployed for canarying [42]. In fact, many (if
not all) of today’s programmable network applications will
have more powerful, runtime programmable equivalents.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 651

Achieving this goal requires a range of research challenges
to be addressed: switch architecture designs that make runtime
programmability natural, partial reconfiguration primitives for
modifying live switch programs, atomicity and consistency
guarantees on runtime changes, and algorithms for effectively
computing reconfiguration plans. FlexCore makes contribu-
tions in all these dimensions.

Switch architecture. We base our FlexCore design upon
a variant of disaggregated RMT (dRMT) [11]. dRMT sep-
arates switch memory from compute, and our architecture
introduces another twist in its partial disaggregation design,
where a small compute-local memory holds a indirection data
structure that we call a program description table (PDT). This
table contains metadata about the program control flow and is
our target for reconfiguration. Decoupling program logic from
its physical realization separates concerns: physical resources
can be allocated and deallocated in scratch areas before pro-
gram elements are modified for the changes to be visible.

Partial reconfiguration primitives. We develop a set of
new primitives for adding, removing, and modifying pro-
gram elements—this includes match/action tables, control
flow branches and parser states. Unlike today’s control plane
API, which manipulates switch memory (e.g., adding/remov-
ing entries), the new API reconfigures switch compute.

Consistency guarantees. We propose three consistency
guarantees for runtime reconfiguration: program consistency,
element consistency, and execution consistency, with increas-
ingly relaxed guarantees. These guarantees constrain the kind
of “intermediate programs” that packets are allowed to en-
counter during partial reconfiguration. Program consistency
states that all program modifications must take effect simulta-
neously. Element consistency is weaker, and states that modi-
fications can be made visible in an element-by-element basis
(e.g., one table at a reconfiguration step). Execution consis-
tency is the weakest, but it still guarantees useful properties:
packets never traverse execution paths that mix old and new
program elements. In all cases, reconfigurations are atomic
and do not disrupt data plane forwarding.

Algorithms. We develop algorithms for computing recon-
figuration plans for different levels of guarantees.

Evaluation. We implement our design on a 12.8 Tbps mer-
chant silicon (Nvidia Spectrum-2 SN3000 series), as well as
a software simulator based upon bmv2. We evaluate the scal-
ability of the reconfiguration algorithms and demonstrate a
set of use cases in hardware and software platforms, showing
that FlexCore enables a truly adaptive network core.

2 A Case for Runtime Programmability
The quest for network programmability has been an impor-
tant undertaking in the community. Network switches used to
be blackboxes, with opacity at both control and data planes.
OpenFlow SDN opened up the control plane for program-
matical control, and as of late, programmable data planes
enable flexible packet processing pipelines without hardware

upgrade. Operators can customize the data plane by remov-
ing unnecessary switch functions or adding new ones at the
program level. P4 switch programs are compiled into a binary
image, which is flashed to data plane hardware for deployment.
Researchers have seized this opportunity to systematically
rearchitect network telemetry [15, 27, 35], measurement [40],
security [39], and application offloading [19].

However, today’s programmable data planes have a notable
limitation—they cannot be reprogrammed at runtime. If an
operator can anticipate all required functions at compile time,
and if these functions can fit into the switch resource con-
straints, then they can be combined and deployed together in
the switch. But once deployed, the switch is committed to
the hardcoded behaviors as specified at compile time, until
the next program reflash. At runtime, only ‘micro’ changes
are permitted, such as modifying flow table entries or register
values from the control plane. This affords some flexibil-
ity [41]; however, as macro-level program logic changes are
hard to make, accommodating requirements that truly arise
‘on-demand’ (e.g., security incidents) remain an elusive goal.
Also, since switches have constrained resources, even if we
had an ‘oracle’ planner that anticipates all needed functions,
they may not fit into the switch together at compile time.

To remedy this problem, we need runtime programmable
switches. This not only enables new use cases as motivated
above, but also calls for a rethink as to how networks can
be specialized. The operator can, at any point in time, ag-
gressively optimize the network data plane to only retain a
minimal amount of processing logic. This reduces switch re-
source footprints, improves network energy efficiency, and
also keeps network latency at a minimum. If extra functional-
ity is required, the program elements can be injected precisely
where and when they are needed. If a functionality is no
longer in use, it can be removed to ensure that the data plane
stays at its leanest. Viewed from the lens of the classic ‘end-to-
end’ arguments [31], in-network processing no longer incurs
a common overhead to all applications.

3 The FlexCore Switch Architecture
Our switch architecture adopts a disaggregated RMT
model [11], where compute resources (i.e., match/action pro-
cessors) are split from memory (i.e., SRAM/TCAM), and
they are interconnected via a crossbar. Each MA processor
holds a copy of the P4 program, and processes packets in a
run-to-completion manner.

In the RMT architecture [8], each stage contains a slice of
compute and memory resources that cannot be reassigned to
other stages. This tight coupling makes runtime reconfigura-
tions challenging. For instance, inserting an MA table to a
stage may require device-wide table shuffling and reallocation
to make space. Removing an MA table from a stage will leave
‘holes’—fragmented resources that cannot be easily reused by
other program elements. These operations can be intrusive.

A disaggregated architecture, on the other hand, breaks

652 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1

M
at

ch

A
ct

io
n

P
kt

 Out

D
ep

ar
se

r

P
ar

se
r

In

…

P
kt

P
D
T

…
MA processors

Load-balanced crossbar

Disaggregated,
sharded access

…

Memory bank 1 Memory bank t

M
at

ch

A
ct

io
n

P
D
T

M
at

ch

A
ct

io
n

P
D
T

Table1 shards

Table2 shards

Table3 shards

Figure 1: The FlexCore switch architecture. Highlighted in
bold+italic are the customizations to dRMT [11].

resource allocation boundaries and enables reconfigurations to
be performed locally—i.e., it enables partial reconfiguration.
If a reconfiguration releases a table, the deallocated resources
can be dedicated to any other program elements irrespective
of their ‘locations’. New tables can be inserted to any part
of the program without having to change existing resource
allocation decisions. Similar properties hold for resources that
implement control flow branches and parsing graphs.

dRMT customizations. Our silicon also implements sev-
eral customizations for performance, flexibility, and usability.
Figure 1 shows the high-level architecture.

(i) Sharded resource allocation. In the dRMT architecture,
an MA table is allocated in one specific SRAM/TCAM bank.
Simultaneous accesses to the same table (or different tables
in the same memory bank) from different processors creates
contention at the crossbar. In FlexCore, all tables are t-way
sharded, where t is the number of memory banks. When in-
serting a table entry, FlexCore first computes a hash h from
the match key as the shard ID, and then allocates the entry in
the h-th SRAM/TCAM bank. When performing a match, the
same hash function is computed to retrieve the shard ID. This
allows FlexCore to sustain linerate without complex mecha-
nisms to detect and avoid access contention. The crossbar is
always load-balanced and has uniform access patterns.

(ii) Hybrid programmability. Our switch exports a set of
fixed-function ASIC modules as common building blocks
(e.g., L2 bridging, L3 routing). These functions can be called
by or bypassed from the P4-programmable logic. The fixed
blocks are more resource- and energy-efficient, as their im-
plementations are heavily-optimized, hardwired ASIC. By
providing these building blocks, P4 programmers don’t need
to redevelop them from scratch. Moreover, they also represent
a minimum “baseline” program that, if necessary, traffic can
always fallback on during reconfiguration.

(iii) Indirection. FlexCore employs a partially disaggre-
gated design, where each processor has a small amount of
local SRAM to store a special program description table
(PDT) for indirection. Accesses to PDT do not go through the
crossbar and enjoy lower latency. PDT stores the ‘program
skeleton’—the control flow graph—and decouples the control
flow operations from main SRAM accesses. Our partial recon-

1

• Match key
• Key type
• SRAM ptr
• TCAM ptr
• Action ptr
• Next tab/branch ptr

prog_desc_0

。。。

Program description table

TCAM region

TCAM region

TCAM region

…

。。。

SRAM region

SRAM region

SRAM region

…prog_desc_i

…

TCAM

SRAM

prog_desc_entry Actions, next action pointer

Action memory

Actions, next action pointer

Actions, next action pointer

…

prog_desc_n

…

…

⓪
①

②

⑤

⑦

⑥

④

③

Figure 2: Runtime reconfigurable tables and control flow
branches, the indirection mechanism via the program descrip-
tion table (PDT), and an example execution as illustration.

figuration mechanisms make heavy use of the PDT to modify
program elements. Similarly, a parser state table (PST) serves
as indirection for the parsing hardware.

4 Runtime Reconfiguration Primitives
FlexCore introduces a set of novel primitives that, when in-
voked by the control plane, partially reconfigure a P4 switch
program. These primitives operate on a graph representation
of a P4 program by adding, removing, or modifying nodes
and edges. In a P4 program, the match/action logic is cap-
tured by the ‘table flow graph’ [8], where nodes represent MA
tables or conditional branches (realized in table-independent
actions), and edges represent non-conditional, table depen-
dency control flow. For the parser logic, the nodes represent
parser states (which also contain header extraction rules), and
the transition rules are the edges. Next, we first describe the
primitives on the table flow graph and then the parsing graph.

4.1 Program description table

A key indirection data structure that enables partial recon-
figuration of the table flow graph is what we call a program
description table (PDT), as shown in Figure 2. Each match/ac-
tion processor maintains a local PDT and it is dedicated to a
specific switch port. All packets arriving at a port will first hit
a default entry in the PDT to activate packet processing.

The entries in the PDT are compiled from a P4 program.
Each entry stores metadata about a program element, which
could be a match/action table or a table-independent ALU
action that implements conditional control flow. The metadata
contains entry type, match key/type, and a resource pointer
that refers to the physical realization of that program element.
The pointer address could be an SRAM location (for exact and
algorithmic ternary matches), a TCAM location (for ternary
matches), or an action location (for conditional branches)—
with a ‘union’ semantics as only one pointer type can be valid
for a PDT entry. The address is specified by the base address
of a memory region, the size of the region, as well as the offset
from the base address. Each PDT entry also contains a ‘next’

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 653

pointer, which encodes unconditional control flow to the next
program element (i.e., MA table or conditional branch).

This indirection provides several advantages for runtime
programmability: a) operations for adding and removing a
program element are decoupled from resource allocation op-
erations, as the first occur in the PDT and the second in the
memory regions; b) PDT entries serve as a local scratch—
entry modifications are lightweight and do not touch switch-
wide shared resources, and they can be changed in a trans-
actional manner. The PDT enables runtime reconfiguration
of match/action tables and the control flow graph, which we
discuss next.

4.2 Runtime reconfigurable tables

MA tables are the key processing elements in a P4 program.
FlexCore enables the addition and deletion of tables using
several partial reconfiguration primitives.

Allocation+deallocation. ALLOCTBL(T) allocates a new
table, and DEALLOCTBL(T) deallocates an existing one. Both
are control plane operations that have a centralized view of
PDT tables, and they accept the table definition T as the input
argument. Allocations first identify free slots to create new
PDT entries. In a new PDT entry, the match key and type are
filled in with the specified table attributes. SRAM and TCAM
resources are then allocated based on the table attributes, and
both are sharded across all memory banks. Finally, the control
plane fills in the resource pointer, finishing the table alloca-
tion. Deallocations could directly remove the entry and its
resources, or it may defer their removal to a later garbage
collection phase. (Actual table entries are added/removed just
like in today’s switches, via existing control plane API such as
that defined in P4Runtime [5].) Importantly, allocation/deal-
location operations are not visible to network traffic until we
invoke insertion/deletion primitives.

Insertion+deletion. Changes are made visible via another
primitive: SETPTR(T,NXT) modifies T’s next pointer to NXT.
Table insertions invoke multiple SETPTR calls to place T in
the program; deletions perform the opposite operations. In-
sertions must happen after resources have been allocated, and
deletions before deallocation. Each pointer change is atomic
in hardware. (To ensure atomicity for a collection of changes,
we need another mechanism called a ‘flex branch’ as dis-
cussed later.) Insertions and deletions alter the view of the
program state from the perspective of network traffic.

4.3 Runtime reconfigurable control flow

Conditional branches are implemented in ALUs as table-
independent actions. Like tables, a conditional branch takes
up one PDT entry, but its resource pointer addresses the ac-
tion memory instead of SRAM/TCAM. In addition, the PDT
entry for a conditional branch has a null ‘next’ pointer; its
two jump addresses are instead encoded in the ALU action,
one for each branch condition. N-way conditionals are imple-
mented as cascading binary branches. Control flow branch

1

act2

a=1, b=1, act=act1, priority=1

Table t

a=2, b=2, act=act1, priority=1

a=3, b=3, act=act2, priority=1

…

a=4, b=4, act=act2, priority=1

a=5, b=5, act=act1, priority=1

a=1, b=1, c=1, act=act3, priority=2

Table t’

a=2, b=2, c=1, act=act3, priority=2

a=3, b=3, c=2, act=act3, priority=2

act3

act3

Deleted

Active

prog_desc_i

PDT

prog_desc_j

prog_desc_entry

…

Action

resolver

Table

group

Figure 3: Primitives for in-place table modification.

modifications are performed using the following primitives.
Allocation+deallocation. FlexCore introduces a primitive,

ALLOCCOND(B, PRED, BR1 , BR2), to allocate a control flow
branch based on PRED, where BR1 and BR2 are the jump ad-
dresses for the true and false branches, respectively. Allo-
cation of an N-way conditional is performed by successive
invocations of ALLOCCOND with cascading jump addresses.
A predicate PRED corresponds to an ALU action that checks
the condition and produces a true/false evaluation. This bi-
nary result is consumed by a hardware ‘goto’ microcode that
jumps to the next program element. If PRED evaluates to true,
‘goto BR1’ directs the control flow to the next table or a cas-
cading branch; otherwise, it branches to BR2. Deallocations
free action memory and PDT entries.

Insertion+deletion. A conditional branch can be activated
by a) SETPTR(T,B), which points a table’s next pointer to the
new branch B, and b) SETCONDPTR(B,N1 ,N2), which sets one
or both of the jump addresses of a branch. In the case where
SETCONDPTR modifies two pointers, the operation is not
atomic. Atomicity is achieved similarly using ‘flex branches’
that we will discuss later. Deletions achieve opposite effects.

4.4 In-place table modifications

So far, all primitives that we have described can be used
at any level of consistency guarantees. In this and the next
subsections, we describe two special sets of primitives for
table modifications and parser reconfigurations as well as
their respective consistency properties.

Table modifications can be performed by adding a new
table and deleting the old, in which case the intermediate
state has size 2×|T | (assuming both tables have size |T |).
But FlexCore also exposes a more efficient primitive to re-
format a table in-situ with an intermediate state of |T |. A
MODTBL(T,T′) primitive reformats T using the definition as
specified in the new table definition T′, which could include
new match key/type and actions. This is achieved by a PDT
mechanism called table groups. Several PDT entries can be
‘grouped’ together and processed in parallel at the MA proces-
sor. MODTBL creates a new PDT entry using T′ and groups it
with the entry for T. It then gradually moves entries from T to
T′, reformatting each entry using the new key or action, and
setting the entries in T′ with higher priority. In this transient
state, the MA processor looks up both tables and resolves

654 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1

• Header ID: 1
• Transition key: EthType
• Header length: [0:14]

Header 1

State transition lookup

Extraction array

Parser state table

• Header ID: n
• Transition key:

…

Header n

…

Key :0x0800
Next header ID: 2

Key :0x86DD
Next header ID: 3

Extraction points

• Register ID: 2
• Offset: Eth[0:5]
• Mask: 0xffffffffffff

Extraction 1

• Register ID: 3
• Offset: Eth[6:11]
• Mask: 0xffffffffffff

Extraction 2

• Register ID: 4
• Offset: Eth[12:13]
• Mask: 0xffff

Extraction 3

IPv4

IPv6

①

②

③

Parallel
table
lookups

Figure 4: Runtime reconfigurable parsers and the indirection
mechanism via the parser state table (PST).

them using an action resolver that chooses the higher-priority
result. When T become empty, the PDT entries are de-grouped
and T gets deleted. MODTBL triggers simultaneous applica-
tions of parallel tables, so this mechanism is different from
the ‘flex branch’. We will discuss its consistency guarantees
later in Section 4.6.

4.5 Runtime reconfigurable parsers

Header parsing logic requires different mechanisms for recon-
figuration. We describe the parser hardware next, and then the
reconfiguration primitives for the parser graph.

The parser state table (PST). Figure 4 presents the hard-
ware architecture for the reconfigurable parser. The key in-
direction data structure is a parser state table (PST), which
stores an array of parser states. Each entry stores a) parsing
information for that header, b) an extraction array that extracts
header fields, as well as c) a parallel transition lookup compo-
nent that determines the next state based on the current header
values. Similar as the PDT, this indirection ensures that state
additions and removals are easily achieved at runtime.

The PST implements a finite state machine, where each
entry represents one state and contains transition rules to other
states. This array is indexed by a logically assigned header ID
that starts with one and ends with the maximum state ID as
constructed from the program. When a packet comes in, it first
matches against the default entry (ID=1) for parsing. At every
step, the hardware uses the ‘header length’ and ‘transition
key’ defined in the current entry (as well as a base register
that remembers how much data has been parsed) to identify
the correct offset into the packet. A chunk of data of the
size ‘header length’ is then sent to extraction logic, which
uses shift-and-mask to further segment the data chunk into
multiple fields (e.g., EtherType, SMAC, DMAC) of varied
sizes. These extracted fields are stored in an extraction array
that is associated with the current header entry. These are
further combined using a recombiner into a PHV (packet
header vector) and streamed to the ingress blocks.

Simultaneously with header extraction, FlexCore uses a
parallel set of logic to identify relevant headers to compute
the next parsing state. This relies on a similar extraction logic
but does not materialize header fields in the extraction array.
Rather, it uses the preconfigured ‘transition key’ to perform a
parallelized lookup. It muxes the key through a lookup table
that contains all transition rules as compiled from the parser—
e.g., IPv4 packets transition to ID=2, and IPv6 to ID=3. A
demux combines the lookup results from all rules and com-
putes the next state ID. Parsing continues until it encounters
an accept state, at which point the extracted headers are sent
to the ingress logic for MA processing.

Reconfiguration primitives. Runtime parser reconfigura-
tion modifies the parser states, extraction rules, and transitions.
FlexCore exports ALLOCSTATE(S), ALLOCTRANS(S1,S2), and
ALLOCEX(R) for allocation of new states, transitions, and ex-
traction rules, respectively. ALLOCSTATE(S) creates a new PST
entry and the respective transition key and header length.
ALLOCTRANS(S1, S2) sets up transition rules in the transition
matching mux and demux. ALLOCEX(R) sets up an extraction
rule in a parser state that locates a certain offset in the current
header and outputs the result to an extraction register. Each
primitive has its DEALLOC analogue.

Edits to the transition rules with ALLOCTRANS are immedi-
ately visible to network traffic, so for multiple changes, Flex-
Core requires the parser diff or the new parser to be prepared
in PST scratch, before they are activated together in a single
atomic step. Otherwise, network traffic will be parsed with
a mix of old and new parsing logic. In the current hardware,
parser changes are only possible with ‘program consistency’,
which, as we will discuss later, requires higher resource head-
room to maneuver. This limitation stems from the lack of a
‘flex branch’ equivalent in the current parser hardware, which
is necessary for using the version metadata for transactions.
In future hardware generations, this can be incorporated by
adding transition version numbers as well as match logic
using the versions.

4.6 Summary

We now discuss the two special-case primitives: table modifi-
cations and parser changes. MODTBL relies on ‘table groups’
instead of ‘flex branches’. When a MODTBL operation is in
progress, it guarantees that each packet is only processed
with the old or new version of the table; in this sense, the
intermediate states as seen by the packets satisfy ‘execu-
tion consistency’. However, MODTBL cannot be parallelized
with other program modifications, as ‘table groups’ do not
atomically control which version is encountered by packets.
Parser changes, on the other hand, satisfy program consis-
tency; but the current hardware doesn’t support weaker guar-
antees, which require ‘flex branches’. In the next section, our
reconfiguration algorithms primarily focus on changing MA
tables and control flow branches, where all three consistency
guarantees apply and are achievable at different overheads.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 655

(a) Minimal common supergraph (b) Weaker consistency levels permit finer-grained transactions (c) The use of flex branches

+

Unchanged Deleted Added Flex branches that check version metadata

A

B

E

s

C

F

A

B

s

C

A

B

E

s

C

F

Xch(e1,e2) operations

D
D

r r r

D

A

B

E

s

C

F

r

D
i i

B

E

s

C

F

D

Program consistency

B

E

s

D

s

C

F

Element consistency

B

E

s s

C

F
E

s

D

Execution consistency

i
T

F
T

TF

F

Figure 5: (a) FlexCore constructs a minimum common supergraph between two programs. (b) Weaker consistency guarantees
reduce resource requirements for reconfigurations, and allow more intermediate states to be exposed to network traffic. (c) To
ensure atomicity, FlexCore inserts ‘flex branches’ that can branch to the old or new versions depending on the version metadata.
These branches are deleted after reconfiguration completes. Nodes A-F represent MA tables or conditional control flow branches.
Virtual nodes r and s are added as the sources and sinks of the DAGs, respectively. Virtual nodes i denote flex branches.

5 Runtime Reconfiguration Algorithms
The FlexCore reconfiguration algorithms rely on the partial
reconfiguration primitives to transform an existing switch
program prog to a new one prog∗. We represent each P4 pro-
gram as a directed acyclic graph (DAG), G for prog and G∗

for prog∗. Nodes are the MA tables and conditional branches,
and edges represent unconditional dependencies (or packet
dataflow through the program). Our goal is to compute a re-
configuration script [9], a series of graph edit operations to
nodes and edges to transform G into G∗. We denote the re-
configuration sequence as G→ S1→ ··· → Sn→ G∗, where
Si, in ∈ [1..n] are the intermediate DAGs and each step from
Si to the next state is atomic. Depending on whether (or what
types of) intermediate states are allowed to be exposed to
network traffic, we propose three levels of consistency guaran-
tees: program consistency, element consistency, and execution
consistency, with a decreasing order of strictness. Stronger
guarantees are achieved by preparing larger portions of the
program diff in scratch memory, requiring that the switch
resources must have enough slack for the reconfiguration.
Weaker guarantees allow FlexCore to operate within more re-
stricted headroom. Figure 5 includes an illustrative example.

5.1 Program consistency

This is the strongest level of consistency guarantees: no inter-
mediate state is exposed to any packets. The switch program
as encountered by network traffic is either G or G∗. This is
important for any scenario that requires strong network pro-
cessing guarantees, where exposing intermediate state would
cause operational disruption. For instance, a load balancer or
NAT may contain two match/action tables, one for mapping
DIP to VIP and another for the reverse direction [25]. Updates
to the program (e.g., rehashing) should not take effect until
both tables have been reconfigured.

Program consistency. A sequence G→ S1→···→ Sn→G∗

achieves program consistency if the following property holds
for all Si, i ∈ [1..n]. For any element t (node or edge) in Si, if
t ∈ G∗ and t /∈ G, then Si = G∗. Similarly, for any element t

in Si, if t ∈ G and t /∈ G∗, then Si = G.

Put in simpler terms, reconfigured program elements aren’t
visible to network traffic until all reconfigurations finish: an
“all-or-nothing” guarantee. To achieve this, all edits must be
prepared in an ‘offline’ scratch area. They are made visible
in an atomic transaction that, from the packets’ perspective,
changes G to G∗ in one single step. Without the partial re-
configuration primitives in FlexCore, one would need to in-
stantiate the entire program prog∗ in the scratch while the
old one prog is still active. Therefore, the switch resources
must have enough slack to accommodate the co-existence of
both programs—i.e., there must be a headroom of |G|+|G∗|.
Supposing that |G|≈ |G∗|, then the switch resource utilization
must be kept to ≤ 50% for runtime changes to be feasible.
This is a stringent requirement.

Algorithm. Our new primitives enable FlexCore to only
prepare the ‘diff’ while reusing shared program elements, so
the switch only needs to accommodate |G| and newly inserted
elements of the size ∆� |G∗|. In order to compute the diff,
FlexCore merges two DAGs G and G∗ into a minimum com-
mon supergraph (MCS) [9]. An MCS is the union of the input
DAGs that minimizes the diff as caused by mismatched ele-
ments. In our context, only nodes take up resources and edges
are pointer fields in the nodes and do not consume physical re-
sources; so our MCS algorithm primarily extracts node-level
diff. Using this MCS, we compute a set of edit operations
as our reconfiguration script. INS(v) and DEL(v) inserts and
deletes a node, respectively; and INS(e) and DEL(e) operate
on edges. A special edge substitution operation XCH(e,e′) is
allowed if both edges share the same source node and are
of the same type (i.e., both are ‘next’ pointers or both are
true/false jump addresses). In terms of resource overheads,
INS(v) reduces and DEL(v) increases switch headroom by |v|,
respectively, where |v| is the table size (for MA tables) or
action memory size (for conditional branches). Edge opera-
tions do not affect resource headroom. Figure 6 shows the
algorithm, which colors the MCS: shared elements in black,
new elements in green, and deleted elements in red.

656 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

function PROGRAMCONSISTENCY(prog, prog∗)
// Compute minimum common supergraph
G← GETP4DAG(prog); G∗ ← GETP4DAG(prog∗)
G← MERGEDAGS(G, G∗)
// Compute reconfiguration script
Script← /0

for node or edge t ∈ G do
if t ∈ G ∧ t ∈ G∗ then

COLORBLK(t)
else if t ∈ G ∧ t /∈ G∗ then

COLORRED(t); Script.Add(DEL(t))
else if t /∈ G ∧ t ∈ G∗ then

COLORGRN(t); Script.Add(INS(t))
Script.IdentifyEdgeXch(G)
return Script

Figure 6: The program consistency algorithm.

Atomicity. To ensure that intermediate states are not visible
until all reconfigurations complete, FlexCore groups the edits
in a transaction to achieve atomicity. We use a hardware
mechanism that we call a flex branch. During the transaction,
inserted program elements are guarded by an extra conditional
branch that implements a check on special version metadata:
‘if (meta.v==0)’ branches to the old program elements and ‘if
(meta.v==1)’ to the new. Deletions are also guarded by flex
branches instead of being deleted right away. The transaction
is committed when FlexCore modifies the version metadata,
after which deleted elements can be safely removed.

5.2 Element consistency

A relaxed consistency guarantee, which allows reconfigura-
tions to proceed within more restricted headroom. In pro-
gram consistency, preparing the diff in scratch area leads to
a resource spike of ∆. Therefore, in order to accommodate
runtime reconfigurations, the switch utilization must be upper-
bounded to leave sufficient headroom ∆.

Element consistency breaks the reconfiguration into several
finer-grained transactions that can be performed with lower
headroom δ� ∆. This allows FlexCore to drive up switch
utilization even further while still preserving the ability to
make runtime reconfigurations. Every smaller transaction will
add and remove certain program elements, with the goal of
releasing some switch resources to accommodate subsequent
transactions. Under this guarantee, intermediate states can
be exposed to traffic, but only if there is a consistent view as
to which program elements have been updated (inserted or
deleted). If program elements (nodes or edges) are reachable
from each other, they must be updated together. Unreachable
edits are partitioned to different transactions as they are in-
dependent from the view of network traffic. This property is
useful when program updates can be applied incrementally
with well-defined semantics. For instance, a firewall that uses
independent ACL tables for different types of traffic (e.g.,
TCP vs. UDP) can be added or removed on a table-by-table
basis. A traffic normalizer [1, 22, 39] may apply different

function ELEMENTCONSISTENCY(prog, prog∗)
// Compute overall script
Script← PROGRAMCONSISTENCY(prog, prog∗)
// Reachability analysis. Optimization using Xch operations.
for all Xch(u→v, u→v′) ∈ Script do

u.Reachability← DFS(u, G)
// Partition script by reachability
Partitions← INITPARTITIONFOREACHEDIT(Script)
while ∃ reachable partitions p, q do

MERGEPARTITIONS(p, q)
return Partitions

Figure 7: The element consistency algorithm.

security functions for incoming and outgoing traffic—e.g.,
normalizing TTL fields for incoming packets, but clearing
TCP options for outgoing ones.

Element consistency. For any intermediate state Si, i∈ [1..n],
we require the following properties to hold. For any element
t in Si, if t ∈ G∗ and t /∈ G, then for any other element t ′ in
G∗ where t ′ ∗ t (i.e., t ′ can reach t in G∗) or t ∗ t ′, we
require that t ′ ∈ Si. Similarly, for any element t in Si, if t ∈ G
and t /∈G∗, then for any other element t ′ in G where t ′ t (t ′

can reach t in G) or t t ′, we require that t ′ ∈ Si.

Stated simply, if a new program element is visible in the inter-
mediate state, it should be visible to all packets that traverse
this element in the new program, even if they follow different
execution paths through the program. A deleted element is no
longer visible to packets regardless of their execution paths.

Algorithm. As Figure 7 shows, we first invoke the program
consistency algorithm to compute the overall reconfiguration
script, and then partition this script into independent, smaller
transactions. This relies on a DFS search on G to compute
whether one edit may affect another. If two edits operate on
unreachable regions of the graph, they may proceed indepen-
dently; otherwise they belong to the same partition. Initially,
each edit is in its own partition. Partitions are merged if they
are reachable from one another—p and q are said to be reach-
able if their edit operations involve elements that are reachable
in either direction in G. This implies that the algorithm scales
quadratically with the number of edit operations.

Although we can perform DFS from all nodes and edges
in G in polynomial time, in practice we only need to do
so from nodes that are involved in an XCH operation. This
computes all needed reachability information to merge the
partitions, because such nodes are the boundaries between the
new and old graphs. Red nodes/edges are reachable from at
least one such XCH node by following its red outgoing edges,
and similar properties hold for the green color. When no
further merges are possible, the algorithm returns a partition
of the reconfiguration script.

Atomicity. Each smaller transaction begins with
‘meta.v==0’. Flex branches guard intermediate changes or
make them visible by changing ‘meta.v’. The reconfiguration
finishes after all constituent transactions are committed.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 657

function EXECUTIONCONSISTENCY(prog, prog∗)
// Compute overall script
Script← PROGRAMCONSISTENCY(prog, prog∗)
// Bounded reachability analysis
for each Xch(u→v, u→v′) ∈ Script do

Xch.Reachability← BOUNDEDDFS(u, G)
INITSUBPARTITION(Xch.Reachability)

// Order partitions
for each Xch1, Xch2 ∈ Script do

if Xch1 ∗Xch2 then
ADDCONSTRAINT(Xch1 ≥ Xch2)

if Xch1 Xch2 then
ADDCONSTRAINT(Xch1 ≤ Xch2)

if Xch1 ≤ Xch2 ∧ Xch1 ≥ Xch2 then
MERGESUBPARTITIONS(Xch1, Xch2)

Subpartitions← CONSTRAINEDSORT(Subpartitions)
Subpartitions← DEDUPEDITS(Subpartitions)
return Subpartitions

Figure 8: The execution consistency algorithm.

5.3 Execution consistency

We next consider an even more relaxed guarantee with more
finer-grained transactions. Under execution consistency, a
new program element may only be visible to some execu-
tion paths but not others. Likewise, if an element is deleted
from some execution paths, other executions may still use this
element until all reconfigurations finish. Such intermediate
states are still consistent in that a packet never experiences
an execution path that mixes old and new elements. This is
the weakest level of consistency that we consider in FlexCore.
It is a suitable guarantee for program changes that are in na-
ture non-disruptive—e.g., functions that do not interfere with
packet processing decisions, or functions where inaccuracy
is tolerable. For instance, a telemetry module that samples or
aggregates traffic can be added or removed using execution
consistency. The intermediate states merely introduce noise
to the monitoring data, but do not break functionality.

Execution consistency. For any intermediate state Si, i ∈
[1..n], any execution path through this program, p∈ Si, should
satisfy that p ∈ G or p ∈ G∗.

This allows reconfigurations to proceed at a per execution
path basis. Paths are added to the program as a whole, or they
are deleted as a whole. But packets will not encounter partial
paths or paths that mix old and new elements.

Algorithm. Figure 8 shows the pseudocode. As before, we
perform a reachability analysis from Xch nodes; but unlike
in element consistency, the DFS terminates when encoun-
tering other Xch nodes or shared (black) nodes. The visited
elements form a subpartition for each Xch node. In element
consistency, if Xch1 reaches Xch2, they are merged into the
same transaction. But execution consistency only requires
the merge of certain Xch regions, but not all. If independent
reconfigurations of Xch1 and Xch2 do not lead to partial or
mixed paths, then their edits can be performed separately.

Specifically, we analyze the ordering relation between all
pairs of Xch nodes. If Xch1 can reach Xch2 via a green
(new) path pg, then reconfiguring Xch1 before Xch2 will
lead to a situation where the part of pg in Xch1 is activated
but its extension into Xch2 is not, leading to a mixed path.
Reconfiguring Xch2 before Xch1, on the other hand, is safe
because the changes are not reachable from Xch1. Of course,
this reconfiguration will not enable pg, but this may enable
other paths elsewhere so it is a valid plan to be considered.
Similarly, if Xch1 reaches Xch2 via a red (old) path pr, then
reconfiguring Xch2 before Xch1 will delete pr from its end
while its earlier part is still in use, resulting in mixed colors.
Reconfiguring Xch1 before Xch2, on the other hand, is valid
because it simply removes pr. If Xch1 can reach Xch2 via
green and red paths, then the only valid plan is to reconfigure
both regions atomically.

This above ordering relation generates a set of constraints
across Xch nodes, as well as an ordered set of subpartitions.
These subpartitions are finer-grained than the partitions in
element consistency, so they enable smaller transactions. One
final care must be taken: since subpartitions may be reachable
from each other, the bounded DFS may reach shared elements
from different Xch nodes. The edit operations in two subpar-
titions, therefore, may have overlaps. A deduplication step
over the subpartitions ensures that a deletion operation is de-
ferred to the last subpartition where the deleted element is
used, and that an insertion operation is performed in the first
subpartition where the new element occurs. This concludes
the execution consistency algorithm, whose complexity is
quadratic with regard to the number of Xch nodes.

Atomicity. The use of flex branches makes each subparti-
tion visible to network traffic atomically. The entire transac-
tion finishes when all subpartitions have been reconfigured.

5.4 Summary

The reconfiguration script is then realized by the partial re-
configuration primitives in Section 4—e.g., an operation on v
will translate into a table or branch operation depending on
v’s type. For program consistency, all edits are applied in one
single, atomic step, but for element and execution consistency,
the (sub)partitions are applied sequentially. This raises an-
other consideration as to the ordering of the transactions in the
latter two algorithms to minimize the maximum utilization
peak. We perform an exhaustive search over the order. This
search terminates when it has identified a feasible order or
when it concludes that no such order exists.

6 Limitations and Discussions
Program equivalence. The FlexCore partial reconfiguration
primitives and algorithms operate on P4 program elements, re-
lying on the structural differences between two P4 programs.
It currently doesn’t analyze whether structurally different pro-
grams may have the same semantics [10, 13], which is an
interesting avenue for future work.

658 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Stateful packet processing. FlexCore currently does not sup-
port stateful switch programs. The P4 standard defines per-
sistent state as an “extern” feature that is up to the individual
architectures to implement (e.g., registers in PSA). Partial
reconfiguration of stateful features raises additional questions
as to how network state should be ported to the new program,
e.g., with programmer-supplied state transformation func-
tions, much like in SDN software controller upgrades [32].
Resource headroom. The FlexCore algorithms require that
the switches have sufficient resource slack, but there could
be scenarios where even the weakest consistency would re-
quire more resource headroom than available. To address this,
one could relax execution consistency even further to capture
which types of ‘mixed’ executions are still semantically mean-
ingful; alternatively, one could also migrate certain resources
to other devices to make room for the reconfiguration.
Other architectures. The FlexCore primitives target P4
program changes, so they are in principle architecture-
independent. The dRMT variant that FlexCore uses makes
runtime reconfiguration particularly natural, but most P4 tar-
gets have some degree of runtime flexibility. The RMT archi-
tecture, for instance, may be augmented with the ability to
reconfigure each stage independently. Software switch targets
(e.g., for the host or NIC) expose even more runtime flexibility
than switch ASICs. Although the original dRMT project [11]
didn’t provide an ASIC implementation, we believe that our
indirection structures are compatible with its outlined design.
Other languages. FlexCore’s reconfiguration primitives tar-
get P4 programs, but for other languages (e.g., NPL [2],
PoF [36]), one should be able to develop analogous recon-
figuration primitives based upon their respective language
features. The property of runtime programmability is not tied
to a specific language.

7 Implementation
We have implemented FlexCore in several components. The
reconfiguration primitives are implemented by manipulating
the hardware ASIC control registers via the PCIe interconnect
from the control plane. The indirection structures are imple-
mented in the Spectrum-2 silicon design, and FlexCore is the
first effort to leverage them for runtime, partial reconfigura-
tion. Our compiler uses p4c [4] as the frontend; it implements
incremental compilation of P4 program elements, generating
an individual binary image for each component, instead of
outputting a monolithic binary for the entire program. The
consistency algorithms are implemented at the control plane.

The hardware cost to enable runtime programmability
comes from the use of indirection structures, including the
PDT and PST. The PDT supports full reconfigurability at all
consistency levels, but the PST only supports program consis-
tency. We estimate the cost of the current PDT and the cost
for making the PST fully reconfigurable at runtime.

Each MA processor has a local PDT, which holds roughly
1k entries—i.e., the largest P4 program it supports should

have no more than ∼ 1k MA tables and conditional branches.
The ASIC supports up to 128 MA processors overall. Recall
the PDT format as shown in Figure 2: each entry contains
a) a description of the match key, b) entry type (SRAM/T-
CAM/Actions), c) resource pointer, and d) next table/branch
pointer. In the worst-case scenario, each MA table has a dif-
ferent key, resulting in 1k distinct keys that the switch needs
to support; this requires 10 bits to represent each distinct key
in the PDT entry. The entry type field distinguishes between
three types, requiring 2 bits. The resource pointer requires
20 bits, which is able to index one million distinct memory
lines for SRAM/TCAM/Actions, roughly 20MB in size (the
‘main database’). The next table/branch pointer requires 10
bits to index another PDT entry as the next hop. Overall,
each PDT entry requires 42 bits, each PDT table consumes
5.25kB for 1k entries, and across 128 PDT tables the hard-
ware overhead is 0.67MB, or 3.3% of the main database. The
flex branch mechanism is implemented using existing ALUs,
so it doesn’t require dedicated hardware. For the PST, the
Spectrum-2 parser hardware only supports runtime reconfig-
uration at program consistency level. This does not contain
the ‘flex branch’ equivalent and the ‘version’ support for tran-
sition rules, which would be necessary for other consistency
levels. We estimate the overhead of these additional structures
to be under 1% of the main database.

8 Evaluation
We present a comprehensive evaluation of FlexCore, by ap-
plying our design to a 12.8 Tbps hardware ASIC and also a
software simulator (a fork of bmv2) that has been integrated
with the same reconfiguration primitives. To evaluate scala-
bility, we have used a set of synthetic and real-world P4 pro-
grams. To synthesize the P4 corpus, our tool takes a specified
program size and generates a random control flow graph. For
real-world programs, we have used switch.p4, NetCache [19],
and NetHCF [23], which represent large, medium, and small
programs, respectively. The program edits are also generated
randomly, which may mutate, insert, remove, or swap pro-
gram elements. The edits are controlled by a parameter α, the
reconfiguration ratio. If a program has 100 program elements,
and a reconfiguration adds, removes, or exchanges 10 of them,
we say that α= 10%. To evaluate realistic reconfiguration sce-
narios, we perform case studies using switch-based multicast,
telemetry, attack mitigation, and tenant-specific extensions,
on hardware and software platforms.

8.1 Reconfiguration primitives

We start by measuring the number of hardware operations
that each reconfiguration primitive involves. These primitives
are invoked by the control plane, and they modify a memory-
mapped region of the PCIe device (i.e., the data plane). The
PCIe bus sustains a peak throughput of∼1 million operations
per second. The control plane, however, is bottlenecked by the
software speed; each operation took several milliseconds to

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 659

0.01

0.02

0.03

 0 0.1 0.2 0.3 0.4 0.5

Ti
m

e
(s

ec
)

Reconfiguration ratio (α)

Elem
Exec
Prog

(a) NetHCF (V=43, E=58).

0.1

0.2

0.3

 0 0.1 0.2 0.3 0.4 0.5

Ti
m

e
(s

ec
)

Reconfiguration ratio (α)

Elem
Exec
Prog

(b) NetCache (V=109, E=129).

0.2

0.4

0.6

 0 0.1 0.2 0.3 0.4 0.5

Ti
m

e
(s

ec
)

Reconfiguration ratio (α)

Elem
Exec
Prog

(c) switch.p4 (V=168, E=242).
Figure 9: Scalability of FlexCore on three real-world programs. V: number of nodes, E: number of edges.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 50 100 150 200

Ti
m

e
(s

ec
)

Program size (# nodes)

Elem
Exec
Prog

(a) Turnaround time

 0

 50

 100

 150

 200

 0 50 100 150 200

N
um

be
r o

f r
ec

on
fig

. o
pe

ra
tio

ns

Program size (# nodes)

Exec
Elem
Prog

(b) Number of primitives

Figure 10: The FlexCore algorithms scale well.

complete with software overhead. Table 1 shows the number
of hardware register DWORD writes for each reconfiguration
primitive. As we can see, table operations are the most heavy-
weight, control flow branch operations follow, then parser
operations, and finally, edge edits complete within one write
and are atomic. Deallocations have the same number of oper-
ations as their allocation analogues.

Primitive RegAccess Primitive RegAccess

ALLOCTBL 112 GROUPTBL 112
ALLOCCOND 43 ALLOCSTATE 22
ALLOCTRANS 5 ALLOCEX 3

SETPTR 1 SETCONDPTR 2

Table 1: The number of hardware register accesses (in
DWORDS) for each reconfiguration primitive. Allocation
and deallocation primitives as measured only operate on meta-
data (i.e., PDT and PST), not including SRAM/TCAM/action
memory resources. The cost for the latter varies depending
on the allocation/deallocation sizes.

8.2 Consistency algorithms

Synthesized programs. We evaluate the scalability of Flex-
Core in generating reconfiguration scripts for programs of
different sizes. We generated 100 programs of each size (800
in total), and set α = 40% for FlexCore to generate reconfig-
uration scripts. Figure 10a shows the results. As expected,
program consistency took the least amount of time, as the only
analysis is on the program diff; all edits are then grouped as a

whole. The turnaround time for element consistency grows
roughly quadratically with regard to the program size (more
strictly, to the size of the diff, which is fixed to 40% of the
program size). Execution consistency algorithm lies in be-
tween, as it scales with the number of Xch nodes, which is
smaller than the program diff. Overall, FlexCore generated
reconfiguration scripts for all programs within one second.

Next, we measure the number of invocations of the partial
reconfiguration primitives as well as the version metadata op-
erations. As shown in Figure 10b, the numbers of operations
for different consistency levels are roughly the same. This
is because the number of reconfiguration operations are the
same regardless of the consistency level. But the number of
transactions increases for weaker guarantees due to the extra
version metadata operations.

Real-world programs. We then tested FlexCore on three
real-world programs of different sizes, and further varied the
reconfiguration ratio α from 5% to 50%. As Figure 9 shows,
the FlexCore turnaround time is longer for larger programs
and higher reconfiguration ratios. But the overall takeaways
are similar as before: FlexCore algorithms scale well for com-
puting reconfiguration scripts. In the Appendix, we further
include scalability results for ordering the transactions.

Consistency levels. Figure 11a shows the CDF of the trans-
action sizes under different consistency guarantees for the
synthetic programs with different sizes and α. Under stronger
consistency guarantees, the transactions have larger sizes (we
fix all tables to the same size). We also measure the head-
room requirements. Figure 11b visualizes the step-by-step
reconfiguration for one such program: program consistency
requires a large peak headroom, but weaker guarantees have
less stringent requirements. All consistency levels eventually
converge to the same utilization level after reconfiguration
completes. Figure 11c tests another program in the software
simulator, which plots the percentage of traffic that experi-
ences the old program after the first update is enabled during
the reconfiguration under different consistency levels. As we
can see, program consistency does not expose any interme-
diate state, but weaker guarantees lead to more traffic that is

660 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

C
um

ul
at

ive
 d

is
tri

bu
tio

n

Transaction size

Elem
Exec
Prog

(a) Transaction sizes

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70

M
em

or
y

us
ag

e
(%

)

Reconfiguration step

Elem Exec Prog

(b) Resource headroom

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

O
ld

-v
er

si
on

 tr
affi

c
(%

)

Reconfiguration step

Exec Elem Prog

(c) Consistency

Figure 11: (a) Weaker consistency guarantees lead to smaller transaction sizes; they require lower resource headroom, but more
traffic will encounter the old program during reconfiguration. In (b), the initial switch utilization when the reconfiguration starts
is 80%. In (c), we use a program whose control flow graph is presented in Figure 5; Y-axis shows the traffic ratio processed by
the old program after the first reconfiguration transaction is committed at the 6th step.

processed using the old program during the reconfiguration.

8.3 Case study: Accelerated multicast

Just-in-time optimization. Next, we present a case study us-
ing the hardware ASIC, where program elements are injected
to the switch pipeline at runtime to accelerate multicast appli-
cations. Initially, the switch is configured with a baseline pro-
gram without any multicast optimizations, and it connects one
ZeroMQ unicast sender and multiple receivers. Just before
the ZeroMQ application starts, we initiate a partial reconfigu-
ration to extend the switch program with Elmo [34], a switch-
based multicast function. Elmo performs source-routed multi-
cast in hardware with customized protocol headers to improve
scalability. After ZeroMQ finishes, another reconfiguration re-
moves the Elmo components from the switch pipeline. These
changes are performed under program consistency. Each re-
configuration took less than 0.5 s to complete in control plane
software.
Just-in-time telemetry. Just before removing Elmo, we in-
ject a co-located telemetry application to observe the effect
of Elmo removal, by monitoring the average pipeline latency
of randomly sampled packets. This telemetry application is
unloaded after the removal of Elmo.

Reconfiguration. Figure 12a plots the throughput of a third
background iPerf application during the entire reconfiguration.
As we can see, the reconfigurations did not cause any service
interruption, as the iPerf throughput was stable throughout
the experiment; the switch drop counters also showed no
packet loss. Figure 12b plots the additional resource usage
in terms of PDT memory, PST memory, and table entries
during the runtime reconfigurations. The insertion of Elmo
caused a resource usage increase, as did the insertion of the
telemetry application. But in both cases, the extra resource
overheads for PDT and PST are under 200 bytes. Table rules
for multicast and telemetry, on the other hand, are the domi-
nant overheads. All resources are released after the program
modules are removed from the pipeline.

Performance. Figure 12c shows that the injection of Elmo
improves multicast scalability, where we measure the comple-
tion time to send 200 k ZeroMQ messages. Before injecting
Elmo, a preceding ZeroMQ run via unicast took up to nearly
60 seconds for six receivers; and the completion time grows
roughly linearly with the number of receivers. After injecting
Elmo, the switch-based multicast scales independently of the
number of receivers, finishing at roughly 20 seconds across
all tested configurations. The injected telemetry application
detected that the pipeline latency experienced a 20 ns decrease
after Elmo was removed from the pipeline.

8.4 Case study: Dynamic telemetry upgrade

In-place application upgrade. We perform another ASIC-
based case study under execution consistency. The operator
modifies the telemetry application discussed earlier to use
different flow keys. Initially, the application uses the IPv4
five tuple as the match key and is configured with 30 k en-
tries. Packets of interest are sampled to software for telemetry
processing. The operator issues a reconfiguration to modify
the match key to the source and destination addresses instead,
using the MODTBL primitive. This modification also reduces
the resource usage, as entries become smaller.

Reconfiguration. Figure 13 plots the performance of a back-
ground iPerf application, which shows stable throughput. The
blue area further shows an additional IPv4 test trace that
we generated to specifically trigger the telemetry table. The
switch counters indicated zero packet loss for iPerf and the
IPv4 test traffic. We have set the migration rate to be 3k entries
per second, so the modified table was populated in ∼10s. The
PDT operations at the control plane software took 400 ms.

Utilization. Figure 14 shows the intermediate program sizes
using MODTBL, and compares it with the baseline that inserts
the new table and then deletes the old. The baseline incurs
a resource utilization spike, which occurs when both tables
are co-resident in the switch. As the old table is gradually
deallocated, the resource usage drops to the size of the new

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 661

Time (sec)

B
an

dw
id

th
 (G

bp
s)

0

2

4

6

8

10

12

0 25 50 75 100 125

Iperf (Gbps) Elmo load/unload Elmo run
Telemetry Telemetry load/unload

(a) Hitless reconfigurations.

Time (sec)

R
es

ou
rc

e
us

ag
e

(b
yt

es
)

0

250

500

750

1000

1250

0 25 50 75 100 125

Table Desciptor Parser Resouces Rules

(b) Resource overheads.

Num of subscribers

Ti
m

e
(s

ec
)

0

20

40

60

1 2 3 4 5 6

Unicast Elmo

(c) Performance improvements.

Figure 12: FlexCore inserts Elmo, a switch-based multicast program, just-in-time to accelerate ZeroMQ performance. It also
inserts a telemetry application to observe the effect of the removal of Elmo.

Time (sec)

Tr
af

fic
 ra

te
 (G

bp
s)

0
2
4
6
8

10
12

0 20 40 60 80

Reconfiguration traffic Background traffic
Reconfig start Reconfig done

Figure 13: Hitless table modification.

Time (sec)

S
R

A
M

 u
sa

ge
 (*

1K
 ru

le
s)

0

25

50

75

100

0 20 40 60 80

In-place modification Regular addition

Figure 14: Resource usage with in-place table modification.

table. The final SRAM usage shows the resource reduction in
changing the flow keys. In contrast, our in-place modification
consistently reduces resource usage reduction right from the
beginning, until resource usage approaches its final state.

8.5 Simulator case studies

We have performed two case studies in the software simulator
with element consistency. The appendix includes concrete
results. We highlight here that all reconfigurations were effec-
tive and free of interruptions.
Real-time attack mitigation. This case study injects a TCP
normalizing firewall [1] and a covert channel defense [39]
upon attack detection. The normalizer pads all TTL values
to avoid inconsistent views at host IDS [22], and the covert
channel defense clears TCP reserved bits to avoid data leak-
age [39]. The normalizer inspects incoming traffic, but the
covert channel defense inspects outgoing traffic.
Tenant-specific network extensions. VM migration triggers
FlexCore to carve out the tenant’s ACL functions from the
original switch and inject it to the destination switch.

9 Related work
Programmable networks. Network programmability has
been a longstanding goal in the community—starting with
‘active networks’ [6, 33, 37], each step in this direction has
led to significant innovation in the networking ecosystem.
FlexCore takes the next step to enable runtime programmable
switches. Recent projects P4Visor [42] and Hyper4 [16] also
use DAG merging algorithms on P4 programs, but our focus
is on partial program reconfiguration.
Consistent updates. Network updates are common to data-
centers [20, 28], and ensuring the absence of service interrupt
is a key goal [24]. Researchers have considered live migration
of BPG sessions and virtual routers [21, 38], and per-packet
and per-flow consistency guarantees for OpenFlow network
updates [29, 30]. Our work tackles the problem of achieving
reliable switch program updates at runtime, and proposes a
new set of consistency guarantees.
OS+network specialization. The vision of FlexCore is in-
spired by prior work in OS and network specialization.
SPIN [7] is an OS that allows applications to inject safe
and dynamic extensions to the kernel. Exokernel [14] en-
ables applications to specialize OS functions at user level.
ESwitch [26] specializes OpenFlow software data planes to
achieve higher performance for a given workload. Our work
aims to enable similar goals for programmable switches.

10 Conclusion
FlexCore argues that runtime programmability should be a
first-order goal in future networks, allowing functions to be
added or removed dynamically. FlexCore contributes design
considerations on switch architectures, partial reconfiguration
primitives, reconfiguration algorithms and consistency guaran-
tees. Our evaluation shows that the FlexCore reconfiguration
algorithms are scalable, and that runtime reconfigurations are
beneficial and free of disruption.
Acknowledgments: We thank our shepherd Laurent Van-
bever and the anonymous reviewers for their insightful com-
ments and suggestions. This work was supported in part by
CNS-1801884, CNS-1942219, CNS-2016727, CNS-2106388,
and CNS-2106751.

662 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Cisco: TCP normalization. https://www.cisco.com/
c/en/us/td/docs/security/asa/asa96/configu
ration/firewall/asa-96-firewall-config/con
ns-connlimits.html.

[2] nplang. https://github.com/nplang.
[3] The P4 language repositories. https://github.com

/p4lang.
[4] The p4c compiler. https://github.com/p4lang/p4

c.
[5] The P4Runtime Specification. https://github.com

/p4lang/p4runtime.
[6] D. Scott Alexander, William A. Arbaugh, Michael W.

Hicks, Panka J. Kakkar, Angelos D. Keromytis,
Jonathan T. Moore, Carl A. Gunter, Scott M. Nettles,
and Jonathan M. Smith. The SwitchWare active network
architecture. IEEE Network, 12(3):29–36, 1998.

[7] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E.
Fiuczynski, D. Becker, C. Chambers, and S. Eggers. Ex-
tensibility Safety and Performance in the SPIN Operat-
ing System. In SOSP, 1995.

[8] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Vargh-
ese, Nick McKeown, Martin Izzard, Fernando Mujica,
and Mark Horowitz. Forwarding metamorphosis: Fast
programmable match-action processing in hardware for
SDN. ACM SIGCOMM CCR, 43(4):99–110, 2013.

[9] H. Bunke, X. Jiang, and A. Kandel. On the mini-
mum common supergraph of two graphs. Computing,
65(1):13–26, 2020.

[10] Eric Hayden Campbell, William T. Hallahan, Priya
Srikumar, Carmelo Cascone, Jed Liu, Vignesh Rama-
murthy, Hossein Hojjat, Ruzica Piskac, Robert Soulé,
and Nate Foster. Avenir: Managing data plane diversity
with control plane synthesis. In Proc. NSDI, 2021.

[11] Sharad Chole, Andy Fingerhut, Sha Ma, Anirudh Sivara-
man, Shay Vargaftik, Alon Berger, Gal Mendelson, Mo-
hammad Alizadeh, Shang-Tse Chuang, Isaac Keslassy,
et al. dRMT: Disaggregated programmable switching.
In Proc. SIGCOMM, 2017.

[12] Michael Dalton, David Schultz, Jacob Adriaens, Ahsan
Arefin, Anshuman Gupta, Brian Fahs, Dima Rubinstein,
Enrique Cauich Zermeno, Erik Rubow, James Alexander
Docauer, et al. Andromeda: Performance, isolation, and
velocity at scale in cloud network virtualization. In Proc.
NSDI, 2018.

[13] Dragos Dumitrescu, Radu Stoenescu, Matei Popovici,
Lorina Negreanu, and Costin Raiciu. Dataplane equiva-
lence and its applications. In Proc. NSDI, 2019.

[14] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. Exoker-
nel: An Operating System Architecture for Application-
level Resource Management. In SOSP, 1995.

[15] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feam-

ster, Jennifer Rexford, and Walter Willinger. Sonata:
Query-driven streaming network telemetry. In Proc.
SIGCOMM, 2018.

[16] David Hancock and Jacobus van der Merwe. HyPer4:
Using P4 to virtualize the programmable data plane. In
Proc. CoNEXT, 2016.

[17] Kuo-Feng Hsu, Ryan Beckett, Ang Chen, Jennifer Rex-
ford, Praveen Tammana, and David Walker. Contra: A
programmable system for performance-aware routing.
In Proc. NSDI, 2020.

[18] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster,
Jeongkeun Lee, Robert Soule, Changhoon Kim, and Ion
Stoica. NetChain: Scale-free sub-RTT coordination. In
Proc. NSDI, 2018.

[19] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé,
Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion
Stoica. NetCache: Balancing key-value stores with fast
in-network caching. In Proc. SOSP, 2017.

[20] Naga Praveen Katta, Jennifer Rexford, and David
Walker. Incremental consistent updates. In Proc. Hot-
Nets, 2013.

[21] Eric Keller, Jennifer Rexford, and Jacobus E van der
Merwe. Seamless BGP migration with router grafting.
In Proc. NSDI, 2010.

[22] Christian Kreibich, Mark Handley, and V Paxson. Net-
work intrusion detection: Evasion, traffic normalization,
and end-to-end protocol semantics. In Proc. USENIX
Security, 2001.

[23] Guanyu Li, Menghao Zhang, Chang Liu, Xiao Kong,
Ang Chen, Guofei Gu, and Haixin Duan. NetHCF: En-
abling line-rate and adaptive spoofed IP traffic filtering.
In Proc. ICNP, 2019.

[24] Hongqiang Harry Liu, Xin Wu, Ming Zhang, Lihua
Yuan, Roger Wattenhofer, and David Maltz. zUpdate:
updating data center networks with zero loss. In Proc.
SIGCOMM, 2013.

[25] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun
Lee, and Minlan Yu. Silkroad: Making stateful layer-4
load balancing fast and cheap using switching ASICs.
In Proc. SIGCOMM, 2017.

[26] László Molnár, Gergely Pongrácz, Gábor Enyedi,
Zoltán Lajos Kis, Levente Csikor, Ferenc Juhász, At-
tila Kőrösi, and Gábor Rétvári. Dataplane specialization
for high-performance OpenFlow software switching. In
Proc. SIGCOMM, 2016.

[27] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan,
Prateesh Goyal, Venkat Arun, Mohammad Alizadeh, Vi-
malkumar Jeyakumar, and Changhoon Kim. Language-
directed hardware design for network performance mon-
itoring. In Proc. SIGCOMM, 2017.

[28] Thanh Dang Nguyen, Marco Chiesa, and Marco Canini.
Decentralized consistent updates in SDN. In Proc.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 663

https://www.cisco.com/c/en/us/td/docs/security/asa/asa96/configuration/firewall/asa-96-firewall-config/conns-connlimits.html
https://www.cisco.com/c/en/us/td/docs/security/asa/asa96/configuration/firewall/asa-96-firewall-config/conns-connlimits.html
https://www.cisco.com/c/en/us/td/docs/security/asa/asa96/configuration/firewall/asa-96-firewall-config/conns-connlimits.html
https://www.cisco.com/c/en/us/td/docs/security/asa/asa96/configuration/firewall/asa-96-firewall-config/conns-connlimits.html
https://github.com/nplang
https://github.com/p4lang
https://github.com/p4lang
https://github.com/p4lang/p4c
https://github.com/p4lang/p4c
https://github.com/p4lang/p4runtime
https://github.com/p4lang/p4runtime

SOSR, 2017.
[29] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole

Schlesinger, and David Walker. Abstractions for net-
work update. In Proc. SIGCOMM, 2012.

[30] Mark Reitblatt, Nate Foster, Jennifer Rexford, and David
Walker. Consistent updates for software-defined net-
works: Change you can believe in! In Proc. HotNets,
2011.

[31] Jerome H Saltzer, David P Reed, and David D Clark.
End-to-end arguments in system design. ACM Trans.
Comput. Syst., 2(4), 1984.

[32] Karla Saur, Joseph Collard, Nate Foster, Arjun Guha,
Laurent Vanbever, and Michael Hicks. Safe and flexible
controller upgrades for SDNs. In Proc. SOSR, 2016.

[33] B. Schwartz, A. W. Jackson, W. T. Strayer, W. Zhou,
R. D. Rockwell, and C. Partridge. Smart packets for
active networks. In Proc. OpenArch, 1999.

[34] Muhammad Shahbaz, Lalith Suresh, Jennifer Rexford,
Nick Feamster, Ori Rottenstreich, and Mukesh Hira.
Elmo: Source routed multicast for public clouds. In
Proc. SIGCOMM, 2019.

[35] John Sonchack, Oliver Michel, Adam J Aviv, Eric Keller,
and Jonathan M Smith. Scaling hardware accelerated
network monitoring to concurrent and dynamic queries
with *flow. In Proc. USENIX ATC, 2018.

[36] Haoyu Song. Protocol-oblivious forwarding: Unleash
the power of SDN through a future-proof forwarding
plane. In Proc. HotSDN, 2013.

[37] D. L. Tennenhouse and D. J. Wetherall. Towards an
active network architecture. ACM SIGCOMM CCR,
26(2):5–18, 1996.

[38] Yi Wang, Eric Keller, Brian Biskeborn, Jacobus Van
Der Merwe, and Jennifer Rexford. Virtual routers on the
move: live router migration as a network-management
primitive. ACM SIGCOMM CCR, 38(4):231–242, 2008.

[39] Jiarong Xing, Qiao Kang, and Ang Chen. Netwarden:
Mitigating network covert channels while preserving
performance. In Proc. USENIX Security, 2020.

[40] Nofel Yaseen, John Sonchack, and Vincent Liu. Syn-
chronized network snapshots. In Proc. SIGCOMM,
2018.

[41] Liangcheng Yu, John Sonchack, and Vincent Liu. Man-
tis: Reactive programmable switches. In Proc. SIG-
COMM, 2020.

[42] Peng Zheng, Theophilus Benson, and Chengchen Hu.
P4Visor: Lightweight virtualization and composition
primitives for building and testing modular programs.
In Proc. CoNEXT, 2018.

11 Appendix
11.1 Case study: Real-time attack mitigation

In this case study, we present how FlexCore facilitates real-
time attack mitigation by reconfiguring two defense functions
to the software switch simulator.

Traffic normalizers [22] are firewall utilities that prevent
inconsistent views between network IDS and end hosts. As
an example, some packets may be seen by the IDS, but their
TTL values are crafted in such a way that they are dropped
soon after the network IDS and do not trigger processing at
end hosts. This leads to vulnerabilities [22]. A normalizer
firewall can pad TTL values to ensure that the IDS and the
hosts always have the same view.

Covert channels [39] leak secret data by repurposing packet
header fields as data carrier. For instance, an attacker that
compromise a server that hosts confidential data may leak the
secret by padding them into the TCP reserved bits of network
traffic. A defense needs to clear such optional header fields to
prevent leakage.

Real-time attack mitigation. In our case study, we in-
ject a TCP normalizing firewall [1] and a covert channel
defense [39] upon attack detection. Since these two defenses
are independent, they can be reconfigured under element con-
sistency. Figure 15 shows the workflow for the reconfigura-
tion. After each defense is deployed, the attack traffic can be
recognized and blocked; its throughput drops to zero. The
normal traffic does not experience any loss or interruption
during the reconfiguration.

11.2 Case study: Tenant-specific network extensions

In this case study, we focus on multi-tenant datacenters where
each tenant can inject her own network extensions to the
switch. Upon VM migration, the switch modules are carved
out from the source and grafted to the new destination switch.

Program grafting in VM migration. In this scenario, a
tenant has her ACL module injected to the ToR switch, and her
VM migration will bring this module to a different destination
rack. This is achieved by carving out the ACL components
and grafting them to the destination switch using partial re-
configurations. Figure 16 shows the traffic rate of the tenant’s
traffic and the background traffic. The migration is achieved
in several steps. It first inserts the ACL module to the new
switch, and then routes traffic to the new switch by updating
the routing rules of upstream switches. Finally, it removes the
ACL module in the old switch. As we can see, the migration
does not cause throughput drops of the background traffic
during the reconfiguration, and the tenant’s traffic is migrated
to the new switch without service interruption.

11.3 Evaluation: Ordering the transactions

For element and execution consistency, the reconfiguration
proceeds in multiple steps. So FlexCore additionally performs
an exhaustive search to identify a feasible sequence under
the current headroom. The problem can be stated as: given

664 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Simulation time (sec)

S
T

(p
ps

)

0

5

10

15

0 10 20 30 40

Normal Out Normal In IDS evasion
Covert channel Transaction 1 done

Transaction 2 done

Figure 15: Simulation traffic rates (ST) when reconfiguring
the switch using element consistency to inject real-time net-
work defenses.

Figure 16: Simulation traffic rates (ST) during a reconfigura-
tion triggered by VM migration, which carves out an tenant-
specific ACL module from the source switch and grafts it to
the destination switch.

 0

 0.2

 0.4

 0.6

 0.8

 1

0 0.05 0.1 0.15 0.2 1.25

C
D

F

Time (ms)

r=10%
r=20%
r=30%
r=40%
r=50%

(a) Element consistency

 0

 0.2

 0.4

 0.6

 0.8

 1

0 0.5 1 1.5 6s

C
D

F

Time (ms)

r=10%
r=20%
r=30%
r=40%
r=50%

(b) Execution consistency

Figure 17: The turnaround time for finding a feasible sequence
for the transactions, under element and execution consistency.

a set of transactions tx1, tx2, · · · , txk, find a feasible sequence
that fits into the current resource headroom, or conclude that
such a sequence doesn’t exist. For element consistency, the
transactions do not have a hard constraint as to their order.
The search only focuses on optimizing for resource head-
room. Execution consistency has hard constraints as to which
transactions should be ordered before others. The search also
encodes such constraints as induced from the XCH nodes.

In Section 8.2, we have evaluated the scalability of the algo-
rithm in generating reconfiguration scripts. Here, we further
evaluate the turnaround time for identifying a feasible se-
quence of transactions that can be applied within the available
headroom. We have used an α ranging from 10% to 50% on
the synthesized programs, and tried different switch resource

headrooms as denoted by r (ranging from 10% to 50%).
Figure 17a shows the results for element consistency. We

can see that FlexCore finishes within 0.2ms for all programs
across different headrooms except for r=10%. With 10% head-
room, the switch has very small slack for the reconfiguration,
so it takes more time to search for a feasible plan or determine
that no solution exists.

Figure 17b shows the results for execution consistency,
where the turnaround time is higher because of two reasons.
First, execution consistency needs to merge and deduplicate
the subpartitions following their constraints. Second, execu-
tion consistency could generate more candidate solutions,
resulting in longer searching time. However, the algorithm
can still complete within 1.5ms for 98% programs and within
6s for all programs.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 665

IMap: Fast and Scalable In-Network Scanning with Programmable Switches

Guanyu Li⋆, Menghao Zhang⋆†, Cheng Guo⋆, Han Bao⋆, Mingwei Xu⋆, Hongxin Hu◦, Fenghua Li⋆

⋆Tsinghua University †Kuaishou Technology ◦University at Buffalo, SUNY

Abstract

Network scanning has been a standard measurement tech-

nique to understand a network’s security situations, e.g., re-

vealing security vulnerabilities, monitoring service deploy-

ments. However, probing a large-scale scanning space with

existing network scanners is both difficult and slow, since

they are all implemented on commodity servers and deployed

at the network edge. To address this, we introduce IMap, a

fast and scalable in-network scanner based on programmable

switches. In designing IMap, we overcome key restrictions

posed by computation models and memory resources of pro-

grammable switches, and devise numerous techniques and

optimizations, including an address-random and rate-adaptive

probe packet generation mechanism, and a correct and effi-

cient response packet processing scheme, to turn a switch

into a practical high-speed network scanner. We implement

an open-source prototype of IMap, and evaluate it with exten-

sive testbed experiments and real-world deployments in our

campus network. Evaluation results show that even with one

switch port enabled, IMap can survey all ports of our campus

network (i.e., a total of up to 25 billion scanning space) in 8

minutes. This demonstrates a nearly 4 times faster scanning

speed and 1.5 times higher scanning accuracy than the state of

the art, which shows that IMap has great potentials to be the

next-generation terabit network scanner with all switch ports

enabled. Leveraging IMap, we also discover several potential

security threats in our campus network, and report them to

our network administrators responsibly.

1 Introduction

Network scanning is a typical procedure to discover active

hosts, ports and services in a network, which is mainly used

by network operators/researchers for security assessment and

system maintenance of the network. Enabled by tools such as

Nmap [39], ZMap [14] and Masscan [33], network scanning

has become a standard measurement technique to understand

host behaviors in the target network, even the entire Internet.

Recent studies have demonstrated that network scanning can

help reveal new security vulnerabilities [3, 6, 10], monitor

service deployments [2, 13, 20, 42] and shed light on previ-

ously opaque distributed systems [19], which are essential for

people to understand the network’s security situations.

Today’s network scanners, however, cannot keep pace with

today’s soaring scanning space and provide a timely secu-

rity snapshot. Recently IPv6 has proceeded to the stage of

large-scale deployment, and reports show that IPv6 is used by

18.7% of all the websites [47]. Along with the adoption of 5G

networks, more and more Internet-of-Things (IoT) devices

and mobile devices are connecting online [4]. The increased

address space and the numerous online devices mean that

the network scanner should be scalable to this much larger

scanning space easily. Moreover, since these IoT and mobile

devices go online and offline frequently, it is necessary for net-

work scanners to conduct a comprehensive scanning quickly.

Otherwise, a large number of security snapshots cannot be cap-

tured, potentially missing numerous security incidents [46].

This raises the requirement that the network scanner should

complete a comprehensive scanning as fast as possible.

However, a closer look into today’s network scanners shows

that they are far from being fast and scalable due to their im-

plementation targets and deployment locations. First, in terms

of implementation targets, current network scanners are all

implemented on commodity servers. As CPUs on servers are

not specialized for high-speed packet processing, the scanning

speed of these CPU-based network scanners is intrinsically

limited. Second, in terms of the deployment locations, state-

of-the-art network scanners are all located at the network

edge. Scanning from the edge is usually limited by the up-

stream bandwidth of the end host, which inevitably constrains

the utmost scanning speed for network scanning tasks. Be-

sides, the end-to-end scanning paths indicate more bandwidth

waste for edge networks and larger possibilities of dropping

probe/response packets.

In this paper, we propose IMap, a fast and scalable

in-network scanner to address the aforementioned issues.

The technology enabler for IMap is the emergence of pro-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 667

grammable switches [9], which offer unprecedented pro-

grammability and flexibility without sacrificing performance.

Generally speaking, one single programmable switch could

provide a packet processing capability as high as multi-

ple Tbps, which is several orders of magnitude higher than

highly-optimized servers. Besides, such switches support

stateful packet processing with domain-specific languages

(e.g., P4 [8]), which allows programmers to enforce user-

defined packet processing logics in the switch pipeline di-

rectly. Moreover, switches (especially core switches) provide

a unique vantage point for network scanning, which is no

longer constrained by the upstream bandwidth of the end host

or plagued by the bandwidth waste of the end-to-end scan-

ning paths. These unique characteristics of programmable

switches are incredibly valuable for the next-generation fast

and scalable network scanners.

Nevertheless, designing IMap is a non-trivial effort. As

an in-network scanner, when sending probe packets, IMap

must cover the scanning space completely, and also be aware

of network conditions to avoid affecting the normal packet

routing functionality. Besides, once response packets arrive,

IMap should distinguish normal packets and response packets

correctly, and also process the response packets efficiently to

avoid saturating the storage server. However, switches only

have constrained computational models and limited memory

resources, which cannot satisfy these requirements easily.

To meet these requirements, IMap designs a set of tech-

niques and optimizations, i.e., an address-random and rate-

adaptive probe packet generation mechanism, and a correct

and efficient response packet processing scheme, to turn a

switch into a high-speed network scanner. We implement a

prototype of IMap in an Intel Tofino switch [23], and make

the source code publicly available [22]. Testbed experiments

and real-world deployments show that even with one switch

port enabled, IMap can survey all ports of our campus net-

work (i.e., 6 Class B IP Addresses), a total of up to 25 billion

scanning space, in 8 minutes, achieving a nearly 4 times faster

scanning speed and 1.5 times higher scanning accuracy than

state-of-the-art network scanners. IMap also discovers several

potential security threats in our campus network. To the best

of our knowledge, IMap is the first network scanner that can

potentially reach multiple Tbps scanning speed, benefiting

from its implementation targets and deployment locations. We

hope IMap can serve as the foundation for next-generation

terabit network scanners.

In summary, we make following contributions in this paper:

• We analyze the limitations of current network scanners,

and identify the opportunities brought by programmable

switches (§2).

• We propose IMap, a fast and scalable in-network scanner

with programmable switches. IMap consists of a probe

packet generation module to generate high-speed probe

packets with random address and adaptive rate, and a

response packet processing module to process response

packets correctly and efficiently (§3, §4).

• We implement an open-source prototype of IMap, and

conduct extensive testbed experiments and campus net-

work deployments to show advantages of IMap (§5, §6).

Finally, we make some discussions in §7, describe related

works in §8, and conclude this paper in §9.

2 Motivation and Observation

2.1 Limitations of Current Network Scanners

With the rapid growth of scanning spaces and security inci-

dents recently, today’s network scanners are falling behind the

times, especially in terms of scanning scalability and scanning

speed. First, network scanners should be able to scale to large

scanning spaces easily. Recently IPv6 has been in the stage

of large-scale adoption, for instance, Google’s statistics show

that around 35% of its users access Google via IPv6 [24].

Since IPv6 has a much larger address space than IPv4, the

scanning space increases drastically. Besides, along with the

deployment of 5G networks, more and more IoT/mobile de-

vices are connecting online [4]. All these require that network

scanners should be able to cover a large scanning space easily.

Second, network scanners should be fast enough to provide

timely security snapshots. Today’s networks become more

and more dynamic, and IoT/mobile devices switch between

online and offline frequently. Meanwhile, we have also wit-

nessed that security incidents occur more and more frequently,

and some of them occur in a very small time scale (e.g., from

tens of seconds to several minutes). For example, according to

Cybint’s monthly newsletter, since COVID-19, the frequency

of cybercrimes increases 300%, and hackers attempt to at-

tack vulnerable home networks as people are working from

home [46]. As a consequence, network scanners should be

able to complete a comprehensive scanning as fast as possible.

Otherwise, some security snapshots cannot be captured and

important security incidents may be missed.

However, today’s network scanners are intrinsically slow,

which are far from being fast and scalable to satisfy the

aforementioned new requirements. For example, with Zip-

pier ZMap [1], one of the most powerful network scanners

today, the scanning capability only reaches a throughput of

10 Gbps and a rate of 14.2 Mpps [45]. The capability of

today’s network scanners is limited by two key factors fun-

damentally. First, in terms of implementation targets, current

network scanners are all implemented on commodity servers.

Packet processing on commodity servers is intrinsically slow,

since CPUs are not specialized for high-speed packet process-

ing. Even with software optimizations like DPDK [12], the

throughput cannot reach more than 40 Gbps easily [25,41,50].

Second, in terms of deployment locations, today’s network

scanners are all located at the edge of the network. Scanning

668 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

from the edge is not only limited by the upstream bandwidth

of the end host, but also incurs longer scanning paths and

non-negligible bandwidth waste because of end-to-end scan-

ning paths. As a result, even the scanners are capable of

scanning at higher rate (e.g., 40 Gbps), the scanning results

(e.g., hit rate, active/inactive rate) may suffer from low ac-

curacy because of undesirable probe/response packet drops

on the end-to-end scanning paths (§6.2). Not surprisingly,

because of these fundamental limitations, since the publica-

tion of Zipper ZMap [1], the network scanning tools have

not experienced any progress, and researchers have turned

to improve the scanning accuracy with the help of various

algorithmic techniques [7, 15, 16, 21, 36].

2.2 Opportunities by Programmable Switches

Programmable switches [8, 9] bring unprecedented oppor-

tunities to address the limitations of current network scanners.

High packet processing capability. Switching ASICs are

specialized for high-speed line-rate packet processing, which

can provide several orders of magnitude higher throughput

than highly-optimized servers [25]. Specifically, today’s latest

CPU-based network scanner, Zipper ZMap [1], could only pro-

vide a scanning rate of 14.2 Mpps and a scanning throughput

of 10 Gbps. In contrast, switching ASICs can easily process a

few billion packets per second, which shows great potentials

to be a terabit network scanner. Other hardware alternatives,

such as FPGA and NPU, cannot match the performance of

switching ASICs [25], thus not promising for a high-speed

network scanner.

Flexibility to support scanning tasks. The most prominent

characteristic of the new-generation switching ASICs is pro-

grammability. Such switching ASICs can be programmed

with domain-specific languages like P4 [8], and also support

stateful packet processing with user-defined logics. Besides,

programs can run collaboratively between the data plane

switching ASICs and the control plane switch CPUs, enabling

advanced and flexible packet processing. As a result, diverse

scanning tasks can be implemented in the programmable

switch, which would potentially be the foundation of next-

generation high-speed network scanners.

Vantage points to conduct network scanning. Existing net-

work scanners are all located at network edges and imple-

mented in end hosts, where the utmost scanning rate is usu-

ally constrained by the bandwidth of the end hosts. Worse yet,

scanning from the end host requires an end-to-end scanning

path, which inevitably results in the waste of bandwidth re-

sources and the degradation of scanning accuracy. In contrast,

switches provide a unique vantage point for network scanning

tasks. Core switches usually have huge spare bandwidths (i.e.,

more than 50% spare bandwidth [11]), which shows substan-

tial potentials for network scanners to tap. Moreover, scanning

from a core switch is no longer plagued by the bandwidth

waste or the scanning accuracy degradation resulted from

./imap

--ip-list ip.txt

--port-range

0:65535

Operator

Network

Scanning

Results

Programmable Switch

CPU

ASIC

Probe Packet Generating

Response Packet Processing

Control Plane Programs

Storage Server

Persistent Database

Result Unpacker

Query

Result

Database

"1.2.3.4:
22"

"active"

P4

Figure 1: The workflow of IMap.

the end-to-end scanning path. This scanning vantage point is

particularly valuable for high-speed network scanners.

3 IMap Overview

3.1 Deployment Scenario

Our scenario focuses on a network-centric deployment

model, where the administrators of an ISP or a cloud network

deploy IMap to understand their own network’s security situ-

ations. IMap could also be used for Internet-wide scanning,

but this should avoid causing any ethical concerns, as pointed

out in ZMap [14]. Ideally, IMap should be built on a core

switch, which provides both routing services and scanning

functionality simultaneously. In other words, the IMap switch

should first preserve the functionality of packet switching,

and then behave as a high-speed network scanner when there

is spare bandwidth (e.g., reports show that bandwidth occu-

pation ratio for core switches is usually less than 50% [11]).

Note that the deployment of programmable switches is not a

new requirement; several ISPs/cloud networks have already

replaced their legacy switches with programmable switches in

their networks, which we believe is an irresistible trend in the

foreseeable future [40, 43, 44]. Besides, an in-core-network

scanner also raises the bar for attackers to take advantage of

this powerful network scanner, as it is difficult for normal

attackers to obtain such a deployment location.

3.2 Workflow and Design Requirements

IMap is designed to be a high-speed, easy-to-use network

scanner, so the usage of IMap is similar to traditional network

scanners, such as ZMap [14] and Masscan [33]. As shown in

Figure 1, operators should first specify the scanning address

spaces and scanning port ranges beforehand. Then IMap con-

trol plane programs parse these configurations and issue the

parsed parameters into the IMap packet processing logic. Af-

ter that, IMap data plane programs generate high-speed probe

packets and process response packets accordingly. Finally, the

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 669

scanning results, i.e., the information extracted from the re-

sponse packets, are written into a persistent database, such as

a Redis in-memory data store [29]. In the design, implemen-

tation and deployment of IMap, we identify several different

design requirements that must be satisfied to make IMap a

practical high-speed network scanner, especially in terms of

probing packet generation and response packet processing:

Space-complete and rate-adaptive probe packet genera-

tion(§4.1). In terms of probe packet generation, there are two

key requirements in switch-based high-speed scanning. First,

IMap should be able to cover the desired scanning space (i.e.,

|address space| × |port space|) completely, without duplica-

tions and omissions. This is a basic functional requirement

for a network scanner. Second, packet switching is the first-

class citizen of the switch, therefore, IMap should be able

to conduct network scanning tasks without affecting normal

network routing functionality. As the spare bandwidth of the

network is dynamic, we need a network-aware method to

generate high-speed probe packets with adaptive rate.

Correct and efficient response packet processing(§4.2).

With regards to response packet processing, we also have

to fulfill two requirements. First, switches are also responsi-

ble for normal packet forwarding, therefore, the input packets

for the switch-based scanner have both normal packets and

response packets. As a result, the scanner should be able

to distinguish normal packets and response packets correctly.

Second, response packets cannot be steered to servers directly,

as it may saturate the bandwidth of the storage servers and

overwhelm the writing capability of the database. The scanner

should have an efficient response packet processing approach

to reduce the server-side pressure.

4 IMap Design

4.1 Probe Packet Generation

Switch is designed to be a packet forwarding device, not

a packet generation device, thus cannot generate probe pack-

ets without ground. Inspired by HyperTester [49], we also

leverage the template-based packet generation mechanism to

generate high-speed probe packets. As shown in Figure 2, the

switch CPU first prepares a set of template packets with ini-

tialized headers, and injects them into switching ASICs. Our

tests manifest 50k template packets are enough for line-rate

scanning and the injection takes 15 ms, causing negligible

loads on the switch CPU. After receiving these template pack-

ets, switching ASICs keep looping these packets in the switch

pipeline, where each packet experiences three sequential steps:

an accelerator to accelerate the template packets to 100 Gbps

line rate, a replicator to replicate the template packets into

several switch ports, and an editor to edit the headers of repli-

cated template packets into desired probe packets.

(1) Accelerator. The accelerator is located at the ingress

pipeline, and it keeps looping the template packets by inject-

Traffic

Manager
Egress PipelineIngress Pipeline

Rec.

Replicator
Editor

Random

Probing

Adaptive

Probing

Rec.

Tx.

Tx.
CPU.

Accelerator

Figure 2: Probe packet generation of IMap.

ing these packets into the recirculate port. The recirculate

port is a special port in the switch pipeline, where the injected

packets are sent back to the ingress pipeline immediately.

Therefore, after injecting a set of template packets to fill the

switch pipeline, we get a 100 Gbps line-rate stable packet

source for the replicator.

(2) Replicator. The replicator is located at the traffic man-

ager, which mainly takes the template packets from the ac-

celerator as input and replicates these packets into a given

port set with the packet replication engine. The packet repli-

cation engine is a hardware component in the traffic manager,

which is widely supported by today’s programmable switches.

By configuring a set of ports for multicast from the control

plane, incoming packets will be replicated and forwarded to

the given port set in parallel. The original template packets

from the accelerator will continue to be recirculated across

the switch pipeline, to ensure line-rate stable packet source

for the replicator, and the replicated template packets would

go through the editor for further processing.

(3) Editor. The editor resides in the egress pipeline, and

it is responsible to modify the replicated template packets

into the desired probe packets. As long as the packet headers

can be parsed by programmable switches, the headers can be

set to given values, e.g., constants, or values from registers.

To turn replicated template packets into probe packets, some

header fields (e.g., destination IP address, destination port)

need modification via the editor, while other fields (e.g., pro-

tocol type, source IP address) are inherited from the template

packets which are created by the switch CPU initially.

With the steps above, we obtain continuous probe packets

at line rate in multiple egress ports. Nevertheless, to be a

practical high-speed network scanner, IMap should be able

to generate probe packets to cover the scanning space (i.e.,

|address space| × |port space|) completely, and adapt the

scanning rate according to the network conditions.

4.1.1 Random probe address

To cover the scanning address space completely, an intu-

itive way is to scan from the start IP address to the end IP

address one by one. Nevertheless, simply probing IP addresses

in numerical order would overwhelm the target networks with

the scanning traffic, which may produce inconsistent probing

results and incur complaints from the target networks. To

avoid this, IMap should be able to scan the addresses accord-

670 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Probe
Table
(T1)

CPU

ASIC

Probe
Address

PIPR T0T0

T1

PIPR Entry Producer

for ip_prefix in rest_probe_space:
for probe_prefix = (ip_prefix * ROOT) mod PRIME

0 2N-1~Start End

Index Start End

PIPR T1

Index Start End

Probe
Port

PIPR Loop Times
2N

Port Stride

Port

==?

+1

+1

Finish!

Handoff

Filling
State
== 0 ?

Figure 3: Random probe address.

ing to a permutation of the address space, without duplications

and omissions. However, the switching ASICs only have lim-

ited programmability and memory resources, which cannot

support complex calculations or maintain massive states. The

address generation approach in ZMap [14] requires calcula-

tions such as multiplication and modulo, thus is not feasible

in the switching ASICs.

To address this problem, we leverage the flexibility of the

switch CPU to supplement the switching ASICs to generate

line-rate address-random probe packets. In the editor of the

switching ASICs, we design a Probe IP Range (PIPR) table

based on register arrays. In the switch CPUs, we have a PIPR

Entry Producer module. Using the address generation method

similar to ZMap [14], the PIPR Entry Producer module can

generate a random permutation of the probe IP ranges for a

given address space. After the PIPR Entry Producer module

fills part of the generated probe ip ranges into the PIPR table,

probe packets can iterate through the PIPR table to obtain the

random destination IP addresses. As the data plane scanning

is pretty fast, a PIPR table with entry size of 1 will be scanned

quickly, so we store a probe ip range in each entry of the PIPR

table. To implement this, our PIPR table consists of two reg-

ister arrays: one is named as PIPR_Start array, which is used

to store the start of the probe ip range; the other is named as

PIPR_End array, to store the end of the probe ip range. Before

the PIPR table, we have a PIPR_Index register, which is used

to index the PIPR table. The initial value of the PIPR_Index

register is set as 0 by the control plane; upon an incoming

probe packet, the value of PIPR_Index increases by 1, until the

size of the PIPR table; after that, the PIPR_Index is assigned

as 0 again and another loop starts. For the PIPR_Start array,

upon each incoming packet, the corresponding PIPR_Start

register increases by 1, until the PIPR_End register. When

the value of the last PIPR_Start register is equal to the value

of the last PIPR_End register, the scanning for the current

PIPR table is finished, and the PIPR Entry Producer module

is supposed to fill a new round of probe ip ranges into the

PIPR table. To send the finish signal to the control plane, we

leverage the egress to egress mirror primitive in the switch

pipeline, which can carry a predefined flag to the switch CPU

to notify the PIPR Entry Producer module.

However, conducting a new round of PIPR table filling is

a time-consuming task. According to our tests on the Intel

Tofino switch [23], even with the batching optimization, filling

a PIPR table with size of 65,536 requires about 0.3 seconds.

This indicates that, after a round of scanning, the data plane

has to wait for at least 0.3 seconds to start the next round of

scanning. This is unacceptable for high-speed scanning, as it

compromises the scanning rate significantly. To resolve this

problem, we introduce two PIPR tables and PIPR_Index reg-

isters. When one PIPR table is being scanned, the other PIPR

table is being filled with the next round of probe ip ranges. To

make the two PIPR tables handoff seamlessly, we design a

Probe_Table register in the first stage of the egress pipeline,

which is switched between 0 and 1, and controls the flow of

probe packets. The switching of the Probe_Table register is

triggered by the finish signal of the egress to egress mirror

primitive. Definitely, to achieve continuous probe packets,

there is a mathematical relation that the PIPR table size, the

PIPR table filling time, and the scanning rate must satisfy.

Supposing the size of the PIPR table is N, the difference be-

tween each PIPR_Start register and PIPR_End register (i.e.,

the size of a PIPR table entry) is L, the PIPR table filling time

is T seconds, the total scanning rate R (packets per second)

should satisfy that R ≤ N×L
T

. However, there are still a few

extreme scenarios where the actual PIPR table filling time is

longer than the expected T , e.g., caused by the congestion of

the switch CPU or the control channel. It means the inequality

is not held and the PIPR table is being read before fully filled.

To deal with such cases, we add a Filling_State register before

the PIPR_Table register to indicate whether the PIPR table

filling is finished. It is set to 1 when the control plane begins

to fill and set to 0 when the control plane finishes the filling.

The finish signal of the egress to egress mirror primitive will

check whether the Filling_State register is 0 before it switches

the PIPR_Table register.

Until now, the designs above only consider one port sce-

nario, which should be extended to support a port range sce-

nario, e.g., scanning from port 22 to port 80. Since the scan-

ning address already has good randomness, we choose to scan

the port one by one. However, updating the Port register from

the control plane would bring about race conditions, as the

high-speed probe packets are already looping in the switch

pipeline. To address this, we design a port self-increment

mechanism in the data plane. As the control plane knows in

advance the number of times the scanning address space needs

to loop in the PIPR table, we design a Port_Stride register in

the switch pipeline, which is filled with the number of loop

times by the control plane. Every time the scanning of one

PIPR table finishes, the corresponding counter increases by 1,

until the value of the Port_Stride register. Then, the Port reg-

ister increases by 1 and the counter is set as 0 again. With all

the mechanisms above, the final design of our random probe

address is described in Figure 3, which achieves to generate

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 671

address-random probing packets to cover the scanning space

completely, without overwhelming target networks.

4.1.2 Adaptive probe rate

To avoid affecting the normal packet routing functional-

ity of the network, IMap desires a network-aware method to

generate high-speed probe packets with adaptive rate. The

“adaptive” here has two kinds of meanings. First, the con-

trol plane of the IMap switch should be aware of the nearby

network conditions for further scanning rate adjustment. Fur-

thermore, the IMap data plane should have a rate-adjusting

interface, which can receive commands from the control plane

to accurately adjust the scanning rate.

To be control plane aware, IMap should be able to adjust

the scanning rate according to the network conditions. We

formulate the scanning rate adjustment problem as follows.

The scanning network can be modeled to a graph G = (V,E),
where V and E are sets of forwarding devices and directed

links between devices. Note that link e = (vi,v j) is directed,

and (vi,v j) and (v j, vi) are different links. Each link e ∈ E has

a capacity ce and its current load is represented with le. We

assume there exists a monitoring system in the network, so le
can be obtained with the port bandwidth usage of the devices

connected by e periodically. IMap is deployed in vIMap ∈V

and its ports PIMap = {p} connect to the network with links

{ep} ⊂ E. The maximal scanning rate for port p is cep , which

is the bandwidth capacity of the link ep. According to the

routing table on vIMap, we can partition the scanning space

S by PIMap in advance so that each port p corresponds to a

routing-aware sub-scanning space sp ⊂ S. Besides, we can

estimate the extra load dp,e on each link e caused by full-rate

probe packets of sp. This can be done by configuring IMap

to send probe packets of sp with a specific tag on port p at

low rate, then using the monitoring system to detect the load

caused by the traffic with the given tag, and finally inferring

dp,e when the scanning rate is cep [28, 31]. Such partition and

estimation should be repeated to adapt to routing dynamics

when the routing tables in the scanning network change dras-

tically. Then the scanning rate adjustment problem can be

solved based on the Linear Programming (LP), as follows:

max ∑
p∈PIMap

αpcep (1)

s.t.∀e ∈ E : le + ∑
p∈PIMap

αpdp,e ≤ βce (2)

where 0 ≤ αp ≤ 1 denotes the rate throttling parameter and

0 ≤ β ≤ 1 denotes the maximum bandwidth occupation ratio.

αp is the output of this formulation and β is set by adminis-

trators to make the network robust for burst traffic. Equation

(1) indicates that the objective is to maximize the total scan-

ning rate on all ports. And Equation (2) states the extra load

brought by IMap can not overwhelm any link in the network.

Given {αp}, the control plane can determine the scanning rate

for each port. Note that our current design fits for one single

Autonomous System (AS) network; for inter-AS networks, as

different networks belong to different administrative domains

and they are not willing to share confidential information

(e.g., network topology, network utilization), it is extremely

difficult to design an inter-AS network-aware rate adjustment

approach accurately. IMap is mainly designed for the single-

AS network scanning, and only provides a best-effort probing

service for inter-AS network scanning tasks.

To make the scanning rate of IMap adjustable, we add a

throttle in the switch pipeline, which can be adjusted from the

control plane dynamically. Located in the ingress pipeline, the

throttle is used to determine when the replicator could repli-

cate the template packets. In general, the switching ASICs can

provide a per-port 100 Gbps packet processing capability, thus

enabling nanosecond-level (e.g., ∼6 nanoseconds for 64-byte

packets) timestamp for each incoming packet. Our throttle

consists of two registers in the switch pipeline. The first one

is named as a timestamp register, which is used to record the

timestamp of the last template packet that is successfully repli-

cated and sent out to the editor. For every incoming template

packet, we calculate the difference between the timestamp of

the current packet and the timestamp recorded in the times-

tamp register. Upon the difference exceeds a certain threshold,

we pass the template packet to the replicator and update the

recorded timestamp. The second one is named as a rate reg-

ister, which is used to make the aforementioned threshold

configurable from the control plane. In the ingress pipeline,

the rate register resides in the front of the timestamp register,

and the control plane programs can fill the certain value into

the rate register to achieve the rate control.

4.2 Response Packet Processing

As an in-network scanner based on the core switch, IMap is

also responsible for forwarding normal packets, e.g., packets

from other routers and switches in the network. IMap should

be able to distinguish normal packets and response packets

correctly. Meanwhile, since the throughput of response pack-

ets may be large, IMap should be able to efficiently process

the response packets to avoid saturating the storage server.

4.2.1 Distinguishing normal/response packets

To distinguish response packets from normal packets, one

approach is to maintain a secret state for each probe packet,

and then verify whether the response packet is corresponding

to the secret state accordingly. However, the switching ASICs

only have limited memory resources, which cannot maintain

massive secret states.

To resolve this, we design a stateless connection mecha-

nism similar to SYN cookies [5]. Rather than maintaining

states in the switching ASICs, we encode the secret state into

the mutable fields of each probe packet. The fields should

672 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

K1

K2

K3

t 2t 3t 4t 5t 6t

K1

K2

K3

Previous Current Updating

K1

K2

K3

K4

K2

K3

K4

K5

K3

Register 0

Register 1

Register 2

T T T T

Figure 4: Key update procedure of IMap.

have recognizable effects on fields of the corresponding re-

sponse packets. Specifically, for TCP scanning, we choose

the source port and initial sequence number; for ICMP, we

use the ICMP identifier and sequence number; for UDP, we

use the source port. Take TCP as a concrete example, in the

egress pipeline, when IMap sends a probe packet, the editor

sets SrcPort as hash(Key,Proto,SrcIP,DstIP), and SeqNo as

hash(Key,Proto,SrcIP,DstIP,SrcPort,DstPort), where Key

is a secret key maintained in the register of the switching

ASICs. Accordingly, in the ingress pipeline, IMap has a

verifier, which checks the DstPort and AckNo to determine

whether the received packet is a valid response to the probe

packet. ICMP scanning and UDP scanning work in a simi-

lar manner, except for different packet fields. After the veri-

fier checks the validation of the response packets, similar to

ZMap [14], IMap also responds a TCP RST packet to each

SYN-ACK packet to close the TCP connection.

One potential issue with the method above is the security

of the verifier. Currently the hash functions supported in the

switching ASICs (e.g., CRC32) are relatively simple, which

are not true cryptographic functions and are vulnerable to cho-

sen plaintext attacks [48]. As a result, attackers may perform

such attacks to restore the Key, and deliberately inject forged

response packets to pollute the scanning results. To further

enhance the security of the verifier and enable pollution-free

scanning results, IMap updates the Key every t seconds. This

can reduce the damage caused by compromised secret keys to

a large extent: even if an attacker somehow manages to obtain

the current key, such knowledge will become useless after at

most t seconds.

However, simply updating the Key would result in inconsis-

tent scanning results. For example, Key1 is updated to Key2

after IMap sends the probe packet. Soon the response packet

arrives, the verifier determines this packet is invalid as the

current key cannot obtain a correct validation for its packet

headers. To address the inconsistency issue described above,

IMap stores the last key used for a certain period of time.

More specifically, IMap maintains three keys (i.e., the previ-

ous key, the current key, and the next key) at any given time.

Every t seconds, IMap rotates a slot index from 0 to 2, and the

key in sloti is used for the hash function. Each key can stay

in a slot for at most 3t seconds; after 3t seconds, the key is

updated by the control plane. A concrete example is shown in

Result IP1, Px, Sa

Response Counter 0 → 1

Result IP1, Px, Sa IP2, Py, Sb … IPN, Pz, Sc

Response Counter N-1 → N (0)

R1

RN

… … …

Result IP1, Px, Sa IP2, Py, Sb

Response Counter 1 → 2R2

…

Evict !

Storage Server

Result Unpacker

Persistent DB

Figure 5: Response packets aggregating in IMap.

Figure 4, where T denotes the max time interval between any

probe packet and the corresponding response packet. The edi-

tor will encode the 2-bit slot index of the key into the header

fields of the probe packet, and the fields should also be added

in the corresponding response packet within this connection.

Currently, we encode it into the source port for TCP/UDP and

the identifier for ICMP. Based on the slot index, the verifier

can conduct the validation correctly.

4.2.2 Aggregating response packets

To avoid saturating the storage server, IMap desires an ef-

ficient response packet processing approach. One intuitive

approach is to use hash mechanisms [17, 35, 49]. However,

as the key set is really large in IMap (e.g., the size of the

scanning address space), even only storing 2-bit value for

each key requires GB-level memory, which exceeds the mem-

ory resources of the switching ASICs (i.e., 50-100MB [35])

significantly.

To resolve this problem, instead of seeking to store all the

keys/values, we adopt a response packet aggregation mech-

anism that is compatible with the current switching ASICs.

More specially, as shown in Figure 5, IMap designs a dedi-

cated N-size register array to temporarily store the scanning

results. For each incoming response packet, IMap extracts

its source IP, source port and state (i.e., active or inactive),

and records the information in one register. When the register

array is filled up, the corresponding response packet packs

all the results from the register array, and goes to the storage

server. To determine which register stores which result, we im-

plement a counter in the ingress pipeline. Upon an incoming

response packet, the counter increases by 1. The information

extracted from the i-th packet will be stored in the i-th regis-

ter. The N-th response packet will trigger the replication and

be sent to the switch port connected with the storage server,

packing and carrying all the results from the register array.

Meanwhile, the counter is reset as 0 and another aggregation

loop starts. With this approach, IMap achieves an N to 1 aggre-

gation, reducing the pressure for the bandwidth of the storage

server significantly. In the side of the storage server, we use

DPDK [12], a high-performance I/O framework, to parse the

result packets and extract the scanning results. Finally, the

scanning results are stored in a persistent database.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 673

Rec.

Editor
(§4.1)

Random
Probing
(§4.1.1)

Adaptive
Probing
(§4.1.2)

Rec.

Tx.

Tx.

C
P

U
.

Accelerator
(§4.1)

Replicator
(§4.1)

Rx.

Rx.

Rx. Tx.

Normal/
Response

Distinguishing
(§4.2.1)

Forwarding

Response
Packets

Aggregating
(§4.2.2)Normal

Response

Egress Pipeline

C
P

U
.

PIPR Entry
Producer
(§4.1.1)

Template
Sender
(§4.1)

Key
Updater
(§4.2.1)

Rate
Adjuster
(§4.1.2)

Ingress Pipeline
Traffic

Manager

CPUs

ASICs

Figure 6: Component layout of IMap.

5 Implementation

We implement a prototype of IMap, and make our code

publicly available here [22]. Figure 6 illustrates the compo-

nent layout of IMap on the data plane switching ASICs and

the control plane switch CPUs.

The data plane part is implemented with ∼2K lines of

P4-16 code for the Intel Tofino ASIC. In the probe packet

generation module, we set the size of PIPR tables as 65536

and the size of one PIPR table entry as 256. In the response

packet processing module, we utilize CRC32 as the hash

function, allocate a 64-bit register for each Key, and set the

size of the register array to store results temporarily as 16.

The control plane part is written in ∼3K lines of C code.

It is responsible to initialize the data plane, inject template

packets, receive update notifications, update entries/registers

in the data plane and interact with the campus monitoring

systems. In the probe packet generation module, we set β
in Equation (2) as 0.8 to accommodate to traffic bursts, and

solve the LP problem with the Gurobi [18] toolboxes. Since

the routing tables in our campus network are pretty stable, we

only estimate the extra load dp,e on each link by full-rate probe

packets once, with the approach in §4.1.2. In the response

packet processing module, to reduce the risk of suffering from

chosen plaintext attacks, the control plane generates a random

Key every t=1 second and the data plane applies Xorshift [32]

as the random number generator.

Besides, the backend agent running on the storage server is

implemented with DPDK, which extracts the scanning results

from the aggregated response packets and writes the results

into a Redis [29] database.

6 Evaluation

In this section, we evaluate IMap via testbed experiments

and real-world deployments to answer the questions below:

• What is the overall effectiveness of IMap to conduct

in-network scanning (§6.2)?

Campus
Backbone
Network

Border Router Firewall

Internet

Our Campus Network

40 Gbps 4 x 10 Gbps

IMap

Monitoring
SystemStorage Server

Relay Server

Figure 7: Deployment of IMap.

• Can IMap generate high-speed probe packets with ran-

dom address and adaptive rate (§6.3)?

• Can IMap process response packets correctly and effi-

ciently (§6.4)?

• How helpful is IMap in understanding our campus net-

work’s security situations (§6.5)?

6.1 Experimental Setup

IMap setup. Our testbed is composed of one 3.3 Tbp/s In-

tel Tofino switch (Edgecore Wedge 100BF-32X) and two

Dell R730 servers. Both servers are equipped with Intel(R)

Xeon(R) E5-2620 v3 CPUs and 64 GB memory, and con-

nected to the switch via 40 GbE Intel XL710 NICs. In par-

ticular, one server runs as the storage server and the other

server runs as the relay node to bridge IMap with our campus

network. With the relay server, we can collect and analyze the

probe packets from IMap and the response packets to IMap

accurately. Working with the network administrator of our

campus network, we deploy IMap to connect to one backbone

switch in our campus network, as shown in Figure 7. Due

to security and reliability considerations, we are not allowed

to replace the backbone switch with the IMap switch. The

network conditions are obtained from the monitoring systems

in our campus network, according to which IMap adjusts its

scanning rate correspondingly.

Baselines. We use two state-of-the-art network scanners as

baselines in our experiments, i.e., Zipper ZMap [1] (Z-ZMap

for short) and Masscan [33]. They are deployed on a Dell

R430 server located at the network edge, which is equipped

with a 10 GbE Intel 82599ES NIC to connect to our campus

network. Note that 10 Gbps is the maximum capacity offi-

cially supported on the project homepage of these baseline

scanners. We adopt the fastest configuration recommended

in Z-ZMap [1] for baseline scanners to achieve the best scan-

ning capability, e.g., we install “PF_RING ZC” NIC driver to

support the high-speed scanning of Z-ZMap and Masscan.

Scanning Task. Since TCP SYN scanning is one of the most

representative probes among single-packet probes, we use

TCP SYN scanning to evaluate IMap in our experiments. The

scanning target is configured to some or all ports (0∼65535)

674 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 1: Scanning rate and scanning completion time.

Scanner
Scanning

Rate

Time for 1000-

Ports Scan1
Time for All-

Ports Scan

IMap 55.6 Mpps 12 seconds 8 minutes

Z-ZMap 14.2 Mpps 35 seconds 33 minutes

Masscan 9.4 Mpps 51 seconds 50 minutes

of our campus network including 6 Class B addresses, a total

of up to 25 billion scanning space, which is nearly 6 times

larger than Internet-wide single-port scanning space.

6.2 Overall Effectiveness

Scanning accuracy. In order to determine whether IMap can

perform high-speed scanning and obtain accurate scanning

results in our campus network, we examine whether the scan-

ning rate, i.e., the rate of probe packets sent from IMap, has

any effect on the hit rate, i.e., the fraction of responsive probed

hosts (responding with SYN-ACK or RST in this case). We

experiment by using IMap and baseline scanners to scan port

80 of our campus network and normalize the experimental

results. Figure 8 shows that IMap is capable of handling scan-

ning at up to 55 Mpps without obvious hit rate degradation. In

contrast, baseline scanners such as Z-ZMap and Masscan can

neither reach a high scanning rate, nor achieve a comparable

hit rate (at least 1.5 times gap). These benefits are brought by

the in-network deployment location and performant switch

implementation. Our results also verify baseline scanners ex-

perience the decreased hit rate with the higher scanning rate

due to the drop of probe/response packets [1].

Vantage point. To demonstrate the advantage of IMap in

employing in-network scanning, we probe all addresses in

our campus network on port 80 and measure the latency be-

tween sending a probe packet and receiving the response

packet from active hosts. We also conduct the same measure-

ment on two baseline scanners at the same time. The CDF of

the results are shown in Figure 9. IMap gains much shorter

round-trip response time for over 90 percent of hosts than

state-of-the-art scanners. This is benefited from the fact that

IMap is deployed in the core network and probe/response

packets take a shorter path, 2-4 hops compared with 4-8 hops

of end-to-end scanning. It also indicates the less bandwidth

waste to the network and the smaller possibilities of dropping

probe/response packets, which promises IMap can conduct

high-speed scanning accurately and efficiently.

Fastness and scalability. To illustrate that IMap is fast and

scalable in network scanning, we measure the scanning rate

and scanning completion time of IMap and baseline scanners.

Port 0-999 and all ports of our campus network are chosen as

the scanning tasks respectively. For each scanner, we repeat

both tasks for 10 trials at the midnight to minimize the impact

for our campus network and report the averages in Table 1.

1It includes time to send probe packets as well as a fixed 5-second delay

after all probes are sent, during which scanners wait for late response packets.

Table 2: Switch resource utilization.

Computational Memory

Resource Tables ALUs Gateways SRAM TCAM

Usage 42.86% 45.84% 18.75% 20.83% 0.69%

The results show IMap is able to generate 55.6 million probe

packets per second (close to 40 Gbps linespeed), which is

4 times improvement compared with Z-ZMap and Masscan.

Note that 40 Gbps is not the upper limit of IMap; instead,

when we enable all ports of the switch, IMap can generate

probe packets at terabit line rate. Currently, we cannot replace

the core switch with IMap to conduct such a pressure test,

which is left for our future work. Besides, Table 1 also shows

IMap can complete scanning tasks much faster than the other

scanners, which can help operators capture network security

snapshots much more quickly.

Resource overhead. To evaluate the resource consumption

of IMap, we focus on its resource usage of our test switch,

which is a low-end switch with pretty limited resources. Table

2 displays the average hardware resource utilization of IMap

across all stages of the switch. As we can see, even with such

a low-end switch, IMap takes up less than half of computa-

tional resources, one-fifth of SRAM, and negligible TCAM,

still leaving enough resources for the concurrent execution

of traditional forwarding behaviors [35]. Leveraging high-

end switches with more hardware resources (e.g., Edgecore

Wedge 100BF-65X), the resource usage of IMap can be much

lower. Besides, the resource utilization of a switch does not

have any obvious effect on its forwarding performance. This

is because as long as the compiled P4 program that integrates

IMap and the forwarding functionality can be fitted into the

switching ASICs, the switch is guaranteed to process and

forward packets at terabit line rate [26, 51].

6.3 Probe Packet Generation

Random probing. To validate the randomness of probe ad-

dresses generated by IMap, we first explore the distribution of

the first 1000 addresses selected by IMap and Z-ZMap when

they are probing port 80 of our campus network. Consider-

ing our campus network only contains class B addresses, as

shown in Figure 10, we only keep the last two octets of the IP

address and map them to the x and y coordinates, respectively.

Based on the results, we can see that the address random-

ization of IMap achieves slightly worse statistical properties

than Z-ZMap because IMap employs the PIPR table, but we

believe it is still good enough to avoid overwhelming the desti-

nation networks. To verify this, we analyze the pressure IMap

brings to access networks. Figure 11 indicates several vital ac-

cess networks in our campus network only receive thousands

of probe packets per second even though the scanning rate

of IMap reaches as high as 55 Mpps. Such additional packet

overhead is negligible for most edge networks.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 675

0 5 10 15 20 25 30 35 40 45 50 55
Scanning Rate (Mpps)

0.5

0.6

0.7

0.8

0.9

1.0
Hi

t R
at

e IMap
Z-ZMap
Masscan

Figure 8: Hit rate vs. Scanning rate.

10−1 100 101 102 103

Response Time (ms)
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

IMap
Z-ZMap / Masscan

Figure 9: Response time of probe packets.

0 32 64 96 128 160 192 224 256
Third Octet

0
32
64
96

128
160
192
224
256

Fo
ur

th
 O

ct
et

IMap
Z-ZMap

Figure 10: Distribution of generated

probe addresses.

5 10 15 35 55
Scanning Rate (Mpps)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Re
ce

iv
ed

 P
ro

be
 P

ac
ke

ts
 (K

pp
s)

IMap
Z-ZMap

Figure 11: Network pressure for access

networks.

0 10 20 30 40 50 60
Specified Rate (Mpps)

0

10

20

30

40

50

60
Ge

ne
ra

tio
n

Ra
te

 (M
pp

s) IMap
IMap w/o Rolling PIPR
Expected

Figure 12: Generation rate of probe

packets.

0 20 40 60 80 100
Time (s)

0

10

20

30

40

50

60

Sc
an

ni
ng

 R
at

e
(M

pp
s)

04:00
10:00
16:00
22:00

Figure 13: Adaptive scanning rate.

Adaptive probing. To evaluate the adaptability of scanning

rate of IMap, we first quantify the rate control accuracy of

IMap by comparing the rate specified by the runtime parame-

ter with the actual rate of probe packets sent from IMap. As

shown in Figure 12, the error gradually increases with the

rising of the scanning rate, but it is always limited within 5%

even when the scanning rate of IMap reaches 55 Mpps. Such

error mainly comes from the restricted accuracy of the packet

rate in the recirculate port and can be manually corrected

in the real scanning. Besides, from this figure, we can also

see that rolling PIPR filling optimization (§4.1) helps IMap

achieve high-speed scanning continuously. Then we investi-

gate whether IMap can adjust its scanning rate according to

network conditions. We conduct scanning on our campus net-

work with IMap at different time, and record the rate of probe

packets in Figure 13. Since the monitoring system reports

the campus network conditions every 10 seconds, and the

LP problem can be solved within 3 seconds for our campus

network, we make IMap update the scanning rate every 10

seconds to adapt to the change of the network conditions.

6.4 Response Packet Processing

Secure verifying. The security of the response verifier is

guaranteed by the dynamic key updating technique in IMap,

whose efficiency is decided by the parameter t. To find a

suitable value for t, we first simulate the relationship between

the computing power and the time required to reverse Key

used by the hash function in IMap. As we can see from Figure

14, it takes about 4 seconds for high-end CPUs and more than

20 seconds for mainstream CPUs to locate the real Key using

the stack algorithm [38]. In this case, IMap is protected from

chosen plaintext attacks with t smaller than 1.3 seconds. Then

we choose several different t for IMap and scan all ports of

our campus network to seek how t affects probing. Figure 15

presents the number of response packets received by IMap but

not pass the verifier during each scan, which occurs when the

response time is beyond 3t. The results manifest that, under

a common attacker, 0.3s∼1.3s are all applicable choices for t

in our campus network.

Response aggregating. To testify the efficiency of response

packet aggregation mechanism, we configure IMap to scan

the campus network at different rate, and monitor the response

traffic that is sent from the switch to the storage server. Figure

16 and 17 display the packet rate and throughput of such traffic

with or without aggregating response packets respectively. It

can be seen that the aggregation enables a 93.8% reduction

in RX rate and an 86.1% reduction in RX throughput for

the storage server, which efficiently protects it from being

saturated by massive response traffic.

6.5 Analysis of Scanning Results

High-speed scanning of IMap has enabled the faster snap-

shots of the network. Therefore, we conduct an experiment

where IMap continuously scans all addresses in our campus

676 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 1M 2M 3M 4M 5M
Computing Power (MIPS)

0

20

40

60

80

100
Es

t.
Ti

m
e

to
 R

ev
er

se
 K

ey
 (s

)

 AMD
 Threadripper 3990X4.1

AMD Ryzen 9 3950X
Intel Core i9-9900

Intel Core i7-8086K

AMD Threadripper 3990X: $5,700
AMD Ryzen 9 3950X: $849.99
Intel Core i9-9900K: $474.99
Intel Core i7-8086K: $599

Figure 14: Reverse time for Key.

0.1 0.2 0.3 0.4 0.5 1.3
t (s)

0
50

100
150
200
250
300
350
400
450

Un
ve

rif
ie

d
Re

sp
on

se
s (

pp
s) Scan at 55.6 Mpps (40 GbE)

Scan at 14.7 Mpps (10 GbE)

Figure 15: Impact of t to probing.

0 5 10 15 20 25 30 35 40 45 50 55
Scanning Rate (Mpps)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Sc
an

ni
ng

 R
es

ul
ts

 (M
pp

s) N=1 (w/o RA)
N=2
N=4
N=8
N=16 (IMap)

Figure 16: Packet rate of scanning results.

0 5 10 15 20 25 30 35 40 45 50 55
Scanning Rate (Mpps)

0
100
200
300
400
500
600
700
800

Sc
an

ni
ng

 R
es

ul
ts

 (M
bp

s) N=1 (w/o RA)
N=2
N=4
N=8
N=16 (IMap)

Figure 17: Throughput of scanning

results.

00:00 04:00 08:00 12:00 16:00 20:00 24:00
Scanning Time

2K

4K

6K

8K

10K
Ac

tiv
e

Co
un

t
8680
7680
3389
5040
80

135
445
139
22
21

Figure 18: Activity of ports over one day.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 19: RDP screenshot of an

vulnerable host.

Table 3: Top 10 active TCP ports of our campus network.

Port Service
Active

Rate

Active

Count

Inactive

Count

8680 WeChat 1.34% 5271 12555

7680 Windows Update Delivery 1.33% 5211 12065

3389 RDP (Remote Desktop) 0.69% 2693 11659

5040 Windows Deployment Service 0.55% 2176 11709

80 HTTP 0.44% 1722 4841

135 Microsoft DCE/RPC 0.41% 1607 11081

445 Microsoft-DS 0.38% 1499 10592

139 NetBIOS Session 0.36% 1422 10559

22 SSH 0.34% 1354 4831

21 FTP 0.25% 983 10918

network on all TCP ports. This experiment lasts for a week

and the scanning results in the Redis database are persisted

into the disk with a tag of time after each scan is over. In

order to explore potential applications of IMap, based on the

scanning results, we attempt to track the adoption of com-

mon protocols and discover new potential risks and security

incidents in our campus network.

Protocol adoption. We first compute the average count of

active and inactive hosts for each port in all time periods.

Table 3 lists the top 10 open ports we observed and reveals

several interesting findings. First, as the proportion of online

devices in our campus network (∼5%) is far lower than that

of the Internet, the active rate of the port is also lower than

that of the Internet. Besides, we notice IMap just receives a

small number of response packets from some sensitive ports,

like ports 22 and 80, and we speculate the reason is that many

Table 4: Exploitability of vulnerabilities to 135 and 3389.

Port Vulnerability Exploitability

135 Leak the host name, OS version, timestamp 100%

Leak all NICs and IPs 99.6%

Leak all RPC services 98.8%

3389 Leak the host name, OS version, timestamp 81.3%

Leak the login screen 35.4%

Remote shutdown* 20.2%

systems filter such probe packets via the host firewall. Finally,

we find Table 3 displays a really different sorting from that of

the Internet in ZMap [14]. For example, the most active port

in our campus network is 8680, which is used by WeChat,

one of the most popular messaging App, and the second one

is 7680, which is occupied by Windows to distribute system

updates. We also observe a surprising number of open ports

associated with file/device sharing over the network, such as

ports 139, 445, and 5070. We attribute these differences to

that more personal devices than servers are connected to our

campus network. Furthermore, we then analyze the active rate

variation of the top 10 ports by time over one day. As we can

see in Figure 18, the active rate of some ports, e.g., 8680 and

7680, exposes an obvious diurnal pattern while that of other

ports does not change significantly over time. This is because

the former are usually opened by personal devices while the

latter are opened by servers.

Potential risks. Among the top 10 ports, 135 (DCE/RPC) and

3389 (RDP) catches our attention because they are known for

information leakage. Considering their popularity, we investi-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 677

gate the exploitability of their vulnerabilities in our campus

network. As shown in Table 4, 100% of the 135-opened hosts

and more than 80% of the 3389-opened hosts are at the risk

of information leakage. Moreover, the 3389-opened Windows

hosts are also vulnerable to being shutdown remotely due to

the misconfiguration from their users. For instance, Figure 19

is the screenshot from one of such vulnerable hosts, showing

that users are allowed to perform shutdown operations on the

RDP login screen. Even though the firewall of our campus

network bans external access to internal hosts’ sensitive ports

including 135 and 3389, we believe these vulnerabilities still

pose a high risk to our campus network and may be exploited

by attackers. We have contacted our network administrators,

and they confirmed these risks and issued a notice to remind

teachers and students to check their configurations.

Botnets detection. We also implement several alarm scripts

triggered when the scanning results satisfy some conditions.

One of them is used to detect botnets by monitoring whether

the active count of certain ports surges in the last scan. During

our experiment, we did find a fast increase of 48101-opened

hosts and suspected it is caused by a Mirai botnet. We reported

such an issue to the network administrators immediately and

they finally determined it is just an experiment on Mirai con-

ducted by a security lab. Even we dodged a bullet, it still

reflects the potential of IMap in fast revealing security inci-

dents with high-speed scanning, which cannot be obtained in

time by existing network scanners like Z-ZMap and Masscan.

7 Discussion

Scanning results v.s. deployment locations. From a net-

work perspective, different switches have diverse network

utilization, topological connection relations and access restric-

tions. As a result, the deployment locations of IMap affect

the scanning results inevitably. Furthermore, we can also co-

ordinate multiple switches to deploy IMap for cooperative

scanning, which can achieve a higher scanning rate and hit

rate. For any given network, there must be optimal distributed

deployment locations in a given period of time, which can

achieve the highest scanning rate and hit rate. We leave the

deep exploration of optimal distributed deployment locations

in a given network as our future work.

Relationship with application-layer scanners. Currently,

IMap only supports single-packet scanning, including TCP

SYN scans, ICMP echo request scans, and application-

specific UDP scans, and does not support complex application-

layer protocols, e.g., TLS handshakes, directly. However, sim-

ilar to ZMap, IMap can serve as a foundation to obtain the

responsive host list from the given port, e.g., port 443 for TLS

protocol. Based on this list, operators can use application-

layer scanners to collect advanced information, e.g., a custom

certificate fetcher to retrieve TLS certificates. In a word, IMap

can narrow down the scanning space for application-layer

scanners significantly.

8 Related Works

Our work is highly related to the following topics.

Network scanners. Many network scanners have been devel-

oped to conduct network scanning tasks. Nmap [39] is opti-

mized for small network segments with a wide variety of prob-

ing techniques. IRLscanner [30], ZMap [14], Masscan [33]

and Zipper ZMap [1] are designed for Internet-scale scanning,

mainly with a single-packet probing paradigm. IMap is very

similar to ZMap and Masscan in the scanning methodology,

but with different implementation targets and deployment

locations, thus achieving orders of magnitude scanning capa-

bility improvement.

IPv6 scanning. Numerous research works have been de-

voted to improving the IPv6 scanning efficiency by optimiz-

ing the scanning space algorithmically. Entropy/IP [15] em-

ploys information entropy to segment the addresses in the

hitlist and generate target addresses based on the relation-

ship between different fragments. 6Gen [36] and Entropy-

Clustering [16] extend the scope of prefix space for En-

tropy/IP and discover seed address fingerprint with clustering

analysis. 6hit [21] adopts a reinforcement learning based tar-

get generation method to improve the probing efficiency. As a

high-speed scanning system, IMap is completely orthogonal

to these algorithmic works. And the scanning space gener-

ated from these algorithms can be set as the input of IMap to

further improve the scanning efficiency.

Programmable switches. Recently programmable switches

have been used as accelerators for various applications in

networking [17, 35, 37], distributed systems [25, 26] and se-

curity [27, 34, 51], and these applications achieve far better

performance with lower costs than their software counterparts

running on commodity servers. The closer work to ours is

HyperTester [49], which shows how to design a high-speed

network tester with programmable switches. However, Hy-

perTester neither illustrates how to generate probe packets

with random address and adaptive rate, nor how to process re-

sponse packets correctly and efficiently. IMap addresses these

unique challenges, and thus turns a switch into a practical

high-speed network scanner.

9 Conclusion

In this paper, we identify the limitations of current network

scanners, and introduce IMap, a fast and scalable in-network

scanner with programmable switches. We devise a set of

techniques and optimizations, i.e., an address-random and

rate-adaptive probe packet generation mechanism, and a cor-

rect and efficient response packet processing mechanism, to

turn a switch into a practical high-speed network scanner. We

implement an open-source prototype of IMap and conduct ex-

tensive evaluations to show the advantages of IMap compared

with current network scanners. We hope IMap can serve as

the foundation of next-generation terabit network scanners.

678 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Acknowledgments

We thank our shepherd, Wenting Zheng, and anonymous

NSDI reviewers for their valuable comments. We would also

like to thank Shicheng Wang and Xingjian Zhang from Ts-

inghua University for joining some discussions of this paper.

This work is supported in part by the National Natural Science

Foundation of China under Grant 61625203, 61832013 and

61872426, and Tsinghua University-China Mobile Communi-

cations Group Co.,Ltd. Joint Institute. Menghao Zhang and

Mingwei Xu are the corresponding authors.

References

[1] David Adrian, Zakir Durumeric, Gulshan Singh, and

J Alex Halderman. Zippier zmap: internet-wide scan-

ning at 10 gbps. In 8th USENIX Workshop on Offen-

sive Technologies (WOOT 14), San Diego, CA, 2014.

USENIX.

[2] Johanna Amann, Oliver Gasser, Quirin Scheitle, Lexi

Brent, Georg Carle, and Ralph Holz. Mission accom-

plished? https security after diginotar. In Proceedings

of the 2017 Internet Measurement Conference, pages

325–340, New York, USA, 2017. ACM.

[3] Nimrod Aviram, Sebastian Schinzel, Juraj Somorovsky,

Nadia Heninger, Maik Dankel, Jens Steube, Luke

Valenta, David Adrian, J Alex Halderman, Viktor

Dukhovni, et al. Drown: Breaking tls using sslv2. In

25th USENIX Security Symposium (USENIX Security

16), pages 689–706, Austin, TX, 2016. USENIX.

[4] AVSystem. 5g iot: What does 5g mean for iot? https:

//www.avsystem.com/blog/5g-iot/, 2021.

[5] D. J. Bernstein. Syn cookies. https://cr.yp.to/s

yncookies.html, 2021.

[6] Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine

Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss,

Alfredo Pironti, Pierre-Yves Strub, and Jean Karim

Zinzindohoue. A messy state of the union: Taming

the composite state machines of tls. In 2015 IEEE Sym-

posium on Security and Privacy, pages 535–552, San

Jose, CA, USA, 2015. IEEE, IEEE.

[7] Robert Beverly, Ramakrishnan Durairajan, David

Plonka, and Justin P Rohrer. In the ip of the beholder:

Strategies for active ipv6 topology discovery. In Pro-

ceedings of the Internet Measurement Conference 2018,

pages 308–321, 2018.

[8] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick

McKeown, Jennifer Rexford, Cole Schlesinger, Dan

Talayco, Amin Vahdat, George Varghese, et al. P4:

Programming protocol-independent packet processors.

ACM SIGCOMM Computer Communication Review,

44(3):87–95, 2014.

[9] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Vargh-

ese, Nick McKeown, Martin Izzard, Fernando Mujica,

and Mark Horowitz. Forwarding metamorphosis: Fast

programmable match-action processing in hardware for

sdn. ACM SIGCOMM Computer Communication Re-

view, 43(4):99–110, 2013.

[10] Stephen Checkoway, Ruben Niederhagen, Adam Ev-

erspaugh, Matthew Green, Tanja Lange, Thomas Ris-

tenpart, Daniel J Bernstein, Jake Maskiewicz, Hovav

Shacham, and Matthew Fredrikson. On the practical

exploitability of dual ec in tls implementations. In 23rd

USENIX Security Symposium (USENIX Security 14),

pages 319–335, San Diego, CA, 2014. USENIX.

[11] Cisco. Best practices in core network capacity planning

white paper. https://www.cisco.com/c/en/us/pr

oducts/collateral/routers/wan-automation-e

ngine/white_paper_c11-728551.html, 2021.

[12] Intel DPDK. Learn how to get involved with dpdk.

https://www.dpdk.org/, 2021.

[13] Zakir Durumeric, David Adrian, Ariana Mirian, James

Kasten, Elie Bursztein, Nicolas Lidzborski, Kurt

Thomas, Vijay Eranti, Michael Bailey, and J Alex Hal-

derman. Neither snow nor rain nor mitm... an empirical

analysis of email delivery security. In Proceedings of the

2015 Internet Measurement Conference, pages 27–39,

New York, USA, 2015. ACM.

[14] Zakir Durumeric, Eric Wustrow, and J Alex Halderman.

Zmap: Fast internet-wide scanning and its security appli-

cations. In 22nd USENIX Security Symposium (USENIX

Security 13), pages 605–620, Washington, D.C., USA,

2013. USENIX.

[15] Pawel Foremski, David Plonka, and Arthur Berger. En-

tropy/ip: Uncovering structure in ipv6 addresses. In

Proceedings of the 2016 Internet Measurement Confer-

ence, pages 167–181, 2016.

[16] Oliver Gasser, Quirin Scheitle, Pawel Foremski, Qasim

Lone, Maciej Korczyński, Stephen D Strowes, Luuk

Hendriks, and Georg Carle. Clusters in the expanse: Un-

derstanding and unbiasing ipv6 hitlists. In Proceedings

of the Internet Measurement Conference 2018, pages

364–378, 2018.

[17] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feam-

ster, Jennifer Rexford, and Walter Willinger. Sonata:

Query-driven streaming network telemetry. In Proceed-

ings of the 2018 conference of the ACM special interest

group on data communication, pages 357–371, 2018.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 679

https://www.avsystem.com/blog/5g-iot/
https://www.avsystem.com/blog/5g-iot/
https://cr.yp.to/syncookies.html
https://cr.yp.to/syncookies.html
https://www.cisco.com/c/en/us/products/collateral/routers/wan-automation-engine/white_paper_c11-728551.html
https://www.cisco.com/c/en/us/products/collateral/routers/wan-automation-engine/white_paper_c11-728551.html
https://www.cisco.com/c/en/us/products/collateral/routers/wan-automation-engine/white_paper_c11-728551.html
https://www.dpdk.org/
https://www.dpdk.org/

[18] Gurobi. The fastest mathematical programming solver.

http://www.gurobi.com/, 2021.

[19] Nadia Heninger, Zakir Durumeric, Eric Wustrow, and

J Alex Halderman. Mining your ps and qs: Detection

of widespread weak keys in network devices. In 21st

USENIX Security Symposium (USENIX Security 12),

pages 205–220, Bellevue, WA, 2012. USENIX.

[20] Ralph Holz, Johanna Amann, Olivier Mehani, Matthias

Wachs, and Mohamed Ali Kaafar. Tls in the wild: An

internet-wide analysis of tls-based protocols for elec-

tronic communication. In Symposium on Network and

Distributed System Security (NDSS), San Diego, CA,

USA, 2016. Internet Society.

[21] Bingnan Hou, Zhiping Cai, Kui Wu, Jinshu Su, and Yin-

qiao Xiong. 6hit: A reinforcement learning-based ap-

proach to target generation for internet-wide ipv6 scan-

ning. In IEEE INFOCOM 2021-IEEE Conference on

Computer Communications, pages 1–10. IEEE, 2021.

[22] IMapScanner. IMap. https://github.com/IMapS

canner/IMap.git, 2021.

[23] Intel. Intel Tofino: P4-programmable Ethernet switch

ASIC that delivers better performance at lower power.

https://www.intel.com/content/www/us/en/pr

oducts/network-io/programmable-ethernet-s

witch/tofino-series.html, 2021.

[24] Google Ipv6. Ipv6 adoption. https://www.google

.com/intl/en/ipv6/statistics.html, 2021.

[25] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster,

Jeongkeun Lee, Robert Soulé, Changhoon Kim, and Ion

Stoica. Netchain: Scale-free sub-rtt coordination. In

15th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 18), pages 35–49, Renton,

WA, USA, 2018. USENIX.

[26] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé,

Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion

Stoica. Netcache: Balancing key-value stores with fast

in-network caching. In Proceedings of the 26th Sympo-

sium on Operating Systems Principles, pages 121–136,

2017.

[27] Qiao Kang, Lei Xue, Adam Morrison, Yuxin Tang, Ang

Chen, and Xiapu Luo. Programmable in-network secu-

rity for context-aware byod policies. In 29th USENIX

Security Symposium (USENIX Security 20), pages 595–

612, 2020.

[28] Praveen Kumar, Yang Yuan, Chris Yu, Nate Foster,

Robert Kleinberg, Petr Lapukhov, Chiun Lin Lim, and

Robert Soulé. Semi-oblivious traffic engineering: The

road not taken. In 15th USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI 18),

pages 157–170, 2018.

[29] Redis Labs. Redis. https://redis.io/, 2021.

[30] Derek Leonard and Dmitri Loguinov. Demystifying ser-

vice discovery: implementing an internet-wide scanner.

In Proceedings of the 10th ACM SIGCOMM conference

on Internet measurement, pages 109–122, 2010.

[31] Hongqiang Harry Liu, Srikanth Kandula, Ratul Mahajan,

Ming Zhang, and David Gelernter. Traffic engineering

with forward fault correction. In Proceedings of the

2014 ACM Conference on SIGCOMM, pages 527–538,

2014.

[32] George Marsaglia et al. Xorshift rngs. Journal of Statis-

tical Software, 8(14):1–6, 2003.

[33] Masscan. Masscan: Mass ip port scanner. https://

github.com/robertdavidgraham/masscan, 2021.

[34] Roland Meier, Petar Tsankov, Vincent Lenders, Laurent

Vanbever, and Martin Vechev. Nethide: Secure and prac-

tical network topology obfuscation. In 27th USENIX

Security Symposium (USENIX Security 18), pages 693–

709, 2018.

[35] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun

Lee, and Minlan Yu. Silkroad: Making stateful layer-

4 load balancing fast and cheap using switching asics.

In Proceedings of the Conference of the ACM Special

Interest Group on Data Communication, pages 15–28,

2017.

[36] Austin Murdock, Frank Li, Paul Bramsen, Zakir Du-

rumeric, and Vern Paxson. Target generation for internet-

wide ipv6 scanning. In Proceedings of the 2017 Internet

Measurement Conference, pages 242–253, 2017.

[37] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan,

Prateesh Goyal, Venkat Arun, Mohammad Alizadeh, Vi-

malkumar Jeyakumar, and Changhoon Kim. Language-

directed hardware design for network performance mon-

itoring. In Proceedings of the Conference of the ACM

Special Interest Group on Data Communication, pages

85–98, 2017.

[38] Gabriel Nivasch. Cycle detection using a stack. Infor-

mation Processing Letters, 90(3):135–140, 2004.

[39] NMAP.ORG. Nmap. https://nmap.org/, 2021.

[40] Tian Pan, Nianbing Yu, Chenhao Jia, Jianwen Pi, Liang

Xu, Yisong Qiao, Zhiguo Li, Kun Liu, Jie Lu, Jianyuan

Lu, et al. Sailfish: accelerating cloud-scale multi-tenant

multi-service gateways with programmable switches. In

680 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://www.gurobi.com/
http://www.gurobi.com/
https://github.com/IMapScanner/IMap.git
https://github.com/IMapScanner/IMap.git
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.google.com/intl/en/ipv6/statistics.html
https://www.google.com/intl/en/ipv6/statistics.html
https://redis.io/
https://github.com/robertdavidgraham/masscan
https://github.com/robertdavidgraham/masscan
https://nmap.org/

Proceedings of the 2021 ACM SIGCOMM 2021 Confer-

ence, pages 194–206, 2021.

[41] Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls,

Sylvia Ratnasamy, and Scott Shenker. Netbricks: Tak-

ing the v out of nfv. In 12th USENIX Symposium on

Operating Systems Design and Implementation (OSDI

16), pages 203–216, 2016.

[42] Philipp Richter, Georgios Smaragdakis, David Plonka,

and Arthur Berger. Beyond counting: new perspectives

on the active ipv4 address space. In Proceedings of the

2016 Internet Measurement Conference, pages 135–149,

New York, USA, 2016. ACM.

[43] SDXcentral. At&t picks barefoot networks for

programmable switches. https://www.sdxcentral

.com/articles/news/att-picks-barefoot-net

works-programmable-switches/2017/04/, 2021.

[44] SDXcentral. Barefoot scores tofino deals with alibaba,

baidu, and tencent. https://www.sdxcentral.com

/articles/news/barefoot-scores-tofino-dea

ls-with-alibaba-baidu-and-tencent/2017/05/,

2021.

[45] The ZMap Team. The zmap project. https://zmap

.io/, 2021.

[46] Vybint. 15 alarming cyber security facts and

stats. https://www.cybintsolutions.com/cybe

r-security-facts-stats/, 2021.

[47] W3Techs. Usage statistics of ipv6 for web-

sites. https://w3techs.com/technologies/deta

ils/ce-ipv6, 2021.

[48] Sophia Yoo and Xiaoqi Chen. Secure keyed hashing on

programmable switches. In Proceedings of the ACM

SIGCOMM 2021 Workshop on Secure Programmable

network INfrastructure, pages 16–22, 2021.

[49] Dai Zhang, Yu Zhou, Zhaowei Xi, Yangyang Wang,

Mingwei Xu, and Jianping Wu. Hypertester: high-

performance network testing driven by programmable

switches. IEEE/ACM Transactions on Networking,

2021.

[50] Menghao Zhang, Jun Bi, Kai Gao, Yi Qiao, Guanyu Li,

Xiao Kong, Zhaogeng Li, and Hongxin Hu. Tripod:

Towards a scalable, efficient and resilient cloud gateway.

IEEE Journal on Selected Areas in Communications,

37(3):570–585, 2019.

[51] Menghao Zhang, Guanyu Li, Shicheng Wang, Chang

Liu, Ang Chen, Hongxin Hu, Guofei Gu, Qi Li, Mingwei

Xu, and Jianping Wu. Poseidon: Mitigating volumetric

ddos attacks with programmable switches. In the 27th

Network and Distributed System Security Symposium

(NDSS 2020), 2020.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 681

https://www.sdxcentral.com/articles/news/att-picks-barefoot-networks-programmable-switches/2017/04/
https://www.sdxcentral.com/articles/news/att-picks-barefoot-networks-programmable-switches/2017/04/
https://www.sdxcentral.com/articles/news/att-picks-barefoot-networks-programmable-switches/2017/04/
https://www.sdxcentral.com/articles/news/barefoot-scores-tofino-deals-with-alibaba-baidu-and-tencent/2017/05/
https://www.sdxcentral.com/articles/news/barefoot-scores-tofino-deals-with-alibaba-baidu-and-tencent/2017/05/
https://www.sdxcentral.com/articles/news/barefoot-scores-tofino-deals-with-alibaba-baidu-and-tencent/2017/05/
https://zmap.io/
https://zmap.io/
https://www.cybintsolutions.com/cyber-security-facts-stats/
https://www.cybintsolutions.com/cyber-security-facts-stats/
https://w3techs.com/technologies/details/ce-ipv6
https://w3techs.com/technologies/details/ce-ipv6

Unlocking the Power of Inline Floating-Point
Operations on Programmable Switches

Yifan Yuan
UIUC

Omar Alama
KAUST

Jiawei Fei
KAUST & NUDT

Jacob Nelson
Microsoft Research

Dan R. K. Ports
Microsoft Research

Amedeo Sapio
Intel

Marco Canini
KAUST

Nam Sung Kim
UIUC

Abstract
The advent of switches with programmable dataplanes has

enabled the rapid development of new network functionality, as
well as providing a platform for acceleration of a broad range
of application-level functionality. However, existing switch
hardware was not designed with application acceleration in
mind, and thus applications requiring operations or datatypes
not used in traditional network protocols must resort to
expensive workarounds. Applications involving floating point
data, including distributed training for machine learning and
distributed query processing, are key examples.

In this paper, we propose FPISA, a floating point repre-
sentation designed to work efficiently in programmable
switches. We first implement FPISA on an Intel Tofino switch,
but find that it has limitations that impact throughput and
accuracy. We then propose hardware changes to address
these limitations based on the open-source Banzai switch
architecture, and synthesize them in a 15-nm standard-cell
library to demonstrate their feasibility. Finally, we use FPISA
to implement accelerators for training for machine learning
as an example application, and evaluate its performance on
a switch implementing our changes using emulation. We find
that FPISA allows distributed training to use one to three fewer
CPU cores and provide up to 85.9% better throughput than
SwitchML in a CPU-constrained environment.

1 Introduction
The rise of programmable network devices has transformed
distributed systems design. Instead of simply moving data
between servers using standard routing protocols, network
devices can be programmed using domain-specific languages
like P4 [8] and NPL [10] to support new network functionality,
such as congestion control [100], load balancing [55, 78],
and packet scheduling [103]. Commodity Ethernet switch
ASICs with programmable data planes [11, 42, 92] enable the
execution of these programs at many terabits per second.

While these capabilities were originally targeted at increas-
ing network functionality, much recent work has explored
their utility in accelerating application-level functionality
as well. Consensus protocols [17, 65, 93], concurrency
control [45, 64], vector addition [75, 97, 98], query processing
operators [34, 63], and key-value stores [49, 66, 112] have all

been shown to benefit from this in-network computation [94].
However, an important class of applications has struggled

to take advantage of in-network computation: those using
floating point (FP) values. These occur in two broadly-
deployed datacenter applications: distributed training for
machine learning, and distributed data processing systems.
Since programmable switches were originally optimized for
networking applications, their design includes basic support
only for integer operations. Applications wanting to take
advantage of in-network computation with floating point
values have so far worked around this in one of three ways.

The first approach is to approximate floating point opera-
tions in software running on end-hosts. This is the approach
taken by SwitchML [98] as it sums gradient vectors as part
of training deep neural networks. For each chunk of gradient
vector elements, SwitchML executes a protocol that requires
running code to convert between floating point and integer
values on end hosts, as well as performing two rounds of com-
munication. This protocol overhead is costly (see Sec. 5.3.3).

The second approach is to build a switch ASIC that
includes floating point hardware. This is the approach taken
by the Mellanox Quantum switch [32, 76]. Dedicating chip
resources for this purpose is expensive: we show (Sec. 4.2)
that adding dedicated FPU hardware takes more than 5×
the die area and power of integer ALUs. As a result, this is
not a general-purpose approach; it has only been taken for
InfiniBand switches, which have simpler routing designs
and buffer requirements than Ethernet switches, and hence
have spare die area. It also lacks flexibility: it is tied to
specific operations on specific floating-point formats. New
ML-specific numeric representations (e.g., FP16 [79, 106],
bfloat16 [21, 30, 53], TF32 [86], and MSFP [18]) represent
an area of ongoing innovation, and adding support for a new
format requires developing and manufacturing a new ASIC
– an expensive and time-consuming endeavor. For example,
it took four years for Mellanox to release its second version
of switches with floating point support [31, 32].

A related approach is to use FPGAs or other non-switch pro-
grammable devices to implement switch-like specialized accel-
erators [5, 20, 27, 70]. While this yields a functional solution,
the fine-grained programmability of a FPGA comes at the cost
of power [111] and area: for example, Xilinx’s flagship FPGA

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 683

supports∼8 Tbps [114] of Ethernet I/O, while the Intel Tofino
2, a regular programmable switch, supports 12.8 Tbps [43].

In this paper, we argue for a different approach. We propose
FPISA, which implements floating point computation as a P4
program running directly on a programmable switch. This is
not straightforward: the multi-cycle nature of floating-point
operations is at odds with the streaming-pipeline architecture
common to P4-programmable switches today. To make it work,
FPISA breaks apart each floating point value into exponent and
signed mantissa and stores them separately in different pipeline
stages, decomposing the corresponding sub-operations appro-
priately to ensure correct execution. Rather than requiring spe-
cialized floating-point hardware, FPISA repurposes network-
oriented hardware elements in the switch pipeline to implement
the sub-operations not supported by the switch’s integer ALUs.

FPISA is a generic approach. We evaluate its feasibility on
the Intel Tofino [42], a commercially-available PISA switch.
We observe that constraints of the existing Tofino architecture
present obstacles to a full FPISA implementation. We address
this in two ways. First, we introduce an approximate FPISA
design (FPISA-A) that is implementable on existing hardware,
albeit with some precision and throughput limitations. Second,
we propose some simple and cheap hardware modifications,
based on the open-source Banzai [102] switch architecture,
to enable high throughput and accuracy with FPISA. We show
that such enhancements are feasible in a 15-nm standard-cell
library with minimal power, area, and timing cost relative to
a baseline switch chip.

Through an emulation-based study, we assess the perfor-
mance benefits of our approach by implementing accelerators
for the use case of distributed training for machine learning,
based on the recent SwitchML [98] framework. Enhancing
SwitchML with FPISA (based on both regular FP32 and
ML-specific FP16) allows it to use 1-3 fewer CPU cores,
giving up to an 85.9% improvement in training throughput
on CPU-limited configurations, while still achieving the same
training accuracy and convergence.

2 Background and Challenges
Conventional network switches are fixed-function, requiring
redesign to add new features or support new protocols.
However, in today’s era of software-defined networking [58],
rapidly evolving networking techniques and applications re-
quire new packet processing support. Programmable switches,
which allow the data plane behavior to be reconfigured,
provide the necessary flexibility. The RMT-based Protocol-
Independent Switch Architecture (PISA) [9] has emerged as
the de facto standard for programmable switch architecture.

2.1 PISA

We depict the basic protocol-independent switch architecture
design in Fig. 1. The parser is a programmable state machine
responsible for extracting user-specified fields of the inbound

Parser

ALU

ALU

Memory

Memory…

Memory

ALU

ALU

ALU

Memory

Memory…

Memory

ALU

Ingress Pipeline Traffic Manager

…

MAU MAU
Egress Pipeline

or Recirculation

Packet

Metadata

Remaining

Packet

Figure 1: Basic PISA design.

packet to per-packet metadata.1 The ingress pipeline consists
of multiple cascaded match-action units (MAUs). Each
MAU has some memory (SRAM and TCAM) and ALUs. It
matches fields from the packet metadata against the memory
to determine the corresponding action to be taken by the
ALUs. The ALUs support basic integer arithmetic and logic
operations, and can be used to modify fields in the packet
metadata. They can also manipulate registers, which hold state
that persists across different packets.

After going through the ingress pipeline, the packet is
routed to an egress port and queued by the traffic manager.
Before being output, it passes through an egress pipeline that
has the same structure as the ingress pipeline, and the packet
header and body are reassembled by the deparser.

Programmable switches following this architecture have
become commercially available on commodity switches,
thanks to reconfigurable switch silicon like the Intel (Barefoot)
Tofino [42] and Marvell XPliant [88]. A long line of research
has showed how to use PISA switches to implement new net-
working protocols, offload network functions, and accelerate
application-level logic [36, 94].

2.2 Floating Point Overview

We describe the flow of the most common floating point oper-
ation in applications discussed in this paper – addition – here.
Note that subtraction is performed using the same process,
and comparisons are typically implemented using subtraction.
Regardless of specific widths, floating point values are repre-
sented with three parts: 1-bit sign, n-bit exponent, and m-bit
mantissa. Typically, a floating point number is represented in
normalized form: the mantissa value is in the range of [1,2), i.e.,
it begins with a leading “1” bit (which can be omitted, i.e., “im-
plied 1”). A floating point addition C=A+B is performed us-
ing a five-step process: (We assume here that abs(A)≤abs(B).)

Extract. The three parts of A and B are extracted from the
packed data. The implied “1” in the packed mantissa is
expressed explicitly.

Align. The two mantissas are aligned to represent values at
the same magnitude. Specifically, mantissaA (the smaller one)
is right-shifted by exponentA−exponentB bits.

Add/subtract. Now that the two mantissas are aligned,
they are added or subtracted, depending on sign:
mantissaC =mantissaB±mantissaA.

1The remainder of the packet is passed through the pipeline, but cannot
be matched or manipulated.

684 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ALU

ALU

8-bit
Exponent

Array

…

Memory

ALU

MAU2

ALU

ALU

32-bit
Signed

Mantissa
Array…

Memory

ALU

MAU4

Extract

ALU

ALU

…

ALU

MAU1

Align Add/sub Renormalize & Assemble

ALU

ALU

Exact
Match
Table

…

Memory

ALU

MAU3MAU0

ALU

ALU

…
ALU

MAU7

ALU

ALU

…

ALU

MAU5

ALU

ALU

TCAM
LPM
Table

…

Memory

ALU

MAU6 MAU8

Split bits
Add

implied “1”

Get exponent difference /

overwirte

Shift in-metadata

mantissa

Signed add/sub/

overwrite mantissa

Convert to

unsigned

Count leading “0”s,

shift mantissa

Adjust

exponent
Merge bits

Figure 2: FPISA dataflow. Only hardware components relevant to FPISA are shown.

Renormalize. The result is scaled so that the mantissa is in
the range of [1,2). This is achieved by counting the leading
“0” bits and left or right shifting mantissaC accordingly, then
adjusting exponentC by the corresponding value.
Round and Assemble. Finally, the three parts of C are packed
into a single value. The implied leading “1” of mantissaC
is stripped. If more mantissa bits are available than can be
represented in the packed format, the mantissa is rounded.

2.3 Challenges

Current PISA architectures do not natively support any
floating point operations. This is no surprise, considering that
they were designed for packet processing, and floating point
support is expensive. FPUs have much larger power and area
costs than integer ALUs [62, 68, 74], and the complex floating
point addition procedure (Sec. 2.2) takes multiple cycles and
thus introduces timing constraints.

This paper asks if we can build floating point addition
operations on a commodity PISA architecture. Intuitively,
it should be possible to decompose the canonical addition
procedure and span it across multiple pipeline stages. However,
we observe that this leads to two challenges.

First, registers are associated with specific pipeline stages,
and can only be accessed from that stage. That is, each register
can only be accessed once per packet, and data dependencies
cannot “go backwards” to an earlier stage.2 This poses a
problem for applications, like in-network aggregation, that
wish to maintain and update floating point state: it is not
possible, for example, to perform the add-mantissa and
renormalize steps in different pipeline stages.

Second, the available ALU operations may not be sufficient
to implement all the operations necessary to implement float-
ing point addition. For instance, on a CPU, the renormalization
step might use a count-leading-zeros instruction (e.g., lzcnt on
x86), but we know of no PISA switch with such an instruction.

Hence, we must develop a PISA-friendly, decentralized
(multi-stage) approach for floating point addition.

3 FPISA Design
How can we implement floating point operations on PISA
architectures, given the challenges described above? We
propose a design, FPISA, based on a new floating point

2Recirculating an entire packet is an exception. However, it is costly and
bandwidth constrained.

representation and a mapping of its operations to PISA
pipelines, as shown in Fig. 2. In this section, we describe
the basic FPISA approach in the context of an abstract PISA
pipeline; Sec. 4 discusses additional challenges that occur
when implementing it on existing PISA architectures.

FPISA has three key ideas:

Decoupled exponent and mantissa operations. FPISA
processes operations on the exponent and (signed) mantissa
components of floating point values separately, and internally
stores them in separate registers. This decoupling allows them
to be processed by different pipeline stages.

Delayed renormalization. Second, FPISA does not require
intermediate values to be renormalized on every operation.
That is, in a SwitchML-like [98] aggregation workflow, values
from each client are added to an accumulator whose value is
not renormalized until the final result is output. This is based
on two observations about floating point renormalization. First,
renormalization does not affect the correctness of floating point
operations. Scaling the mantissa to place the leading “1” in its
correct location is needed to produce an output value in canon-
ical format, but a denormalized form can equally represent
the same arithmetic value. Second, renormalization introduces
data dependencies between the mantissa and exponent compo-
nents, which makes it challenging to fit into a PISA pipeline. In
particular, renormalization requires the exponent to be adjusted
based on the computed mantissa, whose computation itself de-
pends on the exponent – a circular data dependency that cannot
be represented in a single pipeline traversal. To avoid this,when
we read from the accumulator, we read the denormalized value,
and normalize it just before sending out the final result. We do
not store the normalized value back into the accumulator.

Extra bits in mantissa register. PISA architectures com-
monly have registers with limited bit widths: 8-, 16-, or 32-bit
registers are common; on the other hand, floating point values
commonly have mantissas with smaller bitwdith. We take
advantage of this difference in two ways. First, we can use bits
to the right of the mantissa as guard bits to aid in rounding,
as is common in standard FPUs. Second, we can use bits to the
left of the mantissa to avoid overflow when summing multiple
values with similar exponents. When we add two values with
mantissas that are all ones, the addition simply carries into the
bits to the left of the mantissa.

In this section, we use IEEE 754 FP32 – which has a 1-bit

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 685

MAU

…

23-bit Mantissa8-bit ExponentSign

8-bit Exponent

Array

MAU
32-bit Signed

Mantissa Array

……

Figure 3: FPISA’s representation of FP32 in the switch.

mantissa exponent

000000001.10…
+ 000000001.00…

1
0

000000001.10…
+ 000000000.10…

1
1

000000010.00… 1

000000010.00… 1

matches 000000010.00…
mask 111111110.00…

→ right shift 1

000000001.00… 2

(1) extract

(2) shift

(3) add

(4) result

(denormalized)

(5) renormalize

(LPM match + shift)

(6) result

(normalized)

Figure 4: Example of FPISA addition: computing the sum of
3.0 (0b1.1×21) and 1.0 (0b1×20). Computation is done using
a 32-bit mantissa; 21 trailing zero bits are elided.

sign, 23-bit mantissa, and 8-bit exponent – as an example to
demonstrate FPISA design. Other FP formats with different
widths can also be supported. Fig. 2 shows FPISA’s dataflow.

3.1 Representing FP in PISA

To meet the constraints of PISA, FPISA splits the storage of
floating point values using the representation shown in Fig. 3.
The exponent field is stored in an 8-bit-wide register array.
The 23-bit mantissa is stored, right-aligned, in a 32-bit register.
To unify signs and addition/subtraction operations, we store
the mantissa in two’s-complement signed representation.

FPISA needs more memory space to store a floating point
number (e.g., 8+32=40 bits for a FP32 number). However,
we argue that this will not significantly reduce the efficiency
of FPISA since exponent and mantissa have to be stored in
different MAUs anyway. Hence, the per-MAU parallelism of
floating point operations will not be affected.

3.2 Performing FP operations in PISA

By delaying renormalization until the output phase and storing
exponents and mantissas separately, FPISA makes it possible
to adapt the standard extract-align-add-renormalize-assemble
floating point addition flow to a PISA pipeline. Fig. 2 shows
the mapping of functionality to MAUs. We use a running
example (Fig. 4) where an input of 1.0 is added to a register
containing the value 3.0.

Extract. The first stages extract the exponent and mantissa

Match (Manmetadata)

64.0.0.0/2

…

1.0.0.0/8

0.64.0.0/10

…

0.0.0.1/32

Action (Manmetadata)

Right-shift 7 bits

…

Right-shift 1 bit

Left-shift 1 bit

…

Left-shift 23 bits

Default Do nothing

0.128.0.0/9 Do nothing

Figure 5: LPM match-action table (MAU6) in FPISA design.

from a FP32 value in the input packet into separate metadata
registers (MAU0), then add the implied “1” to the extracted
mantissa field (MAU1). The decoded values are shown in
Fig. 4 step (1).

Align. FPISA then compares the provided exponent value with
the one stored in memory in MAU2. This updates the exponent
and determines which of the two operands’s mantissa must
be right-shifted and by how much. The right shift itself is per-
formed for the metadata value by MAU3, and for the memory
value by MAU4 (where the mantissa register is located). In
Fig. 4 step (2), 1.0 is shifted right to be expressed as 0.1×21

Add. In addition to shifting the mantissa of the in-memory
value, MAU4 performs the mantissa addition itself. Depending
on the sign bit, it either adds or subtracts the shifted mantissa
value generated in the previous stage from the stored mantissa
value (step (3) in Fig. 4). The resulting mantissa value replaces
the previous stored mantissa.

Note that MAU4 is used both to perform the right shift of the
stored mantissa and its addition. This is a necessity because the
PISA architecture can only update a given register from one
stage. Existing implementations may not be able to perform
both operations with a single stateful ALU; we discuss how
to extend them or how to work around this limitation in Sec. 4.

At the end of this process, the exponent and mantissa
registers contain the result of the addition, but may not be in
normalized form. For example, in step (4) of Fig. 4, the registers
store the value 0b10.0×21. This is indeed a valid representa-
tion of the result 4.0, but is not in normalized form because the
mantissa has more than one digit to the left of the binary point.

Renormalize and Assemble. FPISA delays renormalization:
it does not renormalize the intermediate value stored in
registers, but only when the result is to be output. Thus,
multiple additions can be performed before renormalization.
This offers two benefits. As mentioned before, it eliminates the
need to adjust the exponent stored in memory after calculating
the mantissa, avoiding a data dependency. Second, since the
renormalization and assembly steps are stateless, we can place
them in the (normally underutilized) egress pipeline, making
more efficient use of resources.

The renormalization process itself is performed in four
steps. The aggregated mantissa is first converted from its two’s
complement signed representation to unsigned value and sign
(MAU5). FPISA then counts the number of leading zeros and

686 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

shifts the mantissa value accordingly, in order to place the
leading “1” bit in the right location (MAU6).

Because no PISA switches support a count-leading-zeros
operation, FPISA exploits a TCAM-based longest prefix match
(LPM) table – commonly used in IP routing – to implement
this function. Specifically, we construct a LPM table where
each entry has an IP address with only the ith bit set, and a
netmask that matches the first i bits. A match indicates that the
mantissa has i−1 leading zeros. This is used to select the right
shift action that places the leading 1 in its canonical location
(bit 24 for FP32). In the example, the leading “1” is located
using a match, whose bitwise representation is shown in step
(5), which corresponds to the CIDR address 0.128.0.0/9; the
lookup table (Fig. 5) indicates that the mantissa should be
shifted right by 1. The exponent is adjusted also according to
the leading zeros’ count (in MAU7) – here, incremented by 1.
This gives a normalized result; all that remains is to merge the
sign, exponent, and lower 23 bit of the 32-bit mantissa fields
(in MAU8) to put it in FP32 format.

3.3 Additional Floating Point Features and Operations

Overflow. The denormalized representation has the potential
to overflow if similar values are added many times. With a
signed register size of 32 bits and a mantissa size of 24 bits,
there are 7 bits to the left of the mantissa available for holding
overflows. This is sufficient to represent 128 additions of
values with the maximum mantissa with the same exponent
– an extreme case – into a single register without overflow.
However, for the use cases described later in the paper, the
number of operations per register is equivalent to the number
of nodes in the distributed system. If overflow occurs, it can
be detected and signaled to the user, who can handle it in an
application-specific way.

Other FP formats. FPISA can be trivially modified to support
floating point formats with different exponent and mantissa
width (e.g. FP16, which we evaluate in Sec. 5). Likewise, block
floating point formats, where multiple values share one expo-
nent [18], can be supported by replicating the exponent register.

Rounding. For simplicity, we have described FPISA without
guard digits. The combination of no guard digits and
two’s-complement representation provide round-toward-
negative-infinity semantics. An implementation with n guard
digits would simply store the mantissa shifted left n bits from
what is show in Fig. 3, and would use those to perform other
types of rounding after renormalization.

Reproducibility. FPISA provides reproducibility in that the
same sequence of operations and values will always produce
the same result. However, since FPISA performs operations in
a different order than that specified in the IEEE 754 standard,
the same sequence of operations and values performed on an
IEEE-754-compliant CPU may yield a different result than
FPISA. For the use cases we describe in this paper, IEEE 754
compliance is not a requirement.

In this paper, we have covered the two commonly-used
floating point operations – addition and comparison. They
are sufficient for many distributed applications. However,
other more complex and costly floating point operations may
be needed in the future with emerging applications (e.g.,
congestion control [26, 54] and network security [34]). To
pave the way for future PISA implementations, we briefly
discuss the possibility of supporting them.

Multiplication and division. The flow of floating point
multiplication is similar to that of addition in Sec. 2.2. The two
major differences are (1) the two exponents are added, and
(2) the two mantissas are multiplied, all as integers. For small
floating point types, the mantissa multiplication can be imple-
mented as a table lookup, without hardware modifications. For
larger floating point types, integer multiplers could be added
to the hardware. We implement one based on Banzai and find
its overhead is acceptable: approximately the same as an adder
and a boolean module w.r.t. power and area.

Floating point division has a different flow and takes more
clock cycles than other basic operations [104], which means
it is unsuitable to have a direct hardware implementation in
programmable switches. For some use cases, division can be
implemented by converting the dividend to its reciprocal at
the end-host and then multiplying in the switch.

Logarithms. The core operation of a floating point log-
arithm is the integer logarithm of the mantissa. As prior
research [3, 99, 109] shows, this can be done by a lookup table
of fewer than 2000 entries with low error (<1%).

Square roots. Square roots are even more expensive and
time-consuming (e.g., more than 20 clock cycles) than
division [69, 87, 104]. As with logarithms, we suggest a
lookup-table-based approximation for this algorithm.

4 Realizing FPISA on PISA Architectures
The previous section shows how FPISA can map floating point
operations to an abstract PISA architecture. Actual PISA imple-
mentations may have restrictions on MAU operations. We have
implemented FPISA in P4 for the Tofino architecture. In doing
so, we encountered several architectural limitations (Sec. 4.1).
We show that simple architectural extensions, which can be
implemented with minimal power and chip area cost, can re-
solve these limitations and enable a full FPISA implementation
(Sec. 4.2). Alternatively, we describe an approximate approach,
FPISA-A, which works around these limitations to implement
a variant of FPISA for the existing Tofino architecture, albeit
with tradeoffs in accuracy and resource utilization (Sec. 4.3).

4.1 Challenges

We implement FPISA addition in the P4 language [8] (∼580
LoC) in a modularized manner (i.e., one floating point addition
per module) and compile it to the Tofino ASIC [42]. Tab. 1
shows the resource utilization of the FPISA module out of
a single Tofino pipeline. Most of these resources cannot be

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 687

Table 1: FPISA resource utilization. Nine pipeline stages (out
of 12 in total) are used.

Resource Total usage Max usage in a MAU

SRAM 1.15% 5.00%
TCAM 0.03% 4.17%
Stateful ALU 8.33% 50.00%
VLIW instruction slots 19.01% 96.88%
Input crossbar 0.09% 4.38%
Result bus 2.34% 12.50%
Hash bit 1.06% 7.93%

shared across multiple FPISA instances.
Using this implementation, we identify three limitations of

the the current Tofino hardware that impact the functionality
and efficiency of our FP operations.

Resource utilization of shift operations. In general, multiple
FPISA modules can be deployed in parallel, sharing the
same pipeline stages and overlapping with each other. For
many applications, performing as many operations per packet
as possible is essential to achieve high performance [98].
Unfortunately, the current Tofino architecture can only
accommodate one FPISA module in its ingress pipeline, i.e.,
only one floating point addition can be performed per packet.

After analyzing the resource utilization, we observe that
the main source of overhead is performing shift operations.
Specifically, FPISA needs to shift fields by a variable number of
bits, in order to implement the alignment and renormalization
stages. However, the Tofino ALUs can only perform shift op-
erations with a fixed shift distance, specified as an immediate.
While it is possible to emulate a variable-length shift operation
with the current functionality, doing so is resource intensive.
In particular, per-stage VLIW instruction utilization prevents
multiple FPISA instances from sharing pipeline stages.

Lack of atomic shift-and-add. One of the pipeline stages
in the abstract design (MAU4 in Fig. 2) must perform two
operations: right-shifting the stored mantissa to align it with
the value being added, and performing the mantissa addition.
Both are stateful operations on the mantissa register, so
they must be performed by the same stage’s ALU. However,
the Tofino’s ALUs cannot perform both a shift and an add
operation. In Sec. 4.3, we show how to work around this
limitation by left-shifting the other mantissa value (from the
packet metadata) instead; this allows the FPISA design to be
implemented on the existing Tofino architecture, but can lead
to numerical error for some workloads.

Endianness conversion. While hardly unique to FPISA, endi-
anness conversion is a non-trivial source of overhead for FPISA
applications. Network devices interpret values in network byte
order (big-endian), whereas most general-purpose CPUs are
little-endian. To identify and process the data correctly in the
switch, endianness conversion is necessary. Traditional net-
working applications only need to convert byte order for head-
ers, which are relatively small. For data-intensive in-switch ap-
plications, byte order conversion for the full payload can have
high overhead. While the Tofino has functional units that can

FP16 FP32 FP64
0

2

4

6

C
on

ve
rs

io
n

R
at

e
(x
10

9 /s
ec

)

Single-core DPDK-based rate
Desired rate to achieve 100Gbps line-rate

Figure 6: Endianness conversion rate that a core can achieve
and that is desired to achieve 100 Gbps line-rate.

Table 2: Stateless ALU and stateful RAW/RSAW unit areas
and minimum critical-path delays in FreePDK15 library. Each
of the compiler targets contains 300 instances of one of the
ALUs. Power and area are evaluated at 1 GHz frequency target.

Default
ALU

FPISA
ALU

Default
RAW

FPISA
RSAW

ALU+
FPU

Dynamic power (µW) 594.2 669.4 637.6 721.1 3590.6
Leakage power (µW) 18.6 22.8 16.8 22.1 109.8
Area (µm2) 505.4 618.6 468.8 633.0 3837.7
Min Delay (ps) 133 135 133 151 136

do this conversion, they are not plentiful enough to convert full
payloads, and thus the conversion must be done on end hosts.

To quantify the overhead, we test how rapidly a single x86
core (running at 2.3 GHz) can perform endianness conver-
sion for different floating point formats, using DPDK’s highly-
optimized APIs with “O3” optimization. Fig. 6 compares the
measured results with the rate needed to achieve line-rate con-
version at 100 Gbps. The gap is large, particularly for lower-
precision values. In particular, to reach 100 Gbps for FP16, one
will need at least 11 (i.e.,ddesired rate/single-core ratee) cores.
Hence, the high overhead of endianness conversion will lead to
either low network throughput or extra CPU or GPU utilization.
In many applications, these resources are not free; for instance,
in DNN training, CPUs are often busy with data preprocessing.

4.2 PISA Architectural Extensions

To avoid these problems, we propose to extend the PISA
architecture with some additional support. We show that the
cost of these additions is low by extending the Banzai switch
architecture model [102] and demonstrating that the increase
in chip area, power, and timing budget is not significant.

2-operand shift instruction. We propose to enhance the
existing shifter by allowing the shift distance operand to
come from metadata instead of an immediate. The proposed
instruction format is shl/shr reg.distance, reg.value.
This little-effort enhancement will significantly improve the
resource efficiency of FPISA, since the shifter can directly take
the table match result as operand, and two instructions (left-
and right-shift) can handle all the cases.

Combined shift+add operation in one stage. If the switch
can support an atomic “shift+add” operation on a register in

688 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

a single stage, we will be able to swap the mantissa, with no
compromise of potential error.

In-parser hardware-based endianness conversion. Endian-
ness conversion in the hardware is straightforward and cheap
– pure combinational logic shuffling the wires. We propose
a simple enhancement to the switch’s parser and deparser to
implement this. Specifically, we propose a P4 type annotation
@convert_endianness, applied to entire headers, that indicates
to the compiler that the parser and deparser should convert the
header fields’ endianness as they enter and leave the pipeline.
The parser will store the corresponding result to the metadata
along with a implicit tag bit adjacent to the header’s valid bit.
When the packet is re-assembled, the deparser will check this
tag bit to determine the byte order to be emitted.

To evaluate the cost of the first two changes (the last change
has near-zero cost), we modify the open-source Banzai [102]
switch architecture, a PISA-like design. We modify the Verilog
code for Banzai’s ALU to support our proposed shift instruc-
tion and synthesize it using Synopsys Design Compiler [107]
with the FreePDK 15nm FinFET standard-cell library [73],
a technology node similar to that used by the Tofino. We first
check whether the design can operate at 1 GHz, evaluate its
power and area, and then search the minimum critical-path
delay of each design to find the impact of our modifcation
on timing. As the results in Tab. 2 show, an enhanced ALU
may use 13.0% more power and 22.4% more area than the
original ALU, while slightly increasing the minimum delay.
The overhead mainly comes from connecting and storing
the second operand in the shifter. We implement a stateful
read-shift-add-write (RSAW) unit based on Banzai’s atomic
predicated read-add-write (RAW) unit. The synthesis results in
Tab. 2 demonstrate that the RSAW unit uses 13.6% more power
and 35.0% more area than the regular RAW unit. In terms of
minimum delay, RASW is 13.5% longer than RAW, but still
far from the 1ns bound at 1 GHz. Banzai provides implementa-
tions only for the functional units, not for the entire switch chip,
so we are unable to directly evaluate the impact of our modifica-
tions on the full chip design. However, prior work suggests that
ALUs take up only a small portion (i.e.,∼ 10%) of the pow-
er/area budget for the entire chip [9]; from this we infer that our
modifications would have negligible impact. In other words,
this hardware enhancement is feasible today, and is unlikely
to become a bottleneck in future hardware generations.

Finally, to compare our approach with one that includes
specialized floating-point units (like the Mellanox Quantum
switch [32, 76]), we synthesize an ALU that includes a hard
floating point unit. The ALU+FPU column in Tab. 2 shows the
result: the hard FPU is more than five times larger and more
power hungry than either the default ALU or the FPISA ALU.
Its high area and leakage power are costs that must be paid even
when the FPU is not in use, making it challenging for a switch
chip including these features to be competitive with ordinary
switches in terms of efficiency, and forcing vendors to maintain
separate specialized switch designs for different applications.

Conversely, the FPISA approach allows the same ALUs to
support both floating-point and non-floating-point compu-
tations, enabling a single switch chip design to support both
floating-point and non-floating-point workloads efficiently.

4.3 FPISA-A: FPISA on Existing Architectures

The architectural changes described above allow us to
implement the full FPISA approach. We additionally want
a solution that allows FPISA to run on existing Tofino
switches. Achieving this requires addressing the shift-and-add
limitation. (The other two, while important, impact only
resource utilization.) We provide a way to approximate
FPISA on existing switches by avoiding the problematic shift.
This approximation, which we call FPISA-A, can lead to
inaccuracies for certain patterns of inputs, though we show
later that it is not a problem for some applications, including
in-network aggregation for ML training workloads (Sec. 5).

Recall that the problem arises because the alignment phase
may require shifting the in-memory mantissa value to align
it with the value to be added, which conflicts with the need
to perform addition on the same value. Note that this is not a
problem when the in-memory value has a larger exponent than
the in-metadata value, as only the smaller of the two is right
shifted. Taking advantage of FPISA’s tolerance for denormal-
ized representations, FPISA-A always shifts the in-metadata
mantissa rather than the in-memory value. That is, if the in-
metadata value is larger than the in-memory value, we keep the
exponent unchanged and left-shift the in-metadata mantissa.

This approach works, within a certain range, because FPISA
internally uses wider registers for the mantissa than the basic
floating point representation. For FP32, IEEE 754 uses a
23-bit mantissa, while FPISA stores it in a 32-bit register. This
gives 7 bits of headroom, after accounting for the implicit
1-bit and the sign bit. If the value being added is much larger
than the in-memory value, i.e., its magnitude is greater by a
ratio of more than 27=128, the headroom would be exceeded.
Instead, we detect this case during the exponent comparison
(MAU2 in Fig. 2) and replace the in-memory value entirely
with the in-metadata one. Doing so introduces numeric error
in the low-order bits.

The FPISA-A variant is supported by the current commodity
Tofino switch. As described above, it can introduce numeric
error (which we call “overwrite” error). However, the error
only occurs when input values vary widely in magnitude, and
is bounded by the difference between headroom and mantissa
width. For some applications, this approximation poses little
difficulty: as we demonstrate in Sec. 5, ML model training
gradients generally have a relatively narrow exponent range,
and the workload is in any event resilient to small inaccuracies.
For others, it may be more problematic; in those cases, the
architectural modifications of Sec. 4.2 will be needed.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 689

5 Case Study: Distributed ML Training
As the model and dataset sizes have increased for ML training
jobs, large-scale distributed training has become increasingly
important [1, 12, 13, 21, 33, 38, 40, 41, 47, 67, 81, 91, 113].
In this paper, we focus specifically on data-parallel training,
a common approach to distributed training.3 In data-parallel
training, the dataset is partitioned to multiple worker machines,
each with a replica of the model. In a training iteration, each
machine performs learning on its local dataset and model,
generating gradient vectors. These gradient vectors are then
used to update the weights that make up the model. Modern
supervised ML typically employs stochastic gradient descent
(SGD) [82, 83, 95] or its variants as the optimizer for iterative
training. In general, the core operation of SGD is as follows:

weight(next)=weight(current)−learning_rate·gradient(current),

where gradient(current) is the element-wise mean of all the
local gradient vectors produced by each worker. Computing
this mean requires summing (or aggregating) gradient vectors
from all workers.

Prior work has observed that, as the number of workers
and the size of the model grows, communication costs –
specifically, the gradient aggregation procedure – increasingly
become a bottleneck in distributed training [70, 71, 98, 118].
Gradient aggregation can be viewed as an “all-reduce” col-
lective operation, a familiar concept from the HPC world – the
gradient vectors are gathered from all worker machines, re-
duced to one vector, and sent back to all worker machines. It is
traditionally implemented either using a parameter server [67]
or a distributed reduction protocol like ring all-reduce [6, 90].

In-network aggregation has been proposed as a promising
way to accelerate this collective operation, and thus distributed
training [2, 27, 31, 32, 57, 61, 70, 98]. In-network aggregation
performs the “reduce” (i.e., sum) step of all-reduce in a
network switch on the fly. This offers higher throughput and
lower latency than a parameter server approach, where both the
network link and host-side network stack can become bottle-
necks. Compared to ring-based and other distributed all-reduce
algorithms, in-network aggregation requires exchanging fewer
messages, again reducing latency and network usage.

PISA switches are well suited for, and have been used for, im-
plementing in-network aggregation without specialized hard-
ware. A major challenge, however, is the lack of floating point
support. The recent state-of-the-art in-network aggregation
work, SwitchML [98], works around this by quantizing floating
point values at end hosts so that the PISA switch only operates
on fixed-point values. While this quantization approach has
been shown not to impact accuracy [98], we show that it harms
performance. In particular, quantization and format conversion
requires significant CPU overhead on the worker hosts. Com-
puting the scaling factor to use for each block also requires

3Other parallel modes, like model-parallel, may also benefit from what
is discussed in this work, but we do not explore them here.

an additional network round trip. Both costs could be avoided
if the switch could operate on floating point values directly.

5.1 Setup

Environments. Given the hardware constraints of the current
Tofino ASIC described in Sec. 4.1, we are not able to evaluate
FPISA’s applicability/benefit on the distributed ML training
scenario entirely on a real system. Hence, we employ different
evaluation approaches for different aspects of the process.

Specifically, to measure training accuracy and the impact of
error, we write a C library that simulates gradient aggregation
using a faithful implementation of the FPISA-A addition algo-
rithm and integrate this C library into PyTorch [89] to train the
models. We use the apex [85] PyTorch extension to evaluate
both FP32 and FP16 floating point formats. Experiments and
plots with this approach are labeled with “[SIMULATION]”.

To analyze the numerical characteristics of the trained
models’ gradients and measure training throughput, we use
an 8-machine cluster where each node is equipped with
one NVIDIA P100 16 GB GPU, two 10-core Intel Xeon
E5-2630v4 2.2 GHz CPUs, and 128 GB of DRAM with data
served from local SSD storage. The cluster is networked at
100 Gbps and includes one Tofino-based Wedge100BF-65X
programmable switch. This cluster deploys in-network
aggregation through SwitchML [98].

For gradient numerical analysis, we directly dump the
gradient vectors during the training processes. In these
experiments, the workers compute gradients in the FP32
floating point format. Experiments and plots with this
approach are labeled with “[TRACE]”.

For performance (speedup) evaluation, we seek to measure
the performance that FPISA-A can achieve with our variable-
length shift extension, which allows multiple parallel FPISA-A
instances per pipeline. Because current switch hardware does
not support this, we emulate FPISA-A-enabled performance
by removing the end-host format conversion/quantization at
the workers and performing integer computations in place
of floating point computations on the switch. While this
emulation setup gives nonsensical output, it provides a realistic
expectation of FPISA-A performance because: (1) under
Tofino, data plane programs experience a switch processing
latency that depends only on the number of stages and not
on the computation intensity of their specific operations,
without any effect on throughput (data plane programs operate
at line rate) as confirmed experimentally in previous work
(e.g., [17]); (2) SwitchML uses the full set of stages on
the ingress pipelines of Tofino and any potential increase
of in-switch latency can be mitigated by increasing the
number of aggregation slots. Note that we use this approach
only for performance evaluation, and it runs on the testbed
configuration described above. Experiments and plots with
this approach are labeled with “[EMULATION]”.

Benchmarks. We select seven popular state-of-the-art ML
models. These models are MobileNetV2 [96], VGG19 [101],

690 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

20 24 28 212 216 220

Max/Min Ratio
0.00

0.05

0.10

0.15

0.20

Fr
eq

ue
nc

y

(a) VGG
(CIFAR-10).

20 24 28 212 216 220

Max/Min Ratio
0.00

0.05

0.10

0.15

0.20

0.25

Fr
eq

ue
nc

y

(b) DeepLight
(Criteo 1TB).

20 24 28 212 216 220

Max/Min Ratio
0.00

0.05

0.10

0.15

0.20

Fr
eq

ue
nc

y

(c) LSTM
(GBW).

Figure 7: [TRACE] Element-wise max/min ratio distribution
of different models (datasets).

ResNet-50 [37], GoogleNet [108], LSTM [52], Deep-
Light [22], and BERT [24]. We use all of these to evaluate
training throughput, but evaluate accuracy only for the first
four, since emulating FPISA-A in software is costly and
those four CNNs train much faster than the other models.
For CNN models, we use the CIFAR-10 dataset [59] with
a learning rate of 0.1, momentum of 0.9, and weight decay
of 0.0005. For other models, we use the same setting as in
the SwitchML evaluation [98]. Regarding the batch size, for
the accuracy experiments, we use a batch size of 16 because
small batches represent a worst-case configuration from an
accuracy standpoint; for the performance experiments, we use
the standard batch sizes of each model listed in the MLPerf
benchmark [80] and the SwitchML work [98] (i.e., 213 for
DeepLight, 4 for BERT and 64 for others).

5.2 Characteristics of Training Gradients

The gradient aggregation workload has some common nu-
merical characteristics that make it well suited for in-network
aggregation with FPISA. In particular, FPISA can be used with
existing Tofino switches using the FPISA-A approximation
(Sec. 4.3); the resulting numerical error is rare and (as we
demonstrate) has no impact on training accuracy.

High aggregation parallelism. In general, for each training
iteration, the entire gradient vector corresponding to the
training model needs to be aggregated from all worker
machines. These vectors can range from several MBs to
GBs. Aggregation is just vector addition; this element-wise
summation provides ample parallelism.

Vector-wise distribution. As studied in INCEPTIONN [71],
gradient values in each vector largely fall in the narrow range
of [−1,1], and most are close to “0”.

Element-wise distribution. We find that for the same element
from different workers’ gradient vectors at the same iteration,
the relative range is also narrow. To demonstrate this, we
analyze the distribution of element-wise max/min ratio among
eight workers’ gradient vectors of the training of three models
and datasets (see Sec. 5.3 for detailed setup and configuration),
and plot the results at the early training phase (i.e., the first
epoch) in Fig. 7 (we have observed similar distributions

10 20 10 15 10 10 10 5 100

Error Values
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fr
eq

ue
nc

y

(a) Epoch #1.

10 20 10 15 10 10 10 5 100

Error Values
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fr
eq

ue
nc

y

(b) Epoch #20.

10 20 10 15 10 10 10 5 100

Error Values
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fr
eq

ue
nc

y

(c) Epoch #40.

Figure 8: [SIMULATION] FPISA-A’s error distribution
of VGG19 gradient aggregation at early, middle, and final
training stages.

through the mid/final phases of the training). We find that,
regardless of the model and dataset, most (∼83%) elements’
max/min ratio is smaller than 27.

Precision loss/error tolerance. It is well known that small
floating point error does not dramatically affect the con-
vergence and final accuracy of ML models [15, 19, 23, 71].
This observation has motivated extensive prior research
about training with low or mixed-precision floating point
operations [19, 25, 46, 50, 79, 115] and compression or
quantization [35, 39, 44, 71].

Thanks to these numerical characteristics, FPISA-A addition
can be directly applied to the in-network aggregation scenario
on current Tofino switches. As discussed in Sec. 4.3, the
lack of a shift-and-add operation introduces error only when
adding values that differ by more than a 27 ratio – which
Fig. 7 shows is rare – and the workload can tolerate such
error. We show later that it has no impact on model accuracy
or convergence. However, as discussed in Sec. 4.1, the
cost of shift operations does mean the current Tofino only
accommodates one FPISA-A module per pipeline. Hence,
in-network aggregation performance will benefit from the
variable-length shift enhancement we propose.

5.3 Evaluation

We take a two-step approach to our evaluation. (1) We first
show that FPISA-A addition will not affect the training
convergence (i.e., FPISA-A will not incur more training
iterations), and do not consider time-wise performance. (2) We
demonstrate that FPISA-A can reduce the time of each training
iteration and do not consider the convergence (because it is
agnostic to per-iteration time). Taken together, we conclude
that FPISA-A reduces end-to-end training time.

5.3.1 FPISA-A Error Analysis

To investigate the errors to which FPISA-A addition may lead,
we record the gradient vectors from eight workers during a
training job. We use the C library to compare the results of
FPISA-A vs. standard floating point addition for aggregating
the same gradient vectors. Fig. 8 shows the (absolute) error
distribution of VGG19 during different training phases.

Similar to the gradient distribution [71], the error distribu-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 691

tion remains similar among early, middle, and final phases
of training, showing FPISA-A’s wide applicability. Most
errors (>95%) are in the range of [10−10,10−8], enough to be
tolerated by ML training, which we demonstrate in the next
section. We further investigate the sources of the errors and
find that most errors come from rounding, while the errors
caused by the overwrite and left-shift mechanisms happen
rarely (less than 0.9% and 0.1%, respectively, among all the
addition operations in the aggregation procedure). These errors
arise because, in some cases, a gradient vector’s element-wise
distribution is larger than FPISA-A’s left-shift headroom. As
a result, the smaller values may be ignored in the aggregation
procedure, leading to small errors (i.e., smaller than 10−8).

Note that a switch implementing the full FPISA proposal,
rather than just FPISA-A, would not experience these overwrite
errors. Note also that no overflow occurs in this experiment,
since the number of workers, and thus the number of operations
per vector element, is less than the headroom available in the
mantissa register.

5.3.2 FPISA-A’s Impact on Training Convergence

We investigate whether FPISA-A will lead to training accuracy
loss, due to the errors it imposes. We train four ML models
for 40 epochs with both default and FPISA-A addition in
gradient aggregation. To show FPISA-A’s adaptability on
different floating point formats, we train using both standard
single-precision FP32 and half-precision FP16 for each model.

We plot the accuracy value during the training procedures
of each model in Fig. 9 to observe FPISA-A’s impact on
convergence. Note that the jitters in the curves are due to the
small batch size we are choosing; these are normal and do not
affect the training procedure. First, we find that floating point
precision does affect the training convergence. That is, in all
four models, we observe slower convergence of FP16-based
training compared to regular FP32-based training, as well as
the final accuracy. However, FPISA-A’s addition errors will
not amplify such gaps. In most cases, the curve of FPISA-A
addition is closely aligned with the curve of default addition.
After 40 epochs, the accuracy differs by less than 0.1%. The
results also demonstrate that regardless of the floating point
format, FPISA-A addition will not degrade each model’s
accuracy. Hence, we argue that FPISA-A will not prolong the
training by adding necessary epochs to converge.

5.3.3 Training Speedup with FPISA-A

In the next experiments, we evaluate the potential speedup
of FPISA-A in an end-to-end training setting as well as the
resulting reduction of host-based quantization overheads.
SwitchML uses CPU cores at workers to scale and transform
the numeric representation of gradient vectors, including both
floating-point/integer conversion and byte order conversion.
In contrast, FPISA-A does not have these overheads as it sends
gradient vectors as floating point values directly. As described
in Sec. 5.1, from an end-to-end perspective, this is the sole

source of expected performance variation between SwitchML
and FPISA-A. Thus, we vary the number of CPU cores and
measure the throughput differences between these approaches
through a microbenchmark.

In this microbenchmark, two workers reduce a 1 GB
gradient vector;4 we measure the time to complete the
operation across the workers. We use 256 element packets
which is the largest that SwitchML supports. After 50 warm-up
invocations, we perform 250 reductions and report median
and 10th-90th percentiles as the error bars.
SwitchML baselines. We use SwitchML’s RDMA transport
since it is more efficient that the DPDK one, and we run two
versions to explore the performance implications of scaling
and transforming gradient vectors on either the CPU or the
GPU (where gradients are initially computed and stored).
The base SwitchML version – denoted SwitchML/CPU –
uses CPU cores. This benchmark assumes that the gradient
vectors are already in host memory. Further, we create a new
version of SwitchML – denoted SwitchML/GPU – that uses
the GPU to scale and transform gradient vectors to the integer
representation before copying them to pinned host memory.

Recall that SwitchML scales the gradient vectors in chunks,
using a scaling factor adapted to each chunk based on a
maximum exponent calculation that involves a round trip over
the network. SwitchML saves the maximum exponent calcula-
tion’s network overhead by overlapping the aggregation of the
current chunk with the exponent calculation of the next chunk.

For SwitchML/CPU, we keep the original SwitchML logic
where one chunk is equivalent to the RDMA message size. For
SwitchML/GPU, we use a separate CUDA stream for each
CPU core to allow parallel kernel execution. We also introduce
a performance optimization where we asynchronously de-
quantize aggregated messages from integer into floating point
values on a separate CUDA stream thus having two CUDA
streams for each CPU core. Despite these optimizations,
there is an inherent overhead with launching one GPU kernel
for each chunk. One potential way to avoid this could be to
execute the per-chunk maximum exponent calculation as a
pre-processing operation before the in-network aggregation
phase; we leave this to future work.
FPISA-A approaches. We run our FPISA-A emulation in
three settings. (1) FPISA-A/CPU directly adopts the RDMA
implementation of SwitchML and disables host-based type
conversions. SwitchML’s RDMA implementation, however,
involves a CPU memory copy operation into a staging area.
This memory copy is not necessary in the case of FPISA-A
since it can operate entirely on memory-resident native FP
vectors without quantization; thus, we include a further
optimization – (2) FPISA-A/CPU(Opt) – that omits this extra
memory copy. Lastly, (3) FPISA-A/GPU (for comparison

4We use two workers to exclude the synchronization variability among
a larger number of workers. This is to better quantify the performance
differences due to the scaling and transformation overheads. We also tried
100 MB with similar results.

692 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) GoogleNet. (b) ResNet-50. (c) VGG19. (d) MobileNetV2.

Figure 9: [SIMULATION] Accuracy curves of different ML models with default addition and FPISA-A addition.

2 4 6 8 10
Number of Cores

0

25

50

75

100

Go
od

pu
t (

Gb
ps

)

Cores vs Goodput (CPU) (16KB Msgs)

4.0KB
8.0KB

16.0KB
32.0KB

64.0KB
128.0KB

256.0KB
512.0KB

1.0MB
2.0MB

Message Size (Bytes)

0

25

50

75

100

Message Size vs Goodput (CPU) (4 Cores)

4.0KB
8.0KB

16.0KB
32.0KB

64.0KB
128.0KB

256.0KB
512.0KB

1.0MB
2.0MB

Message Size (Bytes)

0

25

50

75

100

Message Size vs Goodput (GPU) (4 Cores)

SwitchML/CPU FPISA-A/CPU FPISA-A/CPU(Opt) SwitchML/GPU FPISA-A/GPU

Figure 10: [EMULATION] Goodput of different floating point approaches on microbenchmark. The maximum theoretical
goodput with framing overhead is 92 Gbps.

Dee
pL

igh
t

LS
TM

BERT

VGG19

Goo
gle

Net

Res
Net-

50

Mob
ile

NetV
2

0

25

50

75

100

E
nd

-to
-e

nd
 T

ra
in

in
g

S
pe

ed
up

 (%
)

2-core case
8-core case

85.9%

56.3%

35.4%
20.3%

0.9% 0.6% 0.8%

31.6%
16.7%

9.9%
0.2% 0.3% 3.6% 0.6%

Figure 11: [EMULATION] End-to-end training time speedup
of FPISA-A compared to the default SwitchML.

against SwitchML/GPU) includes a copy from GPU memory
to pinned host memory and back.5

Because FPISA-A operates directly on FP vectors, we intro-
duce two performance optimizations for FPISA-A/GPU that are
not applicable to SwitchML/GPU (due to the need for chunk-
based quantization). First, we use batching to amortize the cost
of launching one copy operation for each chunk. Second, we
asynchronously copy from GPU to host memory as a pipeline
of one batch ahead of what needs to be consumed. Further,
similar to the SwitchML/GPU case, we asynchronously copy
back from host to GPU memory on a separate CUDA stream.

In-network aggregation goodput. Fig. 10 (left) shows that
FPISA-A/CPU requires three CPU cores to achieve the 92
Gbps maximum goodput, as opposed to SwitchML/CPU,
which needs four cores.6 FPISA-A/CPU(Opt) achieves the
maximum goodput with just a single core. This leaves more
CPU cycles for data I/O, potentially avoiding training job
stalls while waiting for input data to be preprocessed.

5Our testbed does not support GPU Direct, which would enable FPISA-A
to use RDMA transfers out of and into GPU memory.

6SwitchML/CPU with 5 cores has a small performance dip due to work
imbalance across cores in this particular configuration.

4.0KB
8.0KB

16.0KB
32.0KB

64.0KB
128.0KB

256.0KB
512.0KB

1.0MB
2.0MB

Message Size (Bytes)

101

102

103

104
La

te
nc

y
(m

s)
Kernel
Copy

2 3 6 12 24 47 70 74 77 74
Goodput(Gbps)

Figure 12: [EMULATION] SwitchML/GPU overheads
at each iteration of the microbenchmark. To achieve high
goodput, a message size of 256 KB or beyond is necessary.
At smaller message sizes, the kernel and copy launches (solid
lines) introduce a substantial latency compared to the actual
kernel execution or copy latency (dashed lines).

The message size for this benchmark is 16 KB, which allows
SwitchML/CPU to reach peak performance, according to the
SwitchML paper [98]. Fig. 10 (middle) illustrates that FPISA-A
achieves maximum goodput for a wide range of message sizes.

For the GPU variants, we find that the message/chunk
size is the most important factor. Fig. 10 (right) shows that
SwitchML/GPU is inefficient with message sizes below 256
KB. This is due to overheads of GPU kernel launches and
copies at small message sizes (cf. Fig. 12). Increasing the
number of cores does not help because CUDA implicitly
synchronizes all kernel launch calls (kernel execution can
be parallelized whereas kernel launches cannot). In contrast,
using just a single CPU core, FPISA-A/GPU achieves the
best possible performance – limited to 80 Gbps only by the
bidirectional copy bandwidth of the GPU copy engines – since
it can copy chunks in larger batches.7 We expect that without

7We copy memory using 1 MB chunks as it gives the best results
irrespective of the RDMA message size.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 693

this bidirectional copy bandwidth limit (a constraint of our
environment), FPISA-A/GPU would match the performance of
FPISA-A/CPU(Opt) since it completely overlaps the memory
copying with CPU and network operations.

SwitchML/GPU with a chunk size of 1 MB reaches a
performance comparable (but still below) to FPISA-A/GPU.
However, this requires an equally large RDMA message
size whereas FPISA-A/GPU performs well even with 4 KB
messages. Using large message sizes has several negative
implications. First, it can introduce larger errors in SwitchML’s
quantization scheme since it chooses the scaling factor from a
larger chunk. Second, it hurts the performance of loss recovery
because the loss of a single packet entails resending the
entire 1 MB message (1024 packets). Third, the performance
degrades past a certain message size. This is due to limited
network capacity and the reduction of pipelining, which in turn
reduces the performance benefits of SwitchML’s streaming
aggregation. Thus, we conclude that, although performing
quantization on the GPU might still be an interesting
possibility for SwitchML, more work is necessary to devise
an efficient implementation without increasing quantization
errors and without affecting the GPU’s availability for training.

Training throughput. We now confirm that FPISA-A’s bene-
fits translate into higher end-to-end training throughput. Fig. 11
reports the training throughput for seven real-world DNN
benchmarks. For these experiments, we restrict the comparison
to the DPDK implementation because SwitchML/RDMA is
not currently integrated into the ML frameworks [98]. We
focus on two scenarios – using either two or eight cores –
and we measure the speedup in terms of training throughput
(samples/s). We observe that FPISA-A speeds up training by up
to 85.9% and 31.6% for the 2-core case and the 8-core case, re-
spectively. Importantly, the higher speedup factors are obtained
when using just two cores for communication, which frees up
six cores for data I/O in this setting. The speedup is particularly
significant in communication-bottlenecked models (e.g.,
DeepLight, LSTM, BERT, VGG19), where FPISA-A is up to
85.9% faster compared to SwitchML when using the same
number of cores. On the other hand, we do not see significant
benefits of FPISA-A on models like GoogleNet, MobileNetV2,
and ResNet-50, which are compute-bottlenecked.

By combining the accuracy results and the per-iteration end-
to-end results, we can conclude that FPISA-A is able to reduce
the end-to-end training time of a wide range of ML models.

6 Related Work

Accelerating distributed/networking applications with
programmable switches. Recently, programmable switches
have been used to accelerate a broad range of applications, in-
cluding distributed key-value stores [49, 66, 112], distributed
transactions [48, 64, 117], distributed storage [72, 120], packet
queuing/scheduling [100, 103], network functions [56, 78],
and network telemetry [7, 34, 105, 119]. While most of them

deal with packet header processing with few arithmetic op-
erations, some perform computation on the packet’s payload.
SwitchML [98] and ATP [61] leverage switches for gradient ag-
gregation but are constrained to fixed-point aggregation, which
may lead to costly format conversion on the end-host and ad-
ditional network round trips for exponent communication.

FPISA’s approach is also applicable to other applications
involving floating point operations and in-switch computing.
For example, NETACCEL [63] and Cheetah [110] propose
to use programmable switches to accelerate database queries
by data pruning or query offloading. With the proposed
architecture enhancements, FPISA can accelerate such queries
with floating point as datatype. Also, other more complex
floating point operations may be needed for future applications
(e.g., congestion control [26, 54] and network security [34]).
Sec. 3.3 briefly discusses the possibility of supporting them.
Resource allocation. Much research has studied how to
use in-network rate computations to support congestion
control (e.g., XCP [54] and RCP [26]), queue management
(e.g., CoDel [84] and AIFO [116]), or load balancing (e.g.,
CONGA [4]). P4QCN [29], P4-CoDel [60], and P4-ABC [77]
are P4 implementations of specific protocols that require
floating point support – currently unavailable in switch
hardware. Sharma et al. proposed a library that applies
approximation to work around this limitation [99]. InREC [51]
and NetFC [16] proposed to use table-lookup for floating point
operation emulation in programmable switches. However, they
are constrained to stateless operations and need extra RAM
space to store the tables. Also, few floating point operations
can be done per packet, limiting parallelism. FPISA may
enable new design options for in-switch resource allocation.
Extending switches’ processing capability. Proposed
enhancements to the RMT architecture [9] include transac-
tions [102], disaggregated memory [14], and better stateful
data plane support [28]. While many focus on improving
stateful computations, none address floating point operations.

7 Conclusion
In this work, we propose FPISA, a floating point representation
designed to work efficiently in programmable switches. We
first implement FPISA on a commodity Intel Tofino switch,
but its design limits throughput and accuracy. We then propose
hardware changes based on the Banzai programmable switch
architecture to avoid these limitations. We demonstrate their
feasibility through synthesis using a 15-nm standard-cell
library, and find minimal impact on area, power, and timing.
Finally, we investigate the benefit of FPISA by implementing
accelerators for distributed training application, evaluating
its performance on a switch implementing our changes using
emulation. We find that FPISA allows distributed training
to use 25-75% fewer CPU cores and provide up to 85.9%
better throughput in a CPU-constrained environment than the
state-of-the-art framework.

694 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Acknowledgments. We would like to thank our shepherd,
Ellen Zegura, and the anonymous reviewers for their help-
ful feedback. We also thank Zhe Chen, Muhammad Tirmazi,
and Minlan Yu for their technical support and discussion. This
research is partially supported by National Science Foundation
(No. CNS-1705047), by the King Abdullah University of Sci-
ence and Technology (KAUST) Office of Sponsored Research
(OSR) under Award No. OSR-CRG2020-4382, and by a gift in
kind from Huawei. For computer time, this research used the re-
sources of the Supercomputing Laboratory at KAUST. This re-
search was partially done when the first author was at Microsoft
Research. The work of Jiawei Fei at KAUST is supported by
a sponsorship from China Scholarship Council (CSC).

References
[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,

M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur,
J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner,
P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and
X. Zheng. TensorFlow: A system for large-scale machine
learning. In Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI’16),
Savannah, GA, Nov. 2016.

[2] N. Adiga, G. Almasi, G. Almasi, Y. Aridor, R. Barik, D. Beece,
R. Bellofatto, G. Bhanot, R. Bickford, M. Blumrich, A. Bright,
J. Brunheroto, C. Caşcaval, J. Castaños, W. Chan, L. Ceze,
P. Coteus, S. Chatterjee, D. Chen, G. Chiu, T. Cipolla, P. Crum-
ley, K. Desai, A. Deutsch, T. Domany, M. Dombrowa, W. Do-
nath, M. Eleftheriou, C. Erway, J. Esch, B. Fitch, J. Gagliano,
A. Gara, R. Garg, R. Germain, M. Giampapa, B. Gopalsamy,
J. Gunnels, M. Gupta, F. Gustavson, S. Hall, R. Haring,
D. Heidel, P. Heidelberger, L. Herger, D. Hoenicke, R. Jack-
son, T. Jamal-Eddine, G. Kopcsay, E. Krevat, M. Kurhekar,
A. Lanzetta, D. Lieber, L. Liu, M. Lu, M. Mendell, A. Misra,
Y. Moatti, L. Mok, J. Moreira, B. Nathanson, M. Newton,
M. Ohmacht, A. Oliner, V. Pandit, R. Pudota, R. Rand,
R. Regan, B. Rubin, A. Ruehli, S. Rus, R. Sahoo, A. Sanomiya,
E. Schenfeld, M. Sharma, E. Shmueli, S. Singh, P. Song,
V. Srinivasan, B. Steinmacher-Burow, K. Strauss, C. Surovic,
R. Swetz, T. Takken, R. Tremaine, M. Tsao, A. Umamahesh-
waran, P. Verma, P. Vranas, T. Ward, M. Wazlowski, W. Barrett,
C. Engel, B. Drehmel, B. Hilgart, D. Hill, F. Kasemkhani,
D. Krolak, C. Li, T. Liebsch, J. Marcella, A. Muff, A. Okomo,
M. Rouse, A. Schram, M. Tubbs, G. Ulsh, C. Wait, J. Wittrup,
M. Bae, K. Dockser, L. Kissel, M. Seager, J. Vetter, and
K. Yates. An overview of the BlueGene/L supercomputer.
In Proceedings of the 2002 ACM/IEEE Conference on
Supercomputing (SC’02), Baltimorem, MD, Nov. 2002.

[3] N. Alachiotis and A. Stamatakis. Efficient floating-point loga-
rithm unit for FPGAs. In Proceedings of the 2010 IEEE Inter-
national Symposium on Parallel Distributed Processing, Work-
shops and Phd Forum (IPDPSW’10), Atlanta, GA, May 2010.

[4] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan,
K. Chu, A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav,
and G. Varghese. CONGA: Distributed congestion-aware
load balancing for datacenters. In Proceedings of the 2014

ACM SIGCOMM Conference (SIGCOMM’14), Chicago, IL,
Aug. 2014.

[5] Arista. 7130 FPGA-enabled Network Switches.
https://www.arista.com/en/products/7130-fpga-enabled-
network-switches-quick-look, accessed in 2021.

[6] M. Barnett, L. Shuler, R. van De Geijn, S. Gupta, D. G. Payne,
and J. Watts. Interprocessor collective communication library
(InterCom). In Proceedings of the 1994 IEEE Scalable High
Performance Computing Conference (SHPCC’94), Knoxville,
TN, May 1994.

[7] R. Ben Basat, S. Ramanathan, Y. Li, G. Antichi, M. Yu, and
M. Mitzenmacher. PINT: Probabilistic in-band network
telemetry. In Proceedings of the 2020 ACM SIGCOMM
Conference (SIGCOMM’20), Virtual Event, Aug. 2020.

[8] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown,
J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese,
and D. Walker. P4: Programming protocol-independent packet
processors. ACM SIGCOMM Computer Communication
Review, 44(3), 2014.

[9] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown,
M. Izzard, F. Mujica, and M. Horowitz. Forwarding metamor-
phosis: Fast programmable match-action processing in hard-
ware for SDN. In Proceedings of the 2013 ACM SIGCOMM
Conference (SIGCOMM’13), Hong Kong, China, Aug. 2013.

[10] Broadcom. NPL: Open, High-Level language for developing
feature-rich solutions for programmable networking plat-
forms.
https://nplang.org/, accessed in 2021.

[11] Broadcom. Trident4 BCM56880 Series.
https://www.broadcom.com/products/ethernet-
connectivity/switching/strataxgs/bcm56880-series,
accessed in 2021.

[12] Y. Chen, Y. Peng, Y. Bao, C. Wu, Y. Zhu, and C. Guo. Elastic
parameter server load distribution in deep learning clusters.
In Proceedings of the 11th ACM Symposium on Cloud
Computing (SoCC’20), Virtual Event, Oct. 2020.

[13] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman.
Project Adam: Building an efficient and scalable deep
learning training system. In Proceedings of the 11th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI’14), Broomfield, CO, Oct. 2014.

[14] S. Chole, A. Fingerhut, S. Ma, A. Sivaraman, S. Vargaftik,
A. Berger, G. Mendelson, M. Alizadeh, S.-T. Chuang,
I. Keslassy, A. Orda, and T. Edsall. dRMT: Disaggregated
programmable switching. In Proceedings of the 2017 ACM
SIGCOMM Conference (SIGCOMM’17), Los Angeles, CA,
Aug. 2017.

[15] M. Courbariaux, Y. Bengio, and J.-P. David. Training deep
neural networks with low precision multiplications. arXiv
preprint arXiv:1412.7024, 2014.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 695

https://www.arista.com/en/products/7130-fpga-enabled-network-switches-quick-look
https://www.arista.com/en/products/7130-fpga-enabled-network-switches-quick-look
https://nplang.org/
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series

[16] P. Cui, H. Pan, Z. Li, J. Wu, S. Zhang, X. Yang, H. Guan, and
G. Xie. NetFC: Enabling accurate floating-point arithmetic
on programmable switches. In Proceedings of the 29th IEEE
International Conference on Network Protocols, Virtual
Event, Nov. 2021.

[17] H. T. Dang, P. Bressana, H. Wang, K. S. Lee, N. Zilberman,
H. Weatherspoon, M. Canini, F. Pedone, and R. Soulé. P4xos:
Consensus as a network service. IEEE/ACM Transactions on
Networking, 28(4), Aug. 2020.

[18] B. Darvish Rouhani, D. Lo, R. Zhao, M. Liu, J. Fowers,
K. Ovtcharov, A. Vinogradsky, S. Massengill, L. Yang,
R. Bittner, A. Forin, H. Zhu, T. Na, P. Patel, S. Che, L. C.
Koppaka, X. Song, S. Som, K. Das, S. Tiwary, S. Reinhardt,
S. Lanka, E. Chung, and D. Burger. Pushing the limits of
narrow precision inferencing at cloud scale with microsoft
floating point. In Advances in neural information processing
systems 33 (NeurIPS’20), Virtual Event, Dec. 2020.

[19] C. De Sa, M. Leszczynski, J. Zhang, A. Marzoev, C. R. Aberger,
K. Olukotun, and C. Ré. High-accuracy low-precision training.
arXiv preprint arXiv:1803.03383, 2018.

[20] D. De Sensi, S. Di Girolamo, S. Ashkboos, S. Li, and
T. Hoefler. Flare: Flexible in-network allreduce. arXiv
preprint arXiv:2106.15565, 2021.

[21] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao,
M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y. Ng.
Large scale distributed deep networks. In Advances in neural
information processing systems 25 (NIPS’12), Lake Tahoe,
NV, Dec. 2012.

[22] W. Deng, J. Pan, T. Zhou, D. Kong, A. Flores, and G. Lin.
DeepLight: Deep lightweight feature interactions for ac-
celerating CTR predictions in ad serving. arXiv preprint
arXiv:2002.06987, 2020.

[23] A. Devarakonda, M. Naumov, and M. Garland. Adabatch:
Adaptive batch sizes for training deep neural networks. arXiv
preprint arXiv:1712.02029, 2017.

[24] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT:
Pre-training of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805, 2018.

[25] M. Drumond, T. LIN, M. Jaggi, and B. Falsafi. Training
dnns with hybrid block floating point. In Advances in Neural
Information Processing Systems 31 (NeurIPS’18), Montreal,
Canada, Dec. 2018.

[26] N. Dukkipati. Rate Control Protocol (RCP): Congestion
control to make flows complete quickly. PhD thesis, Stanford
University, Dept. of Electrical Engineering, 2007.

[27] N. Gebara, P. Costa, and M. Ghobadi. In-network aggregation
for shared machine learning clusters. In Proceedings of the
4th MLSys confrence (MLSys’21), Virtual Event, Apr. 2021.

[28] N. Gebara, A. Lerner, M. Yang, M. Yu, P. Costa, and
M. Ghobadi. Challenging the stateless quo of programmable
switches. In Proceedings of the 19th ACM Workshop on Hot
Topics in Networks (HotNets’20), Virtual Event, Nov. 2020.

[29] J. Geng, J. Yan, and Y. Zhang. P4QCN: Congestion control
using P4-capable device in data center networks. Electronics,
8(3), 2019.

[30] Google Cloud. Using bfloat16 with TensorFlow models.
https://cloud.google.com/tpu/docs/bfloat16, accessed in
2021.

[31] R. L. Graham, D. Bureddy, P. Lui, H. Rosenstock, G. Shainer,
G. Bloch, D. Goldenerg, M. Dubman, S. Kotchubievsky,
V. Koushnir, L. Levi, A. Margolin, T. Ronen, A. Shpiner,
O. Wertheim, and E. Zahavi. Scalable hierarchical aggregation
protocol (SHArP): A hardware architecture for efficient
data reduction. In Proceedings of the 1st Workshop on
Optimization of Communication in HPC (COM-HPC’16),
Salt Lake City, Utah, Nov. 2016.

[32] R. L. Graham, L. Levi, D. Burredy, G. Bloch, G. Shainer,
D. Cho, G. Elias, D. Klein, J. Ladd, O. Maor, A. Marelli,
V. Petrov, E. Romlet, Y. Qin, and I. Zemah. Scalable hierarchi-
cal aggregation and reduction protocol (SHARP) streaming-
aggregation hardware design and evaluation. In Proceedings
of the 35th International Conference on High Performance
Computing (ISC’20), Frankfurt/Main, Germany, June 2020.

[33] J. Gu, M. Chowdhury, K. G. Shin, Y. Zhu, M. Jeon, J. Qian,
H. Liu, and C. Guo. Tiresias: A GPU cluster manager
for distributed deep learning. In Proceedings of the 16th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI’19), Boston, MA, Feb. 2019.

[34] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford,
and W. Willinger. Sonata: Query-driven streaming network
telemetry. In Proceedings of the 2018 ACM SIGCOMM
Conference (SIGCOMM’18), Budapest, Hungary, Aug. 2018.

[35] S. Han, H. Mao, and W. J. Dally. Deep compression: Compress-
ing deep neural networks with pruning, trained quantization
and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

[36] F. Hauser, M. Häberle, D. Merling, S. Lindner, V. Gurevich,
F. Zeiger, R. Frank, and M. Menth. A survey on data plane
programming with P4: Fundamentals, advances, and applied
research, 2021.

[37] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In Proceedings of the 2016 IEEE
conference on computer vision and pattern recognition
(CVPR’16), Las Vegas, NV, June 2016.

[38] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons,
G. A. Gibson, G. Ganger, and E. P. Xing. More effective
distributed ML via a stale synchronous parallel parameter
server. In Advances in neural information processing systems
26 (NIPS’13), Lake Tahoe, NV, Dec. 2013.

[39] S. Horvath, C.-Y. Ho, L. Horvath, A. N. Sahu, M. Canini,
and P. Richtarik. Natural compression for distributed deep
learning. arXiv preprint arXiv:1905.10988, 2019.

[40] C. Hwang, T. Kim, S. Kim, J. Shin, and K. Park. Elastic
resource sharing for distributed deep learning. In Proceedings

696 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://cloud.google.com/tpu/docs/bfloat16

of the 18th USENIX Symposium on Networked Systems Design
and Implementation (NSDI’21), Virtual Event, Apr. 2021.

[41] F. N. Iandola, M. W. Moskewicz, K. Ashraf, and K. Keutzer.
FireCaffe: Near-linear acceleration of deep neural network
training on compute clusters. In Proceedings of the 2016 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR’16), Las Vegas, NV, June 2016.

[42] Intel Corporation. Intel Tofino.
https://www.intel.com/content/www/us/en/products/
network-io/programmable-ethernet-switch/tofino-

series.html, accessed in 2021.

[43] Intel Corporation. Intel Tofino2.
https://www.intel.com/content/www/us/en/products/
network-io/programmable-ethernet-switch/tofino-2-

series.html, accessed in 2021.

[44] A. Jain, A. Phanishayee, J. Mars, L. Tang, and G. Pekhimenko.
Gist: Efficient data encoding for deep neural network training.
In Proceedings of the 45th International Symposium on Com-
puter Architecture (ISCA’18), Los Angeles, CA, June 2018.

[45] T. Jepsen, L. P. de Sousa, M. Moshref, F. Pedone, and R. Soulé.
Infinite resources for optimistic concurrency control. In
Proceedings of the ACM SIGCOMM 2018 Workshop on
In-Network Computing (NetCompute’18), Budapest, Hungary,
Aug. 2018.

[46] X. Jia, S. Song, W. He, Y. Wang, H. Rong, F. Zhou, L. Xie,
Z. Guo, Y. Yang, L. Yu, T. Chen, G. Hu, S. Shi, and X. Chu.
Highly scalable deep learning training system with mixed-
precision: Training ImageNet in four minutes. arXiv preprint
arXiv:1807.11205, 2018.

[47] Y. Jiang, Y. Zhu, C. Lan, B. Yi, Y. Cui, and C. Guo. A unified
architecture for accelerating distributed DNN training in
heterogeneous GPU/CPU clusters. In Proceedings of the
14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI’20), Virtual Event, Nov. 2020.

[48] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé, C. Kim,
and I. Stoica. NetChain: Scale-free sub-RTT coordination.
In Proceedings of the 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI’18), Renton, WA,
Apr. 2018.

[49] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim,
and I. Stoica. NetCache: Balancing key-value stores with
fast in-network caching. In Proceedings of the 26th ACM
Symposium on Operating Systems Principles (SOSP’17),
Shanghai, China, Oct. 2017.

[50] J. Johnson. Rethinking floating point for deep learning. arXiv
preprint arXiv:1811.01721, 2018.

[51] M. Jose, K. Lazri, J. François, and O. Festor. InREC:
In-network real number computation. In Proceedings of
the 2021 IFIP/IEEE International Symposium on Integrated
Network Management, Virtual Event, May 2021.

[52] R. Jozefowicz, O. Vinyals, M. Schuster, N. Shazeer, and Y. Wu.
Exploring the limits of language modeling. arXiv preprint
arXiv:1602.02410, 2016.

[53] D. D. Kalamkar, D. Mudigere, N. Mellempudi, D. Das,
K. Banerjee, S. Avancha, D. T. Vooturi, N. Jammalamadaka,
J. Huang, H. Yuen, J. Yang, J. Park, A. Heinecke, E. Georganas,
S. Srinivasan, A. Kundu, M. Smelyanskiy, B. Kaul, and
P. Dubey. A study of bfloat16 for deep learning training. arXiv
preprint arXiv:1905.12322, 2019.

[54] D. Katabi, M. Handley, and C. Rohrs. Congestion control for
high bandwidth-delay product networks. ACM SIGCOMM
Computer Communication Review, 32(4), 2002.

[55] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford.
HULA: Scalable load balancing using programmable data
planes. In Proceedings of the 2016 Symposium on SDN
Research (SOSR’16), Santa Clara, CA, Mar. 2016.

[56] D. Kim, Z. Liu, Y. Zhu, C. Kim, J. Lee, V. Sekar, and
S. Seshan. TEA: Enabling state-intensive network functions
on programmable switches. In Proceedings of the 2020 ACM
SIGCOMM Conference (SIGCOMM’20), Virtual Event, Aug.
2020.

[57] B. Klenk, N. Jiang, G. Thorson, and L. Dennison. An
in-network architecture for accelerating shared-memory
multiprocessor collectives. In Proceedings of the 47th Inter-
national Symposium on Computer Architecture (ISCA’20),
Virtual Event, May 2020.

[58] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig. Software-defined networking:
A comprehensive survey. Proceedings of the IEEE, 103(1),
2014.

[59] A. Krizhevsky. The CIFAR-10 dataset.
https://www.cs.toronto.edu/~kriz/cifar.html, accessed in
2021.

[60] R. Kundel, J. Blendin, T. Viernickel, B. Koldehofe, and
R. Steinmetz. P4-CoDel: Active queue management in
programmable data planes. In Proceedings of 2018 IEEE
Conference on Network Function Virtualization and Software
Defined Networks (NFV-SDN), Verona, Italy, Nov. 2018.

[61] C. Lao, Y. Le, K. Mahajan, Y. Chen, W. Wu, A. Akella, and
M. Swift. ATP: In-network aggregation for multi-tenant
learning. In Proceedings of the 18th USENIX Symposium on
Networked Systems Design and Implementation (NSDI’21),
Virtual Event, Apr. 2021.

[62] A. S. Leon, K. W. Tam, J. L. Shin, D. Weisner, and F. Schu-
macher. A power-efficient high-throughput 32-thread SPARC
processor. IEEE Journal of Solid-State Circuits, 42(1), 2007.

[63] A. Lerner, R. Hussein, and P. Cudre-Mauroux. The case for
network accelerated query processing. In Proceedings of the
9th Biennial Conference on Innovative Data Systems Research
(CIDR’19), Asilomar, CA, Jan. 2019.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 697

https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.cs.toronto.edu/~kriz/cifar.html

[64] J. Li, E. Michael, and D. R. K. Ports. Eris: Coordination-free
consistent transactions using in-network concurrency control.
In Proceedings of the 26th ACM Symposium on Operating
Systems Principles (SOSP’17), Shanghai, China, Oct. 2017.

[65] J. Li, E. Michael, A. Szekeres, N. K. Sharma, and D. R. K.
Ports. Just say NO to Paxos overhead: Replacing consensus
with network ordering. In Proceedings of the 12th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI’16), Savannah, GA, Nov. 2016.

[66] J. Li, J. Nelson, E. Michael, X. Jin, and D. R. K. Ports. Pegasus:
Tolerating skewed workloads in distributed storage with
in-network coherence directories. In Proceedings of the
14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI’20), Virtual Event, Nov. 2020.

[67] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed,
V. Josifovski, J. Long, E. J. Shekita, and B.-Y. Su. Scaling
distributed machine learning with the parameter server. In
Proceedings of the 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’14), Broomfield,
CO, Oct. 2014.

[68] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen,
and N. P. Jouppi. McPAT: An integrated power, area, and
timing modeling framework for multicore and manycore
architectures. In Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO’09),
New York, NY, Dec. 2009.

[69] Y. Li and W. Chu. Implementation of single precision floating
point square root on FPGAs. In Proceedings of the 5th Annual
IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM’97), Apr. 1997.

[70] Y. Li, I.-J. Liu, Y. Yuan, D. Chen, A. Schwing, and J. Huang.
Accelerating distributed reinforcement learning with in-
switch computing. In Proceedings of the 46th International
Symposium on Computer Architecture (ISCA’19), Phoenix,
AZ, June 2019.

[71] Y. Li, J. Park, M. Alian, Y. Yuan, Z. Qu, P. Pan, R. Wang, A. G.
Schwing, H. Esmaeilzadeh, and N. S. Kim. A network-centric
hardware/algorithm co-design to accelerate distributed
training of deep neural networks. In Proceedings of the 51st
International Symposium on Microarchitecture (MICRO’18),
Fukuoka, Japan, Oct. 2018.

[72] Z. Liu, Z. Bai, Z. Liu, X. Li, C. Kim, V. Braverman, X. Jin,
and I. Stoica. DistCache: Provable load balancing for
large-scale storage systems with distributed caching. In
Proceedings of the 17th USENIX Conference on File and
Storage Technologies (FAST’19), Boston, MA, Feb. 2019.

[73] M. Martins, J. M. Matos, R. P. Ribas, A. Reis, G. Schlinker,
L. Rech, and J. Michelsen. Open cell library in 15nm FreePDK
technology. In Proceedings of the 2015 Symposium on
International Symposium on Physical Design (ISPD’15),
Monterey, CA, Mar. 2015.

[74] S. Mathew, M. Anders, B. Bloechel, T. Nguyen, R. K.
Krishnamurthy, and S. Borkar. A 4-GHz 300-mW 64-bit
integer execution ALU with dual supply voltages in 90-nm
CMOS. IEEE Journal of Solid-State Circuits, 40(1), 2005.

[75] Mellanox. Mellanox scalable hierarchical aggregation and
reduction protocol (SHARP).
http://www.mellanox.com/page/
products_dyn?product_family=261&mtag=sharp, accessed in
2021.

[76] Mellanox. QM8700 Mellanox Quantum HDR Edge Switch.
https://www.mellanox.com/files/related-docs/
prod_ib_switch_systems/PB_QM8700.pdf, accessed in 2021.

[77] M. Menth, H. Mostafaei, D. Merling, and M. Häberle.
Implementation and evaluation of activity-based congestion
management using P4 (P4-ABC). Future Internet, 11, 2019.

[78] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu. SilkRoad:
Making stateful layer-4 load balancing fast and cheap using
switching ASICs. In Proceedings of the 2017 ACM SIGCOMM
Conference (SIGCOMM’17), Los Angeles, CA, Aug. 2017.

[79] P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen,
D. Garcia, B. Ginsburg, M. Houston, O. Kuchaiev,
G. Venkatesh, and H. Wu. Mixed precision training.
arXiv preprint arXiv:1710.03740, 2017.

[80] MLCommons. Mlperf benchmark.
https://mlcommons.org/en/training-normal-10/, accessed
in 2021.

[81] P. Moritz, R. Nishihara, I. Stoica, and M. I. Jordan.
SparkNet: Training deep networks in Spark. arXiv preprint
arXiv:1511.06051, 2015.

[82] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust
stochastic approximation approach to stochastic programming.
SIAM Journal on optimization, 19(4), 2009.

[83] A. S. Nemirovsky and D. B. Yudin. Problem complexity and
method efficiency in optimization. Society for Industrial and
Applied Mathematics, 1983.

[84] K. Nichols, V. Jacobson, A. McGregor, and J. Iyengar.
Controlled delay active queue management. RFC 8289, 2018.
https://tools.ietf.org/html/rfc8289.

[85] NVIDIA. apex: Tools for easy mixed precision and distributed
training in Pytorch.
https://github.com/NVIDIA/apex, accessed in 2021.

[86] NVIDIA blog. TensorFloat-32 in the A100 GPU accelerates
AI training, HPC up to 20x.
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-
32-precision-format/, accessed in 2021.

[87] S. Oberman. Floating point division and square root algo-
rithms and implementation in the AMD-K7 microprocessor.
In Proceedings of the 14th IEEE Symposium on Computer
Arithmetic, Adelaide, Australia, Apr. 1999.

698 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://www.mellanox.com/page/products_dyn? product_family=261&mtag=sharp
http://www.mellanox.com/page/products_dyn? product_family=261&mtag=sharp
https://www.mellanox.com/files/related-docs/prod_ib_switch_systems/PB_QM8700.pdf
https://www.mellanox.com/files/related-docs/prod_ib_switch_systems/PB_QM8700.pdf
https://mlcommons.org/en/training-normal-10/
https://tools.ietf.org/html/rfc8289
https://github.com/NVIDIA/apex
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/

[88] OpenSwitch. Cavium-XPliant family of programmable
ethernet switches.
https://www.openswitch.net/cavium/, accessed in 2021.

[89] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,
A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chil-
amkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. PyTorch:
An imperative style, high-performance deep learning library.
In Advances in neural information processing systems 32
(NIPS’19), Vancouver, Canada, Dec. 2019.

[90] P. Patarasuk and X. Yuan. Bandwidth Optimal All-reduce
Algorithms for Clusters of Workstations. Journal of Parallel
and Distributed Computing, 69(2), 2009.

[91] Y. Peng, Y. Zhu, Y. Chen, Y. Bao, B. Yi, C. Lan, C. Wu, and
C. Guo. A generic communication scheduler for distributed
DNN training acceleration. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles (SOSP’19),
Huntsville, Canada, Oct. 2019.

[92] Y. Piasetzky, M. Kadosh, M. Pritsak, O. Shabtai, A. Lo, and
G. Lu. Switch asic programmability in hybrid mode. In
Proceedings of 2018 IEEE 26th International Conference on
Network Protocols (ICNP’18), Cambridge, UK, Sept. 2018.

[93] D. R. K. Ports, J. Li, V. Liu, N. K. Sharma, and A. Krishna-
murthy. Designing distributed systems using approximate
synchrony in datacenter networks. In Proceedings of the
12th USENIX Symposium on Networked Systems Design and
Implementation (NSDI’15), Oakland, CA, May 2015.

[94] D. R. K. Ports and J. Nelson. When should the network be
the computer? In Proceedings of the Workshop on Hot Topics
in Operating Systems (HotOS’19), Bertinoro, Italy, May 2019.

[95] H. Robbins and S. Monro. A stochastic approximation
method. The annals of mathematical statistics, 1951.

[96] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C.
Chen. MobileNetV2: Inverted residuals and linear bottlenecks.
In Proceedings of the 2018 IEEE conference on computer
vision and pattern recognition (CVPR’18), Salt Lake City, UT,
June 2018.

[97] A. Sapio, I. Abdelaziz, A. Aldilaijan, M. Canini, and P. Kalnis.
In-network computation is a dumb idea whose time has
come. In Proceedings of the 16th Workshop on Hot Topics
in Networks (HotNets’17), Palo Alto, CA, Nov. 2017.

[98] A. Sapio, M. Canini, C.-Y. Ho, J. Nelson, P. Kalnis, C. Kim,
A. Krishnamurthy, M. Moshref, D. R. Ports, and P. Richtárik.
Scaling distributed machine learning with in-network
aggregation. In Proceedings of the 18th USENIX Symposium
on Networked Systems Design and Implementation (NSDI’21),
Virtual Event, Apr. 2021.

[99] N. K. Sharma, A. Kaufmann, T. Anderson, A. Krishnamurthy,
J. Nelson, and S. Peter. Evaluating the power of flexible packet
processing for network resource allocation. In Proceedings of
the 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI’17), Boston, MA, Mar. 2017.

[100] N. K. Sharma, M. Liu, K. Atreya, and A. Krishnamurthy.
Approximating fair queueing on reconfigurable switches. In
Proceedings of the 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI’18), Renton, WA,
Apr. 2018.

[101] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[102] A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Alizadeh,
H. Balakrishnan, G. Varghese, N. McKeown, and S. Licking.
Packet transactions: High-level programming for line-rate
switches. In Proceedings of the 2016 ACM SIGCOMM Con-
ference (SIGCOMM’16), Florianopolis, Brazil, Aug. 2016.

[103] A. Sivaraman, S. Subramanian, M. Alizadeh, S. Chole, S.-T.
Chuang, A. Agrawal, H. Balakrishnan, T. Edsall, S. Katti,
and N. McKeown. Programmable packet scheduling at line
rate. In Proceedings of the 2016 ACM SIGCOMM Conference
(SIGCOMM’16), Florianopolis, Brazil, Aug. 2016.

[104] P. Soderquist and M. Leeser. Area and performance tradeoffs
in floating-point divide and square-root implementations.
ACM Computing Surveys, 28(3), 1996.

[105] J. Sonchack, A. J. Aviv, E. Keller, and J. M. Smith. Turboflow:
Information rich flow record generation on commodity
switches. In Proceedings of the 13th European Conference on
Computer Systems (EuroSys’18), Porto, Portugal, Apr. 2018.

[106] A. Svyatkovskiy, J. Kates-Harbeck, and W. Tang. Training dis-
tributed deep recurrent neural networks with mixed precision
on GPU clusters. In Proceedings of the Machine Learning
on HPC Environments (MLHPC’17), Denver, CO, Nov. 2017.

[107] Synopsys. Design Compiler Graphical.
https://www.synopsys.com/implementation-and-signoff/
rtl-synthesis-test/design-compiler-graphical.html,
accessed in 2021.

[108] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper
with convolutions. In Proceedings of the 2015 IEEE
conference on computer vision and pattern recognition
(CVPR’15), Boston, MA, June 2015.

[109] P.-T. P. Tang. Table-driven implementation of the logarithm
function in IEEE floating-point arithmetic. ACM Transactions
on Mathematical Software, 16(4), 1990.

[110] M. Tirmazi, R. Ben Basat, J. Gao, and M. Yu. Cheetah:
Accelerating database queries with switch pruning. In
Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data (SIGMOD’20)
https://arxiv.org/pdf/2004.05076.pdf, Virtual Event, June
2020.

[111] Y. Tokusashi, H. T. Dang, F. Pedone, R. Soulé, and N. Zil-
berman. The case for in-network computing on demand. In
Proceedings of the 14th EuroSys Conference (EuroSys’19),
Dresden, Germany, Mar. 2019.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 699

https://www.openswitch.net/cavium/
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/design-compiler-graphical.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/design-compiler-graphical.html
https://arxiv.org/pdf/2004.05076.pdf

[112] Y. Tokusashi, H. Matsutani, and N. Zilberman. LaKe: An
energy efficient, low latency, accelerated key-value store.
arXiv preprint arXiv:1805.11344, 2018.

[113] S. Venkataraman, E. Bodzsar, I. Roy, A. AuYoung, and
R. S. Schreiber. Presto: Distributed machine learning and
graph processing with sparse matrices. In Proceedings of
the 8th ACM European Conference on Computer Systems
(EuroSys’13), Prague, Czech Republic, Apr. 2013.

[114] M. Voogel, Y. Frans, and M. Ouellette. Xilinx Versal Premium
series. In HotChips’20, Virtual Event, Aug. 2020.

[115] N. Wang, J. Choi, D. Brand, C.-Y. Chen, and K. Gopalakr-
ishnan. Training deep neural networks with 8-bit floating
point numbers. In Advances in neural information processing
systems 31 (NIPS’18), Montreal, Canada, Dec. 2018.

[116] Z. Yu, C. Hu, J. Wu, X. Sun, V. Braverman, M. Chowdhury,
Z. Liu, and X. Jin. Programmable packet scheduling with a
single queue. In Proceedings of the 2021 ACM SIGCOMM
Conference (SIGCOMM’21), Virtual Event, Aug. 2021.

[117] Z. Yu, Y. Zhang, V. Braverman, M. Chowdhury, and X. Jin. Net-
Lock: Fast, centralized lock management using programmable
switches. In Proceedings of the 2020 ACM SIGCOMM
Conference (SIGCOMM’20), Virtual Event, Aug. 2020.

[118] Z. Zhang, C. Chang, H. Lin, Y. Wang, R. Arora, and X. Jin. Is
network the bottleneck of distributed training? In Proceedings
of the Workshop on Network Meets AI & ML (NetAI’20),
Virtual Event, Aug. 2020.

[119] Y. Zhou, C. Sun, H. H. Liu, R. Miao, S. Bai, B. Li, Z. Zheng,
L. Zhu, Z. Shen, Y. Xi, P. Zhang, D. Cai, M. Zhang, and
M. Xu. Flow event telemetry on programmable data plane.
In Proceedings of the 2020 ACM SIGCOMM Conference
(SIGCOMM’20), Virtual Event, Aug. 2020.

[120] H. Zhu, Z. Bai, J. Li, E. Michael, D. R. K. Ports, I. Stoica,
and X. Jin. Harmonia: Near-linear scalability for replicated
storage with in-network conflict detection. In Proceedings of
the 2019 International Conference on Very Large Data Bases
(VLDB’19), Los Angeles, CA, Nov. 2019.

700 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Dynamic Scheduling of Approximate Telemetry Queries

Chris Misa
University of Oregon

Walt O’Connor
University of Oregon

Ramakrishnan Durairajan
University of Oregon

Reza Rejaie
University of Oregon

Walter Willinger
NIKSUN, Inc.

Abstract
Network telemetry systems provide critical visibility into

the state of networks. While significant progress has been
made by leveraging programmable switch hardware to scale
these systems to high and time-varying traffic workloads, less
attention has been paid towards efficiently utilizing limited
hardware resources in the face of dynamics such as the com-
position of traffic as well as the number and types of queries
running at a given point in time. Both these dynamics have
implications on resource requirements and query accuracy.

In this paper, we argue that this dynamics problem moti-
vates reframing telemetry systems as resource schedulers—a
significant departure from state-of-the-art. More concretely,
rather than statically partition queries across hardware and
software platforms, telemetry systems ought to decide on their
own and at runtime when and for how long to execute the set
of active queries on the data plane. To this end, we propose
an efficient approximation and scheduling algorithm that ex-
poses accuracy and latency tradeoffs with respect to query
execution to reduce hardware resource usage. We evaluate our
algorithm by building DynATOS, a hardware prototype built
around a reconfigurable approach to ASIC programming. We
show that our approach is more robust than state-of-the-art
methods to traffic dynamics and can execute dynamic work-
loads comprised of multiple concurrent and sequential queries
of varied complexities on a single switch while meeting per-
query accuracy and latency goals.

1 Introduction
Network telemetry systems provide users (e.g., network oper-
ators, researchers) with critical insights into the state of the
network by collecting information about individual packets
and processing this information into high-level features in
near real-time. Typically, these features are the results of user-
defined queries, where a query is expressed as a sequence of
high-level operations such as filter and reduce [22, 33, 43].
Generated query results drive management decisions such
as deploying defensive measures in the face of an attack or

updating routing to avoid congestion. A key functionality
of telemetry systems is to determine how best to leverage
available resources (e.g., network hardware resources, such as
switch ASICs or NICs; software-programmable resources,
such as general-purpose CPUs) to execute a given set of
queries. Due to massive traffic volumes and often stringent
timing requirements, state-of-the-art telemetry systems typi-
cally make use of programmable network hardware (e.g., pro-
grammable switch ASICs [2, 4, 5]) and also apply approxima-
tion techniques (e.g., sketches [24, 38, 39]).

In executing user-defined queries, telemetry systems must
cope with two independent and challenging sources of dy-
namics. First, the resources required to execute any given
query depend on the underlying distributions (i.e., composi-
tion) of network traffic. For example, a DDoS-detection query
that counts the number of sources contacting each destina-
tion might require a counter for each destination active on
the network, but the number of active destinations may vary
over time [38]. The accuracy guarantees of state-of-the-art
approximation techniques like sketches [39] likewise depend
on traffic distributions so that if these distributions change,
accuracy can no longer be guaranteed. Second, the number
and type of concurrent queries submitted by a user can vary
over the system’s deployment. For example, an operator might
need to submit followup queries to pinpoint the root cause of
increased congestion. Both these sources of dynamics affect
data plane resource usage implying that telemetry systems
must dynamically adjust resource allocations.

Several recent efforts [38, 43] have made progress towards
coping with both of these sources of dynamics individually
and in isolation, but do not address challenges arising from
their simultaneous presence in network telemetry systems.
For example, ElasticSketch [38] presents a method for dy-
namically coping with changes in traffic rate and distribution.
However, this effort relies on a fixed flow key which forces
users to reload the switch pipeline to change queries. On
the other hand, Newton [43] describes a technique to update
query operations during runtime which enables users to dy-
namically add and remove queries as their monitoring needs

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 701

change. However, Newton does not consider the problem of
adjusting resource allocations between concurrent queries as
traffic composition changes. To the best of our knowledge, no
recent work addresses these simultaneous sources of dynam-
ics in an efficient switch hardware based system.

In this work, we argue that, in order to simultaneously ad-
dress these sources of dynamics, telemetry systems should
be reframed as active resource schedulers for query oper-
ations. In particular, telemetry systems must manage finite
switch hardware processing resources while adapting to vary-
ing numbers and types of queries as well as varying traffic
composition. To support this argument, we make the follow-
ing key contributions.

Time-division approximation method. Viewing telemetry
systems as online schedulers enables a new approximation
technique based on time-division approximation. At a high-
level, this technique observes that query operations do not
need to run all the time. Instead, operations can execute during
strategically placed sub-windows of the overall time window
(e.g., an operation could execute for 3 of 8 equal-duration
sub-windows of a 5 s overall time window). This technique
is grounded in cluster sampling theory which allows us to
estimate error and future resource requirements.

Adaptive scheduling algorithm. We provide a closed loop
adaptive scheduling algorithm which leverages time-division
approximation to execute operations from many user-defined
queries on a single switch ASIC. Our scheduling algorithm
leverages multi-objective optimization to balance between
multiple high-level goals such as prioritizing accuracy, latency,
or reduced volume of reported data across queries.

Evaluation in a functional hardware prototype. To eval-
uate our proposed techniques, we implement DynATOS,1 a
telemetry operation scheduling system which leverages pro-
grammable switch hardware to answer dynamically submitted
queries. Our current implementation of DynATOS assumes
a single runtime programmable switch hardware capable of
executing a restricted number of primitive operations as sup-
ported by a telemetry module found in a widely available
off-the-shelf switch ASIC. We evaluate DynATOS on our
hardware prototype and through simulation showing that (i)
time-division approximation is more robust than sketches to
changes in traffic dynamics while offering a similar accuracy,
overhead tradeoff space, (ii) our adaptive scheduler is able
to meet query accuracy and latency goals in the presence
of traffic and query dynamics, and (iii) the overheads in our
scheduling loop are minimal and dominated by the time re-
quired to report and process intermediate results from the
switch—an overhead which can be mitigated significantly by
leveraging fully programmable switch hardware.

1DynATOS stands for Dynamic Approximate Telemetry Operation Sched-
uler.

2 Background & Motivation
2.1 Dynamic Telemetry Use Cases
Example 2.1. Consider a scenario where a telemetry system
is executing the DDoS and port scanning detection tasks de-
scribed in Sonata [22]2. The first stage of these tasks finds a
set of distinct elements in each time window or epoch (e.g.,
IPv4 source, destination pairs every epoch for DDoS). Sup-
pose traffic follows a stable pattern for several epochs with
only small changes in the number of distinct elements con-
sidered by both tasks and that the telemetry system adjusts
resource allocations for these two queries to achieve good
accuracy. Now, suppose at some later epoch traffic changes
so that a much larger number of sources are seen (either due
to a natural event like a flash crowd or due to an actual DDoS
attack). This larger number of sources increases the number
of pairs that both queries must keep track of and either more
resources will need to be allocated or accuracy will suffer.

While this example only considered a pair of queries, in
realistic settings operators likely need to monitor for a wide va-
riety of attacks simultaneously (e.g., the 11 queries described
in Sonata [22]). Moreover, features like number of sources
or destinations commonly overlap in these types of attack
detection queries so that an anomalous change in one feature
may upset the resource requirements of a large number of
simultaneous queries.
Example 2.2. Consider a scenario where a network operator
wants to understand the root cause of TCP latency on their
network. In this scenario, the operator would like to first run
queries to detect when latency increases and for which hosts or
subnets [18]. Once detected, the operator must submit a large
number of queries to test possible causes of high latency such
as re-transmissions or deep queues [33] with filter operations
so that these queries only apply to the flows experiencing
latency. Note that the debugging phase may require several
rounds of querying with tens of simultaneous queries in each
round before the root cause of the latency can be determined.

While the above examples focus on two particular tasks,
the underlying concepts—of dealing with large shifts in query
resource requirements caused by changes in traffic and of
executing multiple queries over time in a dependent manner—
are commonly encountered in network operations.

2.2 Ideal Telemetry System Requirements
In light of the above-mentioned examples, an ideal telemetry
system should support the following requirements.
R1: Query diversity. Marple [33] and Sonata [22] outline
how a small set of parameterized stream processing opera-
tors can enable a wide range of telemetry queries. Telemetry
systems must support these kinds of generic query descrip-
tion interfaces, allowing filtering over packet header values,

2The DDoS task finds destinations receiving from large numbers of
distinct sources and the port scanning task finds sources sending to a large
number of distinct destination ports.

702 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Approach R1 R2 R3 R4 R5
Static switch-based X X
Runtime-programmable X X X X
Dynamic allocation X X X X
Sketch-based X X X
Software-based X X X X
DynATOS X X X X X

Table 1: Summary of how different approaches relate to the
requirements of § 2.2.

grouping by arbitrary header fields, chaining operations, and
joining the results of multiple operation chains.
R2: Approximate execution. Executing telemetry queries
over the massive volumes of data flowing through networks
poses heavy resource requirements. Furthermore, many
telemetry queries are equally effective when computed ap-
proximately [30]. Therefore, telemetry systems should expose
approximation techniques that allow trading off reduced result
accuracy for lower resource requirements.
R3: Traffic dynamics. Composition of traffic changes over
time, and changes may be slow, regular, and easy to pre-
dict (e.g., daily cycles) or fast and hard to predict (e.g., flash
crowds). As discussed in Example 2.1, these changes in traf-
fic composition lead to changes in the resource requirements
for different groups of queries. Telemetry systems should
robustly handle these changes without compromising query
accuracy or latency [38].
R4: Query dynamics. The queries a network operator needs
to run change over time. Some of these changes may be infre-
quent (e.g., adding new queries to monitor a newly deployed
service), while some of these changes may be rapid and time-
sensitive (e.g., adding new queries to debug a performance
anomaly or to pinpoint and block a network attack). Telemetry
systems should be able to handle these dynamic query arrivals
and removals, realizing updates within a few milliseconds and
without incurring network downtime [43].
R5: Switch hardware acceleration. Due to massive traffic
volumes, stringent timing requirements, and the limited speed
of a single CPU core, executing telemetry queries on CPU-
based systems is prohibitively expensive [22]. As a result,
telemetry systems must leverage resource-constrained hard-
ware targets [2, 4, 5] to accelerate query execution.

2.3 State-of-the-art and their Limitations
State-of-the-art approaches each satisfy a subset of the re-
quirements set forth above, but face limitations which hinder
their ability to satisfy all requirements simultaneously.
Static switch-based approaches. Marple [33] and
Sonata [22] compile traffic queries into static hardware
description languages like P4 [10], demonstrating the
efficiency of switch hardware in computing query results.
However, these approaches fail to satisfy R4 since changing
queries incurs seconds of network downtime (see [43]).

Runtime-programmable approaches. Recently, Beau-
Coup [14] and Newton [43] demonstrate techniques to allow
network operators to add and remove queries at runtime
without incurring downtime. These efforts lay a technical
foundation to address R4, but do not address the challenge of
R3.
Dynamic allocation approaches. DREAM [30] and
SCREAM [31] develop dynamic allocation systems for
telemetry operations addressing both R3 and R4. However,
these approaches do not satisfy R1 because they require query-
specific accuracy estimators.
Sketch-based approaches. Many telemetry efforts address
R2 by leveraging sketches [15,16,28,39,42] to gather approx-
imate query results under the stringent operation and memory
limitations faced in the data plane. However, the accuracy
of sketches is tightly coupled to both the resources allocated
(e.g., number of hash functions or number of counters) and
the underlying composition of traffic (e.g., number of flows)
making sketches insufficient for R3 and R4. An exception to
this is ElasticSketch [38] which addresses R3 head on by dy-
namically adapting to varying traffic compositions. However,
ElasticSketch fails to address R4 or R1 since flow keys are
fixed in the sketch’s implementation.
Software-based approaches. Several prior efforts leverage
the capabilities of general-purpose CPUs to process traffic
queries. For example, Trumpet [32] installs triggers on end
hosts, OmniMon [25] and switch pointer [37] share tables
between end hosts and switches in network, and SketchVi-
sor [23] and NitroSketch [27] tune sketch-based approxima-
tion techniques for virtual switches. While these approaches
work well in settings like data centers where all infrastructure
is under a single administrative domain, in many settings (e.g.,
campus or enterprise networks) it is too expensive (in terms of
infrastructure cost and/or latency) to pass all packets through
software and impractical to instrument end hosts.
Scheduling distributed stream processing operations.
Several efforts [26, 34–36, 41] address the challenge of effi-
ciently scheduling stream processing operations to maximize
resource utilization. However, these efforts do not consider the
particular types of accuracy and latency constraints encoun-
tered in scheduling telemetry operations on switch hardware.
Limitations of current hardware-based approaches. To il-
lustrate the limitations of current static approaches [22,33,43]
in dealing with R3 and R4, we implement the two queries
mentioned in Example 2.1 and run them over a traffic excerpt
from the MAWILab [17] data set which features pronounced
traffic dynamics. This excerpt starts with relatively stable
traffic, then suddenly, due to an actual DDoS attack or other
causes (which we do not claim to identify), around the 20th 5
s time window (or epoch) contains a large number of sources
sending regular pulses of traffic. As suggested in [22, 43], we
use bloom filters tuned for the initial normal traffic to approx-
imate the lists of distinct pairs required by the first stage of
both queries.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 703

Figure 1: Accuracy of concurrent DDoS and port scanning
queries under extreme traffic dynamics.

Figure 1 shows the F1 score3 of these approximate query
implementations along with the number of tuples returned to
the collector in each epoch. Before the change in number of
sources, the approximation methods for both queries return
highly accurate results while sending relatively few tuples.
However, when the number of sources increases, the approxi-
mation accuracy of both queries suffers since the actual num-
ber of ground truth tuples (the “Baseline” trace) far exceeds
the number each query was tuned for. Taking the static ap-
proach in this example shows that when certain events of
interest occur, the accuracy of multiple queries can be sig-
nificantly impacted due to fixed assumptions about traffic
composition. Of course, the telemetry system initially could
have tuned these queries for the anticipated number of sources,
but this would lead to significant wastage of resources under
normal traffic conditions and it is hard to know what to tune
for without prior knowledge of the anomaly.

2.4 Design Challenges
To elucidate why prior efforts fail to meet the requirements
put forth in § 2.2, we next describe the following high-level
design challenges.
D1: Approximating generic query results. Efforts like
Marple and Sonata develop expressive query description lan-
guages which map into data plane computation models. How-
ever, approximation of query operations is often necessary due
to limited data plane resources and massive traffic volumes.
It is unclear how state-of-the-art approximation methods can
be leveraged to work with queries expressed in languages
like Marple or Sonata. As illustrated in § 2.3, the currently
proposed baseline approach of simply replacing stateful reduc-
tions in Sonata queries with sketch-based primitives requires
prior knowledge of worse-case traffic situations and does not
perform well under dynamic traffic scenarios.
D2: Estimating accuracy of approximations. Approximate
query results must be accompanied with a sound estimate of
their accuracy. This is critical for operators to understand the
system’s confidence in detecting a particular event or report-
ing a particular metric and equally critical in dynamic teleme-
try systems to inform the balance of resources between ap-
proximate queries. Prior efforts have made progress towards

3Computed by comparing with ground truth, the F1 score is a measure of
query accuracy defined as the harmonic mean of precision and recall.

this goal [24, 30, 31], but none anticipate accuracy estimation
for current state-of-the-art generic query descriptions.
D3: Allocating finite hardware resources among variable
sets of queries under traffic dynamics. Very few prior ef-
forts address the need of a telemetry system to evaluate multi-
ple concurrent queries on finite hardware resources. In order
to handle traffic dynamics, such a system must dynamically
update resource allocations based on the estimated accuracy
of each query. Moreover, since it is possible that the given re-
sources will be insufficient to meet the accuracy of all queries,
such a system must enable operators to express query priori-
ties and allocate resources with respect to these priorities.

3 DynATOS System Design
3.1 Overview
To tackle the above-mentioned challenges, we build DynATOS.
At its core, DynATOS is composed of three main components
as shown in Figure 2. Network operators submit queries to the
scheduler through a high-level REST API which performs ini-
tial query validation and returns a status message along with a
description of the expected query result format. The scheduler
then translates queries into their primitive operations and con-
structs schedules for how these operations should be run on
switch hardware. These schedules are then handed to a run-
time component which communicates with switch hardware
to execute the primitive operations and collect intermediate
results. Once ready, the runtime component gathers all results
and passes them back to the scheduler and operators.

Scheduler

Runtime

Switch Hardware

Epoch

Schedules

Subepoch

Operations

Subepoch

Results

Epoch

Results

Queries

Operators

Collector

Figure 2: Architecture of DynATOS.

3.2 Preliminaries
Scheduling horizon. Since queries can arrive at any time, we
must decide when and for how far into the future resources
should be scheduled. We first examine several possible ap-
proaches to this problem, then describe our approach in the
next paragraph. One option is to compute the schedule each
time a new query arrives and adjust all existing queries to the
new schedule. While this option minimizes the time a query
has to wait before it can start executing, it complicates the
realization of accuracy and latency goals since the duration
of the scheduling horizon (i.e., until the next query arrives) is
unknown when forming the schedule. Alternatively, we could
compute the new schedule each time all queries in the prior

704 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

schedule terminate. While this option ensures schedules can
be executed exactly as planned, newly submitted queries may
experience a longer delay.

We choose, instead, to make scheduling decisions at fixed
windows of time which we call epochs (e.g., every 5 s). This
allows a balance between the two schemes mentioned above:
queries must wait at most the duration of one epoch before
executing and during an epoch queries are ensured to exe-
cute according to the schedule. In particular, we divide the
scheduling epoch into N subepochs and our scheduler assigns
subsets of the submitted queries to each subepoch as shown
in Figure 3. Subepochs provide flexibility to schedule differ-
ent queries at different times while also providing concrete
resource allocation units. Queries submitted during an epoch
are checked for feasibility and only considered in the follow-
ing epoch. For example, in the figure, Q4 is added sometime
during epoch 2, but cannot be scheduled until epoch 3. During
the epoch, the scheduler collects intermediate results for each
subepoch in which a query is executed and aggregates these
subepoch results based on the query’s aggregation operation.
Once an epoch completes, results of complete queries are
returned, while new and incomplete queries are considered
for the next epoch. For example, in Figure 3 Q3 completes ex-
ecution in the second subepoch of epoch 2 and its results are
returned during the scheduler invocation before epoch 3. We
further assume that each query executes over traffic in a sin-
gle epoch and telemetry tasks requiring longer measurement
durations than our scheduling epoch can simply re-submit
queries.

Q4 added

Time

Epoch 1 Epoch 2 Epoch 3

Subepochs

Q3 results returned

Scheduling decision points

Q1
Q2
Q3
Q4

Legend

Figure 3: Example of scheduling 4 queries with N = 3 sube-
pochs per epoch.

3.3 Key Ideas
We develop a novel approximation method to address the
challenge of gathering approximate results for generic queries
(D1). In particular, our method leverages cluster sampling the-
ory to estimate the results of the first aggregation operator in
multistage queries. For example, in the DDoS query we only
approximate computation of the distinct source, destination
pairs list and execute all subsequent operations exactly. The
intuition behind this is that each operator in a telemetry query
tends to reduce the volume of data passed to the next operator.
Therefore, reducing the resource requirements and volume of
data emitted from the first aggregation reduces the load on all
subsequent operators.

§ 4 describes how our approximation method can provide

sound estimates of result accuracy without prior assumptions
about traffic characteristics (addressing D2). Note that the
accuracy estimates used in many sketch methods are depen-
dent on traffic characteristics (which can be estimated by
auxiliary queries or offline analysis) [39]. Our method, on the
other hand, uses cluster sampling to estimate result accuracy
based on observations from a single epoch independently of
traffic characteristics. Moreover, by leveraging observations
of feature variance in prior epochs, we can predict resource
requirements for a desired accuracy level in future epochs.
This feedback loop allows our system to dynamically adjust
per-query allocations as traffic distributions change.

To address D3, we integrate our approximation technique
in a scheduler that determines how a number of concurrent
queries should be executed on a single switch hardware, bal-
ancing resources between queries to satisfy accuracy and
latency goals set by operators. As described in § 5, our sched-
uler uses a novel multi-objective optimization formulation of
the problem of when to run which queries given query pri-
orities and resource constraints. This formulation allows the
scheduler to balance between the goals of multiple concurrent
queries, sometimes allocating less than the exact number of
subepochs when queries have lower priority and resources
are scarce (e.g., due to a large number of concurrent queries).

Finally, we develop a runtime system leveraging these ideas
to efficiently execute schedules on switch hardware, gather
intermediate results, apply factors to correct for sampling,
and return results to network operators in a high-level format.
Operators can then decide to execute new queries in the sub-
sequent epoch, or to re-execute the current queries based on
these results.

3.4 Limitations and Assumptions
Monitoring problems addressed by DynATOS. The types
of traffic features which can be monitored by queries in Dy-
nATOS are subject to the following assumptions.
• Feature values do not fluctuate excessively over measure-

ment durations of one or two seconds.
• The monitoring task can be implemented using features

gathered at a single point in the network.
• Features are constructed from packet header fields and/or

other switch-parsable regions of the packet.
• Features can be computed using atomic filter, map, and

reduce operations.
Under these assumptions monitoring tasks like detecting mi-
crobursts [13], identifying global icebergs [19], and detecting
patterns in TCP payloads [9] cannot be efficiently executed
using DynATOS. However, as evidenced by the body of prior
efforts with similar assumptions (e.g., [22, 30, 33]) and the
concrete examples discussed in § 2.1, DynATOS can still be
used for a wide variety of useful tasks.
Switch hardware model. In the following, we assume a re-
stricted runtime programmable switch hardware model. In
this model, switch hardware is able to execute a fixed set

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 705

of Sonata [22] operators, in particular, a filter operator fol-
lowed by a reduce operator. However, similar to Newton [43],
our switch hardware allows arbitrary parameterization of
these operators at runtime. For example, switch hardware
could execute the filter and reduce commands required by the
Sonata TCP new connections queries for a period of time, then
quickly (e.g., within a few milliseconds) be re-programmed to
execute the filter and reduce commands required by the Sonata
DDoS query. We note that our scheduling methods are inde-
pendent of this particular switch hardware model and could
readily be applied to more fully programmable ASICs [5,10].
Network-wide scheduling. Ultimately, operators need to
query traffic across different logical or physical domains of
their network. This implies that telemetry systems should col-
lect information from a distributed set of switches (or other
monitoring points) and provide a global view of network traf-
fic. In this work, we consider only a single monitoring point
(e.g., a critical border switch) and leave the challenges of dis-
tributed scheduling of telemetry operations to future work.
Nonetheless, a single switch deployment on a enterprise or
data center border switch can still be highly effective in exe-
cuting the types of queries considered.

4 Time-Division Approximation in DynATOS
Accuracy tradeoff. Given fixed scheduling epochs, we can
trade off accuracy for reduced resource requirements by sam-
pling a subset of the subepochs in which to execute a particu-
lar query. We leverage cluster sampling theory [29] to expose
this tradeoff while maintaining accuracy goals. Cluster sam-
pling is a good fit for situations like dynamically scheduled
query operations where the cost of sampling large groups of
the population (i.e., subepochs) is significantly lower than
the cost of sampling individual population members (i.e.,
packets) [29]. In particular, we assume sending the aggregate
results (computed in switch hardware) of each sampled sube-
poch to software is cheaper than sending individual sampled
packets to software.

Consider the case where a particular query executes in n of
the N total subepochs and let ti, j be the query’s result in the i-
th subepoch of the j-th epoch, n j be the number of subepochs
in which the query executed in the j-th epoch, E be the total
number of epochs in which the query is executed, and s2

t j
be

the sample variance of the ti, j’s in the j-th epoch. We use the
unbiased estimator,4

t̂E =
1
E

E

∑
j=1

t̂ j =
1
E

E

∑
j=1

N
n j

∑
i∈S j

ti, j (1)

which has standard error

SE(t̂E) =
N
E

√√√√ E

∑
j=1

(
1−

n j

N

) s2
t j

n j
(2)

4See § A for a full discussion of the derivation of these equations from
cluster sampling theory.

to estimate query results and determine when accuracy goals
have been fulfilled. We rearrange Equation 2 as

nacc =
s2

tE N2

E2σ2−

(
E−1
∑
j=1

Var(t̂ j)

)
+Ns2

tE

(3)

to estimate the number of subepochs in which a query should
execute in the E-th epoch to fulfill a given standard error target
σ assuming the query has already executed in the previous
E − 1 epochs without fulfilling σ. Note that if σ = 0, then
nacc =N and the query will be executed in all of the subepochs
in its first epoch. As σ increases, nacc decreases freeing more
of the subepochs for other queries.
Latency tradeoff. In addition to the accuracy tradeoff dis-
cussed above, we can tradeoff result latency for reduced re-
source requirements by executing a query’s operations across
several epochs. The key observation enabling this tradeoff is
that by spreading the sampled subepochs over several epochs,
the query can reduce its per-epoch requirements while still
attaining its accuracy goal. Operators leverage this tradeoff by
specifying larger latency goals on queries that do not require
fast returns.

Suppose a particular query has a latency goal of Ẽ epochs.
We need to estimate the number of subepochs in which the
query should be allocated nlat in the e-th epoch with 1≤ e≤
Ẽ. First, we break the sum in Equation 2 into past (1≤ j < e)
and future (e < j ≤Ẽ) components. We then have,

nlat =
s2

tE N2

Ẽ2σ2−N2 (past + f uture)+Ns2
tE

(4)

While the past component can be calculated directly using
observations from prior epochs, the f uture component must
be estimated based on the number of subepochs the query
expects to receive in future epochs. Operators can tune this
expected number of subepochs based on current and expected
query workloads.
Correcting distinct operators. While the previous sections
discuss foundations for making sound approximations of
packet/byte counts, many useful queries also involve iden-
tifying and counting distinct elements. We leverage the Chao
estimator without replacement5 to correct estimates of a com-
mon class of distinct count queries such as the DDoS query
considered in § 2.1. Similar to the cluster sampling estimators
described in this section, the Chao estimator can be used to
obtain point and standard error estimates based only on the
observed sample.

5 Scheduling in DynATOS
5.1 Optimization Formulation
We cast the task of generating query schedules as an optimiza-
tion problem and adapt well-known techniques to generate

5See § A.3 for details.

706 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

schedules through this casting. While this section details our
casting of the problem, § 5.2 describes the challenges inher-
ent in applying optimization techniques in a real-time setting
such as ours.

We apply our optimization formulation every epoch to
determine which queries should execute in each of the N
subepochs as shown in Algorithm 1. First, in line 2 we use
the DISENTANGLE method of Yuan et al. [40] to break the
submitted queries Q into disjoint traffic slices K and save
the mapping between queries and slices in si,k. Line 3 then
computes the minimum number of stateful update operations
required by the reduce operators of all queries in each partic-
ular slice. These steps are necessary given our single-stage
switch hardware model (§ 3.4). Next, lines 4 through 6 com-
pute estimates of the memory and subepoch requirements of
each query. Finally line 7 creates and solves the optimiza-
tion problem described below. If a feasible solution cannot
be found, line 9 falls back to a heuristic scheduling method
described in § 5.2.

Algorithm 1 Method for determining subepoch schedule

1: procedure GET-SCHEDULE(Q, u, SE)
2: K,s← DISENTANGLE(Q)
3: U ← COMBINE-UPDATES(u,K,s)
4: m← ESTIMATE-MEMORY
5: nacc← EQUATION 3(σ)
6: nlat ← EQUATION 4(σ,E)
7: d← SOLVE-OPTIMIZATION
8: if d is infeasible then
9: d← GET-HEURISTIC-SCHEDULE

10: end if
11: end procedure

Inputs. Table 2 shows the particular inputs and outputs of
this optimization problem. Of the input variables, tk, ui, si,k,
T , A, and M are known exactly based on submitted query re-
quirements and available switch resources, while mi, nacc

i , and
nlat

i must be estimated based on observation of past epochs.
Our current implementation uses EWMA to estimate mi and
s2

tE (as required by nacc
i and nlat

i) independently for all update
operation types. We leave exploration of more sophisticated
estimation approaches to future work. Scheduling decisions
are encoded in the di, j indicator variables which determine
which queries should execute in each subepoch. We do not
consider the division of switch memory between queries since
memory is dynamically allocated during the aggregation op-
eration (see § 3.4).
Constraints. We impose the constraints shown in Table 3 to
satisfy two high-level requirements: (i) respecting switch re-
source limits (C1, C2, C3) and (ii) forcing minimal progress in
each query and ensuring variance estimates are well-defined
(C4). Note that C2 captures the fact that if two queries rely on
the same update operation, they can be merged to use a single
ALU. In the case that the estimated quantity mi turns out to

Variable Description
Q index set of queries ready for execution
SE index set of subepochs
K index set of all disjoint traffic slices
Uk index set of all update operations in slice k
tk number of TCAM entries required by slice k
ui index of update operation required by query i
si,k indicator that query i requires slice k
mi memory required in each subepoch by query i

nacc
i number of subepochs required for accuracy

goal for query i (§ 4)
nlat

i number of subepochs required for latency goal
for query i (§ A.2)

T total available TCAM entries
A total number of available switch ALUs
M total available SRAM counters
di, j indicator that query i executes in subepoch j

Table 2: Variables used in optimization formulation of
scheduling problem. The sole outputs di, j determine the sched-
ule for the next epoch.

C1: ∀ j ∈ SE, ∑
k∈K

tkI

[∨
i∈Q

di, jsi,k = 1

]
≤ T

C2: ∀ j ∈ SE, k ∈ K, ∑
u∈Uk

I

[∨
i∈Q

di, jsi,kI [ui = u] = 1

]
≤ A

C3: ∀ j ∈ SE, ∑
i∈Q

di, jmi ≤M

C4: ∀i ∈ Q, ∑
j∈SE

di, j ≥ 2

Table 3: Scheduling problem constraints to respect (C1)
TCAM capacity requirement, (C2) switch ALU capacity, (C3)
SRAM capacity, and (C4) query minimal progress require-
ment. I [] is the indicator function.

O1: minimize ∑
i∈Q

∣∣∣∣∣
(

∑
j∈SE

di, j

)
−nacc

i

∣∣∣∣∣
O2: minimize ∑

i∈Q

∣∣∣∣∣
(

∑
j∈SE

di, j

)
−nlat

i

∣∣∣∣∣
O3: minimize ∑

i∈Q, j∈SE
di, jmi

Table 4: Objective functions considered in the multi-objective
formulation.

be violated by traffic conditions in the subsequent epoch, we
simply drop new aggregation groups once the available switch
memory is totally consumed.
Objectives. In computing the schedule of each epoch, we
consider the objective functions listed in Table 4. O1 seeks
to satisfy accuracy goals by minimizing the distance to the
value of nacc computed in Equation 3, O2 seeks to satisfy
latency goals by minimizing the distance to the value of nlat

computed in Equation 4, and O3 seeks to limit the maximum
volume of data that needs to be returned from the switch in a
single subepoch. We expose the Pareto front of these objective
functions using linear scalarization which allows operators
to express the importance of each objective by submitting
weights and is computationally efficient.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 707

5.2 Challenges of Online Optimization
Unlike prior work (e.g., [22]), the inputs to our optimization
problem are dependent on task dynamics (e.g., the set Q can
vary each epoch) and traffic dynamics (e.g., the suggested
nacc

i could increase in response to increased traffic variability).
Hence, we must solve the optimization problem independently
in each epoch. However, invoking an optimization solver in
an online scheduling method is fraught with challenges. First,
certain combinations of inputs and constraints can lead to
infeasible problems where it is impossible to satisfy all con-
straints. Second, since integer programming is a well known
NP-complete problem, finding an optimal solution can take
exponential time in the worst case. In what follows, we de-
scribe several precautions that we take in the design of our
scheduler to ensure these challenges do not adversely affect
the performance of the telemetry system.
Dealing with infeasible queries. Our first strategy to deal
with infeasible optimization problems is to require that all
submitted queries can be executed on the given switch re-
sources in the absence of other queries. In particular, if a
query requires more than T TCAM entries, A ALUs, or M
counters, the scheduler must reject that query outright, since it
will not be able to execute on the given switch hardware. This
ensures that our scheduler can always make progress on the
current pool of submitted queries by selecting a single query
and allocating the full switch resources for all subepochs. We
note that a query partition scheme similar to Sonata [22] could
be added to our system to handle this case more elegantly, but
leave this to future work.
Dealing with slow optimizations. To deal with the poten-
tially exponential time that could be required to converge to
an optimal solution, we limit the duration of time spent in
the optimization algorithm to an acceptable fraction of to-
tal epoch time. This method, known as early stopping, is a
well-known technique to gather feasible, good, if not fully
optimal solutions. When the optimization process stops due
to this time limit, the current solution must still be checked for
feasibility and only allowed to execute if it is, in fact, feasible.
Fail-safe. In cases where the optimization problem is either
proven infeasible or times out before converging, we fall
back to a simple heuristic “fail-safe” mode of scheduling. We
also deny all new query submissions when in fail-safe mode
to notify the operator that the system is currently saturated
and to prevent the accumulation of a large backlog which
could cause the optimization problem to remain infeasible
in future epochs. Our simple heuristic fail-safe scheduling
scheme greedily selects the query closest to its deadline and
allocates this query fully to switch resources. To increase
progress in fail-safe mode, we also add other queries that use
the same or a subset of the selected query’s traffic slices until
either the memory or ALU limit is reached. Since queries
scheduled in this mode execute for each subepoch, n j/N = 0
for that epoch ensuring progress towards accuracy targets,
though some queries may suffer increased latency.

Another approach to dealing with situations where a fea-
sible schedule cannot be found is to send slices of traffic to
the collector and compute query results in software. In this
approach queries running during fail-safe mode could still
meet tight latency goals at the expense of increased load on
the collector. Depending on the nature of situation trigger-
ing fail-safe mode, this could impose infeasible processing
loads on the collector or lead to excessive congestion between
switch and collector. In future work, we plan to investigate
solutions to this problem including combinations of heuristic
scheduling and moving query operations to software.

6 Evaluation
In this section, we describe our evaluation of DynATOS and
demonstrate the following key results.
• The time-division approximation technique in DynATOS

is more robust than state-of-the-art in the face of traffic
dynamics and offers comparable performance to state-of-
the-art sketch-based approximate techniques (§ 6.2).

• The scheduling method in DynATOS handles dynamic
query workloads with up to one query every second and
leverages specific accuracy and latency goals to reduce
per-query resource usage (§ 6.3).

• Latency overheads in DynATOS are minimal and dependent
on the load on the collector and the number of queries
which must be updated in switch hardware (§ 6.4).

6.1 Experimental Setup
Setting. We evaluate DynATOS on a BCM 56470 series [8]
System Verification Kit (SVK) switch running BroadScan [1]
which implements the telemetry operations described in § 3.4.
Our version of BroadScan has A = 8 parallel ALU operators,
and a flow table with M ≈ 9MB of memory. A software agent
on the switch’s CPU manages reconfiguration of hardware
in response to requests from the collector. Our collector and
scheduling software runs on a server with an Intel Xeon Gold
5218 CPU at 2.3Ghz and 383GB memory. This server is
equipped with a 40Gb Mellanox MT27700-family network
card connected directly to the SVK’s data plane. A separate
10Gb Intel X550T network card on the same server connects
to the SVK’s management interface to manage updates to
hardware configuration as schedules execute.
Traces. Unless otherwise stated, we replay a trace from
the MAWILab traffic data set (Sept. 1st, 2019) [17] using
tcpreplay [7]. We selected this trace as a baseline because
some of its features are static while others are more dynamic.
Default parameters. We use five-second scheduling epochs
to allow sufficient measurement duration without incurring
excessive delay of results which must wait for epoch bound-
aries. We divide epochs into N = 8 subepochs so that the
schedule has sufficient options for arranging queries without
making subepochs too short to generate useful samples. We
set objective weights to balance between priorities and sup-
pose queries will get all future subepochs when evaluating

708 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Equation 4. Queries are submitted with realistic values of
σ based on baseline measurements of their variances in the
trace. We set α = 1/2 in the EWMA estimation described
in § 5.1. Bars show median and error bars show 5th and 95th

percentiles over all epochs of the trace.
Query workloads. We use DynATOS to implement four of
the telemetry queries originally introduced by Sonata [22]
and used in several recent efforts. Our hardware model han-
dles a fixed sequence of filter and reduction operations so
we implement the remaining query operations in software.
This scenario is equivalent to Sonata with a limited num-
ber of switch hardware stages. We report the accuracy of
approximate implementations of these queries as F1 score
(the harmonic mean of precision and recall) by comparing
against ground truth computed offline. In addition to static
queries, we generate dynamic query workloads based on ran-
dom processes to evaluate DynATOS (see § 6.3). To the best
of our knowledge, there is no comparable publicly-available
dynamic query workload benchmark. Our workloads are pub-
licly released at [6] to support validation of our results and to
facilitate benchmarking of similar systems in the future.
Implementation. We implement the DynATOS scheduler in
∼14k lines of C and C++. Following ProgME [40], we use
BDDs to represent query filter conditions in our implementa-
tion of the DISENTANGLE algorithm (§ 5.1). We use the open
source CBC implementation [3] to solve the optimization
problems described in § 5.1. Our implementation also defers
some result processing operations to the time spent waiting
for results from switch hardware to improve efficiency.
Comparisons. We compare DynATOS with ElasticS-
ketch [38], Newton [43], and SketchLearn [24]. We modi-
fied the implementations of both ElasticSketch and Sketch-
Learn to support the filter and reduce operations required
by several of the Sonata [22] queries. Though we were un-
able to locate a publicly available implementation of Newton,
we implemented its sketch-based approach to approximating
Sonata’s primitive operators. In particular, we use count-min
sketch [15] to approximate the reduce operator and a bloom
filter [20] to approximate the distinct operator.

6.2 Performance of Time-Division Approxi-
mation

Robustness in the face of traffic dynamics. To address the
question of what happens when traffic composition changes
significantly we consider an excerpt from the MAWILab
dataset taken on Nov. 14th, 2015. As shown in Figure 4,
this excerpt features nominally static traffic followed by a
dramatic surge in the number of sources around 100 seconds
into the trace.

To understand how different methods handle this change
in traffic dynamics, we first tune each method’s parameters
to achieve high accuracy (F1 > 0.9) on the first 100 seconds
of the excerpt, then run the method with these parameters
over the entire excerpt. Since it is possible that this anomaly

Figure 4: Number of distinct sources and destinations in ex-
cerpt from MAWILab data on Nov. 14th, 2015.

was cause by some form of DDoS attack, we run the DDoS
query in this scenario to locate the victim of the attack. This
is intended to reflect a realistic situation where a method was
deployed and tuned for a particular traffic composition, which
then changes. In real deployments, such changes could be
caused by attacks or performance anomalies and represent
the moments when data collected from a telemetry system is
most critical.

Figure 5: Performance of different methods on the 2015
MAWILab excerpt shown in Figure 4.

Figure 5 shows the F1 score and number of tuples returned
to the collector in each epoch over the trace excerpt. All meth-
ods achieve high accuracy for the first 20 epochs, but then
when the number of sources increases after the 20th epoch,
they diverge significantly. First, we note that DynATOS is
able to maintain high accuracy where other methods suffer by
dynamically increasing the load on the collector. This is a re-
sult of the natural robustness of our non-parametric sampling
method: when the underlying traffic composition changes,
those changes are reflected in each sampled subepoch causing
the volume of data reported for each subepoch to increase to
ensure steady accuracy.

The sketch-based methods in ElasticSketch and Newton, on
the other hand, are limited by the static table sizes configured
for the first 20 epochs: once the traffic composition changes,
these tables become saturated and excessive hash collisions
lead to F1 scores below 0.5. We confirm that the average
number of hash collisions per epoch jumps by 2× when the
traffic distribution changes in epoch 21. We note that these
sketch-based methods also offer no easy way to estimate the
accuracy of returned results, so while an operator may become
suspicious due to the slight increase in load on the collector,
they would have no way to verify that the accuracy of these
methods is compromised.

Sketchlearn differs from other methods in that it recon-
structs flow keys based on data stored in a multi-level sketch.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 709

Sketchlearn guarantees only that it will be able to extract all
flows that make up more than 1/c of the total traffic where
c is the fixed number of columns in the sketch. We confirm
that in this trace, the increased number of sources is caused
by a large number of small flows (one to two packets). As
such, the threshold to be extracted increases, but none of the
added flows are able to meet it and so SketchLearn is unable
to extract existing as well as new flows with high enough con-
fidence. SketchLearn does associate accuracy estimates with
these results so an operator could be notified of this situation,
but would have to reload their switch’s pipeline with a larger
value of c in order to achieve acceptable accuracy.
Overall accuracy-load tradeoff. As in previous efforts [22],
we consider the volume of data returned from switch hard-
ware to the collector (i.e., load on the collector) as a critical
resource. Each approximation method can reduce this load
while reducing accuracy of query results, leading to a per-
formance curve in accuracy vs. load space. To empirically
estimate this curve, we determine several different parameter-
izations of each method, execute the method with each param-
eterization over all epochs of the trace, then compute the ac-
curacy and load on collector in each epoch. For some queries
the sketch-based methods must export their full sketches to
the collector so we report load in terms of both tuples (the
number of records or events) and bytes (the total size of data).
We use the median of each value over all epochs to estimate
the empirical performance curves.

(a) DDoS (b) TCP New Connections

(c) Port Scan (d) Super Spreader
Figure 6: Accuracy vs. overhead curves.

Figure 6 shows performance curves for four different
queries with two plots for each query showing overhead as
tuples and bytes on the y-axis. Here we use the baseline

MAWILab trace so these results represent a mostly static traf-
fic scenario. Note that the lower right-hand corner of these
plots is ideal with maximal accuracy and minimal load. We
observe that DynATOS’ novel approximation method (§ 4)
performs as well as, if not better than other methods. The
sketch-based method proposed by Newton achieves slightly
better performance in terms of total data volume on the DDoS
and Super Spreader queries because it only sends flow keys
from the first distinct operator whereas other methods also
return a counter. SketchLearn requires relatively large multi-
level sketches to be exported each epoch in order to achieve
comparable accuracy on these queries despite it’s lower tu-
ple counts. In the case of TCP new connections, we were
unable to run a large enough sketch to reach the accuracy
range shown here for other methods. We observe that for the
TCP new connections query Newton’s count-min sketch is
highly sensitive to sketch size. For example, adding a single
additional counter moves the F1 score across the entire range
shown in the plot. DynATOS, on the other hand, achieves com-
parable if not higher performance and offers a wider range of
load savings.

6.3 Performance of Scheduling Algorithm
Dynamic query workload. Real telemetry system deploy-
ments must deal with dynamics in the number and types of
queries submitted to the network over time. Since, to the best
of our knowledge, no representative dynamic query workloads
are available, we synthesize such workloads based on the fol-
lowing scheme. First, we generate a series of base queries with
random aggregation keys and granularities and arrival times
based on a Poisson process with rate λ. We suppose these
base queries are submitted by a human operator or automated
process which then submits followup queries based on base
query results. In particular, when each base query terminates,
we submit between 0 and 3 followup queries with the same ag-
gregation as the base query, but filters added to select a single
aggregation group from the base query’s results. For example,
if a base query with aggregation key source IP address at 8
bit granularity returned results for 0.0.0.0/8, 10.0.0.0/8, and
192.0.0.0/8, we might submit followup queries to monitor just
10.0.0.0/8 and 192.0.0.0/8. To provide contrasting accuracy
and latency goals, base queries are submitted with looser ac-
curacy goals (σ = 100) and latency goals randomly chosen
within a range of 1 to 5 epochs, while followup queries are
submitted with tighter accuracy goals (σ = 50) and a latency
goal of 1 epoch.

Figure 7 shows the evolution of the number of queries
submitted by one of our dynamic query workloads (top plot)
and traces of different operating metrics (lower three plots). In
this workload, the maximum number of queries is submitted in
epoch 8 which leads to an infeasible schedule since too many
TCAM entries are required to keep track of all filter groups of
followup queries. This causes our scheduler to enter fail-safe
mode for two epochs to dispatch with the excess queries. Note

710 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 7: Example time-series of a dynamic query workload
(3/5 queries per second).

that the heuristic algorithm currently used to select queries
in fail-safe mode only selects a few queries based on fully
disjoint traffic slices leading to reduction of load on collector
and TCAM utilization. Under the software-based fail-safe
mode mentioned in § 5.2, the load on collector would continue
increasing here while TCAM utilization would drop.

To understand how DynATOS scales with the rate of dy-
namic query workloads, we generate a set of five workloads
with different base query arrival rates. Figure 8 shows how
these different workload intensities affect the performance of
DynATOS in terms of queries served (Queries), tuples emit-
ted to the collector (Tuples), TCAM entries used (TCAM),
epochs spent in fail-safe mode (% Fail-s.), and the percent-
age of satisfied queries (% Sat.) all per-epoch. We count the
number of queries satisfied as the total number of queries that
received valid results during the workload run. Note that some
queries submitted when the scheduler is in fail-safe mode are
denied at submission time allowing an operator to re-submit
these queries later. In these experiments we observe that all
successfully submitted queries receive results within their
target accuracy and latency goals.

We observe that, as expected, the number of queries ser-
viced, load on collector, and number of TCAM entries re-
quired all scale linearly with the base query rate. As also
expected, the number of queries satisfied decreases as more
epochs are spent in fail-safe mode. We observe that the main
contributor to infeasible scheduling problems in this scenario
is the number of TCAM entries required to satisfy followup
queries’ filter conditions. We plan to investigate integration
of more efficient TCAM allocation algorithms in future work
to address this bottleneck.
Relaxation of accuracy & latency goals. Next, we evaluate
how our approximation and scheduling method is able to
reduce the per-query resource requirements in response to
relaxed accuracy and latency goals. We execute the TCP new
connections query with varying accuracy and latency goals
and measure resource usage over 10 epochs at each setting.
Here we report ALU-seconds and counter-seconds which
combine both the number of ALUs (or counters) used by the
query and the duration for which these resources were used.

Figure 9 show the resulting resource usages as both accu-
racy and latency goals vary in the form of heatmaps. These

Figure 8: Performance of DynATOS on dynamic query work-
loads.

(a) ALU-seconds (b) counter-seconds
Figure 9: Evaluation of median resource usages for selected
accuracy (y-axis) and latency (x-axis) targets for a single
query. Lighter colors indicate lower resource usages.

results demonstrate that both accuracy and latency goals can
help DynATOS leverage our time-division approximation
method to reduce resource requirements.

6.4 Scheduling loop overheads
Closed-loop systems like DynATOS must quickly gather re-
sults and update switch hardware configurations between each
subepoch in order to avoid missing potentially critical traffic.
We define the inter-epoch latency as the total time spent not
waiting for results from switch hardware. In other words, the
inter-epoch latency is the total time taken by our system to
gather results, reconfigure hardware operations, and decide
which operations to execute in the next epoch. We observe
two distinct factors that contribute to the inter-epoch latency:
the load on the collector and the number of queries installed
in switch hardware.
Latency vs. load on collector. The first factor contributing to
inter-epoch latency is the volume of data that must be returned
and processed after each subepoch. To isolate this effect, we
generate synthetic traffic consisting of a certain number of
sources each sending a steady stream of packets controlled
by a Poisson process. We then run a query that returns a
single record for each source so that by varying the number
of sources in the traffic, we directly control the number of
records returned and hence the load on collector.

Figure 10 shows the distribution of total latency for two
different loads. We observe that the median inter-epoch la-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 711

(a) 10 Records (b) 105 Records
Figure 10: Distribution of inter-epoch latency in our testbed
system for different loads on the collector.

tency in both cases is less than 130 ms, but that with higher
load the tail latencies grow to over a second. This is likely
due to that fact that the collector code must allocate larger
memory blocks to process the increased number of tuples
returned from the switch. We leave a full investigation of the
performance of our software collector to future work.

Figure 11: Software overheads as function of tuples exported.

We further investigate how the different components of
our query scheduler impact this overall inter-epoch latency
by instrumenting the scheduler. Figure 11 shows the latency
break down as a function of the number of records processed
for three key components: the time to generate a schedule for
the epoch (Schedule Gen.), the time spent processing inter-
mediate results at the end of the epoch (Proc. Results), and
the time spent sending results back to the query-submitting
process (Result Delivery). The results demonstrate that the
main variable software latency is the time to process results
which scales nearly linearly with the number of records. A
more significant bottleneck is imposed by the result delivery
time due to the use of a simple REST protocol which requires
new TCP connections and data marshaling via JSON. We
leave exploration of more efficient IPC mechanisms for this
interface to future work.
Latency vs. number of queries. The second main factor
contributing to inter-epoch latency is the time required to
install and remove query operations on switch hardware. This
factor is influenced primarily by the amount of state which
must be written into hardware memory which is a function of
the number of queries to be installed or removed. We generate
synthetic workloads containing different numbers of disjoint
queries based again on the TCP new connections query and
instrument our switch agent to measure the time taken by
writes into hardware memory.

Figure 12 shows the time taken by the hardware writes
to add and remove operations (Add Hw. and Remove Hw.)
as well as the total time taken by the switch agent (Add Tot.
and Remove Tot.) which includes the time to deserialize and
validate configurations sent from the collector. These results
show that up to 100 queries can be added or removed on our

Figure 12: Hardware overheads as function of number of
queries.

prototype in ∼10 ms (comparable to latencies reported in
prior efforts [30, 43]). We also observe that the deserializa-
tion and validation conducted by the switch agent imposes
minimal overhead. Finally, the total contribution of switch
hardware to the overall inter-epoch latency is dominated by
operation removal. This is because when removing operations,
the switch agent must also reset the entire flow table used by
these operations so as to avoid future operations anomalously
reporting leftover results.

7 Conclusion and Future Work
Current approaches to telemetry system design struggle to
efficiently satisfy dynamism in query workloads and traffic
workload composition. By reframing telemetry systems as
resource schedulers, in this work, we propose an efficient
approximation and scheduling algorithm that exposes accu-
racy and latency tradeoffs with respect to query execution to
reduce hardware resource usage. We evaluate our algorithm
by building DynATOS and show that our approach is more
robust than state-of-the-art methods to traffic dynamics and
dynamic query workloads.

While we investigate the common sources of dynamics,
both a horizontal scheduling problem (i.e., how to design a
scheduler to deal with those dynamics for multiple switch
hardware stages or multiple distributed switches) and a ver-
tical scheduling problem (i.e., incorporation of computing
resources, such as stream processing clusters and GPUs—
both locally and at remote cloud data centers—into the pool
of resources schedulable for telemetry tasks) remain. This
opens up a wider question of where, not just when and for
how long, telemetry queries should be executed. We plan to
investigate this question as part of future work.

Acknowledgments
We thank our shepherd (Behnaz Arzani) and the anonymous
reviewers for their constructive feedback. We also thank
Shahram Davari and Broadcom, Inc. for providing hardware
and technical support for our testbed evaluation. This work is
supported by the National Science Foundation through CNS
1850297, a Ripple faculty fellowship, and a Ripple graduate
fellowship. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessar-
ily representing the official policies or endorsements, either
expressed or implied, of NSF, Ripple, or Broadcom.

712 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] BCM56275 Gb/s Programmable Multilayer Switch
Product Brief. https://docs.broadcom.com/doc/
56275-PB.

[2] BCM56870 series. https://www.broadcom.com/
products/ethernet-connectivity/switching/
strataxgs/bcm56870-series.

[3] COIN-OR Branch-and-cut MIP solver. https://
zenodo.org/badge/latestdoi/30382416.

[4] Intel ethernet switch FM6000 series product brief.
https://www.intel.com/content/dam/www/
public/us/en/documents/product-briefs/
ethernet-switch-fm6000-series-brief.pdf.

[5] Intel Tofino. https://www.intel.com/
content/www/us/en/products/network-io/
programmable-ethernet-switch.html.

[6] ONRG: DynATOS. https://onrg.gitlab.io/
projects/dynatos/.

[7] Tcpreplay - Pcap editing and replaying utilities. https:
//tcpreplay.appneta.com/.

[8] Trident3-X4 / BCM56470 Series.
https://www.broadcom.com/products/
ethernet-connectivity/switching/strataxgs/
bcm56470-series.

[9] Kevin Borders, Jonathan Springer, and Matthew Burn-
side. Chimera: A declarative language for streaming
network traffic analysis. In Proceedings of the USENIX
Security Symposium, pages 365–379, 2012.

[10] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick
McKeown, Jennifer Rexford, Cole Schlesinger, Dan
Talayco, Amin Vahdat, George Varghese, et al. P4:
Programming protocol-independent packet processors.
ACM SIGCOMM Computer Communication Review,
44(3):87–95, 2014.

[11] Anne Chao and Chun-Huo Chiu. Species richness: es-
timation and comparison. Wiley StatsRef: Statistics
Reference Online, pages 1–26, 2014.

[12] Anne Chao and Chih-Wei Lin. Nonparametric lower
bounds for species richness and shared species rich-
ness under sampling without replacement. Biometrics,
68(3):912–921, 2012.

[13] Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jennifer
Rexford, and Ori Rottenstreich. Catching the microburst
culprits with snappy. In Proceedings of the ACM Work-
shop on Self-Driving Networks, pages 22–28, 2018.

[14] Xiaoqi Chen, Shir Landau-Feibish, Mark Braverman,
and Jennifer Rexford. Beaucoup: Answering many net-
work traffic queries, one memory update at a time. In
Proceedings of the conference of the ACM Special Inter-
est Group on Data Communication (SIGCOMM), pages
226–239, 2020.

[15] Graham Cormode and Shan Muthukrishnan. An im-
proved data stream summary: the count-min sketch and
its applications. Journal of Algorithms, 55(1):58–75,
2005.

[16] Cristian Estan, George Varghese, and Mike Fisk. Bitmap
algorithms for counting active flows on high speed links.
In Proceedings of the ACM SIGCOMM conference on
Internet measurement (IMC), pages 153–166, 2003.

[17] Romain Fontugne, Pierre Borgnat, Patrice Abry, and
Kensuke Fukuda. MAWILab: Combining Diverse
Anomaly Detectors for Automated Anomaly Labeling
and Performance Benchmarking. In Proceedings of the
ACM Conference on emerging Networking EXperiments
and Technologies (CoNEXT), 2010.

[18] Sriharsha Gangam, Jaideep Chandrashekar, Ítalo Cunha,
and Jim Kurose. Estimating TCP latency approximately
with passive measurements. In Proceedings of the In-
ternational Conference on Passive and Active Measure-
ment (PAM), pages 83–93. Springer, 2013.

[19] Sriharsha Gangam, Puneet Sharma, and Sonia Fahmy.
Pegasus: Precision hunting for icebergs and anomalies
in network flows. In Proceedings of the IEEE Interna-
tional Conference on Computer Communications (IN-
FOCOM), pages 1420–1428, 2013.

[20] Shahabeddin Geravand and Mahmood Ahmadi. Bloom
filter applications in network security: A state-of-the-art
survey. Computer Networks, 57(18):4047–4064, 2013.

[21] Nicholas J Gotelli and Robert K Colwell. Estimating
species richness. Biological diversity: frontiers in mea-
surement and assessment, 12:39–54, 2011.

[22] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feam-
ster, Jennifer Rexford, and Walter Willinger. Sonata:
Query-driven streaming network telemetry. In Proceed-
ings of the conference of the ACM Special Interest Group
on Data Communication (SIGCOMM), pages 357–371,
2018.

[23] Qun Huang, Xin Jin, Patrick PC Lee, Runhui Li,
Lu Tang, Yi-Chao Chen, and Gong Zhang. Sketchvi-
sor: Robust network measurement for software packet
processing. In Proceedings of the conference of the
ACM Special Interest Group on Data Communication
(SIGCOMM), pages 113–126, 2017.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 713

https://docs.broadcom.com/doc/56275-PB
https://docs.broadcom.com/doc/56275-PB
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56870-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56870-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56870-series
https://zenodo.org/badge/latestdoi/30382416
https://zenodo.org/badge/latestdoi/30382416
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-switch-fm6000-series-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-switch-fm6000-series-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-switch-fm6000-series-brief.pdf
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://onrg.gitlab.io/projects/dynatos/
https://onrg.gitlab.io/projects/dynatos/
https://tcpreplay.appneta.com/
https://tcpreplay.appneta.com/
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56470-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56470-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56470-series

[24] Qun Huang, Patrick PC Lee, and Yungang Bao. Sketch-
learn: Relieving user burdens in approximate measure-
ment with automated statistical inference. In Proceed-
ings of the conference of the ACM Special Interest Group
on Data Communication (SIGCOMM), pages 576–590,
2018.

[25] Qun Huang, Haifeng Sun, Patrick PC Lee, Wei Bai, Feng
Zhu, and Yungang Bao. Omnimon: Re-architecting
network telemetry with resource efficiency and full ac-
curacy. In Proceedings of the conference of the ACM
Special Interest Group on Data Communication (SIG-
COMM), pages 404–421, 2020.

[26] Teng Li, Jian Tang, and Jielong Xu. Performance model-
ing and predictive scheduling for distributed stream data
processing. IEEE Transactions on Big Data, 2(4):353–
364, 2016.

[27] Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron Kass-
ner, Vladimir Braverman, Roy Friedman, and Vyas
Sekar. Nitrosketch: Robust and general sketch-based
monitoring in software switches. In Proceedings of the
conference of the ACM Special Interest Group on Data
Communication (SIGCOMM), pages 334–350. 2019.

[28] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger,
Vyas Sekar, and Vladimir Braverman. One sketch to
rule them all: Rethinking network flow monitoring with
univmon. In Proceedings of the 2016 ACM SIGCOMM
Conference, pages 101–114. ACM, 2016.

[29] Sharon L Lohr. Sampling: Design and Analysis: Design
And Analysis. CRC Press, 2019.

[30] Masoud Moshref, Minlan Yu, Ramesh Govindan, and
Amin Vahdat. DREAM: Dynamic resource alloca-
tion for software-defined measurement. ACM SIG-
COMM Computer Communication Review, 44(4):419–
430, 2014.

[31] Masoud Moshref, Minlan Yu, Ramesh Govindan, and
Amin Vahdat. SCREAM: Sketch resource allocation for
software-defined measurement. In Proceedings of the
ACM Conference on emerging Networking EXperiments
and Technologies (CoNEXT), page 14, 2015.

[32] Masoud Moshref, Minlan Yu, Ramesh Govindan, and
Amin Vahdat. Trumpet: Timely and precise triggers in
data centers. In Proceedings of the conference of the
ACM Special Interest Group on Data Communication
(SIGCOMM), pages 129–143, 2016.

[33] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan,
Prateesh Goyal, Venkat Arun, Mohammad Alizadeh, Vi-
malkumar Jeyakumar, and Changhoon Kim. Language-
directed hardware design for network performance mon-
itoring. In Proceedings of the conference of the ACM

Special Interest Group on Data Communication (SIG-
COMM), pages 85–98, 2017.

[34] Boyang Peng, Mohammad Hosseini, Zhihao Hong, Reza
Farivar, and Roy Campbell. R-storm: Resource-aware
scheduling in storm. In Proceedings of the Annual
Middleware Conference, pages 149–161, 2015.

[35] Hooman Peiro Sajjad, Ken Danniswara, Ahmad Al-
Shishtawy, and Vladimir Vlassov. Spanedge: Towards
unifying stream processing over central and near-the-
edge data centers. In Proceedings of the IEEE/ACM
Symposium on Edge Computing (SEC), pages 168–178,
2016.

[36] Anshu Shukla and Yogesh Simmhan. Model-driven
scheduling for distributed stream processing systems.
Journal of Parallel and Distributed Computing, 117:98–
114, 2018.

[37] Praveen Tammana, Rachit Agarwal, and Myungjin Lee.
Distributed network monitoring and debugging with
SwitchPointer. In Proceedings of the USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI), pages 453–456, 2018.

[38] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi
Gong, Yang Zhou, Rui Miao, Xiaoming Li, and Steve
Uhlig. Elastic sketch: Adaptive and fast network-wide
measurements. In Proceedings of the conference of the
ACM Special Interest Group on Data Communication
(SIGCOMM), pages 561–575. ACM, 2018.

[39] Minlan Yu, Lavanya Jose, and Rui Miao. Software de-
fined traffic measurement with OpenSketch. In Proceed-
ings of the USENIX Symposium on Networked Systems
Design and Implementation (NSDI), pages 29–42, 2013.

[40] Lihua Yuan, Chen-Nee Chuah, and Prasant Mohapa-
tra. ProgME: towards programmable network mea-
surement. IEEE/ACM Transactions on Networking,
19(1):115–128, 2011.

[41] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik,
Matthai Philipose, Paramvir Bahl, and Michael J Freed-
man. Live video analytics at scale with approximation
and delay-tolerance. In Proceedings of the USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI), pages 377–392, 2017.

[42] Haiquan Chuck Zhao, Ashwin Lall, Mitsunori Ogihara,
Oliver Spatscheck, Jia Wang, and Jun Xu. A data stream-
ing algorithm for estimating entropies of OD flows. In
Proceedings of the ACM SIGCOMM conference on In-
ternet measurement (IMC), pages 279–290, 2007.

714 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[43] Yu Zhou, Dai Zhang, Kai Gao, Chen Sun, Jiamin Cao,
Yangyang Wang, Mingwei Xu, and Jianping Wu. New-
ton: Intent-driven network traffic monitoring. In Pro-
ceedings of the ACM Conference on emerging Network-
ing EXperiments and Technologies (CoNEXT), pages
295–308, 2020.

A Appendix: Application of Cluster Sampling

In this section, we discuss details of key equations enabling
our scheduling approach’s accuracy and latency tradeoffs. To
maintain a self-contained discussion, some content is repeated
from § 4.

A.1 Trading Off Accuracy
Given fixed scheduling epochs, we can trade off accuracy
for reduced resource requirements by sampling a subset of
the subepochs in which to execute a particular query. We
leverage cluster sampling theory [29] to expose this tradeoff
while maintaining accuracy goals. To simplify our discussion,
we first consider the case where a query is executed in a single
epoch and then expand to the case where a query is executed
across multiple epochs.
Single Epoch Case. Consider the case where a particular
query executes in n of the N total subepochs. Our goal is to
estimate the value that would have resulted from running the
query in all subepochs based only on these n subepoch results.
First, we note that each subepoch defines a cluster of packets
that traverse the switch during that subepoch. Next, since each
query executes over every packet of the subepochs in which
it is scheduled, we note that the subepoch results represent a
sample of n of the N total subepoch clusters. To ensure that
each subepoch has an equal probability of being sampled by
a particular query, we shuffle subepochs prior to execution.
Cluster sampling theory [29] then lets us estimate the results
of these queries over the entire N subepochs as well as the
error of this estimator based on the variance between the
observed subepochs. For example, we can estimate a query
that maintains a sum by

t̂ =
N
n ∑

i∈S
ti

which has standard error

SE(t̂) = N

√(
1− n

N

) s2
t

n

where S is the index set of which subepochs have been sam-
pled, ti is the query’s result in the i-th subepoch, and s2

t is
the sample variance of the ti’s. Clearly, executing a query
for fewer subepochs leads to greater sampling error while
executing a query in each subepoch leads to zero sampling

error. This equation also shows that, if n is set to a fixed ratio
of N, error grows as a function of N so we do not expect
to increase accuracy by dividing epochs into larger numbers
of subepochs. Corresponding theory and equations exist for
other update operations such as averages and extreme values.
Multiple Epoch Case. Due to changing traffic distributions
or large query workloads, a query may not be able to fulfil
its accuracy goal in a single epoch and the scheduler must
form results based on the estimates from multiple epochs.
Considering again the sum example, let ti, j be the query’s
result in the i-th subepoch of the j-th epoch, n j be the number
of subepochs in which the query executed in the j-th epoch,
and E be the total number of epochs in which the query is
executed. By the self-weighting property of t̂, we can take a
simple mean of the t̂ j’s to get an unbiased estimator of the
query’s result over the E epochs,

t̂E =
1
E

E

∑
j=1

t̂ j =
1
E

E

∑
j=1

N
n j

∑
i∈S j

ti, j (5)

which has standard error

SE(t̂E) =
N
E

√√√√ E

∑
j=1

(
1−

n j

N

) s2
t j

n j
(6)

because subepochs are chosen independently in each epoch
(i.e., the sampled index sets S j, which are the only random
variables in this formulation, are independent).
Application to Scheduling. Our system uses the point esti-
mates provided by Equation 5 to calculate estimated query
results. We also utilize Equation 6 for two purposes: (i) de-
termining when accuracy goals have been fulfilled and (ii)
estimating the number of subepochs in which the scheduler
must execute particular queries. Since the first item can be
evaluated with a simple threshold check, the rest of this sec-
tion explains the second item. We assume that each query
executes a single update operation (e.g., a sum) in its reduc-
tion and note that multiple operations could be expressed in
multiple queries.

Note that for a given standard error target (SE(t̂E) = σ) we
can rearrange Equation 6 to solve for the number of subepochs
that must be sampled in the E-th epoch as follows,

nacc =
s2

tE N2

E2σ2−

(
E−1
∑
j=1

Var(t̂ j)

)
+Ns2

tE

(7)

Given a query’s target standard error σ, observed values of
s2

t j
and n j from prior epochs, and an estimate of s2

tE (based
on the s2

t j
’s), we can use Equation 7 to determine a lower

bound on the number of subepoch in which a query should
execute. Note that if σ = 0, then nacc = N and the query will
be executed in all of the subepochs in its first epoch. As σ

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 715

increases, nacc decreases freeing more of the subepochs for
other queries. For example, Figure A.1a shows the result of
evaluating Eq. 7 for the first epoch of a query, indicating that
if the accepted standard error is large enough, the scheduler
only needs to execute the query in a single subepoch.
Limitations. We note that Equation 7 can become unstable
when the accuracy goal σ cannot be obtained in a single epoch
given the results of prior epochs. This condition results when
E2σ2 +Ns2

tE ≤ ∑
E−1
j=1 Var(t̂ j) causing the value of nacc to be

negative or undefined. Moreover, when nacc is negative, its
magnitude has the wrong sense with respect to σ: smaller
(tighter) values of σ reduce the magnitude of nacc. Rather
than dropping the query, we make a maximum allocation
choice (nacc = N) and retain the query for future epochs until
its accuracy target is met. So long as Var(t̂ j)< σ2 for enough
of those future epochs, nacc will eventually stabilize.

(a) Increasing σ reduces nacc

in the first epoch.
(b) nlat increases as deadline
E = 6 approaches.

Figure A.1: Numeric evaluations of Eqs. 7 and 8 assuming
fixed variance s2

t = 8, N = 5, and queries get 3/5th of the
subepochs.

A.2 Trading Off Latency

In addition to the accuracy tradeoff discussed above, we can
tradeoff result latency for reduced resource requirements by
executing a query’s operations across several epochs. The
key observation enabling this tradeoff is that by spreading the
sampled subepochs over several epochs, the query can reduce
its per-epoch requirements while still attaining its accuracy
goal. Operators leverage this tradeoff by specifying larger
latency goals on queries which do not require fast returns.
We then adapt Equation 6 to estimate how many subepochs
should be executed in the current epoch based on both past
and anticipated future results.
Accounting for Past and Future Results. Under the latency
tradeoff, we approach the problem of determining how many
subepochs to execute from the perspective of the point in the
future when the query completes. At this point Equation 5
will be used to estimate the query’s result and Equation 6
must satisfy the query’s accuracy goal. Moreover, assuming
we are satisfying the query’s latency goal, E is equal to the
target number of epochs.

Now we consider the task of estimating the number of
subepochs to execute during some epoch e before the query’s
final epoch E. Note that the sum in Equation 6 can be split

around epoch e into a past component

past =
e−1

∑
j=1

(
1−

n j

N

) s2
t j

n j

and a future component

f uture =
E

∑
j=e+1

(
1−

n j

N

) s2
t j

n j
.

We can then directly adapt Equation 7 to provide the required
number of subepoch in epoch e accounting for both past and
future components as

nlat =
s2

tE N2

E2σ2−N2 (past + f uture)+Ns2
tE

(8)

Figure A.1b shows the result of evaluating Equation 8 in each
epoch leading up to a query’s target latency of e = 6 assuming
that the operation gets 3/5th of the number of subepochs
requested in each epoch. Since in this case, the query is not
given its full requested number of subepochs, the target nlat

increases dynamically to meet the deadline. This indicates that
Equation 8 can dynamically drive scheduling decisions even
when its results are not taken literally in each epoch (as may
be the case when multiple queries compete for resources).
Limitations. Equation 8 faces the same issues as Equation 7
in that it may still be infeasible to satisfy σ given past results
and the anticipated gains of future results. In such cases we
again take n j = N and count on gaining sufficient resources
in future epochs to satisfy the accuracy goal. To understand
the dynamics of this decision, Figure A.2 shows the relation
between target and actual number of epochs for a number
of accuracy goals. We assume here that queries anticipate
getting 3/5th of the subepochs, actually receive 3/5th of what
they ask for, and all other settings are as in Figure A.1. As
can be seen when the accuracy target is too tight (e.g., σ = 6)
executing in less than a certain number of epochs (e = 5) is
infeasible and the query’s latency goal cannot be met.

Figure A.2: Relation between target number of epochs and
the actual required number of epochs.

A.3 Correcting Distinct Operators
Many useful queries also involve identifying and counting
distinct elements. We consider the particularly prominent

716 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

query structure where the results of a distinct operator are fed
through a reduce operator with a slightly coarser granularity
key. For example the DDoS query considered in § 2.1 con-
tains two main stateful operators: (i) finding distinct source,
destination pairs and (ii) reducing with destination as the key
to count the number of unique sources contacting each des-
tination. The key problem is that, while the methods above
provide sound estimators for packet and byte counts, they
do not correct for elements which may have been entirely
missed in the distinct operator due to sampling. Such errors
lead to a downward bias on distinct counts based on sampling
which could cause key events like DDoS attacks to go unno-
ticed. To correct for this source of error, we leverage the Chao
estimator without replacement when performing reductions
after distinct operators impacted by sampling. Chao estima-
tors [11,12] are commonly used by “species richness” studies
in the biological sciences to solve a related type of distinct
count problem [21]

This estimator is given by

ŜChao1,wor = Sobs +
f 2
1

n
n−1 2 f2 +

q
1−q f1

(9)

where Sobs is the number of elements observed in the sample,
f1 is the number of elements observed only once, f2 is the
number of elements observed only twice, n is the total number
of elements in the sample, and q is the sampling rate. To
use this estimator, we modify distinct operators executed in
the data plane to additionally count the number of packets
observed for each distinct element (essentially transforming
them into normal count reduction operators). After gathering
results, we can then easily compute the inputs required by
Equation 9. Note that the variance of ŜCha1,wor can also be
easily obtained from the same information as shown in the
original description of this estimator [12], providing network
operators with approximate accuracy of these results as well.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 717

HeteroSketch: Coordinating Network-wide Monitoring in Heterogeneous and
Dynamic Networks

Anup Agarwal
Carnegie Mellon University

Zaoxing Liu
Boston University

Srinivasan Seshan
Carnegie Mellon University

Abstract
Network monitoring and measurement have always been crit-
ical components of network management. Recent develop-
ments in sketch-based monitoring techniques and the deploy-
ment opportunities arising from the increasing programmabil-
ity of network elements (e.g., programmable switches, Smart-
NICs, and software switches) have made the possibility of ac-
curate, detailed, network-wide telemetry tantalizingly within
reach. However, the wide heterogeneity of the programmable
hardware and dynamic changes in both resources available
and resources needed for monitoring over time make existing
approaches to network-wide monitoring impractical.

We present HeteroSketch, a framework that consists of
two main components: (1) a profiling tool that automatically
quantifies the capabilities of arbitrary hardware by predicting
their performance for sketching algorithms, and (2) an opti-
mization framework that decides placement of measurement
tasks and resource allocation for devices to meet monitoring
goals while considering heterogeneous device capabilities.
HeteroSketch enables optimized deployments for large net-
works (> 40,000 nodes) using a novel clustering approach
and enables prompt responses to network topology, traffic,
query, and resource dynamics. Our evaluation shows that
HeteroSketch reduces resource overheads by 20−60% com-
pared to prior art, while maintaining monitoring performance,
coverage, and accuracy.

1 Introduction

The ability to monitor network traffic in-situ and at-large-
scale is a critical enabler for many networked management
applications, including traffic engineering, load balancing,
attack and anomaly detection, provisioning, and congestion
control/fairness [1–7]. However, network-wide monitoring
has proven to be challenging due to limitations on what mea-
surements can be made and where these measurements can
be taken. Recent developments in sketch-based monitoring
and network programmability have made significant progress

in eliminating these limitations and have made it possible to
consider practical network-wide monitoring designs.

Sketch-based monitoring designs [8–13] demonstrate that
sketches offer provable accuracy guarantees on a wide spec-
trum of metrics of interest using a small amount of memory
and that independent sketch instances monitoring different
parts of the network can be merged to obtain network-wide
aggregated results. As a result, sketch-based monitoring has
emerged as a promising alternative to traditional sampling-
based monitoring tools (e.g., NetFlow [14] and sFlow [15]).
The growing popularity of programmable network elements,
such as programmable switches [16, 17], SmartNICs [18,
19], and software-switches [20, 21], have made it possible to
deploy these sketch-based designs throughout a network – en-
abling highly-effective network-wide monitoring capabilities.

Despite significant recent progress [10–13, 22], we argue
that deploying sketch-based monitoring in a network-wide
setting remains impractical. The reason behind this is that
existing network-wide solutions [11, 22, 23] assume an ab-
stract network model without properly considering the het-
erogeneity and dynamics in the network. First, with growing
types of programmable devices whose hardware architectures
are dramatically different (e.g., ASIC, CPU, FPGA), it re-
mains unclear how to deploy sketches among heterogeneous
computation and memory hierarchies for optimized resource
efficiency. Second, since monitoring capabilities share the
same infrastructure with other network services [24–26] and
monitoring requirements vary over time, the available and
required resources for monitoring can change dynamically.
We require an agile solution that can incorporate device het-
erogeneity and quickly adjust to network dynamics for best
possible monitoring performance.

In this paper, we present HeteroSketch, a network-wide
flow monitoring framework that coordinates sketch-based
measurement to determine task placement and resource al-
location for a network of heterogeneous devices. HeteroS-
ketch has two main components: (1) a device character-
ization tool that automates quantified reasoning about the
performance and resource usage of sketches on arbitrary de-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 719

vice architectures and (2) an optimization framework that
computes the placement of measurement tasks while consider-
ing available heterogeneous device resources and monitoring
goals including forwarding performance, resource efficiency,
monitoring accuracy, and flow coverage.

When designing our device characterization tool, we need
to deal with a broad spectrum of programmable architectures
such as CPU [20, 21], FPGA [19, 27], ASIC [16], and multi-
core system-on-chip (SoC) [18]. Given the difficulty in
accurately predicting the performance of arbitrary code under
diverse workloads and hardware architectures [28, 29], we
scope our efforts to sketches to create a practical solution.
Our design is inspired by the observation that many sketches
perform similar computations. We analyze the key opera-
tions of sketches and find that the performance of a sketch
depends heavily on primitive operations – hash computations,
counter updates, and random memory lookups. With that in
mind, we then characterize these operations on current (and
possibly new) hardware using automated micro-benchmarks,
and leverage these measurements to express the performance
and resource usage of a sketch. As evaluated in §7.1, our pro-
filer accurately predicts sketch performance on programmable
hardware with less than 6% mean relative error.

With precise performance profiles as input, HeteroSketch
must address the tightly coupled monitoring goals, traffic de-
mands, forwarding performance, sketch configurations, and
resource usage, and the tradeoffs between them. Task place-
ment and resource allocation requires a carefully crafted opti-
mizer to incorporate the cost/benefit of different deployment
options. We formulate a Mixed-Integer Program (MIP) to
optimize resource efficiency while preserving forwarding per-
formance, monitoring accuracy, and flow coverage.

Given the complexity introduced due to heterogeneous
devices (non-convexity) and network scale, even a state-of-
the-art solver [30] takes hours to solve the MIP, leading to
stale solutions in face of network dynamics. We develop a
clustering technique based on observed structures in network
topologies and traffic patterns to partition the optimization
into independent sub-problems. This allows HeteroSketch to
scale to today’s data center networks having tens of thousands
of devices and respond to dynamics within a few seconds to a
few minutes while maintaining near optimal allocations.

We implement HeteroSketch by porting state-of-the-art
sketch implementations [8, 9, 11, 13] into representative pro-
grammable devices (Barefoot Tofino [16], Netronome Agilio
SmartNIC [18], Xilinx FPGA NIC [27], and Open vSwitch
(OVS) [20]) and encode the optimization in the Gurobi [30]
solver. Our evaluation with more than 40,000 nodes demon-
strates that our heterogeneity-aware optimization can achieve
20−60% better resource efficiency (e.g., 50k CPU cores in-
stead of 70k CPU cores) compared to prior solutions with the
same performance, accuracy, and coverage while responding
to network dynamics in a few seconds to a few minutes.
Contributions. We make the following contributions:

• We present HeteroSketch, the first system to our knowl-
edge that performs coordinated sketch-based network-wide
monitoring over a network of heterogeneous devices and
caters to network dynamics. (§3)
• We develop a profiler that allows users to predict the per-

formance of sketches on heterogeneous devices. (§4)
• We formulate a mixed-integer program to optimize sketch

placement and resource allocation over heterogeneous de-
vices and propose techniques to quickly optimize when
topology, queries, traffic, or resources change. (§5, §6)
• We show that HeteroSketch is able to place tasks and allo-

cate resources over network topologies, achieving greater
scale and optimality than existing systems. (§7)

2 Background and Motivation

In this section, we describe how heterogeneous programmable
data planes bring new opportunities and challenges to deploy
network-wide monitoring under varying demands. We then
discuss existing network-wide monitoring efforts.
Programmable Data Plane. Progress in programmable net-
work devices is moving the network data plane towards a
highly programmable infrastructure. This programmable in-
frastructure opens up the opportunity to develop measurement
algorithms for a variety of fine-grained, flexible measurement
tasks. For example, significant progress has been made in
developing sketching algorithms [11, 12, 31] on the RMT
architecture [32], where packets are processed over a series
of reconfigurable match-action tables with user-defined ac-
tions in a pipeline. Similarly, multi-engine SmartNICs [18]
consisting of a pool of general purpose processing elements
(i.e., micro-engines) are a cost-effective option to allow hosts
to offload monitoring capabilities or other parallel compu-
tation from CPU. These programmable devices enable the
development of highly flexible and performant future-proof
network-wide monitoring for various network demands.
New Requirements in Network-wide Monitoring. For a
long time, network monitoring research has been focused
on pursuing accuracy over other goals, such as forwarding
performance with less computing and memory resources, and
scalability by supporting larger-scale networks. While these
requirements continue to be important, we believe that there
are two significant roadblocks that make it difficult or imprac-
tical to use existing sketch-based designs at scale in future
programmable data planes:
• Heterogeneity in the network: Network data planes are

becoming increasingly heterogeneous with devices such
as x86-based software switches [20], ASIC-based pro-
grammable switches [16], multicore system-on-chip (SoC)
SmartNICs [18], and FPGA NICs [19, 27]. These devices
are designed with diverse architectures and present very
different resource bottlenecks to the programs that execute
on them. The challenge lies in how to precisely character-

720 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(A)

(B)

(C)

x86-based
Software Switch

Programmable
Switch

CM2
CM3

CM1
20 Mpps

10 Mpps

Strategy
Device Total

ResourcesA B C

Network-wide
UnivMon

Placement CM1 CM2 CM3
Resources

required
3 cores,
100 KB

2 cores,
100 KB 100 KB 5 cores, 300

KB

Better
Strategy

Placement - CM2, CM3 CM1
Resources

required
2 cores, 0

KB
2 cores,
200 KB 100 KB 4 cores, 300

KB

Figure 1: Example of network-wide UnivMon not optimally
placing the sketches.

ize the performance of monitoring programs on current and
possibly new devices and use these insights to optimize
resource usage.
• Network dynamics: Network monitoring serves as a data

collector and analyzer for other co-located network services
(e.g., traffic engineering, load balancing, and anomaly de-
tection). As all these services share the same infrastruc-
ture and their monitoring needs change, any network-wide
monitoring system should quickly adjust to the following
“network dynamics”: (1) topology change, (2) monitoring
query change, (3) traffic demand change, and (4) avail-
able resource change, in order to provide best monitoring
performance and not interrupt other concurrent services.

Current Network-wide Monitoring and Limitations. In
small networks, we can consider using techniques that record
all packets or flows passing through the network for full ac-
curacy (e.g., T-RAT [33], vCRIB [34], and OmniMon [35]).
However, in practice, with the desire for real-time and ac-
curate monitoring over large traffic volumes and dynamics,
operators usually cannot afford to record all packets or flows
on their network devices due to high resource usage and pro-
cessing latency. Recently developed zoom-in techniques (e.g.,
Sonata [36] and ProgME [37], and others [38, 39]) provide no
theoretical accuracy guarantee for dynamic traffic workloads.
Systems such as NetFlow/sFlow [14, 15] and cSAMP [23]
reduce overhead by recording only a fraction of packets via
packet or flow sampling to compute measurement results. As
shown in prior efforts [40, 41], these sampling approaches
have low measurement accuracy in various tasks and work-
loads.

Sketching algorithms (sketches) address the drawbacks of
sampling. At a high level, sketches [8, 9, 42] are probabilistic
data structures that store a small summary of the input traffic.
They allow a proven trade-off between the accuracy of sup-
ported queries and the space of the summary. Sketching tech-
niques have efficiently supported various monitoring tasks
including: heavy hitter detection [8, 9, 11, 12, 31, 43], traffic
change detection [11, 44], anomaly detection [11, 22, 45],

Scheme Resource
Over-
head

Heterogeneity &
Dynamics

Memory-
Accuracy
Tradeoff

cSAMP [23] High 7 Poor
vCRIB [34] High Limited Poor
OmniMon [35] High Limited Poor
UnivMon [11] Medium 7 Good
HeteroSketch Low 3 Good

Table 1: Summary of qualitative comparisons of existing
schemes and our approach (HeteroSketch).

entropy estimation [11, 46, 47], counting distinct flows [11,
12]. Most sketches mentioned above can be linearly merged
to obtain aggregated results with the same additive error guar-
antees [48]. For example, Sketch 1 measuring flow set A
can be merged with Sketch 2 measuring flow set B (e.g., by
addition of the two counter tables) to obtain statistics about a
combined flow set A∪B, as long as Sketches 1 and 2 share
the same hash and memory configurations.

Unfortunately, existing sketch-based monitoring solutions
don’t consider heterogeneity and dynamics, which affects
their resource efficiency and/or accuracy (Table 1). For in-
stance, Figure 1 shows a simple scenario where network-
wide UnivMon [11] does no optimally place Count-Min
Sketches [8], resulting in using 5 cores instead of 4. In this
setting, we have three devices (CPU A, CPU B, and pro-
grammable switch C). We want 1 Count-Min sketch (CM1)
to monitor traffic between devices A and C, and we want
2 Count-Min sketches (CM2 and CM3) to monitor traffic
between devices B and C. We also assume that the pro-
grammable switch can only fit one sketch in its share of
switch resources for monitoring tasks. CPU A requires 2
cores for forwarding 20Mpps while CPU B requires 1 core
for 10Mpps. The key decision is which sketch should go on
the programmable switch. Better Strategy: If we place CM1
on the switch, both CM2, CM3 run on CPU B consuming 1
core for sketching (combined 20M sketch operations per sec-
ond). Network-wide UnivMon: If we place CM2 (or CM3) on
the switch, then CM1 must be placed on CPU A consuming
1 core for sketching and CM3 (or CM2) must be placed on
CPU B again consuming 1 core for sketching, for a total of
2 sketching cores. Note, placing only one of CM2 or CM3
on CPU B consumes 1 sketching core as cycles are wasted
busy-polling for packets for performance reasons. UnivMon
produces this placement as it tries to balance memory load
across devices.

3 System Overview

We describe the high-level design of HeteroSketch and high-
light the key challenges that the design must address.

3.1 Problem Scope
HeteroSketch provides a “One Big Switch” abstraction to
the user, wherein the user can specify monitoring require-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 721

Monitoring Tasks
(type, filter,
OD-pairs,

parameters)

Profiler

Unique Devices

User

Optimizer
Task placement and
Resource allocationDevice Profile Library

Network Topology

Routing Information

Traffic matrices

HeteroSketch

Network

Sketch Manifests &
Device Configurations

One time only

1

2

Deployment

3

4

Figure 2: HeteroSketch Overview.

ments over all or a subset of traffic flowing between network
endpoints or origin-destination (OD) pairs. Monitoring re-
quirements include the type of the sketch, flow filter, and
accuracy requirement (Figure 2). HeteroSketch takes these
monitoring requirements and assigns particular sketch-based
tasks among the components of a heterogeneous network of
diverse devices using state-of-the-art sketching algorithms
such as Count-Min [8], Count Sketch [9], and UnivMon [11].

This abstraction can be used to manage network monitor-
ing in various settings. For example, HeteroSketch could
be applied by Internet Service Providers (ISPs) to manage
monitoring services internally or for their clients. In this pa-
per, we envision cloud providers being early adopters of our
network-wide monitoring system. In a multi-tenant cloud en-
vironment, a cloud provider would be able to offer monitoring-
as-a-service to the tenants. Tasks corresponding to queries
from different tenants would be placed within the network
as opposed to just on the end-hosts that the tenant is using,
i.e., NIC and switch resources can be indirectly accessed by
tenants for monitoring purposes. The operator would make
control decisions using a centralized view to address different
measurement objectives. For instance, the operator could (1)
manage monitoring requirements submitted by multiple inde-
pendent tenants while incorporating any potential contention
between monitoring tasks placed on the same device; and/or
(2) deploy their own monitoring tasks (e.g., detecting compro-
mised tenant VMs [49]). In any of the scenarios, our system
makes it possible to load balance monitoring tasks between
servers, NICs, and switches, and to prioritize resources such
as CPU cores for other critical services and cloud applications.

3.2 HeteroSketch Workflow

As depicted in Figure 2, HeteroSketch has two main compo-
nents: a performance profiler and an optimization framework.
Performance Profiler (1 in Figure 2): For any new device,

HeteroSketch needs to conduct offline performance charac-
terization to add a new abstract profile into its device profile
library. The device profile library allows HeteroSketch to pre-
dict the performance-resource trade-offs of different sketch
configurations. We describe this Profiler in detail in Section 4.
Optimization Framework: Once HeteroSketch obtains user
input as 2 (monitoring requirements), the HeteroSketch Op-
timizer 3 outputs the configuration and mapping of sketches
to devices (i.e., sketch manifests for each device) and the
resources allocated to each device (i.e., device configura-
tion). Based on the Optimizer output, HeteroSketch deploys
sketches into the network and gathers network-wide statistics
as other monitoring systems. If there are dynamic changes in
user input, network topology, traffic demands, and available
resources, HeteroSketch will perform a quick re-optimization
4 . We describe this Optimizer in detail in Section 5.

Supported Queries: HeteroSketch currently supports sketch-
based flow-level telemetry queries over flow sets defined over
OD-pairs; e.g., heavy hitters, flow changes, entropy, distinct
flows, among others, over flows across one or more OD pairs.
For instance for network-wide heavy-hitters, a user can spec-
ify multiple OD-pairs to be monitored for the same query.
HeteroSketch will then instantiate and collect (linearly merge)
data from multiple instances of sketches (e.g., Count-Min and
UnivMon) while ensuring that all OD-pairs are monitored and
resource overhead is minimized. That said, telemetry queries
that are not defined over flows, such as path-level queries
in In-band Network Telemetry (INT) [50], or packet-level
queries, which are not supported by sketches, are outside the
scope of this paper.

3.3 Challenges and Key Insights
We describe the three main challenges that our design faces.
C1: [Heterogeneity] Predicting sketch performance for
different resource allocations. Optimizing resource utiliza-
tion requires characterization of exact costs and benefits of
different deployment configurations. This is challenging be-
cause many characteristics of the program and the device
architecture impact the processing time per packet.1 For in-
stance, devices may execute certain operations using ASICs
and others using general purpose cores. The time for an in-
struction might depend on the allocated resources, e.g., mem-
ory access time depends on the working set. The program
might have a complex, unpredictable control flow with many
data dependencies. Past systems [28, 29] rely on low-level
architecture specific counters and cache analysis to provide
performance estimates. Such approaches do not provide the
accuracy needed and would be difficult to generalize to other
hardware.

Insight: We observe that (1) the primitive operations of
sketches (e.g., hashing, memory updates) largely determine

1We represent performance in terms of time per packet or inverse through-
put and use these terms interchangeably.

722 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

packet processing time, and (2) based on data flow analysis,
most sketches have limited data dependencies and limited
control flow. This means that there are enough independent
operations to be performed (either for the same packet or
across packets), that performance is broadly determined by
the number of operations rather than their inter-dependencies.
Therefore, we design a benchmark suite consisting micro-
benchmarks of primitive sketch operations for a small set
of sketch manifests. The Profiler composes these bench-
marks to generate algebraic characterization of the resource-
performance trade-off for arbitrary sketch manifests.

C2: [Formulation & Scalability] The optimization formu-
lation of sketch placement over heterogeneous hardware re-
sults in a large and complex NP-Hard optimization problem.
Despite using a state-of-the-art commercialized solver (e.g.,
Gurobi), it still needs order of hours to finish even for rela-
tively small networks (≈1000 nodes). Specifically, the com-
plex non-convex device profiles and scale of the network slow
down the optimization.

Insight: We use the solver’s advanced features (bi-linear
constraints) to incorporate the non-convex device profiles. For
scalability, we partition the optimization problem into disjoint
sub-problems which are solved concurrently. We define these
sub-problems by partitioning the network into clusters. We
find that traditional clustering techniques such as spectral
clustering [51] either result in infeasible sub-problems or
solutions which are far from optimal (see §6). Our key insight
is to define clustering affinity between nodes based on OD-
pairs (traffic and monitoring requirements) rather than just
network structure.

C3: [Dynamics] Sketch manifests and device configurations
can become stale due to network dynamics including changes
in monitoring requirements, available resources, logical topol-
ogy, and traffic demands. A robust solution should adapt its
deployment at the rate of these changes.

Insight: While the insights in C2 help scale the Optimizer
to handle large topologies and bring down solving time from
order of hours to a few minutes (§7.2), we supplement the
clustering approach with a Fast Path that allows quicker re-
sponses (in a few seconds) to network dynamics. It leverages
our observation that it is sufficient to recompute the place-
ment/configuration for only a subset of devices which are
directly affected by the network dynamics (§6.2).

4 Performance Profiler

We leverage the common structure of sketches to make the
performance prediction problem tractable. As an example,
we describe the structure of a canonical Count-Min sketch [8]
that can be used for maintaining a summary of per-flow sizes.

The sketch maintains a counter table of rows and columns.
On observing a <key,value> pair, a hash function is computed
over the key for each row of the sketch. These hash values are

used to index into the rows and the content of the correspond-
ing cells is incremented by value. The updates to different
rows are completely independent of each other, which is simi-
lar for a large set of sketches [8, 9, 11, 13, 42, 52]. With this
structure, hash computation and memory update operations
consume the majority of the time.
Our Approach. While the common structure of sketches
allows us to manage the complexity introduced from the pro-
gram’s side, we still need to manage the complexity due to
diverse devices. Specifically, for each device type, we have a
three-phase approach to determine the sketch performance:

• Phase 1: Measure the time for primitive operations.
• Phase 2: Compose the time for different operations.
• Phase 3: Consider impact of device configurations.

Before diving into the details of the three phases, we pro-
vide a brief overview of the Profiler’s operation and its setup.

Setup: The Profiler uses a three-device testbed consisting
of the device being studied (or device under test, DUT), a
sender, and a receiver. The three devices connected in a linear
topology with the DUT configured to forward traffic from the
sender to the receiver. Such a setup can be created without a
lab environment or re-wiring, by changing forwarding con-
figuration in a local or cloud deployment. A more detailed
description of this testbed is provided in §7.1.

Overview: The Profiler treats the devices as “black-boxes” and
makes few assumptions about the architecture. We assume
that the DUT has a library to implement sketch manifests and
that it exposes an API to allocate resources. The Profiler uses
this API to study the DUT’s forwarding rate for a limited set of
sketch manifest and device configuration combinations. The
Profiler does not need any code instrumentation, hardware
counters, or precise time-stamping, it simply studies the end-
to-end forwarding rate.

For each device, the Profiler models time per packet as
an algebraic function of sketch parameters, device parame-
ters and device configuration. The sketch parameters include
counts for primitive sketch operations, which are obtained
from the sketch manifest (e.g., sketch type, the numbers of
rows and columns [8, 9], and the number of levels (sketch
instances) [11]). We obtain device parameters from micro-
benchmarks for the primitive operations. Device configu-
ration specifies the resources, including memory, processor
cores, micro-engines, switch stages/ALUs, lookup tables, flip-
flops, and/or DSPs. We believe this approach generalizes to
support architectures beyond the hardware at hand (Table 2).

4.1 Detailed Design of the Profiler

Phase 1: Primitive Operations. In this phase, we evaluate
the time for the following primitive operations per sketch
update: hash computations (compute capabilities), memory
accesses (impact of memory hierarchy), coin tosses (random

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 723

Type Hardware
CPU (Open
vSwitch)

Intel® Xeon® Silver 4110 CPU @
2.10GHz (32KB L1, 256KB L2, 8MB
L3 cache) with Mellanox ConnectX 4
NIC [53][20]

SoC SmartNIC Netronome Agilio® CX 1x40GbE
FPGA NIC Xilinx® Alveo™ U280 Data Center ac-

celerator card
Prog. Switch Barefoot Tofino

Table 2: Devices tested with Profiler.

5 10
Number of sketch

updates per packet

200
250

Ti
m

e
pe

r
pa

ck
et

 (n
s)

(a) CPU

5 10
Number of sketch

updates per packet

40.0
42.5

(b) SoC NIC

5 10
Number of sketch

updates per packet

20
40

(c) FPGA NIC
Figure 3: Phase 1 — Hashing micro-benchmark. (a) single core
running OVS and sketching module. (b) 54 micro-engines. (c)
single hash instance. Y axes show time per packet (ns).

number generation), and packet forwarding. For simplicity,
we count the update to each row of a sketch as a separate
sketch update, e.g., two Count-Min sketches with 4 rows each
would make up 8 sketch updates per packet.

The Profiler studies the variation of time per packet as the
configuration of a Count-Min sketch is varied. For hashing
micro-benchmark (Figure 3), we vary the number of sketch
updates for a small fixed amount of memory (to ensure mem-
ory does not become bottleneck). For the memory micro-
benchmark (Figure 4a), we vary the sketch memory for a fixed
number of sketch updates. We handle coin tosses similar to
hashes but with sketches such as [13, 52] which rely on ran-
dom number generation. Note, for all the micro-benchmarks,
we generate flow keys that are uniformly distributed. This re-
sults in uniform memory access pattern for Count-Min sketch
and allows us to estimate the worst case performance.

Phase 2: Composition. Given time for primitive operations
from Phase 1, Phase 2 determines how different micro-
benchmarks should be composed to obtain the total time per
packet. The goal is to capture unique properties of how a
device architecture combines the primitive operations by test-
ing for three key properties: (1) Memory and compute con-
currency, (2) Forwarding and sketching concurrency, and
(3) Sketch access frequency. For each property, the Pro-
filer defines a set of expected behaviors (composition func-
tions). These correspond to different device architecture or
sketch implementation choices. We currently rely on man-
ually inspecting the micro-benchmarks to identify the de-
vice/implementation behavior. This process can be automated
in a straightforward fashion. We detail the properties and
behaviors below.

Memory and compute concurrency: Compute and mem-
ory operations in a system may be coupled or decoupled
depending on the hardware: (1) in a coupled system, hashing
and memory operations might contend for the same hard-
ware units, (2) in the decoupled case, the memory and hash
operations have zero contention, i.e.,

nsketch = ncompute +nmemory B coupled
nsketch = max(ncompute,nmemory)B decoupled

ncompute = k1 +uh ·h
nmemory = k2 +um ·T (m)

where nsketch is the time for sketch updates, uh is the number
of hash computations per packet and um is the number of ac-
cesses to the sketch memory per packet. h is the time per hash
computation, k1 and k2 are constants, and T (m) is the time
per memory access given m amount of total memory has been
allocated for sketching. For the coupled case, the memory ac-
cess benchmark would subsume the time for hashing and vice
versa. In this case, T (.) is used to represent additional time
per memory access incurred due to potential cache misses.
This is extracted by adjusting for the time per hash.

For CPU, we use the coupled model as hash computation
has memory instructions which prohibit full overlap with
sketch memory accesses. For the FPGA and SoC SmartNIC,
we use the decoupled model, as their compute (hashing) units
and memory units are completely disjoint.

For sketches which have multiple levels or control paths
(e.g., UnivMon [11]), the number of primitive operations can
be different for different packets based on their flow key as
well as the sketch memory access pattern can be non-uniform
even for uniformly distributed flow keys. In this case we inter-
pret uh, um as the expected number of operations per packet
and use T (Effective uniformly accessed memory) instead of
T (Total memory). For brevity we discuss the details of com-
puting “effective uniformly accessed memory” in Appendix B.
We find that UnivMon behaves as if at most 4 of its levels
are accessed uniformly irrespective of the amount of sketch
memory and across devices.

Forwarding and sketching concurrency: Packet for-
warding and sketching can be done in parallel or in the same
thread(s). If done in parallel, the time per packet would be the
maximum of the inverse throughput of forwarding and sketch-
ing; otherwise, the sketching benchmarks would subsume the
time for forwarding, i.e.,

N = max(n f wd ,nsketch)B concurrent
N = nsketch B sequential forwarding and sketching

where N is the time per packet and n f wd corresponds to the
forwarding inverse throughput. For both SoC SmartNIC and
CPU, sketching is done on the critical path (sequential). On
the FPGA NIC sketching is off the critical path (concurrent).

Sketch access frequency: Not all sketches may be updated
for every packet. For instance, the user may want certain
sketches to only monitor a subset of packets forwarded by a
device (users specify this by providing a flow filter for each
sketch). This is incorporated by summing uh, um weighted by
the probability that a sketch is updated for a particular packet.
This probability is calculated based on the flow filter and
traffic matrix to obtain the fraction of packets which satisfy

724 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the flow filter. If this cannot be computed due to granularity
of traffic matrix, we keep one additional counter per sketch
that counts the number of packets that update the sketch.

Phase 3: Device Configuration. The Profiler must also build
a model for how sketching and forwarding performance scales
with device configuration (e.g. CPU cores, micro-engines).
Since performance scaling may differ across bottlenecks, we
study three sketch manifests: (1) Small sketches, which trig-
ger compute bottlenecks; (2) Single large sketch, which trig-
ger memory bottlenecks; and (3) No sketch, to study forward-
ing bottlenecks. Figure 4b shows these measurements for
software switch, SoC smartNIC and FPGA NIC.

Based on these measurements, the Profiler estimates f , the
fraction of parallelizable execution time by fitting Amdahl’s
law, and updates each of n f wd , ncompute and nmemory to include
the effect of parallelism. For instance ncompute (from Phase 1)
becomes:

ncompute = (k1 +uh ·h)[(1− fc)+
fc

c
]

where fc is fraction of parallelizable execution time when
compute is bottleneck. We find that f ≈ 1 for the software
switch when any of forwarding, compute or memory is the
bottleneck. For the SoC NIC, we find that f is ≈ 1 when
forwarding or hashing is the bottleneck. However, when
memory is the bottleneck, increasing micro-engines does not
change packet rate, implying that f is 0 (Figure 4b). This
is consistent with the fact that there is a single cache and
DRAM (where sketch memory is allocated) – shared by all
micro-engines – which becomes a bottleneck, as opposed to
cores on a CPU which have their own caches, which allows
for parallelism even when memory is the bottleneck. For the
FPGA NIC, f is ≈ 1 when hashing is bottleneck otherwise
it is 0. We measure the compute resources of FPGA in the
units of a hash unit instance, each consuming 5 digital signal
processors, 214 lookup tables, and 486 flip-flops.

Summary. The final relations encoding time per packet N
in terms of number of operations uh, um, sketch memory m
and device parameters (h, T (.), f ’s, constants) and device
configuration are referred to as device profiles. This algebraic
characterization of performance-resource trade-offs is used
by the Optimizer for deciding sketch placement and resource
allocation. In our current formulation, we don’t explicitly
model the impact of contention from non-monitoring tasks.
We assume that compute resources are pinned to sketches and
memory resources are explicitly allocated using technologies
akin to Intel Cache Allocation Technology [54]. We also
don’t study the overhead of such isolation mechanisms.

Programmable switch [16] is a special case here as its
resources are allocated by the compiler with guaranteed con-
stant time per packet. Thus, the Profiler only needs to model
the resources for different sketching manifests based on the
resource usage output of the compiler.

2−6 2−3 20 23 26 29

Total sketch
memory (MB)

150
200

Ti
m

e
pe

r
pa

ck
et

 (n
s) 6

9

2−12 2−8 2−4 20 24 28

Total sketch
memory (MB)

50
100
150

Ti
m

e
pe

r
pa

ck
et

 (n
s) 10

12

2−12 2−8 2−4 20 24 28

Total sketch
memory (MB)

0

5000

Ti
m

e
pe

r
pa

ck
et

 (n
s) 8

10

(a) Phase 1 — Memory micro-
benchmark. The different
ridges correspond to cache
levels.

1 2 3 4
Number of cores

102

ns
 p

er
 p

kt

No sketching (Vanilla OVS)
Many small sketches
Single large sketch
Vanilla DPDK

20 40
Number of micro-engines

102

4 × 101
6 × 101

ns
 p

er
 p

kt Memory bottleneck

2 4 6
Hash Unit Instances

20

40

ns
 p

er
 p

kt

Forwarding bottleneck

(b) Phase 3

Figure 4: (a) Phase 1 — CPU with single core running OVS
and sketching module (top), SoC NIC with 54 micro-engines
(middle), FPGA with 10 hash instances (bottom). The numbers
in the legend correspond to the number of sketch updates per
packet.
(b) Phase 3 — Inverse throughput as CPU cores (top), SoC NIC
micro-engines (middle) and FPGA hash unit instances (bottom)
are varied. For FPGA NIC, single large sketch (not shown due
to scale) is a flat line (memory bottleneck).

5 Optimizer

The goal of the Optimizer is to decide which sketch should
be placed on which device and which resources each device
should use while meeting the device constraints, monitoring
requirements, traffic demands, and optimizing towards user-
specified goals. We formulate the placement and resource
allocation problem as a Mixed-Integer Bi-linear program (MI-
BLP), which is defined below with constants and variables
described in Tables 3 and 4 respectively. While we investigate
resource usage as an objective for concreteness, our formula-
tion can be easily tweaked to handle other objective functions
(Equation 7 in Appendix C).

Input: The input has the following three key features: (1)
set of devices D in the network, along with their profiles
generated using the Profiler (§4) and resource availability; (2)
set of needed sketches S , along with their configuration; (3)
set of Origin Destination (OD) pairs P .

In particular, each OD-pair is uniquely specified by: (1)
device-level path in the network, (2) rate of traffic demand on
that path, (3) set of sketches that should monitor traffic that
is part of this OD-pair. With the OD-pair abstraction, we can
handle the following cases:
• If there are multiple paths between an OD-pair, logically

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 725

O1: resources Minimize ∑
d∈D

(resd +memd), s.t. (1)

C1: coverage ∑
d∈pπ

b(d,s) ≥ 1 ∀p ∈ P ,∀s ∈ ps

C2: accuracy mem(d,s) ≥ smem ·b(d,s) ∀s ∈ S ,∀d ∈D
C3: capacity ∑

s∈S
b(d,s) · srows ≤ drows, and

memd = ∑
s∈S

mem(d,s) ≤ dmem ∀d ∈D

C4: profiles ∀d ∈D :
timed = dtime(resd ,Pd ,

{(mem(d,s),b(d,s))|s ∈ S})

C5: traffic timed ≤
1

dtraffic
∀d ∈D, where

dtraffic = ∑
p∈Pd

pt , Pd = {p|d ∈ pπ, p ∈ P}

Symbol Interpretation
D,S ,P Set of devices, sketches, and OD-pairs
ps Set of sketches for OD-pair p
pπ Device level path for OD-pair p
pt Rate of traffic relevant for OD-pair p
smem,srows Memory required for desired accuracy & number

of rows for sketch s
dmem Maximum memory on device d
drows Maximum rows that can fit on device d
dtime (Function) representing the device profile (§4) for

d (Time per packet in seconds)
Pd OD-pairs which pass through d
dtra f f ic Total traffic rate in packet per second (pps) witness

by device d

Table 3: Constants.
Domain Symbol Interpretation
R≥0 mem(d,s) Memory of sketch s on device d.
{0,1} b(d,s) Is sketch s placed on device d
Z≥0 resd Resources allocated to device d, (e.g.,

processing cores, stages, functional
units etc.)

Table 4: Variables.

distinct OD-pairs can be instantiated for each separate path.
• If part of the traffic in an OD-pair needs to be monitored by

sketch A and other part using sketch B, then two logically
distinct OD-pairs can be instantiated with the same path
but specifying different sketches along with the appropriate
rate of traffic which is relevant to each sketch.
• If the same query or sketch needs information about traffic

on multiple OD-pairs, each OD-pair can refer to the same
sketch identifier.
• Multiple sketches can monitor traffic in a single OD-pair.

This would be used in the cases when we need to maintain
a statistic for different dimensions of the same traffic (e.g.,
dimension 1: distribution of DstIPs for each source and
dimension 2: distribution of SrcIPs for each destination).
This input is compiled from the high-level measurement re-

quirements specified by the user. The traffic demands (packet

rates) are estimated using the traffic matrix and the paths
are obtained using the routing information and flow filters
specified for each sketch by the user.

Outputs and constraints: The Optimizer decides which
sketch should be placed on which device. This is indicated
through variables b(d,s). While doing so, the Optimizer en-
sures that for each OD-pair, each sketch of that OD-pair is
placed on at least one of the devices lying on the OD-pair’s
path (C1: flow coverage in Equation 1). The memory for
each sketch is directly determined by the accuracy required
for that sketch (C2: monitoring accuracy). Each device is
constrained by memory capacity and some devices may have
constraints on row capacity (e.g., due to limited stages in
programmable switch) (C3: device capacity). C4 (device
profiles) encodes the relationship between time per packet,
the sketch parameters, device parameters and the device con-
figuration as described in Section 4. The processing overhead
on each device should be such that the overhead does not stall
the traffic flowing through the device (C5: forwarding perfor-
mance). Note that C4 is natively expressed through Gurobi’s
API using piece-wise linear [55] and bi-linear constraints [56].
We elaborate on this in Appendix C.

Measurement Accuracy: Different feasible solutions may
deploy sketches at different locations in a network (e.g., Fig-
ure 1) and even create multiple instances of the same sketch.
We note that our sketch placements make no impact on the
monitoring accuracy. This is because, these multiple instances
are linearly merged (§2) at the central controller. The merge
is possible as instances of the same sketch share the same
hash functions, memory configuration. The merge does not
lead to over/under counting as we ensure that each packet
updates exactly one instance of all the required sketches. This
is ensured as: (1) constraint C1 guarantees that there is at
least one instance of the required sketches on the path of each
OD-pair, and (2) we generate sketch manifests so that exactly
one of these instances is chosen (arbitrarily) to be updated for
each OD-pair.

6 Scalability and Dynamics

Solving the MI-BLP in Gurobi can take more than a few hours
even for modestly sized data center topologies with thousands
of devices. For quick responses to network dynamics and
scaling to more devices, we use a three step approach:
• Step 1: Partition the network topology into disjoint clusters
• Step 2: Run Optimizer to assign sketches to the clusters2

• Step 3: For each cluster, run Optimizer to place sketches
onto devices within the cluster.

Since the placement decision for each cluster is done inde-
pendently, Optimizer instances can be spawned in parallel,

2For this step, the traffic demands and device profiles (C4-5 in equation
1) are not used, as the Profiler does not model the performance of clusters.

726 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

3 4

1

5 6

2

0

1 2

0

3,	4 5,	6

1 2

0

4,	5 3,	6

(b)	Simple	Clustering (c)	Better	Clustering(a)	Input	Graph

Figure 5: Different ways to cluster a graph.

which makes this approach scalable. Note that, Step 2 itself
can consume significant time if the number of clusters is large.
We address this by recursively applying Step 1 and 2 to build
a hierarchy of clusters. We determine the threshold to ap-
ply the recursive step by modeling the cluster size-compute
time relationship (Figure 14 in Appendix A) and choosing the
largest cluster size with an acceptable run-time. We also add
a fast path for quick response to cater to network dynamics
that directly affect only a small subset of devices.

6.1 Clustering Approach

Partitioning the network devices into clusters will inevitably
hide some details about the topology and create a trade-off
between optimality and solving time. This is because when
the Optimizer is run to place sketches onto the cluster (Step
2), it may choose a sub-optimal (or even infeasible) cluster as
it does not know what is inside the cluster. Ideally, we want
to cluster the topology in a way that significantly accelerates
the solving process while incurring minimal optimality loss.

Clustering Examples. We observe that naïvely clustering
the topology graph based on the hierarchy of the topology or
applying graph clustering algorithms (e.g., spectral clustering
[51]) can lead to sub-optimal or even infeasible sub-problems.
Figure 5 illustrates this in an example topology of 7 devices.
In this example, the edges show the paths of the OD-pairs and
the colors (or line-styles) of the edges correspond to different
OD-pairs. We need to deploy 2 sketches, each of which
monitors one of the OD-pairs shown in blue (solid) and red
(dotted).

Simple clustering: By directly applying spectral cluster-
ing on network topology, we obtain the result in Figure 5(b).
Based on this clustering, assume that in Step 2, the Optimizer
decided to place one sketch on cluster (3,4) and the other
sketch on cluster (5,6). Further assume that the sketch placed
on cluster (3,4) monitored the red OD-pair. When the Opti-
mizer again runs Step 3 for devices within cluster (3,4), since
only device 3 sees packets on the red path, the sketch for the
red OD-pair can only be placed on device 3. If device 3 is
currently not available to place the sketch or device 6 is in
fact a better allocation, the simple clustering will lead to an
infeasible or sub-optimal solution.

Better clustering: If we cluster as Figure 5(c), the sketch for
the red (dotted) OD-pair could be assigned to cluster (3,6) and
the Optimizer running within that cluster retains its freedom
to place the sketch on device 3 or 6.

Our Design. We learned from the above example that we
should keep nodes that communicate with each other in the
same cluster, where communicate means that there is an OD-
pair that has a path connecting the nodes. This should be done
irrespective of the number of network-level hops (physical or
logical links) between them. This provides the Optimizer in
Step 3 additional placement choices for sketches within the
cluster sub-problem.

We can incorporate communication affinity by applying
spectral clustering on the communication graph (Gc), where
vertices are network devices, with edges between all pairs of
devices which communicate with each other. While this ap-
proach works for general network environments, we find that
spectral clustering itself is time consuming for large networks
[57]. Thus, we imitate spectral clustering using a domain-
specific heuristic and are investigating faster alternatives and
implementations of spectral clustering.

Our heuristic is based on the observation that many cluster-
ing solutions preserve enough flexibility for sketch placement
yielding good performance (Figure 12 in Appendix A). This
observation was made when exploring the space of possible
clustering solutions and their impact on MIP objective using
simulated annealing [58]. Our heuristic works in a multi-
tenant setting where tenants share the network but not the
end-hosts. For building clusters, we instantiate a cluster for
end-hosts of each tenant. Then, to ensure clusters are evenly
sized, we arbitrarily merge (or split) the clusters if they are
too small (or big). Finally, the switches and NICs are assigned
to the cluster of the end host with which they have highest
affinity. In Appendix A, we discuss how to choose cluster
sizes and provide examples of clustering output for different
clustering techniques.

6.2 Fast Path

The Fast Path further improves response time for network
dynamics including: (1) Topology change in the path (e.g.,
VM migration); (2) Monitoring query (sketch) change from
the user/operator; (3) Traffic change in the OD-pair (e.g.,
traffic demand variations); (4) Available resource change due
to the dynamics of other non-monitoring services running on
the shared devices. (1)–(3) reflect as changes in OD-pairs (P)
and (4) reflects as changes in devices (D).

The key observation we have from §6.1 is that sub-
problems should preserve enough placement choices for
sketches. Based on that, we find that, on network change
events, recomputing placement only for the set of devices A
directly affected by the changes is sufficient. We compute
this set through the following process: (a) For each changed
device d ∈D , we add d to A and, for each sketch s currently
placed on d, we add the OD-pair(s) monitored by s to the
set of changed OD-pairs. (b) For each changed OD-pair (due
to previous step or otherwise), we add all devices specified
in the path of the OD-pair to A . The Optimizer is then run

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 727

only for the devices in set A and the sketches specified in the
changed OD-pairs, including the sketches already mapped to
devices in A .

7 Evaluation and Implementation

We implement HeteroSketch and evaluate its effectiveness.
Our major findings are as follows:
• HeteroSketch’s Profiler accurately characterizes the perfor-

mance of devices across a variety of sketch manifests and
device configurations (§7.1)
• HeteroSketch’s Optimizer is able to (1) reduce resource

footprints and obtain feasible solutions when prior ap-
proaches fail, and (2) scale to large topologies (> 40,000
devices) while preserving good quality solutions. (§7.2)
• HeteroSketch’s Fast Path allows prompt responses to net-

work dynamics including changes in topology, traffic,
query, and available resources. (§7.3)

Implementation. For the software switch, the sketching
modules are implemented as a part of the OVS data plane.
For the SmartNIC, we use the internal and external memory
regions for storing sketch state as these are accessible from
all the micro-engines unlike local and island-specific memory
regions. The Optimizer is run on an Intel® Xeon® CPU
E5-2680 v2 processor @ 2.80GHz with 128 GB RAM.

7.1 Performance Profiler
Setup. This evaluation uses the same three device setup in-
troduced in §4 which was used to create the device profiles
(Table 2). We use dpdk-pktgen [59] to generate traffic and
configure dpdk-testpmd [60] to measure receive rate. The
sender generates min-sized (64 Byte) packets to measure the
maximum packets per second that can be processed. We use
source IPs as the flow keys for the sketches, which are taken
from a uniform random distribution. This is done in order to
use the Optimizer to allocate resources for worst-case (uni-
form) traffic scenarios. We discuss in Appendix B, how other
traffic distributions could be accommodated.
Workloads. For generating sketch manifests, we consider a
range of configurations for three different types of sketches:
Count-Min, Count Sketch and UnivMon. For each sketch, we
vary the number of rows from 1 to 12 and, for memory, we
vary the counters per row from 1 to 222 (≈ 4 million) in steps
of powers of 2. For UnivMon, we vary levels from 22 to 25

in steps of powers of 2. For generating device configurations,
we vary the SoC NIC micro-engines from 20 to 54, for the
software switch, vary cores from 1 to 4, and for the FPGA
NIC, vary maximum allowed hash instances from 1 to 12.
Large number of rows emulate multiple sketches per device.
Results. Table 5 summarizes the results of the experiments
and Figure 6 shows results for a subset of the experiments.

Sketch CPU SoC NIC FPGA
Count-Min Sketch 3.08, 9.63 3.68, 12.99 1.9, 4.1
Count Sketch 5.61, 8.51 1.26, 4.51 2.2, 4.14
UnivMon 2.80, 6.38 2.38, 3.75 2.28, 5.88

Table 5: Profiler Evaluation — Each sketch–device combi-
nation reports the (mean, 90th percentile) of percent error(
| actual−model

actual | ∗100
)

for the time per packet metric.

1,
 5

12
3,

 2
4M

6,
 3

84
K

8,
 2

56
K

9,
 2

88
K

10
, 4

0K
10

, 5
M

12
, 6

K
12

, 2
4M

Sketch Configuration
(rows, mem in Bytes)

100

200

Ti
m

e
pe

r
pa

ck
et

 (n
s)

Ground Truth
Model

(a) 2 Cores

3,
 3

K
3,

 1
2M

6,
 9

6K
6,

 3
84

M
8,

 1
M

9,
 7

2K
9,

 1
44

M
10

, 6
40

K

Sketch Configuration
(rows, mem in Bytes)

50

100

Ti
m

e
pe

r
pa

ck
et

 (n
s)

Ground Truth
Model

(b) 4 Cores
Figure 6: Performance Profiler — CPU model evaluation for
Count-Min Sketch.

Figures for additional experiments can be found in Ap-
pendix B. These figures compare the time per packet es-
timated by the Profiler's model and the ground truth. Over
all the combinations of sketch manifests and device config-
urations, the Profiler's model is within 5.61% of the ground
truth on average and within 13% in the tail cases. We don’t
show results for programmable switch as it guarantees line
rate if the program fits (which is captured by the capacity
constraints in the Optimizer). We observe that most profiling
errors occur in larger sketch configurations, when off-chip
memory is used. Based on our estimates, such errors would
disturb the resource allocation for less than 5% devices when
profiles are off by 10%. We discuss the impact of profiling
errors on the Optimizer in more detail in Appendix B.

7.2 Optimizer
We evaluate the solutions generated by the Optimizer on two
key metrics: (1) resource-efficiency benefits and (2) the opti-
mization run time. We use the device profiles to estimate the
resource usage and performance for the sketch placements
generated by different optimization schemes. We use the fol-
lowing methodology to generate input scenarios:

Topologies. We conduct two studies: (a) Topology – variation
with topology structure. We use selection of topologies from
the Internet Topology Zoo [61], JellyFish [62] and a three-
level Fat-Tree data center topology (Clos) [63, 64] (Figure 7a).
(b) Scale – variation with topology size. We use a Clos
topology with varied degrees (number of pods) from 16 to
48 (Table 6, Figure 7b). We extend the Points-of-Presence
(POP) topologies [61] to include servers and NICs based on
principles from [65].

For both studies, we focus on a multi-tenant setting, where
different tenants submit monitoring tasks to a central system
(e.g., the cloud or Internet service provider). This allows us

728 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0.95

1.00

No
rm

al
ize

d
Re

so
ur

ce
s

0.95

1.00

1.05

1.10

No
rm

al
ize

d
CP

U
M

em
or

y
0.0

0.5

1.0

1.5

No
rm

al
ize

d
Sm

ar
tN

IC
 M

em
or

y
0 1 2 3 4 5 6

0

100

200

300

So
lv

in
g

Ti
m

e
(s

)

0 1 2 3 4 5 6

−2.0

−1.5

Co
re

s S
av

ed
 P

er
 S

er
ve

r

Topology Geant2012 GtsCe Cogentco UsCarrier TataNld JellyFish Clos
X label 0 1 2 3 4 5 6

0 1 2 3 4 5 6
−20

−15

1.4

1.6

0.0

0.5

−0.05

0.00

Sa
ve

d
M

E
pe

r S
m

ar
tN

IC

(a) Topology Study — The Clos topology used has 20 pods, JellyFish has
the same number of devices as the Clos topology (2000 servers/NICs each
and 500 switches). Note, a time limit of 300s for the MIP solver was used.

0.975
1.000

No
rm

al
ize

d
Re

so
ur

ce
s

0

2

4

6

8

No
rm

al
ize

d
Sm

ar
tN

IC
 M

em
or

y

0 20 40 60
devices ×103

101

102

103

104

So
lv

in
g

tim
e

(s
)

0 20 40 60
devices ×103

−0.5

0.0

0.5

1.0

Co
re

s s
av

ed
 p

er
 se

rv
er

1.25
1.3

1.35
1.4

Baseline
Baseline+Alloc
Greedy

Greedy+Cluster
Optimal
HeteroSketch

(b) Scale Study — These experiments were per-
formed on inputs described in Table 6.

Figure 7: Optimizer Evaluation — Compute resources are shown in terms of amount saved relative to Greedy+Cluster (negative
compute resources implies more resource consumption than Greedy+Cluster). Total resources and memory resources are normalized
w.r.t Greedy+Cluster. Both sub-figures share the same legend. Additional details in Appendix C (Figures 20 & 21).

Fat-tree
Degree

Sketch
load (Y)

Servers /
NICs

Switches Total
devices

16 1 1,024 320 2,368
20 3 2,000 500 4,500
24 3 3,456 720 7,632
32 4 8,192 1,280 17,664
48 4 27,648 2,880 58,176

Table 6: Topologies and Workloads.

to stress test the schemes under a diverse set of monitoring
requirements. We assign X servers to each tenant where X
is taken from the uniform distribution U(6,12). We set the
capacity of each server link to 25 Mpps (64B packets). This is
equivalent to the throughput of vanilla OVS with 4 cores. We
randomly assign half of the servers with the SoC SmartNIC
and other half with the FPGA NIC.

Monitoring requirements. The total number of queries
(sketches) is set equal to Y times the number of servers in
the network. These monitoring tasks are evenly partitioned
among the tenants. We vary the sketching load (Y) between
1 (low) and 4 (high). Low load is used to study the system
when each device in the network runs much below the total
monitoring capacity they can handle. High load is used to
study the system under stress. Table 6 shows the load used for
different topologies. The monitoring tasks are equally divided
between Count-Min, Count Sketch and UnivMon sketches.

OD-pairs. Each tenant specifies M OD-pairs from the set
of servers assigned to them, where M ∼U(64,96) and each
OD-pair is monitored by K randomly chosen sketches of the
tenant where K ∼ U(1,3). Since we don’t have access to
the monitoring demands from different operators, we select

OD-pairs, routes (paths) and traffic demands iteratively to
ensure: (1) traffic is evenly distributed between OD-pairs, and
(2) link utilization is at least 90% to stress the system.

Compared Schemes. As shown in Figure 7b, we compare
HeteroSketch (6) against five other schemes (1)–(5):

(1) Baseline: Capacity-aware placement with static re-
source allocation, i.e., placing sketches to minimize the sketch
memory with compute resource assigned apriori to cores=5,
micro-engines=54 (equal to resources exposed to Optimizer).
This is closest to UnivMon [11].

(2) Baseline+Alloc: The placement of sketches is done in
the same manner as in Baseline. Instead of static resource as-
signment, just enough resources are allocated to meet the traf-
fic and sketching demands based on the device profiles. This
is used to investigate benefits obtained solely from profiling-
aware resource allocation.

(3) Greedy: This is a strawman extension to the baseline
which prioritizes placing sketches on programmable switches
over CPUs and SmartNICs because of their line-rate guar-
antees. Resource allocation is done using device profiles
similar to Baseline+Alloc. Prioritizing sketch deployment on
switches is a reasonable heuristic when sketch load (Y) is low
(first data point of Figure 7b, gap between resource usage for
Baseline+Alloc and Greedy).

(4) Greedy+Cluster: To compare the optimality of our
scheme to prior work for larger topologies, we extend the
Greedy strategy to use our clustering optimization.

(5) HeteroSketch w/o clustering (Optimal): Joint placement
and resource allocation using the formulation in Equation 1

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 729

Sketch CPU SoC NIC FPGA Switch
Count-Min 4112 2001 2111 1563
Count 4172 2066 2106 232
UnivMon 4169 2120 2049 143

Table 7: Sources of benefits (Sketch-Device Affinity) — Total
number of sketches on each device. (Clos pods = 16, Y = 4.)

without the clustering approach.
(6) HeteroSketch: Joint placement and resource allocation

with the clustering optimization.

Results. In Figure 7, we can see that HeteroSketch is able
to lower resource utilization significantly (close to optimal)
and saves between half to one CPU core per server on aver-
age compared to Greedy+Cluster (20−30% improvement).
Compared to Baseline, HeteroSketch saves around 2.5 cores
per server and about 15− 20 micro-engines per SoC NIC
(40−60% improvement). It accomplishes this without incur-
ring significant time to compute the placement of measure-
ment tasks even as topologies scale to more than 40k devices.
We compute total resources (HeteroSketch MIP objective) as
a weighted sum of all devices resources including CPU cores,
micro-engines, FPGA hash unit instances and memory, and
normalize it by the total resources used by Greedy+Cluster.
This is shown as normalized resources in Figure 7.

Sources of Benefits. We explore the benefits obtained from
different features of HeteroSketch.

Bottleneck awareness: The device profiles are successful
in incorporating capabilities of different device architectures,
this allows HeteroSketch to allocate just enough resources
to meet the sketching and forwarding demands. The gap in
normalized resources between Baseline and Baseline+Alloc
in Figures 7a and 7b demonstrates benefits attained solely
from profiling aware resource allocation. For instance, on the
SoC SmartNIC, when memory is the bottleneck, more micro-
engines do not improve forwarding performance (Figure 4b).

Efficient use of resources: We see from Figure 8a that Het-
eroSketch allocates 20% fewer CPU cores (8k vs 10k cores)
but uses the cores it allocates more effectively (each core is
>80% utilized). Specifically, on the software switch, the cores
are configured to poll NICs for packets (for performance rea-
sons), as a result, CPU cycles are wasted busy polling when
there are no packets in the NIC buffers. With the help of
device profiles, the Optimizer is able to consolidate load to-
wards cores which would otherwise waste cycles. Similar
trends are observed for other resources including SoC mem-
ory bandwidth (Figure 8b), and SoC micro-engines (Figure
8c).

Ability to trade-off resources: For the scale study (Fig-
ure 7b), we set lower weightage to SoC SmartNIC memory
relative to the topology study (Figure 7a). We observe in
Figure 7b that HeteroSketch is able to incorporate this by
saving more number of cores per server at the cost of SoC
SmartNIC memory usage.

Sketch-Device affinity: We show the number of sketches
instantiated of each type on each device in Table 7. Recall that

0 5000 10000
CPU Cores

0.0

0.5

1.0

CP
U

Ut
il

Greedy+Cluster
HeteroSketch

(a) CPU Utilization.

0.2 0.4 0.6
NIC Mem BW util

0.0

0.5

1.0

CD
F

(b) SoC SmartNIC Memory
Bandwidth Utilization.

0 25000 50000 75000
Netronome

Micro-engines (ME)

0.95

1.00

M
E

Ut
iliz

at
io

n

Greedy+Cluster
Joint+Cluster

(c) SoC SmartNIC Micro-
engine Utilization.

Figure 8: Sources of Benefits (Efficient use of resources) —
(Clos pods = 20).

the monitoring requirement specified equal number (≈ 1360)
of queries for each sketch type. Multiple instances of each
sketch are created to meet the coverage requirements. We
make three key observations here: (1) HeteroSketch tries
to place heavier sketches (e.g. UnivMon) on better vantage
points so as to reduce the total required instances. (2) The
switch statically allocates resources to each sketch while other
devices can share resources across sketches. Due to this Het-
eroSketch places less number of sketches on the switch, es-
pecially for Count Sketch and UnivMon due to more number
of operations. (3) HeteroSketch instantiates relatively more
number of UnivMon sketches on CPU and SoC SmartNIC as
they have relatively larger and faster memories.

Clustering Algorithm. Figure 7b and 7a also suggest that
our clustering technique does not significantly degrade re-
source efficiency. Clustering imposes a trade-off between
optimality and solving time which we explore in more de-
tail in Appendix A. We see in Figure 7a, that HeteroSketch
finds better solutions than the Optimal scheme when config-
ured with a time limit, achieving a better trade-off between
optimality and solving time than the MIP solver.

For evaluating the Optimizer, we used the multi-tenant
clustering heuristic developed in §6.1. We investigated use of
other algorithms to cluster the communication graph (§6.1)
including KMedoids, HDBSCAN, modularity maximiza-
tion [57, 66]. Unfortunately, these techniques yield infeasible
sub-problems in Step 3 of §6.1 for the inputs that we used.

Note, while it is true that our assumption about one server
being solely used by one tenant makes the optimization prob-
lem instance easier, despite that, the MIP solver still needs
explicit guidance in the form of clustering for speed up. This
can be seen from difference in solving time with and without
clustering in Figure 7.

730 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

10 20
Change batches in succession

100

101

Ti
m

e
(s

)

Fast Path
Full re-run

10 20
Change batches in succession

0.00

0.01

Ob
je

ct
iv

e
Ga

p
(%

)

Figure 9: Dynamics — variation with number of changes in suc-
cession (Clos topology with 16 pods).

0 25 50
Devices ×103

100

101

102

103

Ti
m

e
(s

) Fast Path
Full re-run

0 25 50
Devices ×103

−0.010

−0.005

0.000

Ob
je

ct
iv

e
Ga

p
(%

)

Figure 10: Dynamics — variation with topology size for a single
change. Negative objective gap means that Fast Path consumes
less resources than full re-run. This can happen because both
use the clustering heuristic which does not guarantee strictly
optimal solutions. (Conducted on topologies in Table 6.)

7.3 Dynamics - Fast Path

As described in §6, changes in OD-pairs can correspond to
changes in traffic, monitoring requirement, and topology. To
generate such changes, we generate inputs for the Optimizer
as described in §7.2. Then, we randomly keep 10n of the
generated OD-pairs aside to serve as change batches, where
n is the number of batches and each batch has 10 changed
OD-pairs. We also generate resource availability changes in
each batch by randomly sampling 10 devices and randomly
increasing/decreasing their resource availability (e.g., micro-
engines/memory) by 20%. We find that changes in a batch
amount to roughly 50 to 150 devices being directly affected
(|A | in §6.2) across the topologies in Table 6. In general,
|A | can depend on the size of the topology and monitoring
requirements. For the Clos topology, since path lengths are
equal irrespective of number of pods, we see little dependence
of pod count on |A |.

Despite being run only for the subset of affected devices,
successive runs of the Optimizer don’t diverge from the global
solution generated by re-running the Optimizer over the entire
topology using clustering (Figure 9). Further, the response
time to cater to dynamics is reasonably low with the Fast
Path even as we scale the topology size (Figure 10). The
Fast Path uses the clustering optimization when the set of
affected devices is larger than the optimal clustering size and
can amount to a full run of the Optimizer in the worst case.
Fast Path, together with the clustering heuristic enables a
response time of a few seconds (the set of affected devices is
small) to a few minutes (when run over entire network). Note,
within the scope of this work, we don’t study how the new
placement can be configured consistently and quickly. These
are active areas of research [35, 67].

8 Other Related Work

Other related work not covered in §2 can be classified into
four categories:
Sketch resource allocation. SCREAM [68] allocates mem-
ory for a sketch based on temporal and spatial changes in
traffic moments for a fixed sketch placement. Open Sketch
[10] optimally selects sketch algorithm and configuration for
a given query. Both are complementary to our work.
Sketch implementations for different hardware. Our work
relies on state-of-the-art implementations of sketches for dif-
ferent hardware. Fortunately, recent efforts [12, 13, 22] have
focused on addressing the bottlenecks of sketching algorithms
in software switches and have demonstrated efficient imple-
mentations in programmable switches or NICs [11, 12, 31].
Other work in network monitoring. HeteroSketch’s goal is
to support network-wide flow monitoring. Numerous comple-
mentary efforts focus on either fine-grained and adaptive flow
monitoring (e.g., [36, 38, 69]), diagnosis (e.g., [70–72]), or
network performance-related objectives (e.g., [73, 74]).
Efforts in speeding up network-wide optimizations. Con-
current with our work, Abuzaid et al. in [75] explore the
use of clustering to speed up network flow problems. While
our work tries to maintain feasiblity of sub-problems through
carefully deciding which devices to cluster together, they im-
pose additional constraints while conducting flow allocations
over clusters to ensure that the subsequent sub-problems are
feasible. We leave exploration of such a technique in the
context of sketch placement for future work.

9 Conclusions

We observe that existing efforts on sketch-based network-
wide monitoring remain impractical as they fail to cope with
the key requirements of heterogeneity and dynamics in the
network. We propose HeteroSketch as a coordinated solution
to achieve optimized task placement and resource allocation
over heterogeneous networks. HeteroSketch precisely char-
acterizes the performance of sketches on diverse devices and
is integrated with a clustering technique to handle networks
scale and dynamics. Our evaluation demonstrates that Het-
eroSketch scales to toplogies with tens of thousands devices
with near optimal resource efficiency. We posit that our sys-
tem can more generally be applied to allocate resources for
other networked applications in heterogeneous networks, and
we plan to explore this for future work.

Acknowledgements. We thank the anonymous reviewers
for their valuable feedback. We would like to thank Hun
Namkung, Pouya Haghi, Anqi Guo, Zhipeng Zhao, and Nirav
Atre for assistance with hardware implementations. This
work is supported in part by NSF Grants CNS-1700521, CNS-
2106946, CNS-2107086, SaTC-2132643.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 731

References

[1] Mohammad Alizadeh et al. “CONGA: Distributed
congestion-aware load balancing for datacenters”. In:
Proceedings of the 2014 ACM conference on SIG-
COMM. 2014, pp. 503–514.

[2] Mohammad Alizadeh et al. “PFabric: Minimal near-
Optimal Datacenter Transport”. In: Proceedings of
the ACM SIGCOMM 2013 Conference on SIGCOMM.
SIGCOMM ’13. Hong Kong, China: Association for
Computing Machinery, 2013, pp. 435–446.

[3] Theophilus Benson et al. “MicroTE: Fine grained
traffic engineering for data centers”. In: Proceedings
of the Seventh COnference on emerging Networking
EXperiments and Technologies. 2011, pp. 1–12.

[4] James McCauley et al. “Thoughts on Load Distribution
and the Role of Programmable Switches”. In: ACM
SIGCOMM Computer Communication Review 49.1
(2019), pp. 18–23.

[5] Rui Miao et al. “Silkroad: Making stateful layer-4
load balancing fast and cheap using switching asics”.
In: Proceedings of the Conference of the ACM Special
Interest Group on Data Communication. 2017, pp. 15–
28.

[6] Pedro Garcia-Teodoro et al. “Anomaly-Based Net-
work Intrusion Detection: Techniques, Systems and
Challenges”. In: computers & security 28.1-2 (2009),
pp. 18–28.

[7] L. Ying, R. Srikant, and X. Kang. “The power of
slightly more than one sample in randomized load bal-
ancing”. In: 2015 IEEE Conference on Computer
Communications (INFOCOM). 2015, pp. 1131–1139.

[8] Graham Cormode. “Count-Min Sketch”. In: Encyclo-
pedia of Algorithms. Ed. by Ming-Yang Kao. Boston,
MA: Springer US, 2008, pp. 1–6.

[9] Moses Charikar, Kevin Chen, and Martin Farach-
Colton. “Finding frequent items in data streams”. In:
Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics). Vol. 2380 LNCS. 2002,
pp. 693–703.

[10] Minlan Yu, Lavanya Jose, and Rui Miao. “Software
Defined Traffic Measurement with OpenSketch”. In:
Nsdi ’13. 2013, pp. 29–42.

[11] Zaoxing Liu et al. “One Sketch to Rule Them All:
Rethinking Network Flow Monitoring with UnivMon”.
In: Proceedings of the 2016 ACM SIGCOMM Con-
ference. SIGCOMM ’16. Florianopolis, Brazil: As-
sociation for Computing Machinery, 2016, pp. 101–
114.

[12] Tong Yang et al. “Elastic sketch: Adaptive and fast
network-wide measurements”. In: SIGCOMM 2018 -
Proceedings of the 2018 Conference of the ACM Spe-
cial Interest Group on Data Communication. 2018,
pp. 561–575.

[13] Zaoxing Liu et al. “Nitrosketch: Robust and general
sketch-based monitoring in software switches”. In:
Proceedings of the ACM Special Interest Group on
Data Communication. 2019, pp. 334–350.

[14] B. Claise. Cisco systems NetFlow services export ver-
sion 9. RFC 3954.

[15] Peter Phaal, Sonia Panchen, and Neil McKee. “InMon
corporation’s sFlow: A method for monitoring traffic
in switched and routed networks”. In: (2001).

[16] Tofino 2 | Barefoot. URL: https : / / www .
barefootnetworks . com / products / brief -
tofino-2 (visited on 04/28/2020).

[17] Broadcom Trident 3. https://www.broadcom.com/
products/ethernet-connectivity/switching/
strataxgs/bcm56870-series/.

[18] Netronome. URL: https : / / www . netronome .
com / products / smartnic / overview (visited on
04/28/2020).

[19] Daniel Firestone et al. “Azure Accelerated Network-
ing: SmartNICs in the Public Cloud”. In: 15th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 18). Renton, WA: USENIX
Association, Apr. 2018, pp. 51–66.

[20] Ben Pfaff et al. “The Design and Implementation of
Open vSwitch”. In: 12th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI
15). Oakland, CA: USENIX Association, May 2015,
pp. 117–130.

[21] BESS: Berkeley Extensible Software Switch. URL:
http://span.cs.berkeley.edu/bess.html (vis-
ited on 09/12/2020).

[22] Qun Huang et al. “Sketchvisor: Robust network mea-
surement for software packet processing”. In: Pro-
ceedings of the Conference of the ACM Special Interest
Group on Data Communication. 2017, pp. 113–126.

[23] Vyas Sekar et al. “CSAMP: A System for Network-
Wide Flow Monitoring”. In: Proceedings of the 5th
USENIX Symposium on Networked Systems Design
and Implementation. NSDI’08. San Francisco, Cali-
fornia: USENIX Association, 2008, pp. 233–246.

[24] Xin Jin et al. “Netchain: Scale-free sub-rtt coordina-
tion”. In: 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18). 2018,
pp. 35–49.

732 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.barefootnetworks.com/products/brief-tofino-2
https://www.barefootnetworks.com/products/brief-tofino-2
https://www.barefootnetworks.com/products/brief-tofino-2
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56870-series/
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56870-series/
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56870-series/
https://www.netronome.com/products/smartnic/overview
https://www.netronome.com/products/smartnic/overview
http://span.cs.berkeley.edu/bess.html

[25] Xin Jin et al. “Netcache: Balancing key-value stores
with fast in-network caching”. In: Proceedings of
the 26th Symposium on Operating Systems Principles.
2017, pp. 121–136.

[26] Rui Miao et al. “SilkRoad: Making Stateful Layer-
4 Load Balancing Fast and Cheap Using Switching
ASICs”. In: Proceedings of the Conference of the
ACM Special Interest Group on Data Communication.
SIGCOMM ’17. Los Angeles, CA, USA: Association
for Computing Machinery, 2017, pp. 15–28.

[27] Alveo U280 Data Center Accelerator Card. URL:
https://www.xilinx.com/products/boards-
and - kits / alveo / u280 . html (visited on
03/05/2021).

[28] Antonis Manousis et al. “Contention-Aware Perfor-
mance Prediction For Virtualized Network Functions”.
In: Proceedings of the Annual Conference of the ACM
Special Interest Group on Data Communication on the
Applications, Technologies, Architectures, and Proto-
cols for Computer Communication. SIGCOMM ’20.
Virtual Event, USA: Association for Computing Ma-
chinery, 2020, pp. 270–282.

[29] Mihai Dobrescu, Katerina Argyraki, and Sylvia Rat-
nasamy. “Toward Predictable Performance in Software
Packet-Processing Platforms”. In: 9th USENIX Sympo-
sium on Networked Systems Design and Implementa-
tion (NSDI 12). San Jose, CA: USENIX Association,
Apr. 2012, pp. 141–154.

[30] Gurobi - The fastest solver - Gurobi. URL: https:
//www.gurobi.com (visited on 04/29/2020).

[31] Vibhaalakshmi Sivaraman et al. “Heavy-hitter detec-
tion entirely in the data plane”. In: Proceedings of the
Symposium on SDN Research. 2017, pp. 164–176.

[32] Pat Bosshart et al. “Forwarding Metamorphosis: Fast
Programmable Match-Action Processing in Hardware
for SDN”. In: Proceedings of the ACM SIGCOMM
2013 Conference on SIGCOMM. SIGCOMM ’13.
Hong Kong, China: Association for Computing Ma-
chinery, 2013, pp. 99–110.

[33] Yin Zhang et al. “On the characteristics and origins of
internet flow rates”. In: Proceedings of the 2002 con-
ference on Applications, technologies, architectures,
and protocols for computer communications. 2002,
pp. 309–322.

[34] Masoud Moshref et al. “Scalable Rule Management
for Data Centers”. In: Presented as part of the
10th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 13). Lombard, IL:
USENIX, 2013, pp. 157–170.

[35] Qun Huang et al. “OmniMon: Re-Architecting Net-
work Telemetry with Resource Efficiency and Full Ac-
curacy”. In: Proceedings of the Annual Conference of
the ACM Special Interest Group on Data Communica-
tion on the Applications, Technologies, Architectures,
and Protocols for Computer Communication. SIG-
COMM ’20. Virtual Event, USA: Association for
Computing Machinery, 2020, pp. 404–421.

[36] Arpit Gupta et al. “Sonata: Query-driven streaming
network telemetry”. In: Proceedings of the 2018 Con-
ference of the ACM Special Interest Group on Data
Communication. 2018, pp. 357–371.

[37] Lihua Yuan, Chen-Nee Chuah, and Prasant Mohapatra.
“ProgME: towards programmable network measure-
ment”. In: IEEE/ACM Transactions on Networking
19.1 (2010), pp. 115–128.

[38] Rob Harrison et al. “Network-wide heavy hitter detec-
tion with commodity switches”. In: Proceedings of the
Symposium on SDN Research. 2018, pp. 1–7.

[39] Masoud Moshref et al. “DREAM: Dynamic Resource
Allocation for Software-Defined Measurement”. In:
Proceedings of the 2014 ACM Conference on SIG-
COMM. SIGCOMM ’14. Chicago, Illinois, USA:
Association for Computing Machinery, 2014, pp. 419–
430.

[40] Nick Duffield, Carsten Lund, and Mikkel Thorup. “Es-
timating flow distributions from sampled flow statis-
tics”. In: Proceedings of the 2003 conference on Ap-
plications, technologies, architectures, and protocols
for computer communications. 2003, pp. 325–336.

[41] Cristian Estan and George Varghese. “New directions
in traffic measurement and accounting”. In: Proceed-
ings of the 2002 conference on Applications, technolo-
gies, architectures, and protocols for computer com-
munications. 2002, pp. 323–336.

[42] Noga Alon, Yossi Matias, and Mario Szegedy. “The
space complexity of approximating the frequency mo-
ments”. In: Journal of Computer and system sciences
58.1 (1999), pp. 137–147.

[43] Ahmed Metwally, Divyakant Agrawal, and Amr El
Abbadi. “SpaceSaving: Efficient Computation of
Frequent and Top-k Elements in Data Streams”. In:
Proceedings of the 10th international conference on
Database Theory. 2005, pp. 398–412.

[44] Balachander Krishnamurthy et al. “Sketch-based
change detection: methods, evaluation, and applica-
tions”. In: Proceedings of the 3rd ACM SIGCOMM
conference on Internet measurement. 2003, pp. 234–
247.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 733

https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
https://www.gurobi.com
https://www.gurobi.com

[45] George Nychis et al. “An empirical evaluation of
entropy-based traffic anomaly detection”. In: Proceed-
ings of the 8th ACM SIGCOMM conference on Internet
measurement. 2008, pp. 151–156.

[46] Peter Clifford and Ioana Ada Cosma. “A simple
sketching algorithm for entropy estimation”. In: arXiv
preprint arXiv:0908.3961 (2009).

[47] Ashwin Lall et al. “Data streaming algorithms for esti-
mating entropy of network traffic”. In: ACM SIGMET-
RICS Performance Evaluation Review 34.1 (2006),
pp. 145–156.

[48] Pankaj K Agarwal et al. “Mergeable summaries”. In:
ACM TODS (2013).

[49] Behnaz Arzani et al. “PrivateEye: Scalable and
Privacy-Preserving Compromise Detection in the
Cloud”. In: 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20). Santa
Clara, CA: USENIX Association, Feb. 2020, pp. 797–
815.

[50] Changhoon Kim et al. “In-band Network Telemetry
via Programmable Dataplanes”. In: Deme session of
ACM SIGCOMM. 2015.

[51] Ulrike von Luxburg. A Tutorial on Spectral Clustering.
2007. arXiv: 0711.0189 [cs.DS].

[52] Ran Ben Basat et al. “Constant time updates in hier-
archical heavy hitters”. In: Proceedings of the Con-
ference of the ACM Special Interest Group on Data
Communication. 2017, pp. 127–140.

[53] ConnectX® Ethernet Adapters. URL: https://www.
mellanox.com/products/ethernet/connectx-
smartnic (visited on 04/28/2020).

[54] Introduction to Cache Allocation Technology in
the Intel® Xeon®... URL: https : / / software .
intel . com / content / www / us / en / develop /
articles/introduction-to-cache-allocation-
technology.html (visited on 09/17/2020).

[55] Constraints. URL: https : / / www . gurobi . com /
documentation / 9 . 1 / refman / constraints .
html # subsubsection : GenConstrSimple (visited
on 03/05/2021).

[56] Non-Convex Quadratic Optimization - Gurobi. URL:
https : / / www . gurobi . com / resource / non -
convex - quadratic - optimization (visited on
03/05/2021).

[57] Benchmarking Performance and Scaling of Python
Clustering Algorithms — hdbscan 0.8.1 documenta-
tion. URL: https://hdbscan.readthedocs.io/
en/latest/performance_and_scalability.html
(visited on 09/16/2020).

[58] Dimitris Bertsimas, John Tsitsiklis, et al. “Simulated
Annealing”. In: Statistical science 8.1 (1993), pp. 10–
15.

[59] The Pktgen Application — Pktgen 3.2.4 documentation.
URL: https://pktgen-dpdk.readthedocs.io/
en/latest (visited on 05/01/2020).

[60] Testpmd Application User Guide — Data Plane De-
velopment Kit 20.05.0 documentation. URL: https:
//doc.dpdk.org/guides/testpmd_app_ug (vis-
ited on 05/26/2020).

[61] S. Knight et al. “The Internet Topology Zoo”. In:
Selected Areas in Communications, IEEE Journal on
29.9 (Oct. 2011), pp. 1765–1775.

[62] Ankit Singla et al. “Jellyfish: Networking data centers
randomly”. In: 9th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 12). 2012,
pp. 225–238.

[63] Mohammad Al-Fares, Alexander Loukissas, and Amin
Vahdat. “A Scalable, Commodity Data Center Net-
work Architecture”. In: Proceedings of the ACM SIG-
COMM 2008 Conference on Data Communication.
SIGCOMM ’08. Seattle, WA, USA: Association for
Computing Machinery, 2008, pp. 63–74.

[64] frenetic-lang. ocaml-topology. URL: https : / /
github.com/frenetic- lang/ocaml- topology
(visited on 05/26/2020).

[65] Lun Li et al. “A First-Principles Approach To Under-
standing the Internet’s Router-Level Topology”. In:
ACM SIGCOMM Computer Communication Review
34.4 (2004), pp. 3–14.

[66] Structure & Strangeness. URL: https://www.cs.
unm.edu/~aaron/research/fastmodularity.htm
(visited on 03/05/2021).

[67] Xiaoqi Chen et al. “BeauCoup: Answering Many Net-
work Traffic Queries, One Memory Update at a Time”.
In: Proceedings of the Annual Conference of the ACM
Special Interest Group on Data Communication on the
Applications, Technologies, Architectures, and Proto-
cols for Computer Communication. SIGCOMM ’20.
Virtual Event, USA: Association for Computing Ma-
chinery, 2020, pp. 226–239.

[68] Masoud Moshref et al. “SCREAM: Sketch Resource
Allocation for Software-Defined Measurement”. In:
Proceedings of the 11th ACM Conference on Emerging
Networking Experiments and Technologies. CoNEXT
’15. Heidelberg, Germany: Association for Computing
Machinery, 2015.

734 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://arxiv.org/abs/0711.0189
https://www.mellanox.com/products/ethernet/connectx-smartnic
https://www.mellanox.com/products/ethernet/connectx-smartnic
https://www.mellanox.com/products/ethernet/connectx-smartnic
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-cache-allocation-technology.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-cache-allocation-technology.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-cache-allocation-technology.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-cache-allocation-technology.html
https://www.gurobi.com/documentation/9.1/refman/constraints.html#subsubsection:GenConstrSimple
https://www.gurobi.com/documentation/9.1/refman/constraints.html#subsubsection:GenConstrSimple
https://www.gurobi.com/documentation/9.1/refman/constraints.html#subsubsection:GenConstrSimple
https://www.gurobi.com/resource/non-convex-quadratic-optimization
https://www.gurobi.com/resource/non-convex-quadratic-optimization
https://hdbscan.readthedocs.io/en/latest/performance_and_scalability.html
https://hdbscan.readthedocs.io/en/latest/performance_and_scalability.html
https://pktgen-dpdk.readthedocs.io/en/latest
https://pktgen-dpdk.readthedocs.io/en/latest
https://doc.dpdk.org/guides/testpmd_app_ug
https://doc.dpdk.org/guides/testpmd_app_ug
https://github.com/frenetic-lang/ocaml-topology
https://github.com/frenetic-lang/ocaml-topology
https://www.cs.unm.edu/~aaron/research/fastmodularity.htm
https://www.cs.unm.edu/~aaron/research/fastmodularity.htm

[69] Praveen Tammana, Rachit Agarwal, and Myungjin
Lee. “Distributed network monitoring and debugging
with switchpointer”. In: 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
18). 2018, pp. 453–456.

[70] Anurag Khandelwal, Rachit Agarwal, and Ion Stoica.
“Confluo: Distributed monitoring and diagnosis stack
for high-speed networks”. In: 16th USENIX Sympo-
sium on Networked Systems Design and Implementa-
tion (NSDI 19). 2019, pp. 421–436.

[71] Thomas Holterbach et al. “Blink: Fast connectivity
recovery entirely in the data plane”. In: 16th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 19). 2019, pp. 161–176.

[72] Chang Lou, Peng Huang, and Scott Smith. “Under-
standing, Detecting and Localizing Partial Failures in
Large System Software”. In: 17th USENIX Sympo-
sium on Networked Systems Design and Implementa-
tion (NSDI 20). 2020, pp. 559–574.

[73] Wei Le and Mary Lou Soffa. “Marple: a demand-
driven path-sensitive buffer overflow detector”. In:
Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of software engineering.
2008, pp. 272–282.

[74] Mojgan Ghasemi, Theophilus Benson, and Jennifer
Rexford. “Dapper: Data plane performance diagnosis
of tcp”. In: Proceedings of the Symposium on SDN
Research. 2017, pp. 61–74.

[75] Firas Abuzaid et al. “Contracting Wide-area Network
Topologies to Solve Flow Problems Quickly”. In:
NSDI. USENIX. Nov. 2020.

[76] Mingran Yang et al. “Joltik: Enabling Energy-Efficient
"Future-Proof" Analytics on Low-Power Wide-Area
Networks”. In: Proceedings of the 26th Annual Inter-
national Conference on Mobile Computing and Net-
working. MobiCom ’20. London, United Kingdom:
Association for Computing Machinery, 2020.

[77] Working With Multiple Objective. URL: https://
www.gurobi.com/documentation/9.0/refman/
working_with_multiple_obje.html (visited on
09/17/2020).

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 735

https://www.gurobi.com/documentation/9.0/refman/working_with_multiple_obje.html
https://www.gurobi.com/documentation/9.0/refman/working_with_multiple_obje.html
https://www.gurobi.com/documentation/9.0/refman/working_with_multiple_obje.html

3

4
1

1
1

1

13

22

2

3

1

2

1

4

2

4 4

3
2

33
3

4
21

4

2
4

3

4

0

0

0

0

0

0
0

(a) Spectral Clustering on Topology

3

4
1
11

1

1
3

2

2

2

3
1

2

1

4

24

4 3
2

3

3

3
4

2
1

4
2

4
3

4

0

0

0
0

0

0

0

(b) Spectral Clustering on Communi-
cation Graph

3

4

1

1

1
1

1 3

2

2
2

3
1

2

1

4

2

4 4

3
2

3
3

3

4

2

1

4
2

4
3

4

0

0

0

0

0

0

0

(c) Clustering using multi-tenant
heuristic

Figure 11: Output of clustering

A Clustering Details

Clustering Heuristic. We performed simulated annealing to
explore the space of clustering solutions. Figure 12 shows the
annealing in action. We find that there are many clustering
solutions that result in optimization solutions which are close
to optimal.

0 50 100 150 200
Annealing iteration

0

5

10

Op
tim

al
ity

 G
ap

 (%
)

Optimal

Spectral-comm

Spectral-topo

Multi-tenant

Annealing

Figure 12: Simulated Annealing — Spectral-topo refers to
spectral clustering over network topology. Similarly, Spectral-
comm is over the communication graph. Multi-tenant refers to
our domain specific heuristic. Optimal refers to no clustering.

Clustering Output. Figure 11 illustrates examples of the
clustering output for different clustering techniques. The
topology shown is a simple tree topology with only servers
and switches (without NICs) for ease of visualization. The
nodes marked ’0’ are switches and the other nodes are servers.
The non-zero numbers on the servers signify that servers with
the same number are communicating with each other. The
colors signify that devices having the same color are in the
same cluster.

Optimality vs. Solving Time Trade-off. Figure 7b and 7a
also suggest that our clustering technique does not signifi-
cantly degrade resource efficiency. This is counter-intuitive
since clusters limit the types of optimization possible. We
explore this in in Figure 13. Cluster size represents a trade-off
between optimality and solving time, i.e. smaller clusters
help reduce solving time at the cost of optimality. We observe

that the even for relatively small clusters (20 devices), the
optimality gap is very low (< 0.4%), allowing us to choose
small clusters to reduce the run-time while preserving close
to optimal solutions. The extreme case of all devices within
the same cluster mimics the case of no clustering. In this case,
all sketches would be assigned to the only available cluster
and then the Optimizer is run to place sketches on the devices
within that single cluster, effectively deciding between all
devices of the topology.

The MIP solver also natively allows trading-off solving
time for optimality through configuration of a time limit. In
Figure 7a, we configured a time limit of 300s. We find that
HeteroSketch is able to produce better quality solutions in
lesser time, achieving a better trade-off between optimality
and solving time.

100 200
Cluster Size

0.2

0.3

Op
tim

al
ity

 G
ap

 (%
)

100 200
Cluster Size

100

200

So
lv

in
g

tim
e

(s
)

Figure 13: Cluster size — optimality gap vs runtime. The op-
timality gap is the gap between the objective of HeteroSketch
relative to the objective value of Optimal. (For experiment with
pods = 24).
Choosing Cluster Size. As we see in Figure 13, the cluster-
ing heuristic provides a trade-off between solution quality
(optimality) and optimization run-time. We want to be able
to select the largest cluster size which allows an acceptable
run-time. To do this, we look at the knee of the graph be-
tween solving time and number of devices (Figure 14). Since,
the solving time depends not only on the network topology
but also on the monitoring load (Y , see §7.2), we need to
recompute this graph whenever the monitoring load changes
significantly. We use the following procedure to quickly re-

736 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

compute the solving time vs number of devices graph: we
divide the network topology into clusters of different sizes.
Then we run the Optimizer for a sample of these clusters
which have different sizes, and we effectively obtain solving
time as a function of number of nodes (cluster size). Figure
14 shows this in action.

100 200 300 400 500 600
Number of nodes

0

100

200

300

So
lv

in
g

tim
e

(s
)

Figure 14: Determining cluster sizes — X-axis represents the
number of nodes in a cluster, and Y-axis denotes maximum time
to solve just one cluster (averaged over 5 clusters of the same
size in the topology)

B Performance Profiler Details

Non-uniform Memory Access Pattern. Sketches such as
UnivMon which have multiple control paths can result in non-
uniform access of the working memory set even if the traffic is
uniform. There are at least the following two ways to handle
such cases: (1) estimating effective memory size that is ac-
cessed uniformly, (2) estimating hit rates to different levels of
memory hierarchy. In what follows provide some background
on the operations of the UnivMon sketch and then describe
these two approaches in more detail. In our implementation,
we use the first approach to incorporate UnivMon.

• Background on UnivMon sketch. UnivMon is an ensem-
ble of Count Sketches and consists of multiple levels.
Each level maintains a Count Sketch. On every packet,
a hash function is computed to decide a level and the
corresponding level is updated.3 The level is decided by
the count of leading non-zero bits of the hash output.
Each bit of the hash output is equally likely to be zero
or one. Due to this, subsequent levels are accessed with
exponentially decreasing probability, i.e.,

P(i) =

{
2−i if i < k
2−(k−1) if i = k

(2)

where P is the probability of accessing level i, and k is
the total number of levels.

• Effective memory size accessed uniformly. As shown
in Figure 15, we study the variation of time per packet

3Note, we use an optimized version of UnivMon described in [76] which
is slightly different from the original UnivMon paper [11]

2 4 6 8 10 12 14 16
Levels (Rows per level: 6)

130

140

150

160

Ti
m

e
pe

r p
ac

ke
t (

ns
)

Columns per level
1024
65536

Figure 15: Dealing with non-uniform memory access patterns
UnivMon effectively behaves as having at most 4 levels from
the perspective of memory size accessed uniformly. The black
dotted lines show the time per packet for a hypothetical sketch
with 2 ∗ 6+ 1 = 13 hashes per packet and 6 memory accesses
where the accesses are made uniformly. (The 13 hashes are: 2
hashes per row for a Count Sketch and one hash to decide level.)

for the UnivMon sketch on a CPU as we vary its lev-
els. We observe that UnivMon effectively behaves as
if it had at most four levels, all of which are accessed
uniformly. In the Optimizer, this corresponds to us-
ing T (Effective uniformly accessed memory) instead of
T (Total memory) (T was defined in §4). For other
sketches with complex control paths, a similar strategy
can be used.

• Estimation of hit rates. This is a more theoretical ap-
proach, but has similar results as above method. We
assume that the caching mechanism on the device being
profiled honors temporal locality to decide which items
to keep cached, i.e., we can assume that the probability
that an item is kept in the cache is proportional to its
access frequency. Using this, we estimate the likelihood
that an item is cached. Then using (1) the likelihood
that an item is accessed (access frequency) and (2) the
likelihood that the item is in cache; we estimate the
expected inverse throughput of memory accesses lever-
aging inverse throughputs to different cache levels. In-
verse throughputs to cache levels are estimated using the
ridges in the memory benchmark of the Profiler (Figure
4a). In what follows, we illustrate application of this
process on UnivMon with a toy device.

Let’s assume the UnivMon sketch has k levels and each
level has consumes x bytes. For simplicity, let’s assume
the toy device has two cache levels: L1 and L2, with
sizes x and (k−1)x bytes respectively. Recall that, the
ith level of UnivMon is accessed with probability P(i).
Through the locality principle, we expect that P(i) frac-
tion of level i would be present in L1 cache and 1−P(i)
in L2 cache. Then the probability that an access goes to

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 737

L1 cache is:

PL1 =
k

∑
i=1

P1 ∗P2 (3)

= P(i)∗P(i)

=

(
k−1

∑
i=1

2−2i

)
+2−2(k−1)

=
1
4

(
1+

(
k−1

∑
i=2

2−2(i−1)

)
+2−2(k−2)

)

≈ 1
4

and, PL2 = 1−PL1 ≈
3
4

where P1 is the probability that level i of the sketch is accessed,
P2 is the probability that the accessed data is in L1 cache given
that some data in level i is accessed, and PL2 is the probability
that L2 is accessed. Then, the expected inverse throughput
of memory accesses would be PL1 ∗ IT (L1)+PL2 ∗ IT (L2),
where IT (.) is the inverse throughput to the corresponding
cache level.

For the same toy device, we do a similar analysis
for a sketch with size 4x bytes, where the memory ac-
cesses are made uniformly. Then random x bytes of
the sketch would be in L1 and remaining 3x in L2.
PL1 = probability that an element in L1 cache is accessed =
x/4x. Hence, expected inverse throughput for memory ac-
cesses is 0.25 ∗ IT (L1)+0.75 ∗ IT (L2). We see that the ac-
cess probabilities (hit rates) and the expected inverse memory
access throughput for this sketch is roughly equal for Univ-
Mon example above, consistent with the empirical approach.

Such expressions for expected memory access time can be
accommodated as constraints in the MIP formulation of the
Optimizer albeit with increased solving time due to additional
non-linear constraints. We leave exploration of this for future
work.
Non-uniform Traffic. In the Optimizer and Profiler, we study
performance and allocate resources for worst case (uniform)
traffic. This is because the traffic distributions may not be
known apriori, or one might want to allocate resources to han-
dle adversarial cases. However, if this is not true, one could
adapt our work to use the known traffic distribution to estimate
hit rates to different cache levels similar to that described for
accommodating sketches with non-uniform memory access
patterns above.
Impact of profiling errors on Optimizer. We observe that
most of the errors in profiling occur when sketches use a large
amount of DRAM (or off-chip memory) on the devices. We
seek to study what difference, such errors can create to the
Optimizer’s output. In the Optimizer’s output, we identify
devices which use a non-zero amount of DRAM, and whose
resource allocation would change if the device profiles are off

by 10%. We show in Figure 16 how many more resources
would be needed for a Clos topology with 16 pods as we
vary the sketch load (Y) (defined in §7.2). We observe that
consistently less than 5% of devices satisfy the above condi-
tions. Hence, the Optimizer’s allocation would be off only
for these 5% of devices. To illustrate this, let’s assume all 5%
devices are CPUs, each of these devices would need one more
core if the profiles under-predict time per packet. Our savings
suggest 0.5(50%) to 1(100%) cores saved per server. The
errors are significantly smaller compared to the demonstrated
savings. Note, that the profiles still are assumed to be accurate
for the cases when sketches don’t occupy DRAM.

1 2 3 4
Sketch load (Y) (Clos, pods=16)

1

2

%
 o

f d
ev

ice
s

Figure 16: Impact of profiling errors The Y-axis shows the per-
centage of devices which use DRAM and whose resource alloca-
tion would change if the profiles are off by 10%.

Supplementary Evaluation. In addition to the Profiler evalu-
ation for Count-Min sketches on CPUs, shown in Figure 6, we
have also have the the detailed results for the other sketches
including Count Sketch and UnivMon on CPU, SmartNIC,
and FPGA shown in Figures 17, 18, and 19.

C Optimizer Details

Device profiles. Here we give an example of what the device
profile (dtime(.)) looks like. The following shows the device
profile for SoC SmartNIC.

dtime = max
(

k1 +uh ·h
c

,k2 +um ·T (m)

)
(4)

= max(dtimeh,k2 +um ·T (m))

= max(dtimeh,k2 +um · tmem)

dtimeh · c = k1 +uh ·h (5)
tmem = T (m) (6)

where uh, um, and m (as defined in Section 4) are expressed
as linear functions of sketch placement decision variables
and c is a decision variable corresponding to the number of
micro-engines. T (.) is a non-linear function modelled using
piecewise-linear constraints and the product terms: um · tmem,
dtimeh · c are modelled using bi-linear constraints. These
functions show a decoupled system with sketching done on
the forwarding critical path with fraction of parallelizable
execution f ≈ 1.

738 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Tweaking MI-BLP. We show how the MI-BLP formulation
can be adapted to support other objectives/goals. We show in
Equation 7, how a user can minimize performance overhead
as an objective and subject to this minimum, again minimize
resource overhead. This is done using hierarchical objectives
[77].

O1’: perf Minimizemax
d∈D

(timed), (7)

O2’: resources Minimize ∑
d∈D

(resd +memd), s.t.

C1: coverage ∑
d∈pπ

b(d,s) ≥ 1 ∀p ∈ P ,∀s ∈ ps

C2: accuracy mem(d,s) ≥ smem ·b(d,s) ∀s ∈ S ,∀d ∈D
C3: capacity ∑

s∈S
b(d,s) · srows ≤ drows, and

memd = ∑
s∈S

mem(d,s) ≤ dmem ∀d ∈D

C4: profiles ∀d ∈D :
timed = dtime(resd ,Pd ,

{(mem(d,s),b(d,s))|s ∈ S}

C5: traffic timed ≤
1

dtraffic
∀d ∈D, where

dtraffic = ∑
p∈Pd

pt , Pd = {p|d ∈ pπ, p ∈ P}

Supplementary Evaluation.

• We show additional metrics collected for Figures 7a and
7b in Figures 20& 21.

• One of the ways in which HeteroSketch reduces resource
overhead is through efficient use of resources that it al-
locates. We see in Figures 8a, 8a, and 8a, that HeteroS-
ketch overall allocates less number of resources but bet-
ter utilizes each resource that it does allocate including
CPU cores, SoC NIC memory bandwidth, micro-engines
on the SoC smart-NIC.

3,
 1

K

3,
 6

M

6,
 4

8K

6,
 1

92
M

8,
 5

12
K

9,
 3

6K

9,
 7

2M

10
, 3

20
K

Sketch Configuration
(rows, mem in Bytes)

100

150

200

250

Ti
m

e
pe

r
pa

ck
et

 (n
s)

Ground Truth
Model

(a) 2 Cores, Count Sketch

3,
 3

K

3,
 1

2M

6,
 9

6K

6,
 3

84
M

8,
 1

M

9,
 7

2K

9,
 1

44
M

10
, 6

40
K

Sketch Configuration
(rows, mem in Bytes)

50

75

100

125

Ti
m

e
pe

r
pa

ck
et

 (n
s)

Ground Truth
Model

(b) 4 Cores, Count Sketch
8,

 6
, 2

4K
16

, 6
, 4

8K
8,

 6
, 1

92
K

16
, 6

, 3
84

K
8,

 6
, 1

M
16

, 6
, 3

M
8,

 6
, 3

M
16

, 6
, 6

M
8,

 6
, 2

4M
16

, 6
, 4

8M
8,

 6
, 9

6M
16

, 6
, 1

92
M

Sketch Configuration
(levels, rows, mem in Bytes)

140

160

180

Ti
m

e
pe

r
pa

ck
et

 (n
s)

Ground Truth
Model

(c) 2 Cores, UnivMon

4,
 6

, 2
4K

16
, 6

, 9
6K

8,
 6

, 3
84

K

4,
 6

, 1
M

16
, 6

, 6
M

8,
 6

, 6
M

4,
 6

, 2
4M

16
, 6

, 9
6M

8,
 6

, 1
92

M

Sketch Configuration
(levels, rows, mem in Bytes)

70

80

90

Ti
m

e
pe

r
pa

ck
et

 (n
s)

Ground Truth
Model

(d) 4 Cores, UnivMon
Figure 17: Performance Profiler — CPU Model

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 739

2,
 1

28
2,

 8
K

2,
 5

12
K

2,
 3

2M
4,

 4
K

4,
 2

56
K

4,
 1

6M
6,

 1
K

6,
 9

6K
6,

 6
M

8,
 5

12
8,

 3
2K

8,
 2

M
8,

 1
28

M

Sketch Configuration (rows, mem in Bytes)

60

80

100

120

Ti
m

e
pe

r
pa

ck
et

 (n
s) Ground Truth

Model

(a) 36 Micro-engines, Count-Min Sketch

1,
 1

6
2,

 1
28

K
4,

 2
56

4,
 4

M
6,

 6
K

6,
 9

6M
8,

 1
28

K
10

, 4
0

10
, 2

K
10

, 3
20

K
10

, 4
0M

12
, 1

92
12

, 2
4K

12
, 3

M

Sketch Configuration (rows, mem in Bytes)

50

100

150

Ti
m

e
pe

r
pa

ck
et

 (n
s) Ground Truth

Model

(b) 54 Micro-engines, Count-Min Sketch

3,
 1

92
3,

 3
K

3,
 4

8K
3,

 7
68

K
3,

 1
2M

6,
 3

84
6,

 6
K

6,
 9

6K
6,

 1
M

6,
 2

4M
9,

 5
76

9,
 9

K
9,

 1
44

K
9,

 2
M

9,
 3

6M

Sketch Configuration (rows, mem in Bytes)

50

75

100

125

Ti
m

e
pe

r
pa

ck
et

 (n
s) Ground Truth

Model

(c) 54 Micro-engines, Count Sketch

4,
 3

, 7
68

4,
 3

, 1
92

K
4,

 6
, 1

K
4,

 6
, 3

84
K

4,
 9

, 2
K

4,
 9

, 5
76

K
8,

 3
, 1

K
8,

 3
, 3

84
K

8,
 6

, 3
K

8,
 6

, 7
68

K
8,

 9
, 4

K
8,

 9
, 1

M
16

, 3
, 3

K
16

, 3
, 7

68
K

16
, 6

, 6
K

16
, 6

, 1
M

16
, 9

, 9
K

16
, 9

, 2
M

Sketch Configuration (levels, rows, mem in Bytes)

40

60

80

Ti
m

e
pe

r
pa

ck
et

 (n
s) Ground Truth

Model

(d) 54 Micro-engines, UnivMon
Figure 18: Performance Profiler — SmartNIC Model

r1
, h

1,
 2

56
r3

, h
1,

 7
68

r5
, h

1,
 1

K
r8

, h
1,

 2
K

r8
, h

8,
 8

K
r8

, h
8,

 1
60

K
r8

, h
8,

 2
M

r8
, h

8,
 3

2M
r1

0,
 h

1,
 2

K
r1

0,
 h

10
, 1

0K
r1

0,
 h

10
, 8

0K
r1

0,
 h

10
, 1

0M
r1

1,
 h

1,
 2

K
r1

2,
 h

1,
 3

K
r1

2,
 h

3,
 3

K
r1

2,
 h

5,
 3

K

Device & Sketch Configuration
(r[rows], h[hash units], mem in Bytes)

101

102

103

Ti
m

e
pe

r
pa

ck
et

 (n
s) Ground Truth

Model

(a) Count-Min Sketch

r3,
 h1

, 3
K

r3,
 h1

, 7
80

K

r3,
 h2

, 1
2K

r3,
 h2

, 1
2M

r3,
 h4

, 7
68

r3,
 h4

, 2
4K

r6,
 h2

, 6
K

r6,
 h2

, 1
M

r6,
 h4

, 1
K

r6,
 h4

, 4
8K

r9,
 h4

, 3
6K

r9,
 h4

, 3
6M

Device & Sketch Configuration
(r[rows], h[hash units], mem in Bytes)

101

102

103
Ti

m
e

pe
r

pa
ck

et
 (n

s) Ground Truth
Model

(b) Count Sketch

l4
, r

6,
 h

2,
 6

K

l4
, r

6,
 h

4,
 6

K

l8
, r

9,
 h

2,
 7

2K

l8
, r

9,
 h

4,
 7

2K

l1
6,

 r3
, h

2,
 4

8K

l1
6,

 r3
, h

4,
 4

8K

Device & Sketch Configuration
(l[levels], r[rows], h[hash units], mem in Bytes)

2 × 101

3 × 101

Ti
m

e
pe

r
pa

ck
et

 (n
s) Ground Truth

Model

(c) UnivMon
Figure 19: Performance Profiler — FPGA Model (Note: Y-axes
are in log-scale)

740 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 1 2 3 4 5 6
0

1

2

No
rm

al
ize

d
Sw

itc
h

M
em

or
y

Topology Geant2012 GtsCe Cogentco UsCarrier TataNld JellyFish Clos

X label 0 1 2 3 4 5 6

0 1 2 3 4 5 6
0

5

10

15

No
rm

al
ize

d
FP

GA
 N

IC
 M

em
or

y

0 1 2 3 4 5 6

−0.6

−0.4

−0.2

0.0

0.2

Sa
ve

d
ha

sh
 u

ni
ts

 p
er

 F
PG

A

Baseline Baseline+Alloc Greedy Greedy+Cluster Optimal HeteroSketch

Figure 20: Supplementary Optimizer Evaluation — [Topology Study] These figures show the difference in resource usage for exper-
iments in Figure 7a in terms of switch & FPGA memory, and FPGA hash unit instances. Compute resources are shown in terms
of amount saved relative to Greedy+Cluster (negative compute resources implies more resource consumption than Greedy+Cluster).
Total resources and memory resources are normalized w.r.t Greedy+Cluster.

0 10 20 30 40 50 60
Number of devices ×103

0

2

4

No
rm

al
ize

d
Sw

itc
h

M
em

or
y

Baseline
Baseline+Alloc

Greedy
Greedy+Cluster

Optimal
HeteroSketch

Figure 21: Supplementary Optimizer Evaluation — [Scale
Study] These figures show the difference in resource usage for
experiments in Figure 7b in switch memory normalized by that
of Greedy+Cluster.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 741

SketchLib: Enabling Efficient Sketch-based Monitoring on
Programmable Switches

Hun Namkung?, Zaoxing Liu†, Daehyeok Kim?§, Vyas Sekar?, Peter Steenkiste?
?Carnegie Mellon University, †Boston University, §Microsoft

Abstract
Sketching algorithms or sketches enable accurate network
measurement results with low resource footprints. While
emerging programmable switches are an attractive target to
get these benefits, current implementations of sketches are
either inefficient and/or infeasible on hardware. Our contri-
butions in the paper are: (1) systematically analyzing the re-
source bottlenecks of existing sketch implementations in hard-
ware; (2) identifying practical and correct-by-construction op-
timization techniques to tackle the identified bottlenecks; and
(3) designing an easy-to-use library called SketchLib to help
developers efficiently implement their sketch algorithms in
switch hardware to benefit from these resource optimizations.
Our evaluation on state-of-the-art sketches demonstrates that
SketchLib reduces the hardware resource footprint up to 96%
without impacting fidelity.

1 Introduction
The ability to monitor network traffic is necessary for var-
ious network management tasks such as traffic engineer-
ing, anomaly detection, load balancing, and resource pro-
visioning [10, 13, 27, 29, 43, 45, 54]. In this respect, recent
developments in programmable switches and attendant lan-
guages [9, 14] make it possible to support richer fine-grained
and real-time monitoring capabilities.

With this network programmability, sketch-based moni-
toring has emerged as a promising alternative to traditional
sampling-based techniques [19, 49]. At a high-level, sketch
algorithms consist of updating multiple counter arrays with a
series of independent hash function calls and counter updates.
Sketch-based approaches have been developed to support a
broad spectrum of measurement tasks with provable resource-
accuracy trade-offs, including heavy-hitter detection or quan-
tile estimation (e.g., [17, 21]), general estimation capabilities
(e.g., UnivMon [41]), and more expressive multidimensional
analytics (e.g., R-HHH [12]).

While prior efforts have demonstrated the feasibility of ex-
pressing sketches using these language APIs [32, 41, 46, 53],
implementing sketches efficiently in hardware remains an

open challenge. For example, off-the-shelf sketch implemen-
tations often cannot run with the desired accuracy levels due
to insufficient hardware resources (see §3). Indeed, some pro-
posed sketches (e.g., [41]) are infeasible as implemented, or
even if they are feasible, consume significant resources.

Even if more hardware resources may become available,
so too do operators’ demands of in-switch applications, and
the resources consumed by sketches will be unavailable for
other switch functions. Thus, it is essential to explore if, and
how, we can efficiently realize sketch-based telemetry on pro-
grammable switches. This is the central question that this
paper tackles. Specifically, we focus on programmable hard-
ware switches based on the Reconfigurable Match-Action
Tables (RMT) paradigm [1].

We identify and analyze four key resource bottlenecks for
realizing sketches on RMT switch hardware:
• Hash calls: Sketches make a number of counter updates

based on independent hash functions, requiring a large
number of hash calls in hardware.
• Memory accesses: Sketches need to access on-chip mem-

ory (e.g., SRAM) for counter updates, but the number of
memory accesses per packet is limited in hardware.
• Pipeline stages: Some sketches need to select a subset

of counter arrays for counter updates [23, 37, 41]. How-
ever, implementing this naively can cause a long chain of
sequential computation dependencies which stresses the
limited number of switch pipeline stages.
• Resources for tracking heavy flowkeys: Some sketches

need to keep track of the flowkeys identifying the heavy
hitters (e.g., 5-tuple, source IP, or destination IP) [12, 17,
21, 36, 41]. Common structures such as priority queues or
heaps used in software are not supported on programmable
switches and existing solutions entail undesirable tradeoffs
between miss rate, data plane memory, and control plane
bandwidth.
Having identified these bottlenecks, our contribution is

a careful synthesis of known and novel optimizations into
a practical library for enabling efficient sketch implemen-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 743

tations atop the RMT architecture. While some of these
build on prior work in optimizing sketching for other targets
such as software switches, FPGAs, and embedded platforms
[40, 51, 52, 55], our main contribution is in realizing feasible
and effective optimizations based on our bottleneck analy-
sis and translating them into the switch hardware setting.
For example, to reduce the number of hash calls, we iden-
tify opportunities to consolidate and reuse hash results across
multiple counter updates [24, 35]. Similarly, we identify an
opportunity to reduce the pipeline stages by eliminating code
dependencies based on longest prefix matching using TCAM
[55]. We reduce the memory accesses by refactoring sketch
algorithms and removing unnecessary memory accesses. We
also develop practical flowkey tracking mechanisms that are
feasible in hardware. Note that all optimizations preserve
correctness while reducing the resource footprint.

To make it easy for sketch developers to benefit from
these optimizations with minimal effort, we implement Sketch-
Lib, an easy-to-use API using the P4 language [14]. These
optimizations can be applied to a broad spectrum of clas-
sical sketches (e.g., [17, 21, 36]) and recent innovations
(e.g., [12, 41]). We qualitatively evaluate the suitability of
SketchLib for 19 published sketches and observe that 15 of
them can be expressed and can benefit from one or more
of our optimizations. We acknowledge that not all optimiza-
tions are applicable for every sketch and we envision sketch
developers using our API to adopt the relevant optimizations.

We quantitatively evaluate the utility of SketchLib in
improving 7 of the 15 applicable sketches covering a di-
verse set of target telemetry tasks: Count Sketch (CS) [17],
PCSA [25], MRAC [37], Multi-resolution Bitmap [23], Hier-
archical Heavy Hitters [12], and UnivMon [41]. Our evalua-
tion using a range of packet traces empirically confirms that
our optimizations provide similar accuracy (≤ 1.9%) with sub-
stantially (up to 96%) reduced resource usage. Furthermore,
some complex sketches (e.g., UnivMon) that were previously
infeasible on current hardware become feasible.

Contributions and Roadmap. To summarize, we make the
following contributions:
• Bottleneck Analysis (§3): We identified four key resource

bottlenecks for sketch implementations on the hardware
programmable switch.
• Optimizations (§4): We identify and synthesize practical

correctness-preserving optimizations to address the bottle-
necks for sketches on switch hardware.
• API Implementation (§5): We design a convenient API

to make our optimizations easy to use for developers who
implement sketches on RMT programmable switches.1 We
verified significant resource benefits on a broad range of
sketching algorithms.

1SketchLib is publicly available at https://github.com/SketchLib.

Count-sketch
R counter arrays

Hash
Functions

+1𝑐! 𝑠! 1

-1𝑐" 𝑠" 0

+1𝑐# 𝑠# 1

W=5

R=3

packet

(flowkey, freq)

Heavy
Flowkey
Storage

flowkey

3

5

2

Figure 1: Count Sketch has three components - hash computa-
tions, multiple counter arrays, and heavy flowkey storage.

control ingress // R-HHH
{

V = randomInt(1, L);

if (V == 1) {
key = srcIP/32;
apply(CS_level_1,key);

}
if (V == 2) {

key = srcIP/24;
apply(CS_level_2,key);

}
if (V == 3) {

key = srcIP/16;
apply(CS_level_3,key);

}
...

}

(a) R-HHH

control ingress // UnivMon
{

key = srcIP/32;

apply(CS_level_1, key);
apply(compute_hash_h1, key);

if (h1 == 1) { // 0 or 1
apply(CS_level_2, key);
apply(compute_hash_h2, key);

if (h2 == 1) {
apply(CS_level_3, key);
apply(compute_hash_h3, key);

if (h3 == 1) {
...

}

(b) UnivMon

Figure 2: Simplified P4 code of existing multi-level sketches.

2 Background

In this section, we start by providing some background on
sketching algorithms and programmable switch architecture.
We then describe how the sketch code is mapped onto the
hardware resources.

2.1 Background on Sketches

Sketching algorithms or sketches are randomized approxi-
mation algorithms that are designed to compute different
observed statistics on a given data stream during every mea-
surement time interval called epoch. In network monitoring,
prior work has shown that sketches (e.g., [12,17,21,32,40–42,
46,53]) offer better resource-accuracy tradeoffs relative to tra-
ditional techniques that rely on sampling (e.g., NetFlow [19]).
Our focus in this paper is not to develop new sketches but to
enable efficient sketch realizations on programmable switches.
To better understand the different resource requirements of
sketches, we classify prior sketching work into two categories:
1. Single-level sketches: As a canonical example, consider
the count sketch (CS) [17] for heavy hitter detection shown in
Fig. 1. A single-level sketch such as Count Sketch maintains a
2D-array of counters: R independent counter arrays with size
of W ; i.e., R ×W memory counters. As each packet arrives,
we extract a flowkey from the packet (e.g., srcIP, IP 5-tuple).
On this key, we compute two independent hash functions ci
and si, corresponding for each row i. ci is used to select a
specific column and si is a 1-bit hash used to determine either
to increase or decrease the counter.

744 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Switch Pipeline (Data Plane)
Pa
rs
er

A
ct

io
n

M
at

ch
 T

ab
le

TCAMSRAM SALU Hash calls
Per-stage resource

A
ct

io
n

M
at

ch
 T

ab
le

A
ct

io
n

M
at

ch
 T

ab
le

A
ct

io
n

M
at

ch
 T

ab
le

D
ep
ar
se
r

Buffer

Ingress pipeline Egress pipeline

Figure 3: RMT switch architecture.

The total number of hash computations is 2R. Count Sketch
requires additional memory space for storing heavy flowkeys
whose estimated flow counts are above a threshold. Other
single-level sketches requiring a 2D-array include the count-
min sketch (CMS) [21], k-ary (Kary) sketch [36]. Some single-
level sketches like HyperLogLog (HLL) [26] only need a 1D
array data structure.
2. Multi-level sketches: Conceptually, these consist of multi-
ple single-level sketches to enable richer queries. For instance,
R-HHH and UnivMon can use multiple count sketches, called
levels (e.g., L levels of R ×W counters). R-HHH supports
detection of hierarchical heavy hitters, which detects heavy
hitters based on different lengths of IP prefixes and Univ-
Mon provides more general estimation capabilities. Other
sketches like PCSA, MRAC, and multi resolution bitmap
(MRB) [23,25,37] use multiple 1D-array single-level sketches.
Multi-level sketches typically select a subset of counter arrays
to issue counter updates for a given flowkey. For instance, as
shown in Fig. 2a, R-HHH randomly selects one level of count
sketch using a level-specific key (e.g., IP prefix) to update
per packet. In contrast, UnivMon uses an additional sampling
stage using hash functions that return 0 or 1 to select levels
for update, as shown in Fig. 2b.

2.2 Programmable Switch Hardware
Our focus in this paper is programmable switch hardware
based on the Reconfigurable Match-Action Tables (RMT)
paradigm [15]. A canonical commercial realization of this ar-
chitecture is the Intel Tofino switch chip [1]. Based on public
documentation and conversations with vendors, we believe
that while other programmable switches (e.g., Broadcom Tri-
dent [2]) may have different hardware resource allocation
strategies, the architectural bottlenecks for sketches are likely
similar. We leave it as future work to extend SketchLib to
other hardware targets.

Hardware architecture. RMT-based programmable
switches have a pipeline of reconfigurable match-action
tables in the data plane, as shown in Fig. 3. There are
constraints in packet processing pipeline to meet the line-rate
processing requirement. For example, at each stage, a
packet can access a limited amount of compute and memory
resources. Each stage has an identical design with the
same types of resources. To provide flexible match-action
operations, each stage has a match table that matches packet

parser parse_ipv4 {
extract (ipv4);
return select (latest.protocol)

6: parse_tcp
17: parse_udp;

Default: ingress;
}}

control ingress {// UnivMon
apply (count_sketch_level_1)
apply (compute_hash_1)

// Dependency
if (hash_1==1) {

apply (count_sketch_level_2)
apply (compute_hash_2) }

// Dependency
if (hash_2==1) {

apply (count_sketch_level_3)
apply (compute_hash_2) }

}

control egress {
mirroring ()
routing ()

}

…
…

Ingress pipeline

Egress pipeline

Stage 1

…

Programmable
Parser

Match-Action
Tables

Match-Action
Tables

Match-Action
Tables…

Stage 2

Stage 3

Deparser

…

SRAM
&TCAM

SALU

Registers,
hash calls,
etc.

Shared
Metadata

Figure 4: Mapping P4 code to switch resources.

headers to specific values followed by an action unit that
executes a set of simple instructions, depending on the output
of the matching unit.

Key hardware resources. We now briefly describe the key
hardware resources available in each pipeline stage. First,
there are a number of hardware hash function calls (hash
calls) per pipeline stage. They are used to compute hash func-
tions (e.g., CRC with user-defined polynomials) over packet
header fields or metadata to support operations such as load
balancing and table lookups. Each pipeline stage also has a
fixed amount of SRAM that can be used to maintain state, for
example counter arrays. Stateful ALUs (SALUs) are hardware
resources that allow one read and one write operation to the
stateful object in SRAM. Each SALU can be used for counter
update operations such as counter increment or decrement. Fi-
nally, each pipeline stage is also equipped with some amount
of ternary content-addressable memory (TCAM) that can be
used for wildcard matches over header fields. Overall, the
amount of these resources is fixed at hardware design time,
and it is limited. For example, a commercial programmable
switch today is equipped with (at most) 10 SALUs, 10 hash
calls, 10 MBs of SRAM and TCAM per pipeline stage with a
total of 12 pipeline stages [15, 43, 56].2

The data plane can interact with the switch control plane
for additional processing. However, the switch control plane
is not designed for real-time processing, e.g., the bandwidth
to the control plane is limited and the response time is high.
So it is only useful for infrequent operations.

2.3 P4 Programming and Compilation
Programs for RMT switches are written in the P4 lan-
guage [14] as illustrated in Fig. 4. At a high-level, a P4 pro-
gram consists of the following components. First, a packet
parser parses the header fields of each packet and stores the ex-
tracted fields into metadata. Second, a series of match-action

2The other absolute resource numbers are proprietary.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 745

Row=3 Row=4 Row=5 Row=6
0
2
4
6
8

10
12
14
16
18
20
22

R
el

at
iv

e
E

rr
or

(%
)

UnivMon Entropy

Width=1024

Width=2048

Width=4096

Figure 5: UnivMon entropy estimation error for different con-
figurations. Dotted red line indicates target accuracy.

operations are executed based on the match-action abstraction,
e.g., matching a specific header field and update a register as
an action. The action is specified by special functions that
map operations to hardware resources, e.g., functions for hash-
ing and accessing memory. Finally, the P4 program defines
the packet forwarding behaviors, e.g., routing a packet to an
egress port, recirculating it in the pipeline, or forwarding it to
the switch control plane.

The P4 compiler maps the P4 program into a static pipeline
realization. The compiler analyzes the dependencies between
operations in the P4 program, to map the program on to the
pipeline stages. For instance, given the code snippet in Fig. 4,
the resolution of each if-clause depends on the previous
hash result. Because of this dependency, two consecutive if-
clauses cannot run in parallel, so the compiler has to map
them to different pipeline stages in order for them to run
sequentially. If a mapping of a whole program is possible
considering hardware constraints, packets are guaranteed to be
processed at line rate; otherwise compilation fails. Note that
vendor-specific compiler backends are typically proprietary.

3 Bottleneck Analysis
In this section, we consider three exemplar sketches (single-
level: count sketch; multi-level: R-HHH and UnivMon) to
quantify the resource bottlenecks. We implement them in P4
based on the logic described in prior work [17, 23, 25, 26, 37,
41] similar to the structure presented in Fig. 2.

3.1 Methodology and Setup

Configuring sketches. Running sketches entails picking pa-
rameters (e.g., the count (R) and size (W) of counter arrays)
to trade-off the accuracy vs. resource use. We envision an
operator configuring the sketches with some target accuracy
goal, e.g., the median error should be less than 5%. Operators
can use trace-driven analysis to pick reasonable operating
regimes for these parameters.

As an example, Fig. 5 illustrates this trade-off for entropy
estimation using UnivMon. The figure shows the estimation
accuracy using an hour-long inter-ISP packet trace captured
on a OC-192 link [7] with different parameters R and W for
count sketches and L = 16 levels. We see that the error de-
creases as we increase the number of rows (R) and width (W)

for count sketches. Naturally, the higher accuracy configu-
rations incur more hardware resources. For our bottleneck
analysis, we target an accuracy of under 5% median error
(dotted red line in Fig. 5), which we achieve with minimal
resource use with the configuration R = 3 and W = 2048. We
repeat the analysis for count sketch and R-HHH and consider
a similar operating regime for these sketches as well.

Estimating resource footprint. For a given set of sketch
parameters, the most direct way to measure the required hard-
ware resources is to compile the code and run it on the hard-
ware. However, this limits our analysis to currently available
platforms. In order to support “what if” analysis for hardware
with different resources (e.g., more pipeline stages), we ex-
tended an existing open source tool for mapping P4 programs
to the RMT hardware, which we will refer to as RMT resource
mapper [34]. Specifically, we address three issues to extend
RMT resource mapper for our analysis:
• Inputs: The input to Tofino compiler is P4-16 code with

some hardware-specific primitives whereas RMT resource
mapper accepts only P4-14 code [8]. Thus, we first con-
vert our P4-16 code into equivalent P4-14 code. Then,
we convert Tofino-specific primitives to equivalent ones
specified in the language specification. For instance, we
replace Tofino-specific primitives for accessing registers
with register_read and register_write.
• Resources: First, RMT resource mapper does not model

hash calls and SALUs in their original design. Thus, we
extend RMT resource mapper to model hash calls and
SALUs and added the corresponding optimization con-
straints for assignment of these new resources. Second, we
observed that RMT resource mapper assigns memory even
for tables without any entries and action data. To fix this
disconnect, we decouple the memory/table assignment.
• Objective: RMT resource mapper supports different opti-

mization objectives: minimizing latency, power, or pipeline
stages. The objective of minimizing pipeline stages is the
most suitable because it gives resource mappings that are
closest to those generated by the Tofino compiler.
With these fixes in place, we validate our extensions by

comparing the resource usages between RMT resource map-
per and Tofino compiler for a wide range of sketches and
configurations, for the cases that are feasible on current hard-
ware. Based on the measurement results, we conclude that
our modified RMT resource mapper is a good proxy of Tofino
compiler as it captures the relevant resource constraints, and
its resource allocation results are close to that of Tofino com-
piler (see Appendix A for more details).

3.2 Identified Bottlenecks
Using the RMT resource mapper, we measure the usage of
each type of resources based on the output of the compiler for
three sketches: Count Sketch, R-HHH, and UnivMon. For the
purpose of bottleneck analysis, we use a base configuration

746 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 2 3 4 5
Number of counter rows (R)

0

50

100

150

200

250

H
as

h
C

al
ls

(a) Hash Calls

1 2 3 4 5
Number of counter rows (R)

0

50

100

150

200

250

S
A

L
U

s

RHHH

UnivMon

count-sketch

(b) SALUs

1K 2K 3K 4K 5K
Number of heavy flowkeys

10−1

100

101

B
lo

om
fil

te
r

S
pa

ce
(M

B
)

Miss rate 10 ˆ (-9) %

Miss rate 10 ˆ (-6) %

Miss rate 10 ˆ (-3) %

(c) Flowkey Space

4 8 12 16 20
Number of levels (L)

2

4

6

8

P
ip

el
in

e
S

ta
ge

s
(N

or
m

al
iz

ed
) R-HHH

UnivMon

(d) Pipeline Stages

Figure 6: Resource bottlenecks for sketch implementations.

of: W = 2048, R = 3, and L = 16 for UnivMon and L = 25
for R-HHH [12], which provides an error of up to 15% when
processing packets from an inter-ISP packet trace [7]. We
choose the value for L from the original papers [12, 41].

Fig. 6 illustrates how the use of four bottleneck resources
depends on key sketch parameters. While the amount of avail-
able hardware resources can differ across hardware vendors
and versions, we see that resource usage increases rapidly
as we need more counters to meet higher accuracy require-
ments. While we cannot report exact resource usages due to
proprietary reasons, we note that UnivMon and R-HHH are
infeasible today on the hardware for many configurations. Per-
haps more importantly, switches must also support tasks other
than sketch-based telemetry (e.g., [33, 43]). Thus, it is critical
to reduce the resource footprint of the sketches to ensure they
can co-exist with other switch functions.
B1. Hash calls: Recall that count sketch needs 2R hash calls
per packet (§2.1), matching the results in Fig. 6a. UnivMon
and R-HHH execute one count sketch per level L. As a result,
R-HHH needs L ·2R hash calls. UnivMon needs to compute
an additional L 1-bit hash calls in its sampling stage, adding
up to L · (2R + 1) hash calls.

At first glance, it may seem that the number of hash calls
is not a bottleneck as these are called on demand per packet.
While this is true in a software setting, where only the re-
quired calls are performed on demand, hashing on hardware
is different. On a hardware switch, all hash calls appearing
in the code need to be pre-allocated since execution at line
rate must be guaranteed for all possible execution paths. This
increases resource requirements, even if hash calls need not
be executed. For example, even though UnivMon and R-HHH
(Fig. 2) may not update all levels of count sketches for all
packets, all hash resources must be pre-allocated.
B2. Memory accesses: Count Sketch maintains R counter
arrays (§2.1) and for each row it must read one counter from
memory and update its value. This means that count sketch
needs R counter updates per packet, requiring R Stateful ALUs
(SALUs) as shown in Fig. 6b. When the compiler compiles

the P4 code of UnivMon and R-HHH in Fig. 2, it allocates
separate memory regions and SALUs for each level of count
sketches, thus SALU requirements are proportional to the
number of levels L. Since we need R memory processes per
packet for the count sketch at each level, we need a total
L·R SALUs for R-HHH and UnivMon. This makes memory
access hardware (SALU) a bottleneck (Fig. 6b). Similar to
hash resources, SALUs need to be pre-allocated at compile
time, even if they may remain unused.
B3. Resources for tracking heavy flowkeys: Many sketches
need to track heavy flowkeys to enable downstream analytics
tasks. Typically, these sketches store heavy flowkeys in a
separate data structure (e.g., heap or priority queue) [17, 41].

In practice, however, the exact details of if/how this can be
realized on switch hardware are unclear. Specifically, a heap
or priority queue, while feasible in software switches is too
complex to be implemented on the programmable hardware
switch. Alternatively, the data plane can relay all flowkeys
to the switch control processor or record all flowkeys in the
data plane. However, these are not feasible; e.g., bandwidth
between the data plane and the control plane is limited, and
data plane memory is also limited. Some sketch constructions
store heavy flowkeys together with the counters [11, 32, 46].
However, these are infeasible at line-rate on today’s RMT
switches.3

To reduce the memory use, prior work proposed an opti-
mized baseline—when a packet arrives, it checks whether
the frequency of a flowkey has exceeded the threshold by
querying the sketch counter, and if so, it reports the key to the
control plane [33, 39, 41]. Unfortunately, this still has a prob-
lem as “heavy” flowkeys may be reported redundantly every
time a packet arrives and needs more control plane bandwidth.
To avoid duplicate reporting to the control plane, we could
use a Bloom filter to check if a heavy key has already been
reported [33]. However, we need to configure the Bloom
filter (i.e., bitmap size and number of hash functions) to have
really low false positives since a false positive in the Bloom
filter for the duplicate check is a potential miss of a heavy
flowkey. Fig. 6c confirms this trade-off; we can configure the
Bloom filter depending on the target miss rate and we find the
memory footprint is correspondingly higher (We use 3 hash
functions for Fig. 6c). Using a Bloom filter might be a valid
approach if we allow some missing heavy flowkeys, we argue
a design that targets a zero miss rate is more desirable.

We implement four possible strawman solutions to report
heavy flowkeys and run microbenchmarks on a Tofino hard-
ware switch to understand a trade-off between the accuracy
and the resource consumption. Table 1 summarizes our analy-
sis and shows that we have an undesirable trade-off between
the miss rate of heavy flowkeys, data plane resources (mem-

3Specifically, HashPipe [46] cannot be directly implemented on RMT
architecture due to complex memory access patterns (see [11] for more
details). Precision [11] requires recirculation, which means some packets
must go through entire pipeline again.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 747

Miss rate CP
bandwidth

DP
resource

Recored every key in the DP Zero Low Infeasible

Report every key to the CP Zero Infeasible Low

Report heavy keys to the CP Zero Infeasible Low

Report non-duplicate heavy keys Low Low High

Table 1: Strawman solutions for tracking heavy flowkeys (CP:
control plane, DP: data plane).

ory for keys and hash calls for Bloom filters), and the control
plane bandwidth (for reporting keys).
B4. Pipeline stages: So far we have implicitly assumed that
the switch has a single pool of resources on the switch (i.e.,
SRAM/TCAM, SALUs, and hash calls) that can be allocated
to the sketch operations. In reality, the resources are parti-
tioned across the pipeline stages. This impacts resource use
in two ways. First, before an operation can be assigned to a
stage, all required resources need to be available on that stage.
If that is not the case, it needs to be moved to the next stage.
Second, if there is a dependency between two operations, e.g.,
O1→ O2 in the code, then O2 must be placed on a later stage
than O1, even if there are unused resources available on stages
earlier in the pipeline. For example, the sequential if clauses
used by UnivMon (Fig. 4) create sequential dependencies
between the if clauses.

This means that, depending on resources required by op-
erations and dependencies between them, the compiler will
only be able to use a subset of the resources on the switch. To
account for this, we consider pipeline stages as a separate re-
source. Fig. 6d shows the number of pipeline stages needed as
a function of level L if we respect this architectural constraint.
We see that UnivMon requires similar or more pipeline stages
than R-HHH with same configuration parameters and the gap
is increasing as the number of levels increases. This is a di-
rect result of the sequential dependencies in UnivMon. The
number of pipeline stages used is measured by running the
RMT resource mapper.

4 Optimizations

Next, we present a series of optimizations to address the re-
source bottlenecks we identified earlier. For each optimization,
we discuss the key idea, before discussing the correctness and
applicability constraints. Some of these optimizations (e.g.,
O1, O3, O4) have appeared in earlier theoretical efforts and
demonstrated in other settings (e.g., FPGA, software switch).
Our contribution here is translating these ideas to hardware
switches. Others (O2, O5, O6) are novel to the best of our
knowledge. As summarized in Table 2, our optimizations
can be applied to a broad spectrum of published sketches for
telemetry and benefit 15 out of the 19 sketches listed. Some
sketches that are outside our scope cannot be supported as
they either use: (1) processing logic that is infeasible in hard-
ware (i.e., Hashpipe); (2) counter data structures different

Sketch Type Sketch Name Feasible
on HW?

Applicability
of SketchLib

Frequency
Estimation
/
Heavy
Hitters

Count-Min [21] Yes O6
Count Sketch [17] Yes O1, O6
MRAC [37] Yes O3, O5
Hashpipe [46] No N/A, due to in-

feasible logic
Precision [11] Yes No, uses packet

recirculation
Hierarchical
Heavy Hitters

RHHH [12] Yes O1, O2, O5, O6
HHH [20] Yes O1, O6

Cardinality PCSA [25] Yes O3, O5
MRB [23] Yes O3, O5
LogLog [22] Yes O3
HyperLogLog [26] Yes O3

Entropy EntropySketch [38] Yes O1
Change
Detection K-ary [36] Yes O1, O2, O6

Super
Spreaders

SpreadSketch Yes O3, O5
BeauCoup [18] Yes No, non-counter

based sketch
General UnivMon [41] Yes O1, O2, O3, O4,

O5, O6
FCM [47] Yes O6
SketchLearn [32] Yes O2
ElasticSketch [53] Yes Not applicable

Table 2: Applicability of SketchLib on existing sketches.

from sketches (i.e., BeauCoup); or (3) complex processing
patterns such as packet recirculation (i.e., Precision).

4.1 Optimizing Hash Calls
Both single- and multi-level sketches need to compute mul-
tiple hash functions, resulting in high hash call usage in the
hardware pipeline. We describe two optimizations: consoli-
dating short hash calls and reusing hash calls.

Optimization 1. Consolidate many short hash calls. We
observe that many hash calls only need short-length (e.g., 1-
bit) hash results. For instance, count sketch (Fig. 1) computes
a series of 1 bit hash calls, s1 to sR. Similarly, UnivMon (Fig. 2
(b)) computes h1 to hL. We can reduce the number of hash
calls by consolidating many short hash calls, as long as the
inputs to the hash calls are the same.

Consider a count sketch with R×W = 3× 512 counters.
Per row, we need two hash results: a 9-bit (i.e., log2 512 = 9)
hash to index into the counter array and a 1-bit hash for the
“sign” of the counter. Instead of using 3 ·2 = 6 hash calls, we
can instead use one hash call that returns a 30-bit result to
provide the 6 hash calls as in Fig. 7. Note that splitting a long
hash result only needs simple hardware shift and bit mask
operations. R-HHH and UnivMon are also benefited as they
use multiple count sketches. Further, UnivMon uses many
1-bit hash calls in its sampling stage.

Correctness and applicability: For this optimization to be
valid, the split short-bit hash results from the longer hash re-
sult must use the same flowkey as the input and, if required
by the sketching algorithm, be pairwise independent [17].
Independence is achieved by randomly picking (different)
seeds for hash calls in practice [12, 41, 53]. Theoretical anal-

748 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

9bit 1bit Total 30 bit

9bit 1bit

9bit 1bit

6 hash calls 1 hash call

9bit 1bit 9bit 1bit 9bit 1bit

Figure 7: Optimization 1 reduces hash calls for count sketch.

Flowkey Seed Additional Condition Opt

same diff.
Sum of hash bit length is
less than max capacity O1

same same - O2
diff. same One level of hash calls is executed
diff. diff. - -

Table 3: Conditions for optimization 1 and optimization 2.

ysis in other contexts [24, 35] shows that using different bits
from the same hash call can also provide independence. Em-
pirically, recent work [51] shows no accuracy loss for Uni-
vmon and our results (§6) confirm this with other sketches
listed in Table 5. In addition, hash calls need to be short so
that the sum of hash bit length is less than the length of one
call (e.g., 32 bits). Fortunately, many single- and multi-level
sketches [12, 17, 23, 25, 26, 37, 41] satisfy this condition.

Optimization 2: Reuse the hash calls across levels for
multi-level sketches. Our second insight is that we can reuse
the hash calls if there are no independence requirements
across them ; i.e., they can use the same seed. Although hash
independence is usually required across different counter ar-
rays within a single level sketch, it is not required across
levels [16]. Thus, we can use the same hash seed cross differ-
ent levels for multi-level sketches.

Specifically, the original implementations of R-HHH and
UnivMon (see Fig. 2) use a different hash seed in each of
the CS_level_i count sketch executions. We can modify the
code to reuse the same hash seed and reuse hash results when
independence is not needed. This optimization reduces the
number of hash calls significantly. For example in Fig. 2,
R-HHH and UnivMon each have a set of hash calls Fi as
{ fi1, fi2, ... fi(2R)} at each level i of count sketch, resulting in
L ·2R hash calls. By simply changing all of Fi to F1, we reduce
hash call usage from L ·2R to 2R. For R-HHH, the result of
F1 is used to update one selected level of count sketch, and
for UnivMon, result of F1 can be used to update potentially
multiple levels per packet.

Correctness and applicability: Reusing seed values across
levels does not affect the theoretical independence require-
ments [16]. We empirically confirm in the evaluation that this
optimization achieves similar accuracy (§6.1).

Table 3 summarizes the conditions under which the two
hash optimizations are used. Note that for O2, if different
levels’ hashes have diverse output bit-length requirements,
the hash call with the longest output bit-length will be used to
supply hash results with various bit lengths. Also we need to
make sure that the hash seeds are either the same in the first
place or can be set to the same for O2 to apply.

control ingress // UnivMon
{

apply(CS_level_1);
apply(compute_h1);

if (h1 == 1) { // 0 or 1
apply(CS_level_2);
apply(compute_h2);

if (h2 == 1) {
apply(CS_level_3);
apply(compute_h3);

if (h3 == 1) {
...

}

CS
2

Stage 1
CS
3

Stage 2

… CS
L

Stage L/2
CS
1

Stage 1
CS
2

Stage 2

… CS
L

Stage L

Internal fragmentation

L pipeline stages L/2 pipeline stages

CS
1

control ingress // Opt_UnivMon
{

apply(compute_h); // L bit
level = TCAM_optimization(h);

if (level >= 1) {
apply(CS_level_1);

}
if (level >= 2) {
apply(CS_level_2);

}
if (level >= 3) {
apply(CS_level_3);

}
...

}

Figure 8: Optimization 3 removes the sequential computation
dependency and reduces the usage of pipeline stages.

4.2 Optimizing Pipeline Stages

The sequential if clauses are observed in both single and
multi-level sketches. This creates sequential compute depen-
dencies and entails high usage of pipeline stages.

Optimization 3: Avoiding the sequential if clauses using
a longest prefix match. To explain this optimization, we use
UnivMon (Fig. 8) as an example. Deciding which levels to
be updated for each flowkey creates a logical dependency
between levels. Specifically, level i+1 needs to be updated
only if the value of hi returns 1 for hash functions hi : [n]→
{0/1}. These L-level dependencies lead to an implementation
as Fig. 8-left using sequential if clauses with hash values
(h1,h2,. . . ,hL).

To address this bottleneck, our insight is that the number
of leading 1-bits in (h1,h2,. . . ,hL) represents the sequence of
“true” conditions in the if clauses. We observe that this is
equivalent to the longest prefix match (LPM), which can be
computed efficiently in hardware. That is, we can compute L
hash bits together using a single L bit hash and use LPM to
identify which layers need to be updated. This LPM operation
is realized via TCAM as shown in Fig. 9. We insert rules with
1- and wildcard bits corresponding to each level and perform
LPM to obtain the last level of UnivMon for each flowkey.
LPM is relatively cheap—can be done in one pipeline stage
using a small amount of TCAM. With this optimization, we
can reduce the usage of pipeline stages by half if one count-
sketch consumes half of the resources in one pipeline stage
(Fig. 8-right).

Correctness and applicability: Our refactored implementation
has the same functionality, resulting in the same updates to the
sketch arrays. This optimization applies to many single and
multi-level sketches that build on the power-of-two choices
observation [23, 25, 26, 37, 55].

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 749

5 bit hash call -> (0𝑏11101)

1****
11***
111**
…

1
2
3
4
…

TC
AM Select as

last_level

Figure 9: Replacing the sequential if clauses via TCAM.

4.3 Optimizing Memory Accesses
Sketches require memory accesses for their counter updates,
leading to high SALU usage. This becomes especially signifi-
cant for multi-level sketches.

Optimization 4: Refactor multi-level sketches to update
one level per packet. We refactor multi-level sketching algo-
rithms and their code to guarantee only one level is updated
per flowkey. Recall that UnivMon needs to update one or more
levels of count sketch (CS) for each packet with its flowkey. In
Fig. 10 (top), a flowkey of packet Kgreen updates three levels,
Kgray updates two levels, and Kred updates all levels of count
sketch. Instead, our modified algorithm is guaranteed to up-
date only the “last” level for each packet, as shown in Fig. 10
(bottom). The modified algorithm becomes structurally simi-
lar to other multi-level sketches that natively update only one
level [12, 23, 25, 37]. As a result, the processing overhead is
significantly reduced.

This “update-last-level” idea was also proposed to opti-
mize UnivMon for embedded platforms [52] and software
switches [40, 51]. Our contribution here is: (1) to extend this
to programmable switches and (2) to generalize the idea to
support updating arbitrary levels. Based on the algorithmic
design, different multi-level sketches may require different
optimization strategies to update a level (e.g., RHHH [12]
modifies HHH [20] by randomly selecting a level to update).
To implement this optimization, we can insert user-defined
ternary rules in TCAM (as O3) to classify packets into differ-
ent levels in a multi-level sketch.

Correctness and applicability: By construction, our modified
algorithm provides equivalent functionality as the original
version. As shown on the right side of Fig. 10 with Kgreen
flowkey as an example, Levels 1 and 2 do not need to be
updated anymore. Level 3 has the estimated flow count for
this particular flow with the same or better accuracy since
Level 3 only processes a smaller amount of traffic than Levels
1 and 2. Thus, the estimated count of Kgreen from Level 3 can
be reused for Levels 1 and 2. This applies to all other flowkeys
during the offline estimation in the network control plane.

To apply this optimization, a multi-level sketch should meet
two conditions: (1) the original algorithm has multiple sketch
updates per packet, and (2) it is algorithmically correct to
reduce the multi-level updates to one per packet. That said,
we acknowledge that there are scenarios where this optimiza-
tion is not directly applicable. For instance, it is not obvious
if/how we can refactor some multi-level sketches such as

…

Data Plane Sketch Update Control Plane

Original
UnivMon

…

4 2 1 1

2 1 1

2 1

1

… …
4

1

2

1
Optimized
UnivMon

CS L

CS L

CS 1

CS 1

CS 2

CS 3

CS 2

CS 3

…
…

Equivalent

packet stream

Figure 10: UnivMon updates only the last level per packet. CS
stands for Count-Sketch.

Counter
Array 1

SALU 1
…

1

SALU 1

L2 3 …Counter
Array 2

SALU 2

Counter
Array 3

SALU 3

Counter
Array L

SALU L

Figure 11: Optimization 5 removes unnecessary allocated
SALUs by rewriting P4 code.

SketchLearn [32] to update only one level per flowkey (if
possible). This requires future research.

Optimization 5: Remove unnecessary SALU operations.
A multi-level sketch maintains multiple independent levels of
sketches. For each counter at each level, the compiler statically
allocates an SALU for memory access. This results in high
SALU usage, even if only one level needs to be updated per
packet; i.e., usage is the same as updating all levels.

We can remove unnecessary SALUs when only one update
is needed per packet. The reason why the compiler ineffi-
ciently preallocates SALUs for all possible memory accesses
is that it is difficult to automatically figure out that only one
update is needed at runtime. Our optimization restructures
the P4 code to make this explicit for the compiler that only
one count sketch update is needed per level. Instead of using
separate counter arrays located in different switch memory
regions, we consolidate the counter arrays of all levels in a
single array located in one region of memory. This is possible
because SALU can support random access, thus based on
the selected level, we can compute the corresponding index
value to access the consolidated register. Fig. 11 illustrates
this SALU optimization. This optimization reduces the SALU
requirements for multi-level sketches by a factor of L (the
number of levels, e.g., 25 for R-HHH [12]).

Correctness and applicability: This technique does not affect
accuracy because the modified code has the same functionality
as the original version. We can apply the optimization to
multi-level sketches that have the property of updating only
one level per flowkey. There are many multi-level sketches
satisfying this property [12, 23, 25, 37, 41].

750 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Resource Bottlenecks Optimizations API

Hash Calls
O1. Consolidate short-bit hash calls hash_consolidate_and_split()
O2. Reuse hash calls across levels select_key_and_hash()

Pipeline Stages O3. Remove sequential if clauses using TCAM tcam_optimization()

SALUs
O4. Update only one level per flowkey -
O5. Rewrite P4 code to reduce memory accesses consolidate_update()

Resources for tracking heavy flowkeys O6. Use a hash table to remove duplicate flowkeys heavy_flowkey_storage()

Table 4: The relationships among the bottlenecks, optimizations and API calls.

4.4 Optimizing Heavy Flowkey Reporting
Optimization 6: Use a hash table and an exact-match ta-
ble for checking duplicate flowkeys. As discussed in §3.2
B3, prior efforts [33, 39] use Bloom filters as the duplicate
checker but the false positives from the filters will cause
misses of heavy flowkeys, unless a very large Bloom filter
is used. To improve this tradeoff between miss rate and data
plane resource, we use a hash table and an exact-match table
to check duplicates. Specifically, the hash table stores heavy
flowkeys and detects whether there is a collision. For each
heavy flowkey, if it is already stored in the hash table or exact-
match table, it will not be reported to the controller; otherwise,
it will be inserted to the hash table. But if this flowkey collides
with another key in the hash table, then it will be reported
to the controller which then inserts this flowkey to the exact-
match table to filter future duplicate keys. In this way, we can
ensure a zero miss rate on reporting heavy flowkeys.
Correctness and applicability: This optimization ensures a
zero miss rate of heavy flowkeys because when collisions hap-
pen in the hash table, the flowkeys are reported to the control
plane and inserted to the exact-match table (as a secondary
duplicate checker). No unique heavy flowkeys are dropped
in this mechanism. Compared to Bloom filters, this approach
adds some additional control plane bandwidth when collisions
happen in the hash table. As we evaluate in §6.5, this added
bandwidth is small (e.g., 2% increase). This optimization can
be applied to both single- and multi-level sketches requiring
heavy flowkey tracking [12, 17, 41].

5 SketchLib API
In this section, we present our P4 API for helping sketch
developers to use our optimizations. For each API call, we
show the implementation for the macro and how the macro
is used. SketchLib API supports both P4-14 and P4-16 [6].
Table 4 maps the optimizations to the API calls.
hash_consolidate_and_split(Key,Seed,List
(BitLen),BL_sum,List(Mask))4 reduces hash calls
by consolidating small bit hash calls (O1). Fig. 12 shows
how a sequence of short hash calls is replaced by a macro
that uses only a single hash call with length the sum of all

4While there is no concept of List in P4, we use it to describe the type of
parameters conceptually throughout this section. In our API implementations,
it is converted to multiple parameters; e.g., List(BitLen)→ (BL1, BL2,
BL3) as shown in Fig. 12.

BitLen of the shorter hashes. The resulting hash value is then
partitioned in shorter hashes. For P4-14, we split the result
using modify_field_with_shift(dst, src, shift,
mask) primitive (i.e., dst = (src » shift) & mask)
where mask is a series of 1’s with BitLen as shown. For
P4-16, the same principle is applied, but bit slice operation
(e.g., h[BL1:0]) is used. Note that the macro specifies
both the number of short hashes being merged (List) and
the names of the short hashes, so multiple macros must be
defined if O1 is applied multiple times.

1: h1 = hash(sIP, seed1, 5);
2: h2 = hash(sIP, seed2, 3);
3: h3 = hash(sIP, seed3, 4);

1:#define
hash_consolidate_and_split_3
(Key, Seed, BL1, BL2, BL3,
BL_sum, mask1, mask2, mask3)

2: h = hash(Key, Seed, BL_sum);
3: h1 = h & mask1;
4: h2 = (h >> BL1) & mask2;
5: h3 = (h >> (BL1+BL2)) & mask3;

1: hash_consolidate_and_split_3
(sIP, seed1, 5, 3, 4, 12,
0b11111, 0b111, 0b1111)

Figure 12: hash_consolidate_and_split()

select_key_and_hash(List(Key),Level,Seed
,BitLen) implements O2 for the case one of the several
hash calls with different Key and same Seed is selected
for execution. Here, we can select the key in advance and
use only one hash call to get the result as in Fig. 13. For
instance, R-HHH can be optimized by using this API call.
The example shown is a single hash call, but if multiple are
needed (e.g. sketch with R =5 needs 5 hash calls), the number
of hash calls can be increased. For the sketches that share the
same Key and Seed (e.g., UnivMon), no separate API call is
necessary since the hash value can simply be reused.

1: if (V == 1)
2: h = hash(key1, seed, 3);
3: if (V == 2)
4: h = hash(key2, seed, 3);
5: if (V == 3)
6: h = hash(key3, seed, 3);

1: #define select_key_and_hash_3
(key1, key2, key3, V, Seed, BL)

2: if (V == 1)
3: k = key1;
4: if (V == 2)
5: k = key2;
6: if (V == 3)
7: k = key3;
8: h = hash(k, Seed, BL);

1: select_key_and_hash_3
(key1, key2, key3, V, seed, 3)

Figure 13: select_key_and_hash()

tcam_optimization(Hash_Result) implements
O3 to remove sequential if clauses by applying an equivalent
a LPM table which uses TCAM to which levels need to be
updated. The macro implements the use of the TCAM to look
up the level (see Fig. 8).
consolidate_update(Level,Index) implements
O5 to reduce memory accesses, as illustrated in Fig. 14. Level

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 751

indicates the selected counter array and Index references the
location for the memory update within the counter array. The
API call consolidates counter arrays and computes the new ad-
dress for the consolidated array. size indicates the bit length
(e.g., 10) of the width (e.g., 1024).

1: if (V == 1)
2: update_array_1(V, index);
3: if (V == 2)
4: update_array_2(V, index);
5: if (V == 3)
6: update_array_3(V, index);

1:#define consolidate_update_3
(V, index)

2: n_index = ((V-1)<<(size))+index;
3: update_array_1_to_3(n_index);

1: consolidate_update_3(V, index)

Figure 14: consolidate_memory_update()

heavy_flowkey_storage(Key,List(Estimate
),Threshold) reduces the memory space for heavy
flowkeys (O6). The challenge is checking whether the
estimated flow count is above a threshold entirely in the
data plane. Specifically, this entails computing the median
value based on an estimated flow count from each row and
comparing it to the threshold value. However, computing
the median is not supported in the data plane. Instead, we
leverage the fact that we can check whether the median of
a set of values exceeds a threshold without computing the
median as follows. We compare all of estimated flow count
for all rows, as shown in lines 3-9 in Fig. 15 which is for R
= 3 case. Then, the condition (sum (s1, s2, s3) ≥ 2) at line
11 is equal to (median(est1, est2, est3) > T).5 This can be
generalized for different Rs. We implement the duplicate
filter using a hash table and a exact-match table. If a flowkey
collides with an entry in the hash table and the exact-match
table does not have an entry for the flowkey, we report it to
switch control plane via a PCIe channel. Upon receiving the
reported key, the switch control plane CPU adds entries into
the exact-match table.

6 Evaluation
In this section, we evaluate the benefits of SketchLib on seven
sketches. Across a range of settings, we see that SketchLib can
reduce the resource footprint of sketches on switch hardware
(up to 96%) while achieving similar accuracy.

6.1 Experimental Setup

Sketches. We implement all 15 sketches in Table 2 using
SketchLib and source codes for sketches are available at [6].
Among 15 sketches, we pick seven representative sketches
for our evaluation as in Table 5.

Testbed. We evaluate SketchLib on a local testbed with an
Edgecore Wedge 100BF Tofino-based programmable switch
and a server equipped with dual Intel Xeon Silver 4110 CPUs,
128GB RAM, and a 100Gbps Mellanox CX-4 NIC connected
to the switch. We use the P4-16 version of SketchLib with
Tofino SDE version of 9.1.1 in our experiments.

5For Count-Min sketch [21], we can use (sum (s1, s2, s3) ≥ 1).

01:#define heavy_flowkey_storage_3
(Key, Est1, Est2, Est3, T)

02:
03: s1, s2, s3 = 0;
04: if (Est1 > T)
05: s1 = 1;
06: if (Est2 > T)
07: s2 = 1;
08: if (Est3 > T)
09: s3 = 1;
10:
// above threshold test
11: if (s1 + s2 + s3 >= 2) {
12: if (HT[h(Key)] == empty) { // HashTable
13: HT[h(Key)] = Key;
14: send_to_cpu(Key);
15: } else if(HT[h(Key)] != Key) {
16: if (!(flowkey in MT)) { // MatchTable
17: send_to_cpu(Key);
18: }
19: }
20: }

Figure 15: heavy_flowkey_storage()

Traces. We use five CAIDA backbone traces capture at
3/20/14 to 6/19/14 Sanjose, 1/21/16 Chicago, 5/17/18 to
8/16/18 New York City [7]. We split one hour traces into 30
second epochs. Each epoch includes about 12M-23M packets,
with 398K distinct source IPs, 280K distinct destination IPs,
and 1.6M distinct 5 tuples.

Level (L) Row (R) Width (W) Space
CS [17] - 5 4096 80KB
HLL [26] - - 2048 8KB
UnivMon [41] 16 5 2048 640KB
R-HHH [12] 25 3 2048 600KB
MRAC [37] 12 - 2048 96KB
MRB [23] 16 - 4096 8KB
PCSA [25] 32 - 20 0.125KB

Table 5: Sketch parameters for evaluation.

Sketch parameters. Table 5 shows the configuration param-
eters for the sketches. Most sketches use 4 byte counters. The
cardinality estimators (e.g., MRB and PCSA) use bitmap thus
each counter is 1 bit.

Metrics. Depending on the sketch and the measurement task,
we report two error metrics. For each metric, we run the exper-
iment 5 times independently with different hash parameters
and report the 25%, 50%, 75% percentiles of the errors. For
brevity, we report results using source IP as the flowkey except
for R-HHH, noting that the results are qualitatively similar for
other types of flowkeys. R-HHH uses (source IP, destination
IP) pair as flowkey as presented in the original paper [12].

• Average Relative Error (ARE): 1
k ∑

k
i=1
| fi− f̂i|

fi
, where k

means the top k heavy flows. fi is actual flow count for
flow i and f̂i is the estimated flow count from the sketch.
fi ≥ fi+1 for any i, thus it is sorted in descending order.
We use k=50 for count sketch and R-HHH.
• Relative Error (RE): |True−Estimate|

True , where True is ground
truth value and Estimate is estimated value. We use this
metric for sketches that estimate cardinality and/or entropy.

752 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

trace1 trace2 trace3 trace4 trace5

1.0

1.5

2.0

2.5

A
R

E
(%

)

CS

(a) Count-sketch: flow count
trace1 trace2 trace3 trace4 trace5

8

10

12

14

A
R

E
(%

)

RHHH

(b) RHHH: flow count estimate
trace1 trace2 trace3 trace4 trace5

0

5

10

15

20

25

R
E

(%
)

UnivMon Cardinality

(c) UnivMon: cardinality estimate
trace1 trace2 trace3 trace4 trace5

0

2

4

6

8

10

R
E

(%
)

UnivMon Entropy

(d) UnivMon: entropy estimate

trace1 trace2 trace3 trace4 trace5
0

2

4

6

R
E

(%
)

HLL

(e) HLL

trace1 trace2 trace3 trace4 trace5
0

2

4

6

R
E

(%
)

MRB

(f) MRB

trace1 trace2 trace3 trace4 trace5
0

10

20

30

R
E

(%
)

PCSA

(g) PCSA
Figure 16: Accuracy comparison of sketches between original and optimized sketches across traces. Left: original, Right: optimized.

1 2 3 4 5
Number of counter rows (R)

101

102

H
as

h
C

al
ls

R-HHH

UnivMon

count-sketch

Optimized R-HHH

Optimized UnivMon

Optimized count-sketch

(a) Hash Calls

1 2 3 4 5
Number of counter rows (R)

101

102

S
A

L
U

s

(b) SALUs

4 8 12 16 20
Number of levels (L)

2

4

6

8

P
ip

el
in

e
S

ta
ge

s
(N

or
m

al
iz

ed
)

(c) Pipeline Stages

Figure 17: Resource consumption before/after optimizations.

6.2 Accuracy
We run the accuracy experiment of SketchLib in two ways.
First, we show the accuracy is preserved between baseline
software implementation and hardware implementation with
SketchLib (§6.2.1). Second, we compare the accuracy of
the hardware implementations with and without SketchLib
(§6.2.2).

6.2.1 Comparison with the Software Baseline

Reporting methodology. We compare the accuracy of the
sketch refactored with SketchLib (on hardware) against a base-
line software implementation. The baseline software imple-
mentation runs sketches on the software. We run experiments
over multiple traces with independent runs. After optimiz-
ing sketches with SketchLib, we run experiments on Tofino
hardware with all five traces. For each one-hour trace, we
randomly sample 40 30-second epochs and obtain 5 accuracy
numbers per epoch with independent trials. The server replays
traces to the switch using tcpreplay at a speed of 800K pack-
ets/second. Between epochs, we wait for switch control plane
to pull counters and flowkeys from the data plane (see §7).

Result. Fig. 16 empirically validates that SketchLib opti-
mizations achieve similar accuracy. For every trace, the left
blue bar represents the software baseline and the right green
bar is the hardware reported result with SketchLib applied.6

Fig. 16a - Fig. 16d shows the accuracy of sketches that need
to track heavy flowkeys and the rest show sketches that need

6We do not show MRAC as the estimation logic for MRAC is not public.

UnivMon Without SketchLib With SketchLib
Level (L) 8 6 5 16
Row (R) 4 5 6 5

Width (W) 32768 32768 32768 2048
RE (%) 95.4% 98.8% 99.4% 9.5%

Table 6: Relative error in cardinality estimation with and with-
out SketchLib.

to maintain only counter arrays. Fig. 16c and Fig. 16d show
the errors of UnivMon for cardinality estimation and entropy
estimation. We can visually confirm that the distributions of
accuracy before and after optimizations are similar.

6.2.2 Accuracy Improvement with SketchLib

Reporting methodology. We want to compare the best ac-
curacy between with and without SketchLib on the hard-
ware. We use UnivMon for this experiment. To systematically
sweep configuration parameters for the best accuracy without
SketchLib, we exploit the property of UnivMon. Among three
sketch parameters level (L), row (R), and width (W), L is the
most critical parameter, thus we pick three highest feasible
L. Then we find maximum R and lastly W . Given fixed L, we
explored different parameter R other than maximum R but
result was similar. We use the simulator with 40 samples of
trace1. With SketchLib, we use the same configuration from
the original UnivMon paper.

Result. Table 6 shows that all feasible configurations without
SketchLib show high error rate more than 95%. On the other
hand, UnivMon with SketchLib shows low error rate of 9.5%.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 753

Sketches Hash Calls (O1/O2) SALUs Pipeline Stages
CS 31%/0 9%

HLL 80%/0 86%
UnivMon 44%/47% 90% 65%

RHHH 32%/60% 92% 62%
MRAC 87%/0 91% 68%
MRB 90%/0 93% 76%
PCSA 92%/0 96% 86%

Table 7: Individual resource reductions by optimizations.

6.3 Switch Resource Consumption
Next, we report the resource usage improvements on the iden-
tified resource bottlenecks (Table 7). The sketch parameters
used are reported in Table 5.

Reporting methodology. We measure resource usages from
original implementation using RMT resource mapper and
optimized implementation using Tofino compiler to measure
resource reductions. To factor out resource reductions for
different optimizations in Table 7, we wrote P4 code with
individual optimizations applied using SketchLib APIs to
measure the resource usages.

Hash calls. Table 7 shows that using O1 to consolidate the
1-bit hash calls is effective for both single and multi-level
sketches. For example, the number of hash calls for count
sketch is reduced by 31%. R-HHH and UnivMon benefit
from O1 as they are composed of multiple count sketches.
Further, PCSA, MRAC, MRB and HLL have a series of 1-bit
hash calls which O1 improves. For UnivMon and R-HHH,
we can apply both O1 and O2 by reusing hash calls across
levels to further reduce hash calls by over 90%. We further
investigate the sensitivity of the reduction of hash calls vs.
sketch parameters in Fig. 17a.7 Multi-level sketches UnivMon
and R-HHH have significant reduction and the resource used
is close to single-level count sketch.
Stateful ALUs. O5 applies only to multi-level sketches and
reduces SALU usage significantly if there are many levels in
the sketch. With 16-32 levels, O5 saves 92% to 96% of the
SALUs. We can see in Fig. 17a that O5 reduces SALU of
UnivMon and R-HHH significantly across rows.
Counter Memory Space. Interestingly, O5, which we de-
signed to reduce SALU usage, additionally reduces memory
space. Investigating this further, we find that original sketch
implementations have a memory region fragmentation prob-
lem. One counter array is smaller than a block of SRAM, caus-
ing additional (unused) memory overhead per each counter
array. O5 has the added benefit of consolidating counter ar-
rays and achieve 54%–96% of resource reduction in memory
space for multi-level sketches (not shown).

Pipeline stages. The reduction of pipeline stages depends
on a combination of factors — hash calls, SALUs, and code
dependencies. Table 7 shows reduced pipeline stages from
9% to 86% across sketches. Sketches where O5 applies (HLL,
UnivMon, MRAC, MRB, PCSA) have a large reduction be-
cause it removes many sequential if clauses. Effectively, our

7Missing point for R-HHH in Fig. 17 means it is infeasible.

FCM native SketchLib-optimized
Resource FCM+topK FCM(+O6) CM UnivMon

Pipe. Stage 8 8 7 12
SRAM 9.5% 10.8% 8.0% 7.3%
TCAM 0% 0% 0% 0.3%
SALUs 20.8% 14.6% 14.6% 12.5%

Hash Calls 13.9% 9.7% 11.1% 18.1%
Hash Bits 5.6% 4.0% 4.0% 4.9%
Table 8: Comparison of hardware resource utilization.

SketchLib-optimized
FCM+topK FCM(+O6) CM UnivMon

HH (ARE) 1.41% 0.01% 0.13% 0.73%

Table 9: ARE of heavy hitter detection.
of flows 500K 1M 5M 10M 30M

FCM+topK 0.35% 0.84% 3.60% 6.15% 17.0%
SketchLib
UnivMon 2.59% 2.08% 2.21% 2.36% 2.96%

Table 10: Entropy error (RE), FCM vs. SketchLib-optimized
UnivMon.

optimization can make the footprint of multi-level sketches
agnostic to number of levels (Fig. 17c).

6.4 Comparison with FCM
FCM [47] is a recently published sketch with general capa-
bility, and it is feasible on the programmable switch. Thus,
we compare FCM against sketches optimized with SketchLib
in terms of resource usages and accuracy. Table 8 shows re-
source utilization comparison between FCM and SketchLib
optimized sketches. We use the same configuration from pub-
lic FCM code [3], and make SketchLib-optimized sketch use
similar resources to FCM.
Heavy hitter detection. Table 9 shows the accuracy result
of heavy hitter detection. We can see that FCM+topK suffers
from a high error rate because of an inefficient mechanism for
tracking heavy flowkey (approximate topK implementation
of ElasticSketch [53]). Note that if FCM deploys one of our
optimizations for tracking heavy flowkeys, FCM+O6 reduces
the error rate significantly from 1.41% to 0.01%. We use the
simulator with 40 samples of trace1 and report median ARE.
Entropy and cardinality. Table 10 and Table 11 com-
pare entropy and cardinality estimation accuracy between
FCM+topK and SketchLib-optimized UnivMon. In the exper-
iments, UnivMon reports top-200 heavy hitters per level. For
entropy, UnivMon shows a relatively stable error rate (2∼3%)
across workloads, whereas FCM is dependent on workloads
and the error rate can go up to 17%. For cardinality, the error
rate of UnivMon is moderately increasing 8, whereas FCM
suddenly becomes unusable after 5M flows. This is because
Linear Counting [50] is used to estimate cardinality in FCM.

6.5 Tracking Heavy Flowkeys
To evaluate the impact of O6, we consider three metrics: miss
rate, control plane bandwidth, and data plane memory. We

8We observe that, when UnivMon reports more heavy hitters per level, the
cardinality error rate decreases (e.g., 17.58% in 10M flows with top-1000).

754 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

of flows 500K 1M 5M 10M 30M
FCM+topK 0.004% 0.107% 0.519% 100% 100%
SketchLib
UnivMon 21.9% 20.7% 31.7% 39.5% 73.8%

Table 11: Cardinality error (RE), FCM vs. SketchLib-
optimized UnivMon.

With SketchLib
Resource UnivMon UnivMon + NFs (L2, L3, LB, FW)

Pipe. Stage 12 12
SRAM 7.3% 38.6%
TCAM 0.3% 25.0%
SALUs 12.5% 12.5%

Hash Calls 18.1% 18.1%
Hash Bits 4.9% 11.2%

Table 12: Sketches are infeasible without SketchLib. With
SketchLib, there are rooms for additional network functions
(L2/L3 forwarding, L4 load balancer, and stateful firewall).

compare SketchLib-optimized approach vs. an “optimal” soft-
ware solution. For this evaluation, we use two sketches (CS,
UM) that track “heavy” flowkeys. For each 1-hr trace, we split
it into epochs as before, and set a target threshold correspond-
ing to the top 0.2 percentile of flow sizes (The results are
independent of the threshold; this is to make the experiment
concrete). Across different traces and sketches, SketchLib in-
curs zero miss rate, and at most 2% increase in control plane
bandwidth (due to small number of duplicates), using less
than 400KB of data plane memory overall (independent of
the threshold, results not shown for brevity). To put this in
context, a Bloom-filter based strawman for suppressing dupli-
cates as discussed in §3 configured with the same memory use
has a miss rate of 0.2%. Overall, this confirms that SketchLib
offers a more practical alternative to the infeasible, inaccurate,
and/or expensive strawman solutions from §3.

6.6 Other Benchmarks

Additional Network Functions. After optimized with
SketchLib, sketches can even coexist with additional network
functions such as L2/L3 forwarding, L4 load balancer, and
stateful firewall. Table 12 shows resource utilization for addi-
tional network functions.

Code simplification. In addition to the resource efficiency
benefits, our optimizations also simplify the sketch implemen-
tations by reducing the lines of code, as shown in Table 13.

Compilation time. We also measured compilation time to
see whether our modified code will add significant overhead
to the compiler. We measure compile time is measured on
the server specified in (§6.1). For most cases, there was a
negligible (≤ 1 second) increase (not shown).

7 Related Work

Programmable switches. The programmable switch archi-
tecture was introduced by Bosshart et al [15]. Subsequent
work proposed a programming framework [14], functional
hardware [1], and also compilation workflows [34]. Other

Sketch CS HLL UM RHHH MRAC MRB PCSA
Before 201 290 460 471 261 317 305
After 131 112 127 128 91 94 93

Table 13: Lines of code simplification (UM stands for Univ-
Mon).

vendors have developed programmable pipelined architec-
tures and compilation workflows from P4 or P4-like primi-
tives [4, 5]. While our focus is on Tofino, our approach could
be useful for other platforms as well.

Optimizing sketches. HashPipe [46] focused on heavy hitter
detection, but is not feasible in the current hardware. Other
work has focused on the optimizing sketching algorithms in
software switches (e.g., [31, 40, 51]). However, some of their
ideas do not translate into a hardware context. For instance,
NitroSketch increases the memory footprint to reduce CPU
consumption, but the key bottleneck in hardware is different.
Similarly, other approaches split a sketch into a fast and slow
path on the software switch (e.g., [31]). Unfortunately, this is
not relevant in hardware since we need all operations to be in
the fast path. Some recent work [51, 52] specifically focus on
optimizing UnivMon for embedded platforms and software
switches. We translate these insights to a switch hardware
realization, and generalize beyond UnivMon.

Control plane reporting. While this work focuses on opti-
mizing data plane components of sketch-based monitoring,
there are other challenges in accurately retrieving sketch coun-
ters in the control plane. Naïvely retrieving the counters using
the existing control plane APIs can result in poor accuracy
due to a nonnegligible amount of read and reset delays. We
analyze this problem and suggest recommendations in parallel
work [44].

Other work in network telemetry. Our focus in this pa-
per is on sketch-based telemetry. There are other efforts for
complementary monitoring capabilities (e.g., [29,30,48]) and
performance-oriented objectives (e.g., [28, 45]).

8 Conclusions

Given increasing traffic rates and rich telemetry required, we
see the confluence of two trends: the use of sketching algo-
rithms and programmable switch hardware. Unfortunately,
existing sketch implementations are not efficiently realizable,
thereby limiting their effectiveness and coexistence with other
switch functions. To this end, we systematically analyze the
resource bottlenecks, suggest correct-by-construction opti-
mizations, and design a practical library to help developers
use these optimizations. Our evaluations show that the Sketch-
Lib library is broadly applicable to many sketches and reduces
their resource footprint while achieving similar accuracy.

This work focuses on a single sketch-based monitoring
task written using SketchLib APIs. We plan to support mul-
tiple tasks on a switch and automate the optimizations by
integrating our techniques with a compiler as future work.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 755

Acknowledgement
We would like to thank the anonymous NSDI reviewers and
our shepherd, Brighten Godfrey for their helpful comments.
This work was supported in part by the CONIX Research
Center, one of six centers in JUMP, a Semiconductor Research
Corporation (SRC) program sponsored by DARPA, and by
NSF awards 1565343, 1700521, 2106946, and 2107086.

References
[1] Barefoot Tofino. https://barefootnetworks.com/products/

brief-tofino/.

[2] Broadcom Trident 3. https://www.broadcom.com/
products/ethernet-connectivity/switching/strataxgs/
bcm56870-series/.

[3] FCM-sketch source code. https://github.com/fcm-project/
fcm_p4.

[4] Marvell LiquidIO SmartNICs. https://www.marvell.com/
products/ethernet-adapters-and-controllers.html.

[5] Netronome Agilio SmartNICs. https://www.netronome.com/
products/nfe/.

[6] Open Sourced SketchLib. https://github.com/SketchLib.

[7] The CAIDA UCSD Anonymized Internet Traces. https://www.
caida.org/data/passive/passive_dataset.xml.

[8] P414 Language Specification. https://p4.org/p4-spec/p4-14/v1.
0.5/tex/p4.pdf, 2018.

[9] NPL Specifications . https://nplang.org/npl/specifications/,
2020.

[10] ALIZADEH, M., EDSALL, T., DHARMAPURIKAR, S.,
VAIDYANATHAN, R., CHU, K., FINGERHUT, A., LAM, V. T.,
MATUS, F., PAN, R., YADAV, N., ET AL. Conga: Distributed
congestion-aware load balancing for datacenters. In Proceedings of the
2014 ACM Conference on SIGCOMM (2014), pp. 503–514.

[11] BEN-BASAT, R., CHEN, X., EINZIGER, G., AND ROTTENSTREICH, O.
Efficient measurement on programmable switches using probabilistic
recirculation. In 2018 IEEE 26th International Conference on Network
Protocols (ICNP) (2018), IEEE, pp. 313–323.

[12] BEN BASAT, R., EINZIGER, G., FRIEDMAN, R., LUIZELLI, M. C.,
AND WAISBARD, E. Constant time updates in hierarchical heavy
hitters. In Proceedings of the Conference of the ACM Special Interest
Group on Data Communication (2017), pp. 127–140.

[13] BENSON, T., ANAND, A., AKELLA, A., AND ZHANG, M. Microte:
Fine grained traffic engineering for data centers. In Proceedings of
the Seventh COnference on emerging Networking EXperiments and
Technologies (2011), pp. 1–12.

[14] BOSSHART, P., DALY, D., GIBB, G., IZZARD, M., MCKEOWN,
N., REXFORD, J., SCHLESINGER, C., TALAYCO, D., VAHDAT, A.,
VARGHESE, G., AND WALKER, D. P4: Programming protocol-
independent packet processors. SIGCOMM Comput. Commun. Rev.
(2014).

[15] BOSSHART, P., GIBB, G., KIM, H.-S., VARGHESE, G., MCKEOWN,
N., IZZARD, M., MUJICA, F., AND HOROWITZ, M. Forwarding meta-
morphosis: Fast programmable match-action processing in hardware
for sdn. ACM SIGCOMM Computer Communication Review 43, 4
(2013), 99–110.

[16] BRAVERMAN, V., AND OSTROVSKY, R. Zero-one frequency laws. In
Proc. of STOC (2010).

[17] CHARIKAR, M., CHEN, K., AND FARACH-COLTON, M. Finding fre-
quent items in data streams. In International Colloquium on Automata,
Languages, and Programming (2002), Springer, pp. 693–703.

[18] CHEN, X., LANDAU-FEIBISH, S., BRAVERMAN, M., AND REXFORD,
J. Beaucoup: Answering many network traffic queries, one memory
update at a time. In Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the applications,
technologies, architectures, and protocols for computer communication
(2020), pp. 226–239.

[19] CLAISE, B. Cisco systems NetFlow services export version 9. RFC
3954.

[20] CORMODE, G., KORN, F., MUTHUKRISHNAN, S., AND SRIVASTAVA,
D. Finding hierarchical heavy hitters in data streams. In Proceedings
2003 VLDB Conference (2003), Elsevier, pp. 464–475.

[21] CORMODE, G., AND MUTHUKRISHNAN, S. An improved data stream
summary: the count-min sketch and its applications. Journal of Algo-
rithms 55, 1 (2005), 58–75.

[22] DURAND, M., AND FLAJOLET, P. Loglog counting of large cardi-
nalities. In European Symposium on Algorithms (2003), Springer,
pp. 605–617.

[23] ESTAN, C., VARGHESE, G., AND FISK, M. Bitmap algorithms for
counting active flows on high speed links. In Proceedings of the 3rd
ACM SIGCOMM conference on Internet measurement (2003), pp. 153–
166.

[24] FLAJOLET, P., AND MARTIN, G. N. Probabilistic counting algorithms
for data base applications. Journal of computer and system sciences
31, 2 (1985), 182–209.

[25] FLAJOLET, P., AND MARTIN, G. N. Probabilistic counting algorithms
for data base applications. Journal of computer and system sciences
31, 2 (1985), 182–209.

[26] FLAJOLET, P., RIC FUSY, GANDOUET, O., AND ET AL. Hyperloglog:
The analysis of a near-optimal cardinality estimation algorithm. In
AOFA (2007).

[27] GARCIA-TEODORO, P., DIAZ-VERDEJO, J., MACIÁ-FERNÁNDEZ,
G., AND VÁZQUEZ, E. Anomaly-based network intrusion detection:
Techniques, systems and challenges. computers & security 28, 1-2
(2009), 18–28.

[28] GHASEMI, M., BENSON, T., AND REXFORD, J. Dapper: Data plane
performance diagnosis of tcp. In Proceedings of the Symposium on
SDN Research (2017), pp. 61–74.

[29] GUPTA, A., HARRISON, R., CANINI, M., FEAMSTER, N., REXFORD,
J., AND WILLINGER, W. Sonata: Query-driven streaming network
telemetry. In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication (2018), pp. 357–371.

[30] HARRISON, R., CAI, Q., GUPTA, A., AND REXFORD, J. Network-
wide heavy hitter detection with commodity switches. In Proceedings
of the Symposium on SDN Research (2018), pp. 1–7.

[31] HUANG, Q., JIN, X., LEE, P. P., LI, R., TANG, L., CHEN, Y.-C., AND
ZHANG, G. Sketchvisor: Robust network measurement for software
packet processing. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication (2017), pp. 113–126.

[32] HUANG, Q., LEE, P. P., AND BAO, Y. Sketchlearn: Relieving user bur-
dens in approximate measurement with automated statistical inference.
In Proceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication (2018), pp. 576–590.

[33] JIN, X., LI, X., ZHANG, H., SOULÉ, R., LEE, J., FOSTER, N., KIM,
C., AND STOICA, I. Netcache: Balancing key-value stores with fast
in-network caching. In Proc. of ACM SOSP (2017).

[34] JOSE, L., YAN, L., VARGHESE, G., AND MCKEOWN, N. Compiling
packet programs to reconfigurable switches. In 12th {USENIX} Sym-
posium on Networked Systems Design and Implementation ({NSDI}
15) (2015), pp. 103–115.

[35] KIRSCH, A., AND MITZENMACHER, M. Less hashing, same perfor-
mance: building a better bloom filter. In European Symposium on
Algorithms (2006), Springer, pp. 456–467.

756 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://barefootnetworks.com/products/brief-tofino/
https://barefootnetworks.com/products/brief-tofino/
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56870-series/
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56870-series/
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56870-series/
https://github.com/fcm-project/fcm_p4
https://github.com/fcm-project/fcm_p4
https://www.marvell.com/products/ethernet-adapters-and-controllers.html
https://www.marvell.com/products/ethernet-adapters-and-controllers.html
https://www.netronome.com/products/nfe/
https://www.netronome.com/products/nfe/
https://github.com/SketchLib
https://www.caida.org/data/passive/passive_dataset.xml
https://www.caida.org/data/passive/passive_dataset.xml
https://p4.org/p4-spec/p4-14/v1.0.5/tex/p4.pdf
https://p4.org/p4-spec/p4-14/v1.0.5/tex/p4.pdf
https://nplang.org/npl/specifications/

[36] KRISHNAMURTHY, B., SEN, S., ZHANG, Y., AND CHEN, Y. Sketch-
based change detection: methods, evaluation, and applications. In
Proceedings of the 3rd ACM SIGCOMM conference on Internet mea-
surement (2003), pp. 234–247.

[37] KUMAR, A., SUNG, M., XU, J., AND WANG, J. Data streaming
algorithms for efficient and accurate estimation of flow size distribution.
ACM SIGMETRICS Performance Evaluation Review 32, 1 (2004), 177–
188.

[38] LALL, A., SEKAR, V., OGIHARA, M., XU, J., AND ZHANG, H. Data
streaming algorithms for estimating entropy of network traffic. ACM
SIGMETRICS Performance Evaluation Review (2006).

[39] LIU, Z., BAI, Z., LIU, Z., LI, X., KIM, C., BRAVERMAN, V., JIN,
X., AND STOICA, I. Distcache: Provable load balancing for large-scale
storage systems with distributed caching. In Proc. of USENIX FAST
(2019).

[40] LIU, Z., BEN-BASAT, R., EINZIGER, G., KASSNER, Y., BRAVER-
MAN, V., FRIEDMAN, R., AND SEKAR, V. Nitrosketch: Robust and
general sketch-based monitoring in software switches. In Proceedings
of the ACM Special Interest Group on Data Communication. 2019,
pp. 334–350.

[41] LIU, Z., MANOUSIS, A., VORSANGER, G., SEKAR, V., AND BRAVER-
MAN, V. One sketch to rule them all: Rethinking network flow mon-
itoring with univmon. In Proceedings of the 2016 ACM SIGCOMM
Conference (2016), pp. 101–114.

[42] METWALLY, A., AGRAWAL, D., AND EL ABBADI, A. Efficient com-
putation of frequent and top-k elements in data streams. In International
Conference on Database Theory (2005), Springer, pp. 398–412.

[43] MIAO, R., ZENG, H., KIM, C., LEE, J., AND YU, M. Silkroad: Mak-
ing stateful layer-4 load balancing fast and cheap using switching asics.
In Proceedings of the Conference of the ACM Special Interest Group
on Data Communication (2017), pp. 15–28.

[44] NAMKUNG, H., KIM, D., LIU, Z., SEKAR, V., AND STEENKISTE, P.
Telemetry retrieval inaccuracy in programmable switches: Analysis and
recommendations. In Proceedings of the Symposium on SDN Research
(2021).

[45] NARAYANA, S., SIVARAMAN, A., NATHAN, V., GOYAL, P., ARUN,
V., ALIZADEH, M., JEYAKUMAR, V., AND KIM, C. Language-
directed hardware design for network performance monitoring. In
Proceedings of the Conference of the ACM Special Interest Group on
Data Communication (2017), pp. 85–98.

[46] SIVARAMAN, V., NARAYANA, S., ROTTENSTREICH, O., MUTHUKR-
ISHNAN, S., AND REXFORD, J. Heavy-hitter detection entirely in the
data plane. In Proceedings of the Symposium on SDN Research (2017),
pp. 164–176.

[47] SONG, C. H., KANNAN, P. G., LOW, B. K. H., AND CHAN, M. C.
Fcm-sketch: generic network measurements with data plane support.
In Proceedings of the 16th International Conference on emerging Net-
working EXperiments and Technologies (2020), pp. 78–92.

[48] TAMMANA, P., AGARWAL, R., AND LEE, M. Distributed network
monitoring and debugging with switchpointer. In 15th {USENIX} Sym-
posium on Networked Systems Design and Implementation ({NSDI}
18) (2018), pp. 453–456.

[49] WANG, M., LI, B., AND LI, Z. sflow: Towards resource-efficient and
agile service federation in service overlay networks. In Proc. of IEEE
ICDCS (2004).

[50] WHANG, K.-Y., VANDER-ZANDEN, B. T., AND TAYLOR, H. M. A
linear-time probabilistic counting algorithm for database applications.
ACM Transactions on Database Systems (TODS) 15, 2 (1990), 208–
229.

[51] XIAO, Q., TANG, Z., AND CHEN, S. Universal online sketch for
tracking heavy hitters and estimating moments of data streams. In
IEEE INFOCOM (2020).

[52] YANG, M., ZHANG, J., GADRE, A., LIU, Z., KUMAR, S., AND
SEKAR, V. Joltik: enabling energy-efficient" future-proof" analytics on
low-power wide-area networks. In Proceedings of the 26th Annual In-
ternational Conference on Mobile Computing and Networking (2020),
pp. 1–14.

[53] YANG, T., JIANG, J., LIU, P., HUANG, Q., GONG, J., ZHOU, Y.,
MIAO, R., LI, X., AND UHLIG, S. Elastic sketch: Adaptive and fast
network-wide measurements. In Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communication (2018),
pp. 561–575.

[54] YU, D., ZHU, Y., ARZANI, B., FONSECA, R., ZHANG, T., DENG, K.,
AND YUAN, L. dshark: a general, easy to program and scalable frame-
work for analyzing in-network packet traces. In 16th {USENIX} Sym-
posium on Networked Systems Design and Implementation ({NSDI}
19) (2019), pp. 207–220.

[55] YU, M., JOSE, L., AND MIAO, R. Software defined traffic measure-
ment with opensketch. In Proc. of USENIX NSDI (2013).

[56] ZHOU, Y., ZHANG, D., GAO, K., SUN, C., CAO, J., WANG, Y., XU,
M., AND WU, J. Newton: intent-driven network traffic monitoring.
In Proceedings of the 16th International Conference on emerging Net-
working EXperiments and Technologies (2020), pp. 295–308.

A Comparison of RMT resource mapper and
Tofino compiler

To validate RMT resource mapper as a proxy for Tofino com-
piler, we conduct experiments to compare resource allocation
results of RMT resource mapper and the Tofino compiler. We
pick five different sketches (UnivMon, R-HHH, PCSA, HLL,
and MRB). We vary one parameter of sketches while fixing
other parameters and analyze the resource allocation results.
We focus on five different resource types; pipeline stages,
hash calls, SALU, SRAM, and TCAM.

Fig. 18–Fig. 22 illustrate the results. Note that all of the
resource usages are normalized. We can see that for hash
calls, SALU, SRAM, and TCAM usages are identical between
RMT resource mapper and the Tofino compiler. For pipeline
stages, results are the same for PCSA, HLL, and MRB. How-
ever, RMT resource mapper finds mapping which uses fewer
pipeline stages than the Tofino compiler for UnivMon and
R-HHH. RMT resource mapper minimizes stages while the
Tofino compiler finds more sparse mapping (e.g., mapping
a small number of tables per stage). We validate both of the
mappings from RMT resource mapper and Tofino compiler
are valid. We confirm with the vendor that the Tofino compiler
uses complex heuristics and the cost function of power budget
and compilation time, which are different from that of RMT
resource mapper and can introduce the gap. Our extensions
to the RMT resource mapper is available at [6].

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 757

1 2 3 4 5 6 7 8
Number of Levels

1

2

3

4

P
ip

el
in

e
st

ag
e

UnivMon R=3

RMT Resource Mapper

Tofino Compiler

1 2 3 4 5
Number of Levels

1

2

3

P
ip

el
in

e
st

ag
e

UnivMon R=5

RMT Resource Mapper

Tofino Compiler

1 2 3 4 5 6 7 8 9 101112
Number of bitmaps

4

P
ip

el
in

e
st

ag
e

PCSA

RMT Resource Mapper

Tofino Compiler

1 2 3 4 5 6 7 8 9 10
hash bit length to get consecutive 1s

1

2

3

4

P
ip

el
in

e
st

ag
e

HLL

RMT Resource Mapper

Tofino Compiler

1 2 3 4 5 6 7 8 9 10
Number of Levels

1

2

3

P
ip

el
in

e
st

ag
e

RHHH R=3

RMT Resource Mapper

Tofino Compiler

1 2 3 4 5 6
Number of Levels

1

2

3
P

ip
el

in
e

st
ag

e

RHHH R=5

RMT Resource Mapper

Tofino Compiler

1 2 3 4 5 6 7 8
Number of bitmaps

2

P
ip

el
in

e
st

ag
e

MRB

RMT Resource Mapper

Tofino Compiler

Figure 18: RMT resource mapper vs. Tofino compiler: pipeline stages

1 2 3 4 5 6 7 8
Number of Levels

2

4

6

8

H
as

h
C

al
ls

UnivMon R=3
RMT Resource Mapper

Tofino Compiler

1 2 3 4 5
Number of Levels

2

4

6

8

H
as

h
C

al
ls

UnivMon R=5
RMT Resource Mapper

Tofino Compiler

1 2 3 4 5 6 7 8 9 101112
Number of bitmaps

1.5

2.0

2.5

H
as

h
C

al
ls

PCSA
RMT Resource Mapper

Tofino Compiler

1 2 3 4 5 6 7 8 9 10
hash bit length to get consecutive 1s

0.5

1.0

H
as

h
C

al
ls

HLL
RMT Resource Mapper

Tofino Compiler

1 2 3 4 5 6 7 8 9 10
Number of Levels

2

4

6

8

H
as

h
C

al
ls

RHHH R=3
RMT Resource Mapper

Tofino Compiler

1 2 3 4 5 6
Number of Levels

2

4

6

8

H
as

h
C

al
ls

RHHH R=5
RMT Resource Mapper

Tofino Compiler

1 2 3 4 5 6 7 8
Number of bitmaps

0.5

1.0

1.5

2.0

H
as

h
C

al
ls

MRB
RMT Resource Mapper

Tofino Compiler

Figure 19: RMT resource mapper vs. Tofino compiler: Hash Call

1 2 3 4 5 6 7 8
Number of Levels

1

2

3

S
A

L
U

UnivMon R=3
RMT Resource Mapper

Tofino Compiler

1 2 3 4 5
Number of Levels

1

2

3

S
A

L
U

UnivMon R=5
RMT Resource Mapper

Tofino Compiler

1 2 3 4 5 6 7 8 9 101112
Number of bitmaps

0.5

1.0

1.5

S
A

L
U

PCSA
RMT Resource Mapper

Tofino Compiler

1 2 3 4 5 6 7 8 9 10
hash bit length to get consecutive 1s

0.135

0.140

0.145

0.150

S
A

L
U

HLL
RMT Resource Mapper

Tofino Compiler

1 2 3 4 5 6 7 8 9 10
Number of Levels

1

2

3

4

S
A

L
U

RHHH R=3
RMT Resource Mapper

Tofino Compiler

1 2 3 4 5 6
Number of Levels

1

2

3

4

S
A

L
U

RHHH R=5
RMT Resource Mapper

Tofino Compiler

1 2 3 4 5 6 7 8
Number of bitmaps

0.25

0.50

0.75

1.00

S
A

L
U

MRB
RMT Resource Mapper

Tofino Compiler

Figure 20: RMT resource mapper vs. Tofino compiler: SALU

758 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 2 3 4 5 6 7 8
Number of Levels

2

4

6

S
R

A
M

UnivMon R=3
RMT Resource Mapper

Tofino Compiler

1 2 3 4 5
Number of Levels

2

4

6

S
R

A
M

UnivMon R=5
RMT Resource Mapper

Tofino Compiler

1 2 3 4 5 6 7 8 9 101112
Number of bitmaps

1

2

3

S
R

A
M

PCSA
RMT Resource Mapper

Tofino Compiler

1 2 3 4 5 6 7 8 9 10
hash bit length to get consecutive 1s

0.27

0.28

0.29

0.30

S
R

A
M

HLL
RMT Resource Mapper

Tofino Compiler

1 2 3 4 5 6 7 8 9 10
Number of Levels

2

4

6

8

S
R

A
M

RHHH R=3
RMT Resource Mapper

Tofino Compiler

1 2 3 4 5 6
Number of Levels

2

4

6

8

S
R

A
M

RHHH R=5
RMT Resource Mapper

Tofino Compiler

1 2 3 4 5 6 7 8
Number of bitmaps

0.5

1.0

1.5

2.0

S
R

A
M

MRB
RMT Resource Mapper

Tofino Compiler

Figure 21: RMT resource mapper vs. Tofino compiler: SRAM

1 2 3 4 5 6 7 8
Number of Levels

−0.050

−0.025

0.000

0.025

0.050

T
C

A
M

UnivMon R=3
RMT Resource Mapper

Tofino Compiler

1 2 3 4 5
Number of Levels

−0.050

−0.025

0.000

0.025

0.050

T
C

A
M

UnivMon R=5
RMT Resource Mapper

Tofino Compiler

1 2 3 4 5 6 7 8 9101112
Number of bitmaps

−0.050

−0.025

0.000

0.025

0.050

T
C

A
M

PCSA
RMT Resource Mapper

Tofino Compiler

1 2 3 4 5 6 7 8 9 10
hash bit length to get consecutive 1s

−0.050

−0.025

0.000

0.025

0.050

T
C

A
M

HLL
RMT Resource Mapper

Tofino Compiler

1 2 3 4 5 6 7 8 9 10
Number of Levels

−0.050

−0.025

0.000

0.025

0.050

T
C

A
M

RHHH R=3
RMT Resource Mapper

Tofino Compiler

1 2 3 4 5 6
Number of Levels

−0.050

−0.025

0.000

0.025

0.050

T
C

A
M

RHHH R=5
RMT Resource Mapper

Tofino Compiler

1 2 3 4 5 6 7 8
Number of bitmaps

−0.050

−0.025

0.000

0.025

0.050

T
C

A
M

MRB
RMT Resource Mapper

Tofino Compiler

Figure 22: RMT resource mapper vs. Tofino compiler: TCAM

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 759

An edge-queued datagram service for all datacenter traffic

Vladimir Olteanu ∗‡, Haggai Eran†#, Dragos Dumitrescu∗‡, Adrian Popa∗, Cristi Baciu∗,
Mark Silberstein†, Georgios Nikolaidis4, Mark Handley◦∗, Costin Raiciu∗‡

∗ Correct Networks, † Technion, ◦ UCL, 4 Intel, # NVIDIA, ‡ University Politehnica of Bucharest

Abstract
Modern datacenters support a wide range of protocols and
in-network switch enhancements aimed at improving perfor-
mance. Unfortunately, the resulting protocols often do not
coexist gracefully because they inevitably interact via queu-
ing in the network. In this paper we describe EQDS, a new
datagram service for datacenters that moves almost all of
the queuing out of the core network and into the sending
host. This enables it to support multiple (conflicting) higher
layer protocols, while only sending packets into the network
according to any receiver-driven credit scheme. EQDS can
transparently speed up legacy TCP and RDMA stacks, and
enables transport protocol evolution, while benefiting from
future switch enhancements without needing to modify higher
layer stacks. We show through simulation and multiple im-
plementations that EQDS can reduce FCT of legacy TCP by
2x, improve the NVMeOF-RDMA throughput by 30%, and
safely run TCP alongside RDMA on the same network.

1 Introduction

Data center networks suffer from a range of unique problems
that make it hard to effectively utilize the potential of the
underlying high performance redundant multipath network
topology. Notable issues include incast traffic patterns, flow
collisions and transient congestion due to flow-level load bal-
ancing, interference between low-latency request/response
traffic and bulk transfers, increasing requirements to offload
work from the host CPU to avoid host stack bottlenecks, and
the need to support special-purpose high performance proto-
cols such as RDMA in the same network as legacy protocols.

These are all partially solved problems. There is a strong
trend towards NIC offload, with datacenters deploying smart
NICs and increasing ASIC support for specific transport pro-
tocols being offered by NIC vendors. However, moving trans-
port state into NICs makes it harder for dissimilar protocols
to coexist, and risks embodying the status quo in hardware.

At the same time, the research community has proposed a
rich set of solutions such as phost[14], Homa[31], NDP [18],
1RMA [42] and Aeolus[20] which tackle incast and, to vary-
ing degrees, also address issues of load-balancing and low-
latency request/response traffic. What these solutions share is
a receiver-driven control loop that tightly manages inbound
traffic, eliminating large in-network queues. Each of these, by

itself, would be a substantial improvement on the status quo,
but datacenters cannot simply migrate to a single new trans-
port protocol. Even if there were buy-in as to which transport
protocol to adopt, there are far too many legacy applications
and operating systems that would need to be re-written. How
then can we take the best ideas from the research community
and deploy them in production while supporting a plethora of
legacy protocols ranging from vanilla TCP to RDMA?

One strawman solution would be to simply pick a low
latency receiver-driven transport protocol and tunnel all dat-
acenter traffic over it. The great advantage of such a control
loop is that it performs admission control to the physical net-
work, allowing very small switch buffers to be used while
still providing low end-to-end loss. Is it possible to use this
to provide a new datagram service that higher layer protocols
such as TCP, DCTCP or RDMA run over?

The difficulty is that TCP, DCTCP, RDMA and other pro-
tocols each have their own expectations when it comes to
sharing the underlying network. In particular, they use inter-
actions between flows mediated via queues in the switches to
drive their own control loops. We cannot just eliminate switch
queues and expect everything to still work - rather we need to
move the queuing from the switches back to the network edge,
either in the host or NIC. The low-latency control loop can
then clock packets from these edge queues into the network.

We have designed and implemented just such a layer called
Edge-Queued Datagram Service (EQDS). Rather than a regu-
lar transport protocol, EQDS provides a datagram service to
higher layers, implemented via dynamic tunnels. Its receiver-
driven control loop is loosely based on NDP and 1RMA[42],
but can be extended to utilize other in-network mechanisms
where these are available.

Moving the interaction between flows out of the switch
queues and back into EQDS edge queues provides many
advantages. The receiver directly controls when enqueued
packets from different senders enter the network, ensuring
isolation even when higher layer protocols run different con-
trol loops. For example, TCP and RDMA will not normally
coexist gracefully when sending to the same host, but EQDS
can mediate, eliminating loss and allowing fair sharing.

Different EQDS queuing disciplines can be also used for
different protocols, each providing appropriate feedback to
the higher layer control loop; this both improves higher layer
protocol performance, and it also allows dissimilar protocols
sending from the same host to be protected from each other.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 761

Socket API

Ke
rn

el
N

et

Verbs API

N
IC

Message API

U
se

r
N

IC

RoCEv2 MP-RDMA IRN Swift

Packet
Trimming

Priority
Queues

Pkt-level
ECMP

Flow-level
ECMP

Shared
buffersECN INTPFC

NDPHoma

1RMA

Vanilla
TCP

MPTCP DCTCP

DCQCN Timely HPCC

Figure 1: Fragmentation of datacenter networking

Adding new queuing disciplines to support innovative future
transport mechanisms is also simplified as they only need to
be deployed in the relevant sending hosts, not in switches.

Finally, EQDS uses packet spraying to balance load evenly
in the network core, avoiding flow collisions, and increasing
throughput. Legacy protocols such as TCP and RDMA do not
normally cope well with reordering, so EQDS implements a
reorder buffer in the receiver. With a conventional network
such a reorder buffer might deliver the highest latency seen
across all paths, but with good load balancing and short switch
queues we find that EQDS reorder buffer latency is minimal.

In this paper we detail the design and implementation of
EQDS and its on-demand zero-RTT tunnel protocol, and eval-
uate it running both natively in Linux hosts and offloaded to
two brands of smart NIC. We show that the EQDS control
loop operating on very short timescales does not adversely af-
fect higher layer control loops such as TCP’s Cubic or RDMA
using DCQCN. Rather, it allows diverse higher-layer control
loops to co-exist gracefully, protects latency-sensitive appli-
cations from queuing delays caused by bulk transfers, while
increasing throughput by eliminating flow collisions.

2 Motivation
IP has been the narrow waist[7] of the Internet stack since
from the early days of the Internet, providing basic end-to-end
service. In reality, the narrow waist is not just IP: a functioning
Internet also assumes some form of TCP-compatible conges-
tion control and sufficient in-network queuing for it to do its
job, though this lacks a clear layer in the stack.

This lack of abstraction has particularly hurt datacenter net-
working. Here, a plethora of work has pushed optimizations
across boundaries, including to the host stack, switches or
both. As a result of all these enhancements, what has emerged
are multiple parallel stacks, each assuming a slightly differ-
ent “basic” datagram service, that must be isolated from each
other in the network to avoid them fighting (see Fig. 1). Fur-
ther, optimizations for one stack often hurt the performance
of others in the same network.

Many have improved on TCP congestion control[1, 28, 44],
reducing vanilla TCP’s need for large switch buffers. These
TCP’s are still built upon basic datagram service though, and
probe network capacity to sense congestion. In so doing they
interact with each other via queues, increasing latency.

Even datagram service itself has been tweaked, with many
enhancements aimed at improving service for certain traffic
classes, as in Fig. 1. For example, RoCEv2 can use PFC to
provide lossless service as assumed by RDMA; this brings its

own set of unique feature interaction problems [16, 29].
Protocols like TCP and RDMA also assume largely in-

order delivery from the underlying datagram service. In dat-
acenters, in-order delivery is provided by flow-level ECMP,
though this wastes capacity in Clos topologies. To better use
multipath networks, variants of these protocols have been
proposed [38, 26, 29] but rarely deployed. Another source
of performance problems as network speeds have increased
has been the end-host stack implementation itself. Even TCP
resorts to segmentation and checksum offloading, but appli-
cation writers often use kernel bypass mechanisms such as
DPDK or even offload all the work to the NIC using RDMA,
and in so doing impose unique dynamic load on the network.

The web of dependencies between higher layer protocols
and in-network enhancements makes deploying new proto-
cols increasingly difficult. The root cause of the problem is
that basic datagram service forces diverse higher layer pro-
tocols to interact via queues in the network. We argue that
in-network queuing, beyond the minimum needed to smooth
fan-in, is antithetical to building a high performance low-
latency general-purpose datacenter network.

We propose a novel Edge-Queued Datagram Service as
the new narrow waist for the datacenter networking stack.
To transport stacks above, EQDS offers a what looks like a
conventional datagram service via virtual interface queues in
the host that buffer traffic and provide appropriate congestion
feedback signals. EQDS then sends this traffic when possible,
utilizing diverse in-network mechanisms to maximize utiliza-
tion and minimize in-network queuing latency. EQDS shares
the network at the hosts, allowing conflicting transports to run
side-by-side on the same network.

3 Concept
We introduce the EQDS concept by means of example. Con-
sider Figure 2a: two TCP senders send to a receiver across
a conventional network where the bottleneck is at the final
hop as is common in datacenters [5]. TCP needs to build a
queue to sense congestion and back off, forcing any other
flow sharing the queue to behave similarly to share the link
reasonably. RDMA or other transports (see Figure 1) that do
not will cause problems and need to be isolated from TCP.

In contrast, the EQDS concept is shown in Figure 2b. The
underlying latency across modern datacenter networks is so
low that protocols like NDP, Homa and Aeolus can use credit
mechanisms whereby the receiver clocks packets from the
sender as required, ensuring a standing queue never builds in
the network. Protocols like TCP still need a queue to drive
their control loop, but EQDS moves this queue to the sending
hosts, where it is under the receiver’s control. If many TCP
senders create an incast, the default behavior they observe is
almost identical to what would happen if the last hop switch
runs fair queuing with a large amount of buffering.

As the queuing has been removed from the network itself,
EQDS can run different queuing disciplines in the sending

762 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

TORTCP 1

TCP 2
TCP

TOR

IF

IF
IFTOR

(a) Conventional datacenter

TCP 1

TCP 2
TCP

TOR

TORIF

IF
IF

TOR
EQ
IF

credit

credit

EQ
IF

EQ
IF

(b) EQDS moves queuing to senders

DQ
IF

TCP

RDMA

TCPTOR

TORIF

IF
IF

TOR

credit

creditr

RDMA

DCQCN

Droptail

EQ
IF

EQ
IF

EQ
IF

Fair share

(c) Fair share between dissimilar protocols

TCP 1

TCP 2
TCP

TOR

TORIF
IF

IF
TOR

Reorder
queuesPer-packet

ECMP

EQ
IF

EQ
IF

EQ
IF

(d) EQDS can utilize packet spraying

Figure 2: Overall EQDS concept

EQDS Virtual Interface (EQIF), as appropriate to the traffic
being carried. Figure 2c shows a legacy TCP sender coex-
isting with an RDMA sender, with the bottleneck link being
shared fairly, or with a proportional share, if that is deemed
appropriate by the network or host administration policy.

Finally, Figure 2d shows EQDS using per-packet ECMP
(aka packet spraying) in the underlying network to minimize
latency and increase network capacity. Few current transport
protocols cope well with the level of reordering this usually
causes, but as EQDS keeps network queues very small, the
reordering is easily managed by a short reorder queue in the
receiving EQIF, so it is hidden from the higher level protocol.

In summary, the key EQDS concepts are: (1) move queuing
out of the network leaving just the bare minimum required;
(2) queue traffic in the sending host; release it when the re-
ceiver requests it; (3) run appropriate queue disciplines for
different classes of application as they require; and (4) use
per-packet ECMP to load-balance evenly so as to minimize
latency but, by default, hide it from higher layer protocols.
The EQIF virtual interfaces then become the control points
for the network, enforcing sharing policies.

4 Design

To implement EQDS, we need four main components:
• One or more EQIFs on the sending host, which implement

queuing disciplines to support higher level protocols;

• One EQIF on the receiving host, which implements a short
reorder queue for best-effort in-order delivery service to
protocols that are intolerant to reordering;

• A mechanism to encapsulate packets reliably across the
network from sending EQIF to receiving EQIF;

• An edge-to-edge control loop to clock packets from send-
ing EQIF to receiving EQIF.
With these in place diverse higher-layer protocols are car-

ried over EQDS, which hides lower-layer in-network mecha-
nisms. The edge-to-edge control loop may differ in different
datacenter environments or even within one datacenter, de-
pending on switch capabilities. In effect, EQDS has become
the new narrow waist of the datacenter protocol stack.

In the virtualized protocol stack, EQDS operates at the
same layer as VXLAN, encapsulating higher-layer traffic go-
ing to EQDS-capable destinations. To provide datagram ser-
vice, EQDS needs to provide on-demand tunneling from EQIF
to EQIF without prior setup, without spending an RTT per-
forming a handshake to establish control state, and with the
expectation that packets sent in the first RTT will be reordered
by per-packet ECMP. This demands a novel tunnel protocol
(§5). EQDS tunnels are unidirectional; two are setup, one in
each direction, if user traffic is bidirectional.

EQIF per-destination tunnel state is established on packet
receipt at the sender, and established at the receiver using a
zero-RTT protocol. This state can be unilaterally discarded
when idle at any time by either side to reduce memory usage
and will simply be reestablished as needed.

4.1 EQDS control loop

Critical to EQDS performance and minimizing in-network
queuing is the edge-to-edge control loop. EQDS allows dif-
ferent control-loop mechanisms to be used depending on the
underlying network capabilities.

For a fully provisioned network our preferred in-network
mechanism is packet trimming, which allows EQDS to use
an NDP-derived control loop. This allows a burst of packets
to be sent in the first RTT before credit-based control from
the receiver takes over for subsequent RTTs. The sending
EQIF keeps packets until they have been acknowledged by
the receiving EQIF, or retransmits them on receipt of a NACK.
In this manner, EQDS provides a highly reliable service, but
it does not guarantee no packet loss whatsoever. A full re-
liability guarantee would prevent EQDS managing its own
state effectively, risk resource starvation attacks, and would
be pointless as full reliability requires end-to-end acknowl-
edgment whereas EQDS may be implemented in the NIC so
cannot protect data all the way to the receiving process.

Where packet trimming is unavailable, EQDS uses a
1RMA[42]-derived mechanism where the sending EQIF re-
quests credit from the receiver, or it can use a Homa/Aeolus-
derived mechanism where the first RTT of data is sent using

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 763

EQ
DS

Native
DPDK

TCP/IP

Legacy
app

RDMA

Storage
app

A

EQ
DS

B

TCP/IP

VM

TCP/IP

VM

RDMA Native

EQ
DS

DPDK
TCP/IP
LegacyStorage

C

EQ
DSD

TCP/IP

VM

EQDS tunnels

Sending
EQIF

Receiving
EQIF

Receiving
EQIF

Receiving
EQIF

Sending
EQIFs

Figure 3: Multiple stacks run on the same substrate.

low-priority service. In an underprovisioned network, core
network congestion is also possible, though it should be rare
if per-packet ECMP is used. In such cases, in-band network
telemetry (INT) might by used to implement an HPCC-style
control loop. Our current implementation supports both NDP-
style pro-active transmission and request-to-send. We expect
future networks to innovate further in this area.

EQIFs. EQDS allows multiple protocol stacks to run on the
same network substrate, as shown in Figure 3. The DPDK-
based stack on host A is sending to its peer at D while a virtual
machine at B also uses TCP to send to the VM at D. Without
EQDS, the DPDK stack will saturate the link to D, starving
TCP. This could be prevented using fair queuing in D’s ToR
switch, but EQDS achieves the same effect without needing
to configure switches and with finer grain control.

At D, a single receiving EQIF receives the flows from A
and B. It maintains state (reorder queues, sequence numbers,
etc) for incoming EQDS tunnels, allowing it to effectively
manage all incoming traffic. By default, D’s receiving EQIF
will send equal credits to A and B, ensuring a fair share and
no overload. Proportional sharing or strict priority can also
be achieved: the inbound sharing policy can be configured as
needed - both by the network administrator and, if the VM
and native stacks are run by the same user, by them too.

Three different stacks are in use at A: there are RDMA and
TCP flows to C, a TCP flow to a VM at B and the DPDK
native flow to D. This results in three sending EQIF virtual
interfaces at A for the three different edge queue disciplines.
The two TCP flows share the same sending EQIF which
runs a TCP-compatible queue discipline. All three EQIFs at
A cooperate using deficit round robin, so if the total traffic
saturates A’s outgoing link, they will share it fairly (or unfairly,
if that is the configured policy).

To summarize: an EQIF is a virtual interface that imple-
ments a specific queue discipline or feedback mechanism to
higher-layer protocols. One sending EQIF contains multiple
queues, each feeding an EQDS tunnel to a single host. Multi-
ple transport flows from multiple VMs can share one EQIF
so long as the protocols used can coexist in the same queue.

flags next
proto sequence number

pull target path
ID

sender
ID

0 31

flags pull
sender ID ack number

pull number busy time

Data Packet Header Control Packet Header0 31

Figure 4: Tunnel Headers for Data / Control Packets

5 Tunnel protocol
To carry data from sending EQIF to receiving EQIF we need
a new tunnel protocol. The primary requirements are:
• A receiving EQIF should clock packets from its set of

sending EQIFs so as not to cause in-network queues to
build. At the least, this means it will send credit at a rate
that does not exceed the receiver’s access link speed.

• A receiving EQIF can choose how to distribute credits to
senders, with the default being to implement a fair share.

• The tunnel should expect per-packet ECMP service and
be robust to reordering this causes. Where possible, the
sending EQIF will determine the path taken by each packet.

• The tunnel should provide best-effort reliable and in-order
delivery from the receiving EQIF to higher layer protocols.
Losses and reordering should be rare enough to minimally
impact the performance of higher layer protocols.

• The tunnel should support unreliable, out-of-order delivery
to higher layer protocols that prefer minimal latency.

• The tunnel should come up on demand with no pre-data
handshake required, and be discardable at any time. If the
endpoints end up out of sync, it should self-synchronize.

• The tunnel should be able to take advantage of a range
of underlying network enhancements without higher layer
protocols needing to be aware of them.

• Both sending and receiving EQIFs should be able to im-
pose policies for sharing, configured by the network op-
erator and by the users (to the extent user policy does not
conflict with operator policy).

• EQIFs must be capable of being implemented in fast NIC
hardware with bounded memory resources.
These requirements necessitate an unusual tunnel protocol;

it has many aspects of a transport protocol, but is soft-state,
being established, dropped and reestablished based on packet
arrivals, yet it provides fine-grain closed-loop control.

At a basic design level, EQDS is a tunneling protocol with
an NDP-derived control loop, that runs on top of UDP. It can
carry multiple types of traffic, including IP and VXLAN. Its
control fields (shown in figure 4) were meant to complement
VXLAN and there is no overlap in functionality between
the two; indeed, EQDS could be implemented as a stateful
extension to VXLAN encapsulation if required 1.

Data Clocking. As with NDP, the receiving EQIF sends
PULL packets containing credit to the sending EQIF; the

1For testing, we encapsulated plain IP traffic, rather than VXLAN.

764 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

sending EQIF then sends data packets matching that credit
from the corresponding tunnel queue in response. The receiv-
ing EQIF paces the sending of credit so that after the first RTT
the aggregate arrival rate matches the incoming link speed.

To summarize NDP as described in [18]: when a sender
starts, one RTT of data is sent without waiting for credit; after
that, the sender waits for PULL packets from the receiver.
This means that there can be an incast in the first RTT where
loss occurs. NDP copes with this using packet trimming - the
payload is removed from packets that would overflow the
queue, and just the header is forwarded to the receiver. This
makes the network lossless for metadata, though not for data,
and informs the receiver of demand. The receiver can then
request retransmission of trimmed data and transmission of
new data using PULL packets. In a large incast it may take
some time to send a PULL to a sender, so the receiver ACKs
or NACKs each data packet so that the sender knows which
packet buffers to free and which to add to its retransmit queue.

Where the underlying network supports trimming, an
EQDS tunnel uses the NDP mechanism as described above
for the first RTT, as it minimizes latency. EQDS supplements
this with a request-to-send mechanism, where the sender di-
rectly requests credit from the receiver. This is used when
trimming is unavailable and for intermittent bursty flows.

Conceptually, each EQDS tunnel maintains a constant
bandwidth-delay product (BDP) of credit which is passed
between sender and receiver. This credit either starts at the
sender (NDP-like) or at the receiver (RTS). Credit flows from
sender to receiver with data packets and from receiver to
sender with PULL packets. EQDS differs from NDP in how it
keeps this window constant in the presence of control packet
loss, as NDP failed to do so in corner cases.

EQDS credit is expressed in bytes. To send a packet of
size b bytes, the sending EQIF must possess b bytes of credit.
PULL packets contain a pull number which starts at zero and
increments for each PULL sent to a source. When the highest
pull number seen by the sending EQIF increases by n, this
grants n MTUs of credit.

When a sending EQIF sends data, a pull target field in
the header indicates to the receiver how much credit is de-
sired beyond the current pull number. This is capped at one
bandwidth-delay product (BDP) - typically 10 to 30 packets.

The receiving EQIF maintains an active sender list (ASL).
An active sender is an incoming EQDS tunnel that has out-
standing data to send. Every MTU-time the receiving EQIF
will send one MTU of credit to the sender at the head of the
ASL. If this causes the pull number to reach that sender’s pull
target, this credit will satisfy all the known demand from that
sender. The sender will then be removed from the ASL and
placed in an inactive senders set. If the pull number does not
reach the pull target, the credit sent will not yet be sufficient,
so the sender is re-inserted at the tail of the ASL. In this way
all active senders get a fair share of capacity and credit is not
sent to sending EQIFs that have no queued data.

The ASL is similar in concept to the NDP pull queue, but
unlike NDP it ensures that a one-BDP credit window invariant
always holds. Conceptually, the sum of credit stored at the
sender, packets in flight, pulls in flight carrying credit, and
credit implicitly stored in the ASL entry at the receiver is a
constant so long as sufficient demand remains.

Implementing the ASL as a FIFO ensures incoming traffic
is split fairly by default. To implement other sharing policies,
a PIFO queue[43] can be used in place of a FIFO, allowing a
wide range of policies to be implemented.

To avoid sources going idle and then immediately bursting
again, the receiving EQIF tells senders the minimum time
its access link will be saturated using the busy time field in
control packets (the pull targets inform the receiver of the
total queue size at every sender). Even in trimming networks,
if a bursty sender restarts within this busy time, it always uses
RTS before sending, as bursting would cause unnecessary
trims; senders can burst after the busy time elapses.

Tunnel setup and teardown. A sending EQIF creates tunnel
state when packets for a new destination arrive. It picks a
sequence number with certain constraints (see Appendix A for
details) and starts encapsulating packets without waiting for
a handshake to complete, setting the SYN flag in all packets
until it receives a matching SYN +ACK packet in response.
This informs the receiver of the new tunnel and is robust to
reordering caused by per-packet ECMP.

Either side can unilaterally drop tunnel state. As an opti-
mization, each will inform the other when it does so, but such
a teardown does not need to be signalled reliably, and neither
end keeps time-wait state. Later, if new packets arrive at the
sending EQIF, a new tunnel will be established. If a receiver
tears down a tunnel from a sending EQIF that has queued
packets, a new tunnel is immediately set up.

This simplicity allows the simple EQDS state machine in
Appendix A, it allows EQDS to be self-synchronizing if the
two endpoints end up in different states, and it minimizes
state requirements - something that is important for EQDS
implementation in hardware. We can get away with such a
lightweight protocol because the EQDS service model only
guarantees a best-effort attempt to avoid loss, duplication, or
reordering. A conventional transport protocol like TCP needs
to provide firmer guarantees to the application.

Reorder Queue. Per-packet ECMP greatly improves load
balancing, reducing in-network queuing and latency, but may
cause reordering. Trimming also causes reordering while
awaiting retransmission. To avoid performance problems with
higher-layer protocols, EQDS maintains a per-tunnel reorder
queue in the receiving EQIF. With minimal in-network queu-
ing, the delay difference between paths is small, so this queue
does not grow much and is bounded by a BDP.

Oversubscribed networks. When the network core is over-
subscribed and becomes a bottleneck, aggressive receiver-
driven transports can result in high trim rates or in high la-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 765

EQIF 1

Wire

Destination
lookup Encap

EQIF 1 packets

EQIF 2

In Flight

RTX
Destination
lookup

Encap
EQIF 2 packets

Encap
to host C

Encap
to host B

to host A

to host A
Congestion
state for A

Figure 5: Transmit datapath for sending EQIFs

tency or loss when RTS is used. In such cases, EQDS will
need to be enhanced to take into account other congestion
signals such as ECN, latency or even in-band network teleme-
try[32] in addition to receiver pacing. As the receiver-driven
transport handles the high-dynamic-range incast case, such
congestion management only needs a relatively limited dy-
namic range and can be implemented by either the receiver
reducing its pull rate or by then sender reducing its pull target.
Developing such mechanisms is future work.

Incremental deployment. EQDS only encapsulates traffic
to configured internal address ranges, so external and legacy
traffic will also be present in a datacenter. How will they
coexist? EQDS’s packet spraying diffuses the effects of a
flow across many core links, greatly reducing its impact on
any legacy single-path flow. In our testbed when trimming is
enabled, we use two priority classes to separate EQDS and
non-EQDS traffic and ensure low latency for EQDS via small
buffers even in the presence of legacy “elephant” flows.

Strict prioritization is probably undesirable as load levels
rise, but weighted fair queuing between EQDS and non-EQDS
traffic classes can maintain low latency for EQDS flows in the
core, so long as the sprayed load-balanced EQDS aggregate
does not exceed its allocated share. On ToR uplinks where
EQDS traffic is less diffused, legacy “elephant” flows may
impact some EQDS paths more than others. EQDS offers
accurate per path latency and loss statistics that can be used
to perform load-adaptive routing between paths, avoiding
transient bottlenecks. Implementing these is future work.

6 Sending EQIF Specialization

Different types of traffic have different expectations of the
underlying datacenter network. While a single EQDS tunnel
protocol clocks all traffic from sending EQIF to receiving
EQIF, higher-level protocols with differing network expecta-
tions are supported by different specialized sending EQIFs.

Fig. 5 shows how sending EQIF behaves as a virtual inter-
face. Whenever a higher-layer protocol sends packets via that
interface, EQDS encapsulates and enqueues them, pending
sufficient credit being available. The sending EQIF maintains
one queue per tunnel, allocated on demand if one does not
already exist. When a packet is sent, it is moved from the send
to the in-flight queue, but not freed until it is ACKed. If is it

VM1
VM1

Network interface ARM core

Uplink rep

RDMA
EQIFVF1 VF1 rep

Guest VM1

RDMA
stack

Host Smart NIC

Physical port

Figure 6: RDMA EQIF implementation.

NACKed or a retransmit timer expires, it is moved to the tun-
nel’s retransmit queue. When credit is available, retransmitted
packets are sent first, then new ones.

Each sending EQIF provides a specific type of service.
We currently support three service classes: TCP-compatible,
RDMA, and native. They differ in their queue discipline and
in how feedback is presented to end-to-end traffic.

When multiple sending EQIFs are in use at the same host,
as in Figure 5, credit avoids overloading the receiver’s down-
link, but credit from multiple receivers can exceed the uplink
speed. When this happens, deficit round robin is used to share
the physical interface fairly between the various EQIF queues.
Queue priorities can also be configured if desired.

Multiple host stacks or virtual machines sending the same
traffic class can share the same EQIF. For example, QUIC
and TCP may use the same TCP-compatible EQIF, whereas
RDMA would use a different EQIF. None of these legacy
stacks need be aware they are running over EQDS.

TCP-compatible EQIF Class. Our TCP EQIF implements a
simple drop-tail queue for non-ECN traffic and a RED queue
for ECN-capable traffic. The goal of the queue is to absorb
traffic when TCP is sending faster than the receiver wants.
When the queue fills, a packet will be dropped. The queue
needs to be large enough that TCP’s congestion control can
operate and saturate the receiver’s link - typically this will be
upwards of 30 packets.

The worst case for TCP is when many flows incast to the
same receiver. With a default ten-packet initial window, pack-
ets will be queued in the EQIF queue until the receiver sends
credit, which may take some time. TCP’s 250 ms minimum
RTO time helps here - even large incasts can usually com-
plete within 250 ms. If packets are queued longer than this, an
RTO may occur, but our experience is that even this has little
impact on performance; TCP detects a spurious timeout via
the Eiffel algorithm[37, 36], corrects its congestion window,
and updates the RTO to prevent further timeouts.

We find that vanilla TCP running over EQDS almost always
outperforms TCP running natively, even when not compet-
ing with incompatible flows. Much of this win comes from
EQDS’s use of per-packet ECMP.

RDMA EQIF Class. RDMA requires a separate EQIF to
avoid fighting with other traffic, to avoid loss seriously im-
pacting RDMA performance, and to provide appropriate flow
control feedback to the RDMA implementation.

766 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

RDMA is typically implemented in the NIC. Ideally an
RDMA EQIF implementation would be coupled with the
hardware transport implementation to directly flow-control
RDMA traffic. We currently deploy our prototype RDMA
EQIF in a smart NIC, as shown in Fig. 6. We use port represen-
tors [8] to interpose on RDMA-enabled devices the SmartNIC
exposes to the host and its virtual machines.

Our EQIF does not modify the NIC’s RDMA implementa-
tion, but it does need to tell the sender to slow down when the
TX queue to a destination grows. Depending on the SmartNIC
model, we use different techniques to control the sending rate
of the RDMA engine. For the Stingray, we issue PFC PAUSE
packets to slow down the sender; this works well, but it has
the side effect of slowing all traffic coming out of the RDMA
engine, not just the one to the backlogged destination. The
BlueField 2 supports DCQCN, so our implementation uses
this to control RDMA. We could use ECN to signal DCQCN
flows to slow down, but we prefer to send congestion notifi-
cation packets (CNPs) directly from the sending EQIF to the
RDMA sender. This reduces the length of the DCQCN control
loop and allows one-time tuning of the DCQCN parameters to
this constant delay. Unfortunately, RDMA RC packets lack
the source QP number in their headers, which is needed for
sending back a response, so we develop a connection tracking
module [10] for RDMA CM, enabling CNP generation.

Our current smart NIC implementation moves packets from
the host to the ARM cores and then to the wire; with bidirec-
tional traffic the SmartNIC’s interconnect can become a bot-
tleneck. It should be possible to only move the packet headers
to the ARM cores, but our implementation does not support
this yet. To avoid our results being affected we configure our
RDMA testbed to a lower rate (10 Gbps). A NIC designed for
EQDS would not add this additional latency. Despite this, our
implementation increases RDMA performance in many cases
while allowing coexistence with other protocols.

The Native EQIF is the preferred option for performance-
oriented, EQDS-aware transports. It uses a shared memory
area to store packets with lockless descriptor rings used to
move packets to and from the EQIF via a zero-copy API. This
EQIF offers additional low level information to host transports
including the size of the TX buffer to the destination, the
size of the destination’s pull-queue, per-packet and per-path
network RTTs and delivery notifications.

Latency information provided by the Native EQIF is similar
to that provided by 1RMA, so for cases where core congestion
is common, delay-based congestion controllers such as Swift
[24] or Timely [28] can be implemented on top.

We have implemented eqdsperf,a performance testing tool
over the Native EQIF, as well as a lightweight UDP stack that
is optimized to run over EQDS. Applications using the UDP
socket API can simply be linked to our stack, either statically
at compile time, or dynamically using LD _PRELOAD.

7 Implementation

We implemented two versions of EQDS, one using DPDK
and one as a Linux kernel module. The goal is to add minimal
overhead, but inevitably there are tradeoffs to be made.

Our DPDK implementation was built with performance in
mind and uses two CPU cores, regardless of load. These can
be host CPU cores, but it is preferable to use the ARM cores
on a smart NIC. The main thread takes turns reading packet
batches from the host-facing and network-facing NICs. Once
read, packets are processed to completion. At the sender, this
includes NACKs and PULLs triggering the (re)transmission
of queued packets, and at the receiver trimmed packets elicit
NACKs while packets that fill a hole at the head of the reorder
queue trigger the release of waiting packets. The main thread
also checks for timer expiration, largely eliminating the need
for synchronization. A second thread is used to pace PULLs
and to send deferred ACKs, providing accurate PULL pacing at
the expense of burning a second core. When the NIC supports
fine-grained pacing (e.g. Intel Columbiaville), EQDS can
offload pull-pacing to the NIC, reducing CPU usage.

Our kernel implementation is aimed at being cheap and
easy to deploy. As is usual on Linux, outgoing packets are
processed in the context of the sending process. They are
captured by a hook after routing has taken place. If there is
enough credit, processing continues until they are handed to
the NIC’s driver. Inbound, EQDS acts like a UDP service;
all incoming packets, both data and control, are processed
in a soft IRQ and fed to a kernel UDP socket. Data packets
that can be forwarded straight away are re-injected into the
IP stack after decapsulation. If control or data packets have to
be sent back, a Layer 3 socket is used.

High Resolution Timers are used for PULL pacing with
their handlers executed in a soft IRQ. The downside of using
kernel timers is that their timing is at the mercy of the Linux
scheduler. This adds jitter to the PULL pacing. To mitigate
such jitter, senders must use higher window values than usual.

Offloads are key to achieving high TCP performance with
Linux, so our implementation leverages both TSO and GRO.
With TSO, TCP will send large segments, EQDS will en-
capsulate them, then an EQDS-unaware NIC will split the
encapsulated packet, copying the extra headers verbatim in
front of the inner TCP/IP headers. The problem is that all
the split packets will have the same EQDS sequence number.
Fortunately, due to a peculiarity in how TSO is performed,
there is a workaround. A NIC increments the IP ID of ev-
ery segment following the first. We send all EQDS packets
with an IP ID of zero, and leave gaps in the EQDS sequence
space. The receiver then adds the received IP ID to the re-
ceived sequence number to obtain the full sequence number.
Future EQDS-aware NICs would remove the need for this
workaround. Inevitably, using TSO causes a burst of unpaced
packets to be sent which, as with timer jitter, requires a small
increase in the window used by EQDS.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 767

Figure 7: Permutation throughput in the
T2 testbed (BlueField-2 hosts).

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12

C
D

F
 (

%
)

Throughput (Gbps)

TCP/EQDS
NDP
TCP

MPTCP

Figure 8: Simulation: permutation
throughput in a 1024-node Fat Tree.

 0

 25

 50

 75

 100

 1 2 4 8 16 32 64 128

C
D

F
 (

%
)

FCT (ms)

TCP over EQDS/NDP
TCP over EQDS/RTS

TCP Baseline

Figure 9: FCT: 1MB flows from random
servers, closed loop (T1 testbed)

8 Evaluation

Datacenter networks have been shown to suffer from a num-
ber of pathologies including reduced throughput due to flow
collisions, high loss or delay due to incast, inflated latency
for RPC-style traffic and a dependency on compatible conges-
tion control mechanisms for network sharing. EQDS’s main
goal is to enable the deployment of known solutions to all
these problems in actual networks, and to make the resulting
performance available to unmodified host stacks.

The first part of our evaluation examines whether EQDS
helps mitigate these known pathologies and can boost per-
formance for regular datacenter applications. To ensure the
results are not specific to one host stack or deployment model
and do not depend on network support, we experiment with
unmodified TCP/IP (Linux) and RDMA NIC stacks (Blue-
Field 2, CX4), run EQDS both on the host and on two smart
NICs, and use both legacy and trimming-enabled networks.

We find that EQDS helps boost throughput of unmodified
TCP/IP and RDMA stacks by up to 30-40%, mitigating the
effects of collisions in a permutation traffic matrix (§8.1)
and for NVMe over Fabric traffic. It achieves near-perfect
incast behaviour with very small in-network queues both with
trimming (our testbed and simulation) and RTS (on Amazon
EC2), halving the latency and doubling the throughput of a
micro-service based social network application benchmark
on busy networks, as well as speeding up memcached by
10-30x (§8.2). Finally, we show that EQDS helps conflicting
upper-layer congestion controllers nicely share the underlying
network without any in-network support (§8.3).

In the second part we seek to understand whether EQDS
introduces problems of its own. The biggest concerns are
host overheads such as EQDS software’s memory and CPU
costs, its ability to handle high link speeds and dependence
on specific hardware for performance.

In our evaluation we used two small-scale testbeds: T1 is
a testbed we used for TCP/IP tests (10 servers) and T2 for
mixed RDMA and TCP/IP tests (6 servers). Both testbeds
used leaf-spine topologies and support trimming, but can also
be configured with drop-tail/ECN; a detailed testbed descrip-
tion is provided in Appendix B. To test behaviour at scale and
behaviour over legacy networks we use a large scale deploy-
ment in Amazon EC2 as well as simulation.

8.1 Improving throughput

TCP and RDMA require in-order packet delivery to function
well, so datacenters switches hash the packet 5-tuple to select
one of many equal-length paths to the destination. However,
when the number of flows is small and the flows are high band-
width, such placement can randomly place multiple flows on
the same link causing congestion. Prior work has shown that
flow collisions degrade performance in folded Clos topolo-
gies [11, 38] by up to 60% in the worst-case where a per-
mutation traffic matrix is used, where each host sends to and
receives from one other host. EQDS’s per packet multipath
should avoid such performance loss, at the cost of performing
reordering in the receiving EQIF. We have run permutation
experiments for RDMA in testbed T2 and for TCP in testbeds
T1 and T2 as well as in simulation at larger scale.

Figure 7 shows that EQDS successfully spreads single flow
TCP and RDMA traffic over all the available paths without
causing reordering problems. TCP and RDMA flows running
over EQDS achieve 22Gbps on average (maximum 24Gbps)
in a permutation traffic matrix, compared to an average of
12-14Gbps without EQDS.

Our simulation results in Figure 8 explore behaviour at
larger scale (FatTree with k=16, 1024 servers, 10Gbps NICs).
Flow collisions hurt TCP badly, yielding only 40% of the
network capacity. Multipath TCP[38], a variant of TCP that
spreads traffic over multiple subflows (8 in our experiment)
fares better with mean utilization close to 90%. NDP’s packet
spraying enables it to achieve near-optimal throughput. Fi-
nally, TCP over EQDS benefits from packet spraying but
avoids the costs of reordering which is handled by EQDS,
achieving similar performance to NDP.

Permutation traffic matrices highlight worst-case behaviour,
with infinite flows and the smallest number of flows possible.
Do collisions actually matter for other traffic matrices, for
shorter flows, and for real applications? We examine this next.

1MB flows, random traffic matrix. On our testbed we run a
workload where each server downloads a 1MB object from
another randomly chosen server in a closed-loop, mimicking
a storage workload over TCP. We measure flow completion
times and plot them in Figure 9. EQDS lowers median and
95th percentile completion times by 2.4x and 2x respectively.

We also ran the same experiment with EQDS using request-

768 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 20

 40

 60

 80

 100

 8 16 32 64 128
 256

 512
 1024

 2048

36us

570us

C
D

F
 (

%
)

Ping latency (us)

Baseline idle
EQDS idle

EQDS busy
Baseline busy

Figure 10: Ping latency: target is idle or
busy with 9 incoming TCPs (T1 testbed).

 1

 4

 16

 64

 256

 1024

 4096

 16384

 0 100 200 300 400 500 600 700 800 900 1000

R
e

q
u
e
st

 la
te

n
cy

 (
m

s)

Offered load (req/s)

Native
Native Busy

EQDS
EQDS Busy

Figure 11: DeathStarBench in the T1
testbed: request latency

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600 700 800 900 1000

T
h

ro
u

g
h

p
u
t

(r
e

q
/s

)

Offered load (req/s)

Native
Native Busy

EQDS
EQDS Busy

Figure 12: DeathStarBench in the T1
testbed: throughput

to-send and without trimming support in the switches. The
flow completion times (FCT) for this setup are, as expected,
slightly larger than the NDP-based implementation due to
the additional RTT needed at the beginning of transfers. Still,
EQDS/RTS halves the completion time of TCP compared to
baseline, both in the median and at 95%. At 99% all variants
have similar FCTs, and beyond that EQDS can take longer
due to missing optimizations in the code for short flows.

NVMeOF. We run a disaggregated storage service using a
Storage Performance Development Kit (SPDK) NVMeOF-
RDMA target with a null block device (i.e. no storage access)
to stress the network subsystem. The NVMeOF-RDMA pro-
tocol is target-driven, with the server reading or writing to
memory buffers in the client after coordinating the access via
rendezvous. This involves both latency-sensitive operations
for control and throughput-hungry operations for data.
We run the NVMeOF targets and clients on separate ToRs.
Each client accesses the targets round-robin, using the SPDK
perf utility to generate the workload. Figure 13 shows the
throughput of random writes and reads of 64 KB blocks while
varying the queue depth of the NVMeOF target. EQDS with
its multipath support increases both peak read and write
throughput and reduces standard deviation. Note that EQDS
requires deeper NVMeOF queues to achieve higher through-
put due to the added latency of our BlueField setup (§8.5).

8.2 Improving application latency

In deployed networks, there is a strict tradeoff between sup-
porting many-to-one incast traffic gracefully, typically by pro-
visioning large shared buffers in the network, and the latency
of request-response applications such as micro-services or in-
memory key-value storage (e.g. memcached). EQDS solves
this trade-off by moving the buffering to the sending hosts,
promising to achieve both low latency and good incast be-
haviour simultaneously.

Many to one traffic. To understand the baseline behaviour,
we run large many to one workloads (850 iperf senders to the
same receiver) in both simulation and on Amazon EC2 VMs.

We use htsim simulation to understand the behaviour of
TCP NewReno when the destination link runs at 10Gbps, and
we vary the size of bottleneck switch buffer. Figure 14 is

Figure 13: NVMeOF in the T2 testbed (BlueField-2).

a CDF of the flows’ mean throughput. When the buffer is
small (approx. 1 packet per flow), there is a large variance
of throughput, with many flows starved. As we increase the
buffer to around 100 packets for each flow, TCP can share
capacity much more evenly, and there is no starvation. We also
show the result when the switches implement fair-queuing,
which further reduces variance and reduces buffer needs.

We run the same workload over EQDS, with the EQIF per-
destination buffer set to 100 packets and a 15 packet buffer at
the bottleneck. EQDS perfectly shares the bottleneck capacity,
emulating a fair queue at the bottleneck link.

While our simulations show that TCP many-to-one requires
significant buffering to work well without EQDS, what is the
actual behaviour in production datacenters? We rented VMs
on Amazon EC2 (m5.8xlarge for the receiver, and m5.xlarge
for all others, 10Gbps link speeds) and deployed the Linux
kernel version of EQDS, configured to run in RTS mode, as
EC2 does not currently implement trimming.

We ran the same workload, with 850 hosts running iperf to
one receiver and plot the results in Figure 15. Note the linear x
axis for this plot: many to one traffic in EC2 works fairly well,
similar to the simulated fair-queuing results. TCP running
over EQDS in EC2 achieves almost perfect sharing and 4%
better throughput than the baseline, matching our simulations.

To achieve such good sharing, it appears that EC2 uses
large buffers.We measure these buffers by pinging the same
destination from an idle VM before and during the incast. Fig-
ure 16 is a CDF of ping latency. EC2 ping latency increases
163x from 55µs to 9ms during the 10Gbps incast, indicating
that a buffer of around 11MB exists in this network. In con-
trast, EQDS achieves similar many-to-one throughput with
only a 21µs increase in ping latency.

Is this behaviour specific to EC2 or the RTS backend? We

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 769

 0

 20

 40

 60

 80

 100

 0.25 1 4 16 64 256 1024

Buffer size(pkts)

C
D

F
 (

%
)

Throughput (Mbps)

1K
10K

100K
1K,fair
EQDS

Figure 14: Simulation: 850 to 1 traffic,
varying size of bottleneck buffer.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 5 10 15 20 25

C
D

F
 (

%
)

Throughput (Mbps)

Baseline
EQDS

Figure 15: Amazon EC2: 850 to 1 traffic,
kernel EQDS, RTS mode

 0

 20

 40

 60

 80

 100

 32 64 128
 256

 512
 1024

 2048
 4096

 8192

21us
9100us

C
D

F
 (

%
)

Ping latency (us)

Baseline Idle
EQDS Idle

EQDS Busy
Baseline Busy

Figure 16: Ping latency (EC2): target is
idle or busy with 850 incoming TCPs.

ran a similar experiment in our testbed using trimming instead
of RTS. Figure 10 shows the results. When the destination is
busy, EQDS with trimming results in a 36µs increase in ping
RTT, similar to RTS on EC2. Without EQDS, the increase is
around 500µs because our switch buffers for TCP are 1MB
(less than EC2) and the link speed is 25Gbps. In summary,
EC2 appears to be using large buffers to cope with incast.
How does this affect latency sensitive traffic?

Memcached. We installed memcached on our EC2 destina-
tion VM and used memcslap, a benchmarking client, to mea-
sure server performance by issuing 1000 GET/PUT opera-
tions in a closed-loop manner. The mean request latency for
an idle memcached server in EC2 is 700us. When running
over EQDS, the same request takes around 900us due to the
additional kernel processing EQDS does and the use of RTS.

When the destination is busy with 100 iperf clients sending
to it, the mean request latency over EQDS increases 3x to
3ms, mostly due to sharing bandwidth with iperf, compared to
a 140x increase to 100ms without EQDS due to large buffers.
With 850 iperf clients sending, memcached over EQDS has
a mean request latency of 23ms due to sharing bandwidth
with 8.5 times more flows, compared to 400ms over native
EC2. Overall, EQDS reduces memcached request latency for
a busy EC2 server by 20 to 30x compared to the baseline.

Micro-service apps. We ran the latency-sensitive social net-
work application of DeathStarBench [13] over kernel EQDS.
We distributed the micro-service nodes to ensure that most
requests are not local and must use the network, and used wrk
to generate requests in a closed-loop manner.

We tested two scenarios: one where the network was idle,
and one where high-throughput traffic going to the same hosts
saturated the links filling the switch buffers. We note that the
social network application does not generate much traffic –
100Mbps peak – but is latency sensitive so we expect to see
an impact of longer network latencies in our “busy” scenario.

Figures 11 and 12 show the results. On an idle network
social network requests take ∼2ms to complete, with little
difference between the baseline and EQDS. Our deployment
can sustain a request load of about 500 requests per second
after which DSB saturates the CPU. When the network is
busy, however, EQDS reduces request latency by 50% and
can sustain double the baseline request load.

8.3 Sharing the network

EQDS allows fine-grained host sharing policies without in-
network support; we examine some interesting scenarios.

Non-responsive traffic competing with TCP. Consider the
scenario in Figure 17 where a receiver in our testbed receives
data from 4 TCP senders and then a UDP sender starts sending
at line-rate (emulated with iperf3). As the UDP flow does not
respond to congestion, the testbed network run in legacy mode
allows the UDP flow to use nearly 25Gbps of bandwidth,
starving the TCP flows. With EQDS (in trimming mode in
this experiment), the UDP sender is throttled at the sending
EQIF which enforces perfect ingress sharing, without any
need for fair-queuing in the network.

Congestion controllers being nice. In fact, EQDS can en-
able any combination of existing congestion controllers to
co-exist fairly without any in-network support. In figure 18 we
show the sharing results when two senders send to the same
receiver, with one sender using Cubic[17] and the other using
the congestion control algorithms shown on the x axis label.
We used all the congestion control implementations avail-
able in the Linux kernel, as well as the Mellanox DCQCN
implementation. EQDS is able to fairly share the receiver’s
link without in-network support for almost all congestion con-
trollers, in contrast to the status quo where latency-based
schemes such as BBR[4] are starved by loss-based ones (e.g.
Cubic). One exception are the Vegas[2] controllers that cannot
utilize the 25Gbps link over EQDS when running alone, and
that receive a smaller share when competing against Cubic.
This appears to be due to Vegas measuring a small base RTT
and stopping the window increase before it reaches a BDP.

The amount of buffering in the EQDS TX queue depends,
as expected, on the congestion control algorithm. BBR is best,
with an average latency of 243µs when sending at line rate,
compared to DCTCP (K=16) at 435µs and Cubic at 1315µs.

RDMA versus TCP. To see how EQDS aids effective co-
existence between different host stacks, we run a single TCP
and n RDMA flows to the same destination in T2 (BlueField
NICs). Figure 19 shows the bandwidth distribution among
competing flows as the number of RDMA flows varies from
zero to four. Without EQDS, TCP fills the switch buffers
while DCQCN causes RDMA to back off, with some RDMA

770 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 5

 10

 15

 20

 25

 0 10 20 30

UDP

TCP

T
h
ro

u
g

p
u
t

(G
b

p
s)

Time (s)

(a) Network sharing

 0 10 20 30

UDP

TCP

Time (s)

(b) EQDS sharing

Figure 17: Bandwidth sharing (5 to 1): one
non-responsive UDP sender (testbed T1)

bbr
bic

cdg
cubic

dctcp

highspeed

htcp
hybla

illinois

lp nv reno
scalable

vegas

veno
w
estw

ood

yeah
dcqcn

C
u
b
ic

O
th
e
r

C
u
b
ic

O
th
e
r

E
Q
D
S

C
u
b
ic

O
th
e
r

C
u
b
ic

O
th
e
r

N
a
tiv
e

Figure 18: Capacity sharing between TCP
variants, with and without EQDS (testbed T1)

Figure 19: RDMA and TCP
network sharing (testbed T2)

flows being starved. With EQDS, data is buffered at the send-
ing hosts and the bandwidth allocation is determined by the
receiver, protecting RDMA and sharing the bandwidth fairly.

NVMeOF in parallel with a TCP shuffle. To understand
sharing beyond a single bottleneck link, and to also test the
CX4 RDMA stack over EQDS, we run the NVMeOF RDMA
benchmark (§8.1) in parallel with TCP traffic emulating a
MapReduce shuffle operation on the T2 testbed (CX4 hosts).
Specifically, three nodes on one ToR run both iperf senders
and NVMeOF targets. These three send to three nodes on an-
other ToR running both iperf receivers and NVMeOF clients
that perform random reads.

We observe that with EQDS the TCP shuffle alone is about
30% faster than without EQDS (26.1 Gbps vs 19.6 Gbps),
in line with the previous experiments. When both TCP and
RDMA run concurrently without EQDS, the shuffle through-
put drops to 17.6 Gbps and NVMeOF drops to 2.56 Gbps
– far from the optimal fair share. Under EQDS, shuffle and
NVMeOF achieve 15.8 Gbps and 10 Gbps respectively, which
is both a fairer allocation and higher overall throughput.

8.4 EQDS in legacy networks

To investigate EQDS with an oversubscribed core, we inter-
connect two ToRs in our T1 testbed with two 25Gbps spine
links. Fair queuing is enabled. One ToR hosts three servers (2
at 100Gbps, 1 at 10Gbps); the other ToR hosts eight clients
(mix of 10 and 25Gbps links). Each client connects to one
server and continuously requests a 1MB object in a closed-
loop, creating a new TCP connection each time. Clients are
equally balanced across servers.

We increase the number of active clients from 1 (core uti-
lization ≈50%) up to 8 (400% core over-subscription). We
plot the median and 99% FCTs for baseline TCP, TCP-over-
EQDS with trimming and TCP-over-EQDS using RTS. When
the core is lightly loaded, EQDS’s packet-level load balancing
gives slightly smaller median (Figure 20) and 2x to 5x smaller
99th percentile FCT (Figure 21). As we add more clients and
the core becomes overloaded, EQDS ends up behaving simi-
larly to the native baseline, while RTS is slightly slower than
baseline as it requires a large amount of buffering. For EQDS
with trimming, as the core gets busier the trim rate increases
and each packet can be re-sent multiple times. While this does

not affect FCT, it is undesirable; it would be better to reduce
the pull rate when core congestion is detected.

Legacy “elephant” traffic. To understand how legacy traffic
coexists with EQDS, we use the same configuration but with
two clients downloading 1MB objects from two servers, and
create a long-lasting iperf3 flow to another client. We vary
the throughput for this legacy flow from 0 to 25Gbps and
measure the FCTs of the other flows. Figure 22 shows how
flow collisions on the spine between native 1MB flows and the
elephant flow affects FCT: the median grows by 2.5x when
the elephant flow fully occupies the spine link. With EQDS,
packet spraying helps mitigate the effects of the elephant flow,
and the increase in FCT is modest. A future implementation
of load-aware routing should improve things further.

8.5 Host processing evaluation for EQDS
Our experiments so far have looked at how EQDS can help
existing stacks, and used 25Gbps (our testbeds) and 10Gbps
link speeds (EC2, simulation). We now examine the perfor-
mance and overheads of our two EQDS implementations and
evaluate how they perform at higher speeds. We tested using
several configurations:

Setup 1. DPDK on the host, both with native transports and
underneath the VM stack, where EQDS takes the role of
the software switch used in virtualization.

Setup 2. DPDK on an SoC-based SmartNIC (Broadcom
Stingray PS225 or Mellanox BlueField 2) with support
for legacy TCP and RDMA traffic.

Setup 3. DPDK on the host, processing RDMA traffic to
and from a Mellanox CX4 NIC.

Setup 4. Our Linux Kernel 5.4 implementation, with EQDS
kernel module running underneath the TCP/IP stack.

The DPDK implementation is the most versatile and per-
forms best, though this depends on the higher level stack and
the setup used (Figure 23). The best performance is given
by eqdsperf in setup 1 using the zero-copy native EQDS
transport. Between two 2.5GHz Xeon Silver 4215 machines
with Intel Columbiaville NICs, eqdsperf achieves 40Gbps
with 1.5KB packets and 100Gbps with 4KB packets. The bot-
tleneck is the sender; with two senders to the same receiver,
the link saturates with 3KB packets.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 771

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 50 100 150 200 250 300 350 400

M
e
d
ia

n
 F

C
T

 (
m

s)

Core oversubscription (%)

EQDS/Trimming
Native

EQDS/RTS

Figure 20: Median FCT for 1MB flows
(oversubscribed core).

 0.5

 1

 1.5

 2

 2.5

 3

 100 200 300 400

9
9
%

 F
C

T
 (

m
s)

Core oversubscription (%)

EQDS/Trimming
EQDS/RTS

Native

Figure 21: 99% FCT for 1MB flows
(oversubscribed core).

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 5 10 15 20 25

M
e
d
ia

n
 F

C
T

 (
m

s)

Elephant flow throughput (Gbps)

EQDS/Trimming
Native

EQDS/RTS

Figure 22: Median FCT with an elephant
legacy flow.

Setup Higher Throughput (Gbps) Latency
stack Link 1.5KB/9KB ping(us)

(1) Host eqdsperf 100 40/98 15(+1)
(1) Host Linux VM 100(40) 27/55 18(+1)
(2)PS225 Linux 25 23.6/24.1 31(+12)
(2)PS225 RDMA 25 23.5/24.1 18(+12)
(2)Blue2 Linux 100 23/49 22(+16)
(2)Blue2 RDMA 100 23/49 22(+16)
(3)Host/CX4RDMA 10 9.6/9.6 13(+9)

Figure 23: EQDS DPDK performance Figure 24: eqdsperf throughput (setup 1)

Stack MTU TSO off
GRO off

TSO on
GRO on

Linux 1.5KB 17Gbps 40Gbps
EQDS 1.5KB 5Gbps 27Gbps
Linux 9KB 40Gbps 60Gbps
EQDS 9KB 28Gbps 55Gbps

Figure 25: EQDS Kernel
performance (setup 4)

In Setup 1, when we run EQDS underneath Linux VMs in
KVM using vhost-user networking, it achieves 27Gbps with
1.5KB packets compared to 40Gbps for the baseline (testpmd).
The cost here for both testpmd and EQDS comes from the
packet copy from the guest to the host.

In Setup 2 we run EQDS on both the Broadcom PS225
SmartNIC and Mellanox’s BlueField 2 NIC. Our EQIF uses
one NIC core for each of the two links and one for credit
pacing. On the Stingray, EQDS saturates the link with a single
core when the MTU is 1.5KB or larger. On the PS225 the
results are similar with EQDS reaching 50Gbps with an 8KB
MTU. We note that SmartNIC ARM cores are weaker than
x86 cores and memory bandwidth seems limited; reaching
100Gbps may require more offloading.

In Setup 3 we divert RDMA traffic from a Mellanox
ConnectX-4 Lx NIC via a host core. This is not ideal as
it requires an extra round trip across the PCIe bus, but demon-
strates RDMA-over-EQDS even without a smart NIC. Since
the CX4 PCIe bandwidth is 56Gbps, we limit the link band-
width to 10Gbps to avoid a PCIe bottleneck. With EQDS,
the bandwidth of a single RDMA flow between two RDMA
nodes remains the same as with baseline RDMA (Table 23),
but the additional PCIe round-trip increases median latency
by 9 µs on an unloaded system and by 14 µs under load.

In Setup 4 we run EQDS in a kernel module. Figure 25
shows TCP performance with and without EQDS, and ex-
plores the effect of TCP offloads. Our kernel implementation
can reach 55Gbps (one core) with jumbograms, or 27Gbps
with a 1.5KB MTU. TCP’s dependence on offload support is
clear. EQDS increases CPU utilization at the sender by 2%
and at the receiver by 5% when running an iperf at 55Gbps.

Tunnel setup overhead. When EQDS tunnels are already

set up, EQDS only adds a few µs of latency, as shown in
Fig. 23. When a new host is contacted, however, a tunnel is
setup dynamically using a zero-RTT approach. We measure
this by tearing down tunnels, then sending a series of pings;
the difference between the first ping time and subsequent
ones is around 20µs. This setup latency is due to memory
initialization costs for the tunnel data structures.

EQDS memory consumption. How does EQDS memory
consumption scale with the size of the datacenter? There are
three categories of memory to consider.

A Sending EQIF buffers packets awaiting transmission. For
TCP, we use 100 packets per destination by default, but we
find that if needed this can be reduced as low as four packets
per destination when sending to many receivers. For RDMA,
the upper marking threshold is set to 375 packets.

The receiving EQIF has a reorder buffer per sender. In the
worst case with faulty links, the buffer can reach the EQDS
window which is between 50 packets (DPDK) and 150 pack-
ets (kernel). In practice this is limited to less than 10 packets.

In-flight packets are buffered at the sender pending retrans-
mission, but the pending buffer size is limited by the BDP. We
verify this by starting iperfs to an increasingly larger number
of receivers. The total number of in-flight packets across all
tunnels saturates at around 400 packets (NIC ring size plus
one BDP) regardless of the number of receivers.

With 1.5GB of DRAM, EQDS can buffer packets for
10,000 active destination; this fits in the RAM of the Smart-
NICs we used (8-16GB) as well as the hosts. In practice both
the number of active destinations and actual buffer utilization
are smaller; on EC2 the receiver’s memory usage for EQDS
did not exceed 100MB with 850 senders.

772 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

9 Related work
Tunneling is widely used in datacenters for security isolation
of traffic (e.g. VXLAN and GRE). These protocols, however,
do not offer any performance isolation between tenants. Rate
limiting is typically used in public clouds, but this offers
limited isolation, especially for incast workloads.

Numerous research works examined the performance shar-
ing problem [40, 34, 35]. Seawall [40] and ElasticSwitch [35]
use rate-limiting between each pair of hosts in a datacenter
to manage sharing, and use centrally computed weights to
achieve fair sharing among different tenants. FairCloud [34]
discusses fundamental tradeoffs in sharing cloud networks.
This line of works relies on rate limiting and needs large in-
network queues to cope with incast; it also doesn’t improve
utilization of multipath networks.

Virtualized congestion control works such as VCC [6] and
AC/DC [19] propose ways of deploying new TCP congestion
variants without VM changes. Both keep per-flow conges-
tion state in the hypervisor, applying rate-limiting techniques
(such as receive window reduction) to force the VM stack
to reduce its rate; both show how DCTCP can be deployed
in this way. OnRamp [3] is a recent proposal that aims to
improve the fast start phase of transport protocols by tracking
fine-grained RTT measurements per flow, in the hypervisor,
and then stopping packets from entering the network when
latency increases above a certain threshold. This line of work
does not allow multipath transmission of TCP packets or
other network-specific enhancements, and still requires large
in-network buffers to cope with incast.

EQDS takes the next logical step over this line of prior
work: it completely decouples host stacks from the network
via edge queues, thus supporting multiple higher layer trans-
ports (e.g. TCP, RDMA or native). EQDS does not do rate lim-
iting (because it can build large queues), but uses a receiver-
driven control loop instead, ensuring that network queue
depths are kept as low as possible. Any sharing outcome
for clouds (e.g., [34]) can be configured using the primitives
EQDS provides to higher layers. The key benefit of EQDS is
decoupling the higher layer transports from lower layer imple-
mentations; this enables regular TCP run over packet-sprayed
networks, among others.

Fastpass [33], pHost [14], Aeolus [20], NDP [18],
Homa [31], qJump [15] are techniques that show how one can
operate a network at high load and small queues. In-band net-
work telemetry [32] provides accurate congestion information
to endpoints that can be used in over-subscribed topologies
(e.g. HPCC [25]). In contrast to all these transport or conges-
tion control protocols, EQDS is a congestion tunneling layer
that is meant to allow other transports to operate on top; it can
use the mechanisms proposed by any of these or other, yet-to-
be-invented, mechanisms to drive packet pacing and ensure
that the network core is used efficiently, but it also allows to
deploy them transparently to user applications. Our imple-
mentation implements both NDP [18] and a request-to-send

variant that does not require trimming.
New transport stacks like PonyExpress [27] or eRPC [23]

show the benefits of kernel bypass to support novel APIs, but
they face an uphill battle in deployment. EQDS allows such
transports to be deployed without changes to the network.

10 Conclusions and next steps
EQDS is a new network layer that provides strong perfor-
mance isolation among co-existing transports by pulling the
shared queues out of the data center network core and moving
them to the edge. More importantly, it introduces a new data-
gram service abstraction which fully decouples the transport
services above it from the network implementation under-
neath, thus enabling independent evolution of these layers
while ensuring future compatibility among them.

EQDS is designed for gradual adoption. From the appli-
cation perspective, RDMA and TCP EQIFs allow seamless
deployment of EQDS without any application modifications.
In the longer term we envision the emergence of application
protocols implemented atop and optimized for EQDS-native
APIs, thereby taking full advantage of the improved visibility
into the network performance that they offer.

From the network infrastructure perspective, one can use
our software-only implementations in Linux kernel, Smart-
NIC or/and host that allow the benefits of EQDS isolation to
be reaped at low performance cost, and can also run without
switch support for packet trimming.

The NIC implementation is ideal from a deployment point
of view, as it is cleanly separated from the host software,
which can use offloading support as before. Our smart NIC
setup, however, adds a little unnecessary latency (12-16us)
and is limited to 25Gbps per core at 1.5KB MTU. These limi-
tations should be fixable with NIC ASIC support for EQDS.

There are many examples of existing ASIC and FPGA
implementations of connected transport protocols, ranging
from RDMA [9, 21, 22, 41], to TCP offload engines [30, 12,
39]. An EQDS NIC would build upon these works, and its
hardware version might actually be simpler: keeping state
for each connected endpoint rather than per-flow means more
connections could be stored in on-chip memory, and its re-
laxed ordering and reliability guarantees allow implementing
a simpler state machine. By offloading control packet pro-
cessing, we expect to shorten the EQDS control loop delay
significantly, and reducing its jitter, thus minimizing switch
buffer usage. Furthermore, offloading connection setup and
teardown logic would allow low latency small flows to get
close to native performance.

Acknowledgements. The authors thank Mihai Brodschi for
implementing the UDP stack over EQDS, and our shepherd
and the anonymous reviewers for their feedback. We thank
Intel, Broadcom and Nvidia for providing hardware for testing.
This work was partly funded by CORNET, a research grant
of the European Research Council (no. 758815).

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 773

References

[1] Mohammad Alizadeh, Albert Greenberg, David A.
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prab-
hakar, Sudipta Sengupta, and Murari Sridharan. “Data
Center TCP (DCTCP)”. In: Special Interest Group on
Data Communication (SIGCOMM). ACM, 2010.

[2] L.S. Brakmo and L.L. Peterson. “TCP Vegas: end to
end congestion avoidance on a global Internet”. In:
IEEE Journal on Selected Areas in Communications
13.8 (1995), pp. 1465–1480.

[3] “Breaking the Transience-Equilibrium Nexus: A New
Approach to Datacenter Packet Transport”. In: 18th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 21). USENIX Association,
Apr. 2021.

[4] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn,
Soheil Hassas Yeganeh, and Van Jacobson. “BBR:
Congestion-Based Congestion Control”. In: ACM
Queue 14, September-October (2016), pp. 20–53.

[5] Yanpei Chen, Rean Griffith, Junda Liu, Randy H. Katz,
and Anthony D. Joseph. “Understanding TCP In-
cast Throughput Collapse in Datacenter Networks”.
In: Workshop on Research on Enterprise Networking
(WREN). ACM, 2009.

[6] Bryce Cronkite-Ratcliff, Aran Bergman, Shay Var-
gaftik, Madhusudhan Ravi, Nick McKeown, Ittai Abra-
ham, and Isaac Keslassy. “Virtualized Congestion Con-
trol”. In: SIGCOMM ’16. Association for Computing
Machinery, 2016, pp. 230–243.

[7] Steve Deering. Watching the waist of the internet hour-
glass. ICNP plenary. 1998.

[8] DPDK. DPDK Porgrammer’s Guide » Switch Rep-
resentation within DPDK Applications. 2019. URL:
https://doc.dpdk.org/guides-19.11/prog_
guide/switch_representation.html.

[9] D. Dunning, G. Regnier, G. McAlpine, D. Cameron,
B. Shubert, F. Berry, A. M. Merritt, E. Gronke, and C.
Dodd. “The Virtual Interface Architecture”. In: IEEE
Micro 18.2 (Mar. 1998), pp. 66–76.

[10] Haggai Eran. libconntrack-cm – Connection Tracking
for RDMA CM. 2022. URL: https://github.com/
acsl-technion/libconntrack-cm.

[11] Mohammad Al-Fares, Sivasankar Radhakrishnan,
Barath Raghavan, Nelson Huang, and Amin Vahdat.
“Hedera: Dynamic Flow Scheduling for Data Center
Networks”. In: Networked Systems Design and Imple-
mentation (NSDI). USENIX Association, 2010.

[12] W. Feng, P. Balaji, C. Baron, L.N. Bhuyan, and D.K.
Panda. “Performance characterization of a 10-Gigabit
Ethernet TOE”. In: 13th Symposium on High Perfor-
mance Interconnects (HOTI’05). 2005, pp. 58–63.

[13] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty,
Priyal Rathi, Nayantara Katarki, Ariana Bruno, Justin
Hu, Brian Ritchken, Brendon Jackson, Kelvin Hu,
Meghna Pancholi, Brett Clancy, Chris Colen, Fukang
Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky,
Mateo Espinosa, Yuan He, and Christina Delimitrou.
“An Open-Source Benchmark Suite for Microservices
and Their Hardware-Software Implications for Cloud
and Edge Systems”. In: Proceedings of the Twenty
Fourth International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems (ASPLOS). Apr. 2019.

[14] Peter X. Gao, Akshay Narayan, Gautam Kumar,
Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker.
“pHost: Distributed Near-optimal Datacenter Transport
over Commodity Network Fabric”. In: Conference on
Emerging Networking Experiments and Technologies
(CoNEXT). ACM, 2015.

[15] Matthew P. Grosvenor, Malte Schwarzkopf, Ionel Gog,
Robert N. M. Watson, Andrew W. Moore, Steven Hand,
and Jon Crowcroft. “Queues Don’t Matter When You
Can JUMP Them!” In: 12th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
15). USENIX Association, May 2015, pp. 1–14.

[16] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav
Soni, Jianxi Ye, Jitu Padhye, and Marina Lipshteyn.
“RDMA over Commodity Ethernet at Scale”. In: Spe-
cial Interest Group on Data Communication (SIG-
COMM). ACM, 2016.

[17] Sangtae Ha, Injong Rhee, and Lisong Xu. “CUBIC:
A New TCP-Friendly High-Speed TCP Variant”. In:
SIGOPS Oper. Syst. Rev. 42.5 (July 2008), pp. 64–74.

[18] Mark Handley, Costin Raiciu, Alexandru Agache, An-
drei Voinescu, Andrew W. Moore, Gianni Antichi, and
Marcin Wójcik. “Re-architecting Datacenter Networks
and Stacks for Low Latency and High Performance”.
In: Special Interest Group on Data Communication
(SIGCOMM). ACM, 2017.

[19] Keqiang He, Eric Rozner, Kanak Agarwal, Yu (Ja-
son) Gu, Wes Felter, John Carter, and Aditya Akella.
“AC/DC TCP: Virtual Congestion Control Enforcement
for Datacenter Networks”. In: SIGCOMM ’16. Associ-
ation for Computing Machinery, 2016, pp. 244–257.

[20] Shuihai Hu, Wei Bai, Gaoxiong Zeng, Zilong Wang,
Baochen Qiao, Kai Chen, Kun Tan, and Yi Wang. “Ae-
olus: A Building Block for Proactive Transport in Dat-
acenters”. In: SIGCOMM ’20. Association for Com-
puting Machinery, 2020, pp. 422–434.

774 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://doc.dpdk.org/guides-19.11/prog_guide/switch_representation.html
https://doc.dpdk.org/guides-19.11/prog_guide/switch_representation.html
https://github.com/acsl-technion/libconntrack-cm
https://github.com/acsl-technion/libconntrack-cm

[21] InfiniBand Trade Association (IBTA). About Infini-
Band. (Accessed: May 2021). URL: https://www.
infinibandta.org/about-infiniband/.

[22] InfiniBand Trade Association (IBTA). The RoCE Ini-
tiative. (Accessed: May 2021). URL: https://www.
infinibandta.org/roce-initiative/.

[23] Anuj Kalia, Michael Kaminsky, and David G. Ander-
sen. “Datacenter RPCs Can Be General and Fast”. In:
NSDI’19. USENIX Association, 2019, pp. 1–16.

[24] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan
M. G. Wassel, Xian Wu, Behnam Montazeri, Yaogong
Wang, Kevin Springborn, Christopher Alfeld, Michael
Ryan, David Wetherall, and Amin Vahdat. “Swift: De-
lay is Simple and Effective for Congestion Control in
the Datacenter”. In: SIGCOMM ’20. Association for
Computing Machinery, 2020, pp. 514–528.

[25] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, and Minlan
Yu. “HPCC: High Precision Congestion Control”. In:
SIGCOMM ’19. Association for Computing Machin-
ery, 2019, pp. 44–58.

[26] Yuanwei Lu, Guo Chen, Bojie Li, Kun Tan, Yongqiang
Xiong, Peng Cheng, Jiansong Zhang, Enhong Chen,
and Thomas Moscibroda. “Multi-Path Transport for
RDMA in Datacenters”. In: 15th USENIX Symposium
on Networked Systems Design and Implementation
(NSDI 18). USENIX Association, Apr. 2018, pp. 357–
371.

[27] Michael Marty, Marc de Kruijf, Jacob Adriaens,
Christopher Alfeld, Sean Bauer, Carlo Contavalli,
Michael Dalton, Nandita Dukkipati, William C. Evans,
Steve Gribble, Nicholas Kidd, Roman Kononov, Gau-
tam Kumar, Carl Mauer, Emily Musick, Lena Olson,
Erik Rubow, Michael Ryan, Kevin Springborn, Paul
Turner, Valas Valancius, Xi Wang, and Amin Vahdat.
“Snap: A Microkernel Approach to Host Networking”.
In: SOSP ’19. Association for Computing Machinery,
2019, pp. 399–413.

[28] Radhika Mittal, Vinh The Lam, Nandita Dukkipati,
Emily Blem, Hassan Wassel, Monia Ghobadi, Amin
Vahdat, Yaogong Wang, David Wetherall, and David
Zats. “TIMELY: RTT-Based Congestion Control for
the Datacenter”. In: SIGCOMM ’15. Association for
Computing Machinery, 2015, pp. 537–550.

[29] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Ei-
tan Zahavi, Arvind Krishnamurthy, Sylvia Ratnasamy,
and Scott Shenker. “Revisiting Network Support for
RDMA”. In: SIGCOMM ’18. Association for Comput-
ing Machinery, 2018, pp. 313–326.

[30] Jeffrey C. Mogul. “TCP Offload is a Dumb Idea Whose
Time Has Come”. In: HOTOS’03. USENIX Associa-
tion, 2003, pp. 5–5.

[31] Behnam Montazeri, Yilong Li, Mohammad Alizadeh,
and John Ousterhout. “Homa: A Receiver-driven Low-
latency Transport Protocol Using Network Priorities”.
In: Special Interest Group on Data Communication
(SIGCOMM). ACM, 2018.

[32] p4.org Applications Working Group. In-band Network
Telemetry (INT) Dataplane Specification. 2020. URL:
https://github.com/p4lang/p4-applications/
blob/master/docs/INT_v2_1.pdf.

[33] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan,
Devavrat Shah, and Hans Fugal. “Fastpass: A Central-
ized "Zero-queue" Datacenter Network”. In: Special
Interest Group on Data Communication (SIGCOMM).
ACM, 2014.

[34] Lucian Popa, Gautam Kumar, Mosharaf Chowdhury,
Arvind Krishnamurthy, Sylvia Ratnasamy, and Ion Sto-
ica. “FairCloud: Sharing the Network in Cloud Com-
puting”. In: SIGCOMM ’12. Association for Comput-
ing Machinery, 2012, pp. 187–198.

[35] Lucian Popa, Praveen Yalagandula, Sujata Banerjee,
Jeffrey C. Mogul, Yoshio Turner, and Jose Renato
Santos. “ElasticSwitch: Practical Work-Conserving
Bandwidth Guarantees for Cloud Computing”. In: SIG-
COMM ’13. Association for Computing Machinery,
2013, pp. 351–362.

[36] R. Ludwig and A. Gurtov. RFC4015: The Eifel Re-
sponse Algorithm for TCP. 2003. URL: https : / /
tools.ietf.org/html/rfc4015.

[37] R. Ludwig and M. Meyer. RFC3522: The Eifel Detec-
tion Algorithm for TCP. 2003. URL: https://tools.
ietf.org/html/rfc3522.

[38] Costin Raiciu, Sebastien Barre, Christopher Pluntke,
Adam Greenhalgh, Damon Wischik, and Mark Hand-
ley. “Improving Datacenter Performance and Robust-
ness with Multipath TCP”. In: Special Interest Group
on Data Communication (SIGCOMM). ACM, 2010.

[39] Mario Ruiz, David Sidler, Gustavo Sutter, Gustavo
Alonso, and Sergio López-Buedo. “Limago: An FPGA-
Based Open-Source 100 GbE TCP/IP Stack”. In: 2019
29th International Conference on Field Programmable
Logic and Applications (FPL). 2019, pp. 286–292.

[40] Alan Shieh, Srikanth Kandula, Albert Greenberg,
Changhoon Kim, and Bikas Saha. “Sharing the Data
Center Network”. In: NSDI’11. USENIX Association,
2011, pp. 309–322.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 775

https://www.infinibandta.org/about-infiniband/
https://www.infinibandta.org/about-infiniband/
https://www.infinibandta.org/roce-initiative/
https://www.infinibandta.org/roce-initiative/
https://github.com/p4lang/p4-applications/blob/master/docs/INT_v2_1.pdf
https://github.com/p4lang/p4-applications/blob/master/docs/INT_v2_1.pdf
https://tools.ietf.org/html/rfc4015
https://tools.ietf.org/html/rfc4015
https://tools.ietf.org/html/rfc3522
https://tools.ietf.org/html/rfc3522

[41] David Sidler, Zeke Wang, Monica Chiosa, Amit Kulka-
rni, and Gustavo Alonso. “StRoM: Smart Remote
Memory”. In: EuroSys ’20. Association for Computing
Machinery, 2020.

[42] Arjun Singhvi, Aditya Akella, Dan Gibson, Thomas
F. Wenisch, Monica Wong-Chan, Sean Clark, Milo
M. K. Martin, Moray McLaren, Prashant Chandra, Rob
Cauble, Hassan M. G. Wassel, Behnam Montazeri,
Simon L. Sabato, Joel Scherpelz, and Amin Vahdat.
“1RMA: Re-Envisioning Remote Memory Access for
Multi-Tenant Datacenters”. In: SIGCOMM ’20. As-
sociation for Computing Machinery, 2020, pp. 708–
721.

[43] Anirudh Sivaraman, Suvinay Subramanian, Moham-
mad Alizadeh, Sharad Chole, Shang-Tse Chuang,
Anurag Agrawal, Hari Balakrishnan, Tom Edsall,
Sachin Katti, and Nick McKeown. “Programmable
Packet Scheduling at Line Rate”. In: SIGCOMM ’16.
Association for Computing Machinery, 2016, pp. 44–
57.

[44] Haitao Wu, Zhenqian Feng, Chuanxiong Guo, and
Yongguang Zhang. “ICTCP: Incast Congestion Con-
trol for TCP in Data-Center Networks”. In: IEEE/ACM
Trans. Netw. 21.2 (Apr. 2013), pp. 345–358.

Appendix A. Protocol state machines

The state machines for our protocol implementation are shown
in Figures 26 (the sender) and 27 (for the receiver).

The aim is for the two endpoints to self-synchronize. The
sender sets the SYN flag on all data packets sent until it
receives a SYN-ACK (or SYN-NACK or SYN-SACK) packet
from the receiver. As a window of SYN packets can arrive
out-of-order, the lowest ten bits of the sequence number are
always zero in the first SYN packet and the upper sequence
number bits in SYN packets indicate an epoch number.

The receiver state machine is very simple, with just two
states, closed and established. As SYNs from the initial
window can arrive out of order, an arriving SYN causes the
receiver to move to established state and set the initial se-
quence number to be that from the SYN with the lowest ten
bits cleared. Any subsequent SYNs with the same epoch num-
ber are treated as normal data packets except the SYN flag is
set in their ACKs.

When data arrives at the sender it chooses a random epoch
number, starts sending data with SYN set, and moves to SYN-
SENT state. It then moves to established state on receiving a
SYN-ACK with the correct epoch number from the receiver.

The epoch number is needed because either end can drop
state at any point. If a sender drops state very early in a
connection, then immediately tries to re-establish a tunnel,
old SYN packets may still be in flight. The epoch number
allows the sender and receiver to agree which is the new

connection.
If the sender retains the old epoch number, it simply

chooses a greater epoch for the new connection. The receiver
then accepts the new SYN as re-establishing the connection
seamlessly. However, if the sender has no state, it chooses a
random epoch number. If this random epoch number is greater
it will be accepted, but if it is lesser, the receiver concludes
it is old and replies with a SYN-ACK advertising its current
epoch. If the sender receives such a mismatched greater epoch
in a SYN-ACK, it concludes the setup has failed, chooses a
new epoch greater than that advertised by the receiver, and
resends its initial window of SYNs. This new attempt will
then always succeed.

It is possible that SYN-ACKs from the previous connection
are still in flight when the new connection is attempted. If
these have a lower epoch (the common case) they are ignored;
if they have a greater epoch they trigger the re-sync process
as described above.

If a receiver has outstanding data in its reorder queue when
a connected reestablishes, it releases this data to the host out-
of-order as it can no longer guarantee the sequence space
holes will be filled. This is expected to be very rare in practice
as endpoints will not normally drop state with unacked data
in transit.

The sender responds to any indication of an unhealthy
tunnel by closing it and re-establishing a new tunnel, possibly
after a timeout. A large number of retransmit timeouts implies
that there is likely a network connectivity issue affecting the
tunnel. Similarly, receipt of a RST indicates the receiver is in
the closed state, and prompts re-establishment of the tunnel
if there are packets in the EQIF TX queue.

The key benefit of this self-synchronizing design is that
either endpoint can drop state without reliably informing its
peer. This gives EQDS implementations a lot of freedom in
managing per-tunnel memory, allowing lightly used tunnels to
be dropped in memory pressure scenarios. While these ability
is not used in our software implementations, we expect that
future ASIC implementations of EQDS in NICs will make
full use of these features.

Appendix B. Details on the experiment setup.

Our T1 (TCP/IP) testbed has 10 endpoints:

• 8 Linux kernel endpoints emulated on four servers with
Intel Xeon Silver 4215 CPUs @ 2.50GHz (8 cores, 16
hyperthreads), 128GB of RAM and a dual-port 100Gbps
Intel Columbiaville NIC each (running in Setup 1, with
EQDS on the host cores either as part of the kernel or as a
DPDK process).

• 4 Broadcom endpoints emulated by two servers with In-
tel Xeo E5-2650L v2 CPUs @ 1.70GHz, 32GB of RAM
(10 cores, 20 hyperthreads), each with a dual-port 25Gbps

776 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

CLOSED

SYN-SENT

ESTABLISHED

Data in TX Queue / Send segment with SYN (first window)

FAIL RTX Count > MAX

RTX Timer / Resend missing segment
SYN+ ACK with greater epoch / Resend initial window
Unsolicited ctrl. packet / Resend initial window

OS command, Memory
Pressure, Inactivity, etc

SYN+(S/N)ACK

Notify OS -
Lack of
Connectivity

RTX Count > MAX
RTX Timer / Resend missing segment

Timer/Admin cmd.

SYN+ ACK with greater epoch / Send packet from
TX queue or RTS
Unsolicited ctrl. packet / Send packet from TX

queue or RTS
RST

Figure 26: EQDS sender state machine

CLOSED (unknown epoch)

Recv SYN+DATA / Send
SYN+(S/N)ACK

ESTABLISHED

Admin cmd. / Send RST
send all reorder queue packets to Host

Recv SYN from greater
epoch / Send
SYN+ACK, send all
reorder queue packets
to Host

Recv non-SYN
/ Send RST

Recv SYN from lesser
epoch / Send
SYN+ACK advertising
current epoch

Figure 27: EQDS receiver state machine

Broadcom Stingray NIC (EQDS is running on the Arm
cores of the Stingray, in Setup 2).

Each endpoint is connected via a 25Gbps link to a 64-port
Tofino 1 switch; we downgraded the Columbiaville NICs to
25Gbps to match the speed of the Stingray NICs. We im-
plemented packet trimming in the switch via a combination
of ingress meters and cloning sessions. We used the four
pipelines in this switch to emulate four ToR switches; these
are connected via DAC cables to two spine switches emulated
by another 32-port Tofino (one pipeline per emulated switch).
Switch buffers are set to 15 packets (125KB) for EQDS and
200 packets (2MB) for TCP. Cross-sectional bandwidth is
200Gbps (slight over-subscription).

We run the workload in our Linux machines with and with-
out EQDS, and measure performance using ping, iperf and
iperf3 for UDP tests. Our kernel and DPDK stacks interop-
erate and at 25Gbps have similar performance, so we omit a
performance breakdown.

Our T2 (RDMA) testbed has six endpoints, each with a
2.1GHz Intel Xeon E5-2620 v2 CPU. The hosts are con-
nected to an NVIDIA Spectrum SN3700 switch, configured
using loopback cables as a 2-tier Clos topology with 40 Gbps
bisectional bandwidth. All links are configured to 10 Gbps
with 4 KiB MTU. Each of six ports of the switch is connected
either to one of three dual-port 8-core NVIDIA BlueField-2
Smart NIC (two of which clock at 2.5 GHz and one at 2 GHz),
or to an NVIDIA Mellanox ConnectX-4 Lx.

We implement trimming in the SN3700 by mirroring and
truncating dropped frames, then sending them to a dedicated
loopback port where a P4 program redirects them back to the
destination port and appropriate queue. When trimming is
enabled, switch buffers are set to 60 kB.

When using ConnectX-4 Lx NICs, EQDS runs on the host
CPU instead of the SmartNIC, and traffic between the host
network stack and EQDS uses NIC loopback.

The baseline RDMA performance for SmartNICs is mea-
sured by configuring the SmartNICs to forward traffic be-
tween the host and the network in hardware, without going
through the ARM cores. For NICs, the host network stack
uses the RDMA NIC directly.

Buffer settings for TCP EQIFs. Our experiments show that
TCP/IP runs smoothly over EQDS with our default settings
(sending EQIFs buffer up to 100 packets per destination), but
does this change with other buffer sizes? Larger buffers simply
result in more EQDS sender-side buffering for TCP Cubic,
and do not affect performance at all. What about smaller
buffers?

When the send buffer is at least one BDP (30 packets in
our testbed), all TCP variants achieve line-rate; below that
the throughput depends on the congestion controller. DCTCP
maintains full utilization with K=16, while BBR needs half
that to reach line rate..

DCQCN parameter settings for the RDMA EQIF. Our
RDMA EQIF performs flow control using the NIC’s DC-
QCN implementation, but it has a shorter control loop than a
baseline DCQCN setup: it sends CNPs directly to the sender
NIC instead of simply marking packets and waiting for the
receiver to send CNPs. This allows more aggressive DCQCN
parameters to be used.

We explored the DCQCN parameter space, varying the
EQIF’s probabilistic marking thresholds (Klow/Khigh), active
increase rate (RAI) and rate increase/decrease timers (Rd /Ri).
Our goal was to be able to stop the RDMA sender quickly
during large incasts (1Mbps per sender) without dropping
packets, and to be able to resume at line rate (i.e. have enough
buffering) when an incast subsides (available rate is 25Gbps).
The resulting parameters, shown below, are as aggressive as
possible without under or overflowing the EQIF queue.

Klow Khigh Rd Ri RAI

Baseline 150 kB 1500 kB 4 µsec 300 µsec 5 Mbps
EQDS(BF2) 72 kB 584 kB 4 µsec 750 µsec 5 Mbps
EQDS(Cx4) 150 kB 1500 kB 4 µsec 128 µsec 50 Mbps

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 777

Backpressure Flow Control

Prateesh Goyal1, Preey Shah2, Kevin Zhao3, Georgios Nikolaidis4,
Mohammad Alizadeh1, Thomas E. Anderson3

1MIT CSAIL, 2IIT Bombay, 3University of Washington, 4Intel, Barefoot Switch Division

Abstract
Effective congestion control for data center networks is
becoming increasingly challenging with a growing amount
of latency-sensitive traffic, much fatter links, and extremely
bursty traffic. Widely deployed algorithms, such as DCTCP
and DCQCN, are still far from optimal in many plausible
scenarios, particularly for tail latency. Many operators
compensate by running their networks at low average
utilization, dramatically increasing costs.

In this paper, we argue that we have reached the practical
limits of end-to-end congestion control. Instead, we propose,
implement, and evaluate a new congestion control architec-
ture called Backpressure Flow Control (BFC). BFC provides
per-hop per-flow flow control, but with bounded state,
constant-time switch operations, and careful use of buffers
and queues. We demonstrate BFC’s feasibility by implement-
ing it on Tofino2, a state-of-the-art P4-based programmable
hardware switch. In simulation, we show that BFC achieves
near optimal throughput and tail latency behavior even under
challenging conditions such as high network load and incast
cross traffic. Compared to deployed end-to-end schemes,
BFC achieves 2.3 - 60× lower tail latency for short flows and
1.6 - 5× better average completion time for long flows.

1 INTRODUCTION
Single and multi-tenant data centers have become one of the
largest and fastest growing segments of the computer industry.
Data centers are increasingly dominating the market for all
types of high-end computing, including enterprise services,
parallel computing, large scale data analysis, fault-tolerant
middleboxes, and global distributed applications [10, 27, 47].
These workloads place enormous pressure on the data center
network to deliver, at low cost, ever faster throughput with
low tail latency even for highly bursty traffic [24, 63].

Although details vary, almost all data center networks
today use a combination of endpoint congestion control, FIFO
queues at switches, and end-to-end feedback of congestion
signals like delay or explicit switch state to the endpoint
control loop.1 As link speeds continue to increase, however,
the design of the control loop becomes more difficult. First,
more traffic fits within a single round trip, making it more

1We refer to schemes that rely on feedback signals delayed by an entire
round-trip-time as end-to-end schemes, to contrast them with hop-by-hop
mechanisms.

difficult to use feedback effectively. Second, traffic becomes
increasingly bursty, so that network load is not a stable
property except over very short time scales. And third, switch
buffer capacity is not keeping up with increasing link speeds
(Fig. 1), making it even more challenging to handle traffic
bursts. Most network operators run their networks at very
low average load, throttle long flows at far below network
capacity, and even then see significant congestion loss.

Instead, we propose a different approach. The key chal-
lenge for data center networks, in our view, is to efficiently
allocate buffer space at congested network switches. This
becomes easier and simpler when control actions are taken
per flow and per hop, rather than end-to-end. Despite its
advantages, per-hop per-flow flow control appears to require
per-flow state at each switch, even for quiescent flows [11,41],
something that is not practical at data center scale.

Our primary contribution is to show that per-hop per-flow
flow control can be approximated with a limited amount of
switch state and modest number of switch queues, using only
simple constant-time switch operations on a modern pro-
grammable switch. Instead of all flows, we only need state and
dedicated queues for active flows—those flows with queued
packets. We show that, with switch-level fair queueing or
shortest flow scheduling, the number of active flows is modest
for typical data center workloads, even in the tail of the dis-
tribution. The tradeoff is that performance can degrade when
the number of active flows exceeds the number of queues. In
practice, we advocate combining per-hop flow control with
end-to-end congestion control to avoid pathological behavior.
However, to better illustrate the benefits and limitations of
our approach, our description and experiments focus on
comparing pure per-hop control with pure end-to-end control.

We have implemented our approach, Backpressure Flow
Control (BFC), on Tofino2 a state-of-the-art P4-based
programmable switch ASIC supporting 12.8 Tbps of
switching capacity [33]. Tofino2 has 32-128 independently
pausable queues at each output port. Our implementation
uses less than 10% of the dedicated stateful memory on
Tofino2. All per-packet operations are implemented entirely
in the dataplane; BFC runs at full switch capacity.

To evaluate performance, we run large-scale ns-3 [4]
simulations using synthetic traces drawn to be consistent
with measured workloads from Google and Facebook data
centers [49] on an oversubscribed multi-level Clos network

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 779

topology. We synthetically add incast to these workloads
to represent a challenging scenario for both end-to-end and
per-hop approaches. We consider both throughput and tail
latency performance for short, medium, and long flows.

For our simulated workloads, BFC improves both latency
for short flows and throughput for long flows. Compared
to a wide set of deployed end-to-end systems, including
DCTCP [8], DCQCN [65], and HPCC [43], BFC achieves
2.3 - 60× better tail flow completion times (FCTs) for short
flows, and 1.6 - 5× better average performance for long flows.
ExpressPass [22] achieves 35% better short flow tail latency,
but 17× worse average case performance for long flows. We
also show that BFC performs close to an idealized fair queue-
ing system with unbounded buffers and switch queues, but
with limited queues and far smaller buffers. BFC can be com-
bined with other switch scheduling algorithms such as priority
scheduling among traffic classes. Unlike other receiver-driven
schemes like Homa [49], BFC does not assume knowledge
of flow sizes and does not rely on packet spraying (which is
difficult to deploy in practice). With packet spraying, Homa
outperforms BFC, but without it we show BFC outperforms
Homa and can enforce shortest remaining flow first schedul-
ing more accurately.

Our specific contributions are:
• A discussion of the fundamental limits of end-to-end con-

gestion control for high bandwidth data center networks.
• A practical protocol for per-hop per-flow flow control,

called BFC, that uses a small, constant amount of
state and limited number of switch queues to achieve
near-optimal tail-latency performance for typical data
center workloads.

• An implementation and proof-of-concept evaluation of
BFC on a commercial switch. To our knowledge, this
is the first implementation of a per-hop per-flow flow
control scheme for a multi-Tbps switch.

2 MOTIVATION
Over the last decade, researchers and data center operators
have proposed a variety of congestion control algorithms for
data centers, including DCTCP [8], Timely [48], Swift [40],
DCQCN [65], and HPCC [43]. The primary goals of
these protocols are to achieve high throughput, low tail
packet delay, and high resilience to bursts and incast traffic
patterns. Operationally, these protocols rely on end-to-end
feedback loops, with senders adjusting their rates based
on congestion feedback signals echoed by the receivers.
Irrespective of the type of signal (e.g., ECN marks, multi-bit
INT information [36,43], delay), the feedback delay for these
schemes is a network round-trip time (RTT). This delay has
an important role in the performance of end-to-end schemes.
In particular, senders require at least one RTT to obtain
feedback, and therefore face a hard tradeoff in deciding the
starting rate of a flow. They can either start at a high rate
and risk causing congestion, or start at a low rate and risk

0 2 4 6 8 10 12
Switch Capacity (Tbps)

0

20

40

60

80

100

Bu
ffe

r S
ize

 /
Ca

pa
cit

y
(

s)

Trident2 (2012)

Tomahawk (2014)
Tomahawk2 (2016)

Tomahawk3 (2018)

Figure 1: Hardware trends for top-of-the-line data center switches
from Broadcom. Switch capacity and link speed have been growing
rapidly, but buffer size is not keeping up with increases in switch
capacity.

under-utilizing the network. Moreover, even after receiving
feedback, senders can struggle to determine the right rate
if the state of the network (e.g., link utilization and queuing
delay) changes quickly compared to the RTT.

We argue that three trends are making these problems
worse over time, and will make it increasingly difficult to
achieve good performance with end-to-end protocols.
Trend 1: Rapidly increasing link speed. Fig. 1 shows
the switch capacity of top-of-the-line data center switches
manufactured by Broadcom [20, 50, 61]. Switch capacity and
link speeds have increased by a factor of 10 over the past six
years with no signs of stopping.
Trend 2: Most flows are short. Fig. 2 shows the byte-
weighted cumulative distribution of flow sizes for three
industry data center workloads [49]: (1) All applications in a
Google data center, (2) Hadoop cluster in a Facebook center,
and (3) a WebSearch workload. Each point is the fraction of
all bytes sent that belong to flows smaller than a threshold for
that workload. For example, for the Google workload, flows
that are shorter than 100 KB represent nearly half of all bytes.
As link speed increases, a growing fraction of traffic belongs
to flows that complete quickly relative to the RTT. For
example, most Facebook Hadoop traffic is likely to fit within
one round trip within the next decade. While some have
argued that data center flows are increasing in size [6], the
trend is arguably in the opposite direction with the growing
use of RDMA for fine-grained remote memory access.
Trend 3: Buffer size is not scaling with switch capacity.
Fig. 1 shows that the total switch buffer size relative to its
capacity has decreased by almost a factor of 2 (from 75 µs to
40 µs) over the past six years. With smaller buffers relative to
link speed, buffers now fill up more quickly, making it more
difficult for end-to-end congestion control to manage those
buffers.

2.1 Limits of End-to-End Congestion Control

This combination — very fast links, short flows, and inad-
equate buffers — creates the perfect storm for end-to-end
congestion control protocols. Flows that complete within
one or a few RTTs (which constitute an increasingly larger
fraction of traffic) either receive no feedback, or last for
so few feedback cycles that they cannot find the correct

780 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

103 104 105 106 107

Flow Size (B)
0.00
0.25
0.50
0.75
1.00

CD
F

Google Facebook_Hadoop WebSearch

Figure 2: Cumulative bytes contributed by different flow sizes for
three different industry workloads. The three vertical lines show the
BDP for a 10 Gbps, 40 Gbps, and 100 Gbps network, assuming a
12 µs RTT.

0 10 20 30
0

20

40

60

M
ea

n
Ch

an
ge

 in
Fa

ir-
sh

ar
e

Ra
te

 (%
)

0 10 20 30
0.0
2.5
5.0
7.5

10.0
12.5

0 10 20 30
0

1

2

3

Time Interval (s)

Google FB_Hadoop WebSearch
10Gbps 40Gbps 100Gbps

Figure 3: Mean percent change in fair-share rate as a function of
workload, delay, and bandwidth.

Scheme Throughput (%) 99% Queuing Delay (µs)

BFC 37.3 1.2
HPCC 22.9 23.9

DCQCN 10.0 30.4

Table 1: For a shared 100 Gbps link, BFC achieves close to ideal
throughput (40%) for the long flow, with low tail queuing delay.

rate [34]. For longer flows, the rapid arrival and departure
of cross-traffic creates significant fluctuations in available
bandwidth at RTT timescales, making it difficult to find the
correct rate. The result is loss of throughput and large queue
buildup. Insufficient switch buffering further exacerbates
these problems, leading to packet drops or link-level pause
events (PFC [62]) that spread congestion upstream.

To understand these issues, we consider an experiment with
a long-lived flow competing on a single link against cross-
traffic derived from the Google, Facebook, and WebSearch
workloads. We repeat the experiment at 10, 40, and 100 Gbps,
with the average load of the cross-traffic flows set to be 60% of
the link capacity in each case. Fig. 3 plots the relative change
in the fair-share rate of the long-lived flow over different time
intervals.2 Congestion control protocols struggle to track the
fair-share rate when it varies significantly over their feedback
delay (typically an RTT). As link speeds increase or flows be-
come shorter, the fair-share rate changes more rapidly (since
flows arrive and finish more quickly), and hence congestion
control becomes more difficult.

Table 1 considers one configuration in detail, with a single
long flow sharing a 100 Gbps link with cross-traffic drawn
from the Facebook distribution at 60% average load. The

2The fair-share rate (f (t)) for a link of capacity C shared by N(t) flows
is C/N(t). The relative change in f (t) over time interval I is given by
| f (t+I)− f (t)

f (t) |.

minimum RTT (hence, feedback delay) is 8 µs. We consider
both the single packet (99th percentile) queuing delay and
throughput for the long flow, for our approach (BFC) and two
end-to-end protocols (DCQCN and HPCC). BFC is able to
achieve close to the maximum possible throughput for the
long-lived flow (40%) with low tail delay, while the end-to-
end protocols fall short in both respects.

2.2 Existing Solutions are Insufficient

There are several existing solutions that go beyond end-to-end
congestion control. We briefly discuss the most prominent of
these approaches and why they are insufficient to deal with
the challenges described above.

Priority flow control (PFC). One approach to handling in-
creased buffer occupancy would be to use PFC, a hop-by-hop
flow control mechanism.3 With PFC, if the packets from a
particular input port start building up at a congested switch
(past a configurable threshold), the switch sends a “pause”
frame upstream, stopping that input from sending more traffic
until the switch has a chance to drain stored packets. This
prevents switch buffers from being overrun. Unfortunately,
PFC has a side effect: head-of-line (HoL) blocking [65]. For
example, incast traffic to a single server can cause PFC pause
frames to be sent one hop upstream towards the source of
the traffic. This stops all the traffic traversing the paused link,
even those flows that are destined to other uncongested egress
ports. These flows will be delayed until the packets at the
congested port can be drained. Worse, as packets queue up
behind a PFC, additional PFC pause frames can be triggered
at upstream hops, widening the scope of HoL blocking.

Switch scheduling. Several efforts use switch scheduling to
overcome the negative side-effects of elephant flows on the
latency of short flows. These proposals range from approx-
imations of fair queuing (e.g., Stochastic Fair Queuing [46],
Approximate Fair Queuing [53]) to scheduling policies
that prioritize short flows (e.g., pFabric [9], QJump [28],
Homa [49]). Our work is orthogonal to the choice of switch
scheduling policy, and we present results with priority
scheduling and shortest flow first. Scheduling by itself does
nothing to reduce buffer occupancy; buffers can fill, causing
packet drops or HoL blocking, regardless of scheduling.

Receiver-based congestion control. Because sender-based
congestion control schemes generally perform poorly on
incast workloads, some researchers have proposed shifting to
a scheme where the receiver prevents congestion by explicitly
allocating credits to senders for sending traffic. Three
examples are NDP [30], pHost [25] and Homa [49]. BFC
makes fewer assumptions than these approaches. Homa, for
example, assumes knowledge of the flow size distribution and
flow length, so that it can assign flows to near-optimal priority
queues; this is unavailable with today’s TCP socket interface

3For simplicity, we focus on the case where there is congestion among
the traffic at a particular priority level.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 781

and not all applications know flow lengths in advance [13,59].
Homa uses packet spraying to achieve better load balancing,
so that congestion primarily occurs at the last hop, where the
receiver has complete visibility. However, congestion-free op-
eration of the core is difficult to engineer for widely deployed
oversubscribed and asymmetric networks [54, 64, 66]. Packet
spraying can also cause packet reordering, which is incompat-
ible with high-speed end host software and hardware packet
handling [35, 45]. Other proposals suggest collecting credits
generated by a flow’s receiver (congestion-controlled by all
switches on the flow’s path) before sending [22]; at high link
speeds, the network state changes rapidly over the feedback
delay, making it difficult for the receiver to determine the
right rate for credits, similar to sender-based protocols.

2.3 Revisiting Per-hop, Per-Flow Flow Control

Our approach is inspired by work in the early 90s on
hop-by-hop credit-based flow control for managing gigabit
ATM networks [11, 41]. Credit-based flow control was also
introduced by multiprocessor hardware designs of the same
era [19, 38, 42]. In these systems, each switch methodically
tracks its buffer space, granting permission to send at an up-
stream switch if and only if there is room in its buffer. In ATM,
packets of different flows are buffered in separate queues and
are scheduled according to the flows’ service requirements.
The result is a network that has no congestion loss by design.

An ideal realization of such a per-hop, per-flow flow
control scheme has several desirable properties:

(1) Fast reaction: When a flow starts experiencing conges-
tion at a switch, the upstream switch can reduce its rate within
a 1-Hop RTT, instead of the end-to-end RTT that it takes for
standard congestion control schemes. Likewise, when capac-
ity becomes available at a switch, the upstream switch can
increase its rate within a 1-Hop RTT (provided the upstream
switch has packets from that flow). Assuming a hardware
implementation, the 1-hop RTT consists of the propagation
latency and the switch pipeline latency — typically 1-2 µs.4

This is substantially smaller than the typical end-to-end RTT
in data centers (e.g., 10-20 µs), which in addition to multiple
switch hops includes the latency at the endpoints.

(2) Buffer pooling: During traffic bursts, a per-hop per-flow
flow control mechanism throttles traffic upstream from the
bottleneck. This enables the bottleneck switch to tap into
the buffers of its upstream neighbors, thereby significantly
increasing the ability of the network to absorb bursts.

(3) No HoL blocking: Unlike PFC, there is no HoL blocking
or congestion spreading with per-hop per-flow flow control,
because switches isolate flows in different queues and
perform flow control for each of them separately.

(4) Simple control actions: Flow control decisions in a per-
hop per-flow flow control system are simpler to design and

4For example, a 100 m cable has a propagation latency of 500 ns, and a
typical data center switch has a pipeline latency around 500 ns [15, 20].

reason about than end-to-end congestion control algorithms
because: (i) whether to send or pause a flow at a switch de-
pends only on feedback from the immediate next-hop switch
(as opposed to multiple potential points of congestion with
end-to-end schemes), (ii) concerns like fairness are dealt with
trivially by scheduling flows at each switch, and therefore
flow control can focus exclusively on the simpler task of
managing buffer occupancy and ensuring high utilization.

Despite these compelling properties, per-hop per-flow
flow control schemes have not been widely deployed, in
part because of their high implementation complexity and
resource requirements. ATM schemes require per-connection
state and large buffers, which are not feasible in today’s data
center switches. We observe, however, that per-connection
switch state is not actually required. Indeed, much of the time,
per-connection state is for flows that have no packets queued
at the switch, and therefore don’t need to be flow controlled.

We define an active flow to be a flow with one or more pack-
ets queued at the switch. A result of queuing theory is that the
number of active flows is surprisingly small for a switch using
fair queuing [37, 39]. In particular, for an M/G/1-PS (Proces-
sor Sharing) queue with Poisson flow arrivals operating at
average load ρ<1, the number of active flows has a geometric
distribution with mean ρ

1−ρ
, independent of the link speed or

the flow size distribution. Even at load ρ=0.9, the expected
number of active flows is only 9. The intuition behind this fact
is that a fair queued switch will tend to process short flows
quickly, completing them and keeping the number of active
flows small.

Data center network workloads are often more bursty than
Poisson, leading to longer queues and more active flows. How-
ever, the basic principle still holds. Fig. 4 shows the cumu-
lative distribution of the number of active flows for a single
bottleneck link operating at different loads and link speeds, us-
ing the Google flow size distribution and (bursty) log-normal
flow inter-arrival times. The upper graph assumes fair queuing
and includes a vertical bar for the number of queues per port
on Tofino2. At 100 Gbps, the number of active flows signif-
icantly exceeds the number of queues only for loads above
85%, and then only modestly; importantly, the distribution
is invariant to link speed, and the trend is for faster links to
have more queues. The result holds even more strongly with
shortest remaining flow first (SRF) scheduling. By contrast,
with FIFO queuing, even a single long flow can cause a large
number of small flows to back up behind it, and therefore the
number of active flows is much larger.

3 DESIGN
Our goal is to design a practical system for per-hop, per-flow
flow control for data center networks. We first describe the
constraints on our design (§3.1). We then sketch a plausible
strawman proposal that surprisingly turns out to not work
well at all (§3.2), and we use that as motivation for our design
(§3.3).

782 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

100 101 102 103
0.8

0.9

1.0
CD

F

100 101 102 103

Active Flows at a Port

100 G 400 G

45 55 65 75 85 90

(a) Number of active flows vs. link speed, with fair queuing

100 101 102 103
0.8

0.9

1.0

CD
F

100 101 102 103

Active Flows at a Port

FIFO SRF

45 55 65 75 85 90

(b) Number of active flows vs. scheduling policy, 100G

Figure 4: Number of active flows for different load, link speed, and
scheduling policy. Lines correspond to different loads. Flow sizes
are from the Google distribution with lognormal (σ=2) inter-arrival
times.

Incoming Packets
(from upstream)

Scheduler

Mapping to
physical queues

Backpressure
feedback

Backpressure
Module

Outgoing Packets
(to downstream)

Physical queues

Update the
scheduler on
backpressure

feedback

Figure 5: Logical switch components in per-hop, per-flow flow
control.

3.1 Design Constraints

Fig. 5 shows the basic components of a per-hop, per-flow
flow control scheme (per port). (1) Mapping to physical
queues: When a packet arrives at the switch, the switch routes
the packet to an egress port and maps it to a FIFO queue
at that port. This assignment of flows to queues must be
consistent, that is, respect packet ordering. (2) Backpressure
module: Based on queue occupancy, the switch generates
backpressure feedback for some flows and sends it upstream.
(3) Scheduler: The scheduler at each egress port forwards
packets from queues while respecting backpressure feedback
from the downstream switch.

ATM per-hop per-flow flow control systems [11, 41]
roughly followed this architecture, but they would be imprac-
tical for modern data centers. First, they assumed per-flow
queues and state, but modern switches have a limited number
of queues per egress port [17,53] and modest amounts of table
memory [18, 23]. In particular, it is not possible to maintain
switch state for all live connections. Second, earlier schemes
did not attempt to minimize buffer occupancy. Instead, they
sent backpressure feedback only when the switch was about to
run out of buffers. On a buffer-constrained switch, this can re-
sult in buffer exhaustion — buffers held by straggler flows can
prevent other flows from using those buffers at a later time.

Hardware assumptions. Modern data center switches have
made strides towards greater flexibility [12, 56], but they are

not infinitely malleable and have real resource constraints.
We make the following assumptions based on the capabilities
of Tofino2.
1. We assume the switch is programmable and supports

stateful operations.Tofino2 can maintain millions of
register entries, and supports simple constant-time
per-packet operations to update the state at line rate [55].

2. The switch has a limited number of FIFO queues per egress
port, meaning that flows must be multiplexed onto queues.
Tofino2 has 32/128 queues per 100/400G port. The assign-
ment of flows to queues is programmable. The scheduler
can use deficit round-robin or priorities among queues,
but packets within a queue are forwarded in FIFO order.

3. Each queue can be independently paused and resumed
without slowing down forwarding from other queues.
When we pause a queue, that pauses all of the flows
assigned to that queue. The switch can pause/resume each
queue directly within the dataplane.

3.2 A Strawman Proposal

We originally thought stochastic fair queuing [46] with
per-queue backpressure might meet our goals: use a hash
function on the flow header to consistently assign the packets
of each flow to a randomly-chosen FIFO queue at its egress
port, and pause a queue whenever its buffer exceeds the
1-hop bandwidth-delay product (BDP). For simplicity, use
the same hash function at each switch.

This strawman needs only a small amount of state for gener-
ating the backpressure feedback and no state for queue assign-
ment. However, with even a modest number of active flows,
the birthday paradox implies that there is a significant chance
that any specific flow will land in an already-occupied FIFO
queue. These collisions hurt latency for two reasons: (1) The
packets for the flow will be delayed behind unrelated packets
from other flows; for example, a short flow may land behind a
long flow. (2) Queue sharing can cause HoL blocking. If a par-
ticular flow is paused (because it is congested downstream),
all flows sharing the same queue will be delayed. To prevent
collisions from affecting tail latency performance, the straw-
man requires significantly more queues than active flows. For
example, at an egress port with n active flows, to achieve fewer
than 1% collisions, we would need roughly 100n queues.

3.3 Backpressure Flow Control (BFC)

Our design achieves the following properties:

Minimal HoL blocking: We assign flows to queues dynam-
ically. As long as the number of active flows at an egress is
less than the number of queues, (with high probability) no
two flows share a queue and there is no HoL blocking. When
a new flow arrives at the switch, it is assigned to an empty
queue if one is available, sharing queues only if all are in use.

Low buffering and high utilization: BFC pauses a flow at
the upstream when the queue occupancy exceeds a small
threshold. BFC’s pause threshold is set aggressively to

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 783

reduce buffering. With coarse pausing like PFC, pausing
aggressively hurts utilization, but BFC only pauses those
flows causing congestion (except when collisions occur). The
remaining flows at the upstream can continue transmitting,
avoiding under-utilization.
Hardware feasibility: BFC does not require per-flow state,
and instead uses an amount of memory proportional to the
number of physical queues in the switch. To allow efficient
lookup of the state associated with a flow, the state is stored
in a flow table, an array indexed using a hash of the flow
identifier. The size of this array is set in proportion to the
number of physical queues. In our Tofino2 implementation,
it consumes less than 10% of the dedicated stateful memory.
Critically, the mechanism for generating backpressure and
reacting to it is simple and the associated operations can be
implemented entirely in the dataplane at line rate.
Generality: BFC does not make assumptions about the
network topology or where congestion can occur, and does
not require packet spraying like NDP [30] or Homa [49].
Furthermore, it does not assume knowledge of flow sizes or
deadlines. Such information can be incorporated into BFC’s
design to improve small flow performance (see App. A.2),
at a cost in deployability.
Idempotent state: Because fiber packets can be corrupted
in flight [66], BFC ensures that pause and resume state is
maintained idempotently, in a manner resilient to packet loss.

3.3.1 Assigning flows to queues

To minimize sharing of queues and HoL blocking, we
dynamically assign flows to empty queues. As long as the
flow is active (has packets queued at the switch), subsequent
packets for that flow will be placed into the same FIFO
queue. Each flow has a unique 5-tuple of the source and
destination addresses, port numbers, and protocol; we call
this the flow identifier (FID). BFC uses the hash of the FID
to track a flow’s queue assignment. To simplify locating an
empty queue, BFC maintains a bit map of empty queues.
When the last packet in a queue is scheduled, BFC resets the
corresponding bit for that queue.

With dynamic queue assignment, a flow can be assigned to
different queues at different switches. To pause a flow, BFC
pauses the queue the flow came from at the upstream switch
(called the upstream queue). The pause applies to all flows
sharing the same upstream queue with the paused flow. We
describe the pause mechanism in detail in §3.3.2. The packet
scheduler uses deficit round robin to implement fair queuing
among the queues that are not paused.

Since there is a limited number of queues, it is possible
that all queues have been allocated when a new flow arrives,
at which point HoL blocking is unavoidable. For hardware
simplicity, we assign the flow to a random queue in this case.
Packets assigned to the same queue are scheduled in FIFO
order. The number of active flows is usually small (§2.3), but
in certain settings, such as incast, it can exceed the number of

queues. BFC’s behavior is similar to stochastic fair queuing
in such scenarios in that it incurs HoL blocking. BFC still
outperforms existing protocols like DCQCN and HPCC
except in the most extreme cases (see App. A.1). Even during
a large scale incast, BFC can leverage the large number of
upstream queues feeding traffic to a bottleneck switch to
(1) absorb larger bursts, and (2) limit congestion spreading.
In particular, when flows involved in an incast are spread
among multiple upstream ports, BFC assigns these flows to
separate queues at those ports. As long as the total number
of flows does not exceed the total number of queues across
all of the upstream ports, BFC will not incur HoL blocking at
the upstream switches. As the size of the network increases
and the fan-in to each switch gets larger, there will be even
more queues at the upstream switches to absorb an incast,
further reducing congestion spreading.

Mechanism: To keep track of queue assignment, BFC
maintains an array indexed by the egress port of a flow and
the hash of the FID. All flows that map to the same index are
assigned to the same queue. We maintain the following state
per entry: the physical queue assignment (qAssignment), and
the number of packets in the queue from the flows mapped
to this entry (size). The pseudocode is as follows (we defer
switch-specific implementation issues to §6.1):

On Enqueue (p a c k e t) :
key = < p a c k e t . e g r e s s P o r t , hash (p a c k e t . FID) >
i f f l o w T a b l e [key] . s i z e == 0 :

r e a s s i g n Q u e u e = True :
f l o w T a b l e [key] . s i z e += 1
i f r e a s s i g n Q u e u e :

i f empty q a v a i l a b l e a t p a c k e t . e g r e s s P o r t :
qAss ignment = emptyQ

e l s e :
qAss ignment = randomQ

f l o w T a b l e [key] . qAss ignment = qAss ignment
p a c k e t . qAss ignment = f l o w T a b l e [key] . qAss ignment

On Dequeue (p a c k e t) :
key = < p a c k e t . e g r e s s P o r t , hash (p a c k e t . FID) >
f l o w T a b l e [key] . s i z e −= 1

In the flow table, if two flows map to the same index they
will use the same queue (collision). Since flows going through
different egress ports cannot use the same queue, the index
also includes the egress port. Index collisions in the flow table
can hurt performance. These collisions decrease with the size
of the table, but the flow table cannot be arbitrarily large as
the switch has a limited stateful memory. In our design, we set
the size of the flow table to 100× the number of queues in the
switch. This ensures that if the number of flows at an egress
port is less than the number of queues, then the probability
of index collisions is less than 1%. If the number of flows
exceeds the number of queues, then the index collisions do
not matter as there will be collisions in the physical queues
regardless. Tofino2 has 4096 queues in aggregate, and hence
the size of the flow table is 409,600 entries, which is less
than 10% of the switch’s dedicated stateful memory.

784 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

While using an array is not memory efficient, accessing
state involves simple operations. Existing solutions for
maintaining flow state either involve slower control plane
operations, or are more complex [14, 51]. In the future, if
the number of queues increases substantially, we can use
these solutions for the flow table; however at the moment,
the additional complexity is unnecessary.

3.3.2 Backpressure mechanism

BFC pauses a flow if the occupancy of the queue assigned
to that flow exceeds the pause threshold T h. To pause/resume
a flow, the switch could signal the flow ID to the upstream
switch, which can then pause/resume the queue associated
with the flow. While this solution is possible in principle, it
is difficult to implement on today’s programmable switches.
The challenge is that, on receiving a pause, the upstream
switch needs to perform a lookup to find the queue assigned
to the flow and some additional bookkeeping to deal with
cases when a queue has packets from multiple flows (some
of which might be paused and some not).

We take a different approach. Switches directly signal to the
upstream device to pause/resume a specific queue. Each up-
stream switch/source NIC inserts its local queue number in a
special header field called upstreamQ. The downstream switch
uses this information to pause the queue at the upstream.

Mechanism: Recall that, in general, multiple flows can share
a queue in rare cases. This has two implications. First, we
track the queue length (and not just the flowTable.size) and
use that to determine if the flow’s upstream queue should be
paused. Second, each upstream queue can, in general, have
flows sending packets to multiple queues at multiple egresses.
We pause an upstream queue if any of its flows are assigned
a congested queue, and we resume when none of its flows
have packets at a congested queue (as measured at the time
the packet arrived at the switch).

We monitor this using a Pause Counter, an array indexed
by the ingress port and the upstreamQ of a packet. The
upstream queue is paused if and only if its Pause Counter
at the downstream switch is non-zero. On enqueue of a
packet, if its flow is assigned a queue that exceeds the pause
threshold, we increment the pause counter at that index
by 1. When this packet (the one that exceeded T h) leaves
the switch we decrement the counter by 1. Regardless of
the number of flows assigned to the upstreamQ, it will be
resumed only once all of its packets that exceeded the pause
threshold (when the packet arrived) have left the switch.

On Enqueue (p a c k e t) :
key = < p a c k e t . i n g r e s s P o r t , p a c k e t . upstreamQ >
i f p a c k e t . qAss ignment . qLength > T h :

p a c k e t . m e t a d a t a . c o u n t e r I n c r = True
p a u s e C o u n t e r [key] += 1
i f p a u s e C o u n t e r [key] == 1 :

/ / Pause t h e queue a t u p s t r e a m
sendPause (key)

On Dequeue (p a c k e t) :
key = < p a c k e t . i n g r e s s P o r t , p a c k e t . upstreamQ >
i f p a c k e t . m e t a d a t a . c o u n t e r I n c r == True :

p a u s e C o u n t e r [key] −= 1
i f p a u s e C o u n t e r [key] == 0 :

/ / Resume t h e queue a t u p s t r e a m
sendResume (key)

To minimize bandwidth consumed in sending pause/re-
sumes, we only send a pause packet when the pause counter
for an index goes from 0 to 1, and a resume packet when it
goes from 1 to 0. For reliability against pause/resume packets
being dropped, we also periodically send a bitmap of the
queues that should be paused at the upstream (using the pause
counter). Additionally, the switch uses a high priority queue
for processing the pause/resume packets. This reduces the
number of queues available for dynamic queue assignment by
1, but it eliminates performance degradation due to delayed
pause/resume packets.

The memory required for the pause counter is small
compared to the flow table. For example, if each upstream
switch has 128 queues per egress port, then for a 32-port
downstream switch, the pause counter is 4096 entries.
Pause threshold. BFC treats any queue buildup as a sign of
congestion. BFC sets the pause threshold T h to 1-Hop BDP at
the queue drain rate. Let Nactive be the number of active queues
at an egress, i.e. queues with data to transmit that are not
paused, HRT T be the 1-Hop RTT to the upstream, and µ be
the port capacity. Assuming fair queuing as the scheduling pol-
icy, the average drain rate for a queue at the egress is µ/Nactive.
The pause threshold T h is thus given by (HRT T)·(µ/Nactive).
When the number of active queues increases, T h decreases.
In asymmetric topologies, egress ports can have different link
speeds; as a result, we calculate a different pause threshold for
every egress based on its speed. Similarly, ingress ports can
have different 1-Hop RTTs. Since a queue can have packets
from different ingresses, we use the max of HRT T across
all the ingresses to calculate T h. We use a pre-configured
match-action table indexed with Nactive and µ to compute T h.

BFC does not guarantee that a flow will never run out
of packets due to pausing. First, a flow can be paused
unnecessarily if it is sharing its upstream queue with other
paused flows. Second, a switch only resumes an upstream
queue once all its packets (that exceeded the pause threshold
when they arrived) have left the downstream switch. Since the
resume takes an HRT T to take effect, a flow can run out of
packets at the downstream switch for an HRT T , potentially
hurting utilization. However, this scenario is unlikely — a
pause only occurs when a queue builds up, typically because
multiple flows are competing for the same egress port. In this
case, the other flows at the egress will have packets to occupy
the link, preventing under-utilization.

We might reduce the (small) chance of under-utilization
by resuming the upstream queue earlier, for example, when
a flow’s queue at the downstream drops below T h, or more
precisely, when every queue (with a flow from the same

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 785

upstream queue) drops below T h. Achieving this would
require extra bookkeeping, complicating the design.

Increasing the pause threshold would reduce the number of
pause/resumes generated, but only at the expense of increased
buffering (Fig. 7). In App. C, we analyze the impact of T h
on under-utilization and peak buffer occupancy in a simple
model, and we show that a flow runs out of packets at most
20% of the time when T h is set to 1-hop BDP. Our evaluation
results show that BFC achieves much better throughput than
this worst case in practice (Table 1, §6).
Sticky queue assignment: Using upstreamQ for pausing
flows poses a challenge. Since a switch does not know the
current queue assignment of a flow at the upstream, it uses the
upstreamQ conveyed by the last packet of the flow to pause a
queue. However, if a flow runs out of packets at the upstream
switch (e.g., because it was bottlenecked at the downstream
switch but not the upstream), then its queue assignment may
change for subsequent packets, causing it to temporarily
evade the pause signal sent by the downstream switch. Such
a flow will be paused again when the downstream receives
packets with the new upstreamQ. The old queue will likewise
be unpaused when its last packet (that exceeded T h) departs
the downstream switch.

To reduce the impact of such queue assignment changes,
we add a timestamp to the flow table state, updated whenever
a packet is enqueued or dequeued. A new queue assignment
only happens if the size value in the flow table is 0, and the
timestamp is older than a “sticky threshold” (i.e., the entry
in the flow table has had no packets in the switch for at least
this threshold). Since with BFC’s backpressure mechanism
a flow can run out of packets for an HRT T , we set the sticky
threshold to a small multiple of HRT T (2 HRT T).

While sticky queue assignments reduce the chance that a
backlogged flow will change queues, it doesn’t completely
eliminate it (e.g., packets from the same flow may arrive
slower than this interval due to an earlier bottleneck). Such sit-
uations are rare, and we found that BFC performs nearly iden-
tically to an ideal (but impractical) variant that pauses flows
directly using the flow ID without sticky queue assignments.

4 TOFINO2 IMPLEMENTATION
We implemented BFC in Tofino2, a to-be-released P4-based
programmable switch ASIC with a Reconfigurable Match
Table (RMT) architecture [17]. A packet in Tofino2 first
traverses the ingress pipeline, followed by the traffic manager
(TM) and finally the egress pipeline. Tofino2 has four ingress
and four egress RMT pipelines. Each pipeline has multiple
stages, each capable of doing stateful packet operations.
Ingress/egress ports are statically assigned to pipelines.
Bookkeeping: The flow table and pause counter are both
maintained in the ingress pipeline. The flow table contains
three values for each entry and is thus implemented as three
separate register arrays (one for each value), updated one
after the other.

Multiple pipelines: The flow table is split across the four
ingress pipelines, and the size of the table in each ingress
pipeline is 25 × the number of queues. During normal
operation, packets of an active flow arrive at a single ingress
pipeline (same ingress port). Since the state for a flow only
needs to be accessed in a single pipeline, we can split the flow
table. However, splitting can marginally increase collisions
if the incoming flows are distributed unevenly among the
ingress pipelines. Similarly, the pause counter is split among
the ingress pipelines. An ingress pipeline contains the pause
counter entries corresponding to its own ingress ports.

Gathering queue depth information: We need queue depth
information in the ingress pipeline for pausing and dynamic
queue assignment. Tofino2 has an inbuilt feature tailored
for this task. The TM can communicate the queue depth
information for all the queues in the switch to all the ingress
pipelines without consuming any additional ingress cycles
or bandwidth. The bitmap of empty queues is periodically
updated with this data, with a different rotating starting point
per pipeline to avoid new flows from being assigned to the
same empty queue.

Communicating from egress to ingress pipeline: The enqueue
operations described earlier are executed in the ingress
pipeline when a packet arrives. Dequeue operations should
happen at the egress but the bookkeeping data structures are
at the ingress. To solve this, in the egress pipeline, we mirror
packets as they exit and recirculate the header of the mirrored
packet back to the ingress pipeline it came from. The dequeue
operations are executed on the recirculated packet header.

Recirculating packets involves two constraints. First, the
switch has dedicated internal links for recirculation, but
the recirculation bandwidth is limited to 12% of the entire
switch capacity. Second, the recirculated packet consumes an
additional ingress cycle. The switch has a cap on the number
of packets it can process every second (pps capacity).

Most workloads have an average packet size greater
than 500 bytes [16], and Tofino2 is designed with enough
spare capacity in bandwidth and pps to handle header
recirculation for every packet for those workloads (with room
to spare). If the average packet size is much smaller, we can
reduce recirculations by sampling packets for recirculation
(described in App. A.8).

Recirculation is not fundamental to BFC. For example,
Tofino2 has native support for PFC bookkeeping in the TM.
Likewise, if BFC bookkeeping was implemented in the
TM, it would not need recirculation. Similarly, in switches
with a disaggregated RMT architecture [23] where the same
memory can be accessed at both the ingress and egress, there
is no need for recirculation.

786 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

5 DISCUSSION

Guaranteed losslessness. BFC does not guarantee lossless-
ness. In particular, a switch in BFC pauses an upstreamQ only
after receiving a packet from it. This implies an upstreamQ

can send packets for up to an HRT T to the bottleneck switch
before being paused, even if the switch is congested. In
certain mass incast scenarios, this might be sufficient to
trigger drops. Using credits [11, 41] could address this at the
cost of added complexity. We leave an investigation of such
prospective variants of BFC to future work. In our evaluation
with realistic switch buffer sizes, BFC never incurred drops
except under a 2000-to-1 incast (§6.3) and even then only
0.007% of the packets were dropped.

Deadlocks: Pushback mechanisms like PFC have been
shown to be vulnerable to deadlocks in the presence of cyclic
buffer dependencies (CBD) or misbehaving NICs [29, 31].
BFC NICs do not generate any backpressure and as a result
cannot cause deadlocks. Since NICs always drain, in the
absence of CBD, BFC cannot have deadlocks (see App. B for
a formal proof). A downstream switch in BFC will resume an
upstreamQ if it drains all the packets sent by the upstreamQ.
If a downstream is not deadlocked, it will eventually drain
packets from the upstream, and as a result, the corresponding
upstream cannot be deadlocked.

To prevent CBD, we can reuse prior approaches for
deadlock prevention. These approaches can be classified into
two categories. The first is to redesign routing protocols to
avoid installing routes that might cause CBD [57, 58]. The
other is to identify a subset of possible ingress/egress pairs
that are provably CBD free, and only send pause/resume
along those pairs [32]. For a fat-tree topology, this would
allow up-down paths but not temporary loops or detour
routes [44]. In BFC, we use the latter approach. Given a
topology, we pre-compute a match action table indexed by
the ingress and egress port, and simply elide the backpressure
pause/resume signal if it is disallowed. See App. B for details.

Incremental Deployment: In a full deployment, BFC
would not require end-to-end congestion control. In a
partial deployment, we advocate some form of end-to-end
congestion control, such as capping the number of inflight
packets of a flow. A common upgrade strategy is to upgrade
switches more rapidly than server NICs. If only switches and
not NICs are running BFC, capping inflight packets prevents
a source NIC from overrunning the buffers of the first hop
switch. The same strategy can be used for upgrading one
cluster’s switches before the rest of the data center [64]. In
our evaluation, we show incremental deployment would have
some impact on buffer occupancy at the edge but minimal
impact on performance (App. A.8).

Sender Group 1 Sender Group 2 Sender Group 3

Receiver 2Receiver 1

Switch 3

Switch 2

Switch1

Figure 6: Testbed topology. The colored lines show the path for
different flow groups.

0 100 200 300 400
Time (s)

0
25
50
75

100
125

Qu
eu

e
Le

ng
th

 (i
n

ce
lls

)

(a) Queue Length

0 2 4 6
Pause Threshold (s)

0.0
2.5
5.0
7.5

10.0
12.5
15.0

Un
de

r-u
til

iza
tio

n
(%

)

0

5

10

15

20

25

30

35

Av
g.

 Q
ue

ue
 L

en
gt

h
(K

B)

(b) Under-utilization

Figure 7: Queue length and under-utilization. 2 flows are
competing at a 100 Gbps link. Cell size is 176 bytes. BFC achieves
high utilization and low buffering.

6 EVALUATION
We present a proof-of-concept evaluation of our Tofino2
implementation. To compare performance of BFC against
existing schemes, we perform large scale ns-3 [4] simulations.

6.1 Tofino2 evaluation

Testbed: For evaluation, we were able to gain remote access
to a Tofino2 switch. Using a single switch, we created
a simple multi-switch topology (Fig. 6) by looping back
packets from the egress port back into the switch. All
the ports are 100 Gbps, each port has 16 queues.5 The
experiments include three groups of flows.

• Sender Group 1→ Switch 1→ Switch 2→ Receiver 1.
• Sender Group 2→ Switch 1→ Switch 2→ Receiver 2.
• Sender Group 3→ Switch 3→ Switch 2→ Receiver 2.

To generate traffic we use the on-chip packet generator with
no end-to-end congestion control.

Low buffering, high utilization: Fig. 7a shows the queue
length for a flow when two flows are competing at a link
(a group 2 flow is competing with a group 3 flow at the
switch 2→ receiver 2 link). The pause threshold is shown
as a horizontal black line. BFC’s pausing mechanism is
able to limit the queue length near the pause threshold (T h).
The overshoot from T h is for two reasons. First, it takes
an HRT T for the pause to take effect. Second, Tofino2 has
small hardware queues after the egress pipeline, and a pause
from the downstream cannot pause packets already in these
hardware queues.

Notice that the queue length goes to 0 temporarily. Recall
that a downstream switch only resumes the upstreamQ

5For 100 Gbps ports, Tofino2 has 32 queues, but in loopback mode only
16 queues are available.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 787

4 6 8 10 12 14 16 18 20
of flows in group 2

0
500

1000
1500
2000
2500

FC
T

(
s)

BFC + dynamic BFC + stochastic BFC + single

Figure 8: Congestion spreading. Dynamic queue assignment
reduces HoL blocking, improving FCTs on average and at the tail.

when it has drained all the packets from the upstreamQ

that exceeded T h. As a result, a flow at the downstream
can run out of packets for an HRT T . This can cause
under-utilization when the queues for the two flows go empty
simultaneously. We repeat the above experiment but vary
the pause threshold. Fig. 7b shows the average queue length
and the under-utilization of the congested link. With a pause
threshold of 2 µs, BFC achieves close to 100% utilization
with an average queue length of 15 KB.

Queue assignment and congestion spreading: We next
evaluate the impact of queue assignment on HoL blocking and
performance. We evaluate three different queue assignment
strategies with BFC’s backpressure mechanism: (1) “BFC
+ single”: All flows are assigned to a single queue (similar to
PFC); (2) “BFC + stochastic”: Flows are assigned to queues
using stochastic hashing; (3) “BFC + dynamic”: Dynamic
queue assignment as described in §3.3.1.

The setup consists of two group 1 flows, eight group 3 flows,
and a number of group 2 flows varied between four to twenty.
All flows are 1.5 MB in size. The experiment is designed such
that for group 2 and 3 flows, the bottleneck is the switch 2→
receiver 2 link. The bottleneck for group 1 flows is the switch
1 → switch 2 link. Switch 2 will pause queues at switch 1
in response to congestion from group 2 flows. Notice that
group 1 and group 2 flows are sharing the switch 1→ switch
2 link. If a group 1 flow shares a queue with a group 2 flow (a
collision), the backpressure due to the group 2 flow can slow
down the group 1 flow, causing HoL blocking and increasing
its flow completion time (FCT) unnecessarily.

Fig. 8 shows the average FCT for group 1 flows across four
runs. The whiskers correspond to one standard deviation in
the FCT. BFC + single achieves the worst FCT as group 1 and
2 flows always share a queue. With stochastic assignment,
the FCT is substantially lower, but the standard deviation
in FCT is high. In some runs, group 1 and 2 flows don’t
share a queue and there is no HoL blocking. In other runs,
due to the stochastic nature of assignment, they do share a
queue (even when there are other empty queues), resulting in
worse performance. With dynamic assignment, BFC achieves
the lowest average FCT and the best tail performance. In
particular, the standard deviation is close to 0 when the
number of flows at the switch 1→ switch 2 link (group 1 +
group 2 flows) is lower than the number of queues. In such
scenarios, group 1 flows consistently incur no collisions.
When the number of flows exceed the queues, collisions are

inevitable, and the standard deviation in FCT increases.

6.2 Simulation-based evaluation

We also implemented BFC in ns-3 [4]. For DCQCN we
use [5], for ExpressPass we use [1], and for all other schemes
we use [3].

6.2.1 Setup

Network Topology: We use a Clos topology with 128 leaf
servers, 8 top of the rack (ToR) switches and 8 Spine switches
(2:1 over subscription). Each Spine switch is connected to
all the ToR switches, each ToR has 16 servers, and each
server is connected to a single ToR. All links are 100 Gbps
with a propagation delay of 1 us. The maximum end-to-end
base round trip time (RTT) is 8 µs and the 1-Hop RTT is 2 µs.
The switch buffer size is set to 12 MB. Relative to the ToR
switch capacity of 2.4 Tbps, the ratio of buffer size to switch
capacity is 40 µs, the same as Broadcom’s Tomahawk3 from
Fig. 1. We use an MTU of 1 KB. Unless specified otherwise,
we use Go-Back-N for retransmission, flow-level ECMP
for load balancing, and the standard shared buffer memory
model implemented in existing switches [20].

Comparisons: HPCC: HPCC uses explicit link utilization
information from the switches to reduce buffer occupancy and
drops/PFCs at the congested switch. We use the parameters
from the paper, η=0.95 and maxStage=5. The dynamic PFC
threshold is set to trigger when traffic from an input port occu-
pies more than 11% of the free buffer (as in the HPCC paper).
We use the same PFC thresholds for DCQCN and DCTCP.
HPCC-PFC: This version replaces PFC with perfect
retransmission. On a packet drop, the switch informs the
sender directly, which then retransmits the dropped packet.
We choose this (potentially impractical) strategy to provide
a bound on the performance that can be achieved using any
retransmission scheme.
DCQCN: DCQCN uses ECN bits and end-to-end control to
manage buffer use at the congested switch. The ECN thresh-
old triggers before PFC (Kmin = 100KB and Kmax = 400KB).
DCTCP: The ECN threshold is same as DCQCN. Flows start
at line rate to avoid degradation in FCTs from slow-start.
ExpressPass: In ExpressPass, senders transmit data based
on credits generated by the receiver. These credits are
rate-limited at the switches to avoid congestion. We chose
α= 0.5,winit = 0.0625 and a credit buffer size of 16 credits.
The ExpressPass simulator does not follow a shared buffer
model; instead it assumes dedicated per-port buffers. To
eliminate drops, we supplied a high per-port buffer value of
75 MB. There is no PFC.
BFC: We use 32 physical queues per port (consistent with
Tofino2) and our flow table has 76K entries. The flow table
takes 400 KB of memory. We chose per-flow fair queuing
as our scheduling mechanism; all the comparison schemes
strive for per-flow fairness, thus, fair queuing provides for
a just comparison.

788 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

100 101 102 103
1
2
4
8

16
32
64

128

FC
T

Sl
ow

Do
wn

100 101 102 103 100 101 102 103

FlowSize (KB)

Avg. 95pct 99pct

BFC HPCC DCQCN HPCC-PFC Exp-Pass

(a) FCT

0 10 20 30 40
Buffer Occupancy (s)

0.80
0.85
0.90
0.95
1.00

CD
F

IdealFQ DCTCP

(b) Buffer occupancy

HPCC
DCQCN

DCTCP
0

5

10

%
 o

f t
im

e
pa

us
ed

Spine->ToR
ToR->Spine

(c) PFC Time
Figure 9: Google distribution with 55% load + 5% 100-1 incast. BFC tracks the ideal behavior, improves FCTs, and reduces buffer occupancy.
For FCT slowdown, both the x and y axis are log scaled.

100 101 102 103
1
2
4
8

16
32
64

128

FC
T

Sl
ow

Do
wn

100 101 102 103 100 101 102 103

FlowSize (KB)

Avg. 95pct 99pct

BFC HPCC DCQCN Exp-Pass HPCC-PFC

(a) FCT

0 2 4 6 8
Buffer Occupancy (s)

0.80
0.85
0.90
0.95
1.00

CD
F

IdealFQ DCTCP

(b) Buffer Occupancy

0 50 100 150 200
of active flows at a port

0.80
0.85
0.90
0.95
1.00

CD
F

With-Incast
Without-Incast

(c) Active Flows

Figure 10: FCT slowdown and buffer occupancy for Google distribution with 60% load. For all the schemes, PFC was never triggered. Part
(c) shows the CDF of active flows at a port with and without incast, with the vertical bar showing the total number of queues per port.

Ideal-FQ: To understand how close BFC comes to optimal
performance, we simulate ideal fair queuing with infinite
buffering at each switch. The NICs cap the in-flight packets of
a flow to 1 BDP. Note that infinite buffering is not realizable
in practice; its role is to bound how well we could possibly do.

Sensitivity to parameters: All systems were configured to
achieve full throughput for a single flow on an unloaded
network. For end-to-end schemes, the choice of parameters
governs the trade-off between the performance of short
flows (through reduced queuing) and long flows (higher link
utilization). We perform parameter sensitivity analysis for
HPCC, DCTCP and ExpressPass in App. A.4.

Performance metrics: We consider three performance
metrics: (1) FCT normalized to the best possible FCT for
the same size flow, running at link rate (referred as the FCT
slowdown); (2) Overall buffer occupancy at the switch; (3)
Throughput of individual flows.

Workloads: We synthesized a trace to match the flow size
distributions from the industry workloads discussed in Fig. 2:
(1) Aggregated workload from all applications in a Google
data center; (2) a Hadoop cluster at Facebook (FB_Hadoop).
The flow arrival pattern is open-loop and follows a bursty
log-normal inter-arrival time distribution with σ = 2.6 For
each flow arrival, the source-destination pair is derived from a
uniform distribution. We consider scenarios with and without
incast, different traffic load settings, and incast ratios. Since
our topology is oversubscribed, on average links in the core
(Spine-ToR) will be more congested than the ToR-leaf server
links. In our experiments, by X% load we mean X% load on

6Most prior work evaluates using Poisson flow arrivals [22,49], but we use
the more bursty Lognormal as it provides a more challenging case for BFC.

the links in the core.

6.2.2 Performance

Fig. 9 and 10 show our principal results. The flow sizes are
drawn from the Google distribution and the average load is set
to 60% of the network capacity. For Fig. 9 (but not Fig. 10),
5% of the traffic (on average) is from incast flows. The incast
degree is 100-to-1 and the size is 20 MB in aggregate. A new
incast event starts every 500 µs. Since the best-case comple-
tion time for an incast is 1.6 ms (20 MB/100 Gbps), multiple
incasts coexist simultaneously in the network. We report the
FCT slowdowns at the average, 95th and 99th percentile, the
tail buffer occupancy (except for ExpressPass simulations
which do not follow the shared buffer model), and the fraction
of time links were paused due to PFC. We report the FCT
slowdowns for the incast traffic separately in App. A.12.

Out of all the schemes, DCQCN is worst on latency for
small flow sizes, both at the average and the tail. Compared
to DCQCN, DCTCP improves latency as it uses per-ACK
feedback instead of periodic feedback via QCN. However, the
frequent feedback is not enough, and the performance is far
from optimal (Ideal-FQ). The problem is that both DCQCN
and DCTCP are slow in responding to congestion. Since
flows start at line rate, a flow can build up an entire end-to-end
bandwidth-delay product (BDP) of buffering (100 KB) at the
bottleneck before there is any possibility of reducing its rate.
The problem is aggravated during incast events. The bottle-
neck switch can potentially accumulate one BDP of packets
per incast flow (10 MB in aggregate for 100-to-1 incast).

Both protocols have low throughput for long flows. When
capacity becomes available, a long flow may fail to ramp up
quickly enough, reducing throughput and shifting its work

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 789

to busier periods where it can impact other flows. Moreover,
on sudden onset of congestion, a flow may not reduce its rate
fast enough, slowing short flows.

HPCC improves on DCQCN and DCTCP by using link
utilization instead of ECN and a better control algorithm.
Compared to DCQCN and DCTCP, HPCC reduces tail
latency, tail buffer occupancy, and PFC pauses (in case of
incast). Compared to BFC, however, HPCC has 5-30× worse
tail latency for short flows with incast, and 2.3-3× worse
without. Long flows do worse with HPCC than DCQCN and
DCTCP since HPCC deliberately targets 95% utilization and
very small queues to improve tail latency for short flows.

With ideal retransmission, HPCC performance improves,
especially for short and medium flows. However, HPCC with-
out PFC has higher tail buffer occupancy and suffers packet
loss. Compared to BFC, overall performance is still worse for
both long and short flows.

Across all systems, ExpressPass achieves the worst through-
put for long flows. In ExpressPass, the receiver can generate
unnecessary credits for an additional RTT before learning that
a flow is finished. These credits are considered “wasted” as the
sender cannot transmit packets in response, and can therefore
cause link under-utilization. Credit waste and the correspond-
ing under-utilization increase with faster link speeds and/or
when the flow sizes get shorter (see §6.3 and §7 in [22]).

Ideal-FQ achieves lower latency than all the schemes, but
its buffer occupancy can grow to an unfeasible level.

BFC achieves the best FCTs (both average and tail) among
all the schemes. Without incast, BFC performance closely
tracks optimal. With incast, incoming flows exhaust the num-
ber of physical queues, triggering HoL blocking and hurting
tail latency. This effect is largest for the smallest flows at the
tail. Fig. 10c shows the CDF of the number of active flows at
a port. In the absence of incast, the number of active flows is
smaller than the total queues 99% of the time, and collisions
are rare. With incast, the number of active flows increases,
causing collisions. However, the tail latency for short flows
with BFC is still 5-30× better than existing schemes. BFC
also improves the performance of incast flows, achieving 2×
better FCTs at the tail compared to HPCC (see App. A.12).

Note that, compared to BFC and Ideal-FQ, latency for
medium flows (200-1000KB) is slightly better with existing
schemes. Because they slow down long flows relative to
perfect fairness, medium flows have room to get through
more quickly. Conversely, tail slowdown is better for long
flows than medium flows with BFC and Ideal-FQ. Long
flows achieve close to the long term average available
bandwidth, while medium flows are more affected by
transient congestion.

Another workload: We repeated the experiment in Fig. 9
and Fig. 10 with the Facebook distribution. Fig. 11 shows the
99th percentile FCT slowdown. The trends in the FCT slow-
downs are similar to that of the Google distribution, except
that ExpressPass performs better since it incurs fewer wasted

101 102 103 104

Flow Size (KB)
1
2
4
8

16
32
64

128

FC
T

Sl
ow

 D
ow

n

BFC
HPCC

DCQCN
Exp-Pass

(a) 55% + 5% 100-1 incast

101 102 103 104

Flow Size (KB)
1
2
4
8

16
32
64

FC
T

Sl
ow

 D
ow

n

IdealFQ
DCTCP

HPCC-PFC

(b) 60%

Figure 11: FCT slowdown (99th percentile) for Facebook
distribution with and without incast.

50 60 70 80 90 95
Load (%)

4

8

16

FC
T

Sl
ow

 D
ow

n
Av

er
ag

e
(S

ize
>3

M
B) BFC 32 BFC 128

(a) Average FCT for long flows

50 60 70 80 90 95
Load (%)

1

2

4

8

FC
T

Sl
ow

 D
ow

n
99

 p
ct

 (S
ize

<3
KB

) HPCC - PFC DCTCP

(b) Tail FCT for short flows
Figure 12: Average FCT slowdown for long flows, and 99th

percentile tail FCT slowdown for small flows, as a function of load.

credits (as a percentage) for the Facebook workload, which
has larger flows. We omit other statistics presented earlier in
the interest of space, but the trends are similar to Fig. 9 and 10.
Henceforth, all the experiments use the Facebook workload.

6.3 Stress-testing BFC

In this section we stress-test BFC under high load and large
incast degree. Flow arrivals follow a bursty log-normal
distribution (σ = 2). We evaluate BFC under two different
queue configurations: (1) 32 queues per port (BFC 32);
(2) 128 queues per port (BFC 128). We show the average
slowdown for long flows (> 3MB) and 99th percentile
slowdown for short flows (< 3KB).

Load: Fig. 12 shows the performance as we vary the average
load from 50 to 95% (without incast). HPCC only supports
loads up to 70%. At higher loads, it becomes unstable (the
number of outstanding flows grows without bound), in part
due to the overhead of the INT header (80 B per-packet). All
other schemes were stable across all load values.

At loads ≤ 80%, BFC 32 achieves both lower tail latency
(Fig. 12b) for short flows and higher throughput for long flows
(Fig. 12a). The tail latency for short flows is close to the per-
fect value of 1. At higher loads, flows remain queued at the
bottleneck switch for longer periods of time, raising the like-
lihood that we run out of physical queues, leading to head
of line blocking. This particularly hurts tail performance for
short flows as they might be delayed for an extended period if
they are assigned to the same queue as a long flow. At the very
high load of 95%, the HoL blocking degrades tail latency sub-
stantially for BFC 32. However, it still achieves good link uti-
lization, and the impact of collisions is limited for long flows.

Increasing the number of queues reduces collisions and
the associated HoL blocking. BFC 128 achieves better tail
latency for short flows at load ≥90%.

790 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

10 100 200 500 10002000
Incast Degree

4

8

16

FC
T

Sl
ow

 D
ow

n
Av

er
ag

e
(S

ize
>3

M
B) BFC 32 BFC 128

(a) Average FCT for long flows

10 100 200 500 10002000
Incast Degree

1
2
4
8

16
32
64

128
256

FC
T

Sl
ow

 D
ow

n
99

 p
ct

 (S
ize

<3
KB

) HPCC-PFC DCTCP

(b) Tail FCT for short flows
Figure 13: Average FCT slowdown for long flows, and 99th

percentile tail FCT slowdown for small flows, as a function of incast
degree.

101 102 103 104

Flow Size (KB)
1
2
4
8

16
32
64

FC
T

Sl
ow

 D
ow

n

BFC
HPCC-PFC

HPCC-PFC+SFQ

(a) FCT SlowDown

0 10 20 30 40
Buffer Occupancy (s)

0.80
0.85
0.90
0.95
1.00

CD
F

HPCC-PFC+DQA
IdealFQ

(b) Buffer Occupancy

Figure 14: FCT slowdown (99th percentile) and buffer occupancy
of HPCC variants, using the setup in Fig. 11a.

Incast degree: If the size of an incast is large enough, it can
exhaust physical queues and hurt performance. Fig. 13 shows
the effect of varying the degree of incast on performance.
The average load is 60% and includes a 5% incast. The incast
size is 20 MB in aggregate, but we vary the degree of incast
from 10 to 2000.

For throughput, both BFC 32 and BFC 128 perform well
as long as the incast degree is moderate compared to the
number of queues. Both start to degrade when the incast
degree exceeds 8× the number of queues per port. Till this
point, BFC can leverage the FanIn from the larger number
of upstream queues (and greater aggregate upstream buffer
space) to keep the incast from impeding unrelated traffic. As
the incast degree scales up further, BFC 32 is able to retain
some of its advantage relative to HPCC and DCTCP.

For high incast degree, the tail latency for short flows be-
comes worse than HPCC. The tail is skewed by the few per-
cent of small requests that happen to go to the same destina-
tion as the incast. (Across the 128 leaf servers in our setup,
several servers are the target of an incast at any one time, and
these also receive their share of normal traffic.) As the incast
degree increases, more small flows share physical queues with
incast flows, leading to more HoL blocking.

In App. A.1, we further explore this issue with microbench-
marks designed to trigger a variable number of active flows at
the bottleneck switch. We show that by adding a very simple
end-to-end control mechanism to BFC, we can ameliorate the
impact of HoL blocking while still fully utilizing the link.

6.4 Dynamic Queue Assignment

We next consider the effect of applying BFC’s dynamic
queue assignment separately from the backpressure mech-
anism. For this, we modified HPCC with idealized re-

transmission (HPCC-PFC) to add stochastic fair queuing
(HPCC-PFC+SFQ) and dynamic queue assignment (HPCC-
PFC+DQA). To match BFC, we use 32 physical queues with
HPCC. We repeat the experiment from Fig. 11a, showing tail
slowdown and buffer occupancy for the HPCC variants, BFC,
and IdealFQ in Fig. 14.

Adding SFQ to HPCC improves short flow latency by iso-
lating them from long flows in different queues, but it still
suffers from more collisions (and thus higher tail latency
for short flows) than DQA. DQA on its own, however, has
no benefit for long flows: since HPCC is unable to adapt
to rapid changes in the number of flows (and the fair-share
rate), it is unable to fully utilize the link for long flows, even
with DQA. Moreover, both HPCC-PFC+SFQ and HPCC-
PFC+DQA build deep buffers and experience drops at the
same rate as HPCC-PFC. Notice that HPCC’s lower through-
put for long flows favors short flows to such an extent that
HPCC-PFC+DQA achieves better tail latency for short flows
than both BFC and IdealFQ.

6.5 Additional Experiments

In App. A, we use our simulation framework to further char-
acterize the limits of BFC, compare BFC to Homa, as well as
study the impact of priority scheduling, parameter selection,
locality in the traffic matrix, slow start, incast labelling, and
other factors.

7 CONCLUSION
In this paper, we present Backpressure Flow Control (BFC),
a practical congestion control architecture for data center
networks. BFC provides per-hop per-flow flow control, but
with bounded state, constant-time switch operations, and
careful use of buffers. Switches dynamically assign flows to
physical queues, allowing fair scheduling among competing
flows and use selective backpressure to reduce buffering
with minimal head of line blocking. Relative to existing
end-to-end congestion control schemes, BFC improves short
flow tail latency and long flow utilization for networks with
high bandwidth links and bursty traffic. We demonstrate
BFC’s feasibility by implementing it on Tofino2, a state-of-art
P4-based programmable hardware switch. In simulation,
compared to several deployed end-to-end schemes, BFC
achieves 2.3 - 60× lower tail latency for short flows and
1.6 - 5× better average completion time for long flows.
Acknowledgments. We thank Hari Balakrishnan, Naveen
Kr. Sharma, and Anirudh Sivaraman for useful discussions.
We are grateful to the anonymous reviewers for their
feedback and useful comments. This work was supported
in part by NSF grants CNS-2006827, CNS-1563826, and
CNS-1563826, a Cisco Research Center Award, a Microsoft
Faculty Fellowship, and a Google Research Award.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 791

REFERENCES
[1] Express pass simulation. https://github.com/

kaist-ina/ns2-xpass.

[2] Homa simulation. https://github.com/
PlatformLab/HomaSimulation/tree/omnet_
simulations/RpcTransportDesign.

[3] Hpcc simulation. https:
//github.com/alibaba-edu/
High-Precision-Congestion-Control.

[4] Network simulator 3. https://www.nsnam.org.

[5] Ns-3 simulator for rdma. https://github.com/
bobzhuyb/ns3-rdma.

[6] Atul Adya, Robert Grandl, Daniel Myers, and Henry
Qin. Fast key-value stores: An idea whose time has
come and gone. In Proceedings of the Workshop on Hot
Topics in Operating Systems, HotOS 2019, Bertinoro,
Italy, May 13-15, 2019, pages 113–119. ACM, 2019.

[7] Mohammad Alizadeh, Tom Edsall, Sarang Dharma-
purikar, Ramanan Vaidyanathan, Kevin Chu, Andy
Fingerhut, Vinh The Lam, Francis Matus, Rong Pan,
Navindra Yadav, and George Varghese. CONGA:
distributed congestion-aware load balancing for datacen-
ters. In Fabián E. Bustamante, Y. Charlie Hu, Arvind Kr-
ishnamurthy, and Sylvia Ratnasamy, editors, ACM SIG-
COMM 2014 Conference, SIGCOMM’14, Chicago, IL,
USA, August 17-22, 2014, pages 503–514. ACM, 2014.

[8] Mohammad Alizadeh, Albert G. Greenberg, David A.
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar,
Sudipta Sengupta, and Murari Sridharan. Data
center TCP (DCTCP). In Shivkumar Kalyanaraman,
Venkata N. Padmanabhan, K. K. Ramakrishnan, Rajeev
Shorey, and Geoffrey M. Voelker, editors, Proceedings
of the ACM SIGCOMM 2010 Conference on Applica-
tions, Technologies, Architectures, and Protocols for
Computer Communications, New Delhi, India, August
30 -September 3, 2010, pages 63–74. ACM, 2010.

[9] Mohammad Alizadeh, Shuang Yang, Milad Sharif,
Sachin Katti, Nick McKeown, Balaji Prabhakar, and
Scott Shenker. pfabric: minimal near-optimal datacenter
transport. In Dah Ming Chiu, Jia Wang, Paul Barford,
and Srinivasan Seshan, editors, ACM SIGCOMM 2013
Conference, SIGCOMM’13, Hong Kong, China, August
12-16, 2013, pages 435–446. ACM, 2013.

[10] Amazon. Amazon Web Services. https:
//aws.amazon.com/s3/.

[11] Thomas E. Anderson, Susan S. Owicki, James B. Saxe,
and Charles P. Thacker. High speed switch scheduling

for local area networks. ACM Trans. Comput. Syst.,
11(4):319–352, 1993.

[12] Arista. Arista 7170 Multi-function Programmable
Networking. https://www.arista.com/assets/
data/pdf/Whitepapers/7170_White_Paper.pdf.

[13] Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian,
and Hao Wang. Information-agnostic flow scheduling
for commodity data centers. In 12th {USENIX} Sympo-
sium on Networked Systems Design and Implementation
({NSDI} 15), pages 455–468, 2015.

[14] Tom Barbette, Chen Tang, Haoran Yao, Dejan Kostic,
Gerald Q. Maguire Jr., Panagiotis Papadimitratos, and
Marco Chiesa. A high-speed load-balancer design
with guaranteed per-connection-consistency. In Ranjita
Bhagwan and George Porter, editors, 17th USENIX Sym-
posium on Networked Systems Design and Implementa-
tion, NSDI 2020, Santa Clara, CA, USA, February 25-27,
2020, pages 667–683. USENIX Association, 2020.

[15] Barefoot. Tofino: World’s Fastest P4-Compatible Ether-
net Switch ASICs. https://www.barefootnetworks.
com/products/brief-tofino/.

[16] Theophilus Benson, Ashok Anand, Aditya Akella, and
Ming Zhang. Understanding data center traffic charac-
teristics. Comput. Commun. Rev., 40(1):92–99, 2010.

[17] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick
McKeown, Jennifer Rexford, Cole Schlesinger, Dan
Talayco, Amin Vahdat, George Varghese, and David
Walker. P4: programming protocol-independent packet
processors. Comput. Commun. Rev., 44(3):87–95, 2014.

[18] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Vargh-
ese, Nick McKeown, Martin Izzard, Fernando Mujica,
and Mark Horowitz. Forwarding metamorphosis: Fast
programmable match-action processing in hardware
for sdn. In Proceedings of the ACM SIGCOMM 2013
Conference, SIGCOMM ’13, page 99–110, New York,
NY, USA, 2013. Association for Computing Machinery.

[19] Eric A. Brewer and Bradley C. Kuszmaul. How to
get good performance from the CM-5 data network.
In Howard Jay Siegel, editor, Proceedings of the
8th International Symposium on Parallel Processing,
Cancún, Mexico, April 1994, pages 858–867. IEEE
Computer Society, 1994.

[20] Broadcom. StrataXGS. https://www.broadcom.
com/products/ethernet-connectivity/
switching/strataxgs.

[21] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn,
Soheil Hassas Yeganeh, and Van Jacobson. BBR:
Congestion-Based Congestion Control. ACM Queue,
14(5):50:20–50:53, October 2016.

792 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/kaist-ina/ns2-xpass
https://github.com/kaist-ina/ns2-xpass
https://github.com/PlatformLab/HomaSimulation/tree/omnet_simulations/RpcTransportDesign
https://github.com/PlatformLab/HomaSimulation/tree/omnet_simulations/RpcTransportDesign
https://github.com/PlatformLab/HomaSimulation/tree/omnet_simulations/RpcTransportDesign
https://github.com/alibaba-edu/High-Precision-Congestion-Control
https://github.com/alibaba-edu/High-Precision-Congestion-Control
https://github.com/alibaba-edu/High-Precision-Congestion-Control
https://www.nsnam.org
https://github.com/bobzhuyb/ns3-rdma
https://github.com/bobzhuyb/ns3-rdma
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://www.arista.com/assets/data/pdf/Whitepapers/7170_White_Paper.pdf
https://www.arista.com/assets/data/pdf/Whitepapers/7170_White_Paper.pdf
https://www.barefootnetworks.com/products/brief-tofino/
https://www.barefootnetworks.com/products/brief-tofino/
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs

[22] Inho Cho, Keon Jang, and Dongsu Han. Credit-
scheduled delay-bounded congestion control for
datacenters. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication,
SIGCOMM 2017, Los Angeles, CA, USA, August 21-25,
2017, pages 239–252. ACM, 2017.

[23] Sharad Chole, Andy Fingerhut, Sha Ma, Anirudh
Sivaraman, Shay Vargaftik, Alon Berger, Gal Mendel-
son, Mohammad Alizadeh, Shang-Tse Chuang, Isaac
Keslassy, Ariel Orda, and Tom Edsall. drmt: Disag-
gregated programmable switching. In Proceedings of
the Conference of the ACM Special Interest Group on
Data Communication, SIGCOMM 2017, Los Angeles,
CA, USA, August 21-25, 2017, pages 1–14. ACM, 2017.

[24] Jeffrey Dean and Luiz André Barroso. The tail at scale.
Commun. ACM, 56(2):74–80, 2013.

[25] Peter Xiang Gao, Akshay Narayan, Gautam Kumar,
Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker.
phost: distributed near-optimal datacenter transport
over commodity network fabric. In Felipe Huici and
Giuseppe Bianchi, editors, Proceedings of the 11th ACM
Conference on Emerging Networking Experiments and
Technologies, CoNEXT 2015, Heidelberg, Germany,
December 1-4, 2015, pages 1:1–1:12. ACM, 2015.

[26] Yilong Geng, Vimalkumar Jeyakumar, Abdul Kabbani,
and Mohammad Alizadeh. Juggler: a practical
reordering resilient network stack for datacenters. In
Cristian Cadar, Peter R. Pietzuch, Kimberly Keeton,
and Rodrigo Rodrigues, editors, Proceedings of the
Eleventh European Conference on Computer Systems,
EuroSys 2016, London, United Kingdom, April 18-21,
2016, pages 20:1–20:16. ACM, 2016.

[27] Google. Google Cloud Platform. https:
//cloud.google.com.

[28] Matthew P. Grosvenor, Malte Schwarzkopf, Ionel Gog,
Robert N. M. Watson, Andrew W. Moore, Steven Hand,
and Jon Crowcroft. Queues don’t matter when you
can JUMP them! In 12th USENIX Symposium on
Networked Systems Design and Implementation, NSDI
15, Oakland, CA, USA, May 4-6, 2015, pages 1–14.
USENIX Association, 2015.

[29] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav
Soni, Jianxi Ye, Jitu Padhye, and Marina Lipshteyn.
RDMA over commodity ethernet at scale. In Marinho P.
Barcellos, Jon Crowcroft, Amin Vahdat, and Sachin
Katti, editors, Proceedings of the ACM SIGCOMM 2016
Conference, Florianopolis, Brazil, August 22-26, 2016,
pages 202–215. ACM, 2016.

[30] Mark Handley, Costin Raiciu, Alexandru Agache, An-
drei Voinescu, Andrew W. Moore, Gianni Antichi, and
Marcin Wójcik. Re-architecting datacenter networks
and stacks for low latency and high performance. In
Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM
2017, Los Angeles, CA, USA, August 21-25, 2017, pages
29–42. ACM, 2017.

[31] Shuihai Hu, Yibo Zhu, Peng Cheng, Chuanxiong Guo,
Kun Tan, Jitendra Padhye, and Kai Chen. Deadlocks
in datacenter networks: Why do they form, and how
to avoid them. In Bryan Ford, Alex C. Snoeren, and
Ellen W. Zegura, editors, Proceedings of the 15th ACM
Workshop on Hot Topics in Networks, HotNets 2016,
Atlanta, GA, USA, November 9-10, 2016, pages 92–98.
ACM, 2016.

[32] Shuihai Hu, Yibo Zhu, Peng Cheng, Chuanxiong Guo,
Kun Tan, Jitendra Padhye, and Kai Chen. Tagger: Prac-
tical PFC deadlock prevention in data center networks.
In Proceedings of the 13th International Conference on
emerging Networking EXperiments and Technologies,
CoNEXT 2017, Incheon, Republic of Korea, December
12 - 15, 2017, pages 451–463. ACM, 2017.

[33] Intel. Tofino2. https://www.intel.
com/content/www/us/en/products/
network-io/programmable-ethernet-switch/
tofino-2-series.html. 2020.

[34] Lavanya Jose, Stephen Ibanez, Mohammad Alizadeh,
and Nick McKeown. A distributed algorithm to cal-
culate max-min fair rates without per-flow state. Proc.
ACM Meas. Anal. Comput. Syst., 3(2):21:1–21:42, 2019.

[35] Antoine Kaufmann, Tim Stamler, Simon Peter,
Naveen Kr. Sharma, Arvind Krishnamurthy, and
Thomas E. Anderson. TAS: TCP acceleration as an OS
service. In George Candea, Robbert van Renesse, and
Christof Fetzer, editors, Proceedings of the Fourteenth
EuroSys Conference 2019, Dresden, Germany, March
25-28, 2019, pages 24:1–24:16. ACM, 2019.

[36] Changhoon Kim, Anirudh Sivaraman, Naga Katta,
Antonin Bas, Advait Dixit, and Lawrence J Wobker. In-
band network telemetry via programmable dataplanes.
2015.

[37] Leonard Kleinrock. Queueing systems, volume 2: Com-
puter applications, volume 66. wiley New York, 1976.

[38] Smaragda Konstantinidou and Lawrence Snyder. Chaos
router: Architecture and performance. In Zvonko G.
Vranesic, editor, Proceedings of the 18th Annual Inter-
national Symposium on Computer Architecture. Toronto,
Canada, May, 27-30 1991, pages 212–221. ACM, 1991.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 793

https://cloud.google.com
https://cloud.google.com
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html

[39] Abdesselem Kortebi, Luca Muscariello, Sara Oueslati,
and James W. Roberts. Evaluating the number of active
flows in a scheduler realizing fair statistical bandwidth
sharing. In Derek L. Eager, Carey L. Williamson,
Sem C. Borst, and John C. S. Lui, editors, Proceedings
of the International Conference on Measurements and
Modeling of Computer Systems, SIGMETRICS 2005,
June 6-10, 2005, Banff, Alberta, Canada, pages 217–228.
ACM, 2005.

[40] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan
M. G. Wassel, Xian Wu, Behnam Montazeri, Yaogong
Wang, Kevin Springborn, Christopher Alfeld, Michael
Ryan, David Wetherall, and Amin Vahdat. Swift:
Delay is simple and effective for congestion control
in the datacenter. In Henning Schulzrinne and Vishal
Misra, editors, SIGCOMM ’20: Proceedings of the
2020 Annual conference of the ACM Special Interest
Group on Data Communication on the applications,
technologies, architectures, and protocols for computer
communication, Virtual Event, USA, August 10-14, 2020,
pages 514–528. ACM, 2020.

[41] NT Kung and Robert Morris. Credit-based flow control
for ATM networks. IEEE network, 9(2):40–48, 1995.

[42] Daniel Lenoski, James Laudon, Kourosh Gharachorloo,
Wolf-Dietrich Weber, Anoop Gupta, John L. Hennessy,
Mark Horowitz, and Monica S. Lam. The stanford dash
multiprocessor. Computer, 25(3):63–79, 1992.

[43] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, and Minlan
Yu. HPCC: high precision congestion control. In Jian-
ping Wu and Wendy Hall, editors, Proceedings of the
ACM Special Interest Group on Data Communication,
SIGCOMM 2019, Beijing, China, August 19-23, 2019,
pages 44–58. ACM, 2019.

[44] Vincent Liu, Daniel Halperin, Arvind Krishnamurthy,
and Thomas E. Anderson. F10: A fault-tolerant engi-
neered network. In Nick Feamster and Jeffrey C. Mogul,
editors, Proceedings of the 10th USENIX Symposium on
Networked Systems Design and Implementation, NSDI
2013, pages 399–412. USENIX Association, 2013.

[45] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christo-
pher Alfeld, Sean Bauer, Carlo Contavalli, Michael
Dalton, Nandita Dukkipati, William C. Evans, Steve
Gribble, Nicholas Kidd, Roman Kononov, Gautam
Kumar, Carl Mauer, Emily Musick, Lena E. Olson, Erik
Rubow, Michael Ryan, Kevin Springborn, Paul Turner,
Valas Valancius, Xi Wang, and Amin Vahdat. Snap:
a microkernel approach to host networking. In Tim
Brecht and Carey Williamson, editors, Proceedings

of the 27th ACM Symposium on Operating Systems
Principles, SOSP 2019, Huntsville, ON, Canada,
October 27-30, 2019, pages 399–413. ACM, 2019.

[46] Paul E. McKenney. Stochastic fairness queueing. In
Proceedings IEEE INFOCOM ’90, The Conference
on Computer Communications, Ninth Annual Joint
Conference of the IEEE Computer and Communications
Societies, The Multiple Facets of Integration, San
Francisco, CA, USA, June 3-7, 1990, pages 733–740.
IEEE Computer Society, 1990.

[47] Microsoft. Microsoft Azure. https://azure.
microsoft.com/.

[48] Radhika Mittal, Vinh The Lam, Nandita Dukkipati,
Emily R. Blem, Hassan M. G. Wassel, Monia Ghobadi,
Amin Vahdat, Yaogong Wang, David Wetherall, and
David Zats. TIMELY: rtt-based congestion control for
the datacenter. In Steve Uhlig, Olaf Maennel, Brad Karp,
and Jitendra Padhye, editors, Proceedings of the 2015
ACM Conference on Special Interest Group on Data Com-
munication, SIGCOMM 2015, London, United Kingdom,
August 17-21, 2015, pages 537–550. ACM, 2015.

[49] Behnam Montazeri, Yilong Li, Mohammad Alizadeh,
and John K. Ousterhout. Homa: a receiver-driven
low-latency transport protocol using network priorities.
In Sergey Gorinsky and János Tapolcai, editors,
Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM
2018, Budapest, Hungary, August 20-25, 2018, pages
221–235. ACM, 2018.

[50] The Next Platform. Flattening networks -
and budgets - with 400G ethernet. https:
//www.nextplatform.com/2018/01/20/
flattening-networks-budgets-400g-ethernet/.
January 20, 2018.

[51] Salvatore Pontarelli, Roberto Bifulco, Marco Bonola,
Carmelo Cascone, Marco Spaziani, Valerio Bruschi,
Davide Sanvito, Giuseppe Siracusano, Antonio Capone,
Michio Honda, and Felipe Huici. Flowblaze: Stateful
packet processing in hardware. In Jay R. Lorch
and Minlan Yu, editors, 16th USENIX Symposium
on Networked Systems Design and Implementation,
NSDI 2019, Boston, MA, February 26-28, 2019, pages
531–548. USENIX Association, 2019.

[52] Ahmed Saeed, Varun Gupta, Prateesh Goyal, Milad
Sharif, Rong Pan, Mostafa H. Ammar, Ellen W. Zegura,
Keon Jang, Mohammad Alizadeh, Abdul Kabbani, and
Amin Vahdat. Annulus: A dual congestion control loop
for datacenter and WAN traffic aggregates. In Henning
Schulzrinne and Vishal Misra, editors, SIGCOMM

’20: Proceedings of the 2020 Annual conference of the

794 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://azure.microsoft.com/
https://azure.microsoft.com/
https://www.nextplatform.com/2018/01/20/flattening-networks-budgets-400g-ethernet/
https://www.nextplatform.com/2018/01/20/flattening-networks-budgets-400g-ethernet/
https://www.nextplatform.com/2018/01/20/flattening-networks-budgets-400g-ethernet/

ACM Special Interest Group on Data Communication
on the applications, technologies, architectures, and
protocols for computer communication, Virtual Event,
USA, August 10-14, 2020, pages 735–749. ACM, 2020.

[53] Naveen Kr. Sharma, Ming Liu, Kishore Atreya, and
Arvind Krishnamurthy. Approximating fair queueing
on reconfigurable switches. In Sujata Banerjee and
Srinivasan Seshan, editors, 15th USENIX Symposium on
Networked Systems Design and Implementation, NSDI
2018, Renton, WA, USA, April 9-11, 2018, pages 1–16.
USENIX Association, 2018.

[54] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson,
Ashby Armistead, Roy Bannon, Seb Boving, Gaurav
Desai, Bob Felderman, Paulie Germano, Anand
Kanagala, Jeff Provost, Jason Simmons, Eiichi Tanda,
Jim Wanderer, Urs Hölzle, Stephen Stuart, and Amin
Vahdat. Jupiter rising: A decade of clos topologies and
centralized control in google’s datacenter network. In
Steve Uhlig, Olaf Maennel, Brad Karp, and Jitendra
Padhye, editors, Proceedings of the 2015 ACM Confer-
ence on Special Interest Group on Data Communication,
SIGCOMM 2015, London, United Kingdom, August
17-21, 2015, pages 183–197. ACM, 2015.

[55] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu,
Changhoon Kim, Mohammad Alizadeh, Hari Balakr-
ishnan, George Varghese, Nick McKeown, and Steve
Licking. Packet transactions: High-level programming
for line-rate switches. In Marinho P. Barcellos, Jon
Crowcroft, Amin Vahdat, and Sachin Katti, editors,
Proceedings of the ACM SIGCOMM 2016 Conference,
Florianopolis, Brazil, August 22-26, 2016, pages 15–28.
ACM, 2016.

[56] Anirudh Sivaraman, Suvinay Subramanian, Mohammad
Alizadeh, Sharad Chole, Shang-Tse Chuang, Anurag
Agrawal, Hari Balakrishnan, Tom Edsall, Sachin Katti,
and Nick McKeown. Programmable packet scheduling
at line rate. In Marinho P. Barcellos, Jon Crowcroft,
Amin Vahdat, and Sachin Katti, editors, Proceedings
of the ACM SIGCOMM 2016 Conference, Florianopolis,
Brazil, August 22-26, 2016, pages 44–57. ACM, 2016.

[57] Brent Stephens and Alan L. Cox. Deadlock-free local
fast failover for arbitrary data center networks. In 35th
Annual IEEE International Conference on Computer
Communications, INFOCOM 2016, San Francisco, CA,
USA, April 10-14, 2016, pages 1–9. IEEE, 2016.

[58] Brent Stephens, Alan L. Cox, Ankit Singla, John B.
Carter, Colin Dixon, and Wes Felter. Practical DCB
for improved data center networks. In 2014 IEEE
Conference on Computer Communications, INFOCOM
2014, Toronto, Canada, April 27 - May 2, 2014, pages
1824–1832. IEEE, 2014.

[59] Vojislav Ðukić, Sangeetha Abdu Jyothi, Bojan Karlaš,
Muhsen Owaida, Ce Zhang, and Ankit Singla. Is
advance knowledge of flow sizes a plausible assump-
tion? In 16th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 19), pages
565–580, 2019.

[60] Erico Vanini, Rong Pan, Mohammad Alizadeh, Parvin
Taheri, and Tom Edsall. Let it flow: Resilient asym-
metric load balancing with flowlet switching. In Aditya
Akella and Jon Howell, editors, 14th USENIX Sympo-
sium on Networked Systems Design and Implementation,
NSDI 2017, Boston, MA, USA, March 27-29, 2017, pages
407–420. USENIX Association, 2017.

[61] Jim Warner. Switch buffer size. https:
//people.ucsc.edu/~warner/buffer.html. 2020.

[62] Robert Williams and Bahadir Erimli. Method and
apparatus for performing priority-based flow control,
October 18 2005. US Patent 6,957,269.

[63] David Zats, Tathagata Das, Prashanth Mohan, Dhruba
Borthakur, and Randy H. Katz. Detail: reducing the
flow completion time tail in datacenter networks. In
Lars Eggert, Jörg Ott, Venkata N. Padmanabhan, and
George Varghese, editors, ACM SIGCOMM 2012
Conference, SIGCOMM ’12, Helsinki, Finland - August
13 - 17, 2012, pages 139–150. ACM, 2012.

[64] Shizhen Zhao, Rui Wang, Junlan Zhou, Joon Ong,
Jeffrey C. Mogul, and Amin Vahdat. Minimal rewiring:
Efficient live expansion for clos data center networks.
In Jay R. Lorch and Minlan Yu, editors, 16th USENIX
Symposium on Networked Systems Design and Imple-
mentation, NSDI 2019, Boston, MA, February 26-28,
2019, pages 221–234. USENIX Association, 2019.

[65] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong
Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra
Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. Congestion control for large-scale RDMA
deployments. In Steve Uhlig, Olaf Maennel, Brad Karp,
and Jitendra Padhye, editors, Proceedings of the 2015
ACM Conference on Special Interest Group on Data Com-
munication, SIGCOMM 2015, London, United Kingdom,
August 17-21, 2015, pages 523–536. ACM, 2015.

[66] Danyang Zhuo, Monia Ghobadi, Ratul Mahajan, Klaus-
Tycho Förster, Arvind Krishnamurthy, and Thomas E.
Anderson. Understanding and mitigating packet cor-
ruption in data center networks. In Proceedings of the
Conference of the ACM Special Interest Group on Data
Communication, SIGCOMM 2017, Los Angeles, CA,
USA, August 21-25, 2017, pages 362–375. ACM, 2017.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 795

https://people.ucsc.edu/~warner/buffer.html
https://people.ucsc.edu/~warner/buffer.html

A ADDITIONAL EXPERIMENTS
In this appendix, we present a more complete set of simulation
results for BFC. We first summarize those results, and then
present them.
Understanding the Limits of BFC: A limitation of BFC
is that performance can degrade when collisions occur.
The worst case is when many long-running flows share a
bottleneck link with bursty traffic. We synthetically create this
scenario and show that by adding a very simple end-to-end
control system to BFC, we can largely ameliorate the impact
of long flows, while still fully utilizing the link. See App. A.1
for details.
Comparison with Homa: Homa is a receiver driven data
center transport that uses network priorities to achieve an
approximation of the shortest remaining flow first (SRF)
scheduling to provide low latency for short flows while still
using the full bandwidth of the bottleneck for long flows.
Homa also uses packet spraying. In App. A.2, we configure
BFC with a similar scheduling policy. We show that Homa
with packet spraying outperforms BFC, but when we turn
off packet spraying, BFC outperforms Homa.
Priority Scheduling: Data center operators often classify
traffic into multiple classes and use scheduling priorities
to ensure performance for the most time-sensitive traffic.
We repeat the experiment in Fig. 11b but with traffic split
equally among four priority traffic classes, and show that
BFC performs well in this case. See App. A.3 for details.
Parameter Sensitivity: We perform parameter sensitivity
analysis for HPCC, DCTCP and ExpressPass. See App. A.4
for details.
Spatial Locality: We repeat the experiment in Fig. 11 with
spacial locality in source-destination pairs such that the
average load on all links across the network is same. The
trends in performance are similar. See App. A.5 for details.
Slow-start: We evaluate the impact of using TCP slow-start
instead of starting flows at line rate. We repeat the experiment
in Fig. 11 and compare the original DCTCP with slow start
(DCTCP + SS) and our modified DCTCP where flows start
at the line rate. With incast, DCTCP + SS reduces buffer oc-
cupancy by reducing the intensity of incast flows, improving
tail latency. However, it also increases median FCTs by up
to 2×. Flows start at a lower rate, taking longer to ramp up to
the desired rate. In the absence of incast, it increases both the
tail and median FCT for short flows. See App. A.6 for details.
Reducing Contention for Queues: We tried a variant of
BFC where the sender labels incast flows explicitly (similar
to the potential optimization in [49]). All the incast flows
at an egress port are assigned to the same queue. This
frees up queues for non-incast traffic and reduces collisions
substantially under large incasts. (see App. A.7).
Incremental Deployment: We repeated the experiment in
Fig. 11a in the scenario where (i) BFC is deployed in part of

5 10 25 50 100200400800
1600

1
10

100
1000

M
ed

ia
n

FC
T

Sl
ow

do
wn

5 10 25 50 100200400800
1600

of Long Running Flows

Direct Indirect
BFC 32 BFC 128 BFC 32 (CC) IdealFQ

Figure 15: Median FCT slowdown for mice flows in the presence
of long-running flows.

the network; (ii) The switch doesn’t have enough capacity to
handle all the recirculations. The impact on FCTs is minimal
under these scenarios (see App. A.8).
Performance in Asymmetric Topologies: BFC makes no
assumption about the topology, link speeds and link delays.
We evaluate the performance of BFC in a multi-data-center
topology. BFC achieves low FCT for flows within the data
center, and high link utilization for the inter-data-center links
(see App. A.9).
Dynamic vs. Stochastic Queue Assignment in BFC: We
repeat the experiment in Fig. 11a but use stochastic hashing
to statically assign flows to physical queue instead. With
stochastic assignment, the number of collisions in physical
queues increases, hurting FCTs (see App. A.10).
Size of Flow Table: Reducing the size of the flow table can
increase index collisions in the flow table, potentially hurting
FCTs. We repeat the experiment in Fig. 11a and evaluate the
impact of size of flow table. Reducing the size partly impacts
the short flow FCTs (see App. A.11).
Incast Flow Performance: App. A.12 shows the slowdown
for incast flows for the Google workload used in Fig. 9. BFC
reduces the FCT for incast flows compared to other feasible
schemes.

A.1 Understanding the limits of BFC

This section investigates the impact of large numbers of active
flows on BFC’s performance through controlled microbench-
marks. We also show that adding a simple end-to-end flow
control mechanism on top of pure BFC helps alleviate the
performance impairments caused by large numbers of flows.

Collisions hurt performance in two ways. Consider a con-
gested port X . First, at X , the packets of a short flow can
get stuck behind the packets of a long flow sharing the same
queue, increasing the FCT. Such performance degradation
occurs when the number of active flows exceeds the number
of queues at X . Second, X can pause an upstream queue. Un-
related flows sharing this upstream queue will get paused even
though they are not going through the congested port X (con-
gestion spreading). BFC can leverage the larger number of
upstream queues at the upstream switches to limit congestion
spreading (§3.3.1). Typically, congestion spreads only once
the number of flows at the congested port exceeds the total
number of upstream queues. As a result, in larger topologies
with more upstream switches, congestion spreading is harder
to create.

796 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

To illustrate these issues, we conduct experiments on our
standard topology (§6.2.1) where we create different numbers
of long-running elephant flows destined to the same receiver
(Receiver A). All elephant flows start at the beginning of the
experiment. We then create two groups of short flows: (1)
destined to the same receiver A (referred as “direct” mice
flows), and (2) destined to a different receiver B in the same
rack as receiver A (referred to as “indirect” mice flows). The
aggregate load for each group of mice flows is 3% of the link
capacity, and the size of the mice flows is 1 KB. Fig. 15 shows
the median FCT slowdown for mice flows as we vary the
number of long-running flows. We show results for BFC with
32 and 128 queues, and also IdealFQ (described in §6.2.1)
for reference. As expected, for direct mice flows, the FCT
degrades when the number of long-running flows exceeds the
number of queues. For indirect flows, the degradation only
happens when long flows exceed 8× the number of queues,
since the topology has 8 spine switches connected to each
ToR switch. In this case, some indirect mice flows get paused
unnecessarily because they share an upstream queue with a
paused long-running flow.

Combining end-to-end congestion control with BFC:
In the previous experiment, each long-running flow can
build up to 1 Hop-BDP of buffering before getting paused.
With N long-running flows, in the worst case, a mice flow
experiencing a collision can get stuck behind N× 1-Hop BDP
of buffering. BFC can use a simple end-to-end congestion
control mechanism to reduce this buffering and limit HoL
blocking. This mechanism is helpful in scenarios with
persistently large numbers of active flows. As our evaluations
showed (§6.3), even in workloads with high load and
occasional large-scale incast, pure BFC (with no end-to-end
control) performs well except in extreme cases.

Augmenting BFC with end-to-end control is simple. The
main goal of the end-to-end control is to prevent flows from
sending an excessively large number of packets into the net-
work. Importantly, the end-to-end mechanism need not try to
accurately control queuing, react quickly to bursts, or achieve
fairness — typical requirements for low-latency data center
congestion control protocols — since BFC already achieves
these goals.

As an example, we implemented a simple delay-based con-
gestion control that tries to maintain the end-to-end RTT at
a certain threshold (RTTTarget). We chose a high RTTTarget
value of 2.5× base RTT to avoid hurting the throughput of
long flows, exploiting the fact that it isn’t necessary to tightly
control queuing in BFC. The algorithm adjusts the sender’s
window (w) as follows.

With the above rule, the window of a sender roughly goes
from w → w× RTTTarget

RT T within an RTT. Fig. 15 shows the
performance with this variant (BFC 32 (CC)). The perfor-
mance is close to IdealFQ in all the cases. To check if this
change negatively affected the overall behavior of BFC, we
repeat the principle experiment in Fig. 11 (Facebook work-

RTTTarget = 2.5×Base RTT;
w=1 BDP;
for each Acknowledgement do

if RTT > RTTTarget then
w=w− RTT - RTTTarget

RT T
else

w=w+
RTTTarget−RT T

RT T

Algorithm 1: Simple end-to-end congestion control

101 102 103 104

Flow Size (KB)
1
2
4
8

16
32
64

FC
T

Sl
ow

 D
ow

n

BFC BFC (CC)

(a) 55% + 5% 100-1 incast

101 102 103 104

Flow Size (KB)
1

2

4

8

16

FC
T

Sl
ow

 D
ow

n

BFC BFC (CC)

(b) 60%

Figure 16: 99th percentile FCT slowdown when combined with
congestion control. Facebook workload, same setup as Fig. 11.

load) with BFC 32 (CC). Fig. 16 shows the 99th percentile
FCT slowdowns. The FCTs of long flows are similar to that
of the original BFC (within 10%). However, in the presence
of incast, adding congestion control improves the 99th per-
centile FCT of short flows and the peak buffer occupancy by
30%. While using end-to-end congestion control can improve
performance under frequent collisions (and we advocate sup-
plementing BFC with such a mechanism in practice), in this
paper we focus on BFC without any such mechanism to better
understand the core benefits and limitations of BFC in its
purest form.

In App. A.7, we experiment with a variant of BFC where
the sender labels incast flows explicitly (similar to the poten-
tial optimization in [49]). All the incast flows at an egress
port are assigned to the same queue. This frees up queues for
non-incast traffic and reduces collisions substantially under
large incasts.

A.2 Comparison with Homa

Homa is a receiver driven data center transport that uses
network priorities to achieve an approximation of shortest-
remaining-flow-first (SRF) scheduling. Homa divides a flow’s
data into unscheduled (first BDP of traffic) and scheduled
categories. The sender assigns a fixed priority level to a flow’s
unscheduled bytes based on its size and the flow size distribu-
tion of the workload. The unscheduled bytes are transmitted
at line rate. The receiver assigns priority levels to the sched-
uled bytes and issues grants (credits) for them. Homa assumes
per-packet spraying to ensure load balancing across core links,
and sufficient core capacity to guarantee minimal congestion
in the core.

While we focus on fair queuing in this paper, BFC’s design
is applicable to other scheduling policies. In this section, we

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 797

100 101 102 103 104
1

2

4

8

FC
T

Sl
ow

Do
wn

100 101 102 103 104 100 101 102 103 104

FlowSize (KB)

Avg. 95pct 99pct

BFC-SRF Homa Homa (ECMP) IdealSRF+ECMP

(a) Google, 60%

101 102 103 104
1
2
4
8

16

FC
T

Sl
ow

Do
wn

101 102 103 104 101 102 103 104

FlowSize (KB)

Avg. 95pct 99pct

BFC-SRF Homa Homa (ECMP) IdealSRF+ECMP

(b) Facebook Hadoop, 60%

Figure 17: FCT slowdown on an oversubscribed clos topology.
With packet spraying, Homa encounters minimal congestion in the
core and outperforms other schemes.

evaluate a variant of BFC, BFC-SRF, that aims to approximate
SRF. Flows insert their remaining size into a header field in
each packet transmitted, and the switch schedules queues in
order of remaining size of the packet at the head of the queue.
Similarly to Homa, NICs also follow SRF scheduling. We ran
Homa using its OMNet++simulator [2]. The Homa simulator
assumes unbounded buffers at the switch. For BFC, we use a
12 MB shared buffer. We use 32 queues for both Homa and
BFC. For Homa, the 32 priority levels are divided between
unscheduled and scheduled priorities based on the ratio of
unscheduled and scheduled traffic; the overcommitment level
is equal to the number of scheduled priorities [49]. We use our
default topology with 128 servers and 2:1 oversubscription at
the ToR uplinks (§6.2.1).

Two differences between Homa and BFC-SRF are worth
highlighting. First, BFC-SRF uses flow-level ECMP rather
than packet spraying for enforcing per-flow backpressure. Sec-
ond, BFC-SRF uses dynamic queue assignment and performs
SRF scheduling directly on the switch, as opposed to Homa’s
priority assignment from the end-points. To understand the im-
pact of these aspects separately, we also evaluate a variant of
Homa with ECMP, and report results for IdealSRF+ECMP, an
idealized SRF scheme with unlimited queues and unbounded
buffers at each switch with ECMP load balancing.

We repeat the experiments in Fig. 10 and Fig. 11b for the
Google and Facebook workloads at 60% load (log-normal
flow arrivals without incast). Fig. 17 reports the FCTs. Homa
performs the best out of all schemes, achieving up to 2× better
FCTs for long flows. With packet spraying, flows encounter
minimal congestion in the core, and compete for bandwidth
primarily at the last-hop. In contrast, ECMP is prone to path
collisions [7] and flows encounter congestion in the core.
Notice that a last-hop link carries half the load of a core

Scheme Link 95% Delay (µs) 99% Delay (µs)

Homa Agg-ToR 2.4 6.7
Homa ToR-Agg 2.1 6.0

Homa ECMP Agg-ToR 40.8 87.2
Homa ECMP ToR-Agg 43.7 93.3

Table 2: Per-packet queuing delay for scheduled traffic in the core.

100 101 102 103 104
1

2

4

8

FC
T

Sl
ow

Do
wn

100 101 102 103 104 100 101 102 103 104

FlowSize (KB)

Avg. 95pct 99pct

BFC-SRF Homa / Homa (ECMP) IdealSRF+ECMP

(a) Google, 60%

101 102 103 104
1
2
4
8

16

FC
T

Sl
ow

Do
wn

101 102 103 104 101 102 103 104

FlowSize (KB)

Avg. 95pct 99pct

BFC-SRF Homa / Homa (ECMP) IdealSRF+ECMP

(b) Facebook Hadoop, 60%

Figure 18: BFC’s dynamic queueue assignment achieves a better
approximation of the SRF scheduling policy. BFC-SRF achieves
close to optimal FCTs.

link (30% vs 60%) in this experiment on average (§6.2.1).
Since packet spraying essentially eliminates congestion on the
core links, with Homa flows experience congestion only on
the last-hop links. But with the ECMP-based schemes, flows
contend at the core links (with 2× the load). As a result, Homa
even outperforms IdealSRF+ECMP. This result illustrates the
benefits of packet spraying; nevertheless, packet spraying
is rarely deployed in practice because it can cause packet
reordering, increasing CPU overhead at endpoints7, and it can
hurt performance in asymmetric topologies (e.g., caused by
rolling upgrades or link failures) [60].

Among the ECMP approaches, BFC-SRF is close to Ideal-
SRF+ECMP and Homa is worse. In Homa, receivers have no
visibility into congestion in the core and don’t react to queue
buildup in the core (though each flow limits its total in-flight
data to 1 BDP). Also, Homa’s receiver-set priorities are only
based on contending flows at the last hop, and can violate SRF
scheduling when congestion occurs in the core. Table 2 shows
that with ECMP, the scheduled traffic encounters significantly
higher queuing in the core.

Benefits of BFC’s dynamic queue assignment over Homa.
BFC makes queue assignment and scheduling decisions at
the switch, based on an instantaneous view of competing
flows. In principle, this should allow BFC to more accurately
approximate SRF compared to Homa. To understand if this

7Packet reordering makes hardware offloads such as Large Receiver
Offload (LRO) ineffective [26].

798 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

100 101 102 103 104
1
2
4
8

16
32
64

FC
T

Sl
ow

Do
wn

100 101 102 103 104 100 101 102 103 104

FlowSize (KB)

Avg. 95pct 99pct

BFC-SRF Homa Homa (ECMP) IdealSRF+ECMP

(a) Google, 55% + 5% 100-1 incast

101 102 103 104
1
2
4
8

16
32
64

FC
T

Sl
ow

Do
wn

101 102 103 104 101 102 103 104

FlowSize (KB)

Avg. 95pct 99pct

BFC-SRF Homa Homa (ECMP) IdealSRF+ECMP

(b) Facebook Hadoop, 55% + 5% 100-1 incast

Figure 19: FCT slowdown with 100-1 incast. Collisions in
BFC-SRF can cause priority inversions hurting FCTs

is actually the case, we conduct an experiment with the same
Google and Facebook workloads but with all flows destined
to a single receiver, and the senders located within the same
rack as the receiver. Since there is no traffic in the core, load
balancing (ECMP vs. packet spraying) does not matter in
this case. Flow arrivals are log-normal and the load on the
receiver’s link is 60%. Fig. 18 shows the results. BFC-SRF
achieves better FCTs primarily at the tail.

We give two examples of priority inversions in Homa which
BFC avoids. First, the Homa sender assigns priorities to un-
scheduled traffic based on flow size distributions rather than
using the current set of flows competing at the switch due
to lack of visibility for the first RTT. As a result with Homa,
short flows (< 1 BDP) with similar flow sizes can end up shar-
ing unscheduled priority queues unnecessarily, even when
there are sufficient queues at the switch to assign each flow
a unique queue. Second, in Homa the unscheduled bytes of
a flow are always scheduled ahead of the scheduled bytes of
competing flows. This implies that the unscheduled bytes of
a new long flow will be incorrectly scheduled ahead of the
scheduled bytes of a shorter flow. This also violates SRF and
increases FCT for flows larger than a BDP.

Impact of collisions on BFC-SRF. Recall that with large
incast, BFC can experience collisions. For BFC-SRF, such
collisions can cause priority inversions that hurt FCTs. To
illustrate this, we repeat the experiments in Fig. 9 and Fig. 11a
(55% load plus 5% 100-1 incast traffic). Fig. 19 shows that
the average FCT for short flows is higher with BFC-SRF. This
is because of high completion times for a (small) fraction of
short flows sharing queues with longer flows. To understand
why, consider the following situation. An incoming short flow
arrives when there are no free queues, and ends up sharing
the queue with a long flow. Let’s say the remaining size of
the long flow is greater than the incast flow size (200 KB in

this experiment). In case there are competing incast flows
present in other queues, the incast flows will be scheduled
ahead of this long flow. Therefore, the short flow will have
to wait for all the traffic from the incast flows to finish to
make any progress. This can severely degrade its completion
time. The core of this problem is that when a port runs out
of queues, the BFC switch assigns the new flow to a queue
randomly. This is fine for fair queuing but with SRF, a more
sophisticated strategy may improve performance (e.g., assign
the new flow to a queue with similar remaining flow sizes).

As explained earlier, Homa is not immune to priority inver-
sions. Fig. 19 shows that with Homa, flows with size greater
than 1 BDP but less than 2 BDP have high FCTs at the tail.
This is because unscheduled bytes of the the incast flows are
incorrectly scheduled ahead of the scheduled bytes of such
flows.

These experiments suggest an interesting possibility to try
to get the best of both schemes: we could combine BFC’s dy-
namic queue assignment for unscheduled traffic with Homa’s
grant mechanism for controlling scheduled traffic. We leave
exploration of such a design to future work.

A.3 Multiple traffic classes

Many data center operators allocate network traffic into a
small number of priority traffic classes to ensure that mission
critical traffic is delivered with low tail latency, while other
traffic is delivered according to its quality of service needs.
BFC has a simple extension to support priority groups. To
avoid priority inversion where a flow at one priority can be
stalled behind a flow of a lower priority, we assume queues at
a port are statically assigned to different priority levels. The
switch performs dynamic queue assignment for each class
independently. A flow with priority X is only assigned to
physical queues associated with that priority. Queues at the
same priority level follow fair scheduling.

Statically partitioning physical queues among traffic classes
could make it more likely for traffic within a class to run out
of queues and suffer degraded performance with collisions
and HoL blocking. On the other hand, high priority traffic
is preferentially scheduled, leading to short queues and few
active flows. Collisions will be more likely at lower priority
traffic classes, where performance is already degraded. Pri-
ority scheduling results in rapid and extreme changes in the
available rate for these background classes. Relative to end-
to-end control, per-hop backpressure can more easily utilize
rapidly changing spare capacity.

To test how BFC behaves with multiple traffic classes, we
repeat the experiment in Fig. 11b: Facebook workload, 60%
load, and no incast. We configure the system with 4 priority
classes, each with equal load (15% each, 60% in aggregate).
We allocate physical queues evenly to each traffic class. We
consider configurations with 32 and 128 queues per port (8
or 32 queues per class). We also show results for HPCC and
DCTCP. In this study, DCTCP marks packets based on per-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 799

101 102 103 104

Flow Size (KB)
1
2
4
8

16
32
64

FC
T

Sl
ow

 D
ow

n
BFC (32)
BFC (128)

HPCC-PFC
DCTCP

Priority 1

(a) Priority Class 1 (highest)

101 102 103 104

Flow Size (KB)
1
2
4
8

16
32
64

FC
T

Sl
ow

 D
ow

n

BFC (32)
BFC (128)

HPCC-PFC
DCTCP

Priority 2

(b) Priority Class 2

101 102 103 104

Flow Size (KB)
1
2
4
8

16
32
64

128

FC
T

Sl
ow

 D
ow

n

BFC (32)
BFC (128)

HPCC-PFC
DCTCP

Priority 3

(c) Priority Class 3

101 102 103 104

Flow Size (KB)
1
2
4
8

16
32
64

128
256

FC
T

Sl
ow

 D
ow

n

BFC (32)
BFC (128)

HPCC-PFC
DCTCP

Priority 4

(d) Priority Class 4 (lowest)
Figure 20: Multiple traffic classes with BFC, reporting 99th percentile FCT slowdown for the Facebook workload, 60% load, and no incast.

class queueing, while HPCC uses switch aggregates. Fig. 20
shows the 99th percentile FCT slowdown for different priority
classes. BFC achieves good performance across all traffic
classes and flow sizes. In particular, BFC achieves up to 5×
better tail latency for short flows than DCTCP. At the lowest
priority level, DCTCP’s short flow tail latency converges to
that of BFC. For low priority flows, tail latency is primarily
governed by time spent waiting to be scheduled at the switch.

HPCC’s performance is somewhat anomalous. Long flows
suffer priority inversion, where long flows at high priority
achieve significantly worse service than short flows at lower
priority. In HPCC, long flows back off in an attempt to keep
queues empty. The (transient) extra capacity left by such long
flows can be used by short flows traffic at all priority levels,
improving performance for these short flows.

BFC has only slightly better performance with 32 vs. 8
queues per priority level, indicating that collisions did not
have much impact. For high priority traffic, the setup is equiv-
alent to running our experiment with just one traffic class at
15% load and a small number of queues—even modest num-
bers of active queues are unlikely at such low load. Lower
priority traffic can run out of queues, but they gain the benefit
of being able to take immediate advantage when the high
priority queues are empty. In other words, work conserving
behavior is more important for background traffic than the
number of queues. We acknowledge this is just one study, and
there are likely scenarios where BFC’s performance could
suffer when using multiple traffic classes.

One obvious improvement is to split queues dynamically
among classes rather than statically. But in the long run, we
strongly believe that the number of queues per port is likely
to continue to grow to whatever is needed to deliver good
performance.

A.4 Parameter sensitivity for comparison schemes

In this section, we perform sensitivity analysis to understand
the impact of parameters on performance of HPCC, DCTCP
and ExpressPass. We repeat the experiment in Fig. 11b (Face-
book distribution with 60% load). Fig. 21 reports the average,
95th and 99th percentile flow completion times as we vary the
parameters. In general, we observe that parameters present a
trade-off between the latency of short flows (queuing) and the
throughput of long flows (link utilization).

HPCC: We vary the target utilization (η) from 90 to 98%.

101 102 103 1041
2
4
8

16
32

FC
T

Sl
ow

Do
wn

101 102 103 104 101 102 103 104

FlowSize (KB)

Avg. 95pct 99pct

90% 95% 98%

(a) HPCC (η)

101 102 103 104

2
4
8

16

FC
T

Sl
ow

Do
wn

101 102 103 104 101 102 103 104

FlowSize (KB)

Avg. 95pct 99pct

50-200KB 100-400KB 200-800KB

(b) DCTCP (ECN marking threshold: Kmin-Kmax)

101 102 103 104
2
4
8

16
32

FC
T

Sl
ow

Do
wn

101 102 103 104 101 102 103 104

FlowSize (KB)

Avg. 95pct 99pct

8 16 32

(c) ExpressPass (Credit Buffer Size)

101 102 103 104
2
4
8

16
32

FC
T

Sl
ow

Do
wn

101 102 103 104 101 102 103 104

FlowSize (KB)

Avg. 95pct 99pct

0.0625 0.5

(d) ExpressPass (α)

Figure 21: 99th percentile FCT slowdown for the Facebook
workload, 60% load without incast. Sensitivity to the choice of
parameters in HPCC, DCTCP, and ExpressPass.

As expected, increasing η worsens the FCT of short flows
but improves the FCT for long flows (marginally for both),
see Fig. 21a.

DCTCP: We vary the ECN marking threshold governed by
parameters Kmin and Kmax. Increasing the threshold increases
the queuing at the switch, which increases FCT of short flows
but improves link utilization (Fig. 21b).

800 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

101 102 103 104

Flow Size (KB)
4
8

16
32
64

128

FC
T

Sl
ow

 D
ow

n

BFC

(a) 55% + 5% 100-1 incast

101 102 103 104

Flow Size (KB)
1
2
4
8

16
32
64

FC
T

Sl
ow

 D
ow

n

HPCC-PFC DCTCP

(b) 60%

Figure 22: Impact of spatial locality. FCT slowdown (99th

percentile) for Facebook distribution with and without incast.

101 102 103 104

Flow Size (KB)

4
8

16
32
64

128

FC
T

Sl
ow

 D
ow

n BFC + FQ DCTCP

(a) 55% + 5% 100-1 incast
(99th percentile FCT)

101 102 103 104

Flow Size (KB)
1
2
4
8

16

FC
T

Sl
ow

 D
ow

n DCTCP+SS

(b) 60%
(99th percentile FCT)

101 102 103 104

Flow Size (KB)

1

2

4

FC
T

Sl
ow

 D
ow

n BFC + FQ DCTCP

(c) 55% + 5% 100-1 incast
(Median FCT)

101 102 103 104

Flow Size (KB)

1

2

4

FC
T

Sl
ow

 D
ow

n DCTCP+SS

(d) 60%
(Median FCT)

Figure 23: Impact of using slow start on median and 99th percentile
tail latency FCT slowdown, for the Facebook flow size distribution
with and without incast (setup the same as Fig. 11). With incast,
DCTCP + SS (slow start) reduces the tail FCT, but it increases median
FCTs by up to 2×. In the absence of incast, DCTCP + SS increases
both the tail and median FCT for short and medium flows.

ExpressPass: Varying the credit buffer size has little impact
on performance (Fig. 21c). We vary α, which controls how
the receiver credits are generated. Reducing α reduces “credit
waste”, improving the FCT of long flows. However, it also
increases the FCT of short flows (Fig. 21d).

A.5 Impact of Spatial Locality

We repeated the experiment from Fig. 11 with spatial locality
in source-destination pairs such that the average load on all
links across the network is same. Fig. 22 shows the 99th

percentile slowdowns. The trends are similar to Fig. 11.

A.6 Using TCP Slow-start

We also evaluate the impact of using TCP slow-start instead
of starting flows at line rate in Figure 23. We compare the
original DCTCP with slow start (DCTCP + SS) with an initial
window of 10 packets versus the modified DCTCP used so
far (initial window of the BDP). The setup is same as Fig. 11.

With incast, DCTCP + SS reduces buffer occupancy by
reducing the intensity of incast flows, improving tail latency
(Fig. 23a). However, slow start increases the median FCT
substantially (Fig. 23c). Flows start at a lower rate, taking

10 100 200 500
1000

2000

Incast Degree

4

8

16

FC
T

Sl
ow

 D
ow

n
Av

er
ag

e
(S

ize
>3

M
B) BFC + Flow FQ

HPCC - PFC

(a) Average FCT for long flows

10 100 200 500
1000

2000

Incast Degree

1
2
4
8

16
32
64

128
256

FC
T

Sl
ow

 D
ow

n
99

 p
ct

 (S
ize

<3
KB

) BFC + IncastLabel
DCTCP

(b) Tail FCT for short flows

Figure 24: FCT slowdown for short and long flows as a function of
incast degree. The x axis is not to scale. By isolating incast flows, BFC
+ IncastLabel reduces collisions and achieves the best performance.

longer to ramp up to the desired rate. For applications with
serially dependent flows, an increase in median FCTs can
impact the performance substantially.

In the absence of incast, slow start increases both the tail
(Fig. 23b) and median (Fig. 23d) FCT for the majority of flow
sizes. In particular, short flows are still slower than with BFC,
as slow start does not remove burstiness in buffer occupancy
in the tail.

A.7 Reducing contention for queues

To reduce contention for queues under incast, we tried a
variant of BFC where the sender labels incast flows explicitly
(similar to the potential optimization in [49]). BFC +
IncastLabel assigns all the incast flows at an egress port to
the same queue. This frees up queues for non-incast traffic,
reducing collisions and allowing the scheduler to share the
link between incast and non-incast traffic more fairly.

Fig. 24 shows the performance of BFC + IncastLabel in
the same setup as Fig. 13. The original BFC is shown as BFC
+ Flow FQ for per-flow fair queuing. BFC + IncastLabel
achieves the best performance across all the scenarios.
However, the FCTs for incast flows is higher compared to
BFC + Flow FQ (numbers not shown here). When there are
multiple incast flows at an ingress port, the incast flows are
allocated less bandwidth in aggregate compared to per-flow
fair queuing.

While BFC + IncastLabel achieves great performance, it
assumes the application is able to label incast flows, and so
we use a more conservative design for the main body of our
evaluation.

A.8 Incremental Deployment

We repeated the experiment in Fig. 11a in the scenario where i)
BFC is deployed in part of the network; ii) The switch doesn’t
have enough capacity to handle all the recirculations. Fig. 25
reports the tail FCT and buffer occupancy for these settings.
Partial deployment in the network: We first evaluate the
situation when BFC is only deployed at the switches and the
sender NICs don’t respond to backpressure signal (shown
as BFC - NIC). To prevent sender NIC traffic from filling
up the buffers at the ToR, we assume a simple end-to-end
congestion control strategy where the sender NIC caps
the in-flight packets for a flow to 1 end-to-end bandwidth

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 801

101 102 103 104

Flow Size (KB)
1
2
4
8

16
32
64

128

FC
T

Sl
ow

 D
ow

n

BFC BFC - NIC

(a) 99th percentile FCT

0 10 20 30 40
Buffer Occupancy (s)

0.80
0.85
0.90
0.95
1.00

CD
F

BFC + Sampling

(b) Buffer Occupancy

Figure 25: FCT slowdown (99th percentile) and buffer occupancy
distribution for two BFC variants. When NICs don’t respond to
backpressure (BFC - NIC), BFC experiences moderate increased
buffering. Using sampling to reduce recirculation (BFC + sampling)
has marginal impact on performance.

delay product (BDP). As expected, BFC - NIC experiences
increased buffering at the ToR (Fig. 25b). However, the tail
buffer occupancy is still below the buffer size and there are no
drops. Since all the switches are BFC enabled and following
dynamic queue assignment, the frequency of collisions and
hence the FCTs are similar to the orignal BFC.

Sampling packets to reduce recirculations: A BFC switch
with an RMT architecture [18] recirculates packets to execute
the dequeue operations at the ingress port. Depending on the
packet size distribution of the workload, a switch might not
have enough packet processing (pps) capacity or recirculation
bandwidth to process these recirculated packets. In such
scenarios, we can reduce recirculations by sampling packets.
Sampling works as follows.

On a packet arrival (enqueue), sample to decide whether a
packet should be recirculated or not. Only increment the pause
counter and size in the flow table for packets that should be
recirculated. The dequeue operations remain as is and are only
executed on the recirculated packets. The size now counts the
packets sampled for recirculation and residing in the switch.
While sampling reduces recirculations, it can cause packet re-
ordering. Recall, BFC uses size to decide when to reassign a
queue. With sampling, size can be zero even when a flow has
packets in the switch. This means a flow’s queue assignment
can change when it already has packets in the switch, causing
reordering. However, sticky queue assignment should reduce
the frequency of these events (§3.3.2).

We now evaluate the impact of sampling on the perfor-
mance of BFC (shown as BFC + Sampling). In the experiment,
the sampling frequency is set to 50%, i.e., only 50% of the
packets are recirculated. BFC + Sampling achieves nearly
identical tail latency FCT slowdowns and switch buffer occu-
pancy as the orginal BFC. With sampling, fewer than 0.04%
of the packets were retransmitted due to packet reordering.

A.9 Cross data center traffic

For fault tolerance, many data center applications replicate
their data to nearby data centers (e.g., to a nearby metro area).
We evaluate the impact of BFC on managing cross-data
center congestion in such scenarios. We consider the ability

101 102 103 104

Flow Size (KB)

2
4
8

16
32

FC
T

Sl
ow

 D
ow

n

BFC HPCC DCQCN

(a) 99th percentile FCT

BFC
HPCC

DCQCN

20
40
60
80

100

Ut
iliz

at
io

n
(%

)

(b) Utilization at the interconnect.

Figure 26: Performance in cross data center environment where
two data center are connected by a 200 µs link, for the Facebook
workload (60% load) with no incast traffic. The left figure shows the
99th percentile FCT slowdown for intra-data-center flows. The right
figure shows the average utilization of the link connecting the two
data centers.

of different systems to achieve good throughput for the
inter-data-center traffic, and we also consider the impact of
the cross-data-center traffic on tail latency of local traffic,
as the larger bandwidth-delay product means more data is
in-flight when it arrives at the bottleneck.

We created a Clos topology with 64 leaf servers, and
100 Gbps links and 12 MB switch buffers. Two gateway
switches connect the data centers using a 200 Gbps link with
200 µs of one-way delay (i.e. the base round trip delay of the
link is 400 µs), or roughly equivalent to the two data centers
being separated by 50 km assuming a direct connection. The
experiment consists of intra-data-center flows derived from
the Facebook distribution (60% load). Additionally, there are
20 long-lived inter-data-center flows in both the directions.

Fig. 26a shows the 99th percentile tail latency in FCT
slowdown for intra-data-center flows for BFC, HPCC and
DCQCN.8 Fig. 26b shows the average utilization of the link
connecting the two data centers (interconnect), a proxy for
the aggregate throughput of the long-lived inter-data-center
flows. BFC is better for both types of flows. With BFC,
the link utilization of the wide area interconnect is close to
100%, while neither HPCC nor DCQCN can maintain the
link at full utilization, even with ample parallelism. This
is likely a consequence of slow end-to-end reaction of the
inter-data-center flows [52]. The congestion state on the links
within a data center is changing rapidly because of the shorter
intra-data-center flows. By the time an inter-data-center
flow receives congestion feedback and adjusts its rate, the
congestion state in the network might have already changed.
When capacity becomes available, the inter-data-center flows
can fail to ramp up quickly enough, hurting its throughput.

Relative to the single data center case (cf. Fig. 11b), tail
latency FCTs are worse for all three protocols, but the relative
advantage of BFC is maintained. Where HPCC has better
tail latency than DCQCN in the single data center case for
both short and medium-sized flows, once inter-data-center
traffic is added, HPCC becomes worse than DCQCN. With
bursty workloads, on the onset of congestion, the long-lived

8Data center operators have developed specialized protocols for better inter-
data center link management [21]; comparing those to BFC is future work.

802 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

101 102 103 104

Flow Size (KB)

4
8

16
32
64

128
FC

T
Sl

ow
 D

ow
n

BFC+Dyn. BFC+Stoch.

(a) 99th percentile FCT

0.0 0.2 0.4 0.6 0.8
Fraction of Collisions

0.80

0.85

0.90

0.95

1.00

CD
F

BFC+Dyn. BFC+Stoch.

(b) Collisions
Figure 27: Performance of BFC with stochastic queue assignment,
for the workload in Fig. 11a. BFC + Stochastic incurs more queue
collisions leading to worse tail latency especially for small flows
compared to BFC + Dynamic.

flow will take an end-to-end RTT to reduce its rate, and can
build up to 1 BDP (or 500 KB) of buffering, hurting the tail
latency of intra-data-center traffic. This has less of an impact
on DCQCN because it utilizes less of the inter-data-center
bandwidth in the first place.

In contrast, BFC reacts at the scale of the hop-by-hop
RTT. Even though inter-data-center flows have higher end-
to-end RTTs, on switches within the data center, BFC will
pause/resume flows on a hop-by-hop RTT timescale (2 µs).
As a result, with BFC, tail latencies of intra-data-center flows
are relatively unaffected by the presence of inter-data-center
flows, while the opposite is true of HPCC.

A.10 Physical queue assignment

To understand the importance of dynamically assigning
flows to physical queues, we repeated the experiment in
Fig. 11a with a variant of BFC, BFC + Stochastic, where we
use stochastic hashing to statically assign flows to physical
queues (as in SFQ). In BFC (referred as BFC + Dynamic
here), the physical queue assignment is dynamic. To isolate
the effect of changing the physical queue assignment, the
pause thresholds are the same as BFC + Dynamic.

Fig. 27a shows the tail latency. Compared to BFC, tail
latency for BFC + Stochastic is much worse for all flow
sizes. Without the dynamic queue assignment, flows are often
hashed to the same physical queue, triggering HoL blocking
and hurting tail latency, even when there are unoccupied
physical queues. Fig. 27b is the CDF of such collisions.
BFC+Stochastic experiences collisions in a high fraction of
cases and flows end up being paused unnecessarily. Such
flows finish later, further increasing the number of active
flows and collisions. Even with incast, the number of active
flows in BFC is smaller than the number of physical queues
most of the time.

A.11 Size of flow table

We repeated the experiment in Fig. 11a, but varied the size
of the flow table (as a function of the number of queues in the
switch). The default in the rest of the paper uses a flow table
of 100X. Fig. 28 shows the tail latency as a function of flow
size, for both smaller and larger flow tables. Reducing the
size of the flow table increases the index collisions in the flow

101 102 103 104

Flow Size (KB)
1
2
4
8

16
32
64

FC
T

Sl
ow

 D
ow

n

25X 50X 100X 200X IdealFQ

(a) 99th percentile FCT
Figure 28: FCT slowdown (99th percentile) for BFC for different
size flows as a function of the size of the flow table (as a multiple
of the number of queues in the switch). The other experiments in the
paper use a flow table of 100X. Further reducing the size of the flow
table hurts small flow performance.

BFC
HPC

C

DCQCN

Ide
alF

Q
DCTC

P

HPC
C-PF

C

Ex
p-P

ass
32
64

128
256
512

FC
T

Sl
ow

Do
wn

Avg
95 pct

99 pct

Figure 29: FCT slowdown for incast traffic. Slowdown is defined
per flow.BFC reduces the FCT for incast flows compared to other
feasible schemes. Setup from Fig. 9.
table. Each flow table collision means that those flows are
necessarily assigned to the same physical queue. Tail latency
FCTs degrade as a result, particularly for small flows and for
smaller table sizes. This experiment shows that increasing
the size of the flow table would moderately improve short
flow tail latency for BFC.

A.12 Incast flow performance

Fig. 29 shows the slowdown for incast flows for the
Google workload used in Fig. 9. The benefits of BFC for
non-incast traffic do not come at the expense of worse
incast performance. Indeed, BFC improves the performance
of incast flows relative to end-to-end congestion control,
because it reacts faster when capacity becomes available at
the bottleneck, reducing the percentage of time the bottleneck
is unused while the incast is active.

B DEADLOCK PREVENTION
We formally prove that BFC is deadlock-free in absence of
cyclic buffer dependency. Inspired by Tagger [32], we define
a backpressure graph (G(V,E)) as follows:

1. Node in the graph (V): A node is an egress port in
a switch and can thus be represented by the pair
<switchID, egressPort>.

2. Edge in the graph (E): There is a directed edge from
B → A, if a packet can go from A to B in a single
hop (i.e., without traversing any other nodes) and
trigger backpressure from B→A. Edges represent how
backpressure can propagate in the topology.

We define deadlock as a situation when a node (egress
port) contains a queue that has been paused indefinitely.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 803

Cyclic buffer dependency is formally defined as the situation
when G contains a cycle.

Theorem 1 BFC is deadlock-free if G(V,E) does not contain
any cycles.

Proof: We prove the theorem by using contradiction.
Consider a node A that is deadlocked. A must contain a

queue (Aq) that has been indefinitely paused as a result of
backpressure from the downstream switch. If all the packets
sent by Aq were drained from the downstream switch, then Aq
will get unpaused (§3.3.2). There must be at least one node
(B) in the downstream switch that triggered backpressure
to Aq but hasn’t been able to drain packets from Aq, i.e., B
is deadlocked. This implies, in G, there must be an edge
from B → A. Applying induction, for B there must exist
another node C (at the downstream switch of B) that is
also deadlocked (again there must be an edge from C→B).
Therefore, there will be an infinite chain of nodes which are
paused indefinitely, the nodes of the chain must form a path
in G. Since G doesn’t have any cycles, the paths in G can
only be of finite length, and therefore, the chain cannot be
infinitely long. A contradiction, hence proved.
Preventing deadlocks: To prevent deadlocks, given a topol-
ogy, we calculate the backpressure graph, and pre-compute
the edges that should be removed so that the backpressure
graph doesn’t contain any cycles. Removing these edges thus
guarantees that there will be no deadlocks even under link
failures or routing errors. To identify the set of edges that
should be removed we can leverage existing work [32].

To remove a backpressure edge B→A, we use the simple
strategy of skipping the backpressure operation for packets
coming from A going to B at the switch corresponding to B.9

Note that, a switch can identify such packets locally using
the ingress and egress port of the packet. This information
can be stored as a match-action-table (indexed by the ingress
and egress port) to check whether we should execute the
backpressure operations for the packet.

For Clos topologies, this just includes backpressure edges
corresponding to packets that are coming from a higher
layer and going back to a higher layer (this can happen due
to rerouting in case of link failures). Note that, usually the
fraction of such packets is small (< 0.002% [32]), so forgoing
backpressure for a small fraction of such packets should hurt
performance marginally (if at all).

C IMPACT OF PAUSE THRESHOLD
A consequence of the simplicity of BFC’s backpressure
mechanism is that a flow can temporarily run out of packets

9To remove backpressure edges in PFC, Tagger uses a more complex
approach that invloves creating new cycle free backpressure edges correspond-
ing to the backpressure edges that should be removed. To ensure losslessness,
Tagger generates backpressure using these new cycle free edges instead
of the original backpressure edge. In our proposed solution, we forgo such
requirement for simplicity.

at a bottleneck switch while the flow still has packets to send.
The pause threshold (T h) governs the frequency of such
events. Using a simple model, we quantify the impact of T h.

Consider a long flow f bottlenecked at a switch S. To
isolate the impact of the delay in resuming, we assume that
f is not sharing a queue with other flows at S or the upstream
switch. Let µ f be the dequeue rate of f at S, i.e., when f has
packets in S, the packets are drained at a steady rate of µ f .
Similarly, let µ f ·x be the enqueue rate of f at the switch, i.e.,
if f is not paused at the upstream, S receives packets from f
at a steady rate of µ f ·x. Here, x denotes the ratio of enqueue
to dequeue rate at S. Since f is bottlenecked at S, x>1.

We now derive the fraction of time in steady state that f
will not have packets in S. We show that this fraction depends
only on x and T h, and is thereby referred as E f (x,T h).

The queue occupancy for f will be cyclic with three phases.
• Phase 1: S is receiving packets from f and the queue

occupancy in increasing.
• Phase 2: S is not receiving packets from f and the queue

is draining.
• Phase 3: S is not receiving packets from f while the

queue is empty.
The time period for phase 1 (tp1) can be calculated as

follows. The queue occupancy at start of the phase is 0 and
S is receiving packets from f . f gets paused when the queue
occupancy exceeds T h. The queue builds at the rate µ f ·x−µ f
(enqueue rate - dequeue rate). The pause is triggered after

T h
µ f ·(x−1) time from the start of the phase. Since the pause takes
an HRT T to take effect, the queue grows for an additional
HRT T . tp1 is therefore given by:

tp1=
T h

µ f ·(x−1)
+HRT T. (1)

The queue occupancy at the end of phase 1 is
T h+HRT T ·µ f · (x−1). The time period for phase 2 (tp2)
corresponds to the time to drain the queue. tp2 is given by:

tp2=
T h+HRT T ·µ f ·(x−1)

µ f
. (2)

At the end of phase 2, there are no packets from f in S. As
a result, S resumes f at the upstream. Since the resume takes
an HRT T to take effect, the queue is empty for an HRT T .
Time period for phase 3 (tp3) is given by:

tp3=HRT T (3)

Combining the equations, E f (x,T h) is given by:

E f (x,T h)=
tp3

tp1+tp2+tp3

=
x−1

T h
HRT T ·µ f

·x+(x2−1)
. (4)

804 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 1 2 3 4 5
Th (HRTT f)

0.0

0.1

0.2

0.3

0.4

0.5
m

ax
x

>
1

(E
f(T

h,
x)

)

Figure 30: Impact of pause threshold (T h) on the metric of worst
case inefficiency. Increasing T h reduces the maximum value for the
fraction of time f can run out of packets at the bottleneck.

Notice that for a given x, E f (x,T h) reduces as we increase
T h. Increasing T h, increases the time period for phase 1
and phase 2, and the fraction of time f runs out of packets
reduces as a result.

We now quantify the impact of pause threshold on the
worst case (maximum) value of E f (x, T h). Given a T h,
E f (x,T h) varies with x. When x→ 1, (E f (x,T h)→ 0, and
when x→∞, (E f (x,T h)→0. The maxima occurs somewhere
in between. More concretely, for a given value of T h, the
maxima occurs at x =

√
T h

HRT T ·µ f
+1. The maximum value

(maxx>1(E f (x,T h))) is given by:

max
x>1

(E f (x,T h))=
1(√

T h
HRT T ·µ f

+1
)2

+1
. (5)

Fig. 30 shows how maxx>1(E f (x,T h)) changes as we in-
crease the pause threshold. As expected, increasing the pause
threshold reduces maxx>1(E f (x,T h)). However, increasing
the pause threshold has diminishing returns. Additionally,
increasing T h increases the buffering for f (linearly).

In BFC, we set T h to 1-Hop BDP at the queue drain
rate, i.e., T h=HRT T ·µ f . Thereofore, the maximum value
of E f (x, T h) is 0.2 (at x = 2). This implies, under our
assumptions, that a flow runs out of packets at most 20% of
the time due to the delay in resuming a flow.

Note that 20% is the maximum value for E f (x,T h). When
x 6=2, E f (x,T h) is lower. For example, when x=1.1 (i.e., the
enqueue rate is 10% higher than the dequeue rate), E f (x,T h)
is only 7.6%.

The above analysis suggests that the worst-case under-
utilization caused by delay in resuming is 20%. Note that
in practice, when an egress port is congested, there are
typically multiple flows concurrently active at that egress. In
such scenarios, the under-utilization is much less than this
worst-case bound, because it is unlikely that all flows run
out of packets at the same time. As our evaluation shows,
with BFC, flows achieve close to ideal throughput in realistic
traffic scenarios (§6).

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 805

Packet Order Matters!
Improving Application Performance by Deliberately Delaying Packets

Hamid Ghasemirahni1, Tom Barbette1, Georgios P. Katsikas1,
Alireza Farshin1, Amir Roozbeh1,2, Massimo Girondi1, Marco Chiesa1,

Gerald Q. Maguire Jr.1, and Dejan Kostić1

1KTH Royal Institute of Technology
2Ericsson Research

Abstract
Data centers increasingly deploy commodity servers with

high-speed network interfaces to enable low-latency commu-
nication. However, achieving low latency at high data rates
crucially depends on how the incoming traffic interacts with
the system’s caches. When packets that need to be processed
in the same way are consecutive, i.e., exhibit high temporal
and spatial locality, caches deliver great benefits.

In this paper, we systematically study the impact of tempo-
ral and spatial traffic locality on the performance of commod-
ity servers equipped with high-speed network interfaces. Our
results show that (i) the performance of a variety of widely
deployed applications degrades substantially with even the
slightest lack of traffic locality, and (ii) a traffic trace from
our organization reveals poor traffic locality as networking
protocols, drivers, and the underlying switching/routing fab-
ric spread packets out in time (reducing locality). To address
these issues, we built Reframer, a software solution that de-
liberately delays packets and reorders them to increase traffic
locality. Despite introducing µs-scale delays of some packets,
we show that Reframer increases the throughput of a network
service chain by up to 84% and reduces the flow completion
time of a web server by 11% while improving its throughput
by 20%.

1 Introduction

Recent advances in networking hardware have boosted the
speed of Network Interface Cards (NICs) and packet switch-
ing devices, facilitating faster Internet access [1, 2] and
improving performance in datacenters [3]. At the same
time, this sudden growth in networking speeds has not been
followed by a similar trend in Central Processing Unit (CPU)
core frequencies and memory access latencies [4, 5]. This
places tremendous pressure on today’s commodity server
architectures. Accessing main memory for each packet
is prohibitive, thus high-speed packet processing inher-
ently requires packets and the instructions & data needed to

process these packets to reside in cache memories to the
greatest extent possible. For these reasons, recent efforts
have explored ways to optimize cache utilization, for instance,
(i) using Direct-Memory Access (DMA) or Remote DMA
(RDMA) [6] to eliminating CPU involvement in the reception
of incoming packets, (ii) with Data Direct I/O (DDIO) [7, 8]
completely avoiding main memory, (iii) placing incoming
packets into a Last Level Cache (LLC) slice as close as
possible to the core responsible for handling these packets [9],
and (iv) realizing Network Function (NF) chains without
inter-core communication (thus eliminating LLC cache pollu-
tion) [10] and with whole-stack optimizations (minimizing
LLC accesses) [11].

Optimal utilization of memory caches requires that packets
to be processed (with a given set of instructions and data)
arrive as close as possible in time to each other, i.e., high
temporal and spatial locality of the received packet stream. In
this paper, we investigate the impact of packet ordering on the
performance of I/O-intensive applications. We first measure a
variety of performance metrics including throughput, average
processing cycles per packet, average CPU instructions per
packet, etc., as functions of the level of traffic locality of a set
of streams of packets . In our experiments, the relevant data
is both packets belonging to the same flow and the metadata
that is associated with them. Our investigation reveals an
unexpected sharp performance degradation (up to a factor
of 3×) with even the slightest lack of temporal and spatial
traffic locality for packets that could have been processed
using the same instructions and data. As an example, we
discovered that the number of CPU cycles per packet for an
iperf server were reduced by a factor of 2−3×when packets
arrive in small bursts of 5 packets belonging to the same flow
as opposed to bursts of a single packet.

In practice, there are several hindrances to cache-optimized
I/O processing. First, slow NICs at the client do not produce
bursts of packets that will arrive “back-to-back” at a receiver
with a faster NIC. Moreover, the multiplexing of different
traffic flows along the path from a client to a server results
in packets belonging to a client’s flow being spaced apart

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 807

(i.e., interleaved with other flows), thus diminishing local-
ity. Even worse, we observe the existence of an increasing
friction between emerging networking trends, which advocate
that congestion control mechanisms pace packets, i.e., spread
packets in a flow apart from each other as much as possi-
ble to minimize the risk of congestion in the network (see
§3), and the desire to process incoming packets in memory
caches to the greatest extent possible (due to trends in com-
puter architecture) [12]. To understand whether real-world
traffic exhibits sufficient ordering, we analyzed a real-world
traffic trace from one of the packet gateway interfaces of our
organization. This traffic exhibits a very low level of spatial
locality, as more than ~60% of the packets belonging to the
same flow are interleaved with packets belonging to other
flows, which is far from ideal conditions for cache-optimized
packet processing.

These apparently completely opposite requirements of
(i) pacing traffic for better network-level statistical multi-
plexing and (ii) processing packets in bursts for better cache
effectiveness calls for a solution that satisfies both require-
ments at the same time. Based on the above, we explore
the counter-intuitive idea of increasing packet processing
throughput by deliberately delaying and reordering packets
before they reach the application running on the server(s),
thus rebuilding high traffic locality. We built Reframer, a net-
work function that leverages this idea, to buffer and reorder
packets between different flows. By introducing Reframer at
the destination network (or directly at an end server), we (i)
maximize the number of subsequent cache hits in the servers,
thus reducing the processing time for each burst and (ii) are
compatible with the emerging pacing-based congestion con-
trol mechanisms (e.g., BBR [13]) as we do not affect the
pacing of the packets across the Internet. Reframer can be
deployed on the same server where one needs to increase
cache hit performance (e.g., CPU core and/or SmartNIC) or
upfront as part of a network function service chain to improve
the throughput of the service chain itself by up to 60% (see
§5.2) and subsequent web servers throughput by 20% while
reducing the flow completion time by 11%, despite delaying
the individual packets. Moreover, we show that Reframer
improve performance an order of magnitude more than flow-
oblivious batching [14], showing the need to increase per-flow
spatial locality.

Contributions. In this paper, we:

• Unveil that trends in networking, spreading packets apart,
are antithetical to today’s high-performance computer archi-
tectures, which require bursty communication to efficiently
use cache memories for high-speed networking.

• Systematically measured the performance degradation due
to the lack of spatial locality in the streams of packets pro-
cessed by servers for a variety of I/O-intensive applications
(including large data transfers and network functions). Our
results show significant performance degradation, up to a

factor of 2−3×, mainly due to cache misses (§2).
• Analyzed the levels of spatial and temporal locality in real-

world traffic captured between our organization and our ISP.
This traffic shows poor locality, which leads to sub-optimal
performance at each of the servers (§3).

• Built a Reframer prototype to reorder packets, thus exploit
servers’ caches when processing packets at high speed (§4).
Reframer improves the throughput and latency of chained
NFs by up to 84% and 46% respectively, using a realistic
packet trace and various Reframer deployments (§5).

2 How Much Does Order Matter?

This section shows how explicit packet ordering increases
temporal and spatial locality and, consequently, boosts the
performance of real-world applications. Our results show
that, when packets belonging to the same flow are inter-
leaved by even a few other packets, the latency of a packet
processing application may increase by more than 2× be-
cause of a higher number of cache misses and executed
CPU instructions. These results motivate our Reframer sys-
tem, whose goal is to build per-flow batches of packets that
can be submitted to the servers, as opposed to batches of
arbitrary packets belonging to different flows as in state-of-
the-art software switches (e.g., Batchy [14]).

The experimental methodology used in this section is
described in §2.1. We decompose the effects of packet
ordering into three categories: network stack effects (§2.2),
software switching effects(§2.3), and more advanced NF
effects (§2.4).

2.1 Experimental Setup

Testbed. All the experiments in this section use the same
testbed. Two back-to-back interconnected servers, each with
a single-socket 8-core Intelr Xeonr Gold 5217 (Cascade
Lake) CPU clocked at 2.3 GHz and 48 GB of DDR4 RAM
at 2666 MHz. Each core has 2×32 KiB L1 (instruction &
data caches) and 1 MiB L2 caches, while one 11 MiB LLC is
shared among the cores. Each server has a dual port 100 GbE
Mellanox ConnectX-5 NIC with firmware version 16.28.1002.
Hyper-threading is enabled on both servers and the Operating
System (OS) is the Ubuntu 18.04 distribution with Linux
kernel v5.3. One server acts as a traffic generator and receiver
while the other server is the Device Under Test (DUT). We
also utilized the Linux perf tool on the DUT during the
execution of the experiments to monitor CPU performance
counters (e.g., CPU cache misses).
Spatial locality factor (SLF). We define SLF as the average
number of packets, in the same flow, that arrive back-to-back
at the DUT. For example, if there are three flows (A, B, and
C) and SLF = 1, the DUT receives packets in the pattern
"ABCABC. . . ". For SLF = 2, the pattern is "AABBCC. . . ".

808 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 1000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Spatial locality factor

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

-53%

-69%

C
P

U
 c

y
c
le

s
 p

e
r

p
a
c
k
e
t

Iperf - LRO Off
Iperf - LRO On

(a) CPU cycles per packet.

 0

 50

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Spatial locality factor

 100

 120

 140

 160

 180

 200

 220

 240

 260

-54%

L
1
 c

a
c
h

e
 m

is
s
e

s
 p

e
r

p
a
c
k
e
t Iperf - LRO Off

Iperf - LRO On

(b) L1 cache misses per packet.

Figure 1: Impact of packet spatial locality on the performance of an iperf server, with and without LRO.

2.2 Network Stack Effects

Packet ordering has a profound impact on the performance
of general purpose network stacks and their applications,
especially TCP receive-side processing. In these experiments,
we show that lack of traffic locality greatly degrades CPU
utilization (up to a factor of 3×) even when sophisticated TCP
accelerations are used.

In these experiments, we use Linux iperf [15] to establish
128 TCP connections (with 1500 B packets) to the DUT that
runs an iperf server. The duration of each test is 15 seconds.

We utilize the Linux traffic control mechanism (tc) on the
client side to synthetically order the sending packets with a
given value of SLF . We restrict the sending rate to ~8 Gbps,
as forcing a real TCP stack to exhibit a specific SLF at high
speeds is extremely hard. On the DUT side, we restrict iperf
to use only one core to clearly delimit the benefits of packet
ordering from potential artefacts introduced by parallelism.
Lack of locality makes TCP accelerations ineffective. A
variety of TCP accelerations have been devised to mitigate the
effects of the increasingly faster NICs’ transmission speeds
on the relatively stable CPU speed. In this experiment, we
show that the most notable of these accelerations, i.e., Large
Receive Offload (LRO), is ineffective with low traffic locality.

Ideally, LRO should combine SLF consecutive packets of
the same flow received at the NIC into a single “super-frame”,
removing all the Ethernet & IP headers from the merged
packets and possibly coalescing redundant packets, such as
TCP acknowledgements. However, interleaved packets from
different flows prevent LRO from merging consecutive pack-
ets which leads to inefficiency of LRO.

The blue boxes of Fig. 1a show that LRO performance
is improved significantly when the spatial locality factor in-
creases from 1 to 16, i.e., more consecutive packets in a flow
arrive at the DUT. This increase in SLF reduces the number
of CPU cycles per packet by 69% (from ~10k to ~3k), which
shows low traffic locality harms TCP acceleration by LRO.
Even without LRO (red boxes in Fig. 1a), the number of CPU
cycles per packet decreases by 53% with an increasing SLF .

Two explanations for the benefits of spatial locality are:
1 Fewer cache misses. Ordered packets increase L1 cache

hit ratio as common per-flow data structures are fetched only
once for all packets. Fig. 1b shows that the number of L1
cache misses per packet decreases by 54% when packets are
processed back-to-back. Particularly, we observed an increase
in performance for the “__inet_lookup_established” Linux
kernel routine. This function performs a lookup in the lis-
tening sockets hash table to assign the received packet to the
corresponding socket. The improvement is identical regard-
less of whether LRO is enabled or not and simply depends on
having a better packet locality.
2 Fewer CPU instructions per packet. Since iperf uses

multiple threads to serve clients’ requests, when SLF is small,
the scheduling routines of the Linux kernel are called more
frequently to switch among iperf threads. By increasing
SLF , each thread is able to handle multiple consecutive
packets (ideally SLF packets) within a single scheduling
round of the Linux kernel. Consequently, the number of flow
handling routines and executed CPU instructions decreases
dramatically with or without LRO enabled (see Fig. 2). LRO
further reduces the average number of CPU instructions per
packet thanks to the creation of super-frames of packets.

 0

 1000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Spatial locality factor

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

-45%

-71%

C
P

U
 i
n

s
tr

u
c
ti

o
n

s
 p

e
r

p
a
c

k
e
t Iperf - LRO Off

Iperf - LRO On

Figure 2: Impact of packet spatial locality on CPU instruc-
tions per packet of an iperf server, with or without LRO.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 809

0

10

1 4 8 12 16 20 24 28 32
Spatial locality factor

30

40

50

60

70

80

90

L
a
te

n
c
y
 (

μ
s
)

50th latency percentile - 10000 rules
50th latency percentile - 1000 rules
25th latency percentile - 10000 rules
25th latency percentile - 1000 rules

(a) 25th (errorbars) and 50th (boxplots) percentile latencies.

0

10

1 4 8 12 16 20 24 28 32
Spatial locality factor

50

100

150

200

250

300

350

L
a
te

n
c
y
 (

μ
s
)

75th latency percentile - 10000 rules
75th latency percentile - 1000 rules

(b) 75th percentile latency.

Figure 3: Impact of spatial locality on the forwarding performance of OVS 2.13.9 using the Linux kernel v5.3 data path.

Takeaway. From this experiment we conclude that the per-
formance of today’s high-speed networking applications is
highly dependant on the spatial locality of the received pack-
ets, as this impacts cache-miss ratios and the number of CPU
instructions per packet. Based on Fig. 1a, we observe that sys-
tems without LRO acceleration but with good spatial locality
of packets (i.e., SLF = 16) perform better than systems with
LRO but with poor locality of packets (i.e., SLF < 5), making
it beneficial to process ordered streams of packets.

2.3 Software Switching Effects

This section quantifies the effects of locality on the per-
formance of the kernel-based Open vSwitch (OVS) [16];
a widely deployed production quality multi-layer software
switch. Many Virtual Machine (VM) and container-based
cloud platforms (e.g., VMware NSX-T [17], OpenStack [18],
Red Hat’s OpenShift [19], and Kubernetes [20]) use OVS.
OVS classification pipeline. Upon a packet’s arrival, OVS
employs a multi-stage classification pipeline. The first stage
is a 213 entry Exact Match Cache (EMC) for frequently used
flows. This cache uses a 32-bit hash of the packet’s header,
which can be the Receive-Side Scaling (RSS) hash, as a key
mapped to a rule for the corresponding packet. In OVS 2.10,
a second classification stage called Signature Match Cache
(SMC) was introduced as an experimental feature. This cache
stores a 16-bit signature for each flow along with a corre-
sponding 16-bit index into a flow table (with up to 216 rules),
a total of 32 bits; hence, it is more memory efficient than
EMC, which stores the entire forwarding rule.

If neither of the first two cache levels matches an incoming
packet, then that packet is classified by the kernel’s Megaflow
cache [21]. This cache is based on the Tuple-Space Search
(TSS) algorithm [22] that uses more aggressive bitwise wild-
carding to aggregate multiple flows into a single match. Fi-
nally, a miss in the Megaflow cache results in a packet redi-
rection to the “slow path”, where packets traverse a pipeline
of OpenFlow tables to derive their corresponding actions.

OVS setup choice. Due to the fact that the EMC is an n-way
associative cache (similar to a modern CPU cache), only n out
of 213 entries can be used to store any given flow. In OVS ver-
sion 2.13.9 n = 2, implying this cache will likely exhibit high
contention even when the number of flows is much smaller
than the EMC. Measurements of these OVS caching schemes
showed that EMC does not yield the expected levels of perfor-
mance improvements over the SMC [23]. Specifically, EMC
slightly outperforms the SMC only with low numbers of flows
(< 200), while SMC offers higher performance with more
flows [23]. We verified this through our own experiments,
hence we disable EMC to achieve higher performance.
OVS experiment. We deployed OVS 2.13.9 on the DUT
with a data path through the Linux kernel v5.3 of the DUT.
The forwarding behavior is defined by two sets of OpenFlow
v1.4 rules with 1k and 10k entries. These rules classify input
packets based on their source and destination Ethernet and
IP addresses and forward matching packets toward the traffic
receiver through the same port (i.e., the Mellanox port of the
DUT attached to OVS). Only one rule in each rule set matches
the input traffic. We used a Data Plane Development Kit
(DPDK)-based traffic generator to inject a trace of 10k User
Datagram Protocol (UDP) flows, where each flow consists of
1500-B packets, at the rate of 5.5 Mpps ≈ 66 Gbps*. Fig. 3
shows the performance of the kernel-based OVS classifier,
focusing on the 25th & 50th (Fig. 3a) and 75th (Fig. 3b) latency
percentiles.
Packet ordering greatly benefits OVS’s caching scheme.
When no particular locality is enforced (i.e., SLF = 1), the
75th latency percentile (see Fig. 3b) ranges between 132 µs-
343 µs and 126 µs-300 µs for 10k and 1k rules, respectively;
while lower latency variance is observed in Fig. 3a for the
25th and 50th latency percentiles. However, both latency and
its variance substantially decrease with increasing SLF for
both rule sets. The greatest improvement is observed for
SLF ∈ [20,24], where packet locality results in 2.5− 5×

*Similar results occur for TCP packets. With 64-B packets, the effect of
packet ordering is less profound, but still relevant.

810 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 10

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Spatial locality factor

 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100
 105
 110

L
a
te

n
c
y
 (

μ
s
)

NAT
Firewall - Caching Off
Firewall - Caching On

(a) End-to-end latency.

 0

 100

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Spatial locality factor

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

C
P

U
 c

y
c
le

s
 p

e
r

p
a
c
k
e
t

NAT
Firewall - Caching Off
Firewall - Caching On

(b) CPU cycles per packet.

Figure 4: Impact of traffic spatial locality on the packet processing latency and the CPU cycles per packet performance of a NAT
and a firewall (with and without rule caching) NFs.

lower 75th latency percentiles, 2× lower medians, and 15-
22% lower 25th latency percentiles with negligible latency
variance. For higher values of the spatial locality factor (i.e.,
SLF ∈ [28,32]), we observe a slight latency increase com-
pared to the lowest attainable latencies shown in this figure.
This behavior is not observed in the other experiments in this
section, suggesting the limits of packet ordering be studied
on a case-by-case basis.
10k rules at the cost of 1k rules. An equally important ben-
efit of this use case is shown in the case of SLF ∈ [20,24],
where the red and blue boxplots and error bars in Fig. 3 ex-
hibit very similar ranges. This means that packet ordering
amortizes the additional cost of a 10x larger classifier (i.e.,
10k vs. 1k rules) by making the most out of OVS’s caches.

2.4 Network Functions’ Effects
In addition to network stacks (§2.2), packet locality may also
affect more advanced NFs. To investigate this, we imple-
mented two NFs in FastClick [24], a stateless firewall and a
(stateful) Network Address Translation (NAT)*. Unlike §2.2,
we allocate two cores per NF with one RX queue per core
to show that the benefits of packet locality is not limited to
single-core scenarios. We will further discuss the impact of
number of RX queues on the DUT performance in §5.1. In
these experiments, the traffic generator emulates 10k clients
sending a total of 20 million 1-KB UDP packets to the DUT
with a total rate of ~50 Gbps (6.2 Mpps) and a given spatial
locality factor SLF . Fig. 4 shows the average end-to-end la-
tency and the number of CPU cycles per packet for these two
applications.
NAT NF case. We deployed the NAT NF on the DUT. Fig. 4
shows that the end-to-end latency decreases from 103 µs to
74 µs as the spatial locality factor increases from SLF = 1
to SLF = 32. When SLF = 1, some packets are dropped
since for each packet, the CPU must wait for the many cycles

*We also deployed a chain of NFs on the DUT as a complementary
experiment in Appendix A.1

it takes to fetch the appropriate NAT table’s row from the
memory, greatly decreasing the available useful processing
time and the capacity of the NF to serve incoming packets. In
contrast, when input packets are partially ordered by flow, the
NF amortizes the cost of this NAT table lookup over several
consecutive packets within the same flow, thus reducing the
average processing time needed to serve each packet.

Firewall NF case (without software-based rule caching).
We deployed a firewall NF implementing a tree-based Access
Control List (ACL) with 20k rules on the DUT. We consider
two different variants of this firewall. The first variant assumes
no rule caching, thus it executes the matching algorithm for
each incoming packet. Since all packets of the same flow
typically match the same rule, then with an increasing spatial
locality factor, we expect a reduction in the frequency of
fetching data (rules) from main memory into the system’s
cache(s). The blue boxes in Fig. 4 show similar trends as in
the previous experiment, i.e., an increasing spatial locality
factor improves the performance of the firewall in terms of
both average end-to-end latency (Fig. 4a) and number of CPU
cycles per packet (Fig. 4b).

Firewall NF case (with software-based rule caching). The
second variant of this firewall NF implements a simple in-
memory rule cache. This cache stores the hash of the last
served packet and the matched rule. For each incoming packet,
the firewall calculates the packet’s hash value, and if it is the
same as the entry in the cache, then it assumes that the packet
will match the same rule as the previous packet. However, if
after executing the rule the new packet does not match the
rule, then the cache will be updated with a new matching rule
and a new packet hash. The green circles in Fig. 4 show faster
convergence to the minimum values compared to the firewall
without caching as the firewall’s cache matches an increas-
ingly large fraction of input packets (i.e., SLF−1 packets for
a given SLF) without invoking the firewall’s classifier.

Packet spatial locality analysis. Looking closely at the per-
packet CPU cycle curves shown in Fig. 4b, we note that the

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 811

 0

 5

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Spatial locality factor

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

50%

38%

L
1
 c

a
c
h

e
 m

is
s
e

s
 p

e
r

p
a
c
k
e
t NAT

Firewall - Caching Off

Figure 5: Impact of spatial locality on the number of L1
misses per packet for a Firewall (w/o caching) and NAT NF.

data fits an equation of the form cost = α ∗ (1/SLF) + β,
where β is the CPU cost of processing the data that has al-
ready been accessed and is in the cache, hence it is the asymp-
totic limit when SLF is large. In contrast, α ∗ (1/SLF) is a
weighted version of the cost of getting the data that can be
shared, e.g., when SLF = 2, the cost per packet is amortized
over two packets.

In the case of the NAT, when SLF > 1 the main cost is the
lookup of the appropriate replacement values in the NAT table
and this lookup only has to be done once for the first packet,
hence α≈ 1 times the cost of this lookup. In the case of the
firewall, we expect that for a given number of firewall rules F ,
β ∝ γ∗F when the firewall rules cannot be cached (i.e., when
the rules cannot fit into the cache), hence the firewall rules
have to be repeatedly loaded and hence the cost cannot be
shared (i.e., α≈ 0). However, we see that this is not the case
in Fig. 4, as an application still benefits from processor-based
caching of the data even without software-based rule caching.

Serving packets at the speed of L1 cache. We now high-
light the fundamental role played by core-specific L1 cache
in enhancing the performance of the above NFs. To measure
cache-related events, we utilized the Linux perf tool during
the execution of the experiments shown in §2.4. Since the
NFs’ data size (NAT table and firewall rules) are smaller than
the LLC and L2 capacity, we see almost no LLC and L2
misses; hence, the reduction in the number of CPU cycles is
mostly due to better utilization of the L1 cache.

Fig. 5 shows the effect of locality on the number of L1
cache misses for both the NAT and firewall experiments. In
both cases, we observe a substantial decrease in the number
of L1 cache misses. Our analysis reveals that we can observe
the effects of ordering even on the L2 and LLC misses by
deploying a memory-intensive NF (e.g., Deep Packet In-
spection (DPI)) or a chain of multiple NFs on the DUT
(Appendix A.1). Our results demonstrate that better utiliza-
tion of core-specific caches is the key for increasing the NFs’
performance and ordering packets minimizes cache misses.

2.5 Summary
In this section, we explored the effects of spatial locality of
network data by conducting experiments across Linux net-
work stack and DPDK-based stateless & stateful NFs at vari-
ous levels of a system’s software stack. The common denom-
inator of this study is that packet ordering greatly increases
the utilization of a server’s memory hierarchy (mostly CPU
caches), which in turn results a substantial improvement in
key performance indicators, such as latency, throughput, and
CPU utilization.

We leverage these insights to design a system that vertically
(i.e., hardware to application layer) exploits the benefits of
packet ordering (see §4) and demonstrate complementary
results using additional real world applications (see §5).
Before this, we investigate whether today’s Internet traffic
exhibits a low or high spatial locality factor (see §3).

3 Packets Order in Real-world Traffic

This section analyzes a trace from our organization (i.e., a
university) to understand the spatial & temporal locality in
realistic traffic (§3.1) and explores opportunities to in-
crease traffic locality by reordering packets (§3.2). Our
analysis shows that >60% of the packets belonging to a
flow are interleaved with packets of other flows, hence
non-ideal for high-speed packet processing (based on §2).
Moreover, today’s networking trends further exacerbate
this – as novel congestion control mechanisms (e.g.,
BBR [25], Timely [26], HULL [27], and Carousel
[28]) advocate pacing packets to fight “bufferbloat”, i.e.,
keeping queue occupancy in routers’ buffers as low as
possible. Even the built-in self-clocking of traditional
TCP congestion control mechanisms [29], which inherently
spreads packets out over time to avoid congesting a link, is
harmful to cache-optimized high-speed network communica-
tion. In §4, we advocate rebuilding per-flow traffic bursts as
close as possible to the servers that process them.
Trace statistics. We captured 28 min of traffic from our cam-
pus to & from our upstream network provider. The outgoing
traffic (i.e., from the campus toward the Internet) had 420
million packets with an average size of 1069.43 B and the
incoming traffic (i.e., from the Internet toward the campus)
had 378 million packets with an average size of 882.82 B.
Fig. 6 shows the TCP flow size distribution for this traffic.
In the rest of this document, we refer to the outgoing and
incoming traffic as the TX and RX traces, respectively.

3.1 Spatial & Temporal Distance
The performance benefits of packet spatial locality were
shown in §2 with the greater the number of consecutive pack-
ets belonging to the same flow (i.e., the spatial locality factor),
the greater the benefits. Additionally, we concluded that even
a small spatial locality factor (e.g., SLF = 5) could yield a

812 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

1 10 50

P
ro

ba
bi

lit
y

(%
)

Flow Size (#Packets)

RX TX

Figure 6: TCP flow size distr. of the analyzed trace with a
log. x-axis. The RX trace has ∼ 4M flows; the min., avg.,
and max. flow sizes (in #packets) are 1, 63, and ∼ 29M, resp.
The TX trace is composed of ∼ 2M flows; the min., avg., and
max. flow sizes (in #packets) are 1, 137, and ∼ 68M, resp.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

1 10 50

P
ro

ba
bi

lit
y

(%
)

RX
TX

(a) Spatial distance (#Packets).

 0

 5

 10

 15

 20

 25

1 10 50

P
ro

ba
bi

lit
y

(%
)

RX
TX

(b) Temporal distance (µs).

Figure 7: Distribution of the spatial & temporal distance for
the campus trace. (Note that the x-axis is logarithmic).

significant improvement, as was shown in Fig. 4. However,
the improvements depend on the traffic’s actual spatial local-
ity. Therefore, in this section, we examine how unordered
the trace from our organization is. To do so, we calculate
the spatial and temporal distance of packets in every TCP
flow. Spatial distance shows the number of packets between
two consecutive packets of the same flow and can be used to
assess opportunities to exploit cache memories. The higher
the spatial locality, the greater the number of opportunities
to increase cache-hit ratios. Temporal distance measures the
time between two consecutive packets of the same flow and
can be used to estimate how long one would have to wait for
another packet in order to reorder packets and increase spatial
locality. Fig. 7 shows the histogram of these metrics for the
campus trace. These results do not consider single-packet
flows*, as these metrics are undefined for such flows.
Spatial distance. Fig. 7a shows that the spatial distance of
the per-flow packets are larger than one packet in ~60% of the
RX trace (without single-packet flows) and ~75% of the TX
trace (without single-packet flows) – i.e., there is at least one
packet between consecutive packets of the same flow. The
rate of our campus trace is ∼2.2 Gbps, which underestimates
the values reported for the spatial distance. In networks with

*Based upon the source addresses, we expect that some of these are
likely to be part of SYN attacks.

 0

 200

 400

 600

 800

 1000

32 64 256 1024

#S
w

itc
he

s

Batch Size (#Packets)

TX - Unordered
TX - Ordered

RX - Unordered
RX - Ordered

Figure 8: Number of per-flow switches for different batch
sizes (selected according to [14]: 32/64 for Linux kernel and
DPDK; 256 for VPP; and 1024 for GPU/NIC offload).

higher rates (e.g., multi-tens- & multi-hundred-gigabit rates),
the spatial distance would intuitively be much larger, which
further reduces the locality. As shown in §2, this lack of
spatial locality can dramatically degrade performance, up to
factor of 3×. Fig. 8 shows the number of switches across dif-
ferent flows that an application should theoretically perform
when processing different batch sizes of packets. The number
of switches can be more than 5× larger when the packets are
unordered. Frequent switching could cause detrimental perfor-
mance events (e.g., context switches and/or cache evictions),
the number of which depends on the system’s microarchitec-
ture (e.g., cache hierarchy) and the application characteristics
(e.g., the type of processing and the size of the per-flow state).
Temporal distance. Fig. 7b demonstrates that temporal
distance between consecutive flow packets in a flow is
typically smaller than a few tens of microseconds, making it
possible to reduce the spatial distance by buffering packets
for a short time so that they can be reordered. The potential
for reordering of traffic destined/originated to/from two cloud
providers is described next.

3.2 Potential of Per-flow Ordering

We identified the top hundred IP addresses of the TCP connec-
tions, which appeared in independent flows of the TX trace.
From those, we select those of two popular cloud providers,
referred to as Cloud1 and Cloud2

†. We calculated the prob-
ability of receiving packets of the same TCP flow within
different fixed-size time windows to determine whether by
waiting for a short amount of time we can reorder packets to
make per-flow batches of packets, i.e., regenerate high spa-
tial locality. Additionally, since user-space packet processing
frameworks (e.g., DPDK) use a fixed batch size for process-
ing packets (typically 32 for a DPDK-based application), we
assume that up to 32 packets per flow can be buffered‡. Fig. 9
shows the distribution of batch sizes for different buffering
times. These results consider all flow sizes, including single-
packet and mice flows which dramatically reduces the size

†Table 1 (in Appendix A) shows the statistics of these flows.
‡In some cases it might be possible to buffer up to ~300 packets, see

Fig. 23 (in Appendix A).

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 813

 0

 2

 4

 6

 8

32 64 128 256 512

S
iz

e
of

 p
er

-f
lo

w
 O

rd
er

ed
 B

at
ch

es

Buffering Time (µs)

Cloud #1 - TX
Cloud #1 - RX

Cloud #2 - TX
Cloud #2 - RX

Figure 9: Impact of increasing the waiting time on the proba-
bility of receiving packets in the same TCP flow (i.e., packets
going to the same end-host, the same core, and the same
application).

of the per-flow batches. Clearly, increased buffering time is
positively correlated with receiving more packets in the same
flow. However, the statistical properties of traffic (e.g., a cloud
service) should be taken into account when ordering packets.
For instance, it is possible to make per-flow batches of size
6, even in 32-µs time frames, for 25% of the incoming traffic
from Cloud1; whereas 25% of the outgoing traffic toward
Cloud2 could only be made into per-flow batches of size 4.
Summary. This section showed that most of the flows
in a campus trace could benefit to some extent from
ordering, as it increases locality, i.e., decreases both spatial
and temporal distances. However, the improvements depend
on the traffic characteristics and type of service. Ordering of
larger flows can potentially lead to much bigger improvements
(see the tails of the box plots in Fig. 9). Therefore, a cloud
provider/operator might only apply reordering to specific
services and/or tune the waiting time based on the Service
Level Objective (SLO) and the flow rate.

4 The Reframer Design
As we have shown in Section 2, receiving unordered packets
leads to high cache misses and more CPU cycles per packet,
which increases the cost of packet processing in networking
devices. This section presents our proposal to achieve in-
creased end-to-end data locality (both temporal and spatial)
of packets in each flow. Our solution maximizes locality
and is compatible with today’s trends in Internet congestion
control paradigms that pace packets. We leverage the idea
of briefly buffering, delaying, and reordering the (possibly
paced) incoming packets to increase spatial locality for net-
work traffic. As a result, Reframer pays the imposed price
of receiving paced packets only one time at the beginning
of a NFs and applications chain instead of allowing every
single NF pays that for itself. Reframer is developed as a
software solution that uses CPU cycles to classify flows and
create batches with higher locality. Following the trend of
Network Functions Virtualization (NFV), advantages of soft-
ware network functions like Reframer include more flexibility,
faster development cycles, and nearly no resource limitation

(e.g., number of per-flow queues) in comparison to hardware
alternatives. On the other hand, similar to many networking
software systems, the main design challenge is efficiency in
terms of both time and space complexity: one needs to strike
a delicate balance between the complexity of the reordering
procedure, which consumes CPU cycles, and the gains at the
application/NFs, which saves CPU cycles; Hence, it is crucial
for Reframer to employ an optimized data structure that takes
a short time and space for reordering packets regardless of
incoming packets rate and the number of concurrent flows.
With Reframer, the incoming packets are efficiently buffered
and reordered and then delivered to their destinations. Fig.10
shows the operation of Reframer when a stream of packets
belonging to three flows (i.e., green, blue, and brown) arrive
at the Reframer.
Flow classification. Reframer maintains two main data struc-
tures to reorder packets: a flow classification table and a flush
list. For each flow, the flow table stores the timestamp (T S)
when the first packet of that flow has been added to the batch
of that flow. It also stores a pointer to the list of the buffered
packets for that flow. The flush list is a double-linked list
that stores flow identifiers sorted by timestamp described in
the flow table. Reframer updates all these data structures in
constant time for a variety of operations: buffering of a packet
in the flow table (when a flow entry already exists), adding/
removing flow identifiers to/from the flush list, finding the
oldest flow identifier, and emitting a batch of packets. Only
insertion of new flows in the flow table is not performed in
constant time because of the cuckoo-hash table. Additionally,
Reframer stores only a few bytes of metadata per flow that
allows CPU cores to work at the speed of L1 and L2 caches.

In case the number of packets in the flush list meets a
configurable limitation (maximum burst size), Reframer
passes the batch to the scheduler.
Buffering Time. The flush list can buffer flows for a maxi-
mum amount of time, which we call the buffering time (Tbuff).
The optimal buffering time mostly depends on two param-
eters: (i) flows’ average throughput and (ii) the end-to-end
latency between a Reframer instance and the destination. The
former parameter affects the possibility of receiving multiple
packets of the same flow in a short time window. For instance,
the inter-arrival time of 1000 B packets is 8 µs at 1 Gbps and
Reframer can rebuild a per-flow batch with up to 8 packets
by buffering packets for 64 µs. The latter parameter sets the
upper bound for the buffering time., i.e., a higher end-to-end
latency provides more flexibility to wait for packets. It is
possible to adjust buffering time by automatically calculating
both of these parameters; However, in the current version of
Reframer, it should be configured manually by an operator.

Reframer collects additional information to track its ef-
ficiency, i.e., (i) it measures the amount of time that flows
were being delayed without actually receiving more packets,
and (ii) it records the average amount of packets per batches.
These statistics could potentially enable Reframer to fine-tune

814 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 1 2 3 4 5 6 7

Input Stream

1. Flow Classification

2. Scheduler

3. Protocol Compressor

Output Stream

flow
table

1

2

0

flush list

timestamps (TS):

TS

GREEN timer expires
BLUE stores 4 pkts
BROWN is still not ready

Figure 10: Reframer consists of 3 components: (i) a classifier
arranges input packets to a flow table, (ii) a scheduler flushes
flows from the table upon a timeout or burst-size, (iii) a com-
pression module coalesces packets to eliminate redundancy.

the buffering time by finding the sweet spot between these
two statistics for each application.
Priority. When either the flow classifier informs the sched-
uler of a full-size batch that is ready to be forwarded or the
flush list contains flows reaching the buffering time, the sched-
uler computes an ordering of the batches based on some con-
figurable priorities.

The oldest batches in the flow table are extracted from the
head of the flush list. The scheduler resets the per-flow data
entries upon emission of the corresponding batches.

In the example shown in Fig. 10, we assume the maximum
batch size is 4 packets and the maximum buffer time is equal
to 6 time units. At time t = 7, Reframer receives the fourth
packet of the blue flow and at the same time the buffering time
of the green flow expires since the first packet was received
at time 0. Both batches are handled by the scheduler for
transmission. Reframer’s scheduler supports a variety of
priority models for ordering batches ready to be sent:
Shortest flow first prioritizes mice over elephant flows.
Oldest flow first prioritizes older over newer flows with
respect to the timestamp of the first packet; and
Oldest flow in the queue first prioritizes older over newer
flows with respect to their waiting time in the queue.
We envision a tailor-made priority model based upon the
network operator’s SLOs.
Compressor & Output. Before leaving the Reframer, each
batch of packets of the same flow passes through a per-
protocol optimizer, e.g., multiple TCP ACKs are coalesced if
all packets are in order between ACKs. In the future, we will
also look at payload coalescing if the MTU allows it.

Reframer supports an integrated “bypass” mechanism.
Thus, Reframer allows an operator to define class(es) of traffic
that should not be reordered by Reframer based on any given
field of the packet (e.g., IP DSCP field). We implemented
the obvious case of TCP SYN, as a TCP SYN will never be
followed by other packets; therefore, a SYN is never delayed.
Additionally, in §5.3 we will show that bypassing mice flows
may increase the benefit of Reframer because the possibility
of receiving multiple packets of the same mice flow in a pe-
riod of Tbuff is low and it is not worth to delay such packets.
However, in this work, we have not implemented a heavy
hitter detection module, which is left for future optimization
and it is not discussed here.
Reframer Implementation. We use FastClick [24] to build
a Reframer prototype, which enables many placement scenar-
ios at high speed as will be shown in §5. The classification
and flow-state management is handled by its MiddleClick [30]
extension, thus the code is only thousand lines long*.

5 Reframer Evaluation
This section assesses the feasibility and performance of
Reframer in increasing the temporal and spatial locality
of a stream of traffic by briefly buffering and reordering
packets. We evaluate performance at both per-packet and
per-flow granularity in two scenarios: (i) to improve the per-
packet processing throughput of an NF service chain and (ii)
to reduce the Flow Completion Time (FCT) of TCP traffic
streams served by an HTTP web server. Our results show
that the NF chain throughput can be increased by ~84% and
the HTTP flow completion times be decreased by 100s of
milliseconds by simply delaying packets by few 10s or 100s
of microseconds. Specifically, this section answers the follow-
ing key questions about the opportunities and challenges in
reordering packets: (i) Can Reframer increase the packet
processing throughput of an NF chain by increasing the
traffic locality of a real-world traffic trace (§5.1)? (ii) How
do the Reframer benefits vary depending on where it is de-
ployed (separate or same server as the application, and
then on a CPU core or a SmartNIC (§5.2)? (iii) How can
Reframer handle latency-sensitive traffic (§5.3)? (iv) Can
Reframer reduce the flow completion time of an HTTP web
server (§5.4)?
Testbed. We use the testbed presented in §2.1, running an
NF service chain of the NAT and the Firewall presented in
§2.2 augmented with a router and a flow statistic NF. First,
we place Reframer between the traffic source and the DUT,
running on a dedicated Intel Xeon E5-2667 CPU clocked at
2.3 GHz and 128 GB of RAM at 2133 MHz. This machine
has two Mellanox ConnectX-6 NICs. While this introduces
the cost of a supplementary machine, it gives us an understand-
ing of the maximum performance achievable when processing
the analysed traffic traces.

*The source code is available at: https://github.com/hamidgh09
/Reframer

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 815

https://github.com/hamidgh09/Reframer
https://github.com/hamidgh09/Reframer

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 4 8 12 16 20 24 28 32 36
 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2
 1.4
 1.6
 1.8
 2
 2.2
 2.4
 2.6

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

T
o

ta
l N

u
m

b
e

r o
f fl

o
w

s
 (m

illio
n

s
)

Number of parallel trace segments

Throughput (left)
Number of Mflows (right)

Figure 11: Traces characteristics - the X-axis is the number
of multiples of our campus trace played in parallel

Workloads. We use two different types of workloads in our
experiments: (i) per-packet experiments on the NF chain and
(ii) per-flow experiments with the HTTP web server. The per-
packet experiments are based on our campus traffic trace
described in §3 with millions of flows in total, a throughput of
~2.2 Gbps, and an average packet size of ~1 KB. To evaluate
Reframer with a higher traffic throughput, we split the traffic
trace into 32 consecutive windows, each of 20 seconds, and
we replay them in parallel from our traffic generator. When
splitting the trace, we rewrite the flow identifiers so that any
two windows do not have any flow in common (which would
otherwise increase the traffic locality of the original trace).
Figure 11 shows the number of flows and throughput when
running a number of parallel trace segments. For the per-
flow experiment with the HTTP server, we generate HTTP
requests of 1MB files from 4096 clients using WRK [31]
towards an NGINX web server.

5.1 Packet-Level Experiments (NF Chain)
In this experiment, we show that (i) Reframer is effective
in increasing the spatial traffic locality (i.e., higher SLF) of
our real-world traffic trace and, consequently, (ii) increasing
the throughput of an NF chain. Since the trace is replayed,
we focus on per-packet metrics (e.g., CPU instructions, la-
tency) and the throughput of the NF chain. The NF chain con-
sists of a Flow Statistic Tracker→Router→Firewall→NAT
chain, all implemented in FastClick [24] using state-of-the-
art NF elements and DPDK [32] for I/O. We install 10k
rules into the firewall and 200 different routes into the router
elements. We deploy the chain in a run-to-completion
model and we consider it as the Baseline in all packet-
level experiments. To measure the impact of Reframer,
we compare the NFs chain performance with and without
deploying a Reframer instance in front of the chain on an
external server. Note that the latency is end-to-end in all the
experiments which means it includes the time spent in the Re-
framer buffers. In this experiment, 8 CPU cores are assigned
to the NFs chain with 8 RX queues on the NIC (one queue per
core). The NIC uses RSS to map traffic among queues. We
evaluate alternative deployments with Reframer co-located
with the NF chain in §5.2.

(a)
 0

 200

 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Number of parallel trace segments

 2800
 3200
 3600
 4000
 4400
 4800
 5200
 5600
 6000
 6400
 6800
 7200
 7600
 8000
 8400

-47%

C
P

U
 c

y
c
le

s
 p

e
r

p
a

c
k
e
t

Baseline
With Reframer (Tbuff= 16 μs)
With Reframer (Tbuff= 64 μs)
With Reframer (Tbuff=128 μs)

(b)
 0
 4
 8

 12
 16
 20
 24
 28
 32
 36
 40
 44
 48
 52
 56
 60
 64
 68

 4 6 8 10 12 14 16 18 20 22 24 26 28 30

+84%

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Number of parallel trace segments

Baseline
With Reframer (Tbuff= 16 μs)
With Reframer (Tbuff= 64 μs)
With Reframer (Tbuff=128 μs)

(c)
 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

 4 6 8 10 12 14 16 18 20 22 24 26 28 30

-40%

L
a
te

n
c
y

 (
μ

s
)

Number of parallel trace segments

Baseline
With Reframer (Tbuff= 16 μs)
With Reframer (Tbuff= 64 μs)
With Reframer (Tbuff=128 μs)

Figure 12: Performance of Reframer versus a baseline NF
with increasing load when processing a real trace: (a) CPU
cycles per packet, (b) Throughput, and (c) Latency.

Figure 12 shows the effectiveness of Reframer in improving
the performance of the NF chain for different workloads (load
is expressed as the number of parallel trace segments). At all
loads, in Fig. 12(a), we see a substantial decrease in the num-
ber of CPU cycles when using Reframer. The reason is the
increase in spatial locality from an average of ~1.2, i.e., near
the minimum possible spatial locality, to an average of ~1.9,
~2.9, and ~3.3 at the output of the Reframer with 16 µs, 64 µs,
and 128 µs of buffering times respectively. Fig. 12(b) shows
that at high loads, throughput continues to scale well for
Tbuff = 64 µs and 128 µs, up to ~64 Gbps (a 84-100% improve-
ment) while the throughput peaks at ~48 Gbps for Tbuff =16 µs.
In contrast, the baseline throughput peaks at ~33.6 Gbps and
then falls - as the DUT cannot keep up. Fig. 12(c) shows that
at low loads, the end-to-end latency is roughly the baseline
latency plus Tbuff when using Reframer. However, we see the
Reframer benefit appears as the load increases to maximum
capacity of the NFs chain. We discuss and evaluate how to
reduce the additional latency introduced by Reframer in §5.3.

816 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 8

 16

 24

 32

 40

 48

 56

 64

 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

+53%

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Number of hardware RX queues

Baseline
With Reframer (Tbuff= 64 μs)
With Reframer (Tbuff=128 μs)

Figure 13: Reframer vs Baseline with various number of
hardware RX queues (up to the max. supported by the NIC).

 0

 10

 20

 30

 40

 50

 60

 70

1 2 4 8

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

Number of DUT cores

Baseline
With Reframer

(a) DUT throughput.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

Number of Reframer cores

Reframer Throughput

(b) Reframer capacity.

Figure 14: Maximum throughput of Reframer and DUT with
different number of cores.

High number of RX queues has small impact on the DUT
throughput. We repeated the above experiment with 30
parallel trace segments and various numbers of RX queues
on the DUT in a range of 8 to 500 (which is the maximum
possible number of RX queues on the DUT’s NIC). We pre-
serve the total number of descriptors around 8192 by setting
per queue descriptors to max(32,214−[logN]) where N is the
total number of RX queues. In this experiment we show that
by increasing the number of RX queues the average spatial
locality increases from ~1.2 to ~2.5 without Reframer. How-
ever, despite the improvement in the traffic locality, Figure
13 shows only a slight increase in the maximum throughput
of baseline. The main reason is, having hundreds of RX
queues leads to more empty polling in the DUT which is
costly and negatively affects the performance. It is worth
noting that, fetching incoming packets from RX queues is
hardware-specific and depends on the data structures that
NICs are using to process incoming packets; hence, opti-
mizing algorithms and data structures in future NICs may
lead to better results. However, discussing the future road
map of NICs is out of scope of this paper. On the other
hand, when Reframer is located between the traffic source and
DUT, increasing the number of DUT RX queues has a nega-
tive impact on the throughput because incoming packets are
already sorted and classifying flows in different hardware
queues does not increase packets’ locality. So we set 8 RX
queues (one per core) for DUT when Reframer exists in the
network. Finally, we see 53% more throughput with Reframer

(a)
 0

 300

 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

Buffering time (μs)

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 7000

-36%

C
P

U
 c

y
c
le

s
 p

e
r

p
a

c
k
e
t

Baseline
With Reframer

(b)
 0

 5

 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

Buffering time (μs)

30.0

32.5

35.0

37.5

40.0

42.5

45.0

47.5

50.0

52.5

55.0

+60%

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Baseline
With Reframer

Figure 15: Impacts of Reframer when collocated with the NF
chain: (a) Cycles per packet and (b) Throughput.

vs. using hundreds of RX queues for the baseline case.
Packets’ locality benefit persists with various number of
DUT cores. We also show that Reframer benefits do not de-
pend on the number of DUT cores. To do so, we measured
the maximum throughput of DUT by running the experiment
with various number of cores assigned to DUT. Reframer’s
buffering time is set to 128 µs in all cases. Figure 14a demon-
strates that the throughput increase rate is almost the same for
different number of cores.
Reframer scales almost linearly with the number of cores.
As we discussed in §4, Reframer benefits from an optimized
data structure to classify, order, and flush packets in a constant
time. Our stress test reveals that Reframer is able to handle up
to 28 Gbps with only one core. Here, we increase the offered
load gradually until we see ~1% packet drops in Reframer.
Figure 14b shows that Reframer’s capacity increases almost
linearly when increasing the the number of cores.

5.2 Same-Server Deployment
In the previous section, we showed that deploying Reframer
on a dedicated server increases spatial and temporal locality,
ultimately resulting in significant performance gains. In the
following experiments, we evaluate deploying Reframer on
the same server where an application is running. Using the
same NF chain (Baseline) as previously, we consider two
deployments: (i) chaining Reframer with the NF chain, i.e.,
the entire chain running to completion on the same CPU
cores (referred to as in-chain deployment), and (ii) deploying
Reframer on a SmartNIC.
In-chain deployment. We evaluate the performance of Re-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 817

(a)
 0

 10

 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

Buffering time (μs)

 100

 125

 150

 175

 200

 225

 250

 275

 300

 325

-46%-54%

L
a
te

n
c
y
 (

μ
s
)

Baseline
With Reframer

(b)
 0

 10

 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

Buffering time (μs)

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 1700

-26%

9
9
.9

th
 L

a
te

n
c
y
 (

μ
s
)

Baseline
With Reframer

Figure 16: Impacts of Reframer when collocated with the NF
chain: (a) Average latency and (b) 99.9th percentile latency.

framer for the in-chain deployment versus the baseline for dif-
ferent buffering times. Generally, increasing buffering time in
Reframer will lead to more packet locality, since it increases
the possibility of receiving more packets of the same flow;
Hence, we see a considerable increase in the DUT throughput
and reduction in the end-to-end latency. Fig. 15 shows that by
placing Reframer right before the service chain, the number
of cycles per packet decreases with increasing buffering time
while throughput increases by 60% when Reframer buffers
packets for 64 µs. To evaluate the impact of Reframer on the
packets end-to-end latency, we restrict the incoming packet
rate to ~30 Gbps which is less than the maximum capacity of
DUT in the baseline mode. In Fig. 16 we can see the average
latency is reduced by 46% with Tbuff =64 µs. Additionally,
Reframer improves the tail latency by ~26% even when it
is collocated with service chain on the same server. In this
experiment, latency benefits start to fade gradually from a
specific buffering time because the cost of delaying packets
surpasses the processing speed-up. The baseline numbers
are mostly the same for all x axis values because we have no
buffering in baseline mode. The fluctuation in baseline values
is inevitable because DUT cores are at a maximum load.
SmartNIC deployment. As a proof-of-concept deploy-
ment for offloading Reframer into a NIC to save CPU core
resources on the server, we deployed Reframer on two ARM
cores of a Mellanox Bluefield SmartNIC – equipped with
16×64-bit Armv8 A72 cores and two 100 Gbps ports while
the NFs chain works on a single CPU core. Fig. 17 shows im-
provements in throughput similar to the in-chain deployment.
We discovered that the performance using a single ARM core

(a)
 0

 250

 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

Buffering time (μs)

 3750

 4000

 4250

 4500

 4750

 5000

 5250

 5500

 5750

 6000

 6250

-35% -40%

C
P

U
 c

y
c
le

s
 p

e
r

p
a
c
k
e
t

Baseline
With Reframer

(b)
 0

 0.25

 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

Buffering time (μs)

3.00

3.25

3.50

3.75

4.00

4.25

4.50

4.75

5.00

5.25

+53% +64%

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Baseline
With Reframer

Figure 17: Impact of Reframer when offloaded into a Smart
NIC which precedes the NF chain: (a) Cycles per packet, (b)
Throughput. Latency is given in Appendix A.2

was limited by the current Mellanox drivers for the cards, a
constraint/limitation confirmed with Mellanox.
Flow-oblivious batching is highly suboptimal. We also
compare Reframer with a Batchy-like [14] implementation
written in FastClick. Batchy is a state-of-the-art packet
processing system that buffers packets in a flow-oblivious
manner at multiple locations in an NF chain, i.e., Batchy does
not create bursts of packets from the same flow but mix all
flows that must be processed by the same NF element. We
observe that Batchy improves the throughput of the chained
NFs by 4%, whereas Reframer improves throughput by 48%.
These results corroborate our analysis in section (§2), where
we showed how detrimental it is to process streams of packets
that are highly interleaved between different flows as opposed
to per-flow batches.

5.3 Latency-Sensitive Flows
In our previous experiments, Reframer delayed all types of
packets for a Tbuff interval, possibly increasing the FCT or
packet processing time of short flows. We argue that an op-
erator could explicitly tag which traffic classes should be
delayed to improve application throughput. To evaluate the
impact of delaying only large flows, we ran an experiment
similar to the one described in §5.1, but we explicitly flag only
large flows so that Reframer can batch them while bypass-
ing the unflagged packets and show the results for increasing
number of parallel trace segments in Fig. 18. Compared
to the case where all flows are delayed, the throughput of

818 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600
 650
 700

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

-23% -30%

L
a
te

n
c
y

 (
μ

s
)

Number of parallel trace segments

Baseline
With Reframer (bypass mode) - Small flows

 With Reframer (service mode) - Large flows

Figure 18: Reframer provides differentiated services by prior-
itizing small flows over large flows which are bypassed.

the NF chain slightly decreases (between 0% and 4% ac-
cording to the number of parallel trace segments), while the
latency of the packets belonging to the small flows align with
the best of the baseline (at low loads) or the latency of Re-
framer minus the buffering delay (at higher loads). Somewhat
surprisingly, Reframer achieves lower latencies than the base-
line for small flows across all traffic loads by simply delaying
and reordering only large flows. We leave the detection of
heavy-hitters, for instance detecting which flows could have
generated multiple larger bursts, as future work.

5.4 Flow-Level Experiments (HTTP Server)

In this experiment, we evaluate Reframer to assess its impact
on a web server application using TCP connections to dispatch
files of 1MB to a set of 2048 clients continuously fetching
files. By controlling the rate and number of clients’ requests,
we are also able to substantially increase the throughput of
the test and exploit the 100G NIC interfaces. To simulate
4096 independent clients with more realistic latencies, we
place a machine in-the-wire that delays packets in per-flow
queues by ~10 ms±~2 ms. Hence, each connection exhibits
slightly different delays, for an average ~20 ms delay. The
focus of this experiment is on flow-level metrics, with the
goal to check whether (i) Reframer improves the FCT of
the dispatched files and (ii) the buffering delays cause any
troubles to the underlying congestion control mechanism (i.e.,
TCP Cubic). We compare the baseline against Reframer.
We selected NGNIX 1.14 as the web server running on 16
cores of the DUT, while Reframer runs on a dedicated NF
machine using 6 cores. Reframer reorders packets in both
directions, aggregates TCP ACKs from the client to the server,
and eventually reorders out-of-order TCP packets. Fig. 19(a)
shows that Reframer increases the application throughput by
20%. The observed improvements are due to the increase in
spatial locality from 1.25 to 14. Fig. 19(b) shows that despite
introducing delays in the order of microseconds, Reframer
reduces FCT of TCP connections by fractions of a second
(from 3.4 s to 3.1 s). ACK coalescing accounts for ¼ of the
throughput improvements but does not affect the FCT.

(a)
 0

 10

 0 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

Buffering time (μs)

 56

 58

 60

 62

 64

 66

 68

 70

 72

+20%

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Baseline
With Reframer

(b)
 0

 50

 0 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

Buffering time (μs)

 2900

 3000

 3100

 3200

 3300

 3400

 3500

+11%

F
lo

w
 c

o
m

p
le

ti
o

n
 t

im
e
 (

m
s
)

Baseline
With Reframer

Figure 19: Impact of Reframer when reordering packets of
HTTP flows: (a) Throughput and (b) FCT.

6 Related Work

Batching. Previous efforts [14, 24, 33–35] have shown the
importance of processing entire batches of packets rather than
individual packets (not necessarily belonging to the same
flow) in order to amortize the costs of the interrupts in the NF
processing system (e.g., Batchy [14], SCC [35]). Our work
is orthogonal to these approaches because Reframer improves
the performance of a server application in a “transparent” way,
e.g., by reordering packets on the NIC or before being sent
to the application. Moreover, existing packet processors do
not increase the traffic locality at the per-flow level, which we
show to be critical to achieve high performance in §5.2.
Traffic coalescing. Receive Side Coalescing (RSC) [36] aka
LRO accelerates TCP processing by merging consecutive
packets of a TCP flow into a single frame. Unfortunately, as
shown in §2.2, hardware-based LRO breaks as soon as packets
are interleaved. Similarly, the software implementation of
LRO in the Linux kernel, called Generic Receive Offload
(GRO) [37], suffers from the same problem.
Packet schedulers. We distinguish between hardware and
software packet schedulers. Hardware packet schedulers typi-
cally try to realize different approximations of universal sched-
ulers mapping packet ranks to the available queues on the
hardware (e.g., [38–43]). Another set of hardware packet
schedulers (e.g., [44–52]) focus on network-level optimiza-
tion in datacenters (e.g., minimize traffic congestion). None
of all these works have explicitly looked at the possibility of
batching and scheduling packets to increase traffic locality at

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 819

the per-flow level. For instance, pFabric [44] would nullify
any high traffic locality by purposely interleaving flows.

Stardust [53] is a hardware-based fabric architecture for
datacenter scale networks. Stardust classifies packets per
destination and chops them into bounded-size cells. This
technique enables Stardust to send chops of packets in a burst,
which potentially minimizes the cost of processing them at
the destination. However, based on our understanding, Star-
dust’s cells are flow-agnostic, whereas Reframer improves the
performance of NFs and applications by increasing the traffic
locality at the per-flow level. Moreover, Reframer purposely
delays packets, which is the pivotal aspect of our proposed
solution.

Software-based packet schedulers (e.g., [30, 54–61]) oper-
ate at the CPU level with the goal of dispatching the incoming
flows (or coflows) of traffic to the different cores on the ma-
chine running packet processing operations. Also in this case,
none of these approaches have explicitly looked at the im-
pact of traffic locality on the performance of the applications
receiving the packets.

To summarize, existing scheduling schemes do not take
into consideration the impact of per-flow traffic locality. In
contrast, Reframer schedules and prioritizes bursts of flows
using a variety of policies while exploiting opportunities for
packet coalescing and increased traffic locality.
TCP accelerations. AccelTCP [62] and Tonic [63] are dual-
stack solutions that offload or generalize stateful TCP oper-
ations to NICs in order to simplify the end host stack. Such
operations include connection setup and teardown as well as
connection splicing that relays packets of two connections
entirely within a NIC. To the best of our knowledge, none of
these works explicitly aim to increase per-flow traffic locality.

7 Conclusions

This work unveiled the importance of packet order-
ing on many applications, specifically NFs and TCP
applications. We showed that receiving traffic by bursts
of packets of the same flow could improve a server’s
performance by a factor of 3× as opposed to receiving
packets of interleaved flows. Analyzing realistic traffic, we
found that by slightly delaying traffic, even by only 64 µs,
one can potentially re-build bursts of packets. We then
described Reframer, a software NF, capable of re-building
bursts at 28 Gbps with a single core, and scalable to 100 Gbps
with a few cores. We showed Reframer is still highly bene-
ficial when deployed as part of an NF chain, while bringing
performance improvements to the server and its services. We
believe this paper will spur new research around the deli-
cate interaction between congestion control mechanisms and
cache-based optimizations. It also calls for further potential
improvements, e.g., decreasing the number of frames by
coalescing payload or realizing Reframer in hardware.

Acknowledgements

We would like to thank our shepherd Mahesh Balakrishnan
and the anonymous reviewers for their insightful comments
and suggestions on this paper. This work has received fund-
ing from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation pro-
gramme (grant agreement No. 770889). It was also funded
by the Swedish Foundation for Strategic Research (SSF). The
work was partially supported by KTH Digital Futures and the
Wallenberg AI, Autonomous Systems, and Software Program
(WASP) funded by the Knut and Alice Wallenberg Founda-
tion.

References

[1] Intel Barefoot Networks. Tofino-2 Second-generation
of World’s fastest P4-programmable Ethernet switch
ASICs, 2020. https://www.barefootnetworks.com/
products/brief-tofino-2/.

[2] NVIDIA Mellanox. ConnectX®-6 EN
IC 200GbE Ethernet Adapter IC, 2019.
https://www.mellanox.com/related-docs/
prod_silicon/PB_ConnectX-6_EN_IC.pdf.

[3] Zhiping Yao, Jasmeet Bagga, Hany Morsy. In-
troducing Backpack: Our second-generation
modular open switch, November 2016.
https://engineering.fb.com/data-center-
engineering/introducing-backpack-our-
second-generation-modular-open-switch/.

[4] Shelby Thomas, Rob McGuinness, Geoffrey M. Voelker,
and George Porter. Dark packets and the end of net-
work scaling. In Proceedings of the 2018 Symposium
on Architectures for Networking and Communications
Systems, ANCS ’18, page 1–14, New York, NY, USA,
2018. Association for Computing Machinery.

[5] Shelby Thomas, Geoffrey M. Voelker, and George
Porter. Cachecloud: Towards speed-of-light datacenter
communication. In 10th USENIX Workshop on Hot Top-
ics in Cloud Computing (HotCloud 18), Boston, MA,
July 2018. USENIX Association.

[6] NVIDIA Mellanox Technologies. RDMA and RoCE
for Ethernet Network Efficiency Performance, 2020.
https://www.mellanox.com/products/adapter-
ethernet-SW/RDMA-RoCE-Ethernet-Network-
Efficiency.

[7] Intel. Data Direct I/O Technology, 2017.
http://www.intel.co.jp/content/dam/www/
public/us/en/documents/white-papers/data-
direct-i-o-technology-overview-paper.pdf.

820 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.barefootnetworks.com/products/brief-tofino-2/
https://www.barefootnetworks.com/products/brief-tofino-2/
https://www.mellanox.com/related-docs/prod_silicon/PB_ConnectX-6_EN_IC.pdf
https://www.mellanox.com/related-docs/prod_silicon/PB_ConnectX-6_EN_IC.pdf
https://engineering.fb.com/data-center-engineering/introducing-backpack-our-second-generation-modular-open-switch/
https://engineering.fb.com/data-center-engineering/introducing-backpack-our-second-generation-modular-open-switch/
https://engineering.fb.com/data-center-engineering/introducing-backpack-our-second-generation-modular-open-switch/
https://www.mellanox.com/products/adapter-ethernet-SW/RDMA-RoCE-Ethernet-Network-Efficiency
https://www.mellanox.com/products/adapter-ethernet-SW/RDMA-RoCE-Ethernet-Network-Efficiency
https://www.mellanox.com/products/adapter-ethernet-SW/RDMA-RoCE-Ethernet-Network-Efficiency
http://www.intel.co.jp/content/dam/www/public/us/en/documents/white-papers/data-direct-i-o-technology-overview-paper.pdf
http://www.intel.co.jp/content/dam/www/public/us/en/documents/white-papers/data-direct-i-o-technology-overview-paper.pdf
http://www.intel.co.jp/content/dam/www/public/us/en/documents/white-papers/data-direct-i-o-technology-overview-paper.pdf

[8] Alireza Farshin, Amir Roozbeh, Gerald Q. Maguire
Jr., and Dejan Kostić. Reexamining Direct Cache Ac-
cess to Optimize I/O Intensive Applications for Multi-
hundred-gigabit Networks. In 2020 USENIX Annual
Technical Conference (USENIX ATC 20), pages 673–
689. USENIX Association, July 2020.

[9] Alireza Farshin, Amir Roozbeh, Gerald Q. Maguire Jr.,
and Dejan Kostić. Make the Most out of Last Level
Cache in Intel Processors. In Proceedings of the
Fourteenth EuroSys Conference 2019, EuroSys ’19,
pages 8:1–8:17, New York, NY, USA, 2019. ACM.
http://doi.acm.org/10.1145/3302424.3303977.

[10] Georgios P. Katsikas, Tom Barbette, Dejan Kostić, Re-
becca Steinert, and Gerald Q. Maguire Jr. Metron:
NFV Service Chains at the True Speed of the Under-
lying Hardware. In 15th USENIX Conference on Net-
worked Systems Design and Implementation, NSDI’18,
pages 171–186, Renton, WA, 2018. USENIX Asso-
ciation. https://www.usenix.org/system/files/
conference/nsdi18/nsdi18-katsikas.pdf.

[11] Alireza Farshin, Tom Barbette, Amir Roozbeh, Ger-
ald Q. Maguire Jr., and Dejan Kostić. PacketMill:
Toward per-core 100-Gbps Networking. In Proceed-
ings of the Twenty-Sixth International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’21, New York, NY, USA,
2021. Association for Computing Machinery.

[12] Yifan Yuan, Yipeng Wang, Ren Wang, and Jian Huang.
HALO: Accelerating Flow Classification for Scal-
able Packet Processing in NFV. In Proceedings of
the 46th International Symposium on Computer Archi-
tecture, ISCA ’19, pages 601–614, New York, NY,
USA, 2019. ACM. http://doi.acm.org/10.1145/
3307650.3322272.

[13] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn,
Soheil Hassas Yeganeh, and Van Jacobson. Bbr:
Congestion-based congestion control. ACM Queue,
14, September-October:20 – 53, 2016.

[14] Tamás Lévai, Felicián Németh, Barath Raghavan, and
Gabor Retvari. Batchy: Batch-scheduling Data
Flow Graphs with Service-level Objectives. In
17th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 20), pages 633–649,
Santa Clara, CA, February 2020. USENIX Asso-
ciation. https://www.usenix.org/conference/
nsdi20/presentation/levai.

[15] iPerf - The ultimate speed test tool for TCP, UDP and
SCTP. https://iperf.fr/.

[16] Open vSwitch. An Open Virtual Switch. http://
openvswitch.org.

[17] VMware. NSX-T Data Center Documentation,
2020. https://docs.vmware.com/en/VMware-NSX-
T-Data-Center/index.html.

[18] OpenStack. Open Source Cloud Computing Software,
2020. https://www.openstack.org/.

[19] Red Hat. OpenShift - The Kubernetes platform for big
ideas, 2020. https://www.openshift.com/.

[20] The Linux Foundation. Kubernetes, 2020. https:
//kubernetes.io/.

[21] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan J.
Jackson, Andy Zhou, Jarno Rajahalme, Jesse Gross,
Alex Wang, Jonathan Stringer, Pravin Shelar, Keith
Amidon, and Martín Casado. The Design and Im-
plementation of Open vSwitch. In Proceedings
of the 12th USENIX Conference on Networked Sys-
tems Design and Implementation, NSDI’15, pages
117–130, Berkeley, CA, USA, 2015. USENIX Asso-
ciation. https://www.usenix.org/system/files/
conference/nsdi15/nsdi15-paper-pfaff.pdf.

[22] V. Srinivasan, S. Suri, and G. Varghese. Packet Clas-
sification Using Tuple Space Search. In Proceedings
of the Conference on Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communica-
tion, SIGCOMM ’99, page 135–146, New York, NY,
USA, 1999. Association for Computing Machinery.
https://doi.org/10.1145/316188.316216.

[23] Andrew Theurer, Red Hat. Testing the Performance
Impact of the Exact Match Cache. In Open vSwitch
2018 Fall Conference, pages 1–17, San Jose, CA, USA,
December 2018. https://www.openvswitch.org/
support/ovscon2018/5/1330-theurer.pdf.

[24] Tom Barbette, Cyril Soldani, and Laurent Mathy.
Fast userspace packet processing. In Proceedings
of the Eleventh ACM/IEEE Symposium on Architec-
tures for Networking and Communications Systems,
ANCS ’15, pages 5–16, Washington, DC, USA, May
2015. IEEE Computer Society. http://dl.acm.org/
citation.cfm?id=2772722.2772727.

[25] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn,
Soheil Hassas Yeganeh, and Van Jacobson. BBR:
congestion-based congestion control. ACM Queue,
14(5):20–53, 2016. http://doi.acm.org/10.1145/
3012426.3022184.

[26] Radhika Mittal, Vinh The Lam, Nandita Dukkipati,
Emily Blem, Hassan Wassel, Monia Ghobadi, Amin
Vahdat, Yaogong Wang, David Wetherall, and David
Zats. Timely: Rtt-based congestion control for the
datacenter. SIGCOMM Comput. Commun. Rev.,

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 821

http://doi.acm.org/10.1145/3302424.3303977
https://www.usenix.org/system/files/conference/nsdi18/nsdi18-katsikas.pdf
https://www.usenix.org/system/files/conference/nsdi18/nsdi18-katsikas.pdf
http://doi.acm.org/10.1145/3307650.3322272
http://doi.acm.org/10.1145/3307650.3322272
https://www.usenix.org/conference/nsdi20/presentation/levai
https://www.usenix.org/conference/nsdi20/presentation/levai
https://iperf.fr/
http://openvswitch.org
http://openvswitch.org
https://docs.vmware.com/en/VMware-NSX-T-Data-Center/index.html
https://docs.vmware.com/en/VMware-NSX-T-Data-Center/index.html
https://www.openstack.org/
https://www.openshift.com/
https://kubernetes.io/
https://kubernetes.io/
https://www.usenix.org/system/files/conference/nsdi15/nsdi15-paper-pfaff.pdf
https://www.usenix.org/system/files/conference/nsdi15/nsdi15-paper-pfaff.pdf
https://doi.org/10.1145/316188.316216
https://www.openvswitch.org/support/ovscon2018/5/1330-theurer.pdf
https://www.openvswitch.org/support/ovscon2018/5/1330-theurer.pdf
http://dl.acm.org/citation.cfm?id=2772722.2772727
http://dl.acm.org/citation.cfm?id=2772722.2772727
http://doi.acm.org/10.1145/3012426.3022184
http://doi.acm.org/10.1145/3012426.3022184

45(4):537–550, August 2015. https://doi.org/
10.1145/2829988.2787510.

[27] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Bal-
aji Prabhakar, Amin Vahdat, and Masato Yasuda. Less
is more: Trading a little bandwidth for ultra-low la-
tency in the data center. In Proceedings of the 9th
USENIX Conference on Networked Systems Design
and Implementation, NSDI’12, pages 19–19, Berke-
ley, CA, USA, 2012. USENIX Association. http:
//dl.acm.org/citation.cfm?id=2228298.2228324.

[28] Ahmed Saeed, Nandita Dukkipati, Vytautas Valancius,
Vinh The Lam, Carlo Contavalli, and Amin Vahdat.
Carousel: Scalable traffic shaping at end hosts. In
Proceedings of the Conference of the ACM Special In-
terest Group on Data Communication, SIGCOMM ’17,
pages 404–417, New York, NY, USA, 2017. ACM.
http://doi.acm.org/10.1145/3098822.3098852.

[29] Allen B. Downey. TCP Self-Clocking and Band-
width Sharing. Comput. Netw., 51(13):3844–3863,
September 2007. https://doi.org/10.1016/
j.comnet.2007.04.005.

[30] Tom Barbette, Cyril Soldani, Romain Gaillard, and Lau-
rent Mathy. Building a chain of high-speed VNFs
in no time. In 2018 IEEE 19th International Con-
ference on High Performance Switching and Routing
(HPSR), Bucharest, Romania, June 2018. IEEE. https:
//doi.org/10.1109/HPSR.2018.8850742.

[31] Will Glozer. wrk - a HTTP benchmarking tool. https:
//github.com/wg/wrk.

[32] Linux Foundation. Data Plane Development Kit
(DPDK), 2020. http://www.dpdk.org.

[33] Luigi Rizzo. netmap: A novel framework for fast
packet i/o. In Proceedings of the USENIX An-
nual Technical Conference (ATC), 2012. http://
info.iet.unipi.it/~luigi/netmap/.

[34] Joongi Kim, Seonggu Huh, Keon Jang, KyoungSoo
Park, and Sue Moon. The power of batching in the
Click modular router. In Proceedings of the ACM Asia-
Pacific Workshop on Systems (APSYS), 2012. http:
//doi.acm.org/10.1145/2349896.2349910.

[35] Georgios P. Katsikas, Gerald Q. Maguire Jr., and
Dejan Kostić. Profiling and accelerating commodity
NFV service chains with SCC. Journal of Systems
and Software, 127C:12–27, February 2017. https:
//doi.org/10.1016/j.jss.2017.01.005.

[36] Srihari Makineni, Ravi Iyer, Partha Sarangam, Donald
Newell, Li Zhao, Ramesh Illikkal, and Jaideep Moses.

Receive Side Coalescing for Accelerating TCP/IP Pro-
cessing. In Proceedings of the 13th International Con-
ference on High Performance Computing, HiPC’06,
pages 289–300, Berlin, Heidelberg, 2006. Springer-
Verlag. http://dx.doi.org/10.1007/11945918_31.

[37] Jonathan Corbet. Generic receive offload, 2009. https:
//lwn.net/Articles/358910/.

[38] Anirudh Sivaraman, Suvinay Subramanian, Mohammad
Alizadeh, Sharad Chole, Shang-Tse Chuang, Anurag
Agrawal, Hari Balakrishnan, Tom Edsall, Sachin Katti,
and Nick McKeown. Programmable Packet Scheduling
at Line Rate. In Proceedings of the 2016 Conference
on ACM SIGCOMM 2016 Conference, SIGCOMM ’16,
pages 44–57, New York, NY, USA, 2016. ACM. http:
//doi.acm.org/10.1145/2934872.2934899.

[39] Radhika Mittal, Rachit Agarwal, Sylvia Ratnasamy,
and Scott Shenker. Universal Packet Scheduling. In
Proceedings of the 13th USENIX Conference on Net-
worked Systems Design and Implementation, NSDI’16,
pages 501–521, Berkeley, CA, USA, 2016. USENIX
Association. http://dl.acm.org/citation.cfm?id=
2930611.2930644.

[40] Vishal Shrivastav. Fast, scalable, and programmable
packet scheduler in hardware. In Proceedings of the
ACM Special Interest Group on Data Communication,
SIGCOMM ’19, page 367–379, New York, NY, USA,
2019. Association for Computing Machinery. https:
//doi.org/10.1145/3341302.3342090.

[41] Albert Gran Alcoz, Alexander Dietmüller, and Lau-
rent Vanbever. SP-PIFO: Approximating Push-
In First-Out Behaviors using Strict-Priority Queues.
In 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 20), pages 59–
76, Santa Clara, CA, February 2020. USENIX As-
sociation. https://www.usenix.org/conference/
nsdi20/presentation/alcoz.

[42] Naveen Kr. Sharma, Chenxingyu Zhao, Ming Liu,
Pravein G Kannan, Changhoon Kim, Arvind Krish-
namurthy, and Anirudh Sivaraman. Programmable
Calendar Queues for High-speed Packet Scheduling.
In 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 20), pages 685–
699, Santa Clara, CA, February 2020. USENIX As-
sociation. https://www.usenix.org/conference/
nsdi20/presentation/sharma.

[43] Brent Stephens, Aditya Akella, and Michael Swift.
Loom: Flexible and Efficient NIC Packet Schedul-
ing. In 16th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 19), pages

822 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://doi.org/10.1145/2829988.2787510
https://doi.org/10.1145/2829988.2787510
http://dl.acm.org/citation.cfm?id=2228298.2228324
http://dl.acm.org/citation.cfm?id=2228298.2228324
http://doi.acm.org/10.1145/3098822.3098852
https://doi.org/10.1016/j.comnet.2007.04.005
https://doi.org/10.1016/j.comnet.2007.04.005
https://doi.org/10.1109/HPSR.2018.8850742
https://doi.org/10.1109/HPSR.2018.8850742
https://github.com/wg/wrk
https://github.com/wg/wrk
http://www.dpdk.org
http://info.iet.unipi.it/~luigi/netmap/
http://info.iet.unipi.it/~luigi/netmap/
http://doi.acm.org/10.1145/2349896.2349910
http://doi.acm.org/10.1145/2349896.2349910
https://doi.org/10.1016/j.jss.2017.01.005
https://doi.org/10.1016/j.jss.2017.01.005
http://dx.doi.org/10.1007/11945918_31
https://lwn.net/Articles/358910/
https://lwn.net/Articles/358910/
http://doi.acm.org/10.1145/2934872.2934899
http://doi.acm.org/10.1145/2934872.2934899
http://dl.acm.org/citation.cfm?id=2930611.2930644
http://dl.acm.org/citation.cfm?id=2930611.2930644
https://doi.org/10.1145/3341302.3342090
https://doi.org/10.1145/3341302.3342090
https://www.usenix.org/conference/nsdi20/presentation/alcoz
https://www.usenix.org/conference/nsdi20/presentation/alcoz
https://www.usenix.org/conference/nsdi20/presentation/sharma
https://www.usenix.org/conference/nsdi20/presentation/sharma

33–46, Boston, MA, February 2019. USENIX As-
sociation. https://www.usenix.org/conference/
nsdi19/presentation/stephens.

[44] Mohammad Alizadeh, Shuang Yang, Milad Sharif,
Sachin Katti, Nick McKeown, Balaji Prabhakar, and
Scott Shenker. PFabric: Minimal near-Optimal Datacen-
ter Transport. In Proceedings of the ACM SIGCOMM
2013 Conference on SIGCOMM, SIGCOMM ’13, page
435–446, New York, NY, USA, 2013. Association for
Computing Machinery. https://doi.org/10.1145/
2486001.2486031.

[45] Y. Lu, G. Chen, L. Luo, K. Tan, Y. Xiong, X. Wang, and
E. Chen. One more queue is enough: Minimizing flow
completion time with explicit priority notification. In
IEEE INFOCOM 2017 - IEEE Conference on Computer
Communications, pages 1–9, 2017. https://doi.org/
10.1109/INFOCOM.2017.8056946.

[46] Christo Wilson, Hitesh Ballani, Thomas Karagiannis,
and Ant Rowtron. Better Never than Late: Meeting
Deadlines in Datacenter Networks. In Proceedings of
the ACM SIGCOMM 2011 Conference, SIGCOMM ’11,
page 50–61, New York, NY, USA, 2011. Association for
Computing Machinery. https://doi.org/10.1145/
2018436.2018443.

[47] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan,
Devavrat Shah, and Hans Fugal. Fastpass: A Cen-
tralized “Zero-Queue” Datacenter Network. In Pro-
ceedings of the 2014 ACM Conference on SIGCOMM,
SIGCOMM ’14, page 307–318, New York, NY, USA,
2014. Association for Computing Machinery. https:
//doi.org/10.1145/2619239.2626309.

[48] Peter X. Gao, Akshay Narayan, Gautam Kumar, Rachit
Agarwal, Sylvia Ratnasamy, and Scott Shenker. PHost:
Distributed near-Optimal Datacenter Transport over
Commodity Network Fabric. In Proceedings of the
11th ACM Conference on Emerging Networking Experi-
ments and Technologies, CoNEXT ’15, New York, NY,
USA, 2015. Association for Computing Machinery.
https://doi.org/10.1145/2716281.2836086.

[49] Behnam Montazeri, Yilong Li, Mohammad Alizadeh,
and John Ousterhout. Homa: A Receiver-Driven
Low-Latency Transport Protocol Using Network Pri-
orities. In Proceedings of the 2018 Conference of
the ACM Special Interest Group on Data Communi-
cation, SIGCOMM ’18, page 221–235, New York, NY,
USA, 2018. Association for Computing Machinery.
https://doi.org/10.1145/3230543.3230564.

[50] Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica. Ef-
ficient Coflow Scheduling with Varys. In Proceed-
ings of the 2014 ACM Conference on SIGCOMM, SIG-

COMM ’14, page 443–454, New York, NY, USA,
2014. Association for Computing Machinery. https:
//doi.org/10.1145/2619239.2626315.

[51] Saksham Agarwal, Shijin Rajakrishnan, Akshay
Narayan, Rachit Agarwal, David Shmoys, and Amin
Vahdat. Sincronia: Near-Optimal Network Design for
Coflows. In Proceedings of the 2018 Conference of
the ACM Special Interest Group on Data Communi-
cation, SIGCOMM ’18, page 16–29, New York, NY,
USA, 2018. Association for Computing Machinery.
https://doi.org/10.1145/3230543.3230569.

[52] Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian,
and Hao Wang. Information-agnostic flow scheduling
for commodity data centers. In Proceedings of the 12th
USENIX Conference on Networked Systems Design and
Implementation, NSDI’15, page 455–468, USA, 2015.
USENIX Association.

[53] Noa Zilberman, Gabi Bracha, and Golan Schzukin. Star-
dust: Divide and conquer in the data center network. In
16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19), pages 141–160, 2019.

[54] Ahmed Saeed, Yimeng Zhao, Nandita Dukkipati, Ellen
Zegura, Mostafa Ammar, Khaled Harras, and Amin
Vahdat. Eiffel: Efficient and Flexible Software Packet
Scheduling. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), pages
17–32, Boston, MA, February 2019. USENIX As-
sociation. https://www.usenix.org/conference/
nsdi19/presentation/saeed.

[55] Vojislav Ðukić, Sangeetha Abdu Jyothi, Bojan Kar-
las, Muhsen Owaida, Ce Zhang, and Ankit Singla. Is
advance knowledge of flow sizes a plausible assump-
tion? In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), pages
565–580, Boston, MA, February 2019. USENIX As-
sociation. https://www.usenix.org/conference/
nsdi19/presentation/dukic.

[56] Sameer G. Kulkarni, Wei Zhang, Jinho Hwang, Shri-
ram Rajagopalan, K. K. Ramakrishnan, Timothy Wood,
Mayutan Arumaithurai, and Xiaoming Fu. NFVnice:
Dynamic Backpressure and Scheduling for NFV Ser-
vice Chains. In Proceedings of the Conference of
the ACM Special Interest Group on Data Communi-
cation, SIGCOMM ’17, pages 71–84, New York, NY,
USA, 2017. ACM. http://doi.acm.org/10.1145/
3098822.3098828.

[57] Guikai Liu and Qing Li. Fair and Efficient Packet
Scheduling Using Resilient Quantum Round-Robin.
Journal of Networks, 9(2):269–276, 2014. https:
//doi.org/10.4304/jnw.9.2.269-276.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 823

https://www.usenix.org/conference/nsdi19/presentation/stephens
https://www.usenix.org/conference/nsdi19/presentation/stephens
https://doi.org/10.1145/2486001.2486031
https://doi.org/10.1145/2486001.2486031
https://doi.org/10.1109/INFOCOM.2017.8056946
https://doi.org/10.1109/INFOCOM.2017.8056946
https://doi.org/10.1145/2018436.2018443
https://doi.org/10.1145/2018436.2018443
https://doi.org/10.1145/2619239.2626309
https://doi.org/10.1145/2619239.2626309
https://doi.org/10.1145/2716281.2836086
https://doi.org/10.1145/3230543.3230564
https://doi.org/10.1145/2619239.2626315
https://doi.org/10.1145/2619239.2626315
https://doi.org/10.1145/3230543.3230569
https://www.usenix.org/conference/nsdi19/presentation/saeed
https://www.usenix.org/conference/nsdi19/presentation/saeed
https://www.usenix.org/conference/nsdi19/presentation/dukic
https://www.usenix.org/conference/nsdi19/presentation/dukic
http://doi.acm.org/10.1145/3098822.3098828
http://doi.acm.org/10.1145/3098822.3098828
https://doi.org/10.4304/jnw.9.2.269-276
https://doi.org/10.4304/jnw.9.2.269-276

[58] Anat Bremler-Barr, Yotam Harchol, and David Hay.
OpenBox: A Software-Defined Framework for De-
veloping, Deploying, and Managing Network Func-
tions. In Proceedings of the 2016 Conference on
ACM SIGCOMM 2016 Conference, SIGCOMM ’16,
pages 511–524, New York, NY, USA, 2016. ACM.
http://doi.acm.org/10.1145/2934872.2934875.

[59] Georgios P. Katsikas, Marcel Enguehard, Maciej Kuź-
niar, Gerald Q. Maguire Jr., and Dejan Kostić. SNF:
Synthesizing high performance NFV service chains.
PeerJ Computer Science, 2:e98, November 2016. http:
//dx.doi.org/10.7717/peerj-cs.98.

[60] Tom Barbette, Georgios P. Katsikas, Gerald Q. Maguire,
Jr., and Dejan Kostić. RSS++: load and state-aware
receive side scaling. In Proceedings of the 15th In-
ternational Conference on Emerging Networking Ex-
periments And Technologies, CoNEXT ’19, pages 318–
333, New York, NY, USA, 2019. ACM. http:
//doi.acm.org/10.1145/3359989.3365412.

[61] Georgios P. Katsikas, Tom Barbette, Dejan Kostić, Ger-
ald Q. Maguire Jr., and Rebecca Steinert. Metron:
High-Performance NFV Service Chaining Even in the
Presence of Blackboxes. ACM Trans. Comput. Syst.,
38(1–2), July 2021. https://doi.org/10.1145/
3465628.

[62] YoungGyoun Moon, SeungEon Lee, Muhammad Asim
Jamshed, and KyoungSoo Park. AccelTCP: Accel-
erating Network Applications with Stateful TCP Of-
floading. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pages
77–92, Santa Clara, CA, February 2020. USENIX As-
sociation. https://www.usenix.org/conference/
nsdi20/presentation/moon.

[63] Mina Tahmasbi Arashloo, Alexey Lavrov, Manya
Ghobadi, Jennifer Rexford, David Walker, and David
Wentzlaff. Enabling programmable transport protocols
in high-speed nics. In Ranjita Bhagwan and George
Porter, editors, 17th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2020, Santa
Clara, CA, USA, February 25-27, 2020, pages 93–109.
USENIX Association, 2020.

A Supplementary Material

This section provides some additional material for this paper.

A.1 Deploying a chain of NFs
In addition to experiments discussed in §2.4, we deployed a
chain of network functions on the DUT as a complementary
experiment. In this test, we connected a Router, a NAT, a

 0
 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Spatial locality factor

 100

 150

 200

 250

 300

 350

 400

 450

 500

>3.5x

L
a
te

n
c
y
 (

μ
s
)

Router → NAT → Firewall → FC Service Chain

(a) End-to-end latency in µs.

 0
 4
 8

 12
 16
 20
 24
 28
 32
 36
 40
 44

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

>2x

L
1
 m

is
s
e

s
 p

e
r

p
a
c
k
e
t

Spatial locality factor

Router → NAT → Firewall → FC Service Chain

(b) L1 misses per packet.

 0

 0.4

 0.8

 1.2

 1.6

 2

 2.4

 2.8

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

>4x

L
2
 m

is
s
e

s
 p

e
r

p
a
c
k
e
t

Spatial locality factor

Router → NAT → Firewall → FC Service Chain

(c) L2 misses per packet.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

>3x

L
L

C
 m

is
s
e

s
 p

e
r

p
a
c
k
e
t

Spatial locality factor

Router → NAT → Firewall → FC Service Chain

(d) LLC misses per packet.

Figure 20: Impact of packet order on the performance of a
Router�NAT�Firewall�FC chain of NFs.

firewall, and a Flow statistics counter (FC) in a row, as a chain
of NFs. The DUT uses 4 CPU cores to serve the packets and
it is implemented in a run-to-completion model to exploit the
parallelism on the processors. All the other configurations are
similar to §2.4.

Since the deployed chain is both CPU and memory inten-
sive, the scale of CPU cycles per packet and the end-to-end
latency are higher in compare to individual NAT and firewall
experiments in §2.4. However, the results in Figure 20 con-
firm that, regardless of the complexity of the implemented

824 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://doi.acm.org/10.1145/2934872.2934875
http://dx.doi.org/10.7717/peerj-cs.98
http://dx.doi.org/10.7717/peerj-cs.98
http://doi.acm.org/10.1145/3359989.3365412
http://doi.acm.org/10.1145/3359989.3365412
https://doi.org/10.1145/3465628
https://doi.org/10.1145/3465628
https://www.usenix.org/conference/nsdi20/presentation/moon
https://www.usenix.org/conference/nsdi20/presentation/moon

 0

 50

 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

Buffering time (μs)

 550

 575

 600

 625

 650

 675

 700

 725

 750

-13% -14%

L
a
te

n
c
y
 (

μ
s
)

Baseline
With Reframer

Figure 21: Latency of Reframer when offloaded into a Smart
NIC which precedes the NF chain.

 0

 1

 2

 3

 4

 5

 6

32 64 128 256 512

#P
ac

ke
ts

Buffering Time (µs)

TX RX

Figure 22: Impact of increasing the waiting time on the prob-
ability of coalescing Transmission Control Protocol (TCP)
ACKs. (The figure is intentionally scaled to enhance the
visibility of the first to third quartiles.)

NFs, ordering the packets has a significant impact on the
DUT’s performance.

Similar to §2.4, the fundamental reason of such enhance-
ment is efficient utilization of system caches. In this exper-
iment, since the DUT needs more data to process a packet,
the improvement in cache misses has been extended to L2
and LLC. Figure 20d shows a substantial improvement in
terms of number of LLC misses. Note that this improvement
is not happening only in LLC. We also can see the same trend
(with smaller improvement factors) in L1 (Figure 20b) and
L2 (Figure 20c) caches.

A.2 Running Reframer in a SmartNIC
Figure 21 shows the latency induced by the Reframer versus a
baseline NF, when deployed on two Arm cores of a Mellanox
Bluefield SmartNIC.

A.3 Analyzing the Trace
To perform the analysis, we have used PcapPlusPlus to create
a CSV file composed of useful fields. Then, we split the
62-GB file to per-flow CSV files via Spark. Finally, we use
Python data science libraries (e.g., Pandas and NumPy) to
calculate the probability of receiving different batch sizes

 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

 250

 275

 300

 325

32 64 128 256 512

S
iz

e
of

 p
er

-f
lo

w
 O

rd
er

ed
 B

at
ch

es

Buffering Time (µs)

Cloud #1 - TX
Cloud #1 - RX

Cloud #2 - TX
Cloud #2 - RX

Figure 23: Impact of increasing the waiting time on the prob-
ability of receiving packets with the same TCP flow.

within different time windows. Listing 1 shows the python
code used to process each flow.
ACK coalescing. Fig. 22 shows the potential improvement
from TCP ACK coalescing in the campus trace. We cal-
culated the distribution of the number of per-flow packets
with enabled TCP acknowledgment flag (ACK) within a time
frame.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 825

import pandas as pd
import numpy as np

Calculate the size of ordered batches for each flow
based on the input window size (ws)
def process(flow,ws):

Getting the timestamp of packets in a flow
ts = flow['ts'].to_numpy()

Initialize variables
batch_size=1
i=1
ordered_size=np.empty((0))
threshold=32

Check the size of flow
if ts.size == 1:

Add the batch_size to the array of ordered_size
ordered_size = np.append(ordered_size,batch_size)

else:
Sort the timestamps
sorted_ts = np.sort(ts)
Start from the first packet of a flow
base_ts = sorted_ts[0]

Continue while there is still more packets
while i < sorted_ts.size:

Increase the size as long as the next packet
arrives before the end of the window size
if sorted_ts[i] - base_ts < ws :

batch_size = batch_size + 1

If the size of the batch is larger than
the threshold or the next packet of the flow
comes after the end of the window size.
The batch size and the time counter,
we should stop the time counter. Stopping
the counter means that we start the counter
again with the next packet. Also, we update the
beginning of the window size with the timestamp
of the newly arrived packet.
if (batch_size >=threshold) \

or (sorted_ts[i] - base_ts >= ws):
Update the beginning of the window size
base_ts = sorted_ts[i]
Add the batch size to the array
ordered_size = np.append(ordered_size,batch_size)

Reset the batch size
if batch_size != 1:

batch_size = 1
i = i + 1
ordered_size = np.append(ordered_size,count)

return ordered_size

Listing 1: Python function used to calculate the size of the per-flow batches.

826 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 1: Flow statistics per Internet Protocol (IP) address of two popular cloud providers.

IP #Flows Flow Size (#Packets)
Min Mean Median Max

TX RX TX RX TX RX TX RX TX RX

Cloud-1

IP-1 19985 20039 1 1 47.45 54.08 16 16 87131 221594
IP-2 5384 5433 1 1 14.92 19.11 13 15 92 157
IP-3 4741 4748 1 1 42.55 51.58 15 15 43500 32540
IP-4 4567 4564 1 1 52.62 37.18 16 16 38515 19168
IP-5 4245 3805 1 1 187.12 1397.09 8 29 57392 217309
IP-6 4155 4000 1 1 12.83 13.63 12 10 831 2775
IP-7 3980 3958 1 1 13.48 9.63 11 8 663 394
IP-8 3759 3759 2 2 258.30 318.38 11 10 33403 33356
IP-9 3154 3159 1 1 28.86 21.89 14 10 310 279
IP-10 2996 2984 1 1 39.76 22.48 56 28 238 228

Cloud-2

IP-1 19776 19762 1 1 165.77 137.07 10 10 1615124 764636
IP-2 18120 18103 1 1 19.26 44.42 10 10 17929 42637
IP-3 15967 15945 1 1 39.33 68.71 11 11 68306 92210
IP-4 11168 11150 1 1 105.09 62.86 10 10 255327 121520
IP-5 9207 9235 1 1 110.75 119.08 21 20 9129 7665
IP-6 8828 8803 1 1 521.57 265.83 10 10 1353933 587496
IP-7 5897 5879 1 1 51.44 67.54 15 14 12448 13422
IP-8 5330 4993 1 1 42.93 77.05 12 11 7248 18137
IP-9 4499 4479 1 1 116.08 198.77 16 15 16625 37459
IP-10 3785 3775 1 1 57.22 75.43 17 16 4371 8287
IP-11 3369 3362 1 1 235.40 306.51 17 15 19614 22311
IP-12 3355 3279 1 1 1501.01 493.11 18 19 4905771 1409104
IP-13 3152 3144 1 1 23.20 33.87 11 10 867 2617
IP-14 3113 3078 1 1 28.69 47.82 15 14 2952 7922
IP-15 2864 2868 1 1 59.26 83.18 12 12 9143 22045

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 827

Buffer-based End-to-end Request Event Monitoring in the Cloud

Kaihui Gao⋆†, Chen Sun†, Shuai Wang⋆, Dan Li⋆,
Yu Zhou†, Hongqiang Harry Liu†, Lingjun Zhu†, Ming Zhang†

⋆Tsinghua University †Alibaba Group

Abstract
Request latency is a crucial concern for modern cloud
providers. Due to various causes in hosts and networks, re-
quests can suffer from request latency anomalies (RLAs),
which may violate the Service-Level Agreement for tenants.
However, existing performance monitoring tools have incom-
plete coverage and inconsistent semantics for monitoring re-
quests, resulting in the difficulty to accurately diagnose RLAs.

This paper presents BufScope, a high-coverage request
event monitoring system, which aims to capture most RLA-
related events with consistent request-level semantics in the
end-to-end datapath of request. BufScope models the data-
path of request as a buffer chain and defines RLA-related
events based on different properties of buffers, so as to end-
to-end monitor the root causes of RLA. To achieve consistent
semantics for captured events, BufScope designs a concise
request-level semantic injection mechanism to make events
captured in networks have the victim requests’ ID, and of-
floads the realization to SmartNICs for low overhead. We have
implemented BufScope on commodity SmartNICs and pro-
grammable switches. Evaluation results show that BufScope
can diagnose 95% RLAs with <0.07% network bandwidth
overhead and <1% application throughput decline.

1 Introduction

With the emergence of cloud-native architecture [1],
application-layer requests (e.g., RPC, HTTP, and RESTful
requests) become a fundamental component in the cloud [2].
The request latency is the total elapsed time across a request
end-to-end datapath, including the application, the end-host
network stack and the underlying network. Since request la-
tency directly affects the performance of many distributed
applications [3], it has become a crucial concern [4–6] for
cloud providers. Besides, request-level information is the tie
between the tenants and the cloud providers. For instance,
when a request (e.g., search, storage I/O) encounters a surge of
latency, the tenant will provide the operators with the request-
level descriptive information to diagnose the anomaly [7].

Request latency anomalies (RLAs), which cause long-tailed
request latency, are not rare in clouds. According to the data
of a block storage cluster with over 40,000 servers from a
prominent global cloud provider Alibaba, we observe that
across all the 440 million RPC requests in one hour, 0.01% of
them (44K) suffer from a latency of >100 ms, which violates
the Service-Level Agreement (SLA) of the storage service.
Cloud providers need to accurately diagnose RLAs to explain
SLA violations, otherwise revenue loss will be caused [8].

However, accurately diagnosing RLAs is challenging, be-
cause it requires high coverage for request-level abnormal
events (i.e., request events). Specifically, cloud providers
must be able to capture as many abnormal events that hap-
pen on the end-to-end datapath of requests as possible, e.g.,
data pause, congestion, drop, etc., which are direct triggers of
RLAs. Moreover, the captured events should be mapped to
request-level semantics (e.g., RPC ID), rather than the flow-
or packet-level. In practice, it is non-trivial to extract the
request-level semantics from flow- or packet-level data.

Unfortunately, existing performance or latency monitoring
tools are far from satisfying the preceding requirements for
diagnosing RLAs. Specifically, though distributed application
performance tracing tools [9–16] can provide any request-
level timing data, they cannot capture the request events be-
low the application layer; Network performance monitoring
tools [8, 17–25] can capture flow-level events that happen in
the network stack or the underlying networks, such as delayed
ACK, packet drop, and path change, but the captured events
have no request-level information, so the events captured in
applications and networks cannot be associated.

Since these existing monitoring tools have incomplete cov-
erage and inconsistent semantics, the cloud providers often
get into trouble when diagnosing RLAs. For instance, based
on the RLA information reported by the tracing tool, the ap-
plication owners or tenants often naturally blame server and
network team [8, 24]. However, due to the mismatch of moni-
toring semantics, these teams have to associate the events ob-
tained from their own monitoring tools with the RLA through
coarse-grained time-correlation methods [24], which is not

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 829

only inefficient, but also inaccurate (§2.1).
The fundamental reason why existing tools fail to achieve

the high coverage is that the traditional data plane in datacen-
ter networks is a black box [8]. The request events which hap-
pen in the data plane cannot be detected and parsed as flexibly
as those in the host software. Consequently, network monitor-
ing tools typically capture accessible and coarse-grained flow-
or packet-level events. This makes it difficult to end-to-end
monitor RLAs with consistent request-level semantics. Fortu-
nately, recent advances on the commodity programmable data
plane provides a new foundation to improve the situation.

This paper presents BufScope, a high-coverage request
event monitoring system. The main idea of BufScope is to
translate most RLAs to buffer-related abnormal events, moni-
tor all buffers in the request’s end-to-end datapath, and capture
all buffer-related abnormal events with consistent request-
level semantics. Specifically, BufScope achieves end-to-end
monitoring and consistent request-level semantics through
two core designs which keep low overhead in mind.
(i) Buffer event modeling. The main purpose of buffer is to
deal with the mismatch between upstream and downstream
processing rates. If upstream or downstream processing has
an anomaly, the buffer will reveal the corresponding abnormal
events, such as queue buildup, data pause, and packet out-of-
order [26]. Based on the operational experience in Alibaba,
we observe that most (>90%) RLAs reveal abnormal events in
buffers (§3.1). The remaining (<10%) RLAs that come from
NIC flapping, link corruption, bugs, etc., are very difficult
and inefficient to cover. For low overhead consideration, in
this work we only cover RLAs with buffer-related abnormal
events. Thus, BufScope models the end-to-end datapath of
request as a buffer chain (§3.2), including the application,
network stack, NIC and switch, and monitors RLA-related
abnormal events that happen in all the buffers.

However, these buffers may have different RLA-related ab-
normal events, and pre-defining all the events for all types of
buffers is challenging. For example, in lossy Ethernet, packets
may be dropped before entering the buffer, while in lossless
Ethernet, the upstream switch will pause packet forwarding to
avoid the packet drop in the downstream switch. In response,
BufScope uniformly classifies all buffers in both hosts and
networks according to three properties, including priority
awareness, order sensitivity, and enqueue feature. Based on
these properties, BufScope defines a complete buffer event li-
brary, including packet drops, congestion, pause, out-of-order
and priority contention (§3.3). Then, operators can monitor
the corresponding events in a buffer based on its properties.
(ii) Request-level semantic injection. The lack of request-
level semantics in the network is because the request header
may not exist in the packet payload; even if it exists, its lo-
cation in the payload is not fixed. This causes commodity
programmable switch to fail to extract the request-level in-
formation when generating abnormal events. In response,
BufScope designs a concise semantic injection mechanism,

which just inserts the offset of the first request header (if it is
in the payload) at the end of the packet header (§3.4). Then,
based on the location-specific information, programmable
switches can iteratively parse all request identifier in a packet.

A straightforward approach to injecting request-level se-
mantic is to implement the function in the end-host network
stack. However, the overhead of this strawman design is sig-
nificant for applications that adopt run-to-completion (RTC)
model (§5.3). RTC model packs the entire logic (including
application and network stack processing) in one single thread
to achieve ultra-low latency, which is quite common for large-
scale datacenter applications [7, 27]. To reduce the impact
of request-level semantic injection on the application perfor-
mance, we offload the operation to hardware.

We have integrated BufScope in an open-source RPC
system and Alibaba’s production storage application with
Broadcom PS225 SmartNICs and Barefoot Tofino switches.
Testbed-based evaluation shows that BufScope can diagnose
95% RLAs (64% for the combined solution of existing state-
of-the-art monitoring tools [8, 15, 21]) with <0.07% network
bandwidth overhead (>4% for the baseline) and <1% applica-
tion throughput decline (4.3% for the baseline).

2 Background and Motivation

In this section, we firstly use representative experiences of
Alibabato demonstrate the RLAs in production. Then, we ana-
lyze the limitations of existing monitoring tools to accurately
diagnose RLAs. Finally, we present this paper’s motivation.

2.1 RLAs in the Cloud

There are generally two types of performance anomalies for
one request: connectivity loss and RLA. The former means
the client loses connectivity to the remote server for seconds
to minutes, due to issues such as hardware failure, program
corruption, or network outage. The latter type of anomaly
means that, even though the request can be finally completed,
the latency for this request is larger than expected, which
compromises the SLA. We focus on the monitoring of RLA,
which is easy to happen but very difficult to mitigate. This
is because RLAs are usually caused by abnormal events in
a shorter time-scale with randomness, leaving minor finger-
prints for monitoring and locating. Potential root causes could
be polling hang and badly-tuned network stack parameters in
hosts, congestion and packet drop in networks [8, 17, 24], etc.

To understand the impact of RLA on application perfor-
mance, we have conducted experiments using the Alibaba’s
production block storage application, which adopts RPC
framework, user-level network stack and RTC model. One
front-end server constantly performs 4KB file read operations
from the storage back-end over RPC request. We simulate
RLAs by adding microsecond-level latency to the RPC pro-

830 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

46
29

18
5

0

20

40

60

0
100
200
300
400
500
600

Native Add 2μs Add 4μs Add 16μs Th
ro

ug
hp

ut
 (G

bp
s)

P9
99

 L
at

en
cy

 (μ
s)

P999 Latency Throughput

Figure 1: Impact of RLAs on application performance.

cessing logic, and measure its affection on the application
regarding to end-to-end tail latency and overall throughput.

As shown in Figure 1, a 2µs latency added to every single
RPC could be amplified to around 50µs increased end-to-
end tail latency, and jeopardize the overall throughput by
up to 36.9%, which are even worse under severe RLA. The
reason why RLAs could severely compromise the application
performance is that once the logic processes RPCs slower
than NIC bandwidth (50Gbps in this experiment), lots of
packets would jam the NIC buffers and be dropped, causing
the network stack to retransmit massive packets and slow
down, and leading to severe performance decline.

Such a performance decline would violate the SLA of cloud
service, which requires an explanation in practice. However,
cloud providers often face difficulties in the explanation, we
list two representative real cases to show this.
Case-1: Is the network congestion causing the RLA? A
tenant reported persistently low transmission rate between two
VMs. The tenant naturally blames the network, since network
congestion could slow down the sending rate. Then, network
operators first retrieved switch queue and drop statistics. Data
showed that the network utilization remained low and no
packets were lost during that period. They have to reproduce
the case using the VM’s trace. However, the real cause is the
limited TCP receive buffer in the host, which may be caused
by CPU polling hang. It is hard for the network operators to
claim their innocence unless they could detect the real cause
by end-to-end monitoring.
Case-2: Is the cause in the network or end-host? A tenant
reported an unexpected latency glitches (100s of ms) of a read
request. To diagnose the RLA, the storage application owners
first checked the request’s trace obtained by their tracing tool
and found that the interval between the request send and re-
ceive exceeded the expectation. Then, the application owners
passed the ticket to the server and network team. Operators
of the server team look up the second-level logs of kernel,
CPU etc., based on the timestamp in the ticket; Operators of
the network team query the flow-level monitoring system if
packet losses or network faults have occurred in the request’s
flow. Even if these queries have results, neither team has high
confidence to claim their innocence due to the mismatch of
monitoring granularity among these teams.

The above two cases indicate that cloud providers need a
confident and accurate end-to-end monitoring tool to improve
the efficiency of the explanation for SLA violations.

2.2 Limitations of Existing Monitoring Tools
From the two cases above, we can also see that the challenges
of RLA diagnosis stem from the variety of the locations of
root causes. Thus, accurate RLA diagnosis requires moni-
toring tools to have high coverage for the causes. However,
existing monitoring tools have two limitations to achieve it:

(i) Incomplete coverage. Existing tools monitor partial dat-
apath of requests, which either focus on application layer
tracing/logging [3, 9–11, 16, 28–30], transport layer monitor-
ing [17, 21, 24, 25, 31], network monitoring [8, 18, 19, 26, 32–
35], or partial combination [34, 36–38]. In addition, exist-
ing tools define a separate set of abnormal events based on
their monitoring goals. For example, Dapper [21] infers TCP
performance events (e.g., non-backlogged, congestion and de-
layed ACK) by analyzing packet statistics; Trumpet [23] lever-
ages triggers at end-hosts to monitor network-wide events
(e.g., burst, heavy flow and congestion); NetSeer [8] monitors
flow-level abnormal events (e.g., packet drop, queuing, detour-
ing and pause) in networks; performance profiling tools (e.g.,
Perf [39]) can analyze events (e.g., CPU cycles, page fault
and cache miss) that occur during program execution; tracing
tools [9–11,14,15] record timing data about requests and pro-
vide API to monitor application-specific annotations. Overall,
there is no tool that can capture all RLA-related events in the
end-to-end datapath of request so far, causing that operators
have no confidence to claim their innocence (e.g., Case-1).

(ii) Inconsistent semantics. Since these existing tools have
different focuses, cloud providers have to combine multiple
monitoring tools in production to cover the datapath of re-
quest as fully as possible. For example, tracing [9–11, 14, 15]
is used in the application layer to track the performance of
requests, and network monitoring tools [8, 18, 19] are used in
the underlying network to record flow-level abnormal events.
However, these monitoring tools have inconsistent semantics,
the abnormal events captured by them cannot be correlated,
leading to the failure of this combination (e.g., Case-2). We
obtain the production storage application and anonymized
request traces, and run them on our testbed for 6 hours (§5.1).
We use existing monitoring tools to capture abnormal events
during that period and try to diagnose the cause of detected
slow RPCs. Unfortunately, existing monitoring tools fail to
explain a large portion of slow RPCs. First, request-level
events and timing data collected by application tracing tool
are too coarse-grained and incomplete, and can only explain
28% RLAs. Then, based on the time-correlation methods,
flow-level events captured by network monitors can only infer
36% more RLAs, leaving 36% RLAs inexplicable.

2.3 Motivation
To accurately diagnose all RLAs, it is necessary to monitor
the entire life cycle of all individual requests. Thus, our goal
is to design a high-coverage request event monitoring sys-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 831

tem which can monitor RLA-related events with consistent
request-level semantic in the end-to-end datapath of request.

The fundamental limitation of existing performance moni-
toring tools to achieve our goal is that, they cannot uniformly
model the data plane in network hardware and the datapath
in end-host software. Unlike the software, traditional fixed-
function data plane in network only provides limited accessi-
bility for packets and black-box visibility [8].

With the development of commodity programmable hard-
ware, which has been widely deployed in modern cloud, we
see the opportunity of completely realizing our goal. We be-
lieve this choice is rational because of two unique advan-
tages of programmable hardware. First, with the help of pro-
grammable switches and NICs, fine-grained abnormal events
in networks can be easily detected, parsed and reported [8].
It makes monitoring the data plane in networks as flexi-
ble as monitoring the datapath in software. Second, Smart-
NICs show promising capability to offload CPU-consumption
tasks [40,41]. By leveraging them, we can achieve the consis-
tent request-level monitoring semantics with low overhead.

3 Design

This section first outlines the overview of BufScope, then
elaborates BufScope’s design to achieve high coverage with
low overhead. Finally, it shows how cloud providers can use
events captured by BufScope to diagnose and mitigate RLAs.

3.1 Overview
The crux to make operators accurately and confidently judge
where and how a request gets disturbed is to track the RLA-
related events that directly happen to the request’s traffic.
Insight. To understand the distribution of the RLA’s causes
and corresponding abnormal events, we have analyze almost
500 typical incident tickets of one-day’s RLAs from Alibaba’s
block storage service, which were troubleshooted by manual
debugging. We present the root causes and the locations ex-
posed anomaly in Figure 2. The root causes spread across the
datapath of request, such as polling hang in hosts, incast in
NICs, and burst in switches. We derive our insight that most
(>90%) RLAs expose anomalies in buffers. The remaining
(<10%) RLAs come from NIC flapping, network update, bugs,
etc., which requires hardware- or program-specific monitor-
ing, and is hard to cover using a general solution. Besides,
given that buffers are where the request’s traffic stays and
latency rises [26], BufScope chooses the buffer as the key
object to monitor the most RLA-related events.
Design goals. BufScope is a request event monitoring system,
which aims to achieve high coverage for RLAs’ root causes.
Specifically, the design of BufScope needs to achieve the fol-
lowing three requirements. First, BufScope should be able to
monitor the request’s end-to-end datapath for RLA-related
events. Second, all events captured by BufScope need to have

NIC buf NIC hw SW buf SW hw Stack buf code
Anomaly Locations ("SW" for Switch, "hw" for hardware)

Burst
Code bug

Disk full
Hardware failure

Incast
Network update
Out of memory

Polling hang
Priority contention

R
oo

t C
au

se
s

0.00

0.02

0.04

0.06

0.08

Figure 2: Heatmap for root causes and anomaly locations of
RLAs.

consistent request-level semantics to correlate the events hap-
pening in the hosts and networks. Finally, in order to reduce
the impact on the performance of the monitored application,
BufScope must be designed with low overhead.
Challenges. It is highly challenging to achieve the above
requirements:

• End-to-end monitoring: For generality, BufScope needs
to model a unified buffer chain for various communication
frameworks and underlying networks. However, buffers are
various and have different RLA-related events. Therefore,
BufScope needs to define a complete event library, which
contains all events that will occur in all types of buffers.

• Consistent request-level semantics: The uncertainty of
location of request header in packet makes it hard for the
commodity programmable switches to parse out the request-
level information when generating events. Thus, BufScope
needs to design a novel mechanism to inject request-level
semantics into the specific location of packets.

• Low overhead: The semantic injecting mechanism of the
strawman solution consumes valuable CPU resources for
the RTC application, and degrade the application perfor-
mance [10]. Thus, BufScope must be designed to reduce
the semantic injecting overhead as much as possible.

Architecture. We present BufScope’s architecture in Figure 3.
Following the buffer chain model (§3.2), BufScope’s agents
monitor buffers along the datapath of request, including ap-
plications, network stack, NICs and switches, and capture
the corresponding events according to the type of buffers
(§3.3). Besides, in order to record the victim request identi-
fier when generating events in networks, BufScope enables
request-level semantic injection in sender side, and offloads it
into SmartNICs to reduce overhead (§3.4). For efficient event
collection (§3.3), in the software and SmartNIC, the BufS-
cope agents execute event collection asynchronously with
respect to the monitored application; In the programmable
switch, after events are generated by the detection logics in
the ingress and egress pipeline, the egress agent hands the
events to the switch control plane for further processing, such
as deduplication, batching and reporting. Finally, events from
these components are associated in Event Collector based on
the request identifier, to diagnose RLAs (§3.5).

832 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Semantic
Injection

Agent

SmartNIC

Ingress
Agent

Egress
Agent

Semantic
Recovery

SmartNIC

Agent

Application

Network stack

Agent

Agent
Agent

Network stack

Applica:on

Agent

Event
Collector

Event preprocessing
Switch Control Plane

Switch Data Plane

Request
Packet

Buffer

BufScope’s functions

Event flow

Figure 3: The architecture of BufScope.

3.2 Buffer Chain Modeling

Buffer in both of hosts and networks is where the request’s
traffic stays and is the main source of abnormal request la-
tency rising [26], which is also proved by the production
data of Alibaba. Thus, our key design choice is ignoring the
complexity of programs, function calls and hardware faults,
and closely monitor all buffers in the end-to-end datapath of
requests instead, to cover the most RLA-related events.

The first step is to identify the buffers in the datapath of
highly diversified Layer-7 frameworks [2, 6, 42, 43]. Exist-
ing frameworks rely on different network stacks (such as
kernel-bypass network stack [44], and kernel-based network
stack [43]) and different threading models (such as run-to-
completion model and pipeline model). To maintain its gener-
ality, BufScope is challenged to model the datapath of various
Layer-7 frameworks as a uniform composition of buffers.

We address the challenge by analyzing programs of various
available Layer-7 frameworks, buffers, and their connections
across the end-to-end datapath of request. We observe that
one single request follows one unified chain of buffers across
its entire life cycle. Therefore, we construct a buffer chain
model as shown in the Buffer diagram of Figure 3.

There exist three-part buffers in the buffer chain, including
host buffers, NIC buffers, and switch buffers. 1⃝ Host buffers
are used to maintain messages from/to the application, as
well as packets that are formed by decomposing messages (or
packets that will be constructed into messages). Besides, some
applications also have buffers, such as MessageQueue [45].
2⃝ Sending side NIC buffer keeps packets delivered from
the transport layer, and regularly schedules packets out into
networks. Meanwhile, receiving side NIC buffer often stores
packets from the network, and wait for the end-host network
stack to pull packets or actively write packets into host mem-
ory. 3⃝ Network switch buffers keep packets for switching,
once the packets cannot be instantaneously forwarded, i.e., a
packet will be buffered or dropped in the egress queue of the
port that connects the chosen next-hop.

By using different I/O techniques (e.g., zero-copy), the ex-
act number of buffers a request will experience may differ
from this model. Essentially, this model provides a methodol-
ogy for monitoring the end-to-end datapath of request.

3.3 Event Definition & Generation

Event definition and generation will determine the effective-
ness and overhead of BufScope. BufScope designs them based
on the principles of high coverage and low overhead.
Buffer classification. The buffer chain includes diverse types
of buffers, which have different RLA-related abnormal events.
Taking the switch buffer as an example. For lossy Ethernet,
when the queuing length of a switch buffer exceeds a certain
threshold, subsequent arrival packets will be dropped instead
of entering the buffer, incurring a drop event. For lossless Eth-
ernet, when the buffer of a downstream switch is congested,
the upstream switch will pause packet forwarding until the
downstream switch buffer has space for new packets, causing
a pause event. Another example, order-sensitive buffers, such
as TCP receiving buffer, may encounter head-of-line blocking
(HOL), while order-insensitive buffers do not. BufScope is
challenged to thoroughly analyze all types of buffers, and
define the events for them respectively.

To address the challenge, we observe that though there exist
various types of buffers, they could be classified according to
three key properties, i.e., priority awareness, order sensitivity,
and enqueue feature. Priority awareness is a property for a
buffer with multiple queues. If strict priority is maintained
across different queues (i.e., priority-aware), packets in a low
priority queue will have to wait for the high priority queue to
drain. Otherwise, packet dequeuing follows the FIFO princi-
ple (i.e., priority-unaware). Order sensitivity refers to whether
a buffer maintains strong orders of arrived packets before pop-
ping them for subsequent processing. Enqueue features are
different for lossy and lossless buffers as mentioned above.
Event definition. According to the different type of the three
properties, we define five kinds of buffer events which may
cause RLAs, as shown in Table 1. We not only consider the
occurrence of events, but also capture the detailed causes.

• Priority contention. This type of event is triggered in
priority-aware buffer (i.e., multi-level priority queue) when
the lengths of higher-priority queues exceed a certain
threshold, blocking the packets in low-priority queues for
a long time. Inappropriate priority allocation may cause
RLAs [46]. Conversely, FIFO buffers always first forward
the packets that arrive earlier, and don’t have this event.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 833

Table 1: Buffer event definition. “•” means that the cause for this event happens right within this buffer, “←” means that the
cause happens before this buffer (in a preceding buffer or program), and “→” means that the cause happens after this buffer.

Property Type Event Triggering Condition Cause Location Event Information
Priority

awareness
priority-unaware - - - -

priority-aware priority contention
Queuing delay exceeds a threshold
& Lengths of higher-priority queues
exceed a threshold

•

- Request ID
- Egress queue
- Lengths of higher-priority queues
- Queuing delay

Order
sensitivity

order-sensitive out-of-order Inconsecutive sequence number ←
- Request ID
- ID of out-of-order request
- Queuing delay

order-insensitive - - - -

Enqueue
feature

lossy drop
Queues are about to be full
or already full •

- Request ID
- Egress queue
- Egress port
- Ingress port

lossless pause Receiving a PAUSE signal →

- Request ID
- Egress queue
- Egress port
- Queuing delay

- - congestion
Queuing delay exceeds a threshold
& no PAUSE signal •

- Request ID
- Egress queue
- Egress port
- Queuing delay

• Out-of-order. This type of event is triggered in order-
sensitive buffers such as TCP receiving buffer. Packets have
to be delivered to the applications in the same order as they
are sent. That is, the packets that have been received by the
order-sensitive buffers have to be delayed before receiving
the packets sent earlier. In contrast, the order-insensitive
buffers don’t have the out-of-order event.

• Drop. This event happens in lossy buffers when queues are
about to be full or already full. Packet drops would incur
packet retransmission and may result in RLAs.

• Pause. This type of event happens in lossless buffer. Once
the buffer occupancy of the downstream switch exceeds
a specific threshold, then the downstream switch sends a
PAUSE signal to the upstream switch. The latter will pause
packet forwarding until a RESUME signal is received. This
increases the delay of the paused packets.

• Congestion. This type of event could happen to any kinds
of buffers. Congestion is defined as the situation where the
queuing delay exceeds a threshold, and is not due to PAUSE.
This could be caused by the mismatch between upstream
and downstream processing or transmission rates.

Based on that, we could predict the RLA-related events
that will occur in a buffer, and deploy monitoring mechanism
accordingly. Note that the events are not exclusive with each
other, multiple events may be captured by BufScope simulta-
neously, such as congestion and priority contention.
Event generation. Event generation, which includes the event
detection and collection, could degrade the monitored appli-
cation performance due to its expensive operation, e.g., gen-
erating unique ID, writing disk and etc. [10]. Thus, they must
be low overhead in BufScope. Here, we describe how they are
designed in the hosts, SmartNICs and switches, respectively.

In the end-host and SmartNIC, event detection in software
is straightforward. In order to reduce the impact of event col-
lection on application performance, BufScope’s agent daemon
executes disk write asynchronously. Then, the agent daemon
sends the event logs to the Event Collector in bulk.

In the programmable switch, event detection needs to be
implemented entirely in the data plane. Packets that experi-
ence pause or drop were detected in the ingress pipeline and
MMU, respectively. For priority contention and congestion,
we record the length of queues, ingress and egress times-
tamps through INT (in-band network telemetry) [47], and
judge whether packet’s queuing delay and length exceed the
thresholds. After the victim packets are detected, egress agent
utilizes a bloom filters to aggregate them into request-level
events with flow’s 5-tuple and request ID (§3.4) as the key.
Then, request events are sent to the switch control plane via
data plane generated packets. Finally, the control plane will
eliminate false positive in received events, and report them
to the Event Collector in bulk. Most of the design of event
generation in the data plane was proposed in NetSeer [8], and
we simply changed the granularity of monitoring events from
flow to request. We do not claim any novelty here.

3.4 Request-level Semantic Injection
The layered network architecture [48] has been a cornerstone
of the Internet and is used in clouds. However, it presents a
challenge for performance monitoring of distributed applica-
tions. Specifically, these teams, e.g., network (Layer-3), server
(Layer-4) and application (Layer-7), often blame each other
for diagnosing RLAs due to the inconsistent semantics of
their monitoring tools [8, 24]. To address this challenge and
improve the accuracy of RLA diagnosis, BufScope needs to

834 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Packet
Header

Original payload

Req #2
header

Req #2
data

…… Req #n
header

Req #n data
(maybe partial)

Req #1 data
(maybe partial)

Packet
Header

Original payload

Req #2
header

Req #2
data

… Req #n
header

Req #n data
(maybe partial)

Req #1 data
(maybe partial)

Original packet

Extended packet ID#1 Offset

Additional payload (0.7% overhead)
Figure 4: Request-level semantic injection in sender’s NIC. (Req stands for request.)

map all captured events to the request-level semantics.
Challenge of request-level semantic parsing. A request con-
tains two major parts, i.e., header and payload. The header
includes request ID, type (request/response), length, and other
metadata, while payload holds the actual content of the re-
quest. The network stack is responsible for encapsulating the
request into packets, with the request as the packet payload.
In this process, multiple requests are considered as a byte
stream and packed into packets. One large request could be
carried by multiple (maybe >1,000 for storage applications)
packets, while multiple (maybe >10) small requests may be
consolidated in one packet. Therefore, each packet may not
carry or carry multiple request headers in practice.

Realizing request-level semantic parsing in networks is non-
trivial. The request header may be anywhere in the packet
payload, which makes the commodity switch unable to parse
the request IDs. A straightforward solution is inserting all
IDs appeared in the packet before the packet payload, so that
programmable switches could match and derive request IDs.
However, this solution results in significant overhead. First,
one request ID has 8 bytes in gRPC [43]. The standard MSS
of TCP packets is 1460 bytes. Therefore, inserting 10 request
IDs would introduce a 5% bandwidth overhead. This overhead
is ever-present, and can lead to bandwidth degradation and
packet loss under traffic bursts. Furthermore, performing lots
of memory copy operations seriously wastes CPU resources.
Concise request-level semantic injection. To address this
challenge, we leverage the fact that request ID and length are
already carried in the request headers packed in packet pay-
loads. Thus, we choose to insert the offset field (2 bytes) of the
first complete request header at the beginning of the packet
payload, as shown in Figure 4. If there are other request head-
ers, we can use the length field in their headers to iteratively
parse their indexes. By performing such concise operation,
we explicitly maintain the request-level information in a way
which programmable switches (e.g., P4-16 [49]) could easily
parse, while introducing very little additional overhead on
performance and bandwidth.

Besides, the first data segment of the payload, i.e., the par-
tial Req#1 data in Figure 4, may not has the corresponding
header in the current packet, because large request could be
carried by multiple packets. Therefore, we should also main-

Algorithm 1: Semantic injection in sender’s NIC
Input: Packet, last_ID

1 ID#1_index← tcp_payload_begin;
2 o f f set_index← tcp_payload_begin+ ID_len;
3 insert_len← ID_len+o f f set_len;
4 buf_append(Packet, insert_len);
5 buf_move(ID#1_index+ insert_len, ID#1_index);
6 while index++ <tcp_end do
7 if ∗index = Request.header then
8 if now_ID = NULL then
9 if index = ID#1_index+ insert_len then

10 ID#1_index← NULL;

11 else
12 ∗ID#1_index← last_ID;

13 ∗o f f set_index← index;

14 ∗now_ID←∗index;

15 if now_ID = NULL then
16 ∗ID#1_index← last_ID;
17 o f f set_index← NULL;

18 else
19 last_ID←∗now_ID;

tain the identifier of the Req#1 data. To this end, we always
insert the ID field (8 bytes) at the beginning of the packet
payload, which records the Req#1 ID. It requires us to main-
tain a stateful variable, which records the ID of the recent
request. The bandwidth overhead of our injection solution is
only 0.7% ((8+2)/1460), which is fixed and negligible.
SmartNIC-offloaded semantic injection and recovery. To
reduce the CPU overhead in hosts, we offload the semantic
injection to SmartNICs. We present the process of semantic
injection in Algorithm 1. For each packet, we first insert a
fixed space to store the offset and ID field (line 1-5). Then
we look at three possible scenarios. 1⃝ These is no partial
Req#1 data and there is a complete Req#2 header at the
beginning of the payload (line 9-10); 2⃝ These is partial Req#1
data and a complete Req#2 header (line 11-14); 3⃝ There
are no request headers in this packet (line 15-17), then the
stateful variable about the recent request ID does not need to
be updated. Otherwise, in the first two scenarios, the variable

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 835

records the last request ID in the current packet (line 18-19),
which may becomes the recent request ID for the next packets.

We recover the packets in the receiver’s SmartNIC, which
just removes the content that was inserted in the sender’s
SmartNIC. Through SmartNIC offloading instead of host
CPU processing, semantic injection and recovery can be
achieved with little impact on the application performance.

3.5 RLA Diagnosis and Mitigation
We introduce how cloud providers diagnose the cause of
RLAs according to the events captured by BufScope. First,
BufScope correlates events by request ID, and reports the
beginning and ending events (possibly guilty) to the operators.
Then, since the blocked time is also recorded in the events, op-
erators can clearly see which event is the culprit, even through
a request experiences multiple events. We also elaborate on
how applications can benefit from these request events.
• Priority contention. This type of events suggests that RLAs

happen directly in the current buffer. It indicates that queues
with higher priorities are jammed. To mitigate this type of
RLA, application owners can either upgrade the priority of
its requests, or try to reduce the traffic of other applications
that enter the high-priority queues.

• Out-of-order. This type of event suggests that packets are
dropped or detoured in previous buffers or logic. For in-
stance, network packet drop and path change could cause
out-of-order in TCP receiving buffer. Application owners
could ask network operators for help to debug network de-
vice failures, blackholes, or random packet drops. Also,
refer to the next item if accompanied by drop events.

• Drop. Drop events cause time-consuming retransmission,
which could directly cause RLAs. MMU drop is usually
caused by burst and incast. Application owners could con-
sider optimizing the traffic pattern through scheduling to
reduce TCP incast or congestion possibilities.

• Pause & Congestion. These events happen due to the slow
scheduling of packets out of the current buffer or the down-
stream buffer. In this case, BufScope could identify the
request that contribute the most to the congestion, i.e., the
heavy request, because the heavy request will experiences
more congestion events. Then, cloud providers need to eval-
uate the network architecture and application mixing model.

4 Implementation

We have implemented BufScope for a kernel-based RPC
framework named Finagle [50] and the kernel-bypass-based
Alibaba’s block storage application. We use Barefoot Tofino
switches and Broadcom PS225 SmartNICs to implement the
functions of BufScope in the data plane.
Requirements. Because BufScope needs to insert the ID and
offset field of the request at the end of the packet header, im-
plementation of BufScope requires application-layer protocol

awareness and MTU modification. And kernel-intrusive is
needed for monitoring kernel-based application. Finally, Buf-
Scope is designed to monitor requests inside the cloud (i.e.,
east-west traffic) that are typically not encrypted.
Incremental deployment. For end-to-end monitoring, multi-
ple teams (e.g., server and network) in the cloud need to mon-
itor the buffers they manage by using BufScope’s APIs. How-
ever, partial deployment of BufScope still facilitates RLAs
diagnosis. With sole support from the server team, semantic in-
jection and in-server event monitoring can still be performed,
which helps operators decide whether the root cause locates
in the server or not. With sole support from the network team,
operators can blame or exonerate the network according to
packet- or flow-level events in the network.
Buffer identification. BufScope summarizes a basic buffer
chain for various applications and network stacks. For kernel-
based, there is an application buffer and a socket buffer. For
kernel-bypass-based, the zero-copy technology makes the
applications may have only one mbuf array for DPDK [51].
The manual efforts to identify buffers are small and only
need to be done once. Moreover, resource contention in other
hardware or OS queues (e.g., CPU, DRAM, and PCIe) will
cause slow message processing, resulting in queue buildup in
the upstream buffer [52], which can be detected by BufScope.
Event capturing. We record the following necessary infor-
mation for each type of events.
• Priority contention (15B): <ID, egress queue, length of

higher-priority queues, queuing delay>. We measure the
queuing delay inside a switch with ingress and egress times-
tamps. The victim request ID, the timestamps and the length
of the higher-priority queue is obtained by INT.

• Out-of-order (20B): <ID, ID of out-of-order request, queu-
ing delay>. We identify out-of-order requests by observing
inconsecutive sequence number in packets, and generate
this type of events for latter blocked requests.

• Drop (11B): <ID, egress queue, egress port, ingress port>.
In network, we redirect packets dropped by MMU to a
dedicated internal port, and report in egress pipeline [8],
then parse the request ID in these packets.

• Pause (14B): <ID, egress queue, egress port, queuing de-
lay>. For a lossless network, the switch begins to generate
pause events immediately after receiving the pause signal.

• Congestion (14B): <ID, egress queue, egress port, queuing
delay>. Congestion events are produced when the queuing
delay exceeds a threshold while the length of the higher-
priority queue is normal.

To reduce the bandwidth overhead, we leverage lossless
ZigZag Encoding [53] to compress events. The average length
of events is shortened from 15 bytes to 8 bytes. Besides, BufS-
cope allows setting an upper limit on the event generation rate.
Once this threshold is exceeded, sampling can be enabled.
SmartNIC. We implement the NIC buffer monitoring and
semantic injection in the ARM-based SmartNIC. In addi-
tion to the cores required for packet forwarding, BufScope

836 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

requires only one additional core for event collection and
reporting. Note that the ID of the partial Req#1 data in re-
transmitted packets has been missed in NIC. We just set the
inserted ID field as NULL in the retransmitted packets. The
effects of this simplification are limited, because the causes of
packet retransmission have already been captured (e.g., drop
or out-of-order). When enabling TSO, semantic injection is
performed after packets are segmented in SmartNIC.
Switch. BufScope’s ASIC logic can be embedded into orig-
inal switch programs (switch.p4 in our experiment) as an
extension. We layout the timestamp record and pause detec-
tion modules in ingress pipelines, enable drop detection in
the MMU, and detect congestion, priority contention in the
egress pipeline. After the event is generated by the switch
ASIC, event pre-processing and reporting in the switch CPU
is similar to that in the NetSeer system [8].
Event collector. To timely receive events, we use the servers
with 100Gbps NICs in the cluster as the Event Collector.
To improve the readability and usability of monitored data,
Collector aggregate the events in two stages. First, the events
captured by all components are aggregated together at per-
request granularity. Then, if there is a trace data generated by
the tracing tool for the request, the request events timestamp
and the associated information are marked in that trace.

5 Evaluation

Environment: We evaluate BufScope and existing monitor-
ing tools on a testbed with a 4-ary and 3-tier Fat-Tree topol-
ogy [54] composed of 10 Barefoot Tofino switches and 16
servers. Each server has 192 CPU cores, 64GB RAM, and one
Broadcom PS225 SmartNICs (2×25G) [55]. Each SmartNIC
possesses eight ARM Cortex-A72 3.0 GHz CPUs and 16GB
memory. There are 4 ToR, 4 Aggregate and 2 Core switches.
They are interconnected with 100G links, while each ToR
connects four servers with 2×25G link.
Baselines: Given that none of the existing monitoring tools
are designed to monitor the end-to-end datapath of request,
we combine multiple state-of-the-art tools to fully cover it:
(i) Application tracing. We enable an open-source tracing
tool [15] to capture the RPC timing data and application-
specific abnormal events in application layer. Because of
the large amount of captured data and non-negligible CPU
overhead, tracing tools typically require sampling (e.g., 0.1%
under high-load services [10]) to reduce impact on the perfor-
mance of the monitored application. Thus, we set the sampling
rate of tracing as 0.1% and 100% for comparison.
(ii) TCP monitoring. Dapper [21] is used to diagnose perfor-
mance problem of TCP in the end-host network stack.
(iii) Network monitoring. We deploy NetSeer [8] and packet
sampling to capture events in networks and NICs. NetSeer is
a flow-level event monitoring system based on programmable
data plane. For packet sampling, we can parse the request ID
in the mirrored packet offline to get request events. Since it

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

Congestion Prio. con. Drop Pause OoO

C
ov

er
ag

e
R

at
io

BufScope Tracing(1.0) Tracing(0.001)
Dapper NetSeer Sampling(0.01)

100

10-1

10-2

10-3

10-4

Figure 5: Event coverage ratios. Tracing(sampling rate).
has a large bandwidth overhead under a high sampling rate [8],
we configure the sampling rate as 1%.

The evaluation needs to answer the following 3 questions.
• Coverage: Can BufScope capture most (close to 100%)

request events that happen in hosts, NICs, and network
switches, and help accurately diagnose the real RLAs?

• Scalability: What’s the bandwidth overhead of BufScope
to deliver events to the Event Collector? Can it scale with
the increasing datacenter size and bandwidth?

• Performance overhead: How to choose an efficient thresh-
old? How does BufScope affect the application perfor-
mance? How about the impact of each module, including
request-level semantic injection by host CPU or SmartNIC?

5.1 Coverage
We deploy the storage application (supports RDMA) and Fi-
nagle as the monitored applications, and run traffic traces
based on four real-world workloads including DCTCP [56],
VL2 [57], storage and WEB [58] for 6 hours. We set the
average link utilization as 80% to test BufScope’s coverage
under extreme conditions. Congestion, drop and out-of-order
(OoO) are naturally produced. We configure various priority
queues to trigger priority contention, and enable priority flow
control (PFC [59]) in RDMA network to trigger pause, which
do occur in production environments [8, 37]. We start by eval-
uating BufScope’s capability to fully capture all events along
the datapath of request. Next, we compare the proportion of
unexplained RLAs of different monitoring tools, and study 2
real RLAs which cause the SLA violations.
Event coverage. We enable tracing, Dapper, NetSeer, packet
sampling and BufScope to capture events, respectively. We
present the event coverage ratios for different types of events
in Figure 5. For a fair comparison, we enable tracing tool in
this experiment to monitor all buffer events in host buffers
that it can cover. Even so, the tracing tool only has visibil-
ity into applications, it cannot detect events in the network.
Therefore, tracing(1.0) can only cover up to 23% events, while
tracing(0.001) can only cover 0.1% events. Dapper analyzes
TCP statistics to infer the occurrence of network events, such
as congestion and drop, it can only cover up to 15% events.

NetSeer could capture flow-level events in networks, in-
cluding congestion, pause and drop, but leaves out the priority

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 837

72%
49% 36%

5%

0%

20%

40%

60%

80%

100%

Tracing Tracing+D T+D+N BufScope

Application Net. Stack Network Both U

Figure 6: Diagnosing RLAs by different monitoring tools
(T:Tracing, D:Dapper, N:NetSeer, U:Unknown).

contention and OoO events. Besides, its captured events miss
request-level semantics. Based on the time-correlation meth-
ods, NetSeer can only cover up to 45% request events. For
packet sampling, if the mirrored packet is lucky enough to
encounter an event, then we can parse out the event with re-
quest ID. Thus, it only cover <10% events which is always
less than its sampling rate. In comparison, BufScope has full
coverage for the 5 types of request events happened in both
of the end-hosts and networks.
Diagnosing RLAs. We try to diagnose the root cause of the
slow RPC (i.e.,RLAs) detected during that period according
to different monitoring tools. Request-level timing data col-
lected by tracing tool with full sampling can only explain 28%
RLAs, leaving 72% RLAs undetermined, as shown in Fig-
ure 6. Then, server and network monitors capture flow-level
events to diagnose RLAs based on the time-correlation meth-
ods, can only explain 23% and 13% more RLAs, respectively.
Even so, enabling tracing, Dapper and NetSeer (i.e., T+D+N)
at the same time still leaves 36% RLAs inexplicable. With
BufScope’s help, we can tell whether and how much each
component is responsible for each slow RPC, and explain
much more (95%) RLAs, including those whose causes were
unknown with existing monitors, and some RLAs that were
caused by multiple components. The remaining 5% of the
RLAs did not reveal any events. We speculate that they are
caused by hardware-related anomalies.

We reproduce 2 real Alibaba’s production RLAs on our
testbed with inferred topology, requests pattern, and traffic rate
during the incidents, which cannot be captured and explained
by existing monitoring tools.

#1) Polling hang in the host. When a request encounters
more than one anomaly, the challenge in diagnosing is to
identify the one that has the greatest impact. For example, one
RPC in this experiment encountered congestion in the net-
work and polling hang in the receiver. However, existing mon-
itoring tools cannot capture how much delay each anomaly
causes, and treat them equally, resulting in the inefficient diag-
nostic process. Conversely, BufScope can end-to-end capture
latency-critical events with consistent semantics, which can
associate events that occur in different components. BufScope
found that it was blocked for 5ms at the receiver’s NIC, and
only experienced 80µs of congestion in the network. There-
fore, the reason for the RLA was polling hang. Based on this,

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

VL2 DCTCP WEB Storage

B
an

dw
id

th
 o

ve
rh

ea
d

(%
)

BufScope Tracing(1.0) Tracing(0.001)
Dapper NetSeer Sampling(0.01)

10-5

10-3

10-4

10-2

10-1

Figure 7: Bandwidth overhead of event collection.
application owners can further analyze the abnormal events
in the host and the system log to solve the problem.

#2) Cascaded priority contention. In a priority-aware net-
work, it is non-trivial to assign priorities to different appli-
cations. An inappropriate allocation can result in SLA miss
for low-priority application. Thus, checking the priority con-
tention in the network is an important task of performance
monitoring tools. Worse still, a cascading effect would hap-
pen when there are multiple queues with diverse priorities.
Consider there are three requests, Req#1, Req#2, and Req#3
have decreasing order of priority. Req#1 and Req#2 contend
in an upstream switch S1, while Req#2 and Req#3 contend in
a downstream switch S2. If Req#1 in S1 is congested, Req#2
would be delayed, which then delays Req#3 in the low-priority
queue of S2. To debug the RLAs of Req#3, simply observ-
ing the priority contention in a switch is not enough. Since
BufScope can capture all contention events and their details,
we can analyze this cascade effect and find a more effective
method to mitigate it.

5.2 Scalability
We compared the bandwidth overhead (BO) required by BufS-
cope and baselines to report events or traces during that period.
Figure 7 shows that BufScope only incurs <0.07% BO un-
der various real-world workloads, of which 0.02% from host,
0.01% from NICs and 0.04% from switches. For link band-
width at 100Gbps, the overhead is at most 70Mbps, which
is within the capacity of PCIe (18Gbps) and switch CPU
(13.4Gbps with 2 cores). In comparison, tracing(1.0) suf-
fers from >4% BO, its each span (i.e., every request) needs
400B on average. Tracing(0.001) needs >0.004% BO. Dapper
records only TCP abnormal events and consumes only 0.04%
BO. Network packet sampling (0.01) needs ∼ 1% BO, which
is similar to its sampling rate, because the payload also needs
to be recorded to parse request semantics. Because NetSeer
captures and reports flow-level events, its event scale and fine-
ness are not as high as BufScope. Thus, NetSeer only incurs
∼ 0.01% BO. In summary, T+D+N consumes >4.05% BO.

To further understand the scalability of BufScope, we
calculate the monitoring event traffic as well as the pro-
cessing overhead of BufScope according to the configura-
tion of Alibaba’s production datacenters. For a normal 3-
tier datacenter, connecting 10,000 servers requires approxi-

838 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

-20%

10%

40%

70%

0 0.05 0.1 0.15 0.2 0.25

Pe
rfo

rm
an

ce
 c

ha
ng

e
(%

)

Congestion Threshold (ms)

QPS QCT

Figure 8: Impact of congestion threshold on performance.

0
0.2
0.4
0.6
0.8
1

0

20

40

60

80

0 0.05 0.1 0.15 0.2 0.25N
um

be
ro

f e
ve

nt
s

(×
10

6)

Congestion Threshold (ms)

#Events Recall Precision

Figure 9: Number of captured congestion events and the two
indicators under different thresholds.
mately 400 switches (3.2Tbps), which produce a maximum of
400× 3200Gbps× 0.07% = 896Gbps monitoring traffic at
most. Processing such traffic requires 9 servers with 100Gbps
NICs, which implies a 0.09% processing overhead.

5.3 Performance Overhead

In this experiment, we use as many threads as possible, which
perform 4KB file read, to test the extreme performance of the
Alibaba’s storage application under different monitoring tools.
We first show a method for selecting the appropriate con-
gestion event threshold. Then, we evaluate the performance
overhead of the per-module and overall BufScope.
Congestion event threshold determination. Congestion
events appear when the queuing delay exceeds a certain
threshold, which we define as the congestion threshold. We
pay special attention to congestion events as it occupies a
major portion of all events, which will occur in both the hosts
and networks. BufScope can harm application performance
if too many congestion events are collected. Thus, we run
the application for 10 seconds with a full-mesh traffic pattern,
and measure the impact on the QPS (Query per Second) and
QCT (Query Completion Time) of the application as we vary
the congestion threshold. As shown in Figure 8, the larger
the threshold, the smaller the performance overhead, because
fewer congestion events would be collected. Thus, threshold
selection is highly related to the efficiency of BufScope.

Since requests without RLA can also experience light con-
gestion, this means that not all captured congestion events
are RLA-related. In this experiment, the captured events are
RLA-related when the RLA request experiences only con-
gestion events and no other events. We use two indicators to

1,409.81

1,361.98
1,349.36

1,400.29

1,337.40

1,396.08

1320

1340

1360

1380

1400

1420

Benchmark Tracing T+D+N BufScope- BufScope* BufScope

Q
PS

 (k
)

(a) Application QPS

56

75 76

58

80

59
66

89 90

67

97

68

50

60

70

80

90

100

Benchmark Tracing T+D+N BufScope- BufScope* BufScope

Q
C

T
(𝜇

s)

Average
P999

(b) Application QCT
Figure 10: Application performance under different tools.

evaluate the efficiency of the congestion threshold. Recall
represents the proportion of the captured RLA-related conges-
tion events in all real RLA-related congestion events, while
precision represents the proportion of the captured RLA-
related congestion events in all captured congestion events.
The higher the threshold, the lower the recall and the higher
the precision. Thus, the selection of the threshold needs to
balance these two indicators. Figure 9 shows the changes in
the number of events collected, the recall and precision.
We observe that as the threshold increases from 0 to 0.25ms,
the precision increases from a very low value to nearly
100%, and recall drops from 100% to a very low value. In
the following experiments, we take 0.1ms as the congestion
threshold for high monitoring efficiency.
Event monitoring in hosts. Because monitoring in hosts
uses expensive CPU resources, we evaluate the performance
overhead of only enabling functions of BufScope in hosts (we
refer to this variation as BufScope-). As shown in Figure 10,
we generate the highest load (i.e., extreme throughput of NIC)
with 8 threads to test the application, and obtain the QPS, av-
erage and P999 QCT by running 30 seconds. The Benchmark
represents the raw performance of the application without any
monitoring tools. BufScope- decreases the QPS by 0.7% and
increases the P999 QCT by 1.5%. Because BufScope records
events asynchronously, most of this overhead comes from
event detection, which takes tens of nanoseconds on average.
In contrast, the tracing tool generates a trace for each sampled
request, which takes sub-microseconds. Thus, only enabling
tracing(1.0) in hosts decreases the QPS by 3.4% and increases
the P999 QCT by 34.8% under the same load. This demon-
strates that BufScope’s event-driven approach significantly
reduces the performance overhead.
Semantic injection in network stack. Next, we enable all
monitoring functions of BufScope in hosts, SmartNICs and

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 839

switches. In this experiment, we evaluate the impact on the
RTC application by implementing the BufScope’s semantic
injection in the application’s network stack, namely BufS-
cope*. As shown in Figure 10, since the semantic injection
uses the same thread with the application processing, BufS-
cope* decreases the QPS by 5.1% and increases the P999
QCT by 47.0%. In comparison, the combination of tracing,
Dapper and NetSeer, i.e., T+D+N, decreases the QPS by 4.3%
and increases the P999 QCT by 36.4%. BufScope*’s perfor-
mance overhead is large than the combination. The results
reveal that the overhead of using the same CPU to perform se-
mantic injection is not negligible, and we need to use offload
techniques to reduce the overhead.
Overall performance overhead of BufScope. According to
BufScope’s design, here semantic injection is implemented in
the sender’s SmartNIC. BufScope only decreases the QPS by
1.0% and increases the P999 QCT by 3.0%. This demonstrates
that SmartNIC-offloaded semantic injection and recovery can
significantly reduce the performance overhead. Compared
with T+D+N, BufScope improves the QPS by 3.5% and re-
duces the P999 QCT by 24.4%. Besides, the performance
of BufScope is slightly lower than that of BufScope-. Such
performance decline is introduced by our ARM-based imple-
mentation in SmartNIC. We will use FPGA-based SmartNIC
in the future to further improve processing performance.

6 Related Work

There has been a rich literature regarding application mon-
itoring and diagnosis. We classify them into six categories
according to their coverage for the request’s datapath.
Tracing-based. Tracing-based monitoring tools are widely
used for large-scale application performance tracing and de-
bugging [9–14,16,28,30,60,61]. By inserting annotations into
the execution path of the request, tracing tools can locate the
problematic step in application layer, but has no visibility in
the network stack and underlying networks. Besides, tracing
could provide fine-grained latency statistics, but will actually
degrade application performance [10]. Therefore, tracing are
often used in an on-demand and sampling way.
Log-based. Log analysis is proven effective in many pro-
grams or performance debugging scenarios [3, 29, 62–67].
However, logs are often created by CPU, which is proven
inefficient and could waste much CPU resources. Therefore,
log-based monitoring systems often use second-level moni-
toring granularity, which will miss a lot of RLAs.
Network stack-based. Many researches are trying to moni-
tor network performance on the end-host network stack. For
example, some research efforts propose to constantly monitor
TCP performance by watching TCP statistics such as time-
out and retransmission, and deduce the root cause of RLAs
through statistical analytics [17, 21, 31, 68], replay [25], or
machine learning [24]. Trumpet [23] leverages triggers at
end-hosts to monitor every packet and network-wide events.

However, they lack visibility into the network, leading to
the incomplete coverage for RLAs. Moreover, they focus on
packet- or flow-level event capturing and analysis, and cannot
correlate events to the corresponding requests.
NIC-based. Simon [35] collects statistics from NICs, and
reconstruct flow queuing time, link utilization, link compo-
sition, and other statistics. Nevertheless, it could only obtain
aggregated statistics with millisecond-level granularity and
lose clues for events at fine-timescale such as microsecond-
level microbursts. Similarly, it mainly focuses on network
events and cannot fully detect host events.
Network-based. The network serves as the conjunction
component among distributed servers. Thus, many efforts
have been devoted to network monitoring by active prob-
ing [19, 22], telemetry [18, 32], etc. NetSeer [8] leverages
programmable switch to monitor flow-level network abnor-
mal events, without the request-level semantics. Retro [33]
and Microscope [26] monitor the queue to identify anoma-
lies, which is similar to BufScope’s buffer model. However,
network-based monitoring tools have no visibility into hosts.
Moreover, their combination with tracing cannot improve the
accuracy of RLAs diagnosis due to the inconsistent semantics.
Network and host collaboration. Recent researches use both
the network and end-host to jointly collect, store and analyze
data [34, 36–38]. In order to correlate packets’ behaviour in
end-hosts and networks, they often enable network switches to
attach metadata to packets, and extract event in hosts, which
will consume a lot of host CPU resources. Besides, these
systems did not consider the request-level abnormal events
and RLA diagnosis.

7 Conclusion

This paper presents a promising way to utilize the pro-
grammable data plane to achieve high coverage for request
monitoring and accurate RLA diagnosis, by proposing Buf-
Scope. Its core idea is to uniformly model the data plane in
networks and the datapath in hosts using buffer. It translate
most RLAs to buffer-related events, and monitor them in the
buffer chain with consistent request-level semantic. Testbed-
based evaluations show that BufScope can diagnose 95%
RLAs with negligible bandwidth and performance overhead.

Acknowledgement

We thank our shepherd Dr. Ying Zhang, and the anonymous
reviewers for their constructive comments. Dan Li is the cor-
responding author. This work is supported by the National
Key R&D Program of China (2018YFB1800100), Alibaba
Innovative Research (AIR) Program, Tsinghua University-
China Mobile Communications Group Co.,Ltd. Joint Insti-
tute, and the National Natural Science Foundation of China
(U21B2022).

840 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] CNCF. Cloud native computing foundation:
https://cncf.io/, 2021.

[2] Patrick Stuedi, Animesh Trivedi, Bernard Metzler, and
Jonas Pfefferle. Darpc: Data center rpc. In ACM SoCC,
2014.

[3] Xu Zhao, Yongle Zhang, David Lion, Muham-
mad Faizan Ullah, Yu Luo, Ding Yuan, and Michael
Stumm. lprof: A non-intrusive request flow profiler for
distributed systems. In USENIX OSDI, 2014.

[4] Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber,
Ming Wu, Vijayan Prabhakaran, Michael Wei, John D
Davis, Sriram Rao, Tao Zou, and Aviad Zuck. Tango:
Distributed data structures over a shared log. In ACM
SOSP, 2013.

[5] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita
Kejriwal, Collin Lee, Behnam Montazeri, Diego Ongaro,
Seo Jin Park, Henry Qin, Mendel Rosenblum, et al. The
ramcloud storage system. In ACM TOCS, 2015.

[6] Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter rpcs can be general and fast. In USENIX
NSDI, 2019.

[7] Yixiao Gao, Qiang Li, et al. When cloud storage meets
RDMA. In USENIX NSDI, 2021.

[8] Yu Zhou, Chen Sun, Hongqiang Harry Liu, Rui Miao,
Shi Bai, Bo Li, Zhilong Zheng, Lingjun Zhu, Zhen
Shen, Yongqing Xi, et al. Flow event telemetry on pro-
grammable data plane. In ACM SIGCOMM, 2020.

[9] Rodrigo Fonseca, George Porter, Randy H Katz, and
Scott Shenker. X-trace: A pervasive network tracing
framework. In USENIX NSDI, 2007.

[10] Benjamin H Sigelman, Luiz Andre Barroso, Mike Bur-
rows, Pat Stephenson, Manoj Plakal, Donald Beaver,
Saul Jaspan, and Chandan Shanbhag. Dapper, a large-
scale distributed systems tracing infrastructure. 2010.

[11] Jonathan Kaldor, Jonathan Mace, Michał Bejda, Edi-
son Gao, Wiktor Kuropatwa, Joe O’Neill, Kian Win
Ong, Bill Schaller, Pingjia Shan, Brendan Viscomi, et al.
Canopy: An end-to-end performance tracing and analy-
sis system. In ACM SOSP, 2017.

[12] Arjun Satish, Thomas Shiou, Chuck Zhang, Khaled
Elmeleegy, and Willy Zwaenepoel. Scrub: online trou-
bleshooting for large mission-critical applications. In
ACM EuroSys, 2018.

[13] Dan Ardelean, Amer Diwan, and Chandra Erdman. Per-
formance analysis of cloud applications. In USENIX
NSDI, 2018.

[14] Uber Technologies. Jaeger: open source, end-to-end dis-
tributed tracing. https://www.jaegertracing.io/,
2020.

[15] Twitter. Zipkin. http://zipkin.io/, 2021.

[16] CNCF. Opentelemetry. http://opentelemetry.io/,
2021.

[17] Minlan Yu, Albert G Greenberg, David A Maltz, Jennifer
Rexford, Lihua Yuan, Srikanth Kandula, and Changhoon
Kim. Profiling network performance for multi-tier data
center applications. In USENIX NSDI, 2011.

[18] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg,
Guohan Lu, Ratul Mahajan, Dave Maltz, Lihua Yuan,
Ming Zhang, Ben Y Zhao, et al. Packet-level telemetry
in large datacenter networks. In ACM SIGCOMM, 2015.

[19] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong
Dang, Ray Huang, Dave Maltz, Zhaoyi Liu, Vin Wang,
Bin Pang, Hua Chen, et al. Pingmesh: A large-scale
system for data center network latency measurement
and analysis. In ACM SIGCOMM, 2015.

[20] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu.
Lossradar: Fast detection of lost packets in data center
networks. In ACM CoNEXT, 2016.

[21] Mojgan Ghasemi, Theophilus Benson, and Jennifer Rex-
ford. Dapper: Data plane performance diagnosis of tcp.
In ACM SOSR, 2017.

[22] Yanghua Peng, Ji Yang, Chuan Wu, Chuanxiong Guo,
Chengchen Hu, and Zongpeng Li. detector: a topology-
aware monitoring system for data center networks. In
USENIX ATC, 2017.

[23] Masoud Moshref, Minlan Yu, Ramesh Govindan, and
Amin Vahdat. Trumpet: Timely and precise triggers in
data centers. In ACM SIGCOMM, 2016.

[24] Behnaz Arzani, Selim Ciraci, Boon Thau Loo, Assaf
Schuster, and Geoff Outhred. Taking the blame game
out of data centers operations with netpoirot. In ACM
SIGCOMM, 2016.

[25] Yuliang Li, Rui Miao, Mohammad Alizadeh, and Minlan
Yu. Deter: Deterministic {TCP} replay for performance
diagnosis. In USENIX NSDI, 2019.

[26] Junzhi Gong, Yuliang Li, Bilal Anwer, Aman Shaikh,
and Minlan Yu. Microscope: Queue-based performance
diagnosis for network functions. In ACM SIGCOMM,
2020.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 841

https://www.jaegertracing.io/
http://zipkin.io/
http://opentelemetry.io/

[27] Jaehyun Hwang, Qizhe Cai, Ao Tang, and Rachit Agar-
wal. Tcp = rdma: Cpu-efficient remote storage access
with i10. In USENIX NSDI, 2020.

[28] Paul Barham, Austin Donnelly, Rebecca Isaacs, and
Richard Mortier. Using magpie for request extraction
and workload modelling. In USENIX OSDI, 2004.

[29] Yongle Zhang, Serguei Makarov, Xiang Ren, David
Lion, and Ding Yuan. Pensieve: Non-intrusive fail-
ure reproduction for distributed systems using the event
chaining approach. In ACM SOSP, 2017.

[30] Yongle Zhang, Kirk Rodrigues, Yu Luo, Michael Stumm,
and Ding Yuan. The inflection point hypothesis: a prin-
cipled debugging approach for locating the root cause
of a failure. In ACM SOSP, 2019.

[31] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, and Alex C
Snoeren. Passive realtime datacenter fault detection and
localization. In USENIX NSDI, 2017.

[32] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyaku-
mar, David Mazières, and Nick McKeown. I know what
your packet did last hop: Using packet histories to trou-
bleshoot networks. In USENIX NSDI, 2014.

[33] Jonathan Mace, Peter Bodik, Rodrigo Fonseca, and
Madanlal Musuvathi. Retro: Targeted resource manage-
ment in multi-tenant distributed systems. In USENIX
NSDI, 2015.

[34] Anurag Khandelwal, Rachit Agarwal, and Ion Stoica.
Confluo: Distributed monitoring and diagnosis stack for
high-speed networks. In USENIX NSDI, 2019.

[35] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji
Prabhakar, Mendel Rosenblum, and Amin Vahdat. Si-
mon: A simple and scalable method for sensing, in-
ference and measurement in data center networks. In
USENIX NSDI, 2019.

[36] Praveen Tammana, Rachit Agarwal, and Myungjin Lee.
Simplifying datacenter network debugging with path-
dump. In USENIX OSDI, 2016.

[37] Praveen Tammana, Rachit Agarwal, and Myungjin Lee.
Distributed network monitoring and debugging with
switchpointer. In USENIX NSDI, 2018.

[38] Peng Huang, Chuanxiong Guo, Lidong Zhou, Jacob R
Lorch, Yingnong Dang, Murali Chintalapati, and Ran-
dolph Yao. Gray failure: The achilles’ heel of cloud-
scale systems. In USENIX HotOS, 2017.

[39] Arnaldo Carvalho De Melo. The new linux’perf’tools.
In Slides from Linux Kongress, volume 18, 2010.

[40] YoungGyoun Moon, SeungEon Lee, Muhammad Asim
Jamshed, and KyoungSoo Park. Acceltcp: Accelerating
network applications with stateful {TCP} offloading. In
USENIX NSDI, 2020.

[41] Mina Tahmasbi Arashloo, Alexey Lavrov, Manya
Ghobadi, Jennifer Rexford, David Walker, and David
Wentzlaff. Enabling programmable transport protocols
in high-speed nics. In USENIX NSDI, 2020.

[42] Apache. Thrift. http://thrift.apache.org/, 2020.

[43] Google. grpc: A high-performance, open source univer-
sal rpc framework. https://grpc.io/, 2020.

[44] EunYoung Jeong, Shinae Wood, Muhammad Jamshed,
Haewon Jeong, Sunghwan Ihm, Dongsu Han, and Ky-
oungSoo Park. mtcp: a highly scalable user-level {TCP}
stack for multicore systems. In USENIX NSDI, 2014.

[45] Apache. Rocketmq. https://rocketmq.apache.
org/, 2021.

[46] Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jennifer
Rexford, Ori Rottenstreich, Steven A Monetti, and Tzuu-
Yi Wang. Fine-grained queue measurement in the data
plane. In CoNEXT. ACM, 2019.

[47] Changhoon Kim, Anirudh Sivaraman, Naga Katta, An-
tonin Bas, Advait Dixit, and Lawrence J Wobker. In-
band network telemetry via programmable dataplanes.
In ACM SIGCOMM, 2015.

[48] I Standardization. Iso/iec 7498-1: 1994 information
technology–open systems interconnection–basic refer-
ence model: The basic model. International Standard
ISOIEC, 74981:59, 1996.

[49] Mihai Budiu and Chris Dodd. The p416 programming
language. ACM SOSP, 2017.

[50] Twitter. Finagle. http://twitter.github.io/
finagle/, 2021.

[51] DPDK Intel. Data plane development kit. http://
dpdk.org, 2014.

[52] Gautam Kumar, Nandita Dukkipati, Keon Jang, Has-
san MG Wassel, Xian Wu, Behnam Montazeri, Yaogong
Wang, Kevin Springborn, Christopher Alfeld, Michael
Ryan, et al. Swift: Delay is simple and effective for con-
gestion control in the datacenter. In ACM SIGCOMM,
2020.

[53] Google. Protocol buffers: Encoding: Signed
integers. https://developers.google.com/
protocol-buffers/docs/encoding#signed_
integers, 2021.

842 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://thrift.apache.org/
https://grpc.io/
https://rocketmq.apache.org/
https://rocketmq.apache.org/
http://twitter.github.io/finagle/
http://twitter.github.io/finagle/
http://dpdk.org
http://dpdk.org
https://developers.google.com/protocol-buffers/docs/encoding#signed_integers
https://developers.google.com/protocol-buffers/docs/encoding#signed_integers
https://developers.google.com/protocol-buffers/docs/encoding#signed_integers

[54] Mohammad Al-Fares, Alexander Loukissas, and Amin
Vahdat. A scalable, commodity data center network ar-
chitecture. SIGCOMM computer communication review,
2008.

[55] Broadcom. Stingray ps225 smartnic.
https://www.broadcom.com/products/
ethernet-connectivity/smartnic/ps225, 2020.

[56] Mohammad Alizadeh, Albert Greenberg, David A
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar,
Sudipta Sengupta, and Murari Sridharan. Data center
tcp (dctcp). In ACM SIGCOMM, 2010.

[57] Albert Greenberg, James R Hamilton, Navendu Jain,
Srikanth Kandula, Changhoon Kim, Parantap Lahiri,
David A Maltz, Parveen Patel, and Sudipta Sengupta.
Vl2: a scalable and flexible data center network. In ACM
SIGCOMM, 2009.

[58] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter,
and Alex C Snoeren. Inside the social network’s (data-
center) network. In SIGCOMM, 2015.

[59] Ieee standard for local and metropolitan area networks–
media access control (mac) bridges and virtual bridged
local area networks–amendment 17: Priority-based flow
control. IEEE Std 802.1Qbb-2011 (Amendment to IEEE
Std 802.1Q-2011 as amended by IEEE Std 802.1Qbe-
2011 and IEEE Std 802.1Qbc-2011), pages 1–40, 2011.

[60] Úlfar Erlingsson, Marcus Peinado, Simon Peter, Mihai
Budiu, and Gloria Mainar-Ruiz. Fay: extensible dis-
tributed tracing from kernels to clusters. In ACM TOCS,
2012.

[61] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca.
Pivot tracing: Dynamic causal monitoring for distributed
systems. In ACM TOCS, 2018.

[62] Xu Zhao, Kirk Rodrigues, Yu Luo, Ding Yuan, and
Michael Stumm. Non-intrusive performance profiling
for entire software stacks based on the flow reconstruc-
tion principle. In USENIX OSDI, 2016.

[63] Liang Luo, Suman Nath, Lenin Ravindranath
Sivalingam, Madan Musuvathi, and Luis Ceze. Trou-
bleshooting transiently-recurring errors in production
systems with blame-proportional logging. In USENIX
ATC, 2018.

[64] Ding Yuan, Soyeon Park, Peng Huang, Yang Liu,
Michael M Lee, Xiaoming Tang, Yuanyuan Zhou, and
Stefan Savage. Be conservative: enhancing failure diag-
nosis with proactive logging. In USENIX OSDI, 2012.

[65] Mike Y Chen, Emre Kiciman, Eugene Fratkin, Armando
Fox, and Eric Brewer. Pinpoint: Problem determination
in large, dynamic internet services. In IEEE DSN, 2002.

[66] Karthik Nagaraj, Charles Killian, and Jennifer Neville.
Structured comparative analysis of systems logs to diag-
nose performance problems. In USENIX NSDI, 2012.

[67] Srikanth Kandula, Ratul Mahajan, Patrick Verkaik,
Sharad Agarwal, Jitendra Padhye, and Paramvir Bahl.
Detailed diagnosis in enterprise networks. In ACM SIG-
COMM, 2009.

[68] Behnaz Arzani, Selim Ciraci, Luiz Chamon, Yibo Zhu,
Hongqiang Harry Liu, Jitu Padhye, Boon Thau Loo, and
Geoff Outhred. 007: Democratically finding the cause
of packet drops. In USENIX NSDI, 2018.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 843

https://www.broadcom.com/products/ethernet-connectivity/smartnic/ps225
https://www.broadcom.com/products/ethernet-connectivity/smartnic/ps225

Characterizing Physical-Layer Transmission Errors in Cable Broadband Networks

Jiyao Hu

Duke University

Zhenyu Zhou∗

Duke University

Xiaowei Yang

Duke University

Abstract
Packet loss rate in a broadband network is an important

quality of service metric. Previous work that characterizes

broadband performance does not separate packet loss caused

by physical layer transmission errors from that caused by con-

gestion. In this work, we investigate the physical layer trans-

mission errors using data provided by a regional cable ISP.

The data were collected from 77K+ devices that spread across

394 hybrid-fiber-coaxial (HFC) network segments during a

16-month period. We present a number of findings that are

relevant to network operations and network research. We esti-

mate that physical-layer errors can contribute to 12% to 25%

of packet loss in the cable ISPs measured by the FCC’s Mea-

suring Broadband America project. The average error loss

rates of different HFC network segments vary by more than

six orders of magnitude, from O(10−6%) to O(1%). Users

in persistently high-error-rate networks do not report more

trouble tickets than other users.

1 Introduction

Reliable and high-speed Internet access is increasingly im-

portant to modern life, especially in a pandemic. According

to [7], the number of broadband subscribers in the U.S. ex-

ceeded 105 million by the end of 2020. The availability and

quality of broadband networks are of great policy concerns,

as the U.S. government seeks to ensure an affordable and

high-quality Internet service is provided to all [1].

In 2011, the Federal Communications Commission (FCC)

launched the Measuring Broadband America (MBA) project

to gain insight into the operational conditions of broad-

band networks [2]. The MBA project enlisted thousands

of volunteers residing in ten U.S. ISPs and installed cus-

tomized devices inside their homes. These devices send

continuous measurement packets to estimate performance

metrics such as packet loss rates, round trip latencies, and

download/upload speeds of the volunteers’ broadband net-

works. Similarly, much previous work measured and char-

acterized different aspects of the last-mile broadband access

∗Zhenyu Zhou is now at Google.

networks, including latency, loss, throughput, and availabil-

ity [8, 17, 18, 25, 26, 28–30].

FCC’s MBA project and previous work provide useful in-

sight into how U.S. broadband networks perform. Among

the metrics they gather, the packet loss rate is a particularly

important Quality of Service (QoS) metric, as it affects TCP

throughput as well as applications such as VoIP, live stream-

ing, or multi-player online games. The communication quality

of VoIP will significantly drop when the packet loss rate ex-

ceeds 1% [2]. In addition, the default TCP variant used by

dominant operating systems, TCP Cubic [20], will reduce its

sending rate after a packet loss.

However, the packet loss rates previous work measured

have a severe limitation: they are end-to-end packet loss rates

and do not separate the last-mile physical layer loss from

other sources of packet loss. Packet loss comes from two

main sources: error loss caused by the physical layer transmis-

sion errors and congestion loss caused by buffer contention

at routers or switches. It is important to separate these two

sources of packet loss for the following reasons.

First, physical layer packet loss is a direct indicator of how

physical layer infrastructure functions, while other metrics, in-

cluding latency, throughput, and end-to-end packet loss rates,

are affected by multiple factors such as network capacity

provisioning and router buffer management. Thus, physical

layer loss can serve as a simple anomaly detector to network

maintenance teams, while other metrics cannot.

Second, it is of great policy interest to monitor physical

layer loss, as it is related to how well a broadband network is

maintained. Broadband services in the U.S., while typically

operated on existing telecommunications infrastructure (i.e.,

telephone or cable TV), are declassified from common carrier

services [15]. Yet broadband Internet connections are increas-

ingly becoming a public utility. Through continuous monitor-

ing, policymakers can gauge how well the infrastructure is

maintained without regulation and may consider appropriate

policy adjustments if an unregulated broadband market leads

to decreased quality of service.

Finally, understanding how much physical layer errors con-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 845

tribute to end-to-end packet loss offers valuable insight into

the design of congestion control algorithms and network sim-

ulations. A number of TCP variants, including Cubic [20],

consider packet loss as a congestion signal. If physical layer

error loss is common, we need to reexamine this assumption

and possibly move away from such protocols to a more loss-

agnostic one such as TCP BBR [14]. In addition, the design of

a network protocol often uses simulations to evaluate the ini-

tial design. To conduct simulations, the designer often needs

to configure a link’s packet loss rate. To date, we do not have

a clear understanding of how to configure the physical layer

loss rate of a broadband link, but broadband networks are

widely used in end-to-end connections. If we can separate the

physical layer loss from the end-to-end packet loss, we can

gain insight into how to build a physical layer error model

and use it to conduct high-fidelity network simulations.

In this work, we aim to characterize packet loss caused by

physical layer transmission errors. A regional cable ISP in the

U.S. provides us physical layer performance data collected

from 77K+ devices (primarily cable modems) every four

hours from two disjoint geographical areas in a 16-month

period.2 The devices span across 394 hybrid-fiber-coaxial

(HFC) network segments. Following operational practice, we

refer to each HFC network segment as a fiber node (FN), as

such a network segment terminates at a fiber optic node. The

data we obtain include the number of unerrored, corrected,

and uncorrectable DOCSIS [12] codewords a device sends

since its last reboot. We develop techniques (§ 2) to use these

codeword statistics as a proxy to understand the characteristics

of the physical-layer transmission errors.

We make several observations that are relevant to network

operations and research. First, we find that the average code-

word error rate of an FN in our data spans six orders of mag-

nitude, ranging from 1.3×10−6% to 4.51%. The middle 80%

of the FNs (excluding the top and bottom 10%) have av-

erage codeword error rates ranging from 9.53× 10−6% to

1.34×10−3 %. We establish a relation between the codeword

error rates in our data and the packet loss rates from FCC’s

MBA data, by assuming that the cable ISPs included in the

MBA study have similar physical layer characteristics. We

find that, for the five cable ISPs MBA monitors, even with a

conservative estimate, 12% to 25% of the packet losses could

come from the physical layer.

This finding has several ramifications. First, it establishes

a baseline for a “normal” physical-layer error rate. If an ISP’s

packet loss rate significantly exceeds the baseline, it either

indicates that there is an anomaly in the network infrastruc-

ture, or the congestion loss is high. Second, it challenges the

assumption of loss-based congestion control protocols, as

a significant percentage of packet loss can be attributed to

physical layer errors even in wireline networks. Lastly, it sug-

gests that comprehensive network measurements should use

2Due to our non-disclosure agreement, we cannot disclose the locations

of the devices or the name of the ISP.

packets of different sizes to measure packet loss, as codeword

error loss is not negligible and packets of different sizes would

be encoded in different numbers of codewords, resulting in

different loss rates.

A second noteworthy finding is that we observe in a small

number of FNs, all devices in those networks show codeword

error rates exceeding 1% for months of time. Surprisingly,

customers served by these devices do not make more trouble

calls on average. In contrast, when customers who reside in

the networks with a typical codeword error rate experience

an error rate of the same value (> 3%), they make nearly 15

times more daily customer calls. This discovery suggests that

codeword error rates can reliably detect network faults in the

absence of customer trouble tickets and ISPs should not solely

rely on customer tickets to detect network maintenance issues.

Based on this discovery, the ISP we collaborate with has

developed an internal tool to periodically monitor codeword

errors across its networks. In addition, the observation that

codeword error rates of > 1% may persist for months suggests

that congestion may not be the culprit when users experience

poor application performance.

Finally, we analyze how codeword error rates change be-

fore and after COVID-19 and find that the error rates are not

impacted by the increase in traffic loads. We find that the code-

word error rates of devices in the same FN are more correlated

when their codeword error rates are high. We also study how

weather impacts codeword error rates. The results show that

extremely high (> 95◦F) or low (< 15◦F) temperatures in-

crease codeword error rates, while the types of precipitation

(e.g., freezing rain, snow) tend to cause outages than increase

codeword error rates.

A limitation of this work is that our findings are based on

data from one ISP. That being said, the ISP that provides us

the data follows standard industry practices and uses standard

Cable Modem Termination System (CMTS) equipment from

dominant vendors. While different ISPs may choose CMTS

modulation profiles to overcome specific radio frequency (RF)

impairments at the cost of potentially reduced capacity, we are

not aware of other reasons that will cause the overall physical

layer loss characteristics of one ISP to differ from those of

others. We release the code and part of the data used for this

study.3

To the best of our knowledge, this work is the first large-

scale and public study on the characteristics of physical-layer

transmission errors of cable broadband networks. We make

three main contributions. First, we characterize the physical-

layer transmission errors of 394 HFC network segments and

establish the relationship between physical-layer transmis-

sion errors and packet loss measured by FCC’s MBA project.

Second, we show that physical-layer transmission errors can

indicate network faults in the absence of trouble tickets. Fi-

nally, we show that codeword errors are not impacted by

3https://github.com/zhenyu-zhou/pnm-loss-nsdi22

846 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/zhenyu-zhou/pnm-loss-nsdi22

traffic loads or types of precipitation, but tend to increase in

extremely cold or hot weather.

2 Methodology

In this section, we describe how we estimate the physical

layer transmission errors and how we relate them to upper

layer packet loss.

2.1 DOCSIS Codeword

The data items used in this study are the DOCSIS codeword

statistics. Before we describe the data, we first describe what

DOCSIS codewords are and how they impact upper layer

packet loss. A codeword is a cable modem’s basic transmis-

sion unit at the physical layer. The cable modems used in this

study are DOCSIS 3.0 modems. DOCSIS 3.0 uses Forward

Error Correction (FEC) to detect and correct errors at the

physical layer. A codeword includes a data section and an

FEC parity check section. In DOCSIS 3.0, each codeword is

generated using a Reed Solomon (RS) encoder. The size of

a codeword can vary from 18 bytes to 255 bytes, containing

k data bytes and 2T parity check bytes. An RS codeword

with 2T parity check bytes can correct up to T byte or 8T bit

errors [13]. Both the data length k and the parity check length

2T of a codeword are vendor and configuration dependent.

Typically, a CMTS vendor specifies a default setting of k and

T for a long codeword and a short codeword. Cable operators

can choose different settings, but the current industry practice

is to use the default settings chosen by vendors.

Most of our data are collected from CMTS devices manu-

factured by a dominant vendor in the U.S. As an example, the

default setting for our data includes two codeword lengths:

one long codeword and one short codeword. The long code-

word has a data length k of 200 bytes and a parity check byte

length of 2T = 30 bytes. The long codeword is able to correct

15 bytes of errors. Similarly, the short codeword has a data

length k = 99 bytes, and a parity check byte length 2T = 10

bytes. It is able to correct 5 bytes of errors in a codeword.

When a cable modem receives a data frame from an upper

layer protocol such as Ethernet, if the data frame fits into

a long or a short codeword, it will transmit the data frame

using one codeword. Otherwise, the modem will use multiple

codewords to transmit the data frame. A cable modem will

at most use one short codeword at the end of a data frame to

transmit it. If a data frame does not fit exactly into multiple

codewords, the cable modem will use padding bytes at the last

codeword. Figure 1 shows an example of how a cable modem

encodes an Ethernet MAC frame into multiple codewords.

As bit errors at the physical layer tend to be bursty, a cable

modem uses a scrambler to permute the content of a codeword

before transmission, following a pre-defined pseudo-random

pattern. The receiving end, the CMTS, will reverse the per-

mutation before decoding the received data. Therefore, bursty

errors in transmitted signals become random errors in the

unscrambled codewords.

MAC Frame

Frame Size = x

Link Layer

Physical Layer

First k bytes of frame data 2T FEC
Last (x mod k) bytes

of frame data
2T FEC…

Padding

Bytes

Codeword 1 Codeword n

Figure 1: A link layer MAC frame is encoded by multiple code-

words at the physical layer. Each codeword has a data section

and an FEC section.

2.2 Codeword Error Rate

We refer to the ISP that provides us data as AnonISP. We now

describe how we compute the codeword error rate using data

collected by AnonISP. AnonISP collects the data through

their Proactive Network Management (PNM) platform [11],

which is part of DOCSIS’s design. It aims to help cable ISPs

troubleshoot and diagnose their networks. With PNM, an

ISP can collect various performance metrics from both cable

modems and a CMTS, including codeword counters, signal

transmission power (TX power), and signal to noise ratio

(SNR).

For each cable modem, AnonISP collects the total number

of unerrored codewords sent by a cable modem, the number

of uncorrectable codewords that fail FEC, and the number of

codewords corrected by FEC periodically. All numbers are cu-

mulative since the modem’s last reboot. From DOCSIS 3.0’s

specification [13], uncorrectable codewords are discarded

without link-layer retransmission. For correctable codeword

errors, they do not manifest them as upper-layer packet dis-

cards. Therefore, we focus on the uncorrectable codeword

errors. Without specific clarification, in this work, we use

codeword errors to refer to uncorrectable codeword errors.

We estimate the average codeword error rate P(e), where

e denotes packet loss events, of a cable modem as the num-

ber of uncorrectable codewords divided by the total number

of codewords a CMTS receives in each collection period:

uncorrectable/total. Note that in our data, codewords are of

two different lengths. The codeword error rate of a long code-

word and a short codeword could be different, but we can still

estimate the average codeword error rate without knowing the

distribution of short or long codewords. Formally, let P(e|l)
denote the probability of a long codeword error rate and P(e|s)
be the probability of a short codeword error rate. Let P(l) and

P(s) be the probability of a long or short codeword occurring

in the data stream, respectively. We can compute the average

codeword error rate P(e) as follows:

P(e) = P(e|l)P(l)+P(e|s)P(s)

=
uncorrectable long

long
P(l)+

uncorrectable short

short
P(s)

=
uncorrectable long

long
×

long

total
+

uncorrectable short

short
×

short

total

=
uncorrectable

total

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 847

2.3 Codeword Errors vs. Packet Loss Rates

We aim to understand how physical layer transmission errors

affect end-to-end packet loss. We ask this question: how much

do physical layer transmission errors contribute to higher-

layer packet loss? Since FCC’s MBA project measures packet

loss on broadband networks, if we can establish the relation-

ship between codeword errors at the physical layer and packet

loss measured by the MBA project, then we can estimate how

much packet loss is caused by physical layer errors. To do so,

we make the assumption that the physical layer loss charac-

teristics of AnonISP’s networks are representative of those of

U.S. cable broadband networks. With this assumption, we can

correlate the network-layer packet loss rates from the MBA

project with codeword error rates observed in our data.

There are three challenges in establishing the correlation.

First, a packet has a variable length so that it may be encoded

in multiple codewords. Hence, there does not exist a one-to-

one correspondence between the codeword error rate and the

packet loss rate. Fortunately, FCC’s MBA project uses short

UDP ping packets with packet length set to 62 bytes [4] to

continuously monitor the packet loss rates. Such a packet will

be encoded using one short codeword under common CMTS

configurations. Therefore, if we assume cable broadband net-

works operate in similar physical conditions, then the short

codeword error rate will correspond to the packet loss caused

by physical layer errors in the MBA project.

Second, the codeword error rate we measure is the aver-

age codeword discard rate that includes both short and long

codewords, while the FCC MBA project uses only short UDP

packets that correspond to short codewords for measuring

packet loss. To address this challenge, we analyze whether

the average codeword error rate is an over- or under-estimate

of the short codeword error rate. According to the common

CMTS configurations, for a long codeword to become uncor-

rectable, more than 120 bits out of 200 bytes must be errored.

For a short codeword to become uncorrectable, more than 40

bits out of 99 bytes must be corrupted. Since a long codeword

is roughly twice the size of a short codeword, and the num-

ber of FEC bits in a long codeword is three times that in a

short codeword, the long codeword should have a much lower

error rate than the short one, assuming the bit error rate in a

long or a short codeword is the same. Therefore, the average

codeword error rate in our data is a lower bound to the short

codeword error rate. In other words, if the cable networks

operate in similar physical conditions, the average codeword

error rate we measure is a lower bound to the physical layer

error rate from FCC’s MBA project, since the measurement

project only uses short UDP packets.

Third, the codeword statistics we obtain only include the

upstream channels. That is, we only observe the codeword

errors from a customer’s device to the ISP’s cable headend.

However, packet loss measured by FCC’s MBA project is

bi-directional. To reconcile the difference, we use the up-

stream transmission errors as a lower bound to bi-directional

transmission errors and an upper bound to downstream trans-

mission errors. DOCSIS’s downstream channels operate at

higher frequencies than upstream channels [13], while RF

noises concentrate on the lower RF range. In § 4.1, we show

how the codeword error rate decreases as a channel’s fre-

quency increases. Therefore, downstream channels should

have lower codeword error rates than upstream channels and

we can use the upstream transmission errors to upper-bound

downstream transmission errors.

3 Datasets

Next, we describe our datasets and data cleansing steps.

AnonISP Data At the time the data were collected, AnonISP

uses three upstream channels and sixteen downstream chan-

nels as data channels in their networks. Each channel is of

6MHz width. Our data include the upstream codeword statis-

tics only. At each data collection time point, AnonISP collects

several metrics for each upstream channel, including SNR,

cumulative values of the number of unerrored codewords,

the number of corrected codewords, and the number of uncor-

rectable codewords each cable modem sends to a CMTS since

it reboots, and the signal transmission (TX) power of a cable

modem. The data is collected from 01/06/2019 to 03/03/2020

and from 03/24/2020 to 04/17/2020. The data are collected

every 4 hours. In total, the data come from 77,696 devices and

span 394 fiber optical nodes. On average, each fiber node has

197 devices. In total, we have collected ∼ 139M data points

for each upstream channel. We call this dataset the codeword

dataset.

In the codeword dataset, each data point contains the data

from three upstream channels. If these three channels send

fewer than 2,000 codewords in total between the current and

its previous data collection point, which means the three chan-

nels send less than 200KB of data during the last 4 hours, we

will consider the current data point invalid as the loss statistics

may be distorted because of too few numbers of codewords.

In addition, it is possible that at a data collection point, we

fail to retrieve data from a device. Since our data are collected

every 4 hours, if we observe that the time interval between two

adjacent data points is 4×(1+x) hours (where x rounds to an

integer), we will insert x empty placeholder data points in the

data stream. These empty placeholders indicate that we fail to

retrieve data at those time points. We infer empty placeholder

data points and refer to them as missing data. If all three

channels’ data are missing, we will count this data point as

a missing data point, which can indicate that the network is

unavailable. If only one or two channels have missing data,

we will discard this data point, because we often combine the

three channel’s data for our analysis.

Among all of the data points (∼ 139M), we discard ∼ 33M

data points and obtain ∼ 106M valid data points. In addi-

tion, we infer ∼ 11M missing data points when a collection

point fails to collect any data. Among the 33M discarded data

848 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

points, ∼ 9M of the data points are discarded due to miss-

ing partial channel data, while ∼ 24M of the discarded data

points have fewer than 2,000 codewords. We use the valid

data points and the missing data points for our analysis in this

paper.

Besides the codeword dataset, AnonISP also provides us

the customer call trouble tickets from the same group of de-

vices during the same time periods. Each trouble ticket in-

cludes the call time, the description of the issue that triggered

the customer call, and how AnonISP resolved the issue.

FCC Data from MBA Project To understand the relation

between codeword error rates and packet loss rates, we com-

pare our data with the FCC data obtained from the MBA

project [2]. The FCC data are continuously collected from

thousands of users all over the United States since Jan 2011

and are available to the public. FCC deployed whitebox mea-

surement devices in volunteers’ homes. The volunteers are

distributed across 10 wireline broadband providers. The mea-

surement devices continuously send UDP packets to target

test nodes to measure packet loss rates. If a device does not

receive a response packet within three seconds, it labels the

packet as lost. The devices follow the Poisson distribution to

send probe packets over a fixed interval of one hour [4]. We

use the FCC data collected from the same period as our data.

The FCC data contain several broadband technologies, includ-

ing DSL, Cable, and FTTH. Since our data are from cable

networks only, we only analyze the data collected from cable

networks in the FCC data, and leave a comparison among

different physical layer techniques as future work.

Weather Data We collect weather data that overlaps with the

codeword dataset in time and location to study how weather

affects physical layer transmission errors. We use the IBM

Weather Data APIs [6] to collect the hourly weather condi-

tions given a time period and the zip code each device in

our dataset belongs to. Each weather data record includes

the basic weather metrics such as temperature, atmospheric

pressure, and humidity. It also contains the description of the

current weather type, such as Light Rain or Snow.

Ethical Considerations Prior to obtaining data from Anon-

ISP, we consulted with our organization’s IRB and obtained

their permission to conduct this research. The MAC address

and account number provided by AnonISP are hashed val-

ues. All the statistics in our data are performance monitoring

metrics generated by the devices. For each customer trouble

ticket, it only records the time of the trouble call, the hashed

account number to match the monitoring metrics, the descrip-

tion of the issue, and the action of the ISP. So there is no

personal identification information included in our data.

4 Physical Layer Loss vs. Overall Loss

In this section, we study how the physical layer errors look

like using the codeword dataset. We compare the physical

layer errors with packet loss observed in the FCC data, aiming

10
-2

10
-1

1

10

10
2

10
-5

10
-4

10
-3

10
-2

10
-1 1 10 10

2

P
e

rc
e

n
ta

g
e

 o
f

D
a

ta
 P

o
in

ts
 (

%
)

Codeword Error Rate (%) (bins of 700)

21.5MHz Channel
28.4MHz Channel

35.3MHz Channel

Figure 2: The complementary cumulative distribution of the

codeword error rate in each upstream channel. The error rate

decreases when the channel frequency increases.

to answer the question: What is the relationship between the

physical layer codeword error rate and the end-to-end packet

loss rate?

4.1 Codeword Errors in Different Channels

Our codeword data are collected from three upstream channels

in AnonISP’s HFC networks. The three upstream channels

send RF signals with 21.5MHz, 28.4MHz, and 35.3MHz cen-

ter frequency, respectively. The downstream channels will

each use a higher center frequency, ranging from 54 MHz

to as high as 1000 MHz. Figure 2 plots the complementary

cumulative distributions of all three channels’ codeword error

rates, respectively. Each data point is computed as the number

of uncorrectable codewords divided by the total number of

codewords a device sends to a CMTS over the 4-hour data

collection period. Both the x-axis and y-axis are in log-scale.

From Figure 2, we can see that the majority of the data

points have no or few codeword errors, as seen in the flat

sections at the beginning of the lines. At least 75% of the

data points in each channel have no uncorrectable codewords.

However, for all three channels, the curves start to drop after

the error rate exceeds 10−4, suggesting that a small fraction

of lossy periods contribute to the majority of codeword errors.

In particular, more than 1% of the data points have codeword

error rates exceeding 1%; and more than 0.1% of the data

points have codeword error rates exceeding 10%. The average

codeword error rates in the three channels are 0.11%, 0.08%,

and 0.06%, respectively. Furthermore, the channels with a

higher center frequency have lower error rates, consistent with

the operational knowledge that lower frequency channels are

more prone to RF interference.

In the DOCSIS design, a cable modem will switch to a

different upstream channel when one upstream channel does

not work expectedly. We study how codeword errors in the up-

stream channels are correlated. That is, for each data point, we

investigate whether the three channels show similar codeword

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 849

 0

 0.2

 0.4

 0.6

 0.8

 1

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1 1 10 10

2

10

10
2

10
3

10
4

10
5

A
v
e

ra
g

e
 C

h
a

n
n

e
l
E

rr
o

r
R

a
te

 E
n

tr
o

p
y

#
 o

f
D

a
ta

 P
o

in
ts

Codeword Error Rate (%) (bins of 800)

Entropy
of Data Points

Figure 3: The relationship between the av-

erage channel error rate entropy and the

codeword error rate together with the num-

ber of data points in each bin.

 0

 20

 40

 60

 80

 100

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1 1 10

P
e

rc
e

n
ta

g
e

 o
f

F
N

s
 (

%
)

Codeword Error Rate (%) (bins of 700)

Figure 4: CDF of the average codeword

error rate of an FN.

 0

 2

 4

 6

 8

 10

Feb19

M
ar19

Apr19

M
ay19

Jun19

Jul19

Aug19

Sep19

O
ct19

N
ov19

D
ec19

Jan20

Feb20

C
o

d
e

w
o

rd
 E

rr
o

r
R

a
te

 (
%

)

Figure 5: The daily-average codeword er-

ror rate of the FN with the highest average

codeword error rate in our data.

error rates or the codeword error rates of the three channels

differ by a lot. To quantify the similarity of codeword errors

in each data point, we compute the channel error entropy S,

where S is defined as the error rate entropy of each data point.

That is, let si be the uncorrectable codewords sent via chan-

nel i divided by the total number of uncorrectable codewords

across all three channels in each data point. We compute

−∑3
i=1 si lnsi for each data point. A higher channel error en-

tropy value indicates a modem has a lower error rate variation

among the three channels for this data point. If all the un-

correctable codewords are from one single channel, then S

will be 0. In contrast, if the three channels have the same

codeword errors, the value of S will achieve its maximum.

Figure 3 shows the relationship between the average chan-

nel error rate entropy and the codeword error rate. We divide

the codeword error rate values into 800 bins and calculate

the average error rate entropy of data points in each bin. This

figure shows that the average channel error rate entropy in-

creases as the codeword error rate increases, suggesting that

when codeword errors in one upstream channel occur, they

are likely to occur in other upstream channels as well. So

DOCSIS’s upstream channel switching algorithm may be

insufficient to avoid codeword errors.

Figure 3 shows that codeword errors are highly correlated

in three upstream channels when the codeword error rate

exceeds 0.1%. Therefore, without specific mentioning, we

will use the number of combined codewords and the number

of combined codeword errors from three channels in each data

point for our analysis in the rest of this paper. The average

codeword error rate from the combined channels is 0.088%,

while 98.68% data points have a codeword error rate < 1%.

Takeaways: Codeword errors occur infrequently, and a

small percentage of lossy periods contribute to most of the

codeword errors. Higher frequency channels have lower code-

word error rates, and when codeword errors occur, they tend

to occur in all upstream channels. We show more examples

of raw codeword error rates in Appendix A.

Next, we investigate whether the devices in different fiber

optic nodes (FNs) will have different codeword error rates.

To do so, we compute the codeword error rate of each device

over the 16-month data collection period. We then compute

the average codeword error rate of each FN by averaging the

codeword error rates of all devices in the FN.

Figure 4 shows the CDF of the average codeword error

rate among 394 FNs in our data. The x-axis is again in log-

scale. We observe that the average codeword error rate differs

significantly among different FNs. In our data, there are three

FNs that have an average codeword error rate higher than 1%,

and 46 FNs have an average codeword error rate between 0.1%

to 1%. We define the FNs with > 1% error rates as unhealthy

FNs, the FNs with 0.1% - 1% error rates as alarming FNs,

and the remaining 345 FNs as healthy FNs. The thresholds

1% and 0.1% are chosen according to operational experience

suggested by AnonISP. The healthy FNs constitute 87.6% of

the FNs seen in our data and the codeword error rate averaged

over those FNs is 0.0179%. They contribute to only 18.79%

of the total codeword errors. In contrast, the alarming FNs are

11.68% of the FNs see in our data and their average codeword

error rate is 0.352% and they contribute to 42.67% of the total

codeword errors. The unhealthy FNs are 0.761% of the total

FNs. Their average codeword error rate is 3.778% and they

contribute to 38.54% of the total codeword errors.

We are interested in understanding why certain FNs have

such high codeword error rates. Figure 5 shows the daily

codeword error rate from the FN with the highest average

codeword error rate in our data. The average error rate is over

7% before July 2019, and then it decreases to 2%, suggesting

that AnonISP repaired some problems in this node. However,

even after this repair event, this FN still has a nearly 2%

daily codeword error rate, and it exists till the end of our

data. We are informed by AnonISP that this FN is affected

by issues in the network hardware. Its maintenance team is

aware of this persistent problem, but it either cannot repair

the issue for some reason (e.g., waiting on permits, access

and/or restrictions, etc.) or has deprioritized the repair for

some reason (e.g., it is a known but uncorrectable cause).

850 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 90

 92

 94

 96

 98

 100

AnonISP

C
om

cast

C
harter

O
ptim

um

M
ediacom

C
ox

P
e
rc

e
n
ta

g
e
 (

%
)

< 0.4% 0.4%-1% > 1%

Figure 6: This figure shows the percentage of data points whose

packet loss rate was less than 0.4%, between 0.4% to 1%, and

greater than 1% for each cable ISP in the FCC data, together

with AnonISP’s loss rate we measure.

10
-3

10
-2

10
-1

1

10

10
2

10
-3

10
-2

10
-1 1 10P

e
rc

e
n
ta

g
e
 o

f
D

e
v
ic

e
s
 (

%
)

Packet Loss Rate (%)

AnonISP’s Devices
FCC Devices

Figure 7: This figure shows the complementary cumulative dis-

tribution of the average packet loss rate of each device in the

FCC data and in the AnonISP’s data we measure, respectively.

Takeaways: Codeword error rates in different HFC network

segments vary significantly. Some network segments may

experience persistent high codeword error rates (> 1%). There

are 87.6% healthy FNs in our data and they contribute to

18.79% of the total codeword errors. The 12.4% alarming and

unhealthy FNs contribute to 81.21% of codeword errors seen

in our data.

4.2 Comparison to FCC data

A key question this work aims to answer is how much physical

layer error loss contributes to end-to-end packet loss. We com-

pare our data with the FCC data collected by the MBA project

to gain insight into this question. The FCC data measures

the packet loss rates in different types of networks, including

Cable, FTTH, and DSL. We only used the data collected from

cable ISPs in the FCC dataset.

The FCC dataset does not include data from AnonISP,

which prevents us from comparing the physical layer loss of

 0

 0.05

 0.1

 0.15

 0.2

C
om

cast

C
harter

O
ptim

um

M
ediacom

C
ox

AnonISP

P
a
c
k
e
t
L
o
s
s
 R

a
te

 (
%

)

Phy Layer Loss in Healthy FNs
Network Layer Loss

Figure 8: The average packet loss rate in each cable ISP, together

with the packet loss rate we measure in AnonISP and the physical

layer error rate among the health FNs in AnonISP.

AnonISP’s networks directly with end-to-end packet loss. To

address this challenge, we design an experiment to approxi-

mate the FCC’s packet loss measurement for AnonISP. We

deploy a measurement node on a vantage point that is close in

router hops to AnonISP’s networks. The vantage point sends

ICMP echo request packets to all 18,772 pingable modems

located in AnonISP’s cable networks in the data collection

regions periodically. For each modem, we send ∼ 250 ICMP

packets per hour. We run this experiment from 11/03/2021

to 11/11/2021. The measurement node sends 914M packets

in total. The FCC dataset has been cleansed to exclude data

points with high loss rates (> 10%) and high RTTs [5]. We

applied to our measurement results the same data cleansing

script as applied to the FCC data.

Figure 6 shows the percentages of end-to-end packet loss

rates in different ranges for the FCC dataset, together with

the end-to-end packet loss rate we measure for AnonISP. We

note that the ICMP packet loss rate observed in AnonISP

is comparable to the packet loss rates observed in the FCC

measurement. Similar to our measurement results, most data

points in the FCC data suffer no or few packet losses and

the majority of packet loss comes from a small percentage

of lossy periods. For example, around 97.03% data points in

our data have less than 0.4% loss rate, and 1.73% data points

have loss rates between [0.4%, 1%], while in Comcast’s data,

96.43% data points have less than 0.4% packet loss rate, and

1.72% data points have packet loss rates between [0.4%, 1%].

We compute the average packet loss rate for each device

in the FCC data and that for each device in our measurement.

There are a total of 1,073 devices installed in five cable ISPs in

the FCC measurement. In contrast, we measure 18K+ devices.

Figure 7 shows the results. Since we measure more devices,

we see a wider range of packet loss rates in our measurement

than that in the FCC data.

Figure 8 shows the average packet loss rate in each ca-

ble ISP, together with the average physical layer error rate

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 851

among the healthy FNs seen in our data. We compare the FCC

packet loss rate with the physical layer codeword error rate

from healthy FNs only because FCC’s volunteers are sparsely

located. The alarming and unhealthy FNs account for only

12.44% of the 394 FNs in our data. Therefore, there may or

may not be any devices located in those outlier FNs in the

FCC study. As we aim for a lower-bound estimate regarding

the physical layer’s contribution to end-to-end packet loss,

we exclude the FNs with the high error rates in our data from

the comparison. We assume that the physical layer error rates

in those ISPs’ healthy FNs are the same as those in our data

(0.0179%) since we think our data is representative of the

nature of cable networks. Based on this assumption, we see

that at least from 12% to 25% packet loss seen in the FCC

data could have come from physical layer errors.

Meanwhile, we estimate how much ICMP packet loss from

our own measurement could come from physical layer trans-

mission errors. If we assume that our sampled devices do not

include any devices in the alarming or unhealthy FNs, then

26.1% of the packet loss seen in AnonISP can be attributed to

physical layer codeword errors. However, this estimate may

be overly conservative, as we receive ICMP echo replies from

more than 20% of all devices in our codeword dataset. If we

assume that we have representatively sampled devices from

both healthy and alarming FNs, and since the average code-

word error rate among the healthy and alarming FNs in our

data is 0.0551%, and the average ICMP packet loss rate we

measure is 0.0686%, then 80.3% of packet loss in our mea-

surement could have come from physical layer transmission

errors. However, since we cannot establish a one-to-one cor-

respondence between a device we ping and a device we see in

the codeword dataset, due to the anonymization procedure ap-

plied to the data, we cannot conclude whether the devices we

ping are a representative subset of devices from the healthy

and alarming FNs. Therefore, we prefer to use 26.1% as a

safer lower bound.

Our estimate presents how much physical layer errors con-

tribute to end-to-end packet loss. This is a lower bound esti-

mate for the following reasons. First, the baseline codeword

error rate we compute is the average between long and short

codewords, while the FCC measurement packets only use

short codewords (§ 2.3). The short codeword’s error rate is

higher than the average codeword error rate due to the encod-

ing scheme. Second, the baseline codeword error rate only

includes codeword errors in the upstream channels, while the

packet loss measurement is affected by both upstream and

downstream errors. Third, we have conservatively excluded

all alarming and unhealthy FNs in our codeword error rate

calculation, while the FCC measurement may include such

nodes. Finally, the baseline codeword error rate only includes

the network segment from a cable modem to a CMTS, while

the physical layer errors in the entire end-to-end paths can

contribute to packet loss in the FCC measurement.

We also note that different cable ISPs have very different

10

10
2

10
3

10
4

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1 1 10 10

2
 0

 10

 20

 30

 40

#
 o

f
c
o

d
e

w
o

rd
s
 /

 s

N
o

rm
a

liz
e

d
 T

ic
k
e

ti
n

g
 R

a
te

Codeword Error Rate (%) (bins of 800)

of Codewords
Normalized Ticketing Rate

Figure 9: This figure shows how codeword error rate affects

the number of codeword sent per second by a device and the

normalized customer ticketing rate. The number of data points

in each bin is the same as shown in Figure 3.

packet loss rates. Among the five ISPs in the FCC data, Com-

cast shows the lowest average packet loss rate: 0.073% with a

standard deviation of 0.486%. In contrast, the average packet

loss rates of Mediacom and Cox are 0.138% (with a standard

deviation of 0.621%) and 0.140% (with a standard deviation

of 0.619%), respectively. They are almost two times higher

than Comcast’s average packet loss rate. AnonISP shows the

lowest packet loss rate among the six ISPs. Its packet loss

rate is slightly lower than Comcast’s. We speculate that this

is because we place the measurement node close to the cable

modems and our measurement packets have shorter RTTs

than FCC’s measurement packets. Therefore, they encounter

fewer congestion and physical layer transmission error events.

Takeaways: We show that 12% to 25% of the packet loss

measured by FCC’s MBA project on cable ISPs could have

come from physical layer errors. This result suggests that

physical layer errors in cable networks play a non-negligible

role in end-to-end QoS. Network research and operations

should take this source of packet loss into account.

5 Analysis of User Behavior

In this section, we investigate how codeword errors affect

user behavior. We use the amount of data sent by customer

devices and the customer reported trouble tickets to quantify

user behavior and study how they change when codeword

error rates change.

5.1 Impact on Usage

We use the number of codewords in each data point to estimate

the amount of data users sent, because application data will

be sent using codewords. We divide the range of codeword

error rates into 800 bins. For each bin, we calculate the total

number of codewords from the data points falling into this

bin and normalize it by the period of time covered by the

data points in the bin. With this computation, we obtain the

852 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 20

 25

 30

 35

 40

 45

 50

 55

 60

<= 1% 1% - 3% > 3%

#
 o

f
c
o

d
e

w
o

rd
s
 /

 s

Codeword Error Rate

Healthy
Alarming

Unhealthy

(a) Number of codewords sent per second

 0

 2

 4

 6

 8

 10

 12

 14

 16

<= 1% 1% - 3% > 3%

N
o

rm
a

liz
e

d
 T

ic
k
e

ti
n

g
 R

a
te

Codeword Error Rate

Healthy
Alarming

Unhealthy

(b) Normalized per-customer ticketing rate

Figure 10: This figure shows how users or devices in different types of FNs behave when experiencing different codeword error rates.

number of codewords sent by a device per second when a

specific codeword error rate occurs.

Figure 9 shows the relationship between the codeword er-

ror rate and the number of codewords sent per second by a

customer device. We can see that the number of codewords

sent per second by a user device decreases as the codeword er-

ror rate increases from 10−6% to 10−2%. It plateaus between

10−2% and 1%, and sharply decreases when the codeword

error rate increases beyond 10%. The data between 1% and

10% error rates are jagged. One plausible explanation is that

loss rates within this range will significantly impact user ex-

perience [2, 3], and users or applications may react to the

adverse conditions by multiple retries, leading to a fluctuated

data rate.

5.2 Impact on Customer Trouble Tickets

When a customer has poor QoE, she may call her ISP’s cus-

tomer service to report the issue. Therefore, customer tickets

are a good indicator of network problems and also reflect

customer experience [22]. We study how customer reported

trouble tickets are affected by codeword errors. We define

the ticketing rate as the average number of trouble tickets

each customer reports in a unit time. We compute a baseline

ticketing rate by computing the average number of tickets

reported by each customer in a unit time. We define a normal-

ized ticketing rate as a ticketing rate divided by the baseline

ticketing rate.

Figure 9 shows the relationship between the normalized

ticketing rate and the codeword error rate. Similarly, we di-

vide the range of codeword error rates into different bins and

compute the normalized ticketing rates for data points that fall

into each bin. The customer ticketing rates remain stable until

the codeword error rate exceeds 1%. It increases fastly after

that. In extreme cases, when the codeword error rate exceeds

50%, the customer ticketing rates increase by more than 40

times compared to the baseline ticketing rate.

5.3 Conditioned User Behavior

Next, we investigate how codeword error rates impact a user’s

behavior for users located in different network environments.

From our study in § 4.1, we show that different FNs can have

drastically different codeword error rates. We classify the

FNs in our data into three types based on their average code-

word error rates: healthy (< 0.1%), alarming ([0.1%,1%]),
and unhealthy (> 1%). We divide the codeword error rates

into three ranges < 1%, [1%,3%], and > 3% and examine

how user behavior in different types of FNs varies in different

codeword error ranges. Specifically, we compute the number

of codewords sent per device and the normalized ticketing

rate for each codeword error range for healthy, alarming, and

unhealthy FNs, respectively.

Figure 10(a) and 10(b) show the results. For users in healthy

FNs, their data usage decreases and their normalized ticketing

rate increases as the codeword error rate increases. This trend

is consistent with the general trends shown in Figure 9.

The usage and ticketing rate patterns in the alarming and

unhealthy FNs are somewhat counter-intuitive. Customers in

unhealthy FNs report much fewer tickets on average, when

their networks show a > 3% loss rate. In contrast, for the cus-

tomers in healthy FNs, when the codeword error rate is larger

than 3%, the probability of a customer reporting a ticket will

increase by 14.93 times. Instead, the customers in unhealthy

FNs increase their data usage when the error rate exceeds

> 3%, suggesting that they or their applications attempt to

use retransmissions or redundant transmissions to overcome

packet loss. For customers in alarming FNs, their behavior

is even more puzzling. They increase their data usage when

the error rate is in the [1%,3%] range and decrease the usage

when it exceeds 3%. One plausible explanation is that the

customers in those FNs would attempt retry or retransmission

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 853

 0.001

 0.01

 0.1

 1

 10

 100

 15 20 25 30 35 40

10

10
3

10
5

10
7

C
o

d
e

w
o

rd
 E

rr
o

r
R

a
te

 (
%

)

#
 o

f
D

a
ta

 P
o

in
ts

Signal to Noise Ratio (db)

21.5MHz Channel
28.4MHz Channel
35.3MHz Channel

of Data Points

Figure 11: The correlation between the codeword error rate and

the SNR together with the number of data points with respect to

an SNR value.

 0.01

 0.1

 1

 10

 25 30 35 40 45 50 55 60

10
3

10
5

10
7

C
o

d
e

w
o

rd
 E

rr
o

r
R

a
te

 (
%

)

#
 o

f
D

a
ta

 P
o

in
ts

Transmission Power (dBm)

21.5MHz Channel
28.4MHz Channel
35.3MHz Channel

of Data Points

Figure 12: The correlation between the codeword error rate

and the TX power together with the number of data points with

respect to a TX Power value.

first when the network conditions slightly worsen, but will

give up using the networks when the network conditions are

significantly worse than what they are used to.

Takeaways: Users generally report more trouble tickets

when the codeword error rate increases. However, users be-

longing to an FN with a consistently high codeword error

rate have a higher tolerance for packet loss. This result indi-

cates that network operators should continuously monitor the

codeword error rates of their networks. Lack of trouble tickets

alone is not a reliable indicator of good network conditions.

6 What Affects Codeword Error Rate?

In this section, we study what factors impact codeword er-

rors. We examine how other PNM metrics (SNR and TX

power) correlate with codeword error rate, how the traffic

load increases after COVID-19 and different weather condi-

tions affect the codeword errors in an HFC network, and how

 0

 10

 20

 30

 40

 50

 60

 70

Jan19

Apr19

Jul19

O
ct19

Jan20

Apr20

 0

 0.02

 0.04

 0.06

 0.08

 0.1

#
 o

f
c
o

d
e

w
o

rd
s
 /

 s

C
o

d
e

w
o

rd
 E

rr
o

r
R

a
te

 (
%

)

of codewords / s
Codeword Error Rate

Figure 13: This figure shows the average number of codewords

sent per second and the average codeword error rate in each

month from Jan 2019 to Apr 2020.

the codeword errors of different devices correlate with each

other.

6.1 SNR and TX Power

Figure 11 shows the correlation between the SNR and the

codeword error rates. For each data point, we plot the SNR

value on the x-axis and the y-axis is the codeword error rate

of each upstream channel in log-scale. The average code-

word error rate decreases as the SNR increases, indicating

that codeword errors are caused by noises breaching into a

cable segment. Figure 12 shows the correlation between the

transmission (TX) power and the codeword error rate. The av-

erage codeword error rate shows a decreasing trend as the TX

power increases until 52 dBm. However, the error rates peak

when the TX power reaches 52 dBm or 58 dBm, respectively.

This is because the modems have reached their maximum TX

power. Different modems have different maximum TX power

settings. Some of them have their maximum TX Power set

to 52 dBm, while some modems have it set to 58 dBm or

higher. Figure 12 shows that a modem increases its TX power

in response to codeword error rates and codeword error rates

will spike when a modem cannot outpower the noises in a

cable segment.

6.2 Traffic Load

Our codeword dataset includes data collected from January

2019 to April 2020. During the last two months of the

data collection period, COVID-19 hit U.S. and remote learn-

ing/working started. We break the data points into different

months to plot the monthly average number of codewords sent

by each device per second and the monthly average codeword

error rate. Figure 13 shows the results. We observe that the

number of codewords sent per second increases by 44.36%

and 61.11% in March 2020 and April 2020, respectively. In

contrast, the monthly codeword error rate fluctuates over time,

and we do not see a significant increase or decrease in March

854 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100
10

3

10
4

10
5

10
6

10
7

N
o

rm
a

liz
e

d
 M

is
s
in

g
 R

a
te

 /

 C
o

d
e

w
o

rd
 E

rr
o

r
R

a
te

#
 o

f
D

a
ta

 P
o

in
ts

Temperature (Fahrenheit) (bins of 100)

Codeword Error
Missing

of Data Points

(a) Temperature

 0

 1

 2

 3

 4

 5

No Precipitation

Freezing Rain

Rain
Light Rain

Wintry Mix

Heavy Snow

Snow
Light Snow

10
3

10
4

10
5

10
6

10
7

N
o
rm

a
liz

e
d
 M

is
s
in

g
 R

a
te

 /

 C
o
d
e
w

o
rd

 E
rr

o
r

R
a
te

#
 o

f
D

a
ta

 P
o
in

ts

Codeword Error
Missing

of Data Points

(b) Precipitation Type

Figure 14: This figure shows how codeword error rates and network (un)availability (captured by the normalized data missing rate)

are affected by temperature and type of precipitation.

 0 50 100 150 200

Device ID

 0

 50

 100

 150

 200

D
e

v
ic

e
 I
D

 0

 0.2

 0.4

 0.6

 0.8

 1

Figure 15: The correlation matrix in the FN with the highest

average codeword error rate. Each Device ID represents a mo-

dem. This figure shows the codeword error rates of modems in

the FN with the highest average codeword error rate are highly

correlated.

2020 and April 2020.

6.3 Weather

Padmanabhan et al. [24] have shown that severe weather con-

ditions reduce the availability of residential networks. We are

interested in finding out whether severe weather will impact

the codeword error rate, which is a network reliability metric.

As described in § 3, we collect the historical weather data

that overlap in time and location with our codeword data. We

compute the codeword error rates under different weather

conditions. For comparison, we use the data points where no

performance data are collected as indicators of networking be-

ing unavailable. We compute the rate when this event happens

and refer to it as the missing data rate.

Figure 14(a) shows how the codeword error rate and the

data missing rate change as the temperatures change. For

clarity, we normalize the codeword error rate with the average

codeword error rate among all FNs seen in our data . Similarly,

we normalize the data missing rate. In Figure 14(a), we see

the codeword error rate increases when the temperature is

around 10◦F , < 0◦F , or just below 100◦F . We do not have

many data points for < 10◦F or > 100◦F weather. So the

data points in those regions may not be representative. We

see that the data missing rate increases significantly when the

temperature is between 10◦F and 30◦F , consistent with the

results in [24].

Figure 14(b) shows the normalized codeword error rate

and normalized missing rate in different weather types. The

data missing rates are significantly higher in Freezing Rain,

Wintry Mix, and Heavy Snow weather types. One explanation

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

P
e
rc

e
n
ta

g
e
 o

f
F

N
s
 (

%
)

Pearson Correlation Coefficient (bins of 1000)

Figure 16: This figure shows the CDF of the average Pearson

correlation coefficient of each FN, which is averaged over all

devices’ pair-wise Pearson correlation coefficients. In about 30%

of FNs, the devices show strong error rate correlation (> 0.7).

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 855

 0

 20

 40

 60

 80

 100

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1 1 10 10

2

P
e

rc
e

n
ta

g
e

 o
f

C
M

s
 (

%
)

Codeword Error Rate (%) (bins of 800)

No Corrleation
Weak or Moderate Corrleation

Strong Corrleation

Figure 17: This figure shows the CDF of the average codeword

error rates of devices in different correlation groups. The devices

that show strong error rate correlation with other devices in the

same FN tend to have higher codeword error rates.

we learn from AnonISP is that some HFC networks use aerial

cables and these weather types can cause damage to those

cables. The weather type’s impact on the codeword error

rate is not as clear. The three weather types that significantly

increase network unavailability: Freezing Rain, Wintry Mix,

and Heavy Snow do not significantly increase the codeword

error rate. This indicates the codeword error rate may not be

affected by the types of precipitation.

6.4 Codeword Error Correlation

Lastly, we analyze our data to answer this question: How does

a device’s codeword error rate correlate to those of other

devices in the same FN? An HFC network is a shared medium

network. Devices connected to the same FN may share RF

impairments. Understanding the scope of RF impairment

sharing can help us develop future fault diagnosis tools.

We quantify the correlation of codeword error rates of two

devices using the pair-wise Pearson correlation coefficient [9].

For each device, we compute its codeword error rate at each

data collection point and treat it as an element in the input vec-

tor to the Pearson coefficient calculation. Since our data span

a 16-month period and each data point is collected every four

hours, the length of the vector is around 2.5K. For each FN,

we compute the pair-wise Pearson correlation coefficients for

all devices in the FN. We then average the Pearson correlation

coefficients among all devices in an FN to obtain the average

Pearson correlation coefficient of the FN.

Figure 15 shows the correlation coefficient matrix for the

FN with the highest average codeword error rate. The aver-

age correlation coefficient in this FN is 0.6798. According

to [21], a correlation coefficient less than 0.3 indicates no

correlation, between 0.3 to 0.7 means weak or moderate cor-

relation, and larger than 0.7 shows a strong correlation. This

figure shows that most devices in this FN have a strong error

rate correlation. There are also some devices that do not have

any correlation with other devices, suggesting that these de-

vices do not share the same RF impairments with the other

devices.

Figure 16 shows the CDF of the average Pearson correla-

tion coefficient in each FN. We observe that the devices in

nearly 30% of the FNs show a strong correlation, indicating

that for most of the time in these FNs, a large group of de-

vices in the same FN share RF impairments. We also observe

that nearly 30% of the FNs present no correlation among the

devices.

We are interested in understanding how a device’s code-

word error rate is distributed when it shows a certain de-

gree of codeword error rate correlation with other devices in

the same FN. We divide the devices into three groups, No

Correlation (average Pearson correlation coefficient < 0.3),

Weak or Moderate Correlation (0.3 ≤ Pearson correlation co-

efficient < 0.7), and Strong Correlation (Pearson correlation

coefficient ≥ 0.7). A device’s average Pearson correlation

coefficient is the sum of its pair-wise Pearson correlation co-

efficients with other devices in the same FN divided by the

number of pairs.

Figure 17 shows the CDF of the codeword error rates for de-

vices in different correlation groups. The x-axis is in log-scale.

We see that for devices in the Strong Correlation group, the

10th and 90th percentiles of their codeword error rate distri-

butions are [2.82×10−3%, 0.306%]; for devices in the Weak

or Moderate Correlation group, the 10th and 90th percentiles

of their codeword error rate distributions are [9.32×10−4%,

0.113%]; and for devices in the No Correlation group, the

10th and 90th percentiles of their codeword error rate distri-

bution are [5.21×10−4%, 0.140%]. These results show that

devices that show a high correlation to other devices are more

likely to have high codeword error rates, suggesting that they

are affected by the same RF impairments.

It is possible that an RF impairment only affects a portion of

the devices in the same FN, which makes the average Pearson

coefficient for the affected devices low since they have no

correlation with the unaffected devices. In our future work,

we plan to investigate whether a clustering algorithm based

on codeword error correlation can help identify the devices

that are affected by the same RF impairment.

7 Implications

We believe this work provides several implications for net-

work operations and network research:

• When measuring packet loss on the Internet, one should

vary the length of a measurement packet to gain a full spec-

trum of packet loss statistics. Packets of different sizes may

be encoded into different numbers of codewords and expe-

rience different loss rates.

• When designing the network applications and protocols,

one should take into account packet loss caused by physical-

layer transmission errors in the RF systems. Exceptional

856 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

innovation in the cable broadband industry has allowed

ISPs to use HFC networks to deliver high-speed data. But

due to the RF range they operate in, transmission errors in

those networks are not negligible.

• ISPs should not rely on customer tickets alone for network

maintenance. Customers in chronically high-error-rate net-

works may have adapted to the network conditions.

8 Related Work

Last-mile Packet Loss: FCC launched the MBA project [2]

in 2011 and has been publishing an annual report on broad-

band performance. FCC MBA project uses UDP pings to

measure packet loss. We analyze the FCC data and estimate

what fraction of packet loss from the FCC measurements

is due to physical-layer transmission errors. Using the FCC

data, Sundaresan et al. [28] show that different ISPs and dif-

ferent home network devices can lead to different latency

and loss rate distributions. Sundaresan et al. [30] also show

that for broadband network customers, the last-mile latency is

the main bottleneck when visiting web pages since it signifi-

cantly contributes to both DNS lookup time and the time to

the first byte. Genin and Splett [18] use the download speed

distribution from the FCC data to investigate where conges-

tion happens, concluding that most of the Internet congestion

occurs in the last-mile network.

In addition to the FCC MBA project, many researchers

have also measured and characterized the reliability of the

last-mile broadband access networks using their measure-

ment apparatuses. Dischinger et al. [16] measure 1,894 broad-

band hosts from 11 ISPs with TCP and ICMP measurement

packets. They show that both DSL and cable broadband net-

works exhibit non-negligible packet loss rates, with around

5% data points showing a loss rate higher than 1%. Hu et

al. [22] demonstrate that physical layer performance metrics

are useful in detecting and predicting network outages that

can affect customer experience. Schulman and Spring [26]

employ ICMP echo request packets to measure how weather

affects the availability of broadband networks. Padmanab-

han et al. [25] point out that the last-mile is often the bottle-

neck by analyzing the end-to-end client-server traffic. Their

results indicate that approximately 75% packet loss occur

in the last-mile networks. The results presented by Sundare-

san et al. [27] support this statement by analyzing the RTT

of different TCP traffic. Sundaresan et al. [29] also show the

home wireless network is the main bottleneck when a user’s

access link speed exceeds about 20 Mbps. However, Bajpai et

al. [8] measured the last-mile latency in the US and Europe,

showing that the last-mile latency is stable over time, which

are inconsistent with the observations made by [25, 27, 29].

Fontugne et al. [17] investigate the last-mile latency among

646 ASes, and find that nearly 10% of the ASes presenting

persistent last-mile congestion.

Backbone Packet Loss: Apart from the last-mile networks,

researchers have also measured the performance of backbone

networks. Ghobadi and Mahajan [19] measure the perfor-

mance metrics from the optical layer in a large backbone

network. Their work shows that one of the optical layer perfor-

mance metrics, SNR can be used to predict network outages

that are not visible to the IP layer. Markopoulou et al. [23]

send probes over 43 paths in 7 ISPs to measure the latency

and packet loss in the continental US, showing that the packet

loss rates for all measured paths are less than 0.26%.

Datacenter Packet Loss: Benson et al. [10] measure packet

loss in datacenter networks and show that the packet loss

mostly occurs at edge links with low average utilization, in-

dicating the primary cause of packet loss in datacenter net-

works is momentary spikes. Zhang et al. [31] show most of

the packet loss in datacenter networks occur in ToR switches.

Both of the studies focus on packet loss in the IP layer. Zhuo et

al. [32] show corrupted optical links in datacenter networks

introduce a high packet loss rate and the rate of link corruption

is not correlated with the link’s utilization.

Summary: Different from previous work, this work uses

physical-layer codeword statistics to characterize packet loss

caused by physical-layer transmission errors. It focuses on

the last-mile cable broadband networks and complements

previous work.

9 Conclusion

As many applications are sensitive to packet loss, continu-

ously monitoring packet loss in a broadband network has

attracted much interest from researchers and policymakers.

Previous measurement work, including FCC’s decade-long

MBA project, cannot differentiate congestion-induced packet

loss from transmission-error-induced loss.

This work fills in this blank by using physical-layer data

contributed by a cable ISP. The data were collected from 77K+

devices spanning 394 HFC network segments in a 16-month

period. Using this data, we infer that physical-layer transmis-

sion errors could contribute to more than 12%-25% of packet

loss in the cable ISPs measured by the MBA project. We show

that some HFC network segments suffer from persistent error

loss that exceeds 1%. Customers in these network segments

do not make more calls than other customers. These findings

suggest that network researchers and operators should take

into account packet loss caused by physical-layer errors in

network measurement, protocol design, and network mainte-

nance tasks.

Acknowledgment

The authors would like to thank our shepherd Andreas Hae-

berlen and the anonymous NSDI reviewers for their valuable

feedback and the industry experts, especially Jacob Malone,

from CableLabs and David Clark for providing insightful

suggestions and feedback. Many thanks go to AnonISP for

providing us the opportunity to share this work with the re-

search community. This work was supported in part by an

NSF award CNS-1910867 and a gift from CableLabs.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 857

References

[1] Broadband Internet Regulation and Access: Background

and Issues. https://www.everycrsreport.com/

reports/RL33542.html, 2008.

[2] Measuring Broadband America. https://www.fcc.

gov/general/measuring-broadband-america,

2011.

[3] DOCSIS Codeword Errors And Their Effect on

RF Impairments. http://www.zcorum.com/wp-

content/uploads/DOCSIS-Codeword-Errors-

Their-Effect-on-RF-Impairments.pdf, 2013.

[4] Measuring Broadband America (Techni-

cal Appendix to the Tenth MBA Report).

https://data.fcc.gov/download/measuring-

broadband-america/2020/Technical-Appendix-

fixed-2020.pdf, 2020.

[5] Measuring Broadband America (Validated Data

Cleansing, Tenth Report). https://data.fcc.gov/

download/measuring-broadband-america/2020/

validated-data-cleansing-sept2019.pdf, 2020.

[6] IBM Environmental Intelligence Suite: Weather

Data APIs. https://www.ibm.com/products/

environmental-intelligence-suite/data-

packages, 2021.

[7] Number of Fixed Broadband Subscribers

in the United States from 2010 to 2020.

https://www.statista.com/statistics/

217938/number-of-us-broadband-internet-

subscribers/#statisticContainer, 2021.

[8] Vaibhav Bajpai, Steffie Jacob Eravuchira, and Jürgen

Schönwälder. Dissecting Last-mile Latency Charac-

teristics. ACM SIGCOMM Computer Communication

Review, 47:25–34, 2017.

[9] Jacob Benesty, Jingdong Chen, Yiteng Huang, and Is-

rael Cohen. Pearson Correlation Coefficient. In Noise

reduction in speech processing, pages 1–4. Springer,

2009.

[10] Theophilus Benson, Aditya Akella, and David A Maltz.

Network Traffic Characteristics of Data Centers in the

Wild. In ACM IMC, 2010.

[11] DOCSIS CableLabs. Best Practices and Guidelines,

PNM Best Practices: HFC Networks (DOCSIS 3.0).

Technical report, CM-GL-PNMP-V03-160725, 2016.

[12] DOCSIS CableLabs. Data-Over-Cable Service Inter-

face Specifications DOCSIS® 3.0 Operations Support

System Interface Specification. Technical report, CM-

SP-OSSIv3.0-C01-171207, 2017.

[13] DOCSIS CableLabs. Data-Over-Cable Service Interface

Specifications DOCSIS® 3.0 Physical Layer Specifica-

tion. Technical report, CM-SP-PHYv3.0-C01-171207,

2017.

[14] Neal Cardwell, Yuchung Cheng, C Stephen Gunn,

Soheil Hassas Yeganeh, and Van Jacobson. BBR:

Congestion-based Congestion Control: Measuring Bot-

tleneck Bandwidth and Round-trip Propagation Time.

Queue, 14(5):20–53, 2016.

[15] Wireline Competition. Restoring Internet Freedom.

https://docs.fcc.gov/public/attachments/

FCC-17-166A1.pdf, 2017.

[16] Marcel Dischinger, Andreas Haeberlen, Krishna P Gum-

madi, and Stefan Saroiu. Characterizing Residential

Broadband Networks. In ACM IMC, 2007.

[17] Romain Fontugne, Anant Shah, and Kenjiro Cho. Per-

sistent Last-mile Congestion: Not so Uncommon. In

ACM IMC, 2020.

[18] Daniel Genin and Jolene Splett. Where in the Internet

is Congestion? arXiv preprint arXiv:1307.3696, 2013.

[19] Monia Ghobadi and Ratul Mahajan. Optical Layer Fail-

ures in A Large Backbone. In ACM IMC, 2016.

[20] Sangtae Ha, Injong Rhee, and Lisong Xu. CUBIC:

A New TCP-friendly High-speed TCP Variant. ACM

SIGOPS operating systems review, 42(5):64–74, 2008.

[21] Dennis E Hinkle, William Wiersma, and Stephen G Jurs.

Applied Statistics for the Behavioral Sciences, volume

663. Houghton Mifflin College Division, 2003.

[22] Jiyao Hu, Zhenyu Zhou, Xiaowei Yang, Jacob Malone,

and Jonathan W Williams. CableMon: Improving the

Reliability of Cable Broadband Networks via Proactive

Network Maintenance. In USENIX NSDI, 2020.

[23] Athina Markopoulou, Fouad Tobagi, and Mansour

Karam. Loss and Delay Measurements of Internet

Backbones. Computer communications, 29:1590–1604,

2006.

[24] Ramakrishna Padmanabhan, Aaron Schulman, Dave

Levin, and Neil Spring. Residential Links Under the

Weather. In ACM SIGCOMM. 2019.

[25] Venkata N Padmanabhan, Lili Qiu, and Helen J Wang.

Server-based Inference of Internet Link Lossiness. In

IEEE INFOCOM, 2003.

[26] Aaron Schulman and Neil Spring. Pingin’in the Rain.

In ACM IMC, pages 19–28, 2011.

858 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.everycrsreport.com/reports/RL33542.html
https://www.everycrsreport.com/reports/RL33542.html
https://www.fcc.gov/general/measuring-broadband-america
https://www.fcc.gov/general/measuring-broadband-america
http://www.zcorum.com/wp-content/uploads/DOCSIS-Codeword-Errors-Their-Effect-on-RF-Impairments.pdf
http://www.zcorum.com/wp-content/uploads/DOCSIS-Codeword-Errors-Their-Effect-on-RF-Impairments.pdf
http://www.zcorum.com/wp-content/uploads/DOCSIS-Codeword-Errors-Their-Effect-on-RF-Impairments.pdf
https://data.fcc.gov/download/measuring-broadband-america/2020/Technical-Appendix-fixed-2020.pdf
https://data.fcc.gov/download/measuring-broadband-america/2020/Technical-Appendix-fixed-2020.pdf
https://data.fcc.gov/download/measuring-broadband-america/2020/Technical-Appendix-fixed-2020.pdf
https://data.fcc.gov/download/measuring-broadband-america/2020/validated-data-cleansing-sept2019.pdf
https://data.fcc.gov/download/measuring-broadband-america/2020/validated-data-cleansing-sept2019.pdf
https://data.fcc.gov/download/measuring-broadband-america/2020/validated-data-cleansing-sept2019.pdf
https://www.ibm.com/products/environmental-intelligence-suite/data-packages
https://www.ibm.com/products/environmental-intelligence-suite/data-packages
https://www.ibm.com/products/environmental-intelligence-suite/data-packages
https://www.statista.com/statistics/217938/number-of-us-broadband-internet-subscribers/#statisticContainer
https://www.statista.com/statistics/217938/number-of-us-broadband-internet-subscribers/#statisticContainer
https://www.statista.com/statistics/217938/number-of-us-broadband-internet-subscribers/#statisticContainer
https://docs.fcc.gov/public/attachments/FCC-17-166A1.pdf
https://docs.fcc.gov/public/attachments/FCC-17-166A1.pdf

[27] Srikanth Sundaresan, Mark Allman, Amogh Dhamdhere,

and Kc Claffy. TCP Congestion Signatures. In ACM

IMC, 2017.

[28] Srikanth Sundaresan, Walter De Donato, Nick Feamster,

Renata Teixeira, Sam Crawford, and Antonio Pescapè.

Broadband Internet Performance: A View From the

Gateway. 41:134–145, 2011.

[29] Srikanth Sundaresan, Nick Feamster, and Renata Teix-

eira. Home Network or Access Link? Locating Last-

mile Downstream Throughput Bottlenecks. In Inter-

national Conference on Passive and Active Network

Measurement. Springer, 2016.

[30] Srikanth Sundaresan, Nazanin Magharei, Nick Feam-

ster, and Renata Teixeira. Characterizing and Mitigat-

ing Web Performance Bottlenecks in Broadband Access

Networks. In ACM IMC, 2013.

[31] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind

Krishnamurthy. High-resolution Measurement of Data

Center Microbursts. In ACM IMC, 2017.

[32] Danyang Zhuo, Monia Ghobadi, Ratul Mahajan, Klaus-

Tycho Förster, Arvind Krishnamurthy, and Thomas An-

derson. Understanding and Mitigating Packet Corrup-

tion in Data Center Networks. In ACM SIGCOMM,

2017.

A Raw Data of Codeword Error Rates

This appendix section includes sample figures of the raw code-

word data we used for the analysis in this paper. Figure 18

includes codeword error rates of modems under different con-

ditions. We draw these figures using the data collected from

12 modems between July 1st to July 31st. Figure 18(a) to

Figure 18(d) show the data collected from modems in un-

healthy FNs. They have high codeword error rates as expected.

Figure 18(e) to Figure 18(h) show the data collected from

modems in alarming FNs, while Figure 18(i) to Figure 18(l)

show the data collected from modems in healthy FNs.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

07/01 07/08 07/15 07/22 07/29

C
o

d
e

w
o

rd
 E

rr
o

r
R

a
te

 (
%

)

21.5MHz Channel
28.4MHz Channel

35.3MHz Channel
Missing Data

(a)

 0

 2

 4

 6

 8

 10

 12

07/01 07/08 07/15 07/22 07/29

C
o

d
e

w
o

rd
 E

rr
o

r
R

a
te

 (
%

)

21.5MHz Channel
28.4MHz Channel

35.3MHz Channel
Missing Data

(b)

 0

 5

 10

 15

 20

 25

 30

07/01 07/08 07/15 07/22 07/29

C
o

d
e

w
o

rd
 E

rr
o

r
R

a
te

 (
%

)

21.5MHz Channel
28.4MHz Channel

35.3MHz Channel
Missing Data

(c)

 0

 2

 4

 6

 8

 10

 12

 14

 16

07/01 07/08 07/15 07/22 07/29

C
o

d
e

w
o

rd
 E

rr
o

r
R

a
te

 (
%

)

21.5MHz Channel
28.4MHz Channel

35.3MHz Channel
Missing Data

(d)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

07/01 07/08 07/15 07/22 07/29

C
o

d
e

w
o

rd
 E

rr
o

r
R

a
te

 (
%

)

21.5MHz Channel
28.4MHz Channel

35.3MHz Channel
Missing Data

(e)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

07/01 07/08 07/15 07/22 07/29

C
o

d
e

w
o

rd
 E

rr
o

r
R

a
te

 (
%

)

21.5MHz Channel
28.4MHz Channel

35.3MHz Channel
Missing Data

(f)

 0

 0.5

 1

 1.5

 2

 2.5

07/01 07/08 07/15 07/22 07/29

C
o

d
e

w
o

rd
 E

rr
o

r
R

a
te

 (
%

)

21.5MHz Channel
28.4MHz Channel

35.3MHz Channel
Missing Data

(g)

 0

 0.5

 1

 1.5

 2

 2.5

07/01 07/08 07/15 07/22 07/29

C
o

d
e

w
o

rd
 E

rr
o

r
R

a
te

 (
%

)

21.5MHz Channel
28.4MHz Channel

35.3MHz Channel
Missing Data

(h)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

07/01 07/08 07/15 07/22 07/29

C
o

d
e

w
o

rd
 E

rr
o

r
R

a
te

 (
%

)

21.5MHz Channel
28.4MHz Channel

35.3MHz Channel
Missing Data

(i)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

07/01 07/08 07/15 07/22 07/29

C
o

d
e

w
o

rd
 E

rr
o

r
R

a
te

 (
%

)

21.5MHz Channel
28.4MHz Channel

35.3MHz Channel
Missing Data

(j)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

07/01 07/08 07/15 07/22 07/29

C
o

d
e

w
o

rd
 E

rr
o

r
R

a
te

 (
%

)

21.5MHz Channel
28.4MHz Channel

35.3MHz Channel
Missing Data

(k)

 0

 5

 10

 15

 20

 25

07/01 07/08 07/15 07/22 07/29

C
o

d
e

w
o

rd
 E

rr
o

r
R

a
te

 (
%

)

21.5MHz Channel
28.4MHz Channel

35.3MHz Channel
Missing Data

(l)

Figure 18: Raw codeword error rates from sample devices.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 859

How to diagnose nanosecond network latencies in rich end-host stacks

Roni Haecki1, Radhika Niranjan Mysore2, Lalith Suresh2, Gerd Zellweger2,

Bo Gan2, Timothy Merrifield2, Sujata Banerjee2, Timothy Roscoe1

1ETH Zurich, 2VMware

Abstract

Low-latency network stacks have brought down network

latencies within end-hosts to the microsecond-regime. How-

ever, end-host profilers have such high overheads that they are

useful only to confirm a hypothesis, not to diagnose a prob-

lem in the first place. Indeed, every one of twenty low-latency

network projects we surveyed rolled their own analysis tools

instead of using an existing profiler.

This paper shows how to build a latency diagnosis tool with

full-stack coverage and low overhead that can identify, not just

confirm, sources of latency in end hosts. The unique measure-

ment methodology reconstructs network-message lifetimes

within end hosts with nanosecond precision, by reconciling

CPU and NIC hardware profiling traces across multiple time

domains (network and CPU). It uncovers unexpected latency

sources in both kernel and user-space stacks.

We demonstrate these capabilities by using our implemen-

tation, NSight, to systematically identify and remove perfor-

mance overheads in memcached, reducing 99.9th percentile

latency by a factor of 40 from 2.2 ms to 41 µs.

1 Introduction

Operating systems and network stacks are routinely blamed

for increasing network latencies. Clearly, we need diagnos-

tic tools to identify sources of latency in end-host stacks.

Thankfully, there is no paucity of end-host profilers [1, 3, 4, 6,

13, 16, 22, 25, 29, 31, 37, 38, 49–51, 73, 77]. We examined 21

networking projects whose goal was to achieve low latency

[2,5,8,11,20,23,26,27,33–36,41,46,48,55,57,58,60,65,69].

Surprisingly, not one of these projects have used these profil-

ers! Instead, all of them design their own handcrafted latency

measurement system. This indicates that in spite of the excel-

lent and vast body of prior work, there is no diagnostic tool

for network latencies introduced at the end host, especially in

the microsecond regime. In this paper we present NSight to

address this important gap.

Our investigations identify three reasons that existing end-

host profilers fail at network latency diagnosis. First, existing

profilers fail to capture latency deviations added by the NIC,

from the point when messages enter (or exit) the NIC to the

point that they are received by (or exit) the driver. Many sys-

tem designs identify these latency deviations to be important

[8, 24, 26, 34, 35, 48, 55, 58, 60, 62].

Figure 1: CDF of memcached request receive-latencies with

and without profiling. eBPF-1 stands for eBPF probing a

single function; Ftrace, Intel-PT and NSight, profile all sys-

tem functions in the end-host stack. eBPF-1 and Ftrace add

variable latencies to functions being profiled that are hard to

differentiate from true latency deviations.

Second, their high overheads severely disturb the latency

distribution, overwhelming the root causes being pursued.

Figure 1 shows how two widely-used profilers, eBPF and

Ftrace, add to memcached request-receive latencies, measured

from the point requests are received at the NIC to the point

they are received by memcached (socket recv). eBPF adds

18-40% overhead while measuring the latency of a single

function, while Ftrace adds 298-841% profiling all functions

of the end-host software stack. Also shown is the minimal

impact of NSight and in the same range as Intel-PT, which is

an example of a hardware CPU profiler that NSight builds on.

Third, existing profilers are too heavyweight to apply to

the entire stack. A developer diagnosing network latencies

must already have a guess of where to look before such a

profiler is useful. Blogs [15, 28, 32, 43, 45] tell exactly this

story: Users determine the parts of the stack that might add

latency deviations and then use profiling tools to measure

latencies in these parts. The unfortunate result is that the

latency sources from unexamined parts of the stack are not

caught. In addition, important interactions between different

parts of the stack go unnoticed [46,68]. For example, profiling

the NIC separately from the network software stack hides the

impact of NIC deviations on scheduling decisions. When

there are large latency deviations at the NIC, a CPU waiting

for network messages can idle and go into a lower power state.

This increases scheduling latency, and in turn, overall network

latency (§7.4 has an example).

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 861

Our contribution. We correct these shortcomings by

demonstrating the feasibility of a low-overhead, holistic tool

called NSight for diagnosing network latency deviations in-

troduced at end hosts. The guiding principle is that entire

lifetimes of network messages within end hosts must be ex-

amined to determine the precise causes of latency deviations.

These lifetimes are defined by all system activity, not limited

to network processing, that impacts messages from the time

they enter end hosts to when they exit it. To be useful in the

microsecond regime, NSight must reconstruct these lifetimes

with nanosecond precision. NSight does so by reconciling

timelines of two fine-grained data sources, CPU hardware

profiling and NIC hardware timestamps.

This reconstruction is challenging for two reasons. First, the

two data sources record time using different hardware clocks.

Hardware CPU profiling uses a monotonically increasing

clock for capturing precise intra-end-host latencies, while

NIC and software CPU clocks are often synchronized using

PTP [61] to aid inter-end-host latency measurements. To align

the timestamps in these sources correctly, NSight tracks the

conversion between the two time domains during profiling.

Second, CPU hardware profiling does not track the passage

of network messages in multi-core systems across kernel

cores (which process the message) and application cores. To

track this path, NSight captures timestamps and core numbers

at the boundary where kernel hands off the message to the

application. This boundary is also the point where message

processing can move across cores.

Once the lifetimes of messages are constructed, they can be

compared to identify anomalous processing that led to their

latency deviations. Unfortunately, due to the deep nesting

of end-host call stacks, latency deviations in functions intro-

duce deviations in their parent functions making them look

anomalous too! To reduce ambiguity in attributing root causes

to anomalies, NSight traverses the call stacks until it finds

functions with latency deviations that cannot be attributed to

nested calls.

NSight demonstrates that these techniques are sufficient to

overcome the listed challenges, while incurring overheads

comparable to hardware profiling (see Figure 1). Due to

its low overhead, NSight can be used to diagnose even sub-

microsecond increases in network latency at the end host. We

describe our use of NSight to profile both the Linux kernel and

Mellanox’s VMA [48], a user-space network stack. On these

stacks we describe how we profile unmodified applications

memcached and redis. We dive deeply into a detailed case

study of memcached, the application of choice in several low-

latency end-host stack papers [11,35,36,39,55,58,60,70,71],

to prove the diagnosis capability of NSight. In the case study

NSight systematically narrows down the bottlenecks of the

Linux stack, as we mitigate 99.9th percentile memcached tail

latency by over 40x - from 2.2 ms to 51 µs. When one of the

mitigations increases latencies below the median by as much

as 11 µs, NSight helps identify the reasons for this increase.

2 Background and related work

The vast body of profiling and diagnostic tools fall broadly

into two groups: fault diagnosis tools ([10,64,74]) and perfor-

mance diagnosis tools ([21,75,76]). Some diagnose problems

within end-hosts ([1,3,4]). Others help in distributed settings

([19,21,68]). NSight is a performance diagnosis tool for end-

hosts. Its focus is on latency diagnosis. We focus on software-

and hardware- based tools built for latency diagnosis below.

Software-based end-host tools. Software-based diagnostic

tools are built on top of profiling data sources such as probes

(Uprobes [17], Kprobes [30]), kernel tracepoints, performance

counters, and software tracing. The data source determines

the overheads and insights that can be drawn from the tool.

Tools that depend on probes (LTTng [13], eBPF [1]) and

kernel tracepoints (dtrace [51]) allow users to instrument

functions of interest. Users of these tools must already know

where to look, making them less suited for latency diagnosis

than tools that depend on software tracing (Ftrace [3]). Tools

based on performance counters (perf stat [4]) do not cap-

ture outlier latency events (due to aggregation) making them

unsuited for tail latency diagnosis in particular.

Unlike NSight, all of these tools miss NIC delays altogether

and have much higher overheads than hardware profilers.

Hardware-based end-host tools. CPU profilers ([12,40,53])

record software function call and return times, their core

number and process names at processor speeds. The times-

tamps help measure software latencies with nanosecond pre-

cision and low overhead. NSight, like perf and VTune [25],

uses CPU profilers to track software function latencies.

Most NICs support hardware timestamping [14] for net-

work packets. The timestamps can be retrieved per-message

using standard Linux socket calls, to determine network laten-

cies across and within end-hosts. NSight uses NIC timestamps

to track entry and exit of network messages during profiling.

Unlike NSight, these tools cannot identify the sources of

network latencies in end-hosts by themselves or when com-

bined with one another. Instead they require the user to make

a conjecture that the tools can help confirm (See §2.1 and §4).

Distributed tools. Even though NSight is designed for net-

work latency diagnosis within end-hosts rather than in dis-

tributed settings, some similarities and differences are worth

noting. Like NSight, many diagnostic tools for distributed

systems [7,9,18,19,44,54,68,72] reconstruct the path of mes-

sages but in distributed settings. They do not capture network

latency sources at end-hosts but capture other latency sources

like packet drops, routing issues and workload spikes.

Inband network telemetry (INT) [56] is a mechanism to

probe specific points in network dataplanes. In software, these

probes are expensive [67] and do not cover many points in

end-host stacks, like the OS stack, that we do with NSight.

Therefore they can only confirm causes of latency, not identify

them. On the other hand, INT works with all programmable

network hardware while NSight is relevant only for end-hosts.

862 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 2: A flame graph is not very useful for diagnosing

latency problems because it only highlights common events

in system activity. It leaves the identification of events that

are deviations from the norm to the user.

2.1 Diagnosing network delays at end-hosts

We now describe common network latency debugging prac-

tices at end-hosts using existing tools (blogs [15, 28, 32, 43,

45]). The process usually begins with tools that summarize

system activity, like perf [4], SystemTap [59], unless de-

velopers already have deep knowledge of the application of

interest [32]. These tools help identify the parts of the stack

that are most active and might impact network latency.

For example, we can generate flame graphs like Fig-

ure 2 with perf. The flame graph shows two applications,

memcached and NGINX both running on the same machine. It

is natural to ask whether they interfere to cause network de-

lays [20,27,55]. To verify, developers can isolate applications,

or turn on software tracing, like Ftrace, and visualize net-

work send/receive paths using tools like KernelShark [66].

Figure 2 also shows memcached LRU cache maintenance

and paging activity to be high. Even though unrelated, these

can delay network activity if scheduled during network pro-

cessing. To verify, developers can use tools like eBPF or

Ftrace to track periods of such activity and correlate them

with periods of high network latencies. To verify delays on

network processing paths, these tools can generate latency

distribution graphs for the functions of interest [45].

These steps alone might be insufficient [15]. System ac-

tivity summaries like Figure 2 do not show problems like

NIC delays, scheduling bottlenecks, or head-of-line block-

ing that can slow down network processing. Finding these

problems requires tracking specific system/NIC performance

counters [4, 52] or handcrafted measurements [35, 39].

3 Using NSight for diagnosis

We now describe a typical debugging experience with NSight.

Let us suppose users are running memcached on Linux and

see large tail latencies despite light query loads. To use NSight

to quickly diagnose the cause of poor performance, the user

first turns on NSight profiling for a second. Once NSight

analyzes the profiling data, the user inspects the initial re-

sult, Figure 3. This balloon plot shows the latencies of all

memcached requests profiled and the top causes of the slow-

Figure 3: Balloon plots summarize message latencies(Y-axis)

with the top causes for latency deviations (legend) mapped to

corresponding messages using similar balloons.The balloons

are in Message ID order (X-axis) to identify bunching together

of balloons that indicates a single underlying cause. If they

are spaced apart, there are likely multiple independent reasons

that need to be addressed separately.

sum=

0.3

sum=

0.6

sum=

1
sum=

0.6

sum=

1
sum=

0.6

sum=

180.5

sum=

1.9
sum=

0.3

sum=

0.6

sum=

1

0.1

1.0

10.0

100.0

C
o
n
te

xt
 S

w
itc

h
 I
d
le

 (
A

)

C
o
n
te

xt
 S

w
itc

h
 I
d
le

 (
R

)
C

P
U

 I
d
le

 (
A

)

F
ile

 I
d
le

 (
A

)
H

O
L
 b

lo
ck

in
g
 (
A

)
In

te
rr

u
p
t
Id

le
 (
R

)
N

IC
 D

e
la

y
(R

)

O
th

e
r

P
e
rf
 I
d
le

 (
A

)
R

e
ce

iv
e
 P

a
th

 I
d
le

 (
R

)
T
C

P
 P

ro
to

co
l I

d
le

 (
R

)

Source of Idle Deviation [(A) = App Core, (R) = Recv Core]

D
e
v
ia

ti
o

n
 [

u
s
]

Figure 4: A zoomed-in box plot of causes for CPU idling that

impacted the slowest message. This presentation is valuable

for identifying why the cores were idling (X-axis), and the

latency deviation due to those causes (Y-axis). Both the ap-

plication (A) and receive cores (R) idle, for reasons ranging

from waiting during a context switch or file access, with NIC

interrupt coalescing, NIC delay (R), causing the largest wait.

est (tail) requests. The user notices that the tail requests are

largely slowed down by idling CPU cores, CPU Idle (A),

where A stands for application-core on which memcached

runs. The slowest request is also slowed down by core idling

due to NIC interrupt coalescing delay, NIC Delay (R), where

R stands for the core on which the kernel receives the request.

From this result, the user can drill down into the presented

causes for tail latencies. For instance, the user cross-checks

why the cores were idling when processing the slowest re-

quest. Figure 4 shows that, among various causes, the largest

latency deviation was due to NIC interrupt coalescing.

The user could also manually verify this diagnosis using

Figure 5, a detailed timeline of all system-activity that im-

pacted the slowest message. Eyeballing the presentation, the

user confirms that there is a gap in system activity before the

message is processed but long after the message is received

at the NIC, showing that interrupt coalescing delays slowed

down the tail request by as much as 180 µs.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 863

Figure 5: NSight’s presentation of processing timeline of the

slowest message. The presentation tracks system activity from

the time the message was received at the NIC (leftmost dashed

vertical line) to the time it was received at the application

(rightmost dashed vertical line). The reader can ignore the Y-

axis for now; a full explanation of this presentation is available

in Figure 8. Gaps in system activity indicate CPU idling.

4 Challenges and key ideas

Why is latency diagnosis hard? To derive the precise causes

of message slowdowns within end-hosts, we must profile

network-message lifetimes, like Figure 5. These lifetimes cap-

ture all system activity (G1) that slowdown message process-

ing, whether it is network stack activity or something unre-

lated, from the point a network message enters (or exits) the

end-host to the point it is received (or sent) by the application.

To work with low-latency stacks, we must capture these life-

times automatically (G2), with nanosecond-precision (G3)

and low overhead (G4). We must then analyze these message

lifetimes to identify system activity that slows messages down

and their precise impact, as shown in Figure 3.

4.1 Profiling network-message lifetimes

Unfortunately, the task of capturing network-message life-

times is difficult, because there is not one system component

that processes network messages. Rather, in most modern

OSes [42, 47, 55], network messages are processed across the

NIC and one or multiple CPU cores. Capturing message life-

times that span these devices is challenging for two reasons.

Challenge 1 (C1): NIC, CPU profiling, and software

timestamps come from independently changing clocks.

Figure 6 illustrates this problem. To construct message life-

times NIC, CPU profiling, and software clocks must align

at all times, but they do not. NIC and CPU profiling clocks

drift independently of each other. This is not a problem for

CPU profiling, because it uses the hardware clock to report

nanosecond-granularity function latencies within an end-host.

NIC timestamps are used to measure both inter-host and

intra-host message latencies. To aid latency measurement

across multiple time-domains, socket libraries convert NIC

timestamps to software timestamps during profiling, with

the help of conversion parameters calculated by software

synchronization mechanisms like phc2sys on Linux.

Figure 6: Constructing message lifetimes from timestamps

taken on NIC and CPU, whose clocks are independent, is hard

because the timestamps do not line up into a single timeline.

We overcome this challenge by monitoring the relationship be-

tween CPU profiling clock and NIC/Software clocks (shown

in red arrows) during profiling with low latency-overhead.

Software clocks across end-hosts are usually synchronized

using protocols like ptp. These synchronization mechanisms

constantly readjust software clocks and change their relation-

ship with the CPU profiling clock, under the hood. These

changes pose a problem for constructing message lifetimes.

Key idea 1, Time reconciliation: The ideal solution to this

problem would be to modify time synchronization protocols

to expose clock changes to profilers like perf. Profilers could

then present all measurements based on the software clock to

simplify system-wide latency measurements.

We do not want to refactor the entire software stack, so we

use a simpler but more expensive workaround. After time syn-

chronization protocols change the software clock, the kernel

recalculates the conversion between CPU profiling clock and

software clock. By exposing these conversion parameters to

user-space using virtual dynamic shared object (vDSO) mech-

anisms, we can poll them from a user-thread for the duration

of profiling. The goal is to capture every change to the soft-

ware clock to have the most accurate mapping between the

clocks at all points in time. A log of the conversion parameters

helps reconcile CPU profile timestamps to software-clock do-

main post profiling. This method burns an entire core for the

user-thread, but it adds no latency overhead during profiling

because the user thread is isolated from the rest of the system.

Challenge 2 (C2): There is no support to track network-

message lifetimes within host software stacks. Software

profiling tools can only track network messages within the

network stack, missing other system activity that slows down

message processing. This is because CPU architecture and

operating systems treat network messages like regular data

structures, as objects in memory. Consequently, network mes-

sages have no relevance outside of network stack functions.

On the other hand, CPU profiling tracks all system activ-

ity but not the message lifetimes within which such system

activity occurs. Figure 7 illustrates this problem. The two

rectangular boxes labeled Core X and Core Y show the time-

line of system activity captured by CPU profiling at these two

864 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 7: We cannot reconstruct message lifetimes using CPU

profiling and NIC timestamps alone. Instead, we place CPU-

profile timelines in the context of each message by collect-

ing per-message NIC timestamps (M1(n), M2(n)), Software

timestamps at application (M1(a), M2(a)), and cross-core

hand-off timestamps along with the core information (M1(h)
Core Y→Y, M2(h) Core X→Y). The superscript of each

timestamp corresponds to the message ID assigned by NSight.

With this context, we see that M1 is received at NIC at M1(n)
and processed on core Y through M1(h), till it is received by

App at M1(a). M2 is processed on core X and then handed-off

to the App on core Y at M2(h). At Core Y, M2 waits for M1

to be processed before it is received by the App at M2(a).

cores. We only see the process contexts (kernel, application)

and individual functions (not shown), but not messages.

Key idea 2, Message profiling: To construct message life-

times, we augment CPU profiling with per-message times-

tamps and core numbers. Figure 7 shows the information

collected by NSight profiling to construct two message life-

times, M1 and M2. For each message (for example, M2), we

seek to get three timestamps: a NIC timestamp (M2(n)), a

core hand-off timestamp (M2(h)), and an application times-

tamp (M2(a)). The NIC and application timestamps allow

us to capture the start and end of a message’s lifetime on

the end-host; for instance, M2’s lifetime is from M2(n) to

M2(a). The core hand-off timestamp (M2(h)) along with core

information (Core X→Y), helps identify the per-core system

activity that a message encounters in its lifetime; for example,

M2 is processed on Core X between M2(n) to M2(h), and

then on Core Y between M2(h) to M2(a). Crucially, these

timestamps are sufficient to produce a single timeline of all

system activity related to the processing of a message.

We now explain how these timestamps can be obtained

and how they suffice to reconstruct detailed message life-

times. The per-message NIC hardware-timestamps and appli-

Figure 8: NSight presentation of message lifetime of M2.

The X-axis shows time in nanoseconds and captures message

processing latency from M2(n) to M2(a). System activity is

captured as nested ‘boxes’ on the timeline. Each box repre-

sents a function traced by CPU profiling. The left and right

vertical boundaries of each box corresponds to the function

call and return timestamps. The Y-axis shows individual

function latencies in nanoseconds. The horizontal black lines

and annotations (e.g., App Recv) are added for clarity.

cation software-timestamps can be taken at the application

send/receive operations. They help order messages, so we

can assign message IDs, M1 and M2. Messages sent from

end-hosts are ordered by their application timestamps. Mes-

sages received at end-hosts, like M1 and M2, are ordered

by NIC timestamps, M1(n) and M2(n). The per-message

hand-off timestamps and core information can be collected

at points where messages cross software-processing and core

boundaries. In kernel network stacks, there is one boundary

where messages are handed-off between kernel and applica-

tion, like sock_def_readable in Linux. User-space network

stacks can have similar boundaries [47, 55] while others do

not [26, 48, 58].

In our example in Figure 7, there is an overlap between

lifetimes of M1 and M2 on core Y from M2(h) to M1(a). M2

has to wait for the application on core Y to complete pro-

cessing M1 before it can be processed. This overlap shows

inter-message interference or head-of-line blocking. We can

similarly detect unrelated system activity or application inter-

ference that appear in message lifetimes.

Figure 8 describes NSight’s presentation of M2. Between

timestamps M2(n) and M2(h), M2 is processed by core X

(Receive core). After M2(h), M2 is processed by core Y

(App core) where M2 waits for the application, memcached,

to process M1 (App Recv 1 to App Send), after which M2 is

received (App Recv 2).

4.2 Diagnosing high message latencies

Profiling even for brief periods of time, will leave us with

hundreds of thousands of message lifetimes. To diagnose why

some message lifetimes are longer, like we did in Figure 3, we

must identify anomalous system activity that slow down those

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 865

Figure 9: M2-message-lifetime shown in greater detail by

zooming into part of the call stack. When functions within M2

are compared to those in M1, many functions shown in red

appear anomalous. For instance, call_function_single_

interrupt and its nested functions appear to take longer or

occur more frequently. The cause for these deviations is that

ip_rcv has been called twice, once for receiving M1 and a

second time for receiving M2 due to head-of-line blocking.

messages relative to others, by comparing their lifetimes. Two

typical types of anomalies in message lifetimes are functions

that take longer and functions that occur more frequently in

some lifetimes compared to others; for example, App Recv

occurs twice in M2 in Figure 8. Deeply nested end-host stacks

can result in nesting of anomalies of different types, leading

to a third challenge.

Challenge 3 (C3): Due to nesting, the same latency de-

viation can be explained by multiple anomalies. Figure 9

explains this problem. When compared to M1, most functions

in M2 appear anomalous! Some take longer, like the first in-

vocation of event_handler; others appear more often, like

__libc_recvmsg; and the rest are unexpected, like __libc_

send, a send in the middle of receiving M2.

Key idea 3, Anomaly disambiguation: To reduce ambigui-

ties from nesting, we only report anomalous functions that

cannot already be explained by their nested functions. To

determine whether an anomalous function is explained by

nested anomalies, we use a heuristic. If the nested anomalies

together account for more than 80% of the latency deviation

of the parent function (see §5.2 for why), we conclude that

the nested anomalies explain the parent anomaly and omit the

parent anomaly as a reason for deviation.

Figure 9 describes how the latency deviation in call_

function_single_interrupt is accounted for by a nested

anomalous ip_rcv call. Therefore, ip_rcv is listed as a root

cause but not call_function_single_interrupt.

5 Design and implementation

In this section, we describe how the three key ideas from §4

realize the goal of network latency diagnosis in microsecond-

regimes. NSight is composed of two subsystems. The first

is a profiling subsystem, that tracks broad CPU activity and

Figure 10: NSight profiling in Linux. The unshaded parts of

this figure are the scope of activity that we want to profile

and automatically diagnose over. We run CPU profiling on all

cores to collect system activity (G1) and identify anomalies.

To establish causality linking observations from the CPU pro-

filer to messages, we collect timestamps and core information

for each message on their way in and out of the system and

across cores with the shim layer.

passage of messages through end-host stack (§4.1, Message

profiling). It also tracks the relationship between NIC, CPU

profiling and software time-domains so that the observations

from different devices can be aligned into a single timeline

(§4.1, Time reconciliation). Put together, it is responsible

for capturing all system activity (G1) during the profiling

period with nanosecond-precision (G3) and low-overhead

(G4). The second is an analysis subsystem that reconstructs

network-message lifetimes and diagnoses network latency de-

viations within them. To do so, it analyses anomalous system

activity in network-message lifetimes, identifies root causes,

and attributes precise deviations to these root causes (§4.2,

Anomaly disambiguation). The profiling and analysis sub-

systems together automate (G2) network latency diagnosis.

5.1 NSight profiler

Figure 10 explains how we get broad information from CPU

hardware profiling (G1) and combine it with per-message pro-

filing information from a shim layer to establish a causal link

between system behavior and message lifetimes (§4.1, Mes-

sage profiling). Typical CPU profiles collect system activity

at function granularity and list all function call and return

times, their execution context and core numbers with nanosec-

ond granularity (G3). Independent of the CPU profiler, the

shim layer intercepts messages, irrespective of the applica-

tion, to collect timestamps at three points in the stack, shown

866 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

in Figure 10, as metadata for each message. Core numbers

are collected at the kernel–userspace boundary. For socket-

based stacks, the shim layer also collects socket file descriptor

numbers to detect head-of-line blocking that arises when ap-

plication threads are multiplexed across multiple sockets. We

quantify overheads from profiling in Section 6 (G4).

To reconcile independent observations from the CPU pro-

filer and the shim layer into a single timeline, §4.1, Time rec-

onciliation polls the conversion between the clocks for the

duration of profiling from a user-thread.To construct message

lifetimes accurately, the user-thread must detect all conver-

sion changes and align the observations at all points in time.

We quantify the accuracy of this scheme in §6 (G3).

Profiler implementation and deployment. The shim

layer is implemented using standard Linux and socket APIs,

with 1055 lines of C code. It can be dynamically linked by

unmodified applications using LD_PRELOAD; statically linked

applications might need to be modified, however.

We extend the Linux NIC timestamp framework to obtain

timestamps at the kernel–userspace message hand-off bound-

ary by patching 40 lines of the 5.4 Linux kernel (§4.1, C2).

VMA stack has no such boundary and needs no modification.

NSight is built on top of the Intel-PT CPU profiler, whose

traces are available through perf. perf exports Intel-PT

timestamps from TSC to sched_clock timedomain. We mod-

ify 443 lines in perf to use the time reconciliation parameters

and export CPU profiler timestamps directly in software time

domain (CLOCK_REALTIME). The thread that polls these pa-

rameters is implemented in 363 lines of C code (§4.1, C1).

§7 shows how NSight is effective even when users turn it

on for only a few seconds at a time. To capture random events

across time, users must turn on NSight repeatedly. We have

ambitions of using NSight for continuous profiling, but the

current buffering implementation in Intel-PT limits such use.

5.2 NSight analysis

The analysis subsystem consists of three parts. The first part

reconstructs message lifetimes from profiling data (§4.1, Mes-

sage profiling). The second part detects anomalous system

activity during these lifetimes. The third part sifts through the

anomalies to identify root causes for latency deviations within

message lifetimes (§4.2, Anomaly disambiguation, G2).

Identifying anomalous system activity. In §4.2 we men-

tioned three types of anomalous system activity that contribute

to latency deviations: functions that take longer, functions

that are called more frequently, and unexpected functions that

show up in some message lifetimes compared to others.

There are three other classes of anomalies that slow down

message lifetimes. The first class consists of entire program

contexts that are unexpected but show up in message lifetimes

as a result of scheduling decisions or interrupts. The second

class is defined by the absence of system activity that is seen

when the CPU is idling. This anomaly occurs when the CPU

Figure 11: Message lifetime with a richer set of nested anoma-

lies. {mlx5e_poll_rx_cq, ip_recv, Idle, ksoftirqd} are

sufficient to explain the causes of latency deviations seen in

this nested stack (§4.2, Anomaly disambiguation).

waits for an event, like a memory read due to a cache miss,

and is often indicative of resource bottlenecks. The third class

is cross-message interference in the network stack.

The algorithm that classifies system activity within mes-

sage lifetimes as anomalous or normal runs in four phases.

The first phase compares message lifetimes belonging to the

same application and identifies unexpected program contexts

that occur in a minority of message lifetimes. OS and applica-

tion interference is usually identified in this phase.

The second phase identifies gaps in system activity that are

not associated with any function or program context, like

Figure 5. It also identifies the cause for each gap from the last

function call preceding the gap. Figure 4 is an example result.

The third phase compares message lifetimes belonging to

the same application and identifies individual functions that

are slower, more frequently called, or unexpected. Figure 8

presented several anomalous functions identified in M2 life-

time. Error handling code paths, like TCP retransmission, and

application bottlenecks are usually identified in this phase.

The final phase identifies overlaps between messages, similar

to how we detect overlap between M1 and M2 in §4.1, Mes-

sage profiling. This phase detects cross-application network

interference when the overlap is between messages belonging

to different applications, and head-of-line blocking when the

overlap is between messages of the same application.

Attributing root causes to anomalies. §4.2, C3 discussed

how nesting ambiguates latency-deviation attribution. Often,

only one of the anomalies in a deeply nested stack is sufficient

to explain the latency deviation due to the stack and identify

corrective action. In such cases, listing the nested anomalies

as root causes only ambiguates diagnosis.

We now revisit this challenge in the context of an exam-

ple in Figure 11 that has an anomalous program context

(ksoftirqd) and cross-application message interference (ip_

rcv). It is unnecessary to flag nested anomalies within anoma-

lous program contexts or cross-application message inter-

ference because the corrective action to address the devia-

tion is clear: the scheduling policy must be revisited to avoid

these anomalies. Therefore, the algorithm will not flag queue_

work_on or tcp_v4_rcv even if they are anomalous.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 867

§4.2, Anomaly disambiguation described how we do not

report anomalous parent functions if 80% percent of their

latency deviation is already explained by the nested anoma-

lies. When we report nested anomalies instead of their parent

anomaly, we will not be able to explain some portion of the

latency deviation. This is due to the fact that nested func-

tion latencies seldom make up 100% of the parent function

latencies. We define the fraction of the latency deviation ex-

plained by NSight diagnosis as its coverage. For example, if a

parent function takes 1000 ns longer than normal, and nested

function takes 900 ns longer than normal, reporting only the

nested function as root cause will result in 90% coverage. We

evaluate NSight’s coverage in §6.

Analysis implementation. The algorithms in the analysis

subsystem are implemented with 2189 lines of R code. The

visualisations comprise 1768 lines of R.

The precision of Intel-PT is limited because it profiles in

batches, a few CPU cycles at a time. Latencies of functions

whose call and return times are within the same batch can

be under-reported to take no time at all! On the other hand,

small latencies, corresponding to the batch granularity, can

be added between batches, giving the appearance of an idling

CPU. Such under-reporting and bogus gaps in system activity

obfuscates anomaly detection. NSight analysis algorithms

therefore ignore differences in latency smaller than the batch

granularity (up to 322 ns in our system).

Instead of directly reporting anomalous functions such

as ksoftirqd or ip_recv that are hard to interpret as root

causes, we categorize them by functionality and report a sin-

gle root cause, like OS threads or Receive processing.

Each category is suggestive of a class of corrective actions

that apply to all functions in that category. Table 1 shows 4

examples of categories used in this paper.

The process of categorization is partly automated. For ex-

ample, process contexts are automatically derived from perf.

We categorize 1350 functions in Linux by hand, using the con-

textual information from their names in a user configurable

CSV file. We also introduce head-of-line blocking as a cate-

gory. To do so, we automate summarization of all functions

that are executed when processing messages with minimum

latency. When these functions occur more frequently or their

latencies deviate (for example, NIC interrupt processing takes

longer) in message lifetimes of the same application, NSight

shows head-of-line blocking as one of the root causes. We ver-

ify the latency deviations attributed to head-of-line blocking

by cross-referencing message lifetimes to identify overlaps.

6 Evaluation

Our work on NSight is motivated by the paucity of full-stack,

lightweight and high-fidelity network latency diagnosis tools

that can be used to diagnose latencies in the microsecond

regime. In this section, we examine to what extent the ideas

in this paper address this gap.

Category Anomalies

NGINX NGINX process context

head-of-line blocking Functions that were involved in processing

the fastest network messages.

OS Threads ksoftirqd, kthreadd, kworker, swapper

Receive Processing Kernel/Driver packet processing (e.g. ip_

rcv, net_rx_action, mlx5e_poll_rx_cq)

Table 1: Category examples and corresponding anomalies

To provide full-stack visibility, §4.1, Time reconciliation

aligns observations from the CPU profiler and shim layer

that use independent clocks. §6.1 examines the accuracy of

time reconciliation which is crucial for tracking causality.

To be lightweight, §4.1, Message profiling relies on hard-

ware profiling while introducing software profiling latency-

overheads at a few points in the end-host stack. §6.2 examines

the overheads of this profiling scheme for two reasons; first,

to determine if it can produce reliable diagnosis despite the

overheads and second, if NSight can be used in production.

Finally to be high-fidelity yet unambiguous, §4.2, Anomaly

disambiguation only reports a subset of anomalies that can

explain a majority of latency deviations in messages as root

causes. §6.3 examines the extent to which this technique is

successful especially in the microsecond regime.

6.1 Time reconciliation correctness

Software clock changes make reconciling system activity,

captured by CPU profilers, and message lifetimes, captured

by shim layer, hard. To align system activity and message

lifetimes correctly, §4.1, Time reconciliation must capture all

software-clock change events and use the correct conversion

between CPU profiling and software clocks at all points in

time. If old or incorrect conversion is used, the system activity

and message lifetimes will be incorrectly lined up, introducing

spurious or missing system events in message lifetimes.

To test the accuracy of §4.1, Time reconciliation , we de-

sign a benchmark that continuously captures CPU profiling

(TSC) and software timestamps(CLOCK_REALTIME) one after

the other. When we use the conversion parameters captured

by NSight’s user-space thread to convert all the CPU profiling

timestamps to software timestamps, we expect to construct a

linear timeline from the interspersed converted and measured

software timestamps; that is, consecutive timestamps must

always advance in time. If the old or incorrect conversion pa-

rameters are used in any time window, we detect a deviation

from the linear timeline, showing that events observed across

CPU profiling and the shim layer will be reordered.

Across multiple runs on different machines, over

10,000,000 conversions for each run, the consecutive con-

verted and measured software timestamps always advance

in time, never deviating. In each run, we observe that the

software clock changes 4000+ times. This shows that the pro-

posed time reconciliation maintains the ordering of events in

message lifetimes even with software clock changes. We note

868 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

All numbers in µs. h = high load, l = low load

Tool median (h) 99.9th (h) median (l) 99.9th (l)

Baseline 30.3 112.6 10 14.4

Intel-PT 30.8 (2%) 120.4 (7%) 10.6 (5%) 15.3 (6%)

NSight 31.1 (3%) 132.8 (18%) 11 (10%) 16.2 (12%)

eBPF-1 38.6 (27%) 157.6 (40%) 11.8 (18%) 17.3 (20%)

eBPF-2 41.8 (38%) 165 (46%) 13.2 (31%) 18.6 (29%)

eBPF-4 51.9 (71%) 556 (393%) 14.1 (41%) 19.4 (35%)

eBPF-8 59.1 (95%) 565 (402%) 15.5 (54%) 21 (45%)

Ftrace 201.8 (565%) 1060 (841%) 40.1 (298%) 66.4 (359%)

Table 2: Overhead of profiling tools on median and tail mea-

surements. eBPF-n is eBPF used to profile n functions.

that a stronger test for time reconciliation, in which we take

two timestamps at the same time and test their equivalence

is impossible. Capturing timestamps takes time, and is the

reason for a majority of NSight’s profiling overheads.

6.2 Message profiling overheads

Latency overheads of profiling tools can perturb message

lifetimes and obfuscate latency diagnosis. This is why these

tools are only used for confirming hypotheses rather than

diagnosis [15, 28, 32, 43, 45]. Even though NSight perturbs

message lifetimes, it does not share this challenge because

NSight is built on top of CPU profiling which profiles NSight

itself ! When NSight profiling slows down message lifetimes,

it will show up in system activity captured by §4.1, Message

profiling and §4.2, Anomaly disambiguation will detect it as

the root cause. Perf Idle (A) in Figure 4 is an example where

the CPU idles during NSight profiling introducing latencies.

Latency overheads of profiling tools also inhibit their use

for latency measurement in production environments. To be

useful in the microsecond-regime, we expect that this over-

head should not be beyond a few microseconds.

To evaluate the latency overhead of NSight, we run a bench-

mark using memcached and record the receive latency of re-

quests, measured from the time they arrive at the NIC to when

they are received by memcached; this is the baseline measure-

ment. A peak 4 core load on our system is 500k requests

per second (rps); for this experiment we measured overheads

across two loads on 4 cores, a low load (40k rps, 8% of peak),

and a high load (300k rps, 60% of peak).

Table 2 shows the result of the experiment. Intel PT adds

2-7% over all measurements; Gathering software timestamps

and core information with NSight adds another 1-11% totaling

3-18% overhead. This shows that NSight can be turned on

in production for brief periods of time without perturbing

median latencies by more than a few microseconds.

In contrast, as Figure 1 showed, profiling even a single func-

tion call, like __sys_recvmsg, using eBPF (eBPF-1) adds

more overhead than NSight. As we increase the number of

functions calls profiled with eBPF, its overhead increases (See

eBPF-2, eBPF-4 and eBPF-8). Over all experiments, eBPF-1

adds 18-40% latency overhead. Ftrace, that profiles the full

stack like NSight, has the largest impact on performance (up

to 841% overhead). The high latency overheads of these tools

make them impractical for use in production environments.

The current design for §4.1, Time reconciliation burns an

entire core for the user-thread. This overhead can be pro-

hibitive in production environments. Thankfully, the overhead

is avoidable because software clocks change relatively slowly,

once every 4 ms in Linux. If the software clock changes are

tracked directly from the time synchronization protocol, there

is no need for an extra core during profiling.

6.3 Coverage after anomaly disambiguation

For high-fidelity, latency diagnosis must be able to report

root causes for all latency deviations seen in message life-

times, even if the deviations are in the order of microseconds.

We measure fidelity in terms of coverage, defined as the la-

tency deviation explained by diagnosis as a fraction of overall

latency deviation. However, §4.2, Anomaly disambiguation

leads to less than 100% coverage. Trading off some coverage

for getting rid of false negatives is still reasonable because

NSight can be used iteratively to improve coverage; in each

iteration the most conspicuous root causes remaining can be

discovered with NSight and corrected for (See next section).

By not reporting parent anomalies, when 80% or more of

their deviation is explained by their nested anomalies, we get

a minimum coverage of 69% and a median coverage of 96%

across all experiments and all observed message-latencies.

Only 10 messages across our experiments have a coverage

less than 87%. This shows that highlighting only anomalies

that explain 80% or more of their parent’s latency deviation

as root causes reduces false negatives and yet allows for a

majority of root causes to be discovered in the first iteration.

7 Latency diagnosis with NSight

We now describe the iterative process by which NSight can

quickly diagnose the causes of poor performance. Let us

start with an initial system configuration that runs memcached

in which large memcached tails are observed. Profiling the

system with NSight identifies the prominent causes of tails.

Users can mitigate or eliminate the causes found and profile

the reconfigured system with NSight to identify the remaining

causes of tails. Three such iterations help reduce memcached

99.9999th percentile latency from 15.3 ms to 182 µs in our

setup. Unfortunately, some of the mitigations we use increase

median latencies by a few microseconds. NSight helps iden-

tify which mitigations cause this increase by comparing pro-

filing data collected across iterations.

We now describe these iterations with NSight and the no-

table causes of network latency in our system. We present

diagnosis results only for memcached server receive latencies

because the majority of end-host delays are known to show

up on the receive path [35, 39, 78]).

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 869

Figure 12: Balloon plot showing the top causes of tail latency

with the initial configuration. The tallest balloons are blue

squares, identified as NGINX (A) in the legend; this means

NGINX interferes with memcached on the application core (A).

The balloons are spaced apart, indicating that their causes are

independent and can be addressed separately.

7.1 First iteration

Initial configuration. Our setup consists of two Linux ma-

chines (2x14 Intel Xeon Gold 5120, 192 GB RAM), running

kernel version 4.18 (Ubuntu 18.04) connected by 100Gbps

interfaces to a 3.2Tbps Ethernet switch. memcached, a latency

sensitive workload (similar to [20, 33, 55]) runs alongside

NGINX, the interfering workload. Both applications use the

default configuration and share 4 cores. The workload con-

sists of memcached requests arriving at 160-190k requests per

second (60-80% of expected memcached throughput across 2

cores in our system), and NGINX requests arriving at 50-60k

requests per second (60-80% of expected NGINX throughput

on a single core). ntp and ptp were disabled in our setup

when we collected the experimental results in this section.

Initial diagnosis. To use NSight, users can collect a profil-

ing sample of a few seconds and look at the initial result. In

our setup, this allows us to profile 100k memcached request-

responses. The initial result, Figure 12, a balloon plot similar

to Figure 3, shows the distribution of tail messages and their

causes. The largest tails are caused by NGINX interference on

the application core, NGINX (A). The remaining tails are due

to three causes, mainly head-of-line blocking of application

threads, HOL blocking (A), in combination with interference

due to OS threads (A) and Receive processing (A) at the ap-

plication core. These causes are defined in Table 1.

A second presentation, the box plot in Figure 13, summa-

rizes the causes (X-axis) sorted by the median total deviation

added to each tail message. The number of messages im-

pacted by each cause, shown on the boxes, represents how

pervasive the cause is. We notice that the most conspicuous

causes impacting the most messages are to the right of Re-

ceive processing (R), starting with NGINX receive (A) that

impacts 596 tail messages. Going after these can increase the

latency reduction achieved with this iteration.

Of the causes in Figure 13, we find that HOL blocking (A)

impacts the most tail messages (950), indicating that there

1 1

1 1 3 596 99
55

144 80
950

65

10

100

1000

10000

C
o
n
te

xt
 S

w
itc

h
 I
d
le

 (
A

)
C

o
n
te

xt
 s

w
itc

h
 (
A

)

L
o
ck

in
g
 (
A

)
R

e
ce

iv
e
 P

a
th

 I
d
le

 (
R

)
R

e
ce

iv
e
 p

ro
ce

ss
in

g
 (
R

)
N

G
IN

X
 r
e
ce

iv
e
 (
A

)
R

e
ce

iv
e
 P

a
th

 I
d
le

 (
A

)

N
G

IN
X

 (
R

)
R

e
ce

iv
e
 p

ro
ce

ss
in

g
 (
A

)
O

S
 t
h
re

a
d
s

(A
)

H
O

L
 b

lo
ck

in
g
 (
A

)

N
G

IN
X

 (
A

)

Source of Deviation [(A) = App Core, (R) = Recv Core]

T
o
ta

l
D

e
v
ia

ti
o
n
 [
u
s
]

Figure 13: Global box plot showing the causes of tail latencies

with the initial configuration. The number of tail messages

impacted by each cause is shown on top of the boxes. This pre-

sentation helps identify the most important causes to pursue

after one iteration of NSight profiling; pursuing both, causes

that result in the largest deviations and causes that impact the

most tails, can lead to the biggest latency reductions.

is a lack of I/O parallelism in memcached. When we exam-

ine the tail message lifetimes slowed down by HOL block-

ing (A) (the top outliers in the box plot), we see memcached

sends delaying memcached request-receives by as much as

1 ms. To understand why, we look at memcached code and

find that memcached threads process up to 20 requests per

socket, sending responses for each, before processing the

next request. This is interesting because papers [20, 55] have

conjectured that it is sufficient to use microsecond granular-

ity core-scheduling to improve memcached latencies, but in

fact memcached itself foils that plan. The way to improve

memcached latencies is to first modify memcached to intro-

duce additional I/O parallelism as NSight identifies here.

7.2 Second Iteration

Second configuration. The next step is to mitigate or elim-

inate the causes identified in the previous diagnostic step.

To eliminate NGINX (A) interference, we pin memcached to

two cores and NGINX to a third core; similarly, to eliminate

interference due to Receive processing (A) and NGINX re-

ceive (A), we pin kernel receive activity to a fourth core and

configure RSS to send all receive traffic to that core (Similar

to IOKernel [55]). To mitigate HOL blocking (A), we limit

memcached-requests per socket to 2 (down from 20) and limit

memcached server threads to one per core.

Second diagnosis. Having applied the second configura-

tion we rerun NSight. Figure 14 and Figure 15 are the anal-

ogous presentations to Figure 12 and Figure 13. The largest

latency deviations in Figure 15 come from Paging/Paging

Idle (A). The message lifetimes impacted by these causes

show repeated calls to change_protection and change_

prot_numa each taking up to 400 µs. The documentation for

change_prot_numa() says that this code is a mechanism to

identify beneficial page migrations; interestingly, it creates

870 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 14: Balloon plot with the second configuration. Bunch-

ing of balloons shows system effects that impact message-

bursts. Paging causes the largest tails. CPU idle activity and

head-of-line blocking assail the initial few messages.

1
1 1

43
55

12

5
3 879

971

3

8

1

10

100

1000

N
G

IN
X

 r
e
ce

iv
e
 (
R

)
S

ch
e
d
u
lin

g
 (
R

)
M

e
m

o
ry

 I
d
le

 (
R

)

C
P

U
 I
d
le

 (
A

)
R

e
ce

iv
e
 P

a
th

 I
d
le

 (
R

)
C

o
n
te

xt
 S

w
itc

h
 I
d
le

 (
R

)
T
C

P
 P

ro
to

co
l I

d
le

 (
R

)
M

e
m

ca
ch

e
d
 I
d
le

 (
A

)
H

O
L
 b

lo
ck

in
g
 (
A

)
N

IC
 D

e
la

y
(R

)

P
a
g
in

g
 (
A

)
P
a
g
in

g
 I
d
le

 (
A

)

Source of Deviation [(A) = App Core, (R) = Recv Core]

T
o
ta

l
D

e
v
ia

ti
o
n
 [
u
s
]

Figure 15: Global box plot with the second configuration.

Alongside Paging and CPU idling that cause a few tails, this

graph shows that interrupt coalescing (NIC delay (R)) and

head-of-line blocking are most pervasive and worth pursuing.

deviant latencies. This suggests that architectural changes

are needed to identify page migrations without causing tails.

NSight can play a role by making it easy to confirm that the

new architecture does not introduce latency deviations.

We also find that a few CPU idle (A) outliers in Figure 15

add up to 0.6 ms to tail messages; these correspond to the

initial balloons in Figure 14. The lifetimes of these mes-

sages show large gaps in system activity between connection

set up functions, dispatch_conn_new() called on the re-

ceive core to which we pinned the kernel receive activity, and

conn_new() called on the memcached core. When we look at

this code, we find that memcached registers an event handler

for connection setup using libevent. When a new connection

message is received (on the receive core in our setup) an event

is dispatched to the handler on another thread that must be

scheduled on the application core. The delay in scheduling

the connection handler causes tail latencies during startup.

7.3 Third iteration

Third configuration. We now mitigate the causes found in

Figure 15. We disable autonuma feature to confirm the Pag-

ing/Paging Idle (A) deviations, and adaptive interrupt coalesc-

Figure 16: Balloon plot with the third configuration. A few

balloons still appear, but their absolute latency (350 µs) is tiny

compared to tails seen with the initial configuration (16 ms),

and no balloons occur once the system is warmed up.

ing to confirm NIC Delay (R) deviations, even though doing

so might lead to worse performance. To speed up connec-

tion setup, we increase priority of new connection events by

changing one line in memcached. Another cause we identified

after the second iteration but before the third, was removed

by disabling the LRU replacement feature; for compactness,

we condense this additional iteration into the third iteration.

Third diagnosis. Having applied the third configuration we

rerun NSight. The balloon plot Figure 16 shows that all the

significant outliers are in the start up phase. The tail latencies

of the initial messages are much lower than those seen with the

second configuration in Figure 14 (350 µs vs. 1.4 ms). They

are not caused by CPU Idle (A), as they were with the second

configuration, but by HOL blocking (A). Overall, the tails are

an order of magnitude smaller compared to the 1.1 ms-16 ms

tails originally seen with the initial configuration in Figure 12.

7.4 Analysis of diagnosis and configurations

We now confirm tail latency improvements due to the diag-

nosis by running experiments with all three configurations,

initial §7.1, second §7.2, and third configuration §7.3, for a

longer duration without NSight profiling. We measure the

latency of 10 million requests, using each configuration 10

times. Figure 17 shows the CDF of the receive latencies with

these configurations; the left graph shows all the latencies

and the right shows the tail latencies. With the third config-

uration, we see 99.9th percentile latency improve by 43×
(2.2 ms to 51 µs). The 99.999th percentile latency is 67 µs and

99.9999th percentile latency is 182 µs (down from 15.3 ms).

Both, the second and third configurations improve the tail

latencies compared to the initial configuration but at the cost

of increasing latencies in the first 60% of messages.

Diagnosing latency increases in lower percentiles.

NSight analyses latency anywhere on a latency curve, not

just the tail. Since the deviations in Figure 17 are worst

around the 25th percentile C© (13.3 µs with initial but 24.7 µs

with the third configuration), users can configure NSight to

focus on the 25th percentile. NSight will analyse a slice of

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 871

●

●●

●

● ●

●

● ●

0.00

0.25

0.50

0.75

1.00

10 10
0

10
00

10
00

0

F
ra

c
ti
o

n

●
●
●

Initial Configuration
Second Configuration
Third Configuration

●●● ●● ●

0.9900

0.9925

0.9950

0.9975

1.0000

10 10
0

10
00

10
00

0

Receive Latency [us]

Figure 17: Full CDF (left) and p99-100 (right) of memcached

receive latencies in longer runs (10 million requests, 10 rep-

etitions) for all 3 configurations. The third configuration im-

proves tail latencies beyond the 60th percentile A© but adds

small latencies to messages between the 10th and 60th per-

centiles B©, with the maximum latencies being added around

the 25th percentile C©; a proper solution instead of our ex-

peditious mitigations could get the benefit of tail reduction

without penalizing the common case.

2

2

3

5

14

19

35

74

239
608

999

1

3

10

C
o
n
te

xt
 S

w
itc

h
 I
d
le

 (
R

)
L
o
ck

in
g
 I
d
le

 (
R

)
T
im

e
r
h
a
n
d
lin

g
 (
A

)
In

te
rr

u
p
t
Id

le
 (
R

)
S

e
n
d
 p

ro
ce

ss
in

g
 (
A

)

D
ri
ve

r
(A

)
M

e
m

ca
ch

e
d
 (
A

)
R

e
ce

iv
e
 p

ro
ce

ss
in

g
 (
A

)
R

e
ce

iv
e
 p

ro
ce

ss
in

g
 (
R

)

N
IC

 D
e
la

y
(R

)
H

O
L
 b

lo
ck

in
g
 (
A

)

Source of Deviation [(A) = App Core, (R) = Recv Core]

T
o
ta

l
D

e
v
ia

ti
o
n
 [
u
s
]

Figure 18: Global box plot comparing 25th percentile mes-

sages in the third iteration with those in the first iteration.

To focus on causes that impact the span of messages around

25th percentile C© in Figure 16, the boxes are sorted by num-

ber of messages impacted. Head-of-line blocking is the most

pervasive cause of the latency increase.

messages between the 20th and 30th percentiles. Since the

latency increases occur across iterations, users can compare

message lifetimes across iterations with NSight to identify the

causes. We configure NSight to compare the 25th percentile

messages in the third §7.3 and first iterations §7.1 to diagnose

latency increases; the results in the rest of the section use this

configuration. In this setting, latency deviation is defined

as latencies that get worse around the 25th percentile in the

third iteration compared to those in the first iteration.

Since all the messages around the 25th percentile are simi-

larly impacted, we look for the most pervasive causes. There-

fore, we turn to a global box plot that presents the causes

sorted by the number of messages impacted, Figure 18. The

most pervasive cause of latency, impacting all but one of the

thousand messages around the 25th percentile in the third it-

285

1000

997 996 999

285
1000997

996

999

1000

D
e
v
ia

ti
n

g
 #

 q
u

e
u

e
d

 m

e
s
s
a

g
e

s
L

a
te

n
c
y
 d

e
v
ia

to
n

 i
n

 u
s

App Recv
 (A)

App Request
 (A)

App Send
 (A)

Kernel (A) Kernel (R) Total
 Delay

1

2

3

4

0.0

2.5

5.0

7.5

10.0

12.5

Processing Location [(A) = App Core, (R) = Recv Core]

Figure 19: Queuing breakdown showing relative queuing

ahead of 25th percentile messages in the third versus the

first iteration. Deviations are shown for select functions (X-

axis) for which we can measure the queue depth ahead of

each message, by counting function occurrences in message

lifetimes. The top half shows deviations in queue depth; a dot

or line at 4 means that there are 4 more messages ahead of

the deviant message relative to the reference. The bottom half

is a box plot for resulting latency deviations. The functions

are categorized into application vs. kernel, send vs. receive vs.

request processing. The count of messages impacted is shown

on top of each plot. This graph shows that the 25th percentile

messages experience more queuing in the third iteration.

eration relative to the first iteration, is HOL blocking (A). The

messages also experience NIC delay (R) relative to messages

in the first iteration. This is surprising because we disabled

adaptive interrupt coalescing in the third iteration §7.3.

To identify why the 25th percentile messages of the third

iteration experience head-of-line blocking relative to the first

iteration, we consult NSight’s queuing breakdown described

in Figure 19. It shows that a majority of the 25th percentile

messages have at least one more message ahead of them in

the third iteration relative to the first iteration (top half) and

this introduces latency deviations (bottom half). App Send (A)

shows more latency deviation than other categories. Kernel

(A) and Kernel (R) measure send/receive queuing in the ker-

nel. Because the second configuration (§7.2) isolated kernel

receive activity from the application core, Kernel (A) shows

latency deviations only due to sending responses. Receive

queuing shown in Kernel (R) impacts fewer messages.

Together, deviations in App Send (A) and Kernel (A) show

that sending responses takes longer in the third iteration even

though fewer responses (reduced to 2 per socket in §7.2) are

sent back per socket relative to the first iteration. This shows

that the application core cannot keep up in the third iteration.

To find why, we consult NSight’s core context summaries

for the iterations, shown in Figure 20. It shows the percentage

of time the message lifetimes spend in each processing context.

We see that memcached uses three cores to process the 25th

percentile messages in the first iteration, Figure 20a, compared

to two in third iteration, Figure 20b. This confirms that the

872 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0

25

50

75

100

Core 10 Core 12 Core 14 Core 16

P
e
rc

e
n
ta

g
e

memcached

swapper

nginx

kthreadd

ksoftirqd

(a) First iteration

0

25

50

75

100

Core 10 Core 12 Core 14

P
e
rc

e
n
ta

g
e

memcached

swapper

(b) Third iteration

Figure 20: NSight core-context summary showing the process

contexts (legend) active in the 25th percentile memcached

message lifetimes on each core (X-axis), and the percentage of

time they are active (Y-axis). memcached has three cores avail-

able in the first iteration vs. two cores in the third iteration,

exacerbating head-of-line blocking in the third iteration.

threads are backlogged in the third iteration because of the

lack of available CPU; the mitigation of pinning memcached

threads to cores (§7.1) increased head-of-line blocking for the

25th percentile messages in the third iteration.

Figure 20b also shows that in the third iteration, the

core used for kernel receive activity is mostly idle/sleeping

(swapper is the default idle task) waiting for a NIC interrupt,

whereas in the first iteration the cores are always running,

processing memcached requests or receiving messages in the

kernel. This explains why we see deviations due to NIC Delay

(R) in Figure 18 despite disabling adaptive interrupt coalesc-

ing; waking the core takes time and delays the NIC interrupt.

This is an example of complex NIC–CPU scheduling interac-

tions that NSight captures (§1). Waiting for the NIC interrupt

at low loads puts the receive core to sleep since it has nothing

else to do, and waking it up delays the NIC interrupt! Thus,

the mitigation of pinning the kernel receive activity to a core

in §7.2 adds latencies at lower loads to the common case.

8 Diagnosing VMA network stack

NSight can diagnose problems in different applications such

as redis and different network stacks such as VMA network

stack. We now describe the key causes of network tail laten-

cies we found with unmodified memcached and redis on top

of the VMA user-space network stack.

System configuration. For experiments with memcached,

we pin memcached servers to 4 cores and increase the load

(400k request/s on 4 cores). For experiments with redis, a

single-threaded server, we profile a single core redis instance

using the standard redis-benchmark (110k request/s on 1

core). Since these applications are already pinned to cores,

studying application interference with NGINX is irrelevant and

we do not include it in contrast to the Linux study.

Diagnosis. We now describe the key sources of network

latency in VMA found using the same diagnostic strategy

we used in the Linux study, guided by NSight’s graphs.

As expected, the overall tail latency distribution improves

with VMA in comparison to Linux. But surprisingly, the

outliers for memcached are more severe. While the median

memcached server request receive latency is 8.38 µs and the

99.9th percentile latency is 45.3 µs, the worst message latency

is 34.5 ms! The median, 99.9th and worst redis request re-

ceive latencies are 1.63 µs. 145.1 µs, and 1.2 ms. Following

are the most prominent causes of tails in VMA.

VMA epoll mechanism. NSight diagnostic graphs show that

some memcached messages are delayed for up to 25 ms in the

NIC! In this case, even though the message is received by the

NIC, the epoll implementation of VMA does not pick it up.

The exact reason for this behavior is unclear, but we posit that

either the NIC hardware delays reporting the arrival or the

stack waits for a message for a specific socket.

OS interference. We find that the default Linux scheduling

policies frequently puts polling based stacks to sleep for short

amounts of time (4 µs). In the case of some memcached mes-

sages that are severely delayed, we detect a kernel stack over-

flow, that puts all but one of the application threads to sleep

for up to 12 ms with the lone thread handling the panic. This

is unexpected behavior that seems to suggest a bug.

Buffer management. VMA ring buffer management causes

frequent shorter latency deviations. It fills up the RX buffer

queue with unused buffers and removes used send-buffers

from the TX queue in bursts, adding deviations of up to 2.8 ms

(though more frequently in the range of 60-150 µs).

9 Limitations and future work

We have already noted three limitations of NSight. First,

NSight cannot be used for continuous profiling due to Intel-

PT buffering implementation (§5.1). Second, CPU profilers

capture system activity in batches of CPU cycles; NSight

cannot capture latency deviations smaller than a batch (§5.2).

Finally, consuming a core for §4.1, Time reconciliation is

unnecessary if software clock changes are tracked by ptp.

Another limitation of NSight is that it produces 600MB-1GB

of compressed raw profiling data per second. Decompressing

the profiling data to a usable format increases the size by

10-20x. Reducing the amount of data produced and speeding

up analysis will reduce the time between NSight iterations.

We are expanding NSight’s scope to RDMA-based stacks,

and more general purpose performance diagnosis to analyze

Linux’s core operations [63]. We are also using NSight to

characterize the design space for low-latency network stacks.

We plan to make the tool available as open source.

Acknowledgements

We thank our shepherd, Robert Ricci, anonymous reviewers,

Jon Howell, Amin Vahdat, Vyas Sekar, Marcos Aguilera, Ben

Pfaff, Ming Liu, Adriana Szekeres, Naama Ben David, Nadav

Amit, Amy Tai, Irina Calciu, Jayneel Gandhi, Ana Klimovic,

Lukas Humbel and Michael Wei for their insightful feedback.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 873

References

[1] ebpf. Onlin., https://ebpf.io/.

[2] F-stack: High performance network framework based

on dpdk. http://f-stack.org/.

[3] Ftrace. Onlin., https://www.kernel.org/doc/Doc

umentation/trace/ftrace.txt.

[4] Perf: Performance analysis tools for linux. Onlin., http:

//man7.org/linux/man-pages/man1/perf.1.htm

l.

[5] Seastar: High-performance server-side application

framework. http://seastar.io/.

[6] Mohammad Mejbah ul Alam, Tongping Liu, Guang-

ming Zeng, and Abdullah Muzahid. Syncperf: Catego-

rizing, detecting, and diagnosing synchronization per-

formance bugs. In Proceedings of the Twelfth European

Conference on Computer Systems, EuroSys ’17, page

298–313, New York, NY, USA, 2017. Association for

Computing Machinery.

[7] Paul Barham, Austin Donnelly, Rebecca Isaacs, and

Richard Mortier. Using magpie for request extraction

and workload modelling. In Proceedings of the 6th

Conference on Symposium on Operating Systems De-

sign and Implementation - Volume 6, OSDI’04, page 18,

USA, 2004. USENIX Association.

[8] Adam Belay, George Prekas, Ana Klimovic, Samuel

Grossman, Christos Kozyrakis, and Edouard Bugnion.

IX: A protected dataplane operating system for high

throughput and low latency. In 11th USENIX Sympo-

sium on Operating Systems Design and Implementation

(OSDI 14), pages 49–65, Broomfield, CO, October 2014.

USENIX Association.

[9] Zachary Benavides, Keval Vora, and Rajiv Gupta. Dprof:

Distributed profiler with strong guarantees. Proc. ACM

Program. Lang., 3(OOPSLA), October 2019.

[10] M.Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and

E. Brewer. Pinpoint: problem determination in large,

dynamic internet services. In Proceedings Interna-

tional Conference on Dependable Systems and Net-

works, pages 595–604, 2002.

[11] Shuang Chen, Christina Delimitrou, and José F.

Martínez. Parties: Qos-aware resource partitioning for

multiple interactive services. In Proceedings of the

Twenty-Fourth International Conference on Architec-

tural Support for Programming Languages and Oper-

ating Systems, ASPLOS ’19, page 107–120, New York,

NY, USA, 2019. Association for Computing Machinery.

[12] Intel Cooperation. Intel 64 and IA-32 Architectures

Software Developer’s Manual - Volume 3B. Intel Corpo-

ration, August 2007.

[13] Mathieu Desnoyers and Michel Dagenais. The lttng

tracer: A low impact performance and behavior monitor

for gnu/linux. OLS (Ottawa Linux Symposium), 01 2006.

[14] The Kernel development community. Timestamping.

Onlin., https://www.kernel.org/doc/html/late

st/networking/timestamping.html.

[15] Jaana Dogan. Want to debug latency? https://raky

ll.medium.com/want-to-debug-latency-7aa48e

cbe8f7.

[16] Benjamin Donie. iostat. Onlin., http://man7.org/l

inux/man-pages/man1/iostat.1.html.

[17] Srikar Dronamraju. Uprobe-tracer: Uprobe-based event

tracing. Onlin., https://www.kernel.org/doc/Doc

umentation/trace/uprobetracer.txt.

[18] Úlfar Erlingsson, Marcus Peinado, Simon Peter, Mihai

Budiu, and Gloria Mainar-Ruiz. Fay: Extensible dis-

tributed tracing from kernels to clusters. ACM Trans.

Comput. Syst., 30(4), November 2012.

[19] Rodrigo Fonseca, George Porter, Randy H. Katz, Scott

Shenker, and Ion Stoica. X-trace: A pervasive network

tracing framework. In Proceedings of the 4th USENIX

Conference on Networked Systems Design and Imple-

mentation, NSDI’07, page 20, USA, 2007. USENIX

Association.

[20] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and

Adam Belay. Caladan: Mitigating interference at mi-

crosecond timescales. In 14th USENIX Symposium on

Operating Systems Design and Implementation (OSDI

20), pages 281–297. USENIX Association, November

2020.

[21] Junzhi Gong, Yuliang Li, Bilal Anwer, Aman Shaikh,

and Minlan Yu. Microscope: Queue-based performance

diagnosis for network functions. In Proceedings of the

Annual Conference of the ACM Special Interest Group

on Data Communication on the Applications, Technolo-

gies, Architectures, and Protocols for Computer Com-

munication, SIGCOMM ’20, page 390–403, New York,

NY, USA, 2020. Association for Computing Machinery.

[22] Susan L. Graham, Peter B. Kessler, and Marshall K.

Mckusick. Gprof: A call graph execution profiler. SIG-

PLAN Not., 17(6):120–126, June 1982.

[23] Sangjin Han, Scott Marshall, Byung-Gon Chun, and

Sylvia Ratnasamy. Megapipe: A new programming

interface for scalable network i/o. In Proceedings of

874 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
http://man7.org/linux/man-pages/man1/perf.1.html
http://man7.org/linux/man-pages/man1/perf.1.html
http://man7.org/linux/man-pages/man1/perf.1.html
https://www.kernel.org/doc/html/latest/networking/timestamping.html
https://www.kernel.org/doc/html/latest/networking/timestamping.html
https://rakyll.medium.com/want-to-debug-latency-7aa48ecbe8f7
https://rakyll.medium.com/want-to-debug-latency-7aa48ecbe8f7
https://rakyll.medium.com/want-to-debug-latency-7aa48ecbe8f7
http://man7.org/linux/man-pages/man1/iostat.1.html
http://man7.org/linux/man-pages/man1/iostat.1.html
https://www.kernel.org/doc/Documentation/trace/uprobetracer.txt
https://www.kernel.org/doc/Documentation/trace/uprobetracer.txt

the 10th USENIX Conference on Operating Systems

Design and Implementation, OSDI’12, page 135–148,

USA, 2012. USENIX Association.

[24] Stephen Ibanez, Alex Mallery, Serhat Arslan, Theo

Jepsen, Muhammad Shahbaz, Nick McKeown, and

Changhoon Kim. The nanopu: Redesigning the cpu-

network interface to minimize rpc tail latency, 2020.

[25] Intel. Intel vtune profilder. Onlin., https://software

.intel.com/en-us/vtune.

[26] Intel Corporation. Data plane development kit. https:

//www.dpdk.org/. April 2021.

[27] Calin Iorgulescu, Reza Azimi, Youngjin Kwon, Sameh

Elnikety, Manoj Syamala, Vivek Narasayya, Herodotos

Herodotou, Paulo Tomita, Alex Chen, Jack Zhang, and

Junhua Wang. Perfiso: Performance isolation for com-

mercial latency-sensitive services. In 2018 USENIX

Annual Technical Conference (USENIX ATC 18), pages

519–532, Boston, MA, July 2018. USENIX Association.

[28] Alexey Ivanov. Optimizing web servers for high

throughput and low latency. https://dropbox.te

ch/infrastructure/optimizing-web-servers-f

or-high-throughput-and-low-latency.

[29] Alan D. Brunelle Jens Axboe and Nathan Scott.

blktrace. Onlin., http://man7.org/linux/man-

pages/man8/blktrace.8.html.

[30] Masami Hiramatsu Jim Keniston, Prasanna S Pan-

chamukhi. Kernel probes. Onlin., https://www.kern

el.org/doc/Documentation/kprobes.txt.

[31] Nikolai Joukov, Avishay Traeger, Rakesh Iyer, Charles P.

Wright, and Erez Zadok. Operating system profiling

via latency analysis. In Proceedings of the 7th Sympo-

sium on Operating Systems Design and Implementation,

OSDI ’06, page 89–102, USA, 2006. USENIX Associa-

tion.

[32] Theo Julienne. Debugging network stalls on kubernetes.

https://github.blog/2019-11-21-debugging-n

etwork-stalls-on-kubernetes/.

[33] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries,

Adam Belay, David Mazières, and Christos Kozyrakis.

Shinjuku: Preemptive scheduling for microsecond-scale

tail latency. In 16th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 19), pages

345–360, Boston, MA, February 2019. USENIX Asso-

ciation.

[34] Anuj Kalia, Michael Kaminsky, and David Andersen.

Datacenter rpcs can be general and fast. In 16th USENIX

Symposium on Networked Systems Design and Imple-

mentation (NSDI 19), pages 1–16, Boston, MA, Febru-

ary 2019. USENIX Association.

[35] Rishi Kapoor, George Porter, Malveeka Tewari, Geof-

frey M. Voelker, and Amin Vahdat. Chronos: Predictable

low latency for data center applications. In Proceedings

of the Third ACM Symposium on Cloud Computing,

SoCC ’12, New York, NY, USA, 2012. Association for

Computing Machinery.

[36] Antoine Kaufmann, Tim Stamler, Simon Peter,

Naveen Kr. Sharma, Arvind Krishnamurthy, and

Thomas Anderson. Tas: Tcp acceleration as an os

service. In Proceedings of the Fourteenth EuroSys

Conference 2019, EuroSys ’19, New York, NY, USA,

2019. Association for Computing Machinery.

[37] Chung Hwan Kim, Junghwan Rhee, Hui Zhang, Nipun

Arora, Guofei Jiang, Xiangyu Zhang, and Dongyan Xu.

Introperf: Transparent context-sensitive multi-layer per-

formance inference using system stack traces. SIGMET-

RICS Perform. Eval. Rev., 42(1):235–247, June 2014.

[38] John Levon. Oprofile. Onlin., https://oprofile.s

ourceforge.io/news/.

[39] Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports, and

Steven D. Gribble. Tales of the tail: Hardware, os, and

application-level sources of tail latency. In Proceedings

of the ACM Symposium on Cloud Computing, SOCC

’14, page 1–14, New York, NY, USA, 2014. Association

for Computing Machinery.

[40] ARM Limited. ARM CoreSight Architecture Specifica-

tion v3.0. Intel Corporation, August 2017.

[41] Xiaofeng Lin, Yu Chen, Xiaodong Li, Junjie Mao, Ji-

aquan He, Wei Xu, and Yuanchun Shi. Scalable kernel

tcp design and implementation for short-lived connec-

tions. In Proceedings of the Twenty-First International

Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS ’16, page

339–352, New York, NY, USA, 2016. Association for

Computing Machinery.

[42] Inc. Linux Kernel Organization. Linux. https://www.

kernel.org/.

[43] Dan Luu. Sampling v. tracing. https://danluu.com

/perf-tracing/.

[44] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca.

Pivot tracing: Dynamic causal monitoring for distributed

systems. In 2016 USENIX Annual Technical Conference

(USENIX ATC 16), Denver, CO, June 2016. USENIX

Association.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 875

https://software.intel.com/en-us/vtune
https://software.intel.com/en-us/vtune
https://www.dpdk.org/
https://www.dpdk.org/
https://dropbox.tech/infrastructure/optimizing-web-servers-for-high-throughput-and-low-latency
https://dropbox.tech/infrastructure/optimizing-web-servers-for-high-throughput-and-low-latency
https://dropbox.tech/infrastructure/optimizing-web-servers-for-high-throughput-and-low-latency
https://www.kernel.org/doc/Documentation/kprobes.txt
https://www.kernel.org/doc/Documentation/kprobes.txt
https://github.blog/2019-11-21-debugging-network-stalls-on-kubernetes/
https://github.blog/2019-11-21-debugging-network-stalls-on-kubernetes/
https://oprofile.sourceforge.io/news/
https://oprofile.sourceforge.io/news/
https://www.kernel.org/
https://www.kernel.org/
https://danluu.com/perf-tracing/
https://danluu.com/perf-tracing/

[45] Marek Majkowski. The story of one latency spike. ht

tps://blog.cloudflare.com/the-story-of-one

-latency-spike/.

[46] Ilias Marinos, Robert N.M. Watson, and Mark Hand-

ley. Network stack specialization for performance. SIG-

COMM Comput. Commun. Rev., 44(4):175–186, August

2014.

[47] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christo-

pher Alfeld, Sean Bauer, Carlo Contavalli, Michael Dal-

ton, Nandita Dukkipati, William C. Evans, Steve Grib-

ble, Nicholas Kidd, Roman Kononov, Gautam Kumar,

Carl Mauer, Emily Musick, Lena Olson, Erik Rubow,

Michael Ryan, Kevin Springborn, Paul Turner, Valas

Valancius, Xi Wang, and Amin Vahdat. Snap: A micro-

kernel approach to host networking. SOSP ’19, page

399–413, New York, NY, USA, 2019. Association for

Computing Machinery.

[48] Mellanox. Messaging accelerator (vma). Onlin., https:

//docs.mellanox.com/display/VMAv902.

[49] Microsoft. Event tracing for windows. Onlin., https:

//docs.microsoft.com/de-de/windows/win32/e

tw/about-event-tracing.

[50] Microsoft. Perfmon: Performance monitor on windows.

Onlin., https://docs.microsoft.com/en-us/win

dows-server/administration/windows-command

s/perfmon.

[51] Sun Microsystems. Dtrace. Onlin., http://dtrace.org.

[52] David Miller. ethtool. On-

lin., https://man7.org/linux/man-

pages/man8/ethtool.8.html.

[53] MIPS. Pdtrace. Onlin., https://www.mips.com/dev

elop/tools/navigator-probes/, August 2021.

[54] OpenZipkin. Zipkin: A distributed tracing system. On-

lin., https://zipkin.io/.

[55] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam

Belay, and Hari Balakrishnan. Shenango: Achieving

high CPU efficiency for latency-sensitive datacenter

workloads. In 16th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 19), pages

361–378, Boston, MA, February 2019. USENIX Asso-

ciation.

[56] P4. In-band network telemetry. Onlin., https://p4.o

rg/p4-spec/docs/INT_v2_1.pdf.

[57] Aleksey Pesterev, Jacob Strauss, Nickolai Zeldovich,

and Robert T. Morris. Improving network connection

locality on multicore systems. In Proceedings of the

7th ACM European Conference on Computer Systems,

EuroSys ’12, page 337–350, New York, NY, USA, 2012.

Association for Computing Machinery.

[58] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports,

Doug Woos, Arvind Krishnamurthy, Thomas Anderson,

and Timothy Roscoe. Arrakis: The operating system is

the control plane. In 11th USENIX Symposium on Oper-

ating Systems Design and Implementation (OSDI 14),

pages 1–16, Broomfield, CO, October 2014. USENIX

Association.

[59] V. Prasad, William Cohen, F. Eigler, M. Hunt, J. Kenis-

ton, and B. Chen. Locating system problems using

dynamic instrumentation. 01 2005.

[60] George Prekas, Marios Kogias, and Edouard Bugnion.

Zygos: Achieving low tail latency for microsecond-scale

networked tasks. In Proceedings of the 26th Sympo-

sium on Operating Systems Principles, SOSP ’17, page

325–341, New York, NY, USA, 2017. Association for

Computing Machinery.

[61] Linux PTP. The linux ptp project. Onlin., http://li

nuxptp.sourceforge.net/.

[62] Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and

John Ousterhout. Arachne: Core-aware thread man-

agement. In 13th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 18), pages

145–160, Carlsbad, CA, October 2018. USENIX Asso-

ciation.

[63] Xiang (Jenny) Ren, Kirk Rodrigues, Luyuan Chen,

Camilo Vega, Michael Stumm, and Ding Yuan. An

analysis of performance evolution of linux’s core opera-

tions. In Proceedings of the 27th ACM Symposium on

Operating Systems Principles, SOSP ’19, page 554–569,

New York, NY, USA, 2019. Association for Computing

Machinery.

[64] Patrick Reynolds, Charles Killian, Janet L. Wiener, Jef-

frey C. Mogul, Mehul A. Shah, and Amin Vahdat. Pip:

Detecting the unexpected in distributed systems. In Pro-

ceedings of the 3rd Conference on Networked Systems

Design & Implementation - Volume 3, NSDI’06, page 9,

USA, 2006. USENIX Association.

[65] Luigi Rizzo. netmap: A novel framework for fast packet

i/o. In 2012 USENIX Annual Technical Conference

(USENIX ATC 12), pages 101–112, Boston, MA, June

2012. USENIX Association.

[66] Steven Rostedt. Kernelshark. Onlin., https://kernel

shark.org/.

876 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://blog.cloudflare.com/the-story-of-one-latency-spike/
https://blog.cloudflare.com/the-story-of-one-latency-spike/
https://blog.cloudflare.com/the-story-of-one-latency-spike/
https://docs.mellanox.com/display/VMAv902
https://docs.mellanox.com/display/VMAv902
https://docs.microsoft.com/de-de/windows/win32/etw/about-event-tracing
https://docs.microsoft.com/de-de/windows/win32/etw/about-event-tracing
https://docs.microsoft.com/de-de/windows/win32/etw/about-event-tracing
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/perfmon
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/perfmon
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/perfmon
https://www.mips.com/develop/tools/navigator-probes/
https://www.mips.com/develop/tools/navigator-probes/
https://zipkin.io/
https://p4.org/p4-spec/docs/INT_v2_1.pdf
https://p4.org/p4-spec/docs/INT_v2_1.pdf
http://linuxptp.sourceforge.net/
http://linuxptp.sourceforge.net/
https://kernelshark.org/
https://kernelshark.org/

[67] Muhammad Shahbaz, Sean Choi, Ben Pfaff, Changhoon

Kim, Nick Feamster, Nick McKeown, and Jennifer Rex-

ford. Pisces: A programmable, protocol-independent

software switch. In Proceedings of the 2016 ACM SIG-

COMM Conference, SIGCOMM ’16, page 525–538,

New York, NY, USA, 2016. Association for Computing

Machinery.

[68] Benjamin H. Sigelman, Luiz André Barroso, Mike Bur-

rows, Pat Stephenson, Manoj Plakal, Donald Beaver,

Saul Jaspan, and Chandan Shanbhag. Dapper, a large-

scale distributed systems tracing infrastructure. Techni-

cal report, Google, Inc., 2010.

[69] Livio Soares and Michael Stumm. Flexsc: Flexible sys-

tem call scheduling with exception-less system calls. In

9th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 10), Vancouver, BC, October

2010. USENIX Association.

[70] Brent Stephens, Aditya Akella, and Michael Swift.

Loom: Flexible and efficient NIC packet scheduling. In

16th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 19), pages 33–46, Boston,

MA, February 2019. USENIX Association.

[71] Brent Stephens, Arjun Singhvi, Aditya Akella, and

Michael Swift. Titan: Fair packet scheduling for com-

modity multiqueue NICs. In 2017 USENIX Annual

Technical Conference (USENIX ATC 17), pages 431–

444, Santa Clara, CA, July 2017. USENIX Association.

[72] Uber Technologies. Jaeger: open source, end-to-end

distributed tracing. Onlin., https://www.jaegertrac

ing.io/.

[73] VMware. Vprobes. Onlin., https://www.vmware.c

om/products/beta/ws/vprobes_reference.pdf.

[74] Kit Po Wong, Chi Ping Tsang, and Wan Yee Chan. Sher-

lock—a system for diagnosing power distribution ring

network faults. In Proceedings of the 1st International

Conference on Industrial and Engineering Applications

of Artificial Intelligence and Expert Systems - Volume

1, IEA/AIE ’88, page 109–115, New York, NY, USA,

1988. Association for Computing Machinery.

[75] Wenfei Wu, Keqiang He, and Aditya Akella. Perfsight:

Performance diagnosis for software dataplanes. In Pro-

ceedings of the 2015 Internet Measurement Conference,

IMC ’15, page 409–421, New York, NY, USA, 2015.

Association for Computing Machinery.

[76] Minlan Yu, Albert Greenberg, Dave Maltz, Jennifer Rex-

ford, Lihua Yuan, Srikanth Kandula, and Changhoon

Kim. Profiling network performance for multi-tier data

center applications. In Proceedings of the 8th USENIX

Conference on Networked Systems Design and Imple-

mentation, NSDI’11, page 57–70, USA, 2011. USENIX

Association.

[77] Fang Zhou, Yifan Gan, Sixiang Ma, and Yang Wang.

wperf: Generic off-cpu analysis to identify bottleneck

waiting events. In 13th USENIX Symposium on Oper-

ating Systems Design and Implementation (OSDI 18),

pages 527–543, Carlsbad, CA, October 2018. USENIX

Association.

[78] Noa Zilberman, Matthew Grosvenor, Diana Andreea

Popescu, Neelakandan Manihatty-Bojan, Gianni An-

tichi, Marcin Wójcik, and Andrew W. Moore. Where

has my time gone? In Passive and Active Measurement,

pages 201–214, Cham, 2017. Springer International Pub-

lishing.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 877

https://www. jaegertracing.io/
https://www. jaegertracing.io/
https://www.vmware.com/products/beta/ws/vprobes_reference.pdf
https://www.vmware.com/products/beta/ws/vprobes_reference.pdf

CurvingLoRa to Boost LoRa Network Throughput via Concurrent Transmission

Chenning Li
Michigan State University

Xiuzhen Guo
Tsinghua University

Longfei Shangguan
University of Pittsburgh & Microsoft

Zhichao Cao
Michigan State University

Kyle Jamieson
Princeton University

Abstract
LoRaWAN has emerged as an appealing technology to con-
nect IoT devices but it functions without explicit coordination
among transmitters, which can lead to many packet collisions
as the network scales. State-of-the-art work proposes various
approaches to deal with these collisions, but most functions
only in high signal-to-interference ratio (SIR) conditions and
thus does not scale to real scenarios where weak receptions
are easily buried by stronger receptions from nearby transmit-
ters. In this paper, we take a fresh look at LoRa’s physical
layer, revealing that its underlying linear chirp modulation fun-
damentally limits the capacity and scalability of concurrent
LoRa transmissions. We show that by replacing linear chirps
with their non-linear counterparts, we can boost the through-
put of concurrent LoRa transmissions and empower the LoRa
receiver to successfully receive weak transmissions in the
presence of strong colliding signals. Such a non-linear chirp
design further enables the receiver to demodulate fully aligned
collision symbols — a case where none of the existing ap-
proaches can deal with. We implement these ideas in a holistic
LoRaWAN stack based on the USRP N210 software-defined
radio platform. Our head-to-head comparison with two state-
of-the-art research systems and a standard LoRaWAN base-
line demonstrates that CurvingLoRa1 improves the network
throughput by 1.6–7.6⇥ while simultaneously sacrificing nei-
ther power efficiency nor noise resilience.

1 Introduction

As we gradually reach a cyber-physical world where every-
thing near and far is connected wirelessly, a fundamental
question worth discussing is which wireless technologies are
best suited for achieving this goal. While Wi-Fi and cellu-
lar networks have proved their success in provisioning high-
throughput wireless connectivity in small geographic areas,
a remaining challenge is connecting those low-power IoT
devices deployed in wide areas. Most of these devices are

1Code is available at https://github.com/liecn/CurvingLoRa_NSDI22

powered by batteries and thus require minimal communica-
tion overhead.

Long Range (LoRa) [2], SIGFOX [7], and NB-IoT [38] are
the three commercialized wireless technologies facilitating
low-power wide-area IoT deployments. LoRa is an open-
source technique operating at the unlicensed ISM Sub-GHz
bands, without subscription fees [26]. Central to LoRa is
a dedicated PHY-layer design that leverages Chirp Spread
Spectrum (CSS) modulation to facilitate packet decoding
in extremely harsh signal-to-noise ratio (SNR) conditions
(which can be as low as �20 dB [58]). Coupling with a long-
term duty cycling mechanism, a deployed LoRa node can last
for a few years with a single dry-cell battery. These dual merits
of low-power and long-range make LoRaWAN an attractive
solution for IoT connectivity outdoors.

Unlike Wi-Fi, which uses carrier sensing [6] to avoid
packet collisions, LoRa’s communication protocol LoRaWAN
functions without explicit coordination due to its stringent
power budget. It instead adopts the least restrictive MAC
protocol—ALOHA [1]—that allows participating nodes to
transmit immediately once they wake up.2 Such laissez-faire

transmission inevitably causes packet collision when multiple
LoRa nodes transmit simultaneously, resulting in retransmis-
sions that can drain the battery of collision nodes and crowd
the precious wireless spectrum on the unlicensed band [13].
Packet collisions are exacerbated with increased network
size, thus reducing throughput and fundamentally challeng-
ing LoRa networks’ scalability in real deployment [15]. For
example, the probability of packet collisions grows from 1%
to 10% when the LoRaWAN network size scales from 100
to 1000 nodes [40], thus restricting many large-scale applica-
tions such as factory automation [17, 34], smart city [7, 30],
data-driven agriculture [37, 43], and smart metering [9, 50].

In this paper, we take a fresh look at the physical layer de-
sign of LoRaWAN and reveal that the underlying linear chirp

2LoRaWAN recently released a new feature called Channel Activity De-
tection (CAD) that allows the receiver to scan the channel before transmitting.
However, CAD incurs extra power consumption and thus may not apply to
rural deployments where battery replacement is usually infeasible.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 879

based modulation fundamentally limits the capacity and scal-
ability of concurrent LoRa transmissions. We present Curvin-
gLoRa, a simple but effective PHY-layer design to boost the
LoRa network throughput by simply replacing the standard
linear chirp with its nonlinear chirp counterpart.

CurvingLoRa is based on a unique property of non-linear
chirps, which we term the energy scattering and converging

effect. When a non-linear up-chirp symbol misaligns with the
non-linear down-chirp during demodulation, their multiplica-
tion will spread the power of the non-linear up-chirp symbol
into multiple FFT bins where the associated energy peaks are
inherently weak. Such energy scattering effect will show up
as long as the non-linear up-chirp is not well aligned with the
down-chirp (The theoretical analysis is in Appendix A). In
contrast, when this non-linear up-chirp is well aligned with
the down-chirp, its signal power will converge to a specific
frequency point, leading to a strong energy peak after FFT, as
shown in Figure 1.

This property allows the receiver to manipulate the signal-
to-interference ratio (SIR3) of each collision symbol for re-
liable demodulation. In contrast, the power of linear chirps
will always be converging to a single frequency point regard-
less of its alignment with the down-chirp in the demodulation
process. This energy converging effect fundamentally limits
the decodability of linear chirps in the presence of collisions.

We analyze the performance of non-linear chirp and com-
pare it with its linear chirp counterpart in various SNRs, SIRs,
and symbol overlapping ratio conditions. We show that such
a non-linear chirp remarkably improves the transmission con-
currency while retaining high power efficiency and strong
noise resilience as linear chirp does (§4). We then design
a holistic PHY layer to realize non-linear chirp modulation
and demodulation (§5) and implement it on software-defined
radios for evaluation. The experimental results show that com-
pared to two state-of-the-art systems [47,53], CurvingLoRa
can effectively improve network throughput by 1.6� 6.6⇥
and 2.8�7.6⇥ in an indoor and outdoor deployment. In ad-
dition, we make the following contributions:

• We reveal that LoRaWAN’s PHY-layer design fundamen-
tally limits the transmission concurrency and propose a
simple but effective solution. CurvingLoRa takes advantage
of the power scattering effect of non-linear chirps to enable
LoRa concurrent transmissions in extreme SNR, SIR, and
symbol overlapping ratio conditions.

• Through theoretical analysis and experimental validation,
we demonstrate that CurvingLoRa outperforms both the
current practice and the standard LoRaWAN without sacri-
ficing the power efficiency, noise resilience, or data rates.
These desired properties make non-linear chirp a potential
complement to its linear chirp counterpart.

3Defined as the ratio between the power of the targeting LoRa chirp and
the power of interfering concurrent LoRa chirps.

(a)

(b)

Figure 1: An illustration of CurvingLoRa’s energy converging
and scattering effect. (a): The energy of a non-linear chirp
symbol will converge to a specific frequency point when it
aligns with the down-chirp. (b): The energy will spread into
multiple FFT bins when this non-linear chirp mismatches
with the down-chirp.

• We design a holistic PHY-layer and implement it on a
software-defined radios platform to evaluate CurvingLoRa
in various real-world scenarios. The results confirm that the
CurvingLoRa can greatly improve the network throughput.

2 Related Work

Resolve collisions at PHY layer. Prior works on resolving
LoRa collisions have followed a common theme: exploring
the unique features of collided LoRa symbols in the time
domain [22, 53, 55, 59], frequency domain [13, 42, 47, 56], or
both [20, 41]. For instance, mLoRa [53] observes that col-
lisions usually start with a stretch of interference-free bits
on the packet header. The receiver can thus decode these
uncontaminated bits first and then leverage successive in-
terference cancellation [16, 33] to decode the collided bits
iteratively. Choir [13] uses the frequency variation caused
by oscillator imperfection to map bits to each LoRa trans-
mitter. FTrack [55] jointly exploits the distinct tracks on the
frequency domain and misaligned symbol edges in the time
domain to separate collisions. By combining spectra obtained
from different parts within each symbol, CIC [41] exploits the
sub-symbols that provide both time and frequency resolution
to cancel out the interference under low SNR conditions.

While the above ideas have demonstrated their efficacy,
they still face two scalability issues that fundamentally chal-
lenge their applicability in practice: First, the vast majority
of these approaches do not scale to many concurrent trans-
missions. For instance, mLoRa [53] and FTrack [55] barely
support up to three concurrent transmissions to maintain a
symbol error rate less than 0.1. While Choir [13] improved
over the above methods, it does not scale to more than ten
devices. Although NScale [47] can support tens of concurrent
transmissions, it requires the overlap ratio between different
symbols to be lower than a rigid threshold, which is unlikely

880 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

to be held in practice given laissez-faire LoRa transmissions.
Second, none of the foregoing approaches scale well to near-
far deployment scenarios. Since after dechirping, the weak
reception from a remote transmitter produces a tiny FFT peak
that is likely to be buried by strong FFT peaks from LoRa
nodes that are closer to the receiver.

Although successive interference cancellation (SIC) can be
leveraged to deal with this near-far issue, it functions only in
high SNR conditions due to the following reasons. First, due
to Carrier Frequency Offset (CFO) and Sampling Frequency
Offset (SFO), the phase of received chirp symbols is likely
to distort by a certain degree. This phase distortion is critical
to the signal recovery in SIC but is difficult to estimate in
low SNR conditions [42]. Second, SIC suffers from hardware
imperfections [47], which is common on low-end IoT devices.
As a result, the symbol recovering error accumulates gradu-
ally and is likely to fail the SIC in the end. In addition, the
impact of ambient RF noise on SIC, particularly the parameter
estimation for signal reconstruction, gets exacerbated at low
SNR conditions. Instead of leveraging new features on time
or frequency domain to combat LoRa collisions, CurvingLoRa
addresses this issue from a fresh new angle and designs new
types of chirp symbols to facilitate concurrent transmissions.

Resolve collisions at other layers. Significant research ef-
forts have been made to address signal collisions from the
perspective of MAC-layer. For instance, by leveraging Chan-
nel Activity Detection (CAD) [15, 51] or deep neural net-
works [8], a plenty of works [8, 15, 51] propose carrier-sense
multiple access (CSMA)-based MAC protocol to avoid LoRa
collisions. There are also some works explore special coding
mechanism and MAC-layer co-design [11, 18, 31, 40, 60] to
alleviate or even avoid LoRa packet collisions. For example,
NetScatter [18] presents a distributed CSS coding mechanism
by assigning each IoT device a different chirp symbol. Mul-
tiple LoRa devices can then transmit concurrently through
ON-OFF Keying modulation. Another way to alleviate the
impact of collisions is adding data redundancy (e.g., convolu-
tional codes, Viterbi decoder) to correct bit errors in corrupted
frames at MAC layer. For example, DaRe [31] combines the
convolutional and fountain codes for data recovery in the
presence of a frame loss. CurvingLoRa can leverage such
MAC-layer optimization and data recovery algorithms to fur-
ther improve the system performance.

Non-linear Chirp for Communication and Radar. Non-
linear frequency modulation has been widely used in radar
systems. Lesnik et al. [25] demonstrate that using nonlinear
frequency modulation can enhance signal sensitivity. Doerry
et al. [12] and Benson et al. [4] detail the way to build non-
linear chirp receivers. Kahn et al. [23] and Hosseini et al. [19]
use nonlinear chirps in a Multi-user orthogonal chirp spread
spectrum (MU-OCSS) communication system to mitigate the
multiple access interference problem. Wang et al. [52] pro-
pose to use non-linear chirps for communication systems of

+"#2

−"#2

&

'

()*+,'-./

0 212 − 1
445 6,7

(a) Baseline up-chirp

+"#2

−"#2

&

'

()*+,'-./

0 2!" − 1
223 4,5
4#

&#

(b) Shifted up-chirp

+"#2

−"#2

&

'

()*+,'-./

0 2!" − 1
223 4,5
4

(c) Symbol collision

Figure 2: LoRa PHY-layer design. (a): the multiplication of
an up-chirp and a down-chirp leads to an energy peak on a
specific FFT. (b)This energy peak’s position varies with the
initial frequency offset of the incoming up-chirp. (c): Two
collided symbols have separate energy peaks on FFT bins.

binary orthogonal keying mode. In contrast, CurvingLoRa ex-
plores a new possibility of using non-linear chirps to improve
the reception of concurrent LoRa-like signals.

3 Motivation

This section briefly introduces the LoRa physical layer and
then analyzes the pros and cons of linear chirps (§3.1). A
discussion on the limitations of resolving linear-chirp LoRa
collisions follows (§3.2).

LoRa Physical Layer. LoRa modulates data with chirp
spread spectrum (CSS) [5, 13]. The transmitter encodes bits
by varying the initial frequency offset of a standard up-chirp.4
For instance, bits ‘00’ are encoded by an up-chirp with zero
initial frequency offset, while bits ‘01’ are encoded by shifting
the initial frequency by f0. The frequency component beyond
BW/2 will be wrapped to �BW/2, ensuring full bandwidth
occupancy. The receiver (e.g., a LoRa gateway) first detects
the incident LoRa packet through correlation (§5.2). To de-
modulate the packet, the receiver multiples each chirp symbol
with a standard base down-chirp. The multiplication leads
to an FFT peak in the frequency domain, which allows the
receiver to demodulate LoRa chirp symbols by detecting the
position of FFT peaks. Figure 2(a)-(b) shows an example.

3.1 The Pros and Cons of Linear Chirp
In essence, the aforementioned dechirp converges the power
of each LoRa symbol to a specific frequency point (i.e.,
an energy peak on an FFT bin), which allows the LoRa
chirp to be decodable in extremely low SNR conditions (i.e.,
�20 dB [58]). As more LoRa nodes get involved, we are
expected to see packet collisions at the receiver since LoRa

4A chirp signal whose frequency grows linearly from �BW/2 to BW/2.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 881

-30 -20 -10 0 10 20 30
SNR(dB)

0

0.5

1

Sy
m

bo
l E

rr
or

 R
at

e

SF7
SF9
SF11

(a) SER fluctuates with SNR in the
absence of collisions.

-30 -20 -10 0 10 20 30
SNR(dB)

0

0.5

1

Sy
m

bo
l E

rr
or

 R
at

e

SF7
SF9
SF11

(b) SER fluctuates with SNR in the
presence of collisions (SIR ⇡ 0dB).

-20-18-16-14-12-10 -8 -6 -4 -2 0
SIR(dB)

0
0.1
0.2
0.3
0.4
0.5
0.6

Sy
m

bo
l E

rr
or

 R
at

e SF7
SF9
SF11

(c) SER fluctuates with SIR in the
presence of collisions (SNR > 30dB).

10% 20% 30% 40% 50%
Offsets (% of symbol duration)

0

0.2

0.4

Sy
m

bo
l E

rr
or

 R
at

e SF7
SF9
SF11

(d) SER fluctuates with symbol offset
in the presence of collisions.

Figure 3: Evaluation of the successive interference cancellation-based collision resolving method [53] in various settings.

nodes abide by the least-restrictive MAC protocol ALOHA.
To solve packet collisions, LoRaWAN [2] stipulates a set of
spreading factors (SF) (i.e., 7-12) and different bandwidths
(BW) (i.e., 125/250/500 KHz). Therefore, LoRa packets with
different SFs or BWs can transmit concurrently on the same
frequency band. The receiver uses down-chirps with different
SFs to disambiguate these concurrent transmissions. However,
the throughput of this regulation is limited: it supports only
18 pairs of SF&BW combinations [8, 18].

Collision happens when two concurrent transmissions use
the same SF and BW. In this case, we are expected to see
two energy peaks in two separate FFT bins, as shown in Fig-
ure 2(c). In practice, due to the near-far issue, one transmission
(e.g., packet A in red) may experience a stronger attenuation
than the other (e.g., packet B in blue). Hence the energy peak
of A tends to be weaker than that of B in FFT bins. Accord-
ingly, the receiver will only take A as noise and demodulate B.
When A and B experience similar attenuation, the receiver can
reliably demodulate neither of them because their individual
energy peak may bury each other across different symbols. In
a nutshell, when two LoRa packets collide, only the strongest
transmission can be correctly demodulated by LoRaWAN.

3.2 Resolving Linear-Chirp LoRa Collisions
Section 2 overviews the current practice on resolving LoRa
collisions and explains their pros and cons. This section im-
plements a state-of-the-art SIC-based system, mLoRa [53],
and examines its performance in various SNR and SIR con-
ditions. We also compare it with other SOTA systems in the
evaluation part. Specifically, we first measure the noise re-
silience of a standard LoRa packet in the absence of collisions
(Figure 3(a)). We then synthesize symbol collisions and mea-
sure their symbol error rate (SER) in different SIR and SNR
settings. To achieve this goal, we collect multiple pairs of
LoRa packets and superimpose them together with a symbol
offset varying from 0 to 50% of the symbol time. We then
emulate different SIR and SNR conditions by adding Gaus-
sian white noises and varying the amplitude of superposed
packets, respectively. We finally measure the SER in different
SNR and SIR conditions.

From Figure 3(a), we observe that the LoRa receiver can
reliably decode a collision-free LoRa packet (i.e., SER<1%)
even the SNR of this packet drops to -20dB [27,58]. However,
to maintain the same SER for a collision symbol, the SNR

of this collision symbol should be 5dB – 25dB higher than
that of a collision-free LoRa symbol, as shown in Figure 3(b).
Such a high SNR requirement sets a strong barrier for the
practical adoption of mLoRa since LoRa transmissions tend
to be very weak after attenuation over a long distance. We also
observe that the SER grows dramatically with the decreasing
SIR (Figure 3(c)), indicating that mLoRa [53] cannot reliably
demodulate the weak targeting LoRa symbols (i.e., SIR <
0dB) in the presence of strong concurrent LoRa transmissions.
Furthermore, we observe that the SER grows with decreasing
symbol offset (Figure 3(d)), which confirms our analysis.
Remarks. The above analysis reveals that the linear chirp
in LoRaWAN does not scale to concurrent LoRa transmis-
sions. Although the state-of-the-arts have proposed various
approaches to resolve LoRa collisions, most of them function
only in good SNR or SIR conditions and thus sacrifice the
precious processing gain brought by the chirp modulation.

4 Analysis: Non-linear vs. Linear Chirps

We now show that by replacing the linear chirp with its non-
linear counterpart, we can boost the capacity of concurrent
transmissions (§4.1) while allowing the receiver to demod-
ulate collision signals in severe SIR conditions (§4.2). In
addition, we show by both theoretical analysis and empiri-
cal validation that such a non-linear chirp design sacrifices
neither noise resilience (§4.3) nor power efficiency (§4.4).

4.1 Non-linear Chirps Meet Collisions
We define a non-linear up-chirp as a signal whose frequency
grows non-linearly from �BW/2 to BW/2. The non-linear
function can be polynomial, logarithmic, exponential, or
trigonometric. The receiver operates dechirp to demodulate
non-linear chirp symbols.
Considering two collision symbols A and B, as shown in Fig-
ure 5(a). The receiver takes a sliding window approach to
demodulate incoming signals. As aforementioned, when sym-
bol A aligns with the down-chirp in the current observing
window, we are expected to see a strong energy peak (termed
as peak A) on the associated FFT bin. At the same time, the
energy of symbol B will be spread over multiple, clustered
FFT bins due to its misalignment with the down-chirp. Com-
pared to peak A, the amplitude of these clustered energy peaks

882 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) L. chirp collisions in time domain

0 40 80 120
Frequency Bins #

ab
s.

 F
FT

Target Sig
Target Peak
Interfered Sig

(b) L. chirp collisions in freq. (c) NL. chirp collisions in time domain

0 40 80 120
Frequency Bins #

ab
s.

 F
FT

Target Sig
Target Peak
Interfered Sig

(d) NL. chirp collisions in freq.

Figure 4: Comparison of linear and non-linear chirps (i.e., f (t) = t
2) on resolving the near-far issue. (a): Three linear chirps

with different SNR collide at the receiver. (b): Due to the near-far issue, the energy peak (in black) of the weak reception is
overwhelmed by the energy peaks (in red) of strong collision symbols. (c): Three non-linear chirps in the same collision situations.
(d): The spectral power of strong receptions is spread over multiple frequency points, making the corresponding FFT peaks (in
red) significantly lower than the converged power (in black) of the weak reception.

+"#2

−"#2

&

'

!"#$%&'()

0 2!" − 1
../ 0%1

()*+,- "

()*+,- 9

" 1-:;<=3

A 1-:;<=3

(a)

+"#2

−"#2

&

'

!"#$%&'()

0 2!" − 1
../ 0%1

!"#$%&' ()*+,"

(b)
Figure 5: (a): The receiver uses the power scattering effect
to demodulate two collision symbols. (b): an illustration of
demodulating five collision symbols.

is significantly weaker. The receiver inherently takes these
clustered FFT peaks as noise and demodulates symbol A. As
the observing window slides, symbol B will align with the
down-chirp at a time. Consequently, the dechirp converges
the power of symbol B to a specific frequency point while
spreading the power of symbol A into multiple frequency
bins instead. The receiver then takes symbol A as noise and
demodulates B. When it comes with two collision packets
with each consisting of tens of symbols, following the same
principle, the receiver slides the observing window step by
step and demodulates their individual symbols alternatively.
Remarks. In essence, when the collision symbols are not
strictly aligned, there will be only one symbol that aligns with
the down-chirp in each observing window. This indicates that
each time only one symbol gets its energy accumulated. In
contrast, the energy of all the other colliding signals is being
scattered over multiple FFT bins, as shown in Figure 5(b).
Hence the receiver can easily pick up each symbol on sepa-
rated observing windows and decode them chronologically.

4.2 Accounting for the Near-far Effect
The above section explains the basic idea of non-linear chirp
and its unique energy scattering effect. We next demonstrate

that this energy scattering effect can be leveraged to address
the near-far issue where weak receptions are buried by strong
receptions from nearby transmitters.

Consider many colliding transmitters where some are phys-
ically closer to the receiver than the others. When linear chirps
are adopted, the power of strong receptions converges to a
specific frequency point where the associated energy peak
is easily distinguishable after dechirp. However, the weak
receptions from remote transmitters have significantly weaker
energy peaks. The receiver thus takes those weak receptions
as noise. Figure 4(a) shows a snapshot where two linear chirp
packets with a distinguishable SIR (-10dB) collide at the re-
ceiver. Suppose the current observing window aligns with
the symbol A in yellow of the weak packet. Due to the near-
far issue, symbols B and C in red produce stronger energy
peaks on associated FFT bins even they both are not aligned
with the current observing window (shown in Figure 4(b)).
Hence the receiver cannot demodulate symbol A successfully.
In contrast, when non-linear chirps are adopted (shown in
Figure 4(c)), the power of strong reception symbols B and C

are both scattered into multiple FFT bins after dechirp. Due
to such an energy scattering effect, the energy peaks induced
by these strong symbols become lower than the accumulated
energy peak induced by the weak symbol A. This allows the
receiver to demodulate symbol A in the presence of strong
collision symbols B and C (shown in Figure 4(d)).
Validation. To demonstrate the effectiveness of non-linear
chirps on resolving the near-far issues, we compare the SER
of non-linear (i.e., the quadratic function: f (t) = t

2) and linear
chirps (i.e., f (t) = t) in different SIR settings. To create col-
lision symbols, we collect the targeting and interfering LoRa
packet seperately using a USRP N210 software defined radio.
We then superimpose these two packets together on software.
The SF, BW, and sampling rate are set to 10, 125KHz, and
1MHz, respectively.

Figure 7(a) shows the results. Per our analysis, we ob-
serve that the linear chirp fails to demodulate the targeting
symbol in the presence of strong concurrent transmissions
(i.e., SER=100% when SIR<�5dB). The SER then drops
to around 10% when the power of the targeting symbol is
comparable to that of colliding symbols (i.e., SIR=0dB). In

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 883

(a) Two collided linear chirps

0 40 80 120
Frequency Bins #

ab
s.

 F
FT

(b) SIR=-1dB

0 40 80 120
Frequency Bins #

ab
s.

 F
FT

(c) SIR=-5dB

0 40 80 120
Frequency Bins #

ab
s.

 F
FT

(d) SIR=-10dB

(e) Two collided non-linear chirps

0 40 80 120
Frequency Bins #

ab
s.

 F
FT

Target Sig
Target Peak
t gap =20%
t gap =40%
t gap =60%
t gap =80%

(f) SIR=-1dB

0 40 80 120
Frequency Bins #

ab
s.

 F
FT

Target Sig
Target Peak
t gap =20%
t gap =40%
t gap =60%
t gap =80%

(g) SIR=-5dB

0 40 80 120
Frequency Bins #

ab
s.

 F
FT

Target Sig
Target Peak
t gap =20%
t gap =40%
t gap =60%
t gap =80%

(h) SIR=-10dB

Figure 6: Examining the resilience of non-linear chirps (i.e., f (t) = t
2) to symbol time offset in various SIR settings.

-30 -20 -10 0
SIR(dB)

10 -2

10 0

Sy
m

bo
l E

rr
or

 R
at

e

Linear
Non-linear

(a) SER of linear and non-linear
chirps in different SIR conditions.

SF7 SF8 SF9 SF10 SF11 SF12
SF of Collisioned Signals

-15

-10

-5

0

SI
R

 T
hr

es
ho

ld

Linear
Non-linear

(b) The SIR threshold for linear and
non-linear chirps to achieve 1% SER.

Figure 7: Comparing the SER of linear and non-linear chirps
in various near-far conditions.

contrast, the receiver can successfully demodulate the weak
non-linear symbols reliably (i.e., SER < 1%) as long as the
SIR is higher than �10dB. We also found that the non-linear
chirp can still achieve 10%+ SER in an extreme case where
the colliding signal is 20dB stronger than the targeting signal
(i.e., SIR=�20dB). We further evaluate the SER in different
SF settings. Figure 7(b) shows the minimum SIR required
by each type of chirps to achieve less than 1% symbol er-
ror rate. We observe that the linear chirp requires a minimal
SIR of around 0dB in all six SF settings. In contrast, the
non-linear chirps require a minimal SIR less than 0dB, and
the SIR requirement drops dramatically with increasing SF.
These results clearly demonstrate that the non-linear chirp
by its own design is more scalable to near-far issues than its
linear chirp counterpart.

The impact of symbol time offset. We define tgap as the
symbol time offset between two colliding symbols A and B

(shown in Figure 6(a)). Suppose the current observing window
aligns with symbol A, then after dechirping, the power of the
interfering symbol B will be scattered into multiple FFT bins.
The amplitude of these scattered FFT peaks is proportional
to 1-tgap because only those signal samples that are within
the overlapping window will contribute to the energy peaks.
Hence a smaller tgap will lead to stronger interfering peaks.
We vary tgap and plot the energy peaks in Figure 6.

Figure 6(b) shows the energy peaks of linear chirps. When
SIR=�1dB, the targeting peak is still distinguishable from

the interfering peak across all four tgap settings. When SIR
drops to �5dB (shown in Figure 6(c)), the interfering peak
grows dramatically with decreasing tgap. It finally surpasses
the targeting peak when tgap drops to 20%. When SIR grows
to -10dB (shown in Figure 6(d)), the interfering peak easily
exceeds the targeting peak in 3/4 tgap settings. In contrast,
when a non-linear chirp is adopted, we merely observe tiny
energy peaks induced by the interfering symbol B. The tar-
geting peak is easily distinguishable even in the case that
the colliding symbol B is almost aligned with the targeting
symbol A (i.e., tgap=20%) across all three SIR settings, as
shown in Figure 6(f)-(h). These results manifest that the non-
linear chirp is robust to symbol time offset. In §5.1 we further
demonstrate that by adopting different forms of non-linear
chirps, the receiver can even demodulate two well-aligned
collision symbols (i.e., tgap=0) — a case that none of existing
LoRa collision demodulation approaches can deal with.

4.3 Noise Tolerance
Theoretically, the noise tolerance of CSS symbol is deter-
mined by the symbol bandwidth and symbol time [27, 42, 47].
CurvingLoRa’s non-linear chirps are of equal length to LoRa
linear chirps and occupy the same bandwidth. Thus we expect
the non-linear chirps can achieve the same noise tolerance as
their non-linear linear chirp counterparts.
Validation. We evaluate the noise tolerance of six non-linear
chirps that cover a range of shapes and convexity (§5.1):

(1): quadratic1— f (t) = t
2 (2): quadratic2— f (t) =�t

2 +2t

(3): quartic1— f (t) = t
4 (4): quartic2— f (t) =�t

4 +4t
3 �6t

2 +4t

(5): Sine1— f (t) = sin(t), t 2 [�p/2,p/2) (6): Sine2— f (t) = sin(t), t 2 [�3p/8,3p/8)

Figure 8(a) shows the SER achieved by these chirps in
three SF settings. We observe that all these six types of non-
linear chirps achieve consistent symbol error rates with their
linear chirp counterpart across all three different SF settings.
In particular, when SF = 11, the receiver achieves 1% SER
on both non-linear and linear chirps in an extremely low SNR
condition (i.e., �20dB). The minimal SNR (for achieving the
same SER) then grows to �14dB, and further to �9dB as the

884 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

-30 -20 -10
SNR(dB)

10 -4

10 -2

10 0

Sy
m

bo
l E

rr
or

 R
at

e

SF=11 SF=9 SF=7
Linear
Quadratic1
Quadratic2
Quartic1
Quartic2
Sine1
Sine2

(a) SER fluctuates with SNR in vari-
ous SF settings.

0.2 0.4 0.6
Symbol Error Rate across Codes

0.2

0.4

0.6

0.8

1

C
D

F

SF=11 SF=9 SF=7

Linear
Quadratic1
Quadratic2

Quartic1
Quartic2
Sine1

Sine2

(b) The CDF of SER in various SF
settings.

Figure 8: Comparing the SER of various types of non-linear
chirps in different SNR conditions.

SF drops to 9 and 7, respectively. The result demonstrates that
the non-linear chirp achieves superior noise tolerance as the
linear chirp does.

Since the LoRa symbol varies with the chirp’s initial fre-
quency offset, given a certain type of non-linear chirp, one
may worry that the SER of this chirp may not be consistent
across different LoRa symbols. To validate this concern, we
generate different chirp symbols by varying the initial fre-
quency offset of a standard up-chirp. We then compare its
symbol error rate with linear-chirps in the same SF settings.
As shown in Figure 8(b), the linear and non-linear chirps
achieve very similar SER in all three SF settings.

4.4 Power Consumption
Next, we show that the non-linear chirp generation consumes
the same order of power as the linear chirp generation does.
We leverage Direct Digital Synthesis (DDS) [49], a digital
signal processing method to generate chirp signals. Compared
to other analog frequency synthesis [39] or voltage-controlled
oscillator (VCO) [46] based approaches, DDS is immune to
both frequency and amplitude drifts and thus has been widely
adopted for chirp signal generation in a radar system, e.g.,
frequency modulated continuous wave (FMCW) radars [29,
32] and synthetic aperture radars (SAR) [24, 57].

DDS works as follows. It first generates a reference signal
at a constant frequency fclk, and stores the signal samples in
a local buffer, called a phase-amplitude mapping table. Let
L be the length of this mapping table. To generate a desired
chirp signal, DDS then accesses the mapping-table following
the equation defined below:

fi =
i

Â
m=1

fi =
i

Â
m=1

(fi�1 +Ki ⇥
fclk

2L
) =

i

Â
m=1

m

Â
j=1

Ki ⇥
fclk

2L
(1)

where fi and fi represent the phase and frequency of the i
th

sampling point of the chirp signal to be generated, respec-
tively. Ki is the slope of this chirp signal, describing how its
frequency changes over time. Ki is a constant value for linear
chirps. It varies over time for non-linear chirps. The transmit-
ter then retrieves these signal samples from the mapping table
and generates the chirp signal accordingly.

K1

K2

K3
K4
K5

K6

K7

K8

Freq

Samples

K7

K8

Freq

SamplesK6
K5
K4
K3
K2
K1

I

Q

1
2

1()ԉ

2
ԉ

3
ԉ

4ԉ

3

4

(a) Frequency of a linear chirp (b) Frequency of a non-linear chirp (c) Phase of a linear/non-linear chirp

Figure 9: An illustration of DDS operation to generate the
linear and non-linear chirps, respectively.

Figure 9 describes DDS’s high-level operations. To gen-
erate a linear chirp (Figure 9(a)), the transmitter sets Ki to a
constant value (i.e., 1) and accesses the frequency samples
at index (1, 2, 3, 4, ...). The phase samples are retrieved at
index (1, 3, 6, 10, ...). In contrast, to produce a non-linear
chirp (Figure 9(b)), Ki varies over time, e.g., (K1=1, K2=2,
K3=4, K4=8, ...). The frequency and phase index then changes
to (1, 3, 7, 15, ...) and (1, 4, 11, 26, ...), respectively.
Validation. We prototype DDS on a Zynq-7000 FPGA [36]
and measure the power consumption of linear and non-linear
chirp generation, respectively. The FPGA board is equipped
with an ultra-low-power 12-bit ADC and a 256KB RAM.
The phase-amplitude mapping table is generated by a 1 MHz
clock signal. It stores 212 sample points. We then retrieve
signal samples from this mapping table to generate chirps
(BW=125KHz, SF=7). The sampling points of each chirp in
total are 8192. Our measurement study shows that the trans-
mitter consumes the same order of power on generating the
baseband of these two types of chirp signals: 315.6 µW for
non-linear chirps and 306.2 µW for linear-chirps, respectively.
The up-conversion of baseband to RF band (900 MHz) con-
sumes around 40 mW [21] for both chirps. Hence the total
power consumption (baseband+RF) of the DDS-based ap-
proach is similar to commercial LoRa nodes [10].

5 CurvingLoRa PHY-Layer

The above section shows a set of desirable properties of non-
linear chirps. In this section, we describe the PHY-layer design
on non-linear chirp modulation (§5.1), demodulation (§5.2),
and the frame format for packet detection (§5.3).

5.1 Modulation
Similar to the standard linear chirp modulation in LoRa, Curv-
ingLoRa defines a base non-linear chirp and modulates it by
varying its initial frequency offset.
Base non-linear chirp generation. We define a base non-
linear chirp as a monotonic curve growing from (0,�BW

2) to
(2SF

BW
, BW

2), where the coordinate (x,y) represents the (time,
frequency) boundary of this chirp. Since a monotone non-
linear function can be approximated by the sum of a set of

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 885

polynomial functions in time-frequency domain, the base non-
linear chirp thus can be represents as:

fc(t) =
n

Â
i=0

kit
i, t 2 [0,

2SF

BW
], fc(t) 2 [�BW

2
,

BW

2
] (2)

where ki, i 2 [0,n] are a set of coefficients to fit the non-linear
curve into the range of symbol time and BW. Notice that
for a linear chirp, all these coefficients are zero except for
k0 =�BW

2 and k1 =
BW

2

2SF
.

To facilitate the coefficient configuration in different BW

and SF settings, we further design a polynomial chirp function
in a unified space ([0,1]x ⇥ [0,1] f (x)) as follow:

f (x) =
n

Â
i=0

aix
i,x 2 [0,1], f (x) 2 [0,1] (3)

where ai, i 2 [0,n] is the i
th coefficient. The relationship be-

tween the coefficient defined in the unified space and that
defined in the time-frequency domain (i.e., ki in Equation 2)
can be represented as follows:

k0 = BW ⇥a0 �
BW

2
, ki =

BW
i+1

2SF⇥i
ai, i 2 [1,n] (4)

Given BW and SF , we can compute the coefficient ki for
each polynomial term defined in Equation 2 and generate the
base up-chirp accordingly. The down-chirp can be generated
by conjugating the base up-chirp.
Base non-linear chirp modulation. Once we have a base
non-linear chirp, the transmitter then varies the initial fre-
quency offset of this base chirp to modulate data:

h(t) = e
j2p(f0+ fc(t))t (5)

where f0 is the initial frequency offset of this chirp. In essence,
given the same BW and SF configurations, CurvingLoRa
achieves the same link throughput with the standard linear-
chirp based LoRa.
Modulation knobs. By using different polynomial functions
defined in the unified space (e.g., f (x) = x, f (x) = x

2 and
f (x) = 2x�x

2), the transmitter can easily build different base
chirps. Figure 10 shows a convex and a concave non-linear
chirp produced by two different polynomial functions. These
different polynomial functions provide us another knob to
boost the throughput of concurrent LoRa transmissions. To
understand the rationale behind this, let’s consider a case
where two LoRa transmissions (i.e., SA and SB) are happenly
well-aligned at the receiver. Let SR be their superposition.
• Case one: when both SA and SB are linear chirps, we are ex-
pected to see two separate energy peaks on FFT bins (shown
in Figure 11(a)). In this case, all existing parallel decoding ap-
proaches [13,20,42,47,53,55,56,59] fail to disambiguate the
collision symbols as these two well-aligned symbols exhibit
similar FFT peaks.

!! = 0
!" = 1

!(#)

%

!! = −$%2
!" =

$%#

2$%
+'(2

−'(2

(a) Linear up-chirp

!! = −$%2
!# =

$%&

2#$%
!! = 0
!# = 1+'(2

−'(2
%

!(#)

(b) Convex up-chirp

+'(2

−'(2

!

%

!! = −$%2
!" =

$%#

2$%&"

$' =− ()!

'"#$

'! = 0
'" = 2
'# = −1

(c) Concave up-chirp

Figure 10: An illustration of linear and non-linear chirps with
the corresponding function parameters.

+"#2

−"#2

&

'

()*+,'-./

0 2!" − 1
223 4,5
4

6#

6$

*#
*$

(a) L. meets L.

+"#2

−"#2

&

'

()*+,'-./

0 2!" − 1
223 4,5
4

6#

6$

*#

*$

(b) NL. meets NL.

+"#2

−"#2

&

'

()*+,'-./

0 2!" − 1
223 4,5
4

6#

6$

*#

*$

(c) NL. meets L.

Figure 11: An illustration of symbol collisions. (a): A linear
chirp (L.) collides with another linear chirp. (b): A non-linear
(NL.) chirp collides with another non-linear chirp. (c): A
non-linear chirp collides with a linear chirp.

• Case two: when both SA and SB are non-linear chirps (i.e.,
generated by two different polynomial functions), the receiver
can decode each symbol from their collision as follows. The
receiver first multiplies SR with the conjugate of SA. As a
result, the energy of SB will be spread over multiple FFT bins,
whereas the energy of SA will concentrate on a single, isolated
FFT bin, as shown in Figure 11(b). The receiver can easily
pick up this energy peak and decode SA. SB can be decoded
by replacing the down-chirp with the conjugate of SB.
• Case three: when one of the collision symbols is based on
linear chirp and another is based on non-linear chirp, the re-
ceiver can alternate between different down-chirps to decode
each of them accordingly, as shown in Figure 11(c).

We have three takeaways from the above analysis: i) the
transmitters can use different types of non-linear chirps as
an orthogonal approach to boost the concurrency of LoRa
transmissions. ii) the non-linear chirp based LoRa nodes can
co-exist with those linear-chirp based legacy LoRa nodes. iii)
the adoption of different non-linear chirps also facilitates the
demodulation of well-aligned collision symbols.

5.2 Demodulation
Similar to linear chirp demodulation, the receiver operates
dechirp to demodulate non-linear chirps.
Accounting for the Misalignment. Symbol alignment is crit-

886 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

+"#2

−"#2

&

'

()*+,'-./

0

112 3,4

!"#

Δ,-.

$%#

Δ/0.

(a) with STO and CFO

+"#2

−"#2

&

'

()*+,'-./

0

!"#

112 3,4
Δ,-.

(b) with CFO

+"#2

−"#2

&

'

()*+,'-./

0

!"#

112 3,4
Δ,-.

$%#

Δ/0.

(c) with STO and CFO

Figure 12: The influence of symbol time offset (STO) and
carrier frequency offset (CFO) on demodulation. (a) both
STO and CFO move the energy peak of a linear chirp from
its desired FFT bin. (b) CFO moves the energy peak of a
non-linear chirp from its desired FFT bin. (c) STO spreads
the power of a non-linear chirp into multiple FFT bins.

ical to the demodulation performance, particularly for non-
linear chirp demodulation, as the misalignment will spread
the spectrum power of a chirp symbol into multiple frequency
points, which fails the demodulation. While this misalign-
ment, in theory, is only caused by the symbol time offset
(STO) between the incident chirp symbol and the down-chirp,
in practice, it is also affected by the carrier frequency offset
(CFO) caused by clock offset.

In linear chirp demodulation, the dechirp converges the
spectrum power of each linear chirp symbol to a specific fre-
quency point. The existence of STO and CFO both renders
the energy peak merely deviates from its desired position in
FFT bins. After the dechirp, the receiver can thus leverage the
preamble to estimate such frequency shift and then correct the
symbol by applying the estimated frequency shift to the en-
ergy peak. However, such a post-processing approach cannot
be directly applied to non-linear chirp, as the existence of STO
will instead spread the spectrum energy into multiple FFT
bins. Hence the receiver has to align the chirp symbol with
the down-chirp and compensate for the CFO before operating
dechirp on each non-linear chirp symbol.

To better understand this issue, we take Figure 12 as an
example, where the receiver demodulates the linear chirp and
non-linear chirp, respectively. To align the incoming linear
chirp shown in Figure 12(a), the LoRa receiver operates mul-
tiplication on these two chirps. Due to the symbol time offset,
the resulting FFT peak will be shifted from its desired bin by
the amount of DSTO. CFO leads to an extra shift of the FFT
peak DCFO. By leveraging the preamble in the LoRa header,
the receiver can easily estimate DCFO+DSTO and offset their
impact on the energy peak. In contrast, the multiplication
of two misaligned non-linear chirps (shown in Figure 12(b))
spreads the spectrum energy into multiple FFT bins, as shown
in Figure 12(b). The existence of CFO further shift these
FFT peaks and complicate the symbol alignment, as shown
in Figure 12(c).

Figure 13: Packet format of CurvingLoRa.

In CurvingLoRa, we put a pair of conjugate chirps—a stan-
dard linear up-chirp followed by a standard linear down-
chirp—as the pilot symbols of a LoRa packet to estimate
the STO and CFO. Suppose these two linear chirps are well
aligned with their conjugate counterpart in dechirping process,
respectively. The resulting two FFT peaks are supposed to be
superimposed at the same FFT bin without CFO. On the con-
trary, the existence of STO and CFO will shift these two FFT
peaks by the amount of DCFO +DSTO and �(DCFO +DSTO)
from their desired position. The receiver then estimates the
STO and CFO using the similar method as in NScale [47]
and offsets the symbol misalignment and carrier frequency
offset accordingly. It then operates dechirp on the corrected
symbols to demodulate each symbol.

5.3 Frame Format
A typical LoRa packet comprises multiple preamble symbols,
two mandatory sync word symbols, 2.25 Start Frame Delim-
iter (SFD) symbols followed by a variable number of payload
symbols [28,47]. Following the standard LoRa packet format,
we encode the sync word symbols and payloads with non-
linear chirps while retaining the linear chirps in preambles
and SFDs, shown in Figure 13. The preamble contains eight
identical linear up-chirps for packet detection and alignment,
followed by two non-linear chirps of sync word for config-
uration recognition of payloads. The SFD consists of 2.25
standard down-chirps while the payload contains multiple
chirp symbols with configurable length and chirp type. As
mentioned in §5.2, a pair of up-chirp and down-chirp (i.e.,
pilot symbols) is needed to facilitate the symbol alignment.
Instead of putting an extra pair of such pilot symbols on the
LoRa packet, we reuse the last linear up-chirp symbol in the
LoRa preamble and the first linear down-chirp symbol of
SFD as the pilots. The use of linear chirp-based preamble
may introduce the following two types of collisions:
• Linear chirps collide with non-linear chirps when the pream-
ble of one packet happenly aligns with the payload of another
packet. In this case, the receiver can still leverage the energy
scattering and converging effect to detect the preamble and
further demodulate each signal (§5.1).
• Linear chirps collide with linear chirps when the preamble
of one packet happenly aligns with the preamble of another
packet. In practice, however, this case rarely happens as the
preamble contains only eight symbols, whereas the payload
may last for hundreds of symbols [42, 47].

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 887

6 Implementation

Hardware and software. We implement CurvingLoRa on
software-defined radios USRP N210 equipped with a UBX
daughter board. The modulation and demodulation are imple-
mented based on UHD+GNURadio [35]. The transmitter and
receiver work on the 904.0MHz ISM band, equipped with a
VERT900 antenna [3]. By default, the SF and BW are set to
10 and 125 kHz, respectively. The sampling rate is 1 MHz.

Experiment setups. We conduct trace-driven emulations to
evaluate our system. Specifically, we fix the gateway’s loca-
tion and move a transmitter to different sites. The transmitter
sends packets in different SFs and chirp symbol settings at
each site. We then align LoRa traces collected from different
sites with varying symbol offset offline to emulate packet
collisions. The reasons are twofold. First, the trace-driven
emulation allows us to manipulate symbol collisions in a
fine-grained manner. It enables comprehensive collision set-
tings, including various SNRs, SIR, and offsets to evaluate
CurvingLoRa’s performance. Second, it allows us to rapidly
scale up the network size for concurrent transmission testing.
Experiment setups are detailed in Appendix B.
Large-scale packet collision emulation. Due to the tempo-
ral diversity (e.g., the cars passing by may block the LoS path
or generate a new reflection path), the LoRa traces collected
from each site experience significantly different channel vari-
ations. This allows us to emulate large-scale LoRa networks
by reusing each LoRa trace from a new LoRa transmitter. We
further enhance the link diversity by varying the SIR of each
trace at the gateway. The symbol offset is randomly chosen
from [0.2, 0.8]⇥Tsymbol_time.
Evaluation Metrics. We adopt three metrics to evaluate Curv-
ingLoRa. i): Symbol Error Rate (SER) measures the demodula-
tion of CurvingLoRa at the symbol level, under various SNRs
and SIRs [42, 47]; ii): Packet Delivery Rate (PDR) computes
the packet reception rate. in which 80% of symbols can be
decoded successfully.5 iii): Throughput can be derived with
the received packets and decoded symbols, denoted by Sym-
bol/Second. Note that LoRa gateways are usually deployed
with tethered power supplies, and thus we do not consider
energy consumption at the gateway [42, 47].

Baselines. We compare our design with two SOTA LoRa col-
lision decoding systems mLoRa [53] and NScale [47]. These
two systems represent two mainstreaming designs, namely,
successive interference cancellation [22, 41, 53] and spec-
tral energy based approache [13, 20, 42, 47]. The standard
LoRaWAN is also adopted for comparison. As a proof of
concept, we design four types of non-linear chirps to evaluate:

(1): quadratic1— f (t) = t
2 (2): quadratic2— f (t) =�t

2 +2t

(3): quartic1— f (t) = t
4 (4): quartic2— f (t) =�t

4 +4t
3 �6t

2 +4t

5Most error correction codes can recover 1/5 symbol errors [48].

7 Evaluation

We present the results in this section. §7.1 first compares
CurvingLoRa with linear chirps at the symbol and packet
level, followed by the outdoor experiments at the campus
scale in §7.2. Finally, we provide the large-scale emulation to
explore the impact of concurrency on CurvingLoRa in §7.3.
And indoor evaluations can be found in §C.

7.1 Overall Comparisons with Linear Chirps
Noise resilience. We compare the noise resilience of Curv-
ingLoRa with LoRaWAN in the presence of collisions. Fig-
ure 14(a)-(c) shows the SER in various SNR and SF settings.
When SF=8, we observe that both LoRaWAN and four types
of non-linear chirps fail to demodulate packets in extremely
low SNR conditions (i.e., SNR-25dB). As the SNR grows
to �15dB, the SER achieved by non-linear chirps drops dra-
matically to around 1%, whereas the SER of linear chirps is
still above 20%. As the SNR grows further, we observe the
SER of non-linear chirps is always 10⇥ lower than that of
the linear chirps, e.g., 0.3% versus 3% at SNR=30dB. Similar
trends hold for SF=10 and 12.

We also evaluate the impact of narrow-band interference
(i.e., RFID) on CurvingLoRa symbol decoding (Appendix
D). We observe these different types of non-linear chirps can
achieve descent resilience to narrow-band interference. We
also find that the noise resilience of non-linear chirps varies
with the chirp shape, and we leave the non-linear chirp selec-
tion as our future work. In addition, the evaluation results
verify the Gaussian noise resilience observed by our analysis
(§4.3) in Appendix E.
Symbol offset. Next, we compare the SER of CurvingLoRa
and linear chirps in various symbol offset settings. Specif-
ically, from our collected dataset, we randomly pick up
LoRa symbols with different SFs (SF=8,10,12) and SNRs
([�15dB,15dB]). We then vary the symbol offset between
two collision symbols from 10% to 50% and plot their SER in
Figure 14(d). In consistency with our simulation in Figure 6,
we observe the SER of linear chirps drops with increasing
symbol offsets. In contrast, the SER achieved by non-linear
chirps maintains a low level, with the maximal value of 1%
when the offset of two collision symbols is merely 10%. In
contrast, the linear chirp’s SER varies from 1% to 80% as
the symbol offset decreases. These results demonstrate that
the non-linear chirps are robust to collisions with different
symbol offsets.
Resolving near-far issue. We also compare CurvingLoRa
with linear chirp-based LoRa (i.e., LoRaWAN) in the pres-
ence of the near-far issue. In particular, we vary the SIR of
the targeting symbol and measure its SER in each SIR setting.
Figure 15(a)-(c) show the results in three different SF settings.
We observe the standard LoRaWAN fails to decode weak
targeting signal (i.e., SIR<0dB) across all three SF settings.

888 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

-25 -15 -5 5 15 25
SNR(dB)

10 -2

10 0

Sy
m

bo
l E

rr
or

 R
at

e

Linear
Quadratic1
Quadratic2
Quartic1
Quartic2

(a) SER vs. SNR when SF=8

-25 -15 -5 5 15 25
SNR(dB)

10 -4

10 -2

10 0

Sy
m

bo
l E

rr
or

 R
at

e

(b) SER vs. SNR when SF=10

-25 -15 -5 5 15 25
SNR(dB)

10 -4

10 -2

10 0

Sy
m

bo
l E

rr
or

 R
at

e

(c) SER vs. SNR when SF=12

10% 20% 30% 40% 50%
Offsets (% of symbol duration)

10 -4

10 -2

Sy
m

bo
l E

rr
or

 R
at

e Linear
Quadratic1
Quadratic2

Quartic1
Quartic2

(d) SER vs. symbol offset

Figure 14: Linear vs non-linear: symbol error rate (SIR ⇡ 0dB) in different SFs, SNRs and symbol offsets settings.

-30 -20 -10 0
SIR(dB)

10 -2

10 0

Sy
m

bo
l E

rr
or

 R
at

e

Linear
Quadratic1
Quadratic2
Quartic1
Quartic2

(a) SER vs. SIR when SF=8

-30 -20 -10 0
SIR(dB)

10 -2

10 0
Sy

m
bo

l E
rr

or
 R

at
e

(b) SER vs. SIR when SF=10

-30 -20 -10 0
SIR(dB)

10 -2

10 0

Sy
m

bo
l E

rr
or

 R
at

e

(c) SER vs. SIR when SF=12

10% 20% 30% 40% 50%
Offsets (% of symbol duration)

10 -4

10 -2

10 0

Sy
m

bo
l E

rr
or

 R
at

e Linear
Quadratic1

Quadratic2
Quartic1

Quartic2

(d) SER vs. symbol offset

Figure 15: Linear vs. non-linear: symbol error rate (SNR > 30dB) in different SF, SIR, and symbol offset settings.

-30 -20 -10 0 10 20 30
SNR(dB)

10 -4

10 -2

10 0

Sy
m

bo
l E

rr
or

 R
at

e mLoRa
Quadratic1
Quadratic2
Quartic1
Quartic2

-24 -20 -16 -12 -8 -4 0
SIR(dB)

10 -4

10 -2

10 0

Sy
m

bo
l E

rr
or

 R
at

e

Figure 16: Head-to-head comparison with mLoRa [53].

In contrast, by leveraging the power scattering effect, all four
types of non-linear chirps in CurvingLoRa can successively
demodulate weak symbols in the presence of strong colli-
sions. For instance, the averaging SIR threshold for achieving
less than 1% SER is -3.7dB, �7.7dB, and �10.2dB for SF=8,
10, and 12, respectively. We further vary the symbol offset
of two collision symbols and measure the SER achieved by
CurvingLoRa and LoRaWAN. The SIR and SF of symbols
for evaluation varies from -10dB to 1dB, and from 8 to 12,
respectively. The results are shown in Figure 15(d). We ob-
serve CurvingLoRa achieves a robust low SER (i.e., less than
1%) in the presence of a large symbol offset. It then degrades
slightly as the symbol offset decreases. In contrast, the linear
chirp achieves consistently high SER (i.e., �38%) in all five
different symbol offset settings. These results clearly demon-
strate that CurvingLoRa can successfully decode weak signals
in the presence of strong collisions in various conditions.
Head-to-head comparison with mLoRa [53]. We compare
CurvingLoRa with mLoRa on using our indoor dataset. Fig-
ure 16(a) shows the SER of each system in the presence of
two collision packets. We observe that the SER of mLoRa
drops gradually from 15% to 1% as the SNR grows from
-15dB to 15dB. It finally drops to 0.3% when SNR grows to
30dB. In contrast, all four types of non-linear chirps adopted
by CurvingLoRa achieve a consistently low SER (0.01%)
when SNR is larger than -15dB. Similarly, as shown in Fig-
ure 16(b), the SER of mLoRa is over 10% in the presence of

a strong collision (i.e., SIR < 0dB) whereas CurvingLoRa can
demodulate weak signals at an SER < 1% as long as the SIR
is larger than -12dB.
Remarks. These experiments show the advantage of Curvin-
gLoRa in dealing with near-far issues. It also reveals that the
performance of CurvingLoRa varies with the non-linear func-
tion being adopted. Overall the quadratic function f (t) = t

2

achieves consistently better SER than the other types of non-
linear functions. We leave the exploration of non-linear space
as our future work.

7.2 Concurrency at the Campus Scale
We evaluate CurvingLoRa on decoding collisions in differ-
ent numbers of concurrent transmissions (termed as N) set-
tings. In particular, we measure the SER, PDR, and network
throughput and compare with mLoRa [53], NScale [47], and
LoRaWAN three baselines. Finally, we repeat the experiments
in indoor environments and put the results in Appendix C.

As N grows, the SERs of LoRaWAN, mLoRa, and NScale
all increase gradually, as shown in Figure 17(a). Specifically,
LoRaWAN can only demodulate the strongest transmission
for most settings. And mLoRa achieves a slightly better perfor-
mance than LoRaWAN. However, its SER aggravates signifi-
cantly (�50%) when demodulating more than four concurrent
transmissions. Besides, NScale performs better than the above
two schemes, and the SER grows gradually from less than
15% to 55% when N grows to 12. In contrast, CurvingLoRa
achieves an average SER of less than 25% in all settings.

Figure 17(b) shows the packet delivery ratio achieved by
these systems. We observe that as N grows, the PDR achieved
by CurvingLoRa drops slightly from 100% to 65%. In contrast,
the PDR drops significantly to less than 36.5%, 25.0%, and
12.5% for NScale, mLoRa, and LoRaWAN, respectively. We
further compute the network throughput and plot the results in
Figure 17(c). The overall network throughput of CurvingLoRa,

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 889

2 3 4 5 6 7 8 9 10 11 12
Concurrency

0

0.5

1

Sy
m

bo
l E

rr
or

 R
at

e LoRaWAN
mLoRa

NScale
Quadratic1

Quadratic2
Quartic1

Quartic2

2 3 4 5 6 7 8 9 10 11 12
Concurrency

0

0.5

1

Pa
ck

et
 D

el
iv

er
y

R
at

e LoRaWAN
mLoRa

NScale
Quadratic1

Quadratic2
Quartic1

Quartic2

2 3 4 5 6 7 8 9 10 11 12
Concurrency

0

100

200

Th
ro

ug
hp

ut
 (S

ym
bo

ls
/S

ec
on

d) LoRaWAN
mLoRa
NScale
Quadratic1

Quadratic2
Quartic1
Quartic2

Figure 17: Outdoor experiment: examine the impact of concurrent transmissions on SER, PDR, and network throughput.

20 40 60 80 100
Concurrency

0

0.5

1

Sy
m

bo
l E

rr
or

 R
at

e LoRaWAN
Quadratic1

Quadratic2
Quartic1

Quartic2

Figure 18: Emulation of large-scale collisions.

NScale, and mLoRa grow with the increasing N. However, the
network throughput of LoRaWAN manifests a converse trend
due to the magnified interference as N grows. Taking further
scrutiny on this result, we find that the network throughput
of CurvingLoRa grows almost linearly with N. In contrast,
the growing trend of network throughput in both NScale and
mLoRa drops gradually as N grows. This is because the near-
far issue grows extensively with increasing concurrent trans-
missions. However, both NScale and mLoRa are not scaling
to such circumstances. Statistically, when N=12, the average
network throughput of CurvingLoRa is 5.21⇥, 2.61⇥, and
1.84⇥ higher than that of LoRaWAN, mLoRa, and NScale.

We also evaluate CurvingLoRa’s performance in the wild
using three USRPs (two as transmitters, and another one as
the receiver). We vary the transmission power to manipulate
the signal SIR (from 0 to -8dB) and calculate the SER in
different SIR settings. The results show that CurvingLoRa can
achieve consistently low SER across four different types of
non-linear chirps (Appendix F).

7.3 Large-scale emulation

We also emulate large-scale collisions using the data collected
both indoors and outdoors. Specifically, in each number of
concurrent transmission settings, we only measure the SER
of the weakest transmissions as those stronger transmissions
are likely to be correctly demodulated. Figure 18 shows the
SER of CurvingLoRa and LoRaWAN when the SIR varies ran-
domly between [�5dB,0dB], We observe that all four types
of non-linear chirps adopted by CurvingLoRa can successively
demodulate the weakest transmission (i.e., SER=0) when the
number of concurrent transmissions is less than 30. The SER
then grows up gradually as the network scales. It peaks at 50%
when 100 transmitters work concurrently. In contrast, the stan-
dard LoRaWAN fails to demodulate the weakest transmission
with more than two concurrent transmissions.

8 Limitation and Future Work

We discuss the limitations of current design and evaluation
that may shed light on future research.
Non-linear Chirp Selection. CurvingLoRa’s performance
gain on collision symbol decoding is determined by the spec-
tral energy distribution of the interfered chirp symbols. Our
experiment results show that such performance gain varies
among different types of non-linear chirps, leaving rooms for
further exploration.
Deployment and evaluation. Our experiments are largely
based on emulation, and thus may not reflect the impact of
channel dynamics on packet demodulation. Future works
may focus on building a CurvingLoRa test-bed for long-term
system evaluation.
Backward compatibility. CurvingLoRa node can generate
standard linear chirps (§5.1). Its demodulation can be easily
adapted to commodity LoRa gateways by replacing the stan-
dard linear down-chirp with its non-linear counterpart (§5.3).
In addition, like standard LoRa networks, CurvingLoRa can
adopt unslotted ALOHA protocol as its MAC-layer. There-
fore, we expect CurvingLoRa can co-exist with existing LoRa
network. An interesting direction worth exploring is to exam-
ine whether the recent innovations on LoRa PHY-layer and
MAC-layer [14, 15, 18] are applicable to CurvingLoRa.

9 Conclusion

We have presented the design, implementation, and evalua-
tion of CurvingLoRa, a PHY-layer amendment to LoRaWAN.
By replacing the linear-chirp modulation on standard Lo-
RaWAN with its non-linear chirp counterpart, the receiver
can effectively demodulate large numbers of collided LoRa
transmissions in extreme SNR, SIR, and symbol offset condi-
tions. We practice this idea by designing a holistic PHY layer
and implementing it on software-defined radios. The results
demonstrate CurvingLoRa improves the network throughput
by 7.6⇥ against the standard LoRaWAN, outperforming two
state-of-the-art approaches by 1.6⇥ and 2.8⇥, respectively.

Acknowledgments

We thank our shepherd Fadel Adib and the anonymous re-
viewers for their insightful comments. This work is supported
in part by NSF Award CNS-1824357, CNS-1909177.

890 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] N. Abramson. The aloha system: Another alternative
for computer communications. Proceedings of the

November 17-19, 1970, fall joint computer conference,
281–285, 1970.

[2] L. Alliance. Lorawan specification.
https://lora-alliance.org/about-lorawan.
Accessed 08-Apr-2020.

[3] V. Antenna. Vert900 vertical antenna (824-960 mhz,
1710-1990 mhz) dualband.
https://www.ettus.com/all-products/vert900/, Retrieved
by May 10th 2021.

[4] S. R. Benson. Modern digital chirp receiver: Theory,
design and system integration, 2015.

[5] A. Berni, W. Gregg. On the utility of chirp modulation
for digital signaling. IEEE Transactions on

Communications, 1973.
[6] F. Calì, M. Conti, E. Gregori. Dynamic ieee 802.11:

design, modeling and performance evaluation.
Proceedings of the International Conference on

Research in Networking. Springer, 2000.
[7] M. Centenaro, L. Vangelista, A. Zanella, M. Zorzi.

Long-range communications in unlicensed bands: The
rising stars in the iot and smart city scenarios. IEEE

Wireless Communications, 2016.
[8] J. Chan, A. Wang, A. Krishnamurthy, S. Gollakota.

DeepSense: Enabling Carrier Sense in Low-Power
Wide Area Networks Using Deep Learning.
arXiv:1904.10607 [cs], 2019.

[9] Y. Cheng, H. Saputra, L. M. Goh, Y. Wu. Secure smart
metering based on lora technology. Proceedings of

IEEE International Conference on Identity, Security,

and Behavior Analysis (ISBA), 2018.
[10] C. Chiu, Z. Zhang, L. T. Hsien. The near/far effect in

local aloha radio communications. IEEE Journal of

Solid-State Circuit, 2020.
[11] U. Coutaud, M. Heusse, B. Tourancheau.

Fragmentation and Forward Error Correction for
LoRaWAN small MTU networks. Proceedings of

EWSN. Junction Publishing, 2020.
[12] A. W. Doerry. Generating nonlinear fm chirp

waveforms for radar. Tech. rep., Sandia National
Laboratories, 2006.

[13] R. Eletreby, D. Zhang, S. Kumar, O. Yağan.
Empowering low-power wide area networks in urban
settings. Proceedings of ACM SigComm, 2017.

[14] A. Gadre, R. Narayanan, A. Luong, A. Rowe,
B. Iannucci, S. Kumar. Frequency configuration for
low-power wide-area networks in a heartbeat.
Proceedings of USENIX NSDI, 2020.

[15] A. Gamage, J. C. Liando, C. Gu, R. Tan, M. Li. LMAC:
efficient carrier-sense multiple access for LoRa.
Proceedings of ACM MobiCom, 2020.

[16] S. Gollakota, S. D. Perli, D. Katabi. Interference
alignment and cancellation. Proceedings of the ACM

SIGCOMM, 2009.
[17] J. Haxhibeqiri, A. Karaagac, F. Van den Abeele,

W. Joseph, I. Moerman, J. Hoebeke. Lora indoor
coverage and performance in an industrial environment:
Case study. Proceedings of IEEE international

conference on emerging technologies and factory

automation (ETFA), 2017.
[18] M. Hessar, A. Najafi, S. Gollakota. Netscatter:

Enabling large-scale backscatter networks. Proceedings

of USENIX NSDI, 2019.
[19] N. Hosseini, D. W. Matolak. Nonlinear

quasi-synchronous multi user chirp spread spectrum
signaling. IEEE Transactions on Communications,
2021.

[20] B. Hu, Z. Yin, S. Wang, Z. Xu, T. He. Sclora:
Leveraging multi-dimensionality in decoding collided
lora transmissions. Proceedings of IEEE ICNP, 2020.

[21] T. Instruments. Optimizing power consumption and
power-up overshoot using TPS54160-Q1 family in
automotive applications.
https://www.ti.com/lit/an/slva436a/
slva436a.pdf?ts=1622474296492&ref_url=
https%253A%252F%252Fwww.google.com.hk%252F.
Accessed 30-May-2021.

[22] R. Jung, P. Levis. Receiving colliding lora packets with
hard information iterative decoding. Proceedings of

IEEE GLOBECOM, 2021.
[23] M. A. Khan, R. K. Rao, X. Wang. Performance of

quadratic and exponential multiuser chirp spread
spectrum communication systems. Proceedings of

IEEE SPECTS, 2013.
[24] K.-R. Kim, S. Kim, C.-H. Ki, T.-H. Kim, H. Yang, J.-H.

Kim. Development and comparison of DDS and
multi-DDS chirp waveform generator. Proceeding of

IEEE International Geoscience and Remote Sensing

Symposium (IGARSS), 2019.
[25] C. Lesnik, A. Kawalec. Modification of a weighting

function for nlfm radar signal designing. Acta Physica

Polonica A, 2008.
[26] C. Li, Z. Cao. Lora networking techniques for

large-scale and long-term iot: A down-to-top survey.
ACM Computing Surveys, 2022.

[27] C. Li, H. Guo, S. Tong, X. Zeng, Z. Cao, M. Zhang,
Q. Yan, L. Xiao, J. Wang, Y. Liu. Nelora: Towards
ultra-low snr lora communication with neural-enhanced
demodulation. Proceedings of ACM Sensys, 2021.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 891

[28] J. C. Liando, A. Gamage, A. W. Tengourtius, M. Li.
Known and unknown facts of lora: experiences from a
large-scale measurement study. ACM Transactions on

Sensor Networks, 2019.

[29] L. Lou, Z. Fang, B. Chen, T. Guo, Z. Liu, Y. Zheng. A
DDS-driven ADPLL chirp synthesizer with
ramp-interpolating linearization for FMCW radar
application in 65nm CMOS. Proceeding of IEEE

International Symposium on Circuits and Systems

(ISCAS), 2018.

[30] D. Magrin, M. Centenaro, L. Vangelista. Performance
evaluation of lora networks in a smart city scenario.
Proceeding of IEEE International Conference on

Communications (ICC), 2017.

[31] P. Marcelis, N. Kouvelas, V. S. Rao, V. Prasad. DaRe:
Data Recovery through Application Layer Coding for
LoRaWAN. IEEE Transactions on Mobile Computing,
2020.

[32] B. Mohring, C. Moroder, U. Siart, T. Eibert.
Broadband, fast, and linear chirp generation based on
DDS for FMCW radar applications. Proceeding of

IEEE Radar Conference (RadarConf), 2019.

[33] M. Mollanoori, M. Ghaderi. Uplink scheduling in
wireless networks with successive interference
cancellation. IEEE Transactions on Mobile Computing,
2013.

[34] J. Navarro-Ortiz, S. Sendra, P. Ameigeiras, J. M.
Lopez-Soler. Integration of lorawan and 4g/5g for the
industrial internet of things. IEEE Communications

Magazine, 2018.

[35] G. R. project. Gnu radio website.
http://www.gnuradio.org. Accessed 07-Apr-2020.

[36] F. provider. Zynq-7000 fpga.
https://www.renesas.com/sg/en/application/
technologies/fpga-power/zynq-7000. Accessed
30-May-2021.

[37] Q. M. Qadir, T. A. Rashid, N. K. Al-Salihi, B. Ismael,
A. A. Kist, Z. Zhang. Low Power Wide Area Networks:
A Survey of Enabling Technologies, Applications and
Interoperability Needs. IEEE Access, 2018.

[38] A. Research. Nb-iot and lte-m issues to boost lora and
sigfox near and long-term lead in lpwa network
connections. https://tinyurl.com/2026- cellular-iot,
Retrieved by Nov 19th 2020.

[39] A. Rokita. Direct analog synthesis modules for an
X-band frequency source. Proceeding of 12th

International Conference on Microwaves and Radar,
1998.

[40] Y. Sangar, B. Krishnaswamy. WiChronos:
energy-efficient modulation for long-range, large-scale

wireless networks. Proceedings of ACM MobiCom,
2020.

[41] M. O. Shahid, M. Philipose, K. Chintalapudi,
S. Banerjee, B. Krishnaswamy. Concurrent interference
cancellation: decoding multi-packet collisions in lora.
Proceedings of ACM SIGCOMM, 2021.

[42] T. Shuai, X. Zhenqiang, W. Jiliang. Colora: Enable
muti-packet reception in lora. Proceedings of IEEE

INFOCOM, 2020.

[43] R. S. Sinha, Y. Wei, S.-H. Hwang. A survey on lpwa
technology: Lora and nb-iot. Ict Express, 2017.

[44] J. R. Smith, A. P. Sample, P. S. Powledge, S. Roy, A. V.
Mamishev. A wirelessly-powered platform for sensing
and computation. Proceedings of ACM UbiComp, 2006.

[45] K. Staniec, M. Kowal. Lora performance under variable
interference and heavy-multipath conditions. Wireless

communications and mobile computing, 2018, 2018.

[46] V. Talla, M. Hessar, B. Kellogg, A. Najafi, J. R. Smith,
S. Gollakota. Lora backscatter: Enabling the vision of
ubiquitous connectivity. Proceedings of the ACM on

Interactive, Mobile, Wearable and Ubiquitous

Technologies, 2017.

[47] S. Tong, J. Wang, Y. Liu. Combating packet collisions
using non-stationary signal scaling in LPWANs.
Proceedings of ACM MobiSys, 2020.

[48] D. Tse, P. Viswanath. Fundamentals of wireless

communication. Cambridge university press, 2005.

[49] D. tutorials. Fundamentals of direct digital synthesis
(DDS). https://www.analog.com/media/en/
training-seminars/tutorials/MT-085.pdf.
Accessed 30-May-2021.

[50] N. Varsier, J. Schwoerer. Capacity limits of lorawan
technology for smart metering applications.
Proceedings of IEEE International Conference on

Communications (ICC), 2017.

[51] R. Venkatesha. p-CARMA: Politely Scaling
LoRaWAN†. Proceedings of EWSN. Junction
Publishing, 2020.

[52] Q. Wang. Non-Linear Chirp Spread Spectrum

Communication Systems of Binary Orthogonal Keying

Mode. Ph.D. thesis, The University of Western Ontario,
2015.

[53] X. Wang, L. Kong, L. He, G. Chen. mlora: A
multi-packet reception protocol in lora networks.
Proceedings of IEEE ICNP, 2019.

[54] R. Want. An introduction to rfid technology. IEEE

pervasive computing, 5(1), 25–33, 2006.

[55] X. Xia, Y. Zheng, T. Gu. Ftrack: parallel decoding for
lora transmissions. Proceedings of ACM Sensys, 2019.

892 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[56] Z. Xu, S. Tong, P. Xie, J. Wang. FlipLoRa: Resolving
Collisions with Up-Down -Orthogonality. Proceedings

of IEEE International Conference on Sensing,

Communication, and Networking (SECON), 2020.
[57] H. Yang, S.-B. Ryu, H.-C. Lee, S.-G. Lee, S.-S. Yong,

J.-H. Kim. Implementation of DDS chirp signal
generator on FPGA. Proceeding of International

Conference on Information and Communication

Technology Convergence (ICTC), 2014.
[58] Y. Yao, Z. Ma, Z. Cao. Losee: Long-range shared bike

communication system based on lorawan protocol.
Proceedings of ACM EWSN, 2019.

[59] W. Zhe, K. Linghe, X. Kangjie, H. Liang, W. Kaishun,
C. Guihai. Online concurrent transmissions at lora
gateway. Proceedings of IEEE INFOCOM, 2020.

[60] D. Zorbas. Design Considerations for Time-Slotted
LoRa(WAN). Proceedings of EWSN. Junction
Publishing, 2020.

A Energy Scattering Effect

We use the quadratic chirp (i.e., f (t) = k2t
2 + k0 in Equa-

tion 2) as an example to explain the energy scattering effect
of non-linear chirps. For the dechirp of a chirp symbol, the
receiver multiplies it with the base corresponding down-chirp
as follows:

e
j2p(f0+ fc(t+tgap))t ⇤ e

� j2p fc(t)t = e
j2pF(t)t (6)

where tgap denotes the symbol offset between the incident
chirp symbol and the FFT window (i.e., the base down-chirp);
f0 represents the initial frequency offset of this non-linear
chirp. The spectral energy peak is determined by the term F(t)
for different types of chirps. For a linear chirp (i.e., f (t) =
k1t + k0), it can always focus on a single frequency point in
the dechirp since F(t) = f0 + k1(t + tgap)+ k0 � (k1t + k0) =
f0+k1tgap given a fixed tgap. In contrast, it spreads the energy
over a frequency bins as follows for a quadratic chirp:

F(t) = f0 + k2(t + tgap)
2 + k0 � (k2t

2 + k0)

= f0 + k2t
2
gap

+2k2tgap ⇥ t (7)

When the incident chirp is not well aligned with the down-
chirp (i.e., tgap! = 0), from the above equation, we can find
that the spectrum energy of this incident chirp will spread
to multiple FFT bins. In contrast, when tgap = 0, we have
F(t) = f0, indicating the spectrum energy will converge a
single frequency point f0.

B Experiment Setups

We evaluate CurvingLoRa with LoRa traces collected from
two different environments:

Figure 19: The indoor experimental plan and SDR devices
spread out across tens of rooms.

Figure 20: Bird view of the outdoor experiment field with the
mobile gateway and LoRa nodes.

• Indoor scenario. We place transmitters and gateway on a
30.48m⇥21.34m office building. The offices are separated by
concrete walls. Figure 19 shows the floor-plan of this office
building. We place the gateway in the kitchen and move the
transmitter to 10 different locations. Due to the blockage of
walls, most LoRa transmissions are under the non-line-of-
sight (NLoS) condition.
• Outdoor scenario. We deploy a campus-scale testbed out-
doors. The gateway powered by a UPS is placed on the park-
ing lot. We move a transmitter to 12 locations and collect
LoRa transmissions in both LoS and NLoS conditions with
various link distances. The bird view of the outdoor testbed is
shown in Figure 20.

C Concurrency in the Indoor Environment

Similar to the SER trend of outdoor experiments, we observe
a huge SER gap between CurvingLoRa and its competitors as
N grows in indoor experiments (Figure 22(a)). On the other
hand, compared with outdoor experiments, we find that all
indoor-space systems achieve slightly lower SER, with up
to 7.75%-11.26% when N=10. This is because the transmit-
ters are facing less severe near-far issues indoors. The packet
delivery rate in indoor experiments shows a similar trend
with their outdoor counterparts, as shown in Figure 22(b).
Specifically, the PDR achieved by CurvingLoRa drops slightly
from 100% to 87.10% on average as N grows from 2 to 10.
While both mLoRa and LoRaWAN drop significantly from
around 50.5% to less than 40.0% and 10.6%, respectively.
Figure 22(c) shows the network throughput achieved by these
three systems in an indoor environment. The overall network

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 893

-30 -20 -10
SNR(dB)

10 0

Sy
m

bo
l E

rr
or

 R
at

e

SF=11 SF=9 SF=7

Linear
Quadratic1

Quadratic2
Quartic1

Quartic2

(a) Overall SER performance

0 0.2 0.4
Symbol Error Rate across Codes

0

0.2

0.4

0.6

0.8

1

C
D

F

SF=11 SF=9 SF=7

Linear
Quadratic1
Quadratic2
Quartic1
Quartic2

(b) SER distribution in code space

Figure 21: Noise resilience in the absence of collisions.

2 3 4 5 6 7 8 9 10
Concurrency

0

0.5

1

Sy
m

bo
l E

rr
or

 R
at

e LoRaWAN
mLoRa

NScale
Quadratic1

Quadratic2
Quartic1

Quartic2

2 3 4 5 6 7 8 9 10
Concurrency

0

0.5

1

Pa
ck

et
 D

el
iv

er
y

R
at

e LoRaWAN
mLoRa

NScale
Quadratic1

Quadratic2
Quartic1

Quartic2

2 3 4 5 6 7 8 9 10
Concurrency

0

100

200

Th
ro

ug
hp

ut
 (S

ym
bo

ls
/S

ec
on

d) LoRaWAN
mLoRa
NScale
Quadratic1

Quadratic2
Quartic1
Quartic2

Figure 22: Indoor experiment: examine the impact of concur-
rent transmissions on SER, PDR, and network throughput.

throughput of CurvingLoRa grows consistently as the number
of transmitters scales up. When ten packets collide simultane-
ously with significant power difference, the average network
throughput of CurvingLoRa is about 1.6⇠7.6⇥ higher than
the network throughput achieved by NScale, mLoRa, and the
standard LoRaWAN.

D Impact of Narrow-band Interference

In this section, we use the RFID signal, a representative
narrow-band signal, to study the impact of narrow-band inter-
ference on CurvingLoRa’s performance. An RFID transceiver
can communicate within the band at 902 to 928 MHz [54],
overlapping with LoRa transmissions. Specifically, we control

-30 -20 -10
SNR(dB)

10 -4

10 -2

10 0

Sy
m

bo
l E

rr
or

 R
at

e

SF=11 SF=9 SF=7
Linear
Quadratic1
Quadratic2
Quartic1
Quartic2
Sine1
Sine2

(a) Under Gaussian noise.

-30 -20 -10
SNR(dB)

10-4

10-2

100

Sy
m

bo
l E

rr
or

 R
at

e

(b) Under RFID narrow-band inter-
ference.

Figure 23: SER of various types of non-linear chirps under
various noise sources.

1 3 5 7 9 11
Position ID

10-2

100

Sy
m

bo
l E

rr
or

 R
at

e

Quadratic1
Quadratic2

Quartic1
Quartic2

(a) SER across positions.

-8 -6 -4 -2 0
Power-based SIR

10-2

100

Sy
m

bo
l E

rr
or

 R
at

e

Quadratic1
Quadratic2

Quartic1
Quartic2

(b) SER across SIRs.

Figure 24: Filed study for various types of non-linear chirps.

a WISP 5.0 [44] tag to generate RFID signals with the data
rate of 10KHz, and manually superpose the RFID jamming
with LoRa’s non-linear transmissions. Finally, we evaluate
the SER with controlled SNR levels.

Illustrated in Figure 23, we show the SER fluctuation over
SNR levels under the Gaussian noise and narrow-band in-
terference from RFID signals. First, compared to the Gaus-
sian noise, the CSS mechanism with Sine and linear chirps
achieves a higher resilience for the RFID narrow-band in-
terference. Figure 23(a) shows that CSS with SF=11 (e.g.,
yellow lines) requires the SNR higher than �20dB for all
types of chirps to achieve the SER lower than %1. In contrast,
the SNR threshold under the same configuration is �25dB for
the linear and Sine chirps under the RFID narrow-band inter-
ference as shown in Figure 23(b). Theoretically, the dechirp
can alleviate the impact of interference by spreading its signal
energy over the whole spectrum, enabling LoRa’s long-range
communication, especially against the narrow-band interfer-
ence [45]. Second, the Sine chirps achieve the same interfer-
ence resilience with the linear chirp across different SFs. In
contrast, the Quadratic and Quartic chirps deliver a higher
SER under the same configurations as shown in Figure 23(b).
The reason is that the RFID signals are On-Off-Keying mod-
ulation, which is more similar with Quadratic and Quartic
chirps than linear and Sine chirps. The dechirp processing
picks the corresponding base down-chirp for the adopted chirp
signals. As a result, Quadratic and Quartic base down-chirps
cannot spread the RFID interference signals as well as linear
and Sine base down-chirps do, resulting in less resilience for
the RFID narrow-band interference. By studying the impact
of different chirp types under the specific noise distribution in
the wild, we can select the chirp types adaptively for reliable
transmissions [19].

894 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

E Impact of Gaussian Noise

We compare the noise resilience of CurvingLoRa with linear
chirps under common Gaussian noise. The results are shown
in Figure 21(a). Per our analysis (§4.3), we observe all four
types of non-linear chirps in CurvingLoRa demonstrate com-
parable noise resilience with linear chirps across all three
SF settings. Figure 21(b) shows that the symbol error rate
is distributed evenly over the entire code space, confirming
that the non-linear chirp achieves consistent SER for different
symbols.

F Field Study for Collision Resolving

Setup. To evaluate CurvingLoRa in the wild, we deploy three
USRPs at the campus-scale outdoor for the field study. Specif-
ically, for each time, two are deployed to transmit LoRa pack-
ets at different locations simultaneously to produce the colli-

sions with one USRP as the receiver. We manually adjust the
power of LoRa packets from these two USRP transmitters to
control the SIR between them. For example, we deploy the
two transmitters in six positions, with the position ID (e.g., 1,
3, 5, 7, 9) denoted in Figure 20. It covers four types of non-
linear chirps for quadratic and quartic forms. Furthermore, the
SIR is controlled to vary from 0 to -8dB, shown in Figure 24.
As a result, we can evaluate CurvingLoRa’s performance via
the average SER of multiple packets across different locations
and SIRs in the wild.

Results. Illustrated in Figure 24, CurvingLoRa’s four types
of non-linear modulation schemes perform consistently with
our emulation for the field study. For example, its SER for
two concurrent transmissions keeps lower than 1% for all
locations except the furthest location #11 where the SIR is
lower than other locations. Meanwhile, the SER increases
as the SIR decreases from 0 to -8dB, with a larger power
difference for these concurrent transmissions.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 895

PLatter: On the Feasibility of Building-scale
Power Line Backscatter

Junbo Zhang1, Elahe Soltanaghai2, Artur Balanuta1, Reese Grimsley1,
Swarun Kumar1, and Anthony Rowe1

1Carnegie Mellon University, 2University of Illinois at Urbana-Champaign

Abstract
This paper explores the feasibility of reusing power lines
in a large industrial space to enable long-range backscat-
ter communication between a single reader and ultra-
low-power backscatter sensors on the walls that are phys-
ically not connected to these power lines, but merely in
their vicinity. Such a system could significantly improve
the data rate and range of backscatter communication
with only a single reader installed, by using pre-existing
power lines as communication media. We present PLat-
ter, a building-scale backscatter system that allows ultra-
low-power backscatter sensors or tags attached to walls
with power lines right behind them to communicate with
a reader several hundred feet away. PLatter achieves
this by inducing and modulating parasitic impedance on
power lines with the tag toggling between two loads in
specialized patterns. We present a detailed evaluation of
both the strengths and weaknesses of PLatter on a large
industrial testbed with power lines up to 300 feet long,
demonstrating a maximum data rate of 4 Mbps.

1 Introduction

This paper asks “Can we read ultra-low-power sensors
in a large industrial or commercial building with a single
reader using the power line system?” Given the signifi-
cant cost associated with retrofitting an industrial build-
ing, a wired network for IoT installation is not desirable.
On the other hand, long-range wireless networks are ei-
ther power-hungry (e.g., WiFi or cellular), or support a
very low data rate (e.g., LoRa). In this paper, we ex-
plore an alternative approach by combining backscatter
and power line communication technologies. Backscat-
ter systems [24, 16, 43, 12] are popular for their ultra-low
power consumption, suitable for battery-free objects and
low-power sensors. However, they are notorious for their
short operation range (e.g., a few cm to 10 m). There has
been some research on extending the range of backscatter

Figure 1: PLatter leverages the pre-existing power line
infrastructure to provide long-range backscatter commu-
nication between backscatter tags and a single reader.

systems [42, 39, 23], but they either work only outdoors
and in line-of-sight scenarios, or support a very low data
rate. To address these limitations, this paper proposes
to use the power line system, an existing framework
that pervades nearly all buildings and spreads along the
walls to every room, as a wired-wireless medium to read
backscatter tags attached to the walls, thus enabling long-
range, high data rate backscatter with a single reader.

Consider an industrial IoT context where backscatter
sensors, powered by coin-cell batteries, monitor lighting,
temperature, or fault conditions, and can be conveniently
attached to the closest available walls or ceilings, just a
few cm away from the ubiquitous power lines passing
behind. A single reader plugged into an outlet can then
read their data even when they are way out of the wireless
communication range or significantly obstructed. There
exists a rich literature in using power lines for communi-
cation [10, 45, 6, 41], positioning [31, 48], synchroniza-
tion [34, 44, 35], sensing [20, 29, 30, 9, 14, 8], or as a
source to harvest stray electromagnetic energy [21, 19].
One naive approach is to directly attach the IoT sen-
sors to power outlets and use traditional power line com-
munication. However, this limits the number of sen-
sors and their locations to only a few outlets available in
each room. Instead, we leverage existing power lines for
backscatter communication by attaching a single reader
to the power line and placing ultra-low-power tags any-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 897

where along the power cables.
This paper explores the feasibility of such a building-

scale backscatter system (Fig. 1), PLatter1, where the
power lines enable a single reader to receive sensory data
from multiple ultra-low-power tags that are well beyond
its RF communication range. PLatter’s design leverages
fluctuations in the parasitic impedance induced to the
power line system by the backscatter tags as they tog-
gle between two loads. In principle, conductors close
to the power lines give rise to parasitic impedance; it is
usually unwanted, though unavoidable, for applications
where these conductors function by coupling with the
power lines [18]. In PLatter, however, we leverage this
as a benefit. Specifically, the PLatter reader measures the
RF characteristic impedance of the power line by inject-
ing a carrier signal into the power socket. The key en-
abler here is the terminating impedance mismatch of the
power line due to the outlets in other rooms that are either
left open or connected to appliances with mismatched
impedance. This creates a reflected wave back to the
reader. Meanwhile, each tag attached to the walls tog-
gles between two internal impedance values (instead of
high-power radio transmission), inducing recurrent pat-
terns of parasitic impedance to the power line. This fluc-
tuation is minute enough to ensure no harm to the normal
operation of the power grid, but is readily detectable and
decodable by the PLatter reader. Therefore, PLatter tags
can function at much lower power because they do not
need an active radio front-end. Instead, they only need
an antenna with impedance switching capability to cou-
ple with the nearest power line.

The core challenge, however, is that the power line ca-
bles are designed to deliver AC power signals at 50/60 Hz
and significantly suffer from impedance mismatch and
signal attenuation in Radio Frequency ranges. A high
impedance mismatch between the reader and its power
line interface can result in a significantly high reflection
coefficient, preventing the carrier signal from entering
the grid and impacting communication. In addition, the
characteristic impedance of power lines varies depend-
ing on cable length and geometry, which complicates the
impedance matching circuitry even more. Further, the
impedance at the reader interface may change over time
as appliances are turned on/off or switch their operating
states. This creates a standing wave inside the cables that
varies with time, which significantly affects the perfor-
mance of the backscatter network.

To overcome these challenges, we design an intelli-
gent reader with adaptive frequency and impedance tun-
ing capabilities to actively maintain tag detection. As
such, the reader constantly monitors the input impedance
of the cable and will accordingly tune the injected car-

1PLatter: Power Line Backscatter

rier frequency or the on-board impedance matching net-
work to discover tags. In addition, PLatter also adapts to
new appliances connecting to terminal outlets. The key
intuition is that any change in the power line network
causes a spike in the characteristic impedance, which is
detectable by the reader and can be adapted to.

The second challenge is the design of an ultra-low-
power tag that can create detectable parasitic impedance
changes in the power line infrastructure. For this, we de-
sign a backscatter tag that switches between selected load
impedance values to induce a distinct modulation pattern
on the parasitic impedance sensed by the reader. We fur-
ther improve tag detection by applying MAC-layer cod-
ing (e.g., PN codes) specifically for larger power line net-
works (e.g., in a warehouse). This also enables multi-tag
detection by leveraging orthogonal codes per tag. Fi-
nally, in support of an ultra-low-power tag architecture,
we design PLatter as a unidirectional network where data
only flows from the tags to the reader. This greatly sim-
plifies the tag circuitry by not requiring any envelope de-
tector, digital signal processing, or decoding module. We
show that this design choice reduces the tag power con-
sumption to as low as 5 µW , with which a tag can operate
for 12.9 years on a coin-cell CR2032 battery.

We show the feasibility of PLatter with custom
backscatter tags at 13.56 MHz, which are compliant to
FCC regulations and safety measures, and two USRP
N210 software-defined radios emulating a mono-static
full-duplex reader with custom PCB front-end that en-
ables dynamic impedance tuning and notch filters to
safely connect the reader to active power lines. We
deployed PLatter in an industrial environment with
more than 952 m2 floor space, along with up to 300
feet (91 meters) power cables in various geometries
(Sec. 8.2), in non-line-of-sight (NLoS) and dynamic sce-
narios (Sec. 8.4), and with active power (Sec. 8.6). We
show that PLatter enables ultra-low-power backscatter
communication that achieves up to 4 Mbps data rate
while only consuming 5 µW power at the tag.

Contributions: Our core technical contributions are:
• A building-scale backscatter communication system

leveraging the power line infrastructure to achieve up
to 4 Mbps data rate over 300 feet power cables.

• A novel parasitic impedance modulation scheme by
varying the parasitic impedance that a PLatter tag in-
duces on power cables through near-field coupling.

• A detailed evaluation of an intelligent reader architec-
ture with dynamic impedance tuning and frequency
selection capabilities for power cables with arbitrary
shapes and connected appliances.

Limitations: In this paper, we focus on extensively
evaluating the feasibility of backscatter communication
through the power line system. However, there are many

898 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

different factors that can affect the performance of the
system, which require extensive follow-up exploration.
For example, while PLatter tags can be read through long
cables, the wireless medium between the tag and the sur-
face of the cable is still limited to a few tens of centime-
ters, limiting the tag placement only on walls and ceiling
along the power cables. Sec. 9 further elaborates on the
limitations and future research directions.

2 Background and Related Work

While the power lines inside homes and buildings are pri-
marily designed to carry high voltage 50/60 Hz AC sig-
nals for power distribution, they can also be used to com-
municate data at higher frequencies by acting as a trans-
mission line, a transmitting antenna, or a receiver. Ac-
cording to basic electromagnetic theory, a time-varying
current in a wire will produce an associated time-varying
electromagnetic field around the wire. Since the power
lines in a building are essentially a collection of wires,
they can be potentially used as antennas. Using power
lines as RF antennas has been explored in various con-
texts since the 1920s [17]. Several works describe var-
ious forms of a line cord antenna [25, 46, 44], whereby
a receiver is coupled to the power line to receive high-
powered broadcasts from TV or radio stations. Power
lines have also been examined as transmitting anten-
nas to either distribute AM radio broadcast signals over
the main power distribution grid, known as carrier cur-
rent [11], or as intentional radiators for cordless phone
system transmitter or in-home video distribution [37].

This paper explores the feasibility of enabling long-
range ultra-low-power backscatter communication us-
ing power line infrastructure by measuring the parasitic
impedance induced by nearby backscatter tags. The rest
of this section elaborates on other related work in both
the power line and backscatter contexts.
Power Line as a Transmission Line: In a Power Line
Communication (PLC) network, both transmitters and
receivers are connected directly to the power line and
communicate their data directly over the line. This has
been widely used in home automation tasks, leading
to protocols such as X10 [3], Insteon [1], and Home-
Plug [45]. Smart metering is currently a leading appli-
cation for these systems. Today, high data rate PLC is a
commercial reality known as broadband over power lines
(BLP), and BLP modems can be purchased for various
home or office applications with OFDM PHY layer and
CSMA/CA MAC layer protocols.
Power Line as a Transmitting Antenna: Carrier cur-
rent [11] is a popular method from the 1970s that uses the
power lines as transmitting antennas for low-power AM
broadcasts. A carrier current system can cover an entire

building or even a group of buildings at low transmis-
sion power, which makes it ideal for localized radio such
as college and high school radio stations. Power Line
Positioning (PLP) is another technology that uses power
lines in a building to track the location of small sensors
throughout the home [36, 32], or detect the presence of
objects, people, and their activities [20, 29, 30]. Both of
these technologies rely on lower radio frequencies (e.g.,
300 kHz to 20 MHz) for best performance. Similarly,
leaky feeder systems [26] use a coax cable running along
the tunnels, underground mines, or railways for emitting
and receiving radio waves, functioning as extended an-
tennas. However, the cable is specifically designed for
radiating, with slots cut into the outer shielding. PLatter
purely relies on existing power line infrastructure in any
building to read backscatter tags.
Power Line as a Receiving Antenna: Early research
on power line position systems demonstrated that both
AM and VHF FM radio broadcasts can be also heard and
demodulated by the power line as a receiving antenna
[13]. SNUPI [10] and more recent follow-up work [37]
have also shown a uni-directional communication net-
work from wireless sensors to base stations attached to
home power lines. However, the sensors are still actively
transmitting high-power wireless signals, which are then
sensed by the receiver attached to the power line. In con-
trast, PLatter allows the tags to be ultra-low-power by
eliminating the need for an active radio front-end.
Wireless Backscatter Communication: Traditional
backscatter networks such as RFID [43] and NFC [12]
rely on energy harvesting from a carrier wave to power
battery-free tags, which then send sensory data to the
reader. However, a majority of these networks are limited
to either a short range (< 10 m) or a low data rate. Re-
cent work on LoRa [39, 23] and WiFi backscatter [7, 47]
target these challenges by either using LoRa-compliant
chirp signals to extend the range, or more complex mod-
ulation techniques such as OFDM to improve the data
rate. However, some of these backscatter systems still as-
sume a separate power source in the near proximity of the
tags or are limited to line-of-sight scenarios to achieve
long-range communication. NetScatter [23] is the closest
wireless backscatter network that provides multi-room
coverage by using chirp spread spectrum coding, but at
the exchange of a reduced data rate of 100-150 kbps.

In contrast to this rich prior work, PLatter explores
the feasibility of a building-scale backscatter communi-
cation with up to 4 Mbps data rate using the power line
infrastructure already available in every building.
FCC Rules and Regulations: Power line communica-
tion and carrier-current systems are generally considered
as ”Restricted Radiation Devices” under Part 15 of vol-
ume 11 in FCC rules and regulations, which specifies the

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 899

Figure 2: PLatter Overview

maximum electric field strength that an EM radiator is al-
lowed to emit. To comply with these regulations, PLatter
is specifically designed as unidirectional and is only re-
lying on the induced parasitic impedance; hence the tags
are not designed to emit wireless radiation. In addition,
the EM field strength meter shows compliant readings
around the cables as PLatter reader injects carrier sig-
nals. Our current implementation exploits the unlicensed
ISM band at 13.56 MHz, which also makes PLatter com-
patible with NFC systems.

3 PLatter Design

In contrast to typical backscatter systems, PLatter lever-
ages the existing power line infrastructure to increase
the communication range between ultra-low-power tags
and a single reader. Attached to an outlet, the reader
continuously measures the characteristic impedance of
the power line and looks for variations in parasitic
impedance to detect and decode the tags’ data. To mini-
mize power consumption and network complexity, PLat-
ter is designed to be unidirectional from the tags to the
reader for upstreaming sensory data to the reader.
Therefore, the tags perform modulation whenever sen-
sory data needs to be sent, independent from the reader
operation. Meanwhile, the reader performs real-time
impedance tuning and frequency adjustment to adapt to
network changes. Fig. 2 shows an overview of PLatter.

Designing Reader’s Transmission: The reader’s signal
is not only subject to attenuation and noise, but also sus-
ceptible to appliances being turned on/off. In addition, it
experiences frequency-selective fading due to the stand-
ing waves. To mitigate these, PLatter adopts an adap-
tive reader design that continuously monitors network
changes by measuring the input impedance. It hops to-
wards a favorable frequency if the current carrier signal is
heavily attenuated, or performs real-time impedance tun-
ing with an impedance matching network at its interface
to the power line network. Sec. 4 elaborates our design.

Tag Design and Data Decoding: Sec. 5 details the
tag hardware, its modulation scheme, and a decoding
pipeline. PLatter’s modulation scheme leverages the fact

that electromagnetic fields of high-frequency injected
signals into power lines couple with other nearby con-
ductors. Hence, as long as the carrier signal traverses the
power line (reader’s task in Sec. 4), one can enable long-
range backscatter via the power line by coupling with
ultra-low-power tags along the power line. Sec. 5 elab-
orates this modulation scheme and further shows how
PLatter achieves robust and efficient tag detection and
decoding with low-cost and low-power tag circuitry.

4 Designing Reader’s Transmission

In this section, we first describe PLatter’s power line
backscatter channel model (Sec. 4.1) and the choice of
frequency band of operation (Sec. 4.2). We then detail
two key reader designs: (1) adaptive frequency hopping
(Sec. 4.3); (2) real-time impedance tuning (Sec. 4.4).

4.1 Power Line Backscatter Model
In PLatter, the carrier signal from the reader propa-
gates through electric wires and various discrete compo-
nents such as transformers. Part of the signal attenuates,
while the remaining energy gets reflected in the case of
impedance mismatch at the termination. The end result
is a standing wave that operates on the wire. This wave
is further modulated due to the presence of backscatter
tags as it switches between different impedance values,
modulating the wiring system’s overall impedance.

Power Line Channels are Frequency-selective: A nat-
ural property of the standing wave created on the wire is
that it has several nulls whose locations are dependent on
frequency. To see this in practice, Fig. 3 illustrates the at-
tenuation in typical NM-B 14/2 power cables of different
lengths (25, 50, and 100 feet). A single tone (0-1 GHz)
is injected into the cable and the reflection characteristic
(S11) is measured while the other end of the cable is left
open for minimal terminating loss. We see that the atten-
uation increases with both frequency and cable length. In
addition, the non-linear behavior of the cable at certain
frequencies is due to impedance mismatch, which leads
to standing waves, or high reflection at the entrance of
the cable.

900 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 3: Reflection characteristics (S11) of cables with
different lengths demonstrate the standing wave effect
and attenuation trend as frequency and cable length vary.

Time-Varying Channels: The power line channel has
been widely studied. Much like a traditional wireless
channel, it also exhibits multipath effects due to the su-
perposition of various signal paths. We refer the reader
to [27] for a detailed channel model. Two points are
worth noting: (1) appliances can greatly influence the
power line channel both by injecting high-frequency
noise and changing the system’s overall impedance; (2)
some elements, such as a charged transformer, may cause
periodic time-variations in power line channels [28].
These, if any, fall around the order of ms and can sim-
ply be avoided by modulating signals of the order of µs.

Why can the reader sense tags’ modulation? To un-
derstand how the tag modulation is detectable, we refer
to Ampere’s law [22], where a magnetic field is gener-
ated by a group of closely bundled wires and the cur-
rent flowing through them. For the power line infrastruc-
ture, the hot and neutral wires carry currents in the oppo-
site direction, canceling the magnetic field generated by
the 50/60 Hz AC signal. It is, however, possible to cre-
ate an electromagnetic field when injecting a higher fre-
quency signal (e.g., for the purpose of impedance mea-
surements). In this case, the power line can be crudely
visualized as a gigantic coil, causing near-field inductive
coupling with a secondary coil (e.g., the backscatter tag),
as shown in Fig. 2. For modulation, the tag alternates the
load on its coil and creates a varying parasitic impedance
that can be detected by the reader (more details in Sec. 5).

4.2 Choosing Frequency of Operation
Given the mono-static setup of PLatter’s reader, we first
study the reflection behavior of multiple power lines
across a wide range of frequencies between 0-100 MHz,
shown in Fig. 3. While we observe a gradual increase
in the amount of signal attenuation with length and fre-
quency, the attenuation at 10-20 MHz is comparatively
small across different lengths of cables, with reasonable
sizes of (coupling) antennas. This allows the reader to
receive a reflected signal for the purpose of computing

Figure 4: A typical NFC antenna resonates at center fre-
quency 13.56 MHz and minimum of 50% antenna deliv-
ery for a ∼ 2 MHz bandwidth.

impedance. Among the frequencies below 20 MHz, we
choose to design PLatter in the unlicensed ISM band of
13.56 MHz. This makes PLatter inherently compatible
with NFC in terms of tag antenna design.

To select the operating bandwidth, we need the tag an-
tenna to resonate well over the entire bandwidth, so that
it can effectively induce the desired parasitic impedance
variations for data transfer. To examine this, we select an
off-the-shelf NFC antenna [2] with a center frequency of
13.56 MHz. As shown in Fig. 4, the antenna has a highly
narrow beam, but we can still expect about 50% of deliv-
ered power on frequencies between 12.5 MHz and 14.5
MHz (i.e., reflection powers below -2.92 db). Therefore,
we select this bandwidth for frequency hopping with po-
tential steps of every 500 kHz.

4.3 PLatter’s Frequency Hopping Design
The core challenge in designing PLatter is the potential
standing wave effects due to the impedance mismatch be-
tween the power line and the reader, which create deep
nulls at certain positions along the cable. The key in-
tuition that PLatter leverages is the frequency-selective
behavior of the power line. Specifically, while one fre-
quency can cause a deep null at certain location along
the cable, the effect could be completely reversed at a
slightly different frequency. An example of this is shown
in Fig. 5, where we see more than 5 dB improvement
in the tag SNR by slightly shifting the frequency of the
carrier signal. However, it is critical to find the best car-
rier frequency quickly for high data rate communication.
Thus, PLatter leverages the continuous and locally con-
vex behavior of the power line across frequencies (as in
Fig. 5) and defines a Stochastic Hill-Climbing algorithm
with random initial points. At every iteration, the reader
measures the SNR of the reflected signal and searches for
the tag reflection (explained in Sec. 5.3). It then adjusts
the carrier frequency and continues this operation until
no improvement on the tag SNR can be found.

Another requirement of this frequency hopping al-
gorithm is a mechanism to quickly and reliably detect

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 901

Figure 5: PLatter leverages the frequency-selective be-
havior of the power lines to improve the tag SNR by in-
telligently shifting the frequency of the carrier signal.

whether there is an active tag present. To achieve this,
we design each tag to perform a known modulation in
the form of a physical layer preamble before sending
data. This preamble is defined as a sequence of peri-
odically switching between two impedance values for a
fixed time, which appears as a square wave with a switch-
ing frequency of fp = 1/Tp. This can be easily detected
in the frequency domain with a simple FFT. This way, the
reader can quickly hop between frequencies and search
for active tags, then fix on a frequency to receive data.

4.4 Real-time Impedance Tuning

One of the essential requirements of PLatter to work is an
impedance matching network between the reader and the
power line so that the carrier signal can enter the power
line network and get reflected back (at other ends of the
cable; e.g., an open outlet). While different matching
network architectures are proposed for traditional Power
Line Communication (PLC) systems [15, 38, 40], PLat-
ter’s backscatter setup necessitates a different architec-
ture. In a completely wired setup like PLC, where both
the transmitter and receiver are connected to the power
line, impedance matching is required at both of them,
incurring much higher noise [44]. PLatter, instead, re-
lies on a mono-static reader setup in which the match-
ing network is shared between the transmitting and re-
ceiving radio chains of the reader (Fig. 2). However,
the time-varying channel conditions (Sec. 4.1) remain a
challenge in designing such a matching network. In ad-
dition, a new scalability challenge arises as the character-
istic impedance of the power lines in different buildings
may be drastically different depending on the geometry
and layout of the building.

PLatter addresses these challenges by performing real-
time impedance measurement and tuning. It continu-
ously monitors network changes due to appliances be-
ing turned on/off and accordingly adjusts the matching
network. The key enabler here is that PLatter does not
necessarily require a perfect matching, since it only re-
lies on the variations of parasitic impedance to decode
tags’ data. Hence, approximate impedance matching is

Figure 6: PLatter’s modular matching network design
that provides real-time impedance tuning by inferring
channel conditions and adapting accordingly.

sufficient as long as the reader obtains sufficient reflected
signal power. This greatly reduces the technical difficulty
of PLatter – it would be much easier to design a tunable
matching network that targets approximate rather than
precise tuning to 50 Ω for example.

As such, we design a tunable matching network (Fig. 6
(a)) with four sets of analog filters, each constructed as a
series of two cascaded L networks. These filters can be
selectively populated to form different circuit structures
(e.g., L-shape or π-shape). In addition, they also include
programmable and digitally tunable capacitors. The cir-
cuit structures and corresponding components (R, L, or C
values) are carefully selected such that each network can
cover roughly a quadrant of the input impedance viewed
in the Smith Chart (Fig. 6 (b)). With this, PLatter can
coarsely match any input impedance encountered in our
experiments, which enables tag detection and decoding.

5 Tag Design and Data Decoding

In this section, we describe PLatter tag’s data modula-
tion scheme (Sec. 5.1), its hardware (Sec. 5.2), the corre-
sponding detection and decoding pipeline (Sec. 5.3), and
scalability to multiple tags (Sec. 5.4).

5.1 Tag Data Modulation
Similar to other inductive coupling based backscatter
tags (e.g., NFC), our primary design requirement for
PLatter’s tag is to ensure sufficient coupling with the
power line when they are in close proximity. The tag
must then modulate its digital signals onto power lines.
On one hand, frequency modulation (FM), seen in many
traditional PLC deployments, provides enhanced robust-
ness but the data rate is relatively low (e.g., tens of
kbps at most). On the other hand, phase modulation
(PM) or amplitude modulation (AM), commonly used in
backscatter systems, are easier and cheaper to implement
but are less robust. PLatter’s design choice is to perform
what we call Parasitic Impedance Amplitude Modulation
as a variation of Amplitude Shift Keying (ASK). The

902 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 7: VNA impedance measurement clearly shows
the tag placed at 8 cm away from the middle of a 100-ft
cable modulating the parasitic impedance.

power of parasitic impedance is a function of the tag’s
reflection coefficient as

Γ =
ZT +Z∗A

ZA−ZT
(1)

where ZA is the power line characteristic impedance and
ZT is the impedance of the tag terminal. To achieve the
highest variation in parasitic impedance, we choose to
switch between short and open with expected nominal 0
Ω and infinity impedance values.

As a preliminary study, we deployed a 100-ft cable,
one end terminated with a Vector Network Analyzer
(VNA) and the other left open (SMA open cap). We
placed a tag at the middle (i.e., 50 feet away from the
VNA) with a distance of 8 cm to the cable. The tag is set
to switch between short and open loads with a very slow
rate (every 2 sec). As shown in Fig. 7, the impedance
measurements clearly capture the tag’s modulation. Yet,
we should also note the small scale of changes (i.e., par-
asitic impedance) compared to the absolute value of the
cable’s characteristic impedance.

In addition, to improve the SNR that a tag experiences
at different locations along the cable, PLatter also imple-
ments channel coding to effectively pull up the SNR. We
choose traditional convolution coding due to its simplic-
ity to implement and a wide range of coding gain-coding
rate choices. The gain will be implicitly shown in Sec. 8
where we evaluate PLatter’s data rate performance.

5.2 Tag Hardware Design
To achieve ultra-low power consumption at the tag with
a high data rate, PLatter exploits a unique hardware de-
sign. First, we shift most of the system complexity to
the reader with a minimal architecture at the tag. For
example, with uni-directional communication from the
tag to the reader, we do not need any envelop detector,
decoding component, or synchronization module. It is
entirely the reader’s task to detect active tags and de-
code their data. Then, to achieve a high data rate, we
leverage high-speed SPDT RF switches with nanosec-
ond switching rate, controlled by a low-power micro-
controller (Fig. 8 (a)). As such, the tag can easily support

Figure 8: Minimal architecture of a PLatter tag allows
ultra-low power consumption.

Figure 9: PLatter’s reader consists of a 60 Hz notch filter
and a matching network that tunes impedance live.

orders of Mbps data rate with parasitic impedance ampli-
tude modulation. Fig. 8 (b) shows its dev-kit prototype.

5.3 Tag Detection and Decoding
Next, we describe how the PLatter reader extracts the
modulated parasitic impedance from the reflected signal.
Our decoding algorithm works in two main steps: (1) sig-
nal conditioning to remove sudden variations and noises
in the measurements; (2) decoding the backscattered bits.
Signal Conditioning: The goal is to remove high-
frequency temporal variations in the measurements due
to background noise or sudden impedance changes
caused by connected appliances. We measure a moving
average from the channel measurements that is defined
based on the upper bound of the networks’ data rate. In
addition, if the measurement contains colored noise (as
seen in Sec. 8.6), PLatter adopts further denoising.
Decoding Bits: PLatter applies simple thresholding on
the output of the previous step. Specifically, if the chan-
nel measurement is above the threshold, the backscat-
tered bit is considered as a ”1”, and a ”0” otherwise.

5.4 Scaling to Multiple Tags
In PLatter’s design, multiple tags may send data to the
reader simultaneously. While many existing medium ac-
cess control protocols can be implemented for PLatter’s

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 903

(a). Deployment layout. (b). Testbed photos.
Figure 10: PLatter is evaluated in an industrial environment with up to 300 feet power cables.

power line backscatter network (e.g., ALOHA, TDMA,
or CSMA/CD), we leverage PN code assigned to each
tag. This enables concurrent communication while keep-
ing the tag circuitry simple and ultra-low-power. In ad-
dition, it eliminates the need for a bi-directional link and
any sort of synchronization. To achieve this, PLatter in-
corporates a shift register holding a PN code before the
RF front-end. The code length corresponds to the maxi-
mum number of concurrent tags that the system needs to
support, which is configured prior to deployment accord-
ingly. As an example, a 63-bit PN code requires a 6-bit
shift register and supports 63 concurrent tags.

6 Implementation

Reader Front-end: The PLatter reader, shown in Fig. 9,
consists of two USRP N210s with BasicTX/BasicRX
daughterboards, synchronized to the same clock. They
are connected with a directional coupler to emulate
a full-duplex reader, which is controlled by shell and
C/C++ scripts running on an ASUS 8G RAM 64-bit lap-
top with Ubuntu 16.04. The reader adaptively selects
a frequency between 12.56 MHz and 14.56 MHz and
transmits a carrier tone. This signal first travels through
the tunable matching network, which is controlled by the
laptop and provides four candidate channels, then enters
the power line network to capture tags’ signal. The re-
flected signal from the power line first enters the 60 Hz
notch filter, then gets captured by the reader with a sam-
pling rate of 25 Msps and processed offline in MATLAB.
The notch filter effectively removes active grid noises to
guarantee a proper dynamic range of the received signal
and protects the reader from severe damage.

Tag Hardware: The PLatter tag (Fig. 9) consists of a
minimal hardware, in which an antenna is connected to
a 3-port HMC284AMS8G SPDT RF switch [5]. The an-
tenna is a two-loop coil fabricated on PCB and tuned
to a center frequency of 13.56 MHz. The other two
ports of the RF switch are terminated with short and
open SMA caps, resp. The switch is then controlled
with either Raspberry Pi for benchmark experiments or
MSP430FR5994 MCU [4] for power analysis. The entire

tag circuitry is designed in favor of low cost and power
consumption, with a nominal 50 Ω impedance and all the
required impedance matching shifted to the reader side.

Tag Power Consumption: One of our key design chal-
lenges was to minimize tag energy consumption. We pair
the RF switch with a MSP430FR5994 MCU. In the ac-
tive state of transmitting information, PLatter uses 4.95
µW of power; otherwise, the MCU remains in an ultra-
low-power sleeping mode (LPM4) (1.05 µW) with an in-
ternal low-power, low-frequency oscillator running. As-
suming the tag sends 100 packets per day, 20 bytes each
at a speed of 1 Mbps, we achieve a daily expenditure of
403.7 mJ. If paired with a small form-factor 3V CR2032
lithium coin cell (235 mAh), we predict that a tag could
offer operation for 12.9 years, assuming an efficiency of
75% and no battery self-discharge.

7 Evaluation

Experimental Setup: We deployed multiple NM-B 14/2
cables with different lengths between 25 and 300 feet in
an industrial warehouse (formerly, a steel mill) designed
to serve as a smart manufacturing testbed (10250 sq. ft.).
Fig. 10(a) shows the cable layout, and Fig. 10(b) is taken
in the experimental space. Both ends of the cables have
SMA connectors soldered for easier connectivity. For
safety and controllability, in most of our experiments, the
cables do not carry active AC power (i.e., static), except
in our active power test (Sec. 8.6), where we instead use
the building’s existing power grid. Yet, we always have
the 60 Hz notch filter in the circuit to ensure consistency.
Evaluation Metrics: We examine and report two main
performance metrics: (1) SNR in dB, which reflects the
signal strength a tag can enjoy at a certain location; it
does not account for any gains from coding and software
denoising. (2) Achievable data rate in bit-per-second
(bps), which generally coincides with the trend of SNR
while implicitly including gains from coding and denois-
ing. Mean values across experiments are reported and
error bars denote standard deviation.
Baselines: We do not depict the comparison between
PLatter and an active near-field (NFC-based) over-the-

904 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a). Tag at the start of a cable. (b). Tag at the middle of a cable. (c). Tag at the end of a cable.
Figure 11: PLatter’s SNR performance when a PLatter tag is placed at the (a) beginning (b) middle (c) end of cables
of different lengths (100 feet, 200 feet, and 300 feet).

air transmission system with an equivalent power given
the very short range of NFC tags (a few cms). We note
that a far-field equivalent at 13.56 MHz would require a
huge antenna (the wavelength is 22 m) that is impractical
for an indoor space. However, we do evaluate the effec-
tiveness of PLatter’s matching circuit in Sec. 8.3 and we
show PLatter achieves a maximum data rate comparable
with other backscatter systems.

8 Results

We perform a thorough evaluation of PLatter where we
examine multiple factors that impact PLatter’s perfor-
mance – cable length and geometry, tag position, elec-
trical appliances connected, separating material between
a tag and the cable, and active power.

8.1 Cable Length and Tag Position
Method: In this section, we evaluate PLatter’s SNR and
data rate with a single PLatter tag, and we vary three
system variables: (1) total cable length; (2) tag’s position
w.r.t. the reader, i.e., the cable length between the tag
and the start of the cable; (3) tag’s distance to the cable,
i.e., the closest distance between the tag and the cable
along the cable’s normal direction. The cable is always
terminated with the reader at one end and an SMA open
cap at the other, emulating an open power outlet.
Result: Fig. 11 shows PLatter’s SNR performance at
three different tag positions along the cable (beginning,
middle, and towards the end). We see that as the tag
moves farther away from the cable, the SNR decreases
due to weaker inductive coupling; the SNR also drops as
the total cable length increases due to higher signal at-
tenuation inside the cable and weaker reflection received
by the reader. Comparing across multiple figures, we ob-
serve a higher SNR when the tag is placed close to the
beginning of the cable, since the carrier signal gets mod-
ulated before it experiences severe attenuation. Based
on our observation: (1) a tag can be detected when SNR

Figure 12: PLatter’s end-to-end data rate performance
when a PLatter tag is placed at the beginning, middle,
and end of cables with different distances to the cables.

is as low as -21 dB; (2) a tag can be detected and de-
coded between -16.5 dB and -21 dB but it suffers from
a low data rate; (3) a tag’s maximum data rate is around
1 Mbps when SNR is around -9.7 dB and increases to 4
Mbps when the SNR is as high as 5 dB.

Fig. 12 shows PLatter’s data rate performance with 6
different configurations – 2 tag distances (1.5 and 6.5
cm) and 3 tag positions (beginning, middle, and end).
The overall trend closely follows Fig. 11. Specifically, a
tag at a favorable location can modulate at the maximum
data rate; otherwise, it adds more redundancy to its data
and paces down. In our experiments, an SNR lower than
-16.5 dB leads to zero data rate because the tag signal
can no longer be decoded; yet, there is still a chance for
the reader to detect its presence. Overall, the maximum
data rate PLatter can provide is 4 Mbps; this is compara-
ble to the best backscatter-based state-of-the-art [7], yet
achieved with a reader farther away from the tag (300 ft)
by reusing power lines as a communication medium.

From Sec. 8.2 on, we fix the total cable length to be
100 ft and choose a representative subset of tag locations
to better demonstrate the influences from other factors.

8.2 Cable Geometry

Method: In this section, we examine three different ca-
ble geometries with a total length of 100 ft (two 25-ft ca-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 905

Figure 13: The tag SNR varies as the cable geometry
changes, yet PLatter can operate normally in all cases.

(a). SNR (b). Data Rate
Figure 14: Effectiveness of PLatter’s Matching Circuit

bles and one 50-ft cable). Specifically, we consider three
configurations: (1) L-shape connection forms a long 100-
ft cable with a corner point at the middle (50 ft); (2) Y-
shape connection has one splitter to form two branches
(a 50-ft cable (long) connected with two 25-ft (short)
branches); (3) Multi-bending connection has a number
of bending points along the cable.
Result: Fig. 13 shows PLatter’s SNR performance un-
der different cable geometries at representative locations.
Despite minor variations in SNR, we verify that PLatter
continues to operate under different practical cable ge-
ometries, including at the branches of the Y shape.

8.3 Impact of Electrical Appliances

Method: In this section, we examine both the effective-
ness of our matching network and the impact of electrical
appliances. We choose two multi-state appliances: (1) a
desktop heater (on/off) as a representative of appliances
that turn electrical power to heat; (2) a surge protector
(on/off) commonly used in daily life. They change the
overall impedance of the power line, and PLatter is ex-
pected to adaptively tune its matching network. To con-
nect an appliance to our cable, we use a custom-designed
SMA-to-plug converter. We use a single 100-ft cable and
choose a representative subset of tag locations. Note that
only in this experiment, we include SNR values that were

Figure 15: The tag SNR varies slightly as an appliance’s
internal circuit changes, and PLatter can adapt coord-
ingly with its matching network.

Figure 16: PLatter with different materials.

measured when PLatter’s matching network was off.
Result: We show the effectiveness of the matching net-
work in Fig. 14 by attaching a heater (on) to the cable.
We see an overall SNR improvement across different tag
configurations, though the actual amount may vary. The
impact of appliances is shown in Fig. 15. The reported
numbers have included gains from the matching network.
In general, for a certain tag configuration, the SNR tends
to be higher when the appliance is on (i.e., its internal cir-
cuit is connected); even when the appliance is off, with
the matching network PLatter still manages to maintain
a reasonable SNR and hence data rate.

8.4 Influence of Separating Material

Method: We evaluate the impact of different wall mate-
rials between the tag and the power line. Specifically, we
consider 3 common materials: dry wall, foam board, and
ceramic brick (Fig. 16), with their thickness of around
1.3 cm (1/2 inch). Again, we use a single 100-ft cable
and stick to a representative subset of tag locations.
Result: Fig. 16 shows that PLatter’s performance
slightly varies as we change the separating material; in
general, the dry wall panel tends to introduce more at-
tenuation, but PLatter can still maintain a favorable SNR
that is way higher than the decoding threshold.

906 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 17: PLatter uses a simulation route to examine the
collective data rate in a multi-tag scenario.

8.5 Multiple Tags
Method: In this section, we explore PLatter’s perfor-
mance with multiple tags. First, we verify that signals
from multiple tags add up as expected by placing two
tags along a 100-ft cable at 30 feet and 90 feet, respec-
tively, with a distance of 1.5 cm to the cable. The tags pe-
riodically transmit a specific bit sequence and the reader
receives their colliding signal for further analysis. Next,
to evaluate the scalability of PLatter in multi-tag scenar-
ios, we conduct a trace-driven simulation of collisions
from 1 to 150 tags. We use the simulation route to care-
fully and exhaustively model various relative timing off-
sets between tag transmissions to study their overall im-
pact. Our study is informed by actual signals collected
from 3 tags placed at 30, 60, and 90 feet from the reader,
and for each position, we include both 1.5 and 6.5 cm as
their potential distance to the cable. We then engineer
a collision in software under different timing conditions
and calculate the total data rate across all tags.
Result: Fig. 17(a) and (b) show that signals from mul-
tiple tags add up with each other as expected. Even
though the raw received signals (shown in blue) are quite
noisy due to background noise, PLatter can still suc-
cessfully detect the tags by correlating each tag’s PN-
code. In principle, PLatter only relies on the variations
of parasitic impedance, not absolute impedance values.
Fig. 17(c) shows the simulated data rate for multiple
PLatter tags. It should be noted that the length of PN
code and shift register at each tag is defined by the net-
work size (i.e., the maximum number of concurrent tags
supported by the system). This imposes a trade-off be-
tween the maximum collective data rate and the number
of tags, where the maximum total data rate drops down
slightly as the number of registers increases.

8.6 Response on Active Power Lines
Method: In this section, we evaluate PLatter with an ac-
tive power grid in an industrial environment. We connect
one end of a 25-ft cable to our reader, with the 60 Hz
notch filter and matching circuit in series, and plug the
other end into a surge protector, which is further con-
nected to the active power outlet on the wall of the build-

Figure 18: Both sudden signal imperfections and peri-
odic harmonics have been observed in the active grid;
PLatter’s corresponding denoising technique greatly
helps to improve the SNR.

ing. This forms a large active power grid with an esti-
mated total length of more than 500 m; the building was
operating normally with a variety of appliances running
on the power grid. The reader is powered by a portable
battery pack and protected by another surge protector. A
single PLatter tag is put at three different positions along
the 25-ft cable with a fixed distance of 1.5 cm to the ca-
ble, and we carry out 15 independent measurements for
each case, creating a total of 45 experiments.

Note that the cable geometry here is completely dif-
ferent from those in Sec. 8.1-Sec. 8.5; meanwhile, it was
infeasible to shut down the whole grid to collect static
experimental data in this building. Hence, static test re-
sults (when PLatter is connected to the whole building’s
grid but without active power) are not included here.
Result: We first analyze the noise introduced by the ac-
tive grid. Fig. 18(a) shows a representative trace of the
signal in time domain with an obvious imperfection in
the middle. This kind of sudden noise has been ob-
served multiple times throughout the experiment and it
does not have a fixed pattern. Meanwhile, we have also
observed periodic noise components resulting from the
60 Hz AC signal. Fig. 18(b) shows the frequency spec-
trum of the periodic noise components. The first pair of
peaks correspond to the 60 Hz bin, and we see multiple
higher-order harmonics. While our notch filter signifi-
cantly suppresses 60 Hz and its neighboring frequencies
so that they would not damage the reader, the residual
harmonic noise is still large enough to be detected by the
reader. To deal with both kinds of noise, PLatter denoises
in software processing to pull up the SNR. Note that this
specific denoising is not present in Sec. 8.1-Sec. 8.5.

Fig. 18(c) shows the SNR observed in multiple trials
along the cable. The tag was placed at different posi-
tions but its distance to the cable was fixed (1.5 cm).
In this CDF plot, we see that in average PLatter’s de-
noising technique brings 3-4 dB boost in SNR, although
the actual improvement varies slightly along the cable.
This makes it easier for the PLatter reader to decode the
tag signal and has the potential to be further improved

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 907

by using more advanced notch filters proposed in the
power line communication literature [33]. We admit that
the SNR after boosting is still not within the most ideal
range; yet, this can be mitigated with channel coding
where we add redundancy into the transmitted data (as
mentioned in Sec. 5). The experiment shows a positive
sign of implementing PLatter in real-world settings with
complex power grid conditions, albeit with lower data
rate and range.

9 Discussion and Limitation

While PLatter takes a big step toward enabling building-
scale backscatter communication using power line sys-
tems, there are still some open questions and a few av-
enues for future improvements.
Tag Proximity to Cables: PLatter requires the tag to be
sufficiently proximate to the cables behind walls (within
a few tens of cms – Sec. 8.1). While this may restrict
the locations where PLatter tags can be deployed, such
a solution is still desirable in intrinsically safe environ-
ments by just lying a passive cable in the environment
for sensor communications. In addition, this requires
the knowledge of power line locations behind the wall,
which can be addressed by using stud finders during the
sensor deployment. In our future work, we plan to study
other modulation mechanisms at the tag to improve the
tag detection rate at larger distances from the cable.
Variability in Performance: Based on our observation,
PLatter’s performance and range are highly dependent
on several factors, specifically cable geometry, tag po-
sition (w.r.t. reader), distance to the cables, and active
power variations. While PLatter can automatically adapt
to these changes, it may experience performance drops
and failure in highly dynamic setups.
Uni-directional Communication: PLatter in its present
form is uni-directional from the tag to the reader. We
believe that in principle, modulating information in the
reverse direction while keeping low-cost and low-power
is possible, and we leave this for future work.
Tag Scalability: While PLatter provides a proof of con-
cept for multi-tag backscatter communication, the over-
all data rate of the network can be enhanced using MAC
protocols such as TDMA or slotted ALOHA with min-
imum collisions. New backscatter MAC protocols like
NetScatter [23], with power line time synchronization
mechanisms [34] enabled, can further improve PLatter’s
overall performance; integrating them with PLatter is one
interesting part of our future work.
Impact of Parasitic Impedance on Connected Appli-
ances: Although large parasitic impedance can be gen-
erally problematic at high frequencies since it might

sharply change voltages or currents, the amount of para-
sitic impedance induced by PLatter tags is negligible as
the tag is completely passive in a sense that it has no ac-
tive radio front-end and hence no radiation.
Electrical Wiring Complexity: In addition to con-
trolled experiments, PLatter has been evaluated in an in-
dustrial manufacturing building, where the power grid
was operating actively (Sec. 8.6), which provides the
feasibility of backscatter communication using power
line systems. However, we acknowledge that electrical
wiring in some buildings can be complex with various
hardware components in the line, which has long been a
challenge in power line communication research.

10 Conclusion

This paper presents PLatter, a system that allows ultra-
low-power backscatter tags attached to walls to commu-
nicate with a reader several hundreds of feet away. PLat-
ter achieves this by using the existing power lines behind
the walls as a communication medium, without physi-
cally being connected to them. To achieve this, PLatter
modulates parasitic impedance on the power line system,
which allows data to be recovered at a high rate at a sin-
gle centralized reader through a large indoor facility. We
present a detailed proof-of-concept evaluation of PLatter,
exploring its strengths and weaknesses in a large indoor
industrial testbed. While this paper broadly explores the
concept of power line backscatter, our future work hopes
to stress test the system at scale in diverse environments
and explore higher-layer protocol designs.

Acknowledgement

We would like to thank the shepherd and reviewers for
their valuable comments and insightful feedback, as well
as NSF (grant 1837607) and Cylab IoT for their support
on this work.

References

[1] Insteon. http://www.insteon.net/.

[2] Nfc antenna 1663.000. https://www.

digikey.com/en/products/detail/

feig-electronic/1663-000-00/1015926.

[3] X10: Standard and extended x10 protocol.
http://software.x10.com/pub/manuals/

xtdcode.pdf.

[4] Texas Instruments MSP430FR5994 microcon-
troller. https://www.ti.com/product/

MSP430FR5994, 2020.

908 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://www.insteon.net/
https://www.digikey.com/en/products/detail/feig-electronic/1663-000-00/1015926
https://www.digikey.com/en/products/detail/feig-electronic/1663-000-00/1015926
https://www.digikey.com/en/products/detail/feig-electronic/1663-000-00/1015926
http://software.x10.com/pub/manuals/xtdcode.pdf
http://software.x10.com/pub/manuals/xtdcode.pdf
https://www.ti.com/product/MSP430FR5994
https://www.ti.com/product/MSP430FR5994

[5] Hmc284ams8g, analog device, 2021.

[6] Kannan Srinivasan Athreya, Wei Sun, Bo Chen,
and Vivek Sriram Yenamandra Guruvenkata. Mimo
architecture for multi-user power line communica-
tion, December 29 2020. US Patent 10,879,959.

[7] Dinesh Bharadia, Kiran Raj Joshi, Manikanta Ko-
taru, and Sachin Katti. Backfi: High throughput
wifi backscatter. ACM SIGCOMM Computer Com-
munication Review, 45(4):283–296, 2015.

[8] Gabe Cohn, Daniel Morris, Shwetak Patel, and
Desney Tan. Humantenna: Using the body as
an antenna for real-time whole-body interaction.
In Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems, CHI ’12, pages
1901–1910, New York, NY, USA, 2012. ACM.

[9] Gabe Cohn, Daniel Morris, Shwetak N. Patel, and
Desney S. Tan. Your noise is my command: Sens-
ing gestures using the body as an antenna. In
Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems, CHI ’11, page
791–800, New York, NY, USA, 2011. Association
for Computing Machinery.

[10] Gabe Cohn, Erich Stuntebeck, Jagdish Pandey,
Brian Otis, Gregory D. Abowd, and Shwetak N.
Patel. Snupi: Sensor nodes utilizing powerline in-
frastructure. In Proceedings of the 12th ACM In-
ternational Conference on Ubiquitous Computing,
UbiComp ’10, page 159–168, New York, NY, USA,
2010. Association for Computing Machinery.

[11] Edwin H Colpitts and Otto B Blackwell. Car-
rier current telephony and telegraphy. Transactions
of the American Institute of Electrical Engineers,
40:205–300, 1921.

[12] Vedat Coskun, Kerem Ok, and Busra Ozdenizci.
Near field communication (NFC): From theory to
practice. John Wiley & Sons, 2011.

[13] Amitava Dutta-Roy. Networks for homes. IEEE
spectrum, 36(12):26–33, 1999.

[14] Miro Enev, Sidhant Gupta, Tadayoshi Kohno, and
Shwetak N. Patel. Televisions, video privacy, and
powerline electromagnetic interference. In Pro-
ceedings of the 18th ACM Conference on Computer
and Communications Security, CCS ’11, pages
537–550, New York, NY, USA, 2011. ACM.

[15] Hendrik C Ferreira, Lutz Lampe, John Newbury,
and Theo G Swart. Power line communications:
theory and applications for narrowband and broad-
band communications over power lines. John Wi-
ley & Sons, 2011.

[16] Klaus Finkenzeller. RFID handbook: fundamentals
and applications in contactless smart cards, radio
frequency identification and near-field communica-
tion. John wiley & sons, 2010.

[17] Henry C Forbes. Re-radiation from tuned antenna
systems. Proceedings of the Institute of Radio En-
gineers, 13(3):363–382, 1925.

[18] Juan Carlos Rodriguez Guerra. Electric field en-
ergy harvesting from medium voltage power lines.
School of Engineering, College of Science, Engi-
neering and Health, RMIT University Australia,
208, 2017.

[19] Manoj Gulati, Farshid Salemi Parizi, Eric Whit-
mire, Sidhant Gupta, Shobha Sundar Ram, Amar-
jeet Singh, and Shwetak N. Patel. Capharvester:
A stick-on capacitive energy harvester using stray
electric field from ac power lines. Proc. ACM In-
teract. Mob. Wearable Ubiquitous Technol., 2(3),
September 2018.

[20] Sidhant Gupta, Matthew S. Reynolds, and Shwe-
tak N. Patel. Electrisense: Single-point sensing us-
ing emi for electrical event detection and classifica-
tion in the home. In Proceedings of the 12th ACM
International Conference on Ubiquitous Comput-
ing, UbiComp ’10, page 139–148, New York, NY,
USA, 2010. Association for Computing Machinery.

[21] Vikram Gupta, Arvind Kandhalu, and Ragu-
nathan (Raj) Rajkumar. Energy harvesting from
electromagnetic energy radiating from ac power
lines. In Proceedings of the 6th Workshop on Hot
Topics in Embedded Networked Sensors, HotEm-
Nets ’10, New York, NY, USA, 2010. Association
for Computing Machinery.

[22] David Halliday, Robert Resnick, and Jearl Walker.
Fundamentals of physics. John Wiley & Sons,
2013.

[23] Mehrdad Hessar, Ali Najafi, and Shyamnath Gol-
lakota. Netscatter: Enabling large-scale backscat-
ter networks. In 16th {USENIX} Symposium on
Networked Systems Design and Implementation
({NSDI} 19), pages 271–284, 2019.

[24] Bryce Kellogg, Aaron Parks, Shyamnath Gol-
lakota, Joshua R Smith, and David Wetherall. Wi-
fi backscatter: Internet connectivity for rf-powered
devices. In Proceedings of the 2014 ACM Confer-
ence on SIGCOMM, pages 607–618, 2014.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 909

[25] Yu-Ju Lin, Haniph A Latchman, Minkyu Lee, and
Srinivas Katar. A power line communication net-
work infrastructure for the smart home. IEEE wire-
less communications, 9(6):104–111, 2002.

[26] DJR Martin. Leaky-feeder radio communication:
A historical review. In 34th IEEE Vehicular Tech-
nology Conference, volume 34, pages 25–30. IEEE,
1984.

[27] Marcel Nassar, Jing Lin, Yousof Mortazavi, Anand
Dabak, Il Han Kim, and Brian L Evans. Local util-
ity power line communications in the 3–500 khz
band: Channel impairments, noise, and standards.
IEEE signal processing magazine, 29(5):116–127,
2012.

[28] Amir Mehdi Pasdar, Ismail H Cavdar, and Yil-
maz Sozer. Power-line impedance estimation at fcc
band based on intelligent home appliances status
detection algorithm through their individual energy
and impedance signatures. IEEE Transactions on
power delivery, 29(3):1407–1416, 2014.

[29] Shwetak N. Patel, Thomas Robertson, Julie A.
Kientz, Matthew S. Reynolds, and Gregory D.
Abowd. At the flick of a switch: Detecting and
classifying unique electrical events on the residen-
tial power line. In Proceedings of the 9th In-
ternational Conference on Ubiquitous Computing,
UbiComp ’07, page 271–288, Berlin, Heidelberg,
2007. Springer-Verlag.

[30] Shwetak N. Patel, Erich P. Stuntebeck, and Thomas
Robertson. Pl-tags: Detecting batteryless tags
through the power lines in a building. In Proceed-
ings of the 7th International Conference on Per-
vasive Computing, Pervasive ’09, page 256–273,
Berlin, Heidelberg, 2009. Springer-Verlag.

[31] Shwetak N. Patel, Khai N. Truong, and Gregory D.
Abowd. Powerline positioning: A practical sub-
room-level indoor location system for domestic
use. In Paul Dourish and Adrian Friday, editors,
UbiComp 2006: Ubiquitous Computing, pages
441–458, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg.

[32] Shwetak N Patel, Khai N Truong, and Gregory D
Abowd. Powerline positioning: A practical sub-
room-level indoor location system for domestic
use. In International Conference on Ubiquitous
Computing, pages 441–458. Springer, 2006.

[33] Nicodimus Retdian and Takeshi Shima. N-path
notch filter with a 43-db notch depth improvement

for power line noise suppression. In 2016 Interna-
tional symposium on electronics and smart devices
(ISESD), pages 184–187. IEEE, 2016.

[34] Anthony Rowe, Vikram Gupta, and Ragunathan
Rajkumar. Low-power clock synchronization us-
ing electromagnetic energy radiating from ac power
lines. In Proceedings of the 7th ACM Conference on
Embedded Networked Sensor Systems, pages 211–
224, 2009.

[35] Anthony Rowe, Vikram Gupta, and Ragu-
nathan (Raj) Rajkumar. Low-power clock syn-
chronization using electromagnetic energy radiat-
ing from ac power lines. In Proceedings of the 7th
ACM Conference on Embedded Networked Sensor
Systems, SenSys ’09, page 211–224, New York,
NY, USA, 2009. Association for Computing Ma-
chinery.

[36] Erich P Stuntebeck, Shwetak N Patel, Thomas
Robertson, Matthew S Reynolds, and Gregory D
Abowd. Wideband powerline positioning for in-
door localization. In Proceedings of the 10th in-
ternational conference on Ubiquitous computing,
pages 94–103, 2008.

[37] Erich P Stuntebeck, Thomas Robertson, Gregory D
Abowd, and Shwetak N Patel. Using in-home
power lines to extend the range of low-power wire-
less devices. Technical report, Georgia Institute of
Technology, 2009.

[38] Nima Taherinejad, Roberto Rosales, Shahriar
Mirabbasi, and Lutz Lampe. On the design of
impedance matching circuits for vehicular power
line communication systems. In 2012 IEEE Inter-
national Symposium on Power Line Communica-
tions and Its Applications, pages 322–327. IEEE,
2012.

[39] Vamsi Talla, Mehrdad Hessar, Bryce Kellogg, Ali
Najafi, Joshua R Smith, and Shyamnath Gollakota.
Lora backscatter: Enabling the vision of ubiquitous
connectivity. Proceedings of the ACM on Interac-
tive, Mobile, Wearable and Ubiquitous Technolo-
gies, 1(3):1–24, 2017.

[40] PA Janse Van Rensburg and Hendrik C Fer-
reira. Design of a bidirectional impedance-adapting
transformer coupling circuit for low-voltage power-
line communications. IEEE Transactions on Power
Delivery, 20(1):64–70, 2005.

[41] PA Janse van Rensburg, Umer Izhar, and DMG
Preethichandra. A novel plc impedance condition-
ing technique for quasi-common mode power-line

910 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

antenna injection. In 2018 IEEE 27th International
Symposium on Industrial Electronics (ISIE), pages
677–682. IEEE, 2018.

[42] Jingxian Wang, Junbo Zhang, Rajarshi Saha, Hao-
jian Jin, and Swarun Kumar. Pushing the range lim-
its of commercial passive rfids. In 16th {USENIX}
Symposium on Networked Systems Design and Im-
plementation ({NSDI} 19), pages 301–316, 2019.

[43] Ron Weinstein. Rfid: a technical overview and
its application to the enterprise. IT professional,
7(3):27–33, 2005.

[44] Vivek Yenamandra and Kannan Srinivasan. Vidyut:
exploiting power line infrastructure for enterprise
wireless networks. ACM SIGCOMM Computer
Communication Review, 44(4):595–606, 2014.

[45] Larry Yonge, J. Abad, K. Afkhamie, L. Guerri-
eri, S. Katar, Hidayat Lioe, P. Pagani, R. Riva,
D. Schneider, and A. Schwager. An overview of
the homeplug av2 technology. J. Electr. Comput.
Eng., 2013:892628:1–892628:20, 2013.

[46] Larry Yonge, Jose Abad, Kaywan Afkhamie,
Lorenzo Guerrieri, Srinivas Katar, Hidayat Lioe,
Pascal Pagani, Raffaele Riva, Daniel M Schneider,
and Andreas Schwager. An overview of the home-
plug av2 technology. Journal of Electrical and
Computer Engineering, 2013, 2013.

[47] Pengyu Zhang, Dinesh Bharadia, Kiran Joshi, and
Sachin Katti. Hitchhike: Practical backscatter us-
ing commodity wifi. In Proceedings of the 14th
ACM Conference on Embedded Network Sensor
Systems CD-ROM, pages 259–271, 2016.

[48] Tian Zhou, Yue Zhang, Xinlei Chen, Khaild M
Mosalam, Hae Young Noh, Pei Zhang, and Lin
Zhang. P-loc: a device-free indoor localization
system utilizing building power-line network. In
Adjunct Proceedings of the 2019 ACM Interna-
tional Joint Conference on Pervasive and Ubiqui-
tous Computing and Proceedings of the 2019 ACM
International Symposium on Wearable Computers,
pages 611–615, 2019.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 911

Passive DSSS: Empowering the Downlink Communication
for Backscatter Systems

Songfan Li1, Hui Zheng1, Chong Zhang1, Yihang Song1, Shen Yang1, Minghua Chen1, Li Lu1 and Mo Li2
1University of Electronic Science and Technology of China (UESTC),

2Nanyang Technological University (NTU)

Abstract
The uplink and downlink transmissions in most backscatter

communication systems are highly asymmetric. The downlink
transmission often suffers from its short range and vulnerabil-
ity to interference, which limits the practical application and
deployment of backscatter communication systems. In this
paper, we propose passive DSSS to improve the downlink com-
munication for practical backscatter systems. Passive DSSS
is able to increase the downlink signal-to-interference-plus-
noise ratio (SINR) by using direct sequence spread-spectrum
(DSSS) techniques to suppress interference and noise. The key
challenge lies in the demodulation of DSSS signals, where the
conventional solutions require power-hungry computations to
synchronize a locally generated spreading code with the re-
ceived DSSS signal, which is infeasible on energy-constrained
backscatter devices. Passive DSSS addresses such a challenge
by shifting the generation and synchronization of the spread-
ing code from the receiver to the gateway side, and therefore
achieves ultra-low power DSSS demodulation. We prototype
passive DSSS for proof of concept. The experimental results
show that passive DSSS improves the downlink SINR by
16.5 dB, which translates to a longer effective downlink range
for backscatter communication systems.

1 Introduction

Passive communication is expected to be a promising con-
nectivity paradigm for building Internet of things (IoT) due
to its ultra-low power and low-cost features. Significant ef-
forts have been put into improving the backscatter link of
passive communication, in terms of range [43, 49, 53–56],
robustness [23, 33, 59], and interoperability with commercial
radios like Wi-Fi [25, 26] and LoRa [43, 49]. In particular,
unlike RFID that communicates while harvesting RF power,
advanced backscatter communication decouples the commu-
nication from RF power harvesting [50], and thus becomes
a low-power communication solution for IoT devices with
longer communication range and limited power supplies (e.g.,
with small batteries or energy harvesting modules).

downlink

100’s of meters

effective network range

uplink (backscatter)
(no control

from gateway)
gateway

~10 meters

backscatter devices

Figure 1: Passive DSSS addresses the asymmetric link issue
by empowering the downlink with interference resilience.

Practical deployment of backscatter communication sys-
tems faces major challenges in communication asymmetry.
As Fig. 1 shows, the backscatter link (uplink) of passive com-
munication and its downlink are often highly asymmetric,
where the downlink transmission has poorer performance than
the uplink in terms of its range and interference resilience. In
most backscatter communication systems, we have a powerful
gateway that can be comprehensively designed to demodulate
and decode noisy signals on the backscatter uplink. On the
downlink, however, receivers on backscatter devices are low
power operated and vulnerable to interference and noise.

In practice, IoT devices often need downlink controls. For
example, when a communication collision occurs among mul-
tiple backscatter devices, the gateway needs to send downlink
controls to mediate those devices so as to resolve the collision.
Other useful downlink transmissions include scheduling trans-
missions [15], synchronizing networks [12], sending wake-up
packets [22], controlling sensors [28] and implementing over-
the-air (OTA) firmware update [61] and so on. The poor com-
munication performance of the downlink becomes a major
limit to the range of the backscatter communication system.

In this paper, we ask whether it is possible to significantly
improve the downlink resilience to interference. Essentially,
for improving the downlink communication, we need to in-
crease the signal quality in terms of signal-to-interference-
plus-noise ratio (SINR). Rather than increasing the trans-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 913

mission power of the downlink signal which is essentially
limited by radio spectrum regulators like FCC [7] and may
lead to undesired extra interference, in this paper we look for
a solution that suppresses the interference on the other hand.
We make use of spread-spectrum modulation schemes (e.g.,
DSSS) to suppress interference and noise. However, to the
best of our knowledge, none of the existing spread-spectrum
schemes can directly work for the downlink of backscatter
systems. Specifically, those spread-spectrum systems require
the receiver to incorporate a high frequency oscillator to cor-
relate with the received spread-spectrum signal [6], which
inevitably incurs high power consumption that is undesirable
for energy-constrained backscatter devices.

We present passive DSSS, the first direct sequence spread-
spectrum (DSSS) technique for passive communication to
suppress interference and noise. As Fig. 2(a) shows, in con-
ventional DSSS communication, the receiver requires com-
plex receiver circuitry and expensive computations for syn-
chronization between the received DSSS signal and locally
generated spreading code. Specifically, the DSSS transmitter
spreads the frequency spectrum of baseband signals across a
wider band by modulation with a pseudorandom spreading
code. The DSSS receiver strips off the spreading code and
retrieves the original baseband by de-spreading (demodulat-
ing) the received signal with a synchronized replica of the
spreading code. The de-spreading process requires computa-
tionally expensive synchronization between the DSSS signal
and local spreading code, which is infeasible on backscatter
devices.

To address the challenges associated with the complicated
de-spreading of DSSS demodulation, the proposed solution
offloads the spreading code generation and synchronization
from the backscatter device to the gateway side. As shown
in Fig. 2(b), the gateway transmits the DSSS signal and the
spreading code reference simultaneously via two separate
channels to the receiver. As the spreading code is inherently
synchronized with the DSSS signal at the transmitter side,
there is no more need for synchronization at the receiver side
for de-spreading. The spreading code can be stripped off
by combining the two channels together after removing the
carrier waves. To achieve passive DSSS in practice, we need
to address the following three technical challenges.

Challenge-1. Conventional DSSS systems suppose that the
receiver can estimate phase information of the channel. How-
ever, obtaining phase information needs the use of a local
oscillator operating at the carrier frequency, which is infea-
sible on backscatter devices. In passive DSSS, we leverage
the envelope of an RF carrier to convey the DSSS signal (§ 3).
Specifically, the gateway transmits the spreading code by mod-
ulating the amplitude of the carrier, while the baseband signal
is communicated by modulating the phase difference between
the synchronized spreading codes in each individual channel.
The receiver reconstructs the baseband by comparing the two
spreading codes.

Carrier signal

(contain

baseband)

spreading code local spreading

code

Recovered signal

correlation &

synchronization

DSSS signal

(a) Conventional DSSS

spreading code

Carrier 1

(contain

baseband)

Recovered

signal

Carrier 2

envelope

detector

envelope

detector

channel 1

channel 2

(b) Passive DSSS

Figure 2: Passive DSSS shifts the synchronization of the
spreading code to a gateway, thereby enabling backscatter
devices to demodulate DSSS transmission.

Challenge-2. The two separate channels to convey the
DSSS signal and the spreading code may experience differ-
ent interference effects in practice. In conventional DSSS
receivers, interference is suppressed by multiplying with a
spreading code in the de-spreading process. In passive DSSS,
however, the de-spreading process performs the multiplica-
tion of two channel signals, thus leading to an interference
composition (the product of interference signals from two
channels). We explore the fact that the interference signals
between the separate channels are often independent of each
other and propose a solution (§ 4) to suppress the interference
composition by calculating the cross-correlation between the
two interfered signals.

Challenge-3. Conventional correlation operation requires
power-consuming digitization and signal processing which
cannot be accommodated on backscatter devices. To over-
come this challenge, we design an interference cancella-
tion circuit with analog components to compute the cross-
correlation (§ 5). As the received signals from two channels
are already multiplied with each other in the de-spreading pro-
cess, the interference cancellation circuit mainly performs the
integration of the signal output from the de-spreading process
in analog domain. The original baseband signal predominates
in the output of the cancellation circuit.

We build a prototype system for proof of concept. We im-
plement the gateway with NI USRP 2922 and implement the
passive DSSS receiver with commercial off-the-shelf (COTS)
hardware components. The passive DSSS receiver consumes
166.5 µW power when demodulating the DSSS signals ro-
bustly with 1 MHz bandwidth. We evaluate the prototype sys-
tem with realistic communication environments with RFID
and LoRa interference. We also conduct stress-testing experi-
ments to examine the performance of passive DSSS in terms

914 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

of BER with different noise and interference levels. The re-
sults show that passive DSSS can gain an SINR improvement
of 16.5 dB over conventional receivers on backscatter devices.
The higher SINR translates to a longer effective downlink
range for backscatter systems. Our experimental results show
that the effective downlink range is extended by up to 52 m
with 20 dBm transmission power, which is 3x longer than
what can be offered by conventional receivers.

2 Preliminary

This section describes the preliminary knowledge before we
come to the design of passive DSSS, including descriptions
of the reason why DSSS techniques can suppress interfer-
ence, and the synchronization problem to achieve DSSS on
backscatter devices.

2.1 A Primer for Conventional DSSS

DSSS is a spread-spectrum modulation technique primarily
used for reducing overall signal interference. While DSSS
is also employed to achieve concurrent transmissions by the
code-division multiple access (CDMA) method in wireless
systems (e.g., cellular and GPS), this paper aims to exploit
the interference resilience of DSSS to improve the downlink
of backscatter communication systems.

Non-spread spectrum wireless communication transmits
baseband information by modulating an RF carrier, which
can be treated as a narrowband signal that is easily disturbed
by any other interferers in the same band. The idea behind
spread-spectrum is to use a wider bandwidth than the original
baseband (typically 10–60 dB), and therefore diffuses the
information across a larger bandwidth, which allows recovery
of the transmitted signal even when a part of the spectrum is
significantly impaired by narrowband interference.

To achieve DSSS transmission, spread-spectrum modula-
tion is applied on top of conventional modulation by multi-
plication with the corresponding spreading code before trans-
mission. The spreading code is a pseudorandom sequence
with a much higher data rate than the baseband. The produced
signal stream thus has a higher data rate and occupies a wider
signal bandwidth.

A despreading operation at the receiver side reconstitutes
the information in its original bandwidth. The received signal
is multiplied by a replica of the spreading code ĉ(t) in order
to regenerate the original data. The despreading operation can
be mathematically represented as:

received signal︷ ︸︸ ︷
[b(t)c(t)+ I(t)] ·ĉ(t)

= b(t)c(t)ĉ(t)︸ ︷︷ ︸
despreading

+ I(t)ĉ(t)︸ ︷︷ ︸
suppression

(1)

where b(t) is the original baseband signal, c(t) represents the
spreading code, and I(t) refers to the interference. If ĉ(t) is
precisely synchronized with c(t), we say ĉ(t) = c(t). Since
c(t) = ±1, the product c(t)ĉ(t) is unity when they are syn-
chronized, so that the first term (despreading) is equal to the
desired baseband b(t). In the second term (suppression), the
interference signal is multiplied by the spreading code, which
spreads the interference spectrum. As the spread interference
features much higher data rates than the baseband signal, we
can remove the interference with a low pass filter (LPF).

2.2 Problem of DSSS Synchronization

If the spreading code is synchronized, the output of a despread-
ing operation will be a correct baseband signal. Otherwise,
the received spread-spectrum signal cannot be demodulated
correctly because c(t)ĉ(t) will be a noise-like rapidly moving
code which hides the baseband signal. It is difficult for a re-
ceiver to accurately recover the slow baseband signal without
having an exact replica of the spreading code.

The synchronization process, however, requires that the
DSSS receiver performs phase estimation and intensive com-
putation, neither of which is suitable for backscatter devices.
Specifically, the synchronization is often accomplished with
two steps, i.e., acquisition and tracking. First, acquisition de-
termines the phase of the spreading sequence in the received
signal. The tracking step then continuously maintains the
best alignment between the locally generated spreading code
and the received DSSS signal. Although prior works have
proposed low-power DSSS techniques [6, 13, 21, 34, 36] to
reduce the power consumption for synchronization, they are
designed for active radios in which power-starving oscillators
and analog-to-digital converters (ADC) are employed in their
architectures. Those components typically consume at the
scale of mW , which is still higher than what can be afforded
on backscatter devices.

There are also prior works that apply DSSS in RFID sys-
tems. Arthaber et al. [2] adopt DSSS to increase the tag-
to-reader communication range for RFID, in which each
backscatter tag is assigned a unique spreading code to en-
code the backscatter data. Some works employ CDMA to
address the problem of collisions [38, 59, 62] in RFID net-
works. The code is designed to be orthogonal and thus allows
an RFID reader to decode the transmitted data even in pres-
ence of collisions. Those works, however, are designed for
the uplink transmission from the backscatter tag to the reader,
where the power consuming and computationally expensive
synchronization process is performed at the reader side.

A recent work µcode [41] proposes a CDMA-like method
to turbocharge tag-to-tag backscatter communication. Instead
of using a pseudorandom spreading code, µcode leverages a
periodic signal with an alternating one-zero sequence in the
transmission to avoid the synchronization at the receiver side.
However, the periodic signal is unable to spread the baseband

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 915

1 0

+1 +1 -1 -1 +1 +1+1 -1 +1 -1 -1+1

baseband

after BPSK

spread code

Tx (BPSK)

(a) Conventional DSSS modulation
1 0

1 1 0 0 1 0 1 1 1 0 1 0

0 0 1 1 0 1 1 1 1 0 1 0

baseband
b(t)

spread code
c(t)

b(t) c(t)

channel 1
(OOK)

channel 2
(OOK)

(b) Passive DSSS modulation

Figure 3: Comparison between conventional DSSS and pas-
sive DSSS transmission

signal over a wide frequency band and thus cannot offer the
desired anti-interference feature. In conclusion, in order to
suppress interference, passive DSSS has to make use of the
spreading code in the downlink transmission and address
the synchronization problem at the receiver on backscatter
devices.

3 Passive DSSS Modulation and Transmission

We design a passive DSSS modulation scheme for spread-
spectrum signal transmissions without phase estimation on
the receiver side. The basic intuition comes from an observa-
tion, where receivers on backscatter devices can effectively
detect the amplitude information from the incoming signal
with simple envelope detection. The envelope detector can be
built with passive components such as resistors, capacitors and
diodes, and is thus ultra-low power in nature. The designed
passive DSSS may utilize the envelope of the carrier signal to
convey synchronized spreading codes in two individual chan-
nels and leverage the phase difference between the spreading
codes to represent the baseband information. Specifically, the
gateway conveys an unmodulated spreading code c(t) via one
channel (channel 2 as illustrated in Fig. 3(b)) by modulat-
ing the envelope of the RF carrier with on-off keying (OOK)
modulation. In the other channel (channel 1), the gateway si-
multaneously conveys a modulated spreading code b(t)⊕c(t)
where the baseband modulates the phase of the spreading
code. With the above, the passive DSSS receiver can reconsti-

Table 1: XOR operation works as BPSK modulation to the
spreading code c(t).

b(t) c(t) b(t)⊕ c(t)

no phase change
{ 0 0 0

0 1 1

π phase change
{ 1 0 1

1 1 0

tute the baseband by comparing the phase shift between the
received signals from the two channels.

Figure 3 presents a comparison between the modulation
schemes of conventional and passive DSSS. To convey the
baseband information by the phase difference, passive DSSS
employs an XOR operation to apply the binary phase shift
keying (BPSK) modulation to the spreading code. Table 1
shows the truth table of two inputs and their XOR output. We
see that when b(t) = 0, the XOR output has no change to c(t),
whereas when b(t) = 1 the output is inverted, performing a π

phase change to the spreading signal c(t). Therefore, the two
spreading codes carried in the two channels are b(t)⊕ c(t)
(channel 1) and c(t) (channel 2) respectively.

At the receiver side, the passive DSSS transmission is de-
modulated with two steps. First, the spreading code carried in
each channel is obtained with envelope detection. Second, the
baseband signal can be recovered by despreading, where an
XOR gate is employed to perform symmetrical BPSK demod-
ulation by combining the spreading codes from both channels.
Since the spreading codes b(t)⊕ c(t) and c(t) are synchro-
nized by transmission, the XOR gate derives b(t)⊕c(t)⊕c(t)
and retrieves the baseband b(t).

4 Interference Suppression

We have described the basic idea of passive DSSS. In this
section, we discuss the rationale of interference suppression
provided by passive DSSS.

4.1 Realistic Interference Signals

ISM bands are often approved for license-free which can be
used without a government license. This means that multiple
types of radio applications may share the same radio spectrum
and interfere with each other. This issue increasingly chal-
lenges the receivers on backscatter devices because their poor
performance cannot provide interference-tolerant downlink
communication.

We survey ambient RF signals in 915MHz and 2.4GHz
ISM bands in practice at an office and a shopping mall, re-
spectively. In experiments, we use the Keysight N9912A RF
handheld analyzer to collect the in-band signals and observe
the spectrum of those signals. To quantitatively identify which
signals are potential interference, we run two wireless sys-

916 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

USRP and tag
Moving in a

shopping mall

Portable Power Supply

Spectrum Analyzer

(a) Experiment setup
890 900 910 920 930 940 950 960

Frequency (MHz)

-90

-70

-50

-30

S
ig

n
al

 S
tr

en
g

th
 (

d
B

m
)

carrier

5th harm.

3rd harm.
1st harm.

9th harm.

(b) Backscatter harmonics

2468 2470 2472 2474 2476

Frequency (MHz)

-90

-80

-70

-60

-50

-40

S
ig

n
al

 S
tr

en
g
th

 (
d
B

m
) receiving band

desired signal

interferer

(c) Adjacent in-band signals

Figure 4: (a) RF interference measurement setup. Typical interference signals (b) and (c) in ISM bands.

tems in our experiments, where one is a 915MHz backscatter
system with 1 Mbps chirp modulation, and the other is for
200 kbps downlink ASK transmission to a 2.4GHz backscat-
ter tag. Figure 4(a) presents the experiment setup. With an
observation over one week, we summarize three common
interference types observed in below.

• Harmonics: Backscatter signals are generated by switch-
ing the antenna impedance between different loads. The
harmonics when backscattering may result in interfer-
ence in adjacent frequencies, which even spreads over a
wide band (Fig. 4(b)). Although prior works exploited
solutions including single sideband backscatter [18] and
backscatter harmonic cancellation [49] to reduce the har-
monic interference, some other backscatter systems may
intentionally create stronger harmonics to convey infor-
mation such as cross frequency communication [1] and
localization [35]. Therefore, the harmonics may have a
strong presence in ISM bands, leading to disturbance to
backscatter networks.

• Adjacent in-band signals: The second type of inter-
ference is the disturbance from adjacent band signals.
Fig. 4(c) presents an example where the backscatter tag
receives the adjacent signal within the receiving band,
which causes significant interference to the downlink
transmission. Although some digital band-pass filtering
techniques may be applied to remove the adjacent inter-
ference, they are often computationally expensive and
thus unfits for backscatter devices.

• Overlapping signals: The third case is when two signals
overlap in frequency and become interference to each
other. Although existing RFID systems provide the fre-
quency hopping mode, it is only available for preventing
interference on the uplink in dense reader environments,
and cannot resist interference on the downlink.

As a consequence, existing receivers on backscatter devices
do not have an effective solution against the realistic interfer-
ence existing in ISM bands. In the next portion, we illustrate
how passive DSSS suppresses the interference in principle.

4.2 Interference Suppression in Passive DSSS
We take all of the above interference signals into account.
Mathematically, the interference signal is added to the re-
ceived signal. We denote the received signal with interference
at channel 1 by S1(t)+ I1(t), where S1(t) represents the DSSS
signal envelope transmitted from the gateway, and I1(t) is a
bipolar interference effect on the signal envelop. If I1(t) is a
negative value, a bit “1 → 0” error may occur, and vice versa.
Similarly, the received signal at channel 2 can be represented
as S2(t)+ I2(t).

As illustrated in § 3, the received envelopes from the two
separate channels are input into an XOR gate for de-spreading
and interference suppression. Such a process can be formu-
lated as:

[S1(t)+ I1(t)]⊕ [S2(t)+ I2(t)]

As XOR operation for binary signals can be derived by a⊕
b = a+b−2ab, the above process can be written as:

S1(t)+S2(t)−2S1(t) ·S2(t)︸ ︷︷ ︸
1⃝ despreading

+[1−2S2(t)] · I1(t)+ [1−2S1(t)] · I2(t)︸ ︷︷ ︸
2⃝ suppression

− 2I1(t) · I2(t)︸ ︷︷ ︸
3⃝ product of interference

(2)

where the first term 1⃝ is equal to S1(t)⊕S2(t), thereby per-
forming the de-spreading operation to regenerate the base-
band signal.

The second term 2⃝ contains the interference signals I1(t)
and I2(t) from the two channels, which however are sup-
pressed by the spreading code from the other channel, re-
spectively. To understand this, we say that S1(t) and S2(t)
are polar envelope signals (between 0 and 1) that comprise
the spreading code, while I1(t) and I2(t) are bipolar signals
(between -1 and +1) representing the possible information
disturbance (bit 1 → 0 or bit 0 → 1). Therefore, the term
1−2S1(t) is equivalent to converting S1(t) to a bipolar signal
and inverting its polarity, which does not change the spreading
code in terms of data rate. Hence, the interference effects in

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 917

10
-4

10
-3

10
-2

Correlation Coefficient

0

0.2

0.4

0.6

0.8

1

C
D

F

915 MHz ISM band

2.4 GHz ISM band

(a) Interference signals

10
-4

10
-3

10
-2

10
-1

10
0

Correlation Coefficient

0

0.2

0.4

0.6

0.8

1

C
D

F

915 MHz ISM band

2.4 GHz ISM band

(b) Interference envelopes

Figure 5: (a) The correlation of the interference signals
from two individual channels. (b) The correlation of their
envelopes.

the second term are suppressed by the multiplication with the
bipolar spreading code.

However, the third term 3⃝ does not contain the spread-
ing code. The product of the two interference compositions
is still an interference signal to baseband. To mitigate the
interference, existing solutions can be categorized into the
following three types. First, the receiver may divide the re-
ceived signal bandwidth into multiple sub-bands, and then
position sub-band notch filters (band-stop) to suppress the
interferer [8, 9, 42]. Second, statistical methods may be used
at the receiver to average the interference signal over multiple
symbols [63]. Third, feedback loop mechanisms may be used
to enhance the desired signal by iterative correlation [10], in
which each loop iteration makes the desired signal cleaner. All
of the above methods, however, require power-starving digital
signal processing [37] which is not suitable for backscatter
devices.

Fortunately, we observe that the two interference signals
in each individual channel are almost independent of each
other. To verify this, we conduct a one-week measurement
in real environments. In 915 MHz ISM band, we turn on
the backscatter tag in Fig. 4(b) to emulate interference from
backscatter networks. In 2.4 GHz ISM band, we choose an
in-door environment where two Wi-Fi routers and a number
of Bluetooth devices operate. At least ten Wi-Fi channels
and sixteen Bluetooth channels have strong signal presence.

0 20 40 60 80 100 120

Time (µs)

0

0.1

0.2

0.3

0.4

V
o
lt
a
g
e
 (

V
)

Figure 6: The signal envelope distorted by interference is full
analog.

We employ a USRP to arbitrarily pick two separate channels
with 1 MHz bandwidth in the ISM bands respectively, and
compute the correlation between the interference signals over
the two channels. Figure 5 plots the results of the correlation
between the two interference signals and their envelopes. If an
interference signal resembles the other one, the correlation co-
efficient will be close to 1. We see that the overall correlation
remains statistically very low, indicating almost uncorrelated
interference signals.

Given the low interference correlation, we can cancel the
interference signals after the de-spreading by computing the
correlation of the two interference compositions in the third
term, given by: ∫ T

0
I1(t) · I2(t)dt ≈ 0 (3)

where T is the duration of the de-spreading process that pro-
vides the calculation of the dot product operation. In section
§ 6.4.2, we evaluate the performance of passive DSSS over
the interference of different correlation coefficients.

5 Low Power DSSS De-spreading

In this section, we present the hardware design to implement
the design rationale described in 4.2. At a high level, the pas-
sive DSSS receiver first obtains the envelopes of the spread-
spectrum signals and inputs the envelope waveforms into an
XOR gate for despreading. The receiver further employs a
hybrid analog-digital computing circuit to derive the signal
correlation in order to suppress the interference.

5.1 Despreading Process
We combine the two envelope signals with an XOR gate to
perform the despreading process. However, when the trans-
mission is disturbed by interference in the wireless channels,
the signal envelope captured from the air is fully analog as
shown in Fig. 6. The XOR gate is a digital component and
thus only accepts digital signal inputs, meaning that the pas-
sive DSSS receiver has to digitize the envelope signals before
the despreading process. Conventional DSSS receivers in ac-
tive radios realize digitization with two steps — sampling the

918 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

digitization &

normalization
envelope
detectors

+

-

+

-

-

+

XOR gate

LPF

interference

cancellation discrimination
BPF f1

BPF f2
remove high rate

noise and interference

compute integration

 in analog domain

digital bit

stream

Figure 7: Passive DSSS receiver hardware design. Figure 8: Passive DSSS receiver prototype.

voltage signal with a precise ADC (e.g., 8-12 bit) and then dis-
criminating the binary value according to a decision-making
criterion (e.g., maximum likelihood estimation). The two
steps involved in active radios are not feasible on backscatter
devices due to the high power consumption. Additionally, due
to frequency selective fading on the two separate channels, the
received envelope signals may experience different amplitude
attenuation, meaning that the two-channel signals should not
be directly combined without normalization.

Passive DSSS receivers adopt an ultra-low power digitiza-
tion method, where a one-bit ADC (i.e., comparator) is used
instead of a high precision ADC to threshold the analog enve-
lope signals, and discriminate the digital value by its moving
average. Specifically, the comparator compares the analog
envelope voltage and the moving average of the envelope
in order to distinguish between the two binary levels at the
output of the envelope detector. The moving average is auto-
matically computed by an RC low-pass circuit at one input
of the comparator, and thus creates a dynamic threshold for
digitizing different input signal amplitudes. In addition, the
one-bit ADC also normalizes the received signal from each
channel, so the output of digitization can be directly supplied
to the XOR gate for DSSS despreading.

Figure 7 gives the hardware design of the passive DSSS
receiver. The two receiver branches are designed symmetri-
cally in order to maintain the synchronization of the received
spread-spectrum signals between the two channels. The band-
pass filters (BPF) are employed to achieve frequency band
selection that isolates the signal from the other channel. The
envelope detector then removes the carrier waves of the in-
coming signals in both channels and outputs the envelope
waveforms. Further, the one-bit digitization circuit digitizes
the disturbed envelopes and sends them into the XOR gate
for the despreading process.

5.2 Analog-Digital Correlation Computation
Another problem to achieve the passive DSSS receiver is that
computing correlation involves intensive computations [14]
that are unacceptable to backscatter devices. To address this,
we design a hybrid analog-digital computing circuit (see
Fig. 7) to compute the correlation for interference suppression
with ultra-low power. At a high level, the XOR gate performs
a digital operation which comprises the multiplication of the

two interference signals (Eq. 2, the third term). Therefore, we
further design an analog interference cancellation circuit to
compute the integration of the XOR output to suppress the
interference composition in analog domain.

To understand our design, we recall the despreading pro-
cess described in § 4.2. The despreading result at the output
of the XOR gate includes three basic compositions: the de-
sired baseband, the suppressed interference and the product of
the two interference signals. We first remove the suppressed
interference using an RC-based LPF because they contain the
spreading codes that have much higher data rates (frequen-
cies) than the baseband. Then, the interference cancellation
circuit performs an integration operation over the rest of the
signals in order to remove the interference product composi-
tion. The interference cancellation process can be represented
as:

∫ T

0

[
S1(t)⊕S2(t)

]
−2

[
I1(t) · I2(t)

]
dt

=
∫ T

0
b(t)dt −2

∫ T

0
I1(t) · I2(t)dt

≈
∫ T

0
b(t)dt

According to Eq. 3, the product integration of the interference
signals is negligible due to their low correlation. Therefore,
the result of the interference cancellation is approximately
equal to the integration of the baseband signal. Further, as
the baseband comprises ones and zeros that are represented
by logical high and low voltages, we can discriminate the
baseband data according to the energy difference between
ones and zeros. Finally, the discrimination output is a digital
bit stream representing the baseband data and can be directly
handled by the MCU of the device.

The interference cancellation circuit incorporates a DC
block capacitor and an analog linear integrator. The DC block
capacitor precedes the integrator in order to convert the po-
larity of the output signals of LPF from polar to bipolar. The
bipolar signals facilitate the subsequent integrator in perform-
ing integration.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 919

USRP

Antenna

Passive DSSS
prototype

MCU for recording
bit stream

Received downlink data

Figure 9: Experimental setup.

6 Evaluation

We describe the implementation experience of the passive
DSSS prototype in § 6.1 and discuss its power consumption.
In § 6.2, we evaluate the communication performance of pas-
sive DSSS and decide the baseline for subsequent evaluations.
Further, we evaluate passive DSSS with the interference from
real world environments and also estimate the communication
range of passive DSSS in § 6.3. We evaluate the performance
boundary of passive DSSS with stress-test in § 6.4. Finally,
we discuss the application case study in § 6.5.

6.1 Implementation

We implement our passive DSSS receiver prototype (Fig. 8)
with commercial off-the-shelf (COTS) components. We
employ the SAW BPF filters from NMRF (one is
890 MHz∼915 MHz, the other is 920 MHz∼925 MHz) to
distinguish between the two channels. The envelope detec-
tors adopt the Schottky diodes HSMS-285C. As the filters
and diodes are passive components, they do not consume
power. Further, the 1-bit digitization circuit is built with the
NCS2200 comparator. The pair of digitization circuits con-
sume 20 µA current. Next, the XOR gate is implemented
using SN74LV1T86 from Texas Instruments (1.25 µA cur-
rent consumption), and the cutoff frequency of the RC-based
LPF is set to twice the baseband frequency. Moreover, the
interference cancellation circuit employs a 10 nF DC block ca-
pacitor and comprises a power-efficient TSV6390 operational
amplifier in the integrator circuit (50 µA current consump-
tion). Finally, we use the nano-power comparator MAX40000
(12 µA) made by Maxim Integrated for the final discrimina-
tion. The output of the discriminator is a digital bit stream that
can be directly channeled to an MCU. Since the MCU does
not participate in the demodulation process of passive DSSS,
we do not consider MCU’s power consumption. According
to our measurement study, the passive DSSS receiver totally
consumes 166.5 µW power when operating with 1 MHz sig-
nal bandwidth and 2 V supply voltage. When commercially
adopted, the power consumption can be further reduced by
application-specific integrated circuit (ASIC) implementa-
tion [26, 39, 60].

0 10 15 20 25 30

SNR (dB)

10
-6

10
-4

10
-2

10
0

B
E

R

Conventional (1 channel)

Conventional (2 channels)

Passive DSSS (0dB gain)

Passive DSSS (10dB gain)

Passive DSSS (20dB gain)

5

Figure 10: Performance comparison. We choose the case of
conventional (2 channels) as the baseline.

6.2 Performance and Baseline

Figure 9 depicts the experiment setting where we employ a
USRP to send downlink transmissions to our prototype. The
received data stream is forwarded by the onboard MCU to
the laptop for bit error rate (BER) analysis. While passive
DSSS theoretically supports arbitrary digital coding schemes
of the baseband, we adopt pulse-interval encoding (PIE) in
the experiments for its wide adoption in many passive radios
like RFID. To evaluate BER, the USRP transmits one million
test bits on the downlink during each time of the measurement
to derive the average.

We evaluate the communication performance in terms of
BER with noise. Passive DSSS makes use of two channels,
whereas conventional receivers on backscatter devices only
use one channel for the downlink transmission. In our experi-
ments, we consider both conventional receivers and passive
DSSS receivers. We note that the passive DSSS receiver has
two symmetric antenna branches, in which each branch is
a conventional receiver. Thus, we can employ each antenna
branch of the passive DSSS receiver to act as a conventional
receiver that shares the same hardware and layout with pas-
sive DSSS. The difference is that the conventional receivers
receive non-DSSS signals from the gateway. Both receivers
used in the experiments utilize the same 500 kHz signal band-
width. In the evaluation, we use additive white Gaussian noise
(AWGN) to adjust SNR of the transmitted signals from the
USRP. The noise signals are applied across the entire signal
bandwidth.

Figure 10 plots the achieved BER of the conventional and
passive DSSS receivers. First, the conventional (1 channel)
case gives the measured result when we only use one of the
two receiving branches (we obtain the data from one of the
inputs of the XOR gate, see Fig. 7). Then, the conventional
(2 channels) case gives the results when both two receiving
channels are used for the conventional receiver, in which
the gateway transmits continuous waves (CW) on the other
channel so we can use the same circuit of passive DSSS to
demodulate the data. We observe that there is no obvious

920 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

8m 12m 16m switch-off

Distance between RFID interferer and receiver

0

2

4

6

8

10

T
h

ro
u

g
h

p
u

t
(k

b
p

s)

baseline
Passive DSSS

(a) RFID interference

8m 12m 16m switch-off

Distance between Lora interferer and receiver

0

2

4

6

8

10

T
h

ro
u

g
h

p
u

t
(k

b
p

s)

baseline
Passive DSSS

(b) LoRa interference

Figure 11: The measured backscatter downlink throughput achieved when RFID or LoRa interference exists. “switch-off” means
no interference. We adopt the 20 dB gain for passive DSSS.

BER difference between the single channel and dual channel
cases for the conventional receiver.

For passive DSSS, we first see the result of passive DSSS
with the 0 dB processing gain, which uses the two receiv-
ing channels but no spread-spectrum. The processing gain
refers to the ratio of the spread bandwidth to the baseband
bandwidth (i.e., 0 dB represents the ratio is 1). Although the
performance of passive DSSS (0 dB) has a slight improve-
ment when SNR is below 15 dB, its BER can be higher than
the conventional cases especially when SNR is high. This
is mainly due to the signal mismatch between the two chan-
nels. Specifically, the expectation of ideally synchronized
two channels is impractical due to propagation delay on the
RF chain of each receiving channel. Next, we maintain the
bandwidth and increase the processing gain to 10 dB. We
can see that the BER performance is significantly improved.
Finally, we also show the BER result of passive DSSS when
the gain is increased to 20 dB. As we expected, the higher
processing gain leads to improved BER performance because
a higher gain can distribute noise into a wider band during
the despreading process, thus resulting in a lower noise power
spectral density (PSD).

Moreover, we define the effective communication SNR
which is the SNR condition that can suppress the BER to
below the threshold of 10−2. With 10 dB processing gain
passive DSSS is able to obtain an effective SNR improvement
of 6 dB, and with 20 dB processing gain it can obtain 12.8 dB
improvement. The primary cost is due to the inadequate per-
formance of the simple envelope detector which is inherently
prone to noise. Nevertheless, passive DSSS improves on top
of the limits of the conventional receivers, and shows bet-
ter and more controllable performance with the same coarse
envelope detector.

In our following evaluation, we choose to use the conven-
tional (2 channels) setting as the baseline to demonstrate the
comparative advantage of passive DSSS.

6.3 Real World Evaluation
6.3.1 Realistic Interference Signals

We evaluate the communication performance of passive DSSS
with realistic interference from real world. We consider the
interference signals from RFID and LoRa transmissions. We
employ RFID reader Impinj R420 and LoRa transceiver E32-
915T30S from EBYTE as interference sources in the exper-
iment, both of which are configured with 30dBm Tx power.
Further, we configure the USRP to transmit downlink data
to the receivers, where the passive DSSS transmission has
a 20 dB processing gain. We fix the distance between the
USRP and receivers at 4 m and vary the distance of the inter-
ference source (RFID reader or LoRa transceiver) from 8 to
16 meters away from the receivers. Finally, we switch off the
interference source and measure the downlink throughput as
a reference.

Figure 11 shows the downlink throughput measurement
results under the RFID and LoRa interference. Compared
with the baseline approach, passive DSSS can effectively im-
prove the throughput with both RFID and LoRa interference.
Further, we can see that passive DSSS can better suppress the
interference from RFID than LoRa, mainly because DSSS is
inherently suitable for suppressing narrowband interference
as the spreading code can distribute the power of the interfer-
ence signal to a wider band. The RFID interference signals
(typical spreading over 100 kHz) are narrower than those from
LoRa (250–500 kHz).

6.3.2 Communication Range

We evaluate the communication range of the passive DSSS
receivers in both line-of-sight (LOS) and non-LOS (NLOS)
scenarios. In the experiments, we employ a low-power ampli-
fier TLV9001 after the envelope detection to achieve a lower
receiving threshold for weaker signal cases. The amplifier
does not increase the SINR of the received signals as it also
amplifies noise and interference.

Figure 12 plots the experimental results with LOS. The
LOS experiment considers an outdoor street and the USRP

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 921

BER<10
-4

BER<10
-3

BER<10
-2

0

10

20

30

40

50

60

D
is

ta
n

ce
 (

m
)

Passive DSSS
baseline

Figure 12: LOS communication range.

9
.6
m

11.8mTx

#2

#1

#3

#4

#5

#6

#7

#8

(a) NLOS experiment locations

#1 #2 #3 #4 #5 #6 #7 #8

Locations (#.)

-50

-40

-30

-20

-10

0

R
S

S
I

(d
B

m
)

Passive DSSS

baseline

(b) Measured RSS when the BER is below 10−2

Figure 13: NLOS communication range.

conveys test bits to the receiver prototypes with 20 dBm trans-
mission power per channel. We incrementally move the re-
ceivers away from the USRP transmitter with 1m step length.
At each distance, we record the bits received by each receiver
to derive the BER. According to different BER thresholds,
we can identify three levels of the effective communication
range, i.e., excellent (BER<10−4), good (BER<10−3) and fair
(BER<10−2). The figure demonstrates that passive DSSS
generally extends the communication range by ∼2–3x when
compared with the baseline. In particular, the gain is 3x for
those communications at the level of “excellent”. This is rea-
sonable because passive DSSS uses a wider band to convey
the baseband, thus suffering from less noise and interference
effects in real environments.

Figure 13 plots the results from the NLOS experiment,
where we conduct the experiment in an indoor office. We
fix the gateway with 20 dBm transmission power and vary
the receivers across 8 different locations within the space as
shown in Fig. 13(a). At each location, we measure the BER
of the received data for all of the receivers. If the BER is
below 10−2, we measure the received signal power (RSS)
at the location. We see that passive DSSS works with more
locations than the baseline, and discuss the results as follows:

• At locations #2, #4 and #7, only passive DSSS can work.
Passive DSSS receiver works with transmissions of RSS
as low as -46 dBm owing to its anti-noise capability,
while the baseline can only work when the RSS is higher
than -36 dBm. As a result, passive DSSS works for nearly
all measured locations while the baseline cannot work
for half of these locations.

• At location #6, neither passive DSSS nor baseline can
work. This location suffers from significant deep fading
due to multi-path destructive interference, where both
passive DSSS and the baseline do not work.

6.4 Stress-test
To evaluate the performance boundary of passive DSSS, we
perform stress-tests with the prototype by manually imposing

interference and noise to the channels until the communica-
tion corrupts. We employ a USRP as the source of interfer-
ence.

6.4.1 Anti-Interference

In this section we evaluate the performance under interference
of different modulated signals. We consider RFID signals as
an example of amplitude modulation, LoRa signals as fre-
quency modulation and Wi-Fi signals as phase modulation1.
To this goal, we employ the USRP to measure real transmis-
sions from the above systems correspondingly and replay
the measured signals to interfere with passive DSSS (20 dB
processing gain). Figure 14 shows the measured BER of pas-
sive DSSS with the presence of the three interference signals,
respectively. We have the following three observations:

• Although the rationale of envelope detection is based on
the amplitudes of the signal envelopes, various types of
interference signals may lead to bit errors, because the
carriers have different phases compared to the downlink
transmission. As a result, although LoRa and Wi-Fi are
not based on amplitude modulation, the received down-
link transmission envelopes are still destructed when
interfered by those signals due to destructive superposi-
tion of the signal phases.

• The conventional receiver is more prone to the inter-
ference of the RFID and LoRa transmissions than the
Wi-Fi transmissions because those are narrowband inter-
ference signals (RFID over 100 kHz and LoRa over 250–
500 kHz) which have higher PSD. In contrast, the Wi-Fi
interference has lower PSD due to the wider transmis-
sion bandwidth (22 MHz) and its use of data whitening
to distribute the power evenly within the band.

• LoRa transmissions lead to the strongest interference.
We observe that RFID adopts amplitude modulation with
PIE encoding, and its interference is weak during the

1We switch the setting to the 2.4GHz band for testing the interference
from Wi-Fi signals.

922 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

SINR (dB)

10
-6

10
-4

10
-2

10
0

B
E

R

Passive DSSS
baseline

0 2 4 6 8

(a) RFID interference

0 10 15 20

SINR (dB)

10
-6

10
-4

10
-2

10
0

B
E

R

Passive DSSS
baseline

5

(b) LoRa interference
SINR (dB)

10
-6

10
-4

10
-2

10
0

B
E

R

Passive DSSS
baseline

0 1 2 3 4 5

(c) Wi-Fi interference

Figure 14: Stress test of interference from RFID, LoRa and Wi-Fi signals.

logic low in PIE symbols. LoRa signals use frequency
modulation which does not vary its amplitude, and leads
to persistent interference.

In general, compared with the baseline, passive DSSS pro-
vides ∼5dB, ∼13-15dB, and ∼3dB gain for RFID, LoRa, and
Wi-Fi interference, respectively.

6.4.2 Interference Correlation

We evaluate the performance of passive DSSS with inter-
ference of different correlation coefficients between its two
communication channels. In the evaluation, we add the same
interference signal to both channels and apply AWGN to vary
the correlation coefficient between the two channels. Due
to the high anti-interference performance, the passive DSSS
BER is negligibly low when the SINR is above 3 dB (see
Fig. 14). We thus conduct the experiment with transmissions
of SINR = 3 dB and examine how the BERs vary when the
correlation coefficient across the two channels increases. Fig-
ure 15 plots the measured BER of passive DSSS with the
RFID, LoRa and Wi-Fi interference. We see that the BER in-
creases when the interference signals on the two channels are
more correlated, which is as expected because the despread-
ing quality of passive DSSS depends on the analog integrator
to remove the product of the interference compositions on
the two channels (Eq. 3). The performance degrades more
significantly with the RFID interference than LoRa and Wi-Fi
because the ASK signals may directly destruct the envelope
of passive DSSS transmissions in both channels.

6.5 Case Study
In this section, we demonstrate the benefit of passive DSSS to
practical deployment of backscatter systems in a case study
with two different types of deployment.

Monostatic deployment involves a backscatter gateway
that comprises the collocated Tx and Rx (Fig. 16(a)), where
the gateway transmits to the backscatter device on the down-
link and receives the backscattered transmissions on the up-
link. In such a case, the key constraint is that the downlink
range limits the coverage of the system. Passive DSSS can

effectively improve the downlink range and increase the cov-
erage. To test this, we incorporate a backscatter uplink with
1 kbps chirp modulation. When using the conventional re-
ceiver, the coverage of the backscatter system is limited to the
downlink range of 26 m. Passive DSSS improves the coverage
to 52 m. We observe that the uplink experiences good per-
formance within the extended coverage. The current gateway
Rx sensitivity is -97 dBm, which can be further improved to
below -130 dBm [15, 24, 49], which suggests more room of
improvement with further extended downlink range.

Bistatic/Multistatic deployment is used for long range
backscatter communication, where the Tx and Rx gateways
are separated (Fig. 16(b)). In practice, multiple Tx gateways
are often needed to interrogate the geographically distributed
backscatter devices. The short downlink range leads to small
coverage of each Tx gateway and as a result more Tx gate-
ways to cover the deployment area. The increased number
of gateways may further incur coordination problems among
those gateways and lead to higher deployment costs. Pas-
sive DSSS mitigates the problem by improving the downlink
range. In our experiment, passive DSSS receivers enable the
Tx gateway to achieve 4x the coverage area than using the con-
ventional receivers. The uplink distance can arrive at ∼108 m
when the backscatter devices are located at the edge of the
downlink range.

7 Discussion

Bandwidth Usage. As passive DSSS needs two individual
channels to transmit the DSSS signals, the bandwidth usage
is doubled. Such an issue however is not significant since the
downlink to the backscatter devices is typically for control
purpose and thus the required bandwidth is small. Our proto-
type uses 500 kHz for each channel, which is comparable to
the bandwidth usage of other IoT communication techniques
like LoRa. In addition to that, the gateway can dynamically
adjust the bandwidth usage by varying the processing gain in
passive DSSS, e.g., the gateway may increase the processing
gain to improve interference resilience when detecting inter-
ference signals, or reduce the gain for saving the bandwidth
usage when the downlink experiences low interference.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 923

10
-4

10
-3

10
-2

10
-1

10
0

Correlation Coefficient

10
-6

10
-4

10
-2

10
0

B
E

R

RFID interference
Lora interference
Wi-Fi interference

Figure 15: Measured BER with different
correlation coefficients between the two
passive DSSS channels (SINR=3dB).

Gateway (Tx/Rx)

-97 dBm Sensitivity

20 dBm downlink

(passive DSSS)

RF carrier

backscatter link

52m

Backscatter

devices

(a) Monostatic Deployment

Gateway (Tx) Gateway (Rx)

downlink

(passive DSSS)

RF carrier

backscatter link

52m 108m

(b) Bistatic Deployment

Figure 16: Application case study for passive DSSS.

Support for Concurrent Transmissions. While some uses
of DSSS achieve concurrent transmissions with the CDMA
method, the current passive DSSS design does not support
concurrent transmissions because the spreading code is en-
tirely generated by the gateway, which means that all the
receivers share the same spreading code. As passive DSSS
only requires small bandwidth for each receiving channel,
future research may consider exploring frequency multiplex-
ing schemes like frequency-hopping spread spectrum (FHSS)
or frequency division multiple access (FDMA) to support
concurrent transmissions for passive DSSS.

Signal Jamming. We expect the proposed passive DSSS
to make the downlink of backscatter systems resilient to re-
alistic RF interference in practical IoT scenarios. As being
discussed in § 4, the interference signals in the two channels
are independent and can thus be suppressed by computing the
interference correlation. However, if the interference comes
from an intentional jamming source, where malicious attack-
ers send a pair of highly correlated interference signals into
the two channels, passive DSSS may be compromised. Simi-
larly, high-power interference may impair the SINR over the
entire frequency band and thus throttle the communications.
We leave the countermeasures to such malicious attacks to
future works.

8 Related Work

Passive Radio. There are tremendous existing works which
study the backscatter uplink of passive radios including the re-
search on improving the backscatter data rate [51,52], through-
put [16, 19, 20, 65–67], range [43, 49, 53, 54, 56, 65], robust-
ness [33, 59]. Another compelling direction of research ex-
plores the inter-operation between backscatter communica-
tion and existing wireless systems such as Wi-Fi [4, 18, 25,
26, 64, 68], BLE [11, 18], Zigbee [29, 44], LoRa [40, 43, 49],
FM [57] and LTE [5].

On the other hand, there are also a few works to explore
other out-of-band wireless channels to convey downlink data
to backscatter devices, including the use of the presence and
absence of Wi-Fi packets [25], the lengths of Wi-Fi transmis-

sions [64], reverse engineering of OFDM [18], perturbations
to ambient signals [22], and backscatter signals from other
tags [31, 32, 41]. In this paper, the proposed passive DSSS
presents a direct in-band solution to the downlink problem
and is able to support general backscatter communication
systems.

Functionality Offloading. The essential idea of backscat-
ter communication is one type of offloading techniques which
saves the power consuming RF oscillator in the uplink com-
munication. Recently, a series of works have made great ef-
forts to shift power-starving functionalities from backscatter
devices to the gateway side, including storage [48], computa-
tion [67], digitization [39, 45], subcarrier generation [47] and
sensor control [28]. Passive DSSS by nature belongs to such
functionality offloading efforts and shifts the spread-spectrum
synchronization to the gateway.

9 Conclusion

This paper proposes passive DSSS to empower downlink
transmissions with interference and noise resilience for
backscatter communication systems. The proposed design
exploits interference suppression across two separate wireless
channels to achieve ultra-low power demodulation of spec-
trum spreading signals. The experimental evaluation with real
world interference demonstrates the effectiveness of passive
DSSS. We envision that the design of passive DSSS opens
a door to making passive communication more practical to
future wide area IoT systems and applications.

Acknowledgments

We sincerely thank our shepherd Wenjun Hu and the anony-
mous reviewers for their helpful feedback in improving this
paper. We also thank Jian Li from SICE UESTC for his sup-
port for the experiment in Fig. 4(a). This work is supported
by the National Natural Science Foundation of China under
Grant Nos. U21A20462 and 61872061, and by the Singapore
MOE AcRF Tier 2 Grant MOE-T2EP20220-0004.

924 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Zhenlin An, Qiongzheng Lin, and Lei Yang. Cross-
frequency communication: Near-field identification of
uhf rfids with wifi! In Proceedings of the 24th Annual
International Conference on Mobile Computing and
Networking, MobiCom ’18, pages 623–638, New York,
NY, USA, 2018. Association for Computing Machinery.

[2] Holger Arthaber, Thomas Faseth, and Florian Galler.
Spread-spectrum based ranging of passive uhf epc rfid
tags. IEEE Communications Letters, 19(10):1734–1737,
2015.

[3] Venkat Arun and Hari Balakrishnan. Rfocus: Beam-
forming using thousands of passive antennas. In 17th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 20), pages 1047–1061, Santa
Clara, CA, February 2020. USENIX Association.

[4] Dinesh Bharadia, Kiran Raj Joshi, Manikanta Kotaru,
and Sachin Katti. Backfi: High throughput wifi backscat-
ter. In Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication, SIG-
COMM ’15, pages 283–296, New York, NY, USA, 2015.
ACM.

[5] Zicheng Chi, Xin Liu, Wei Wang, Yao Yao, and Ting
Zhu. Leveraging ambient lte traffic for ubiquitous pas-
sive communication. In Proceedings of the Annual
conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, ar-
chitectures, and protocols for computer communication,
pages 172–185, 2020.

[6] Charles Chien, Igor Elgorriaga, and Charles McConaghy.
Low-power direct-sequence spread-spectrum modem ar-
chitecture for distributed wireless sensor networks. In
ISLPED’01: Proceedings of the 2001 International Sym-
posium on Low Power Electronics and Design (IEEE
Cat. No. 01TH8581), pages 251–254. IEEE, 2001.

[7] Federal Communications Commission. Regulatory sta-
tus for using rfid in the epc gen2 (860 to 960 mhz) band
of the uhf spectrum. https://www.gs1.org/docs/
epc/uhf_regulations.pdf, 2021.

[8] S. Cui, K. C. Teh, K. H. Li, Y. L. Guan, and C. L.
Law. Narrowband interference suppression in trans-
mitted reference uwb systems with inter-pulse interfer-
ence. In 2007 IEEE International Conference on Ultra-
Wideband, pages 895–898, 2007.

[9] Shan Cui, Kah Chan Teh, Kwok H Li, Yong Liang
Guan, and Choi Look Law. Performance analysis of
transmitted-reference uwb systems with narrowband in-
terference suppression. Wireless Communications and
Mobile Computing, 9(8):1081–1088, 2009.

[10] F. Dowla, F. Nekoogar, and A. Spiridon. Interfer-
ence mitigation in transmitted-reference ultra-wideband
(uwb) receivers. In IEEE Antennas and Propagation
Society Symposium, 2004., volume 2, pages 1307–1310
Vol.2, 2004.

[11] Joshua F Ensworth and Matthew S Reynolds. Every
smart phone is a backscatter reader: Modulated backscat-
ter compatibility with bluetooth 4.0 low energy (ble) de-
vices. In 2015 IEEE International Conference on RFID
(RFID), pages 78–85, April 2015.

[12] Kai Geissdoerfer and Marco Zimmerling. Bootstrapping
battery-free wireless networks: Efficient neighbor dis-
covery and synchronization in the face of intermittency.
In 18th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 21), pages 439–455.
USENIX Association, April 2021.

[13] Jafar Ghaisari and Arash Ferdosi. A direct sequence
spread spectrum code acquisition circuit for wireless
sensor networks. International Journal of Electronics,
98(6):793–800, 2011.

[14] Shyamnath Gollakota, Fadel Adib, Dina Katabi, and
Srinivasan Seshan. Clearing the rf smog: Making
802.11n robust to cross-technology interference. In
Proceedings of the ACM SIGCOMM 2011 Conference,
SIGCOMM’11, pages 170–181, New York, NY, USA,
2011. Association for Computing Machinery.

[15] Mehrdad Hessar, Ali Najafi, and Shyamnath Gollakota.
Netscatter: Enabling large-scale backscatter networks.
In Proceedings of the 16th USENIX Conference on Net-
worked Systems Design and Implementation, NSDI’19,
pages 271–283, USA, 2019. USENIX Association.

[16] Pan Hu, Pengyu Zhang, and Deepak Ganesan. Laissez-
faire: Fully asymmetric backscatter communication. In
Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication, SIGCOMM
’15, pages 255–267, New York, NY, USA, 2015. ACM.

[17] Pan Hu, Pengyu Zhang, Mohammad Rostami, and
Deepak Ganesan. Braidio: An integrated active-passive
radio for mobile devices with asymmetric energy bud-
gets. In Proceedings of the 2016 ACM SIGCOMM
Conference, SIGCOMM’16, pages 384–397, New York,
NY, USA, 2016. Association for Computing Machinery.

[18] Vikram Iyer, Vamsi Talla, Bryce Kellogg, Shyamnath
Gollakota, and Joshua Smith. Inter-technology backscat-
ter: Towards internet connectivity for implanted devices.
In Proceedings of the 2016 ACM SIGCOMM Confer-
ence, SIGCOMM’16, pages 356–369, New York, NY,
USA, 2016. Association for Computing Machinery.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 925

https://www.gs1.org/docs/epc/uhf_regulations.pdf
https://www.gs1.org/docs/epc/uhf_regulations.pdf

[19] Meng Jin, Yuan He, Xin Meng, Dingyi Fang, and Xi-
aojiang Chen. Parallel backscatter in the wild: When
burstiness and randomness play with you. In Proceed-
ings of the 24th Annual International Conference on Mo-
bile Computing and Networking, pages 471–485, 2018.

[20] Meng Jin, Yuan He, Xin Meng, Yilun Zheng, Dingyi
Fang, and Xiaojiang Chen. Fliptracer: Practical parallel
decoding for backscatter communication. IEEE/ACM
Transactions on Networking, 27(1):330–343, 2019.

[21] Inyup Kang and Alan N Willson. Low-power viterbi
decoder for cdma mobile terminals. IEEE journal of
solid-state circuits, 33(3):473–482, 1998.

[22] Zerina Kapetanovic, Ali Saffari, Ranveer Chandra, and
Joshua R. Smith. Glaze: Overlaying occupied spectrum
with downlink iot transmissions. Proc. ACM Interact.
Mob. Wearable Ubiquitous Technol., 3(4), December
2019.

[23] Mohamad Katanbaf, Vivek Jain, and Joshua R. Smith.
Relacks: Reliable backscatter communication in indoor
environments. Proc. ACM Interact. Mob. Wearable
Ubiquitous Technol., 4(2), June 2020.

[24] Mohamad Katanbaf, Anthony Weinand, and Vamsi Talla.
Simplifying backscatter deployment: Full-duplex lora
backscatter. In 18th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 21), pages
955–972. USENIX Association, April 2021.

[25] Bryce Kellogg, Aaron Parks, Shyamnath Gollakota,
Joshua R. Smith, and David Wetherall. Wi-fi backscat-
ter: Internet connectivity for rf-powered devices. In Pro-
ceedings of the 2014 ACM Conference on SIGCOMM,
SIGCOMM ’14, pages 607–618, New York, NY, USA,
2014. Association for Computing Machinery.

[26] Bryce Kellogg, Vamsi Talla, Shyamnath Gollakota, and
Joshua R. Smith. Passive wi-fi: Bringing low power
to wi-fi transmissions. In Proceedings of the 13th
Usenix Conference on Networked Systems Design and
Implementation, NSDI’16, pages 151–164, USA, 2016.
USENIX Association.

[27] John Kimionis, Aggelos Bletsas, and John N Saha-
los. Bistatic backscatter radio for tag read-range ex-
tension. In 2012 IEEE International Conference on
RFID-Technologies and Applications (RFID-TA), pages
356–361. IEEE, 2012.

[28] Songfan Li, Chong Zhang, Yihang Song, Hui Zheng,
Lu Liu, Li Lu, and Mo Li. Internet-of-microchips: Di-
rect radio-to-bus communication with spi backscatter.
In The 26th Annual International Conference on Mobile
Computing and Networking, MobiCom ’20, London,

United Kingdom, 2020. Association for Computing Ma-
chinery.

[29] Yan Li, Zicheng Chi, Xin Liu, and Ting Zhu. Passive-
zigbee: Enabling zigbee communication in iot networks
with 1000x+ less power consumption. In Proceedings
of the 16th ACM Conference on Embedded Networked
Sensor Systems, SenSys ’18, pages 159–171, New York,
NY, USA, 2018. Association for Computing Machinery.

[30] Zhuqi Li, Yaxiong Xie, Longfei Shangguan, Rot-
man Ivan Zelaya, Jeremy Gummeson, Wenjun Hu, and
Kyle Jamieson. Towards programming the radio envi-
ronment with large arrays of inexpensive antennas. In
16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19), pages 285–300, Boston,
MA, February 2019. USENIX Association.

[31] Vincent Liu, Aaron Parks, Vamsi Talla, Shyamnath Gol-
lakota, David Wetherall, and Joshua R. Smith. Ambi-
ent backscatter: Wireless communication out of thin
air. In Proceedings of the ACM SIGCOMM 2013 Con-
ference on SIGCOMM, SIGCOMM ’13, pages 39–50,
New York, NY, USA, 2013. Association for Computing
Machinery.

[32] Vincent Liu, Vamsi Talla, and Shyamnath Gollakota. En-
abling instantaneous feedback with full-duplex backscat-
ter. In Proceedings of the 20th Annual International
Conference on Mobile Computing and Networking, Mo-
biCom ’14, pages 67–78, New York, NY, USA, 2014.
ACM.

[33] Xin Liu, Zicheng Chi, Wei Wang, Yao Yao, and Ting
Zhu. Vmscatter: A versatile mimo backscatter. In 17th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’20), pages 895–909, 2020.

[34] Tao Long and Naresh R Shanbhag. Low-power cdma
multiuser receiver architectures. In 1999 IEEE Work-
shop on Signal Processing Systems. SiPS 99. Design and
Implementation (Cat. No. 99TH8461), pages 493–502.
IEEE, 1999.

[35] Yunfei Ma, Xiaonan Hui, and Edwin C. Kan. 3d
real-time indoor localization via broadband nonlinear
backscatter in passive devices with centimeter precision.
In Proceedings of the 22nd Annual International Confer-
ence on Mobile Computing and Networking, MobiCom
’16, pages 216–229, New York, NY, USA, 2016. Asso-
ciation for Computing Machinery.

[36] AC McCormick, PM Grant, JS Thompson, T Arslan,
and AT Erdogan. Low power receiver architectures for
multi-carrier cdma. IEE Proceedings-Circuits, Devices
and Systems, 149(4):227–233, 2002.

926 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[37] L.B. Milstein. Interference rejection techniques in
spread spectrum communications. Proceedings of the
IEEE, 76(6):657–671, 1988.

[38] Carlo Mutti and Christian Floerkemeier. Cdma-based
rfid systems in dense scenarios: Concepts and chal-
lenges. In 2008 IEEE International Conference on
RFID, pages 215–222. IEEE, 2008.

[39] Saman Naderiparizi, Mehrdad Hessar, Vamsi Talla,
Shyamnath Gollakota, and Joshua R. Smith. Towards
battery-free hd video streaming. In Proceedings of the
15th USENIX Conference on Networked Systems Design
and Implementation, NSDI’18, pages 233–247, USA,
2018. USENIX Association.

[40] Rajalakshmi Nandakumar, Vikram Iyer, and Shyamnath
Gollakota. 3d localization for sub-centimeter sized de-
vices. In Proceedings of the 16th ACM Conference
on Embedded Networked Sensor Systems, SenSys ’18,
pages 108–119, New York, NY, USA, 2018. Association
for Computing Machinery.

[41] Aaron N. Parks, Angli Liu, Shyamnath Gollakota, and
Joshua R. Smith. Turbocharging ambient backscatter
communication. In Proceedings of the 2014 ACM Con-
ference on SIGCOMM, SIGCOMM ’14, pages 619–630,
New York, NY, USA, 2014. Association for Computing
Machinery.

[42] Marco Pausini and Gerard J. M. Janssen. Narrowband
interference suppression in transmitted reference uwb
receivers using sub-band notch filters. In 2006 14th Eu-
ropean Signal Processing Conference, pages 1–5, 2006.

[43] Yao Peng, Longfei Shangguan, Yue Hu, Yujie Qian, Xi-
anshang Lin, Xiaojiang Chen, Dingyi Fang, and Kyle
Jamieson. Plora: A passive long-range data network
from ambient lora transmissions. In Proceedings of the
2018 Conference of the ACM Special Interest Group on
Data Communication, SIGCOMM ’18, pages 147–160,
New York, NY, USA, 2018. Association for Computing
Machinery.

[44] Carlos Pérez-Penichet, Frederik Hermans, Ambuj Varsh-
ney, and Thiemo Voigt. Augmenting iot networks with
backscatter-enabled passive sensor tags. In Proceedings
of the 3rd Workshop on Hot Topics in Wireless, pages
23–27. ACM, 2016.

[45] Vaishnavi Ranganathan, Sidhant Gupta, Jonathan Lester,
Joshua R. Smith, and Desney Tan. Rf bandaid: A fully-
analog and passive wireless interface for wearable sen-
sors. Proc. ACM Interact. Mob. Wearable Ubiquitous
Technol., 2(2), July 2018.

[46] Mohammad Rostami, Jeremy Gummeson, Ali Kiaghadi,
and Deepak Ganesan. Polymorphic radios: A new de-
sign paradigm for ultra-low power communication. In
Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM
’18, pages 446–460, New York, NY, USA, 2018. Asso-
ciation for Computing Machinery.

[47] Mohammad Rostami, Karthik Sundaresan, Eugene Chai,
Sampath Rangarajan, and Deepak Ganesan. Redefin-
ing passive in backscattering with commodity devices.
In Proceedings of the 26th Annual International Con-
ference on Mobile Computing and Networking, Mobi-
Com’20, New York, NY, USA, 2020. Association for
Computing Machinery.

[48] Mastooreh Salajegheh, Shane S Clark, Benjamin Rans-
ford, Kevin Fu, and Ari Juels. Cccp: Secure remote
storage for computational rfids. In USENIX Security
Symposium, pages 215–230, 2009.

[49] Vamsi Talla, Mehrdad Hessar, Bryce Kellogg, Ali Na-
jafi, Joshua R. Smith, and Shyamnath Gollakota. Lora
backscatter: Enabling the vision of ubiquitous connec-
tivity. Proc. ACM Interact. Mob. Wearable Ubiquitous
Technol., 1(3), September 2017.

[50] Vamsi Talla, Joshua Smith, and Shyamnath Gollakota.
Advances and open problems in backscatter networking.
GetMobile: Mobile Comp. and Comm., 24(4):32–38,
March 2021.

[51] Stewart Thomas and Matthew S Reynolds. Qam
backscatter for passive uhf rfid tags. In 2010 IEEE
International Conference on RFID (IEEE RFID 2010),
pages 210–214. IEEE, 2010.

[52] Stewart J Thomas and Matthew S Reynolds. A 96
mbit/sec, 15.5 pj/bit 16-qam modulator for uhf backscat-
ter communication. In 2012 IEEE International Confer-
ence on RFID (RFID), pages 185–190. IEEE, 2012.

[53] Ambuj Varshney, Oliver Harms, Carlos Pérez-Penichet,
Christian Rohner, Frederik Hermans, and Thiemo Voigt.
Lorea: A backscatter architecture that achieves a long
communication range. In Proceedings of the 15th
ACM Conference on Embedded Network Sensor Sys-
tems, pages 1–14, 2017.

[54] Ambuj Varshney, Carlos Pérez Penichet, Christian
Rohner, and Thiemo Voigt. Towards wide-area backscat-
ter networks. In Proceedings of the 4th ACM Workshop
on Hot Topics in Wireless, pages 49–53, 2017.

[55] Ambuj Varshney, Andreas Soleiman, and Thiemo Voigt.
Tunnelscatter: Low power communication for sensor

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 927

tags using tunnel diodes. In The 25th Annual Interna-
tional Conference on Mobile Computing and Network-
ing, MobiCom ’19, New York, NY, USA, 2019. Associ-
ation for Computing Machinery.

[56] Georgios Vougioukas, Spyridon-Nektarios Daskalakis,
and Aggelos Bletsas. Could battery-less scatter radio
tags achieve 270-meter range? In 2016 IEEE Wireless
Power Transfer Conference (WPTC), pages 1–3. IEEE,
2016.

[57] Anran Wang, Vikram Iyer, Vamsi Talla, Joshua R. Smith,
and Shyamnath Gollakota. Fm backscatter: Enabling
connected cities and smart fabrics. In Proceedings of
the 14th USENIX Conference on Networked Systems
Design and Implementation, NSDI’17, pages 243–258,
USA, 2017. USENIX Association.

[58] Jingxian Wang, Junbo Zhang, Rajarshi Saha, Haojian
Jin, and Swarun Kumar. Pushing the range limits of
commercial passive rfids. In 16th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 19), pages 301–316, Boston, MA, February 2019.
USENIX Association.

[59] Jue Wang, Haitham Hassanieh, Dina Katabi, and Pi-
otr Indyk. Efficient and reliable low-power backscat-
ter networks. In Proceedings of the ACM SIGCOMM
2012 Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communication,
SIGCOMM ’12, pages 61–72, New York, NY, USA,
2012. Association for Computing Machinery.

[60] Po-Han Peter Wang, Chi Zhang, Hongsen Yang,
Manideep Dunna, Dinesh Bharadia, and Patrick P.
Mercier. A low-power backscatter modulation system
communicating across tens of meters with standards-
compliant wi-fi transceivers. IEEE Journal of Solid-
State Circuits, 55(11):2959–2969, 2020.

[61] Die Wu, Muhammad Jawad Hussain, Songfan Li, and
Li Lu. R2: Over-the-air reprogramming on computa-
tional rfids. In 2016 IEEE International Conference on
RFID (RFID), pages 1–8, 2016.

[62] Lih-Chyau Wuu, Yen-Ju Chen, Chi-Hsiang Hung, and
Wen-Chung Kuo. Zero-collision rfid tags identification
based on cdma. In 2009 Fifth International Conference
on Information Assurance and Security, volume 1, pages
513–516. IEEE, 2009.

[63] Zhengyuan Xu, B.M. Sadler, and Jin Tang. Data detec-
tion for uwb transmitted reference systems with inter-
pulse interference. In Proceedings. (ICASSP ’05). IEEE
International Conference on Acoustics, Speech, and Sig-
nal Processing, 2005., volume 3, pages iii/601–iii/604
Vol. 3, 2005.

[64] Pengyu Zhang, Dinesh Bharadia, Kiran Joshi, and
Sachin Katti. Hitchhike: Practical backscatter using
commodity wifi. In Proceedings of the 14th ACM
Conference on Embedded Network Sensor Systems CD-
ROM, SenSys ’16, pages 259–271, New York, NY, USA,
2016. Association for Computing Machinery.

[65] Pengyu Zhang and Deepak Ganesan. Enabling bit-by-bit
backscatter communication in severe energy harvesting
environments. In Proceedings of the 11th USENIX Con-
ference on Networked Systems Design and Implemen-
tation, NSDI’14, pages 345–357, USA, 2014. USENIX
Association.

[66] Pengyu Zhang, Jeremy Gummeson, and Deepak Gane-
san. Blink: A high throughput link layer for backscatter
communication. In Proceedings of the 10th Interna-
tional Conference on Mobile Systems, Applications, and
Services, MobiSys ’12, pages 99–112, New York, NY,
USA, 2012. ACM.

[67] Pengyu Zhang, Pan Hu, Vijay Pasikanti, and Deepak
Ganesan. Ekhonet: High speed ultra low-power
backscatter for next generation sensors. In Proceedings
of the 20th annual international conference on Mobile
computing and networking, pages 557–568. ACM, 2014.

[68] Renjie Zhao, Fengyuan Zhu, Yuda Feng, Siyuan Peng,
Xiaohua Tian, Hui Yu, and Xinbing Wang. Ofdma-
enabled wi-fi backscatter. In The 25th Annual Interna-
tional Conference on Mobile Computing and Network-
ing, MobiCom ’19, pages 20:1–20:15, New York, NY,
USA, 2019. ACM.

928 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Check-N-Run: a Checkpointing System for Training Deep Learning
Recommendation Models

Assaf Eisenman1, Kiran Kumar Matam1, Steven Ingram1, Dheevatsa Mudigere1, Raghuraman
Krishnamoorthi1, Krishnakumar Nair1, Misha Smelyanskiy1, and Murali Annavaram1,2

1Facebook, Inc, 2USC

Abstract
Checkpoints play an important role in training long running
machine learning (ML) models. Checkpoints take a snapshot
of an ML model and store it in a non-volatile memory so that
they can be used to recover from failures to ensure rapid train-
ing progress. In addition, they are used for online training to
improve inference prediction accuracy with continuous learn-
ing. Given the large and ever-increasing model sizes, check-
point frequency is often bottlenecked by the storage write
bandwidth and capacity. When checkpoints are maintained
on remote storage, as is the case with many industrial settings,
they are also bottlenecked by network bandwidth. We present
Check-N-Run, a scalable checkpointing system for training
large ML models at Facebook. While Check-N-Run is appli-
cable to long running ML jobs, we focus on checkpointing
recommendation models which are currently the largest ML
models with Terabytes of model size. Check-N-Run uses
two primary techniques to address the size and bandwidth
challenges. First, it applies differential checkpointing, which
tracks and checkpoints the modified part of the model. Differ-
ential checkpointing is particularly valuable in the context of
recommendation models where only a fraction of the model
(stored as embedding tables) is updated on each iteration.
Second, Check-N-Run leverages quantization techniques to
significantly reduce the checkpoint size, without degrading
training accuracy. These techniques allow Check-N-Run to re-
duce the required write bandwidth by 6-17× and the required
capacity by 2.5-8× on real-world models at Facebook, and
thereby significantly improve checkpoint capabilities while
reducing the total cost of ownership.

1 Introduction
Deep learning has become extensively adopted in many pro-
duction scale data center services. In particular, deep learn-
ing enabled recommendation systems power a wide variety
of products and services. These include e-commerce mar-
ketplaces (e.g. Amazon, Alibaba) for recommending items
to purchase [30, 33], social media platforms (e.g. Facebook,
Twitter) for providing the most relevant content [14], enter-
tainment services (e.g. Netflix, Youtube) for promoting new
playlists [7, 12], and storage services (e.g. Google Drive) for
enabling quick access to stored objects [4].

At Facebook’s datacenter fleet, for example, deep recom-
mendation models consume more than 80% of the machine

learning inference cycles and more than 50% of the training
cycles. Similar demands can be found at other companies [16].

Typically, the accuracy of deep learning algorithms in-
creases as a function of the model size and number of features.
For instance, the recommendation model size at Facebook
grew more than 3× in under two years (see Figure 4). Recom-
mendation models are particularly in need of massive model
size to store sparse model features. Hence, they are orders of
magnitude larger than even the largest DNNs, such as Trans-
former based models [32], and often occupy many terabytes
of memory per model [38]. Because of their large size, these
models also must be trained with massive datasets and run
in a distributed fashion. Therefore, training recommendation
models at production scale may take several days, even when
training on highly optimized GPU clusters.

Given that the training runs span multiple GPU clusters
over multiple days and weeks, there is an abundance of fail-
ures that a training run may encounter. These include network
issues, hardware failures, system failures (e.g. out of mem-
ory), power outages, and code issues. Checkpointing is an
important functionality to quickly recover from such failures
for reducing the overall training time and ensure progress.
Checkpoints are essentially snapshots of the running job state
taken at regular intervals and stored in persistent storage. To
recover from failure and resume training, the most recent
checkpoint is loaded.

In addition to failure recovery, checkpoints are needed
for moving training processes across different nodes or clus-
ters. This shift may be required in cases such as server
maintenance (e.g. critical security patches that could not be
postponed), hardware failures, network issues, and resource
optimization/re-allocation. Another important use-case of
checkpoints is publishing snapshots of trained models in real
time to improve inference accuracy (online training). For in-
stance, an interim model can be used for prediction serving
(obtained by checkpointing), while the model is still being
trained over more recent dataset for keeping the inference
model freshness. Checkpoints are also used for performing
transfer learning, where an intermediate model state is used
as a seed, which is then trained for a different goal [26].

Checkpoints must meet several key criteria:
(1) Accuracy: They must be accurate to avoid training ac-

curacy degradation. In other words, when a training run is
restarted from a checkpoint, there should be no perceivable

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 929

difference in the training accuracy or any other related metric.
As has been stated in prior works on production scale recom-
mendation models [38], even a tiny decrease of prediction
accuracy would result in an unacceptable loss in user engage-
ment and revenues. Hence, preserving accuracy is a constraint
for checkpoint management in recommendation models.

(2) Frequency: Checkpoints need to be frequent for min-
imizing the re-training time (the gap between failure time
and the most recent checkpoint timestamp) after resuming
from a checkpoint. For instance, taking a checkpoint every
1000 batches of training data may lead to wasting time re-
training those 1000 batches. Taking a checkpoint after 5000
batches leads to 5× more wasted work in the worst case. In
the case of online training, the checkpoint frequency directly
impacts how quickly the inference adapts in real time and its
prediction accuracy.

(3) Write Bandwidth: Checkpoints at Facebook, as well
as in other industrial settings, are written to remote storage to
provide high availability (including replications) and scalable
infrastructure. Writing multiple large checkpoints concur-
rently from different models that are being trained in parallel
(e.g., thousands of checkpoints, each in the order of terabytes)
to remote storage requires substantial network and storage
bandwidths, which constitute a bottleneck and limit the check-
point frequency. Hence, it is necessary to minimize the re-
quired bandwidth to enable frequent checkpoints.

(4) Storage capacity: Storing checkpoints at-scale re-
quires hundreds of petabytes of storage capacity, with high-
availability and short access times. Checkpoints at Facebook
are typically stored for many days, thus the number of stored
checkpoints at a given time is reflected by the number of
training jobs in that time period. While the last checkpoint
per run is saved by default, it is often useful to keep several
recent checkpoints (e.g. for debugging and transfer learning).
As models keep getting larger and more complex, resulting
in an ever increasing storage capacity demand, it is necessary
to reduce the corresponding checkpoint size to minimize the
required storage capacity for accommodating all checkpoints.

Unfortunately, standard compression algorithms such as
Zstandard [6] are not useful enough for deep recommenda-
tion workloads. In our experience, we were able to reduce
the checkpoint size and the associated write-bandwidth and
storage capacity by at most 7% using Zstandard compression.

Based on the above challenges, we present Check-N-Run, a
high-performance scalable checkpointing system, particularly
tailored for recommendation systems. Check-N-Run’s main
goal is to significantly reduce the required write-bandwidth
and storage capacity, without degrading accuracy. Our goal
is to work within the accuracy degradation constraint set by
business needs (< 0.01%).

Recently, CheckFreq has demonstrated the benefits of
checkpointing for deep neural networks(DNNs) [19]. Check-
Freq proposed adaptive rate tuning to dynamically determine
when to initiate a checkpoint, and a two-phase strategy to

enable checkpoint storage and training to move concurrently.
However, recommendation models provide unique opportuni-
ties to tackle checkpointing challenges that are not afforded
in traditional DNNs. First, recommendation models update
only part of the state after every batch. Hence,it is possible to
explore checkpointing strategies that can incrementally store
the checkpoint. Second, recommendation model sizes can
exceed Terabytes, which stress even planetary scale storage
systems. Check-N-Run builds on several techniques:

(1) Differential checkpointing: Check-N-Run utilizes dif-
ferential checkpointing for reducing the checkpoint write
bandwidth. This is a technique that is particularly well suited
for recommendation models where only a small fraction of
the model parameters are updated after each iteration. This is
a unique property of recommendation models. In traditional
DNNs the entire model is updated after each iteration since
gradients are computed for all the model parameters. Recom-
mendation models, on the other hand, access and update only
a small fraction of the model during each iteration. Differ-
ential checkpoints leverage this observation by tracking and
storing the modified parts of the models.

(2) Quantization: Check-N-Run leverages quantization
techniques to significantly reduce the size of checkpoints.
This optimization reduces the required write bandwidth to re-
mote storage, and the storage capacity. While quantization of
model parameters during training may have a negative impact
on accuracy, checkpointing has the advantage that quantiza-
tion is only used to store the checkpoint, while full precision is
used for training. The only time checkpoint quantization may
impact training accuracy is when the quantized checkpoint is
restored and de-quantized to resume training. Check-N-Run
leverages this insight to maintain training accuracy within our
strict bounds.

(3) Decoupling: To minimize the run time overhead and
training stalls, Check-N-Run creates distributed snapshots of
the model in multiple CPU host memories. That way, training
on the GPUs can continue while Check-N-Run is optimizing
and storing the checkpoints in separate processes running
on the CPU in the background. Check-N-Run enables the
frequent checkpointing of hundreds of complex production
training jobs running in parallel over thousands of GPUs, each
job training a very large model (in the order of terabytes).
This decoupling approach is also proposed in CheckFreq
which separates snapshot process from the persist storage
process [19]. Our implementation of decoupled checkpointing
leads to less than 0.4% of time when the trainer processes
must pause to take a snapshot. Hence, the impact of taking a
checkpoint on the training speed is negligible.

The contributions in this paper include:
(1) To our knowledge, Check-N-Run is the first published
checkpointing system that uses quantization and differential
views for recommendation systems at-scale, demonstrated on
real-world workloads.
(2) We design and evaluate a wide range of checkpoint quanti-

930 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 1: A typical recommendation model. It consists of
large embedding tables for mapping the sparse features to
vectors, and MLPs for processing the dense features (bot-
tom MLP). These feature interactions are combined in the
top MLP. The interaction op combines the dense and sparse
features, in order to train with them together.

zation approaches to significantly reduce the checkpoint size
by 4-13×, without degrading the training accuracy.
(3) We introduce differential checkpoints, which store the
modified part of the model, rather than storing the entire
model. Differential checkpoints reduce the average write
bandwidth by more than 50%, with no impact on accuracy.
(4) Finally, we demonstrate a heterogeneous checkpointing
mechanism that combines differential checkpointing with
quantization. Check-N-Run provides 6−17× improvement in
the required checkpointing write bandwidth, and 2.5×−8×
less capacity, without sacrificing accuracy and run time.

2 Background

2.1 Recommendation Models

Recommendation models are a variant of deep learning mod-
els that are used to provide recommendations to users based
on their past interactions with a digital service. Recommen-
dation systems are often used in commercial settings and
dominate the datacenter capacity for AI training and infer-
ence [22]. Broadly speaking, recommendation models use
a combination of a fully connected multi-layer perceptron
(MLP) to capture the dense features, and a set of sparse fea-
tures that capture categorical data such as a user’s past activity
and main characteristics of a post. Figure 1 depicts a typical
recommendation model used in this study.

Sparse features are captured through embedding tables
[10], which map each category to a dense representation in
an abstract space. Each embedding table may contain many
millions of vectors, with different vector dimensions (e.g. 64),
where each element is a 32-bit floating-point number dur-
ing training. Embedding tables constitute the majority of the
model footprint, and account for > 99% of its size. A training
sample includes a set of vector indices per embedding table,
which is used to extract the corresponding multi-hot encoded
vectors stored in those indices. Once the embedding vectors
are extracted, they are trained with a deep neural network.

The size of the sparse layer prevents the use of pure data

parallel training, since it would require replicating the large
embedding tables on every device. The large footprint of the
sparse layer requires the distribution of the embedding ta-
bles across multiple devices, emulating model parallelism.
MLP parameters, on the other hand, have a relatively small
memory footprint, but they consume a lot of compute. Hence,
data-parallelism is an effective way to enable concurrent pro-
cessing in the MLPs, by running separate samples on different
devices and accumulating the updates. Our training system
thus uses a combination of model parallelism for the sparse
layer, and data parallelism for the MLPs. This hybrid approach
mitigates the memory bottleneck of accessing the embedding
tables by distributing these tables across multiple GPUs, while
parallelizing the forward and backward propagation over the
MLPs.

2.2 High Performance Training at Facebook

Given the prominence of recommendation models in today’s
social media platforms, these models are trained on dedicated
clusters [23, 38]. At Facebook, over 50% of the ML train-
ing cycles are dedicated solely to recommendation models.
Figure 2 illustrates the training pipeline for deep learning
recommendation models. Broadly speaking, it consists of
3 stages, located at separate clusters: dataset reader cluster,
training cluster, and remote checkpoint storage.

To support high-performance training, our training system
relies on clusters of GPUs attached to host CPUs as shown in
Figure 2 (training cluster). The GPUs accelerate the training
tensor operations and accommodate the model parameters,
while CPUs run other tasks, such as data ingestion and check-
point handling. Each training cluster contains 16 nodes, each
with 8 GPUs attached to multi-core CPU. Hence, training
a model on an entire cluster would partition the embedding
tables and the training batches over 128 GPUs, in addition to
replicating the MLPs over these GPUs.

In cases where GPU memory is not sufficient for accommo-
dating the models, our training system leverages hierarchical
memory: the model parameters are stored in DRAM, while
GPU memory serves as a cache.

The model parameters are updated synchronously [3], en-
suring the updated parameters across the devices are con-
sistent before each training iteration. This is needed for en-
abling scalable training and avoiding accuracy degradation
when training in high throughput. Fully synchronized training
avoids regression in the model quality with increased scale
and decouples model quality from training throughput. We
employ a decentralized model synchronization approach in
which each node performs the computations on its local part
of the model. For the data-parallel MLPs, an “AllReduce”
communication is done in the backward pass to accumulate
the gradients computed on the multiple GPUs (each with a dif-
ferent sub-batch of data). For the model-parallel sparse layer,
an “AlltoAll” communication [23] occurs both in the forward

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 931

Figure 2: An Overview of Training and Checkpoint Systems

Figure 3: Training job failure CDF in our cluster. Jobs that fail
within 5 minutes are removed since they are usually simple
user setup errors.

pass (to communicate the looked-up embedding vectors), and
in the backward pass (to communicate the embedding vector
updates). Checkpoint write process is done in the background
(using dedicated CPU processes in the trainer nodes), while
the training process continues in GPU.

Since the dataset used for training (i.e., training samples) is
enormous, and training has to be done at high-throughput (e.g.
500K training queries per second called QPS), it is important
to make sure that reading training data will not become a
bottleneck. As such, the training system deploys a separate
distributed reader tier (shown as Reader Cluster in Figure 2),
which enables reading resources and training resources to
scale independently. Each training cluster uses hundreds of
reader nodes residing in a separate cluster, in charge of satu-
rating the trainer with training samples.

Checkpoints of the training job state (consisting of both
the reader and trainer states) are stored at a separate, remote
storage (shown as Checkpoint Cluster in Figure 2).

Training jobs are submitted to this infrastructure through an
internally developed job scheduling interface. Schedulers like
Bistro [11] and PBS [15] handle job and user priorities, and
manage the job queue. The scheduler assigns jobs based on
the job configuration and cluster availability. It continuously
monitors both the job progress as well as system health status.

3 Motivation

3.1 Training Failures
We analyzed the training job failures on a training system
consisting of 21 training clusters, over a one month period.
Figure 3 presents the time-to-failure statistics. The X-axis
shows the total execution time that was completed by a job
before it failed, and the Y-axis shows the percentage of failed
jobs which failed before that time. The data shows that longest

Figure 4: The normalized model size over the past 2 years

10% of the failed jobs ran for at least 13.5 hours before they
fail, and the top 1% of the failed jobs fail after executing for
not less than 53.9 hours. Note that many of these jobs re-
quire 128 GPUs spanning many nodes, that are expensive to
maintain and run. These training jobs interact with multiple
systems for training. For instance, the training process ac-
cesses training samples provided by a separate reader cluster.
As such, any one failure in these inter-connected systems will
hobble the entire training progress. This data shows the criti-
cality of efficient checkpointing to ensure training progress.
Otherwise, long running training jobs may never complete
their task. This data motivated the need for Check-N-Run.

As the model sizes are growing continuously, training is
getting distributed even more widely across the datacenters.
Hence, the failure rates are expected to continue to grow
significantly. Thus checkpointing of large model training is a
critical problem for any production model.

3.2 Model Size
Recommendation model sizes are often massive due to their
large sparse features (represented as embedding tables). Typ-
ically, the accuracy of these models increases as a function
of the model size. Figure 4 shows our model size increase
over the past 2 years (exact model size is confidential). As
can be seen, it increased by over 3×. Given the large and ever-
increasing model sizes, checkpoints are often bottlenecked by
write-bandwidth and storage capacity.

3.3 Model Updates
Another set of motivation data shows the sparsity of model
updates over time. We analyze one of the largest recommenda-
tion models at Facebook and observe that due to large model
sizes and their high sparsity, only a fraction of the embedding
vectors is modified in a given training interval. Figure 5 shows
the percentage of the model that is modified, as a function
of the number of training records used to train, starting from
three different initial states. The curve starting at the origin
shows what fraction of the model size is updated starting from
the first training record and ending at about 11 billion training
records. As can be seen, even after 11 billion training records,
the fraction of the model that is accessed grows slowly and

932 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Samples (in billions)

%
 o

f m
od

el
 s

iz
e

0

20

40

60

2 4 6 8 10

Figure 5: The fraction of model size modified w.r.t. the num-
ber of training samples, measured from 3 different starting
points

Time (mintues)

%
 o

f m
od

el
 s

iz
e

0

10

20

30

40

50 100 150 200 250 300 350

10 min 20 min 30 min 60 min

Figure 6: The fraction of model size that is modified during
different time intervals

reaches only 52%. Furthermore, the fraction of the model
updated during a training interval is expected to continue to
shrink as model sizes keep increasing, which is the general
industry trend.

The second curve in Figure 5 shows how the fraction of
the updated model grows if we only observe updates starting
at the 4 billionth training record. The third curve shows the
same data starting at about the 8 billionth training record. It
is interesting to note that no matter when we start observing
the model size growth, the fraction of the modified model
size follows a similar slope. This fact is made more clear in
Figure 6, which plots the fraction of model size that is modi-
fied during a given time interval. For a given interval length,
the fraction of model size that is modified remains almost the
same in all intervals (e.g., in each 30 minute intervals, about
26% of the model is modified). The above data indicates that
at each iteration only a tiny fraction of the model is updated.

4 Check-N-Run Design Overview
Check-N-Run is a distributed checkpointing system for train-
ing systems at scale, implemented in our PyTorch training
framework. Check-N-Run generates accurate checkpoints of
the training system state and ensures there is no accuracy
degradation due to creating or loading from a checkpoint.
Since training accuracy is a main concern, we are not inter-
ested in exploring choices that come at the expense of an
unacceptable training accuracy loss, even as small as 0.01%.
In this section, we provide an overall overview, while in sec-
tion 5 we discuss the checkpoint optimization details. Figure 7
illustrates Check-N-Run’s overall design, showing what func-
tionality is implemented in each of the reader, trainer and
checkpoint storage tiers. Check-N-Run is implemented pri-

Collect global
reader state

Create model state snapshots

Track modified embedding
vectors

Create incremental
checkpoints

Store checkpoints in remote
storage

Trainer Host

CPU

GPU

Reader Master Check-n-Run Controller

Synchronize
checkpoints between
trainer and readerQuantize checkpoints

Delete old
checkpoints

Stop/resume
reading for state
collection

Monitor and maintain
checkpoints

Figure 7: Check-N-Run design components

marily on the host CPU of the training cluster, while its track-
ing mechanism (described in 5.1.1) is implemented in GPU.
It has additional coordination threads running on the reader
master (in the reader cluster) and a lightweight Check-N-Run
controller that may reside in a dedicated host. Checkpoints are
written to remote object storage to provide high availability
(including replications) and storage scalability.

4.1 What to Checkpoint?

The trainer state consists of all the model layers (including the
sparse and dense features), the optimizer state, and the relevant
metrics. Since the MLPs are replicated and maintained with
a consistent view during training, it is enough to read them
from a single GPU for checkpointing. The embedding tables,
however, are distributed across GPUs and hence each GPU
must provide a snapshot of the embedding tables that are
stored in its local memory.

When a training job resumes from a checkpoint, the run
should still train the same training dataset as the original run.
Hence, the checkpoint must also include the reader state. This
is important, for example, to avoid training the same sample
twice. The reader reads the dataset in the granularity of splits
(each split represents successive rows of the dataset). Its state
includes the set of splits that are pending, and the set of splits
that have been partially read (including their cursor position).
Note that checkpoints that are intended solely for alternate use-
cases such as online training (frequently updating an already
trained model running in inference) and transfer learning, do
not require the reader state.
Avoiding the trainer-reader state gap: In a production scale
training system, checkpointing has unique challenges. As de-
scribed earlier, a separate set of distributed readers is in charge
of feeding the trainers with batches in sufficient throughput.
Since readers and trainers work in a distributed fashion in
our training system (and reside in separate clusters), many
training records are in-flight and reside in different queues.
These are batches that have been read by the reader, but have
not been consumed by the trainer yet. They constitute a gap
between the reader state and the trainer state, which may
affect accuracy when loading from a checkpoint. After resum-
ing from a checkpoint, the reader may not know which of

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 933

the training samples have been processed. To avoid this gap,
Check-N-Run’s controller communicates to a coordination
thread running on the reader master how many batches to read
until the next checkpoint. The reader makes sure to read this
exact number of batches. For example, if the checkpointing
interval is 1000 batches, the reader will provide exactly 1000
batches to the trainer and then stop reading. When trainer
finishes processing the 1000th batch and a checkpoint is trig-
gered, there will be no in-flight batches. That way, there is
essentially no gap between the reader state and the trainer
state. After reader state has been collected, Check-N-Run sig-
nals the reader to resume reading the number of batches until
the next checkpoint.

4.2 Decoupled Checkpointing
Checkpointing requires the model parameters to be atomi-
cally copied for further processing and storage. Note that this
atomicity is important for consistency. Otherwise, training
processes may update the model during the copying time win-
dow, causing substantial consistency challenges and potential
accuracy degradation when loading checkpoints. Check-N-
Run achieves atomicity by stalling training at the start of a
checkpoint and transferring the model state from GPU mem-
ory to host CPU memory. Training is stalled only when creat-
ing a copy of the model parameters in-memory. As soon as
the model snapshot is ready, dedicated CPU processes are in
charge of creating, optimizing, and storing checkpoints in the
background, while training continues on the GPUs. All train-
ing nodes concurrently create a unique snapshot of their own
local part of the model. For instance, if the embedding tables
are distributed across multiple nodes, each node snapshots its
own embedding tables and transfers that information to the
host CPU.

Using this approach to create a snapshot scales well with
larger models and more nodes, as utilizing additional nodes
does not increase the checkpoint performance overhead. For
instance, creating a snapshot (in CPU DRAM) of a typical
model residing in the GPU memory and partitioned across
16 nodes, each with 8 GPUs (total of 128 GPUs), would stall
training in our system for less than 7 seconds. When check-
pointing every 30 minutes (our default), stall time would be a
negligible fraction (< 0.4%).

4.3 Checkpointing Frequency
The checkpointing frequency is bounded by the available
write bandwidth to remote storage. Since Check-N-Run lever-
ages remote storage, it is also limited by available network
bandwidth. With larger and ever increasing model sizes, as
well as the growing number (e.g. hundreds) of training clus-
ters that concurrently train and checkpoint separate training
jobs, these resources constitute a bottleneck. In Check-N-Run,
two consecutive checkpoints cannot overlap, and writing of

Figure 8: High-level data flow during training

the current checkpoint must be completed or cancelled be-
fore a new checkpoint can be created. That way, the current
checkpoint can utilize all available resources to minimize the
write latency (i.e., the time it takes a checkpoint to become
valid and ready to use). Based on our model size and system
resource considerations, we initiate a new checkpoint every
30 minutes by default. In section 5 we describe the optimiza-
tions leveraged by Check-N-Run to significantly reduce the
required resources, providing a scalable solution to enable
high frequency checkpointing and reduce the associated total
cost of ownership (TCO).

4.4 Check-N-Run Workflow
We define the checkpoint interval as the number of trained
batches between two consecutive checkpoint. The checkpoint
operation is triggered at the end of each checkpoint interval
(a configurable number of batches), after the backpropagation
stage of the last batch in that interval. Since our training
system is fully synchronous, all GPUs will reach their last
batch in the checkpoint interval and wait until the next batch is
started. The checkpointing process consists of 3 main stages:
(1) Create an in-memory snapshot of the training state (2)
Build an optimized checkpoint (3) Write the checkpoint to
storage.

Figure 8 depicts the high-level data flow between the reader,
trainer, and remote checkpoint storage during training.

At the beginning of the training run, Check-N-Run’s con-
troller communicates to the coordination thread on the reader
master node in the reader tier, to inform what is the checkpoint
interval, i.e. how many batches to read until the next check-
point. The reader master then initiates several reader worker
threads which start reading data from the training dataset to
provide the trainer nodes. When a checkpoint is triggered,
Check-N-Run collects the reader state at this point, which
specifies what parts of the training dataset have been read so
far. At the same time, all trainer nodes are stalled to concur-
rently create a snapshot of their local state, by copying the
model state from each of their GPUs into host CPU DRAM.
As soon as all snapshots are ready, training continues. This de-
coupling mechanism essentially minimizes the checkpointing
process from bottlenecking the trainer.

In step 2, Check-N-Run leverages several techniques to
reduce the required checkpoint capacity and write bandwidth,
as described in section 5. These techniques are concurrently

934 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

applied by each trainer node and run in dedicated CPU pro-
cesses that are resident on the host CPUs in the trainer tier,
outside of the GPU critical path. Only the tracking mechanism
described in 5.1.1 is implemented in GPU.

In step 3, the checkpoint is moved to remote checkpointing
storage. Note that the optimization process in step 2 works on
chunks of embedding vectors at a time. Hence these chunks
of quantized and differential checkpoints can be stored in a
pipelined manner, enabling concurrent optimization and the
checkpoint storing process. When all nodes finish storing their
part of the checkpoint successfully, Check-N-Run’s controller
will declare a new valid checkpoint. At that stage, an older
checkpoint may be deleted by the controller (based on the
system configuration). Multiple checkpoints can be stored
depending on the needs and use cases.

5 Checkpoint Optimizations

5.1 Differential Checkpointing

One-Shot Differential Checkpoint: Motivated by the in-
sight presented in Section 3 regarding the fraction of the
model size that is modified after each iteration, we introduce
differential checkpoints. Differential checkpointing starts
with a single checkpoint taken as a full baseline checkpoint,
including all the embedding vectors. From this point, the
system starts tracking all modified vectors to create a differ-
ential view of the embedding vectors that would have to be
included in the next checkpoint. Each differential checkpoint
would then store only the vectors that were modified since the
baseline checkpoint. To resume from a checkpoint, both the
baseline checkpoint and the most recent differential check-
point have to be read. We refer to this method as One-shot
baseline.
Consecutive Incremental Checkpoint: We also explored an
alternative way, which we denote as consecutive incremen-
tal checkpoint. This approach stores the vectors that were
modified only during the last checkpoint interval, rather than
storing the vectors from a baseline checkpoint. This method
reduces the current checkpoint size, since only those modified
vectors since the last interval are stored. But this approach
would require keeping all previous incremental checkpoints
for reconstructing the model when resuming from a check-
point. Note that in our remote object storage, merging consec-
utive incremental checkpoints would require moving all the
data back to the CPU host, which costs substantial bandwidth.
Keeping all the incremental checkpoints leads to higher stor-
age capacity since a vector that is modified during multiple
intervals will have multiple copies stored. However, incremen-
tal checkpoints are useful for use cases such as online training,
where checkpoints are directly applied to an already-trained
model in inference to improve its freshness and accuracy.
Intermittent Differential Checkpoint: One challenge with
the above methods is that the checkpoint size gradually in-
creases. As training progresses, the number of modified model

parameters over a baseline will increase. One way to reduce
this growth is to checkpoint a full model intermittently, so
that the differential view size can be reduced. We exploit the
observation from Figure 5 that the modified model size grows
similarly from three different starting points.

We use a simple history based predictor to decide when to
take a full checkpoint. At the end of each checkpoint interval,
it estimates the expected cumulative size of future checkpoints
if another differential checkpoint is taken, compared with the
total expected size if a full checkpoint is taken (which will
then reduce the future checkpoint sizes). Based on this com-
parison, the system decides whether to take a full checkpoint
or stay with a differential checkpoint. The algorithm for this
selection is as follows:

Let S1,S2, ...,Si be the sizes of the past i differential check-
points, which follow a full baseline checkpoint with a size S0.
S is expressed as a fraction of the full baseline checkpoint,
such that S0 = 1. Then, at the (i+1)th interval, Check-N-Run
faces two options: (1) create a full baseline checkpoint, or (2)
create another differential checkpoint. If a full baseline check-
point is created, we estimate the future cumulative checkpoint
size Fc of the next i+1 intervals to be similar to the past i+1
intervals. That is, Fc = 1+S1 +S2, ...,+Si. Alternatively, if
a differential checkpoint is created, the total checkpoint size
of the next i+ 1 intervals is larger than, or at best equal to
Ic = (i+1)∗Si. This relation holds, because starting at inter-
val i+1 differential checkpoint size will be at least Si. Thus,
at the (i+ 1)th interval, we do a full checkpoint if Fc ≤ Ic,
else we do a differential checkpoint. We term this approach
as intermittent differential checkpoint. This approach can be
improved with more accurate prediction models, which are
part of future work.

5.1.1 Efficient Tracking

Check-N-Run is intended for high-performance training,
hence it aims to minimize the overhead of tracking which
embedding vectors are modified. Since the embedding tables
are partitioned across the GPUs, each GPU separately tracks
the accesses to its local embedding tables. For the sake of
simplicity, the training records are tracked during the forward
pass, as most of the embedding vectors accessed in the for-
ward pass are also modified during the backward pass. During
tracking, each GPU updates a bit-vector associated with its
local embedding vectors. This bit-vector is used as a mask
to determine which embedding vectors are modified during
the training process, and should eventually be included in the
next differential checkpoint. Note that the bit-vector memory
footprint is low (typically less than 0.05%, on the order of
several MBs per GPU).

We utilize idle GPU cycles to reduce tracking overhead,
by scheduling the tracking functionality during the “AlltoAll”
communication phase (described in section 2.2). Using this
implementation, the tracking overhead is reduced to ≈ 1% of

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 935

the iteration training time.

5.2 Checkpoint Quantization
The second technique that Check-N-Run uses is quantization
of checkpoints. While quantization has been adopted in some
cases for reducing model size during inference [18,37,40], or
to reduce communication costs of parameter aggregation [36],
training is typically done in single-precision floating-point
format (FP32) to maximize training outcomes and model
accuracy. Check-N-Run leverages quantization techniques
to significantly reduce the checkpoint size during training,
without sacrificing training accuracy.

Quantization in Check-N-Run is decoupled from the train-
ing process and is done in background CPU processes after
a model snapshot has been created. Hence, it does not affect
training throughput. Since quantization is applied to a chunk
of rows, the quantized checkpoint store operation does not
have to wait until the entire checkpoint is quantized and can
store the quantized rows eagerly as needed.

The quantization of embedding tables is usually applied
in the granularity of an entire embedding vector. We aim to
minimize the error between the original vector X ∈ Rn and
the quantized vector Q ∈ Zn, by minimizing ‖X−Q‖2. We
define the mean `2 error of an entire quantized checkpoint as:
1
m ∑

m
i=0 ‖Xi−Qi‖2, where m is the total number of embedding

vectors in the checkpoint. The mean `2 error metric is a
good proxy for accuracy loss because the model accuracy
is dependent on the values of the embedding tables. This
metric captures the distance between the original value of
an embedding entry without quantization and the new value
produced due to quantization. We observed that this difference
provides the first order impact on the accuracy loss and use it
to compare different quantization methods. In section 6, we
demonstrate how training accuracy is impacted by Check-N-
Run’s quantization schemes.

In this work we explored 3 quantization methods, Uni-
form Quantization, Non-Uniform Quantization and Adaptive
Quantization, to empirically evaluate which approach pro-
vides the lowest mean `2 error. Let x be the value of an
element in an embedding vector X ∈ Rn, clipped to the range
[xmin,xmax]. N-bits quantization maps x to an integer in the
range [0,2N −1], where each integer corresponds to a quan-
tized value. If the quantized values are a set of discrete, evenly-
spaced grid points, the method is called uniform quantization.
Otherwise, it is called non-uniform quantization. We describe
these approaches in detail next.
Approach 1: Symmetric-vs-Asymmetric Uniform Quan-
tization: Uniform quantization maps the embedding table
values into integers in the range [0,2n− 1]. It relies on two
parameters: scale and zero_point. Scale specifies the quan-
tization step size, and is defined as scale = xmax−xmin

2n−1 , while
zero_point is defined as xmin. The quantization proceeds as
follows: xq = round

(
x−zero_point

scale

)
. The de-quantization op-

eration is: x = scale ∗ xq + zero_point. We denote uniform
quantization as FQ(x,xmin,xmax).

In symmetric quantization, xmax is set by the maximum
absolute value in X , and xmin =−xmax. This is a very simple
approach to quantize. An improved approach is to pick xmin
and xmax to use the minimum and maximum element values
that are actually present in an embedding vector. We refer to
this method as asymmetric quantization. Asymmetric quanti-
zation, however, has the small additional overhead of storing
of both xmin,xmax values for de-quantization process.

Figure 9 shows the mean `2 error of symmetric (first bar)
and asymmetric quantization (second bar) for different bit-
widths used in quantization. Since the elements of the embed-
ding vectors are not symmetrically distributed, asymmetric
quantization consistently outperforms symmetric quantiza-
tion. Note that we generated this result from one representa-
tive checkpoint created after training a production dataset for
about 18 hours.
Approach 2: Non-uniform Quantization using K-means
We explored non-uniform quantization where embedding vec-
tors are not all mapped into equally spaced buckets. This
approach is useful when the elements in a typical embedding
vector are not necessarily uniformly distributed.

We leverage the unsupervised K-means clustering algo-
rithm for clustering elements in the embedding vector X ∈Rn

into groups. For N-bits k-means quantization, the n elements
in X are partitioned into 2N clusters. Let Ci be the cluster
i with a corresponding centroid ci. K-means quantization
maps the element x ∈ Ci to the integer xq = i. In addition,
it keeps a codebook entry, such that codebook[i] = ci. The
de-quantization operation in that case is: x = codebook[xq]

Figure 9 shows that the third bar in each group, labeled
k-means per vector, provides lower mean `2 error compared
with asymmetric quantization, when running k-means with
15 iterations. Note that K-means performs slightly worse than
asymmetric for a bit-width of 4, due to cluster initialization
randomness. While mean `2 error metric is marginally better,
the run time of K-means clustering algorithm was orders of
magnitude slower than uniform quantization. For instance,
performing K-means clustering using off-the-shelf clustering
packages on just one checkpoint of our production training
model took more than 48 hours. This is not surprising since
prior works have acknowledged the challenge of K-means
clustering on large datasets and advocated for sampling a
small fraction of the dataset to reduce their overheads [21].
We have explored different approximate clustering strategies
but approximations yielded substantial mean `2 error. Hence,
when taking into account any incremental benefits of cluster-
ing against the cost of running the clustering algorithm for
checkpointing, we conclude that k-means is not feasible in
Check-N-Run.
Approach 3: Adaptive Asymmetric Quantization: We ob-
serve that the naive way of setting xmin and xmax in asymmetric
quantization may not be optimal in some cases. For example,

936 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

2 3 4 8

M
e
an

 L
2
E
rr
or

Quantization Bit-width

Symmetric
Asymmetric

K-means per vector
Adaptive Asymmetric

Figure 9: Mean `2 error of a quantized
checkpoint for different quantization ap-
proaches

 0%

 5%

10%

15%

20%

25%

30%

0 5 10 15 20 25 30 35 40 45 50

L2
 E
rr
or

 Im
pr
ov
em
en
t

Number of Bins

2 Bits
3 Bits
4 Bits

Figure 10: Mean `2 error improvement
of adaptive asymmetric quantization
over naive asymmetric quantization for
different bit-widths, as a function of bins

 0%

 5%

10%

15%

20%

25%

30%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

L2
 E
rr
or

 Im
pr
ov
em
en
t

Ratio

2 Bits
3 Bits
4 Bits

Figure 11: Mean `2 error improvement
for different bit-widths, as a function of
the number range ratio (after selecting
optimal number of bins)

if a vector contains an element with a relatively high absolute
value compared with the other elements, scale may be too
high.

A brute force approach for selecting more optimal xmin
and xmax values for each embedding vector would iterate over
many possible values, and in each iteration perform a quanti-
zation for the sole purpose of measuring `2 error. Based on
that, it would choose the xmin and xmax values that provided
the lowest `2 error. Unfortunately, since this has to be done
per embedding vector, it is not feasible in terms of run time
when quantizing large models.

To address this issue, Check-N-Run leverages a greedy
search algorithm [13] to select the xmin and xmax values per
embedding vector. We define step_size as the the original
range of the vector divided by a configurable number of bins:
step_size= Xmax−Xmin

num_bins . At each iteration, two quantizations are
performed for the sole purpose of comparing their `2 error:
FQ(x,xmin+step_size,xmax) and FQ(x,xmin,xmax−step_size).
Based on the update that provided a lower `2 error, either
xmin or xmax are set to xmin + step_size or xmax− step_size,
respectively. Finally, when all iterations are done, the optimal
xmin and xmax are chosen from the iteration with the lowest `2
error.

The greedy algorithm contains a configurable parameter,
num_bins, which determines its step size. In addition, we
add a ratio parameter, which determines the fraction of the
original range = Xmax−Xmin to iterate over. In other words,
the greedy algorithm would iterate as long as xmax− xmin <
ratio ∗ range. For example, when ratio is set to 1, the algo-
rithm would iterate over the entire range. If ratio is 0.6, the al-
gorithm would stop once it covered 60% of the original range.
While decreasing the number of bins and ratio both reduce
run time, it may also result higher `2 error. Figure 10 demon-
strates the mean `2 error improvement of adaptive asymmetric
quantization over naive asymmetric quantization for different
bit-widths, as a function of the number of bins.

Figure 11 depicts the mean `2 error improvement for vari-
ous range ratios, based on the optimal number of bins from
figure 10 (25 bins for bit-widths of 2 bits and 3 bits, and 45
bins for 4 bits). As can be seen, lower bit-width quantizations

are more sensitive to the ratio parameter (and also gain higher
improvement by the adaptive asymmetric).
Parameter selection: Check-N-Run automatically sets the
greedy algorithm parameters by performing a light-weight
checkpoint profiling. It uses the insight that mean `2 error
can be estimated efficiently without having to quantize the
entire checkpoint. It uniformly samples a small fraction of the
checkpoint (0.001% by default), then quantizes the sampled
checkpoint with different parameter values and calculates the
mean `2 errors. With this method, Check-N-Run is able to
identify the optimal parameter by automatically choosing the
parameter in which the mean `2 error improvement tapers off.
In our experiments, the sampled checkpoint provided identical
parameter selection compared with the full checkpoint.

In section 6.1, we evaluate the quantization latency as a
function of num_bins and ratio.
Summary of various approaches: Based on these empirical
data, Check-N-Run utilizes adaptive asymmetric quantization
for bit-width of 4 bits or less. As shown in figure 9, adaptive
asymmetric quantization perform similarly to k-means quanti-
zation. For 8-bit quantization, naive asymmetric quantization
is sufficient. The quantization bit-width itself is determined
dynamically by the expected number of times a training job
would resume from a checkpoint, as we elaborate in section 6.

6 Experimental Evaluation

In this section, we evaluate the performance implications
of Check-N-Run, its training accuracy implications, and the
achieved write bandwidth and storage capacity reduction. We
implemented Check-N-Run in our PyTorch training frame-
work and evaluate it in our high-performance training clusters,
under production scale models and training datasets.

We use clusters of NVidia HGX-like nodes [25] for train-
ing, with some customization such as increased host memory
of up to 1.5 TB of DRAM per node, up to 56 cores per node,
and alternate scale-out fabric such as NVSwitch and NVLinks
(connecting up to 16 nodes). Each GPU is able to communi-
cate directly with GPUs on a different node through a dedi-
cated RoCE NIC, without involving a host CPU. In addition,
there is a front-end NIC connected to each CPU. Checkpoints

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 937

 0

 100

 200

 300

 400

 500

 600

0 5 10 15 20 25 30 35 40 45 50

La
te
nc
y
(s
ec
on
ds
)

Bins

Figure 12: Total checkpoint quantization latency when using
adaptive asymmetric quantization, as a function of the number
of bins used by the greedy algorithm (ratio=1.0)

 0

 100

 200

 300

 400

 500

 600

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

La
te
nc
y
(s
ec
on
ds
)

Ratio

25 bins
45 bins

Figure 13: Total checkpoint quantization latency when using
adaptive asymmetric quantization, as a function of the ratio
used by the greedy algorithm with 25 and 45 bins

are written to remote storage through the regular front-end
network, without interfering with inter-GPU communication.

6.1 Performance
Checkpoint overhead on training: Check-N-Run decou-
ples checkpointing from training by creating an in-memory
snapshot of the model state before checkpointing. This en-
ables training to continue while checkpoints are created, opti-
mized, and stored in the background. Check-N-Run creates
snapshots by copying the model state from GPU’s HBM to
pinned CPU memory. We measured this operation to take up
to 7 seconds in our setting, during which training is stalled.
When checkpoint intervals are 30 minutes, the default setting,
that overhead translates to less than 0.4% reduction in training
throughput.

Tracking the modified embedding vectors in each train-
ing iteration requires updating a local bit vector, which is
used to mark the modified embedding vectors in the current
checkpoint interval. As described in 5.1.1, our efficient imple-
mentation uses idle GPU cycles to hide most of this overhead,
and reduces the training throughput by less than 1%. Note that
these overheads are not dependent on the number of nodes,
since nodes typically accommodate roughly the same amount
of data, bounded by the GPU’s HBM storage capacity (i.e.,
the number of nodes scales with model size). Hence, larger
models do not imply higher snapshot creation or tracking
latencies.
Checkpoint quantization latency: Quantization is another
source of delay. Since checkpoint quantization is done in

dedicated CPU processes (while training continues in GPUs),
it does not affect training throughput. However, it introduces
a new latency before the checkpoint can be written to storage.
For adaptive asymmetric quantization (used by default for 4
bit and lower quantizations), the overhead is determined by the
greedy search parameters. Figure 12 depicts the checkpoint
quantization latency of adaptive asymmetric quantization as a
function of the number of bins used by the greedy algorithm.
The latency to quantize is at most 600 seconds even with 50
bins (the bins are described in section 5.2).

Figure 13 shows the checkpoint quantization latency as a
function of the ratio used by the greedy algorithm, using 45
and 25 bins. Increasing the ratio requires searching a wider
range of the embedding vector values. As such, the latency
grows with ratio.

As a comparison, if we only use asymmetric quantization
without the adaptation based on bins and ratio, the latency
to quantize is at most 126 seconds. Hence, the "adaptive"
approach at least doubles the quantization latency.

Note that the above latency values represent the most pes-
simistic data. But as explained earlier, quantization in Check-
N-Run is performed chunk by chunk (as part of the data
serialization, where each chunk contains a small subset of the
model state). It is pipelined such that each quantized chunk
is written independently to the remote storage, while a new
chunk is being quantized. Hence, write bandwidth to remote
storage is our main bottleneck, and the observed storage write
latency is typically higher than the checkpoint quantization
latency. Therefore, the latency of our pipelined quantization
approach is virtually zero.

6.2 Accuracy

In this section, we evaluate the training accuracy implications
of resuming from a quantized checkpoint using the asymmet-
ric and adaptive asymmetric quantizations described earlier.
Since differential checkpointing does not alter training accu-
racy (all data is preserved on every recovery), we focus this
section on quantization approaches only. We use a baseline
that does not use quantization to determine accuracy loss of
quantization.

Note that the number of stored checkpoints and their fre-
quency do not affect the training accuracy, since training is
always done in single-precision floating-point. Quantization
is only applied to checkpoints, and would only impact the
training job if it resumes from a checkpoint. In that case,
Check-N-Run would load a checkpoint and de-quantize it
before resuming model training in single precision.

When training jobs have to resume from multiple quan-
tized checkpoints during their lifetime, the quantization error
may accumulate. Therefore, the number of times a training
job resumes from checkpoints determines the suitable quan-
tization bit-width. Figure 14(a) shows the training lifetime
accuracy degradation when loading from a 2-bit quantized

938 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 0.005

 0.01

 0.015

 0.02

 0 1x106 2x106 3x106

A
cc
ur
ac
y
D
eg
ra
da
tio
n

Number of Trained Records

1
2
3

(a)

 0

 0.005

 0.01

 0.015

 0.02

 0 1x106 2x106 3x106

A
cc
ur
ac
y
D
eg
ra
da
tio
n

Number of Trained Records

2
3
4

(b)

 0

 0.005

 0.01

 0.015

 0.02

 0 1x106 2x106 3x106

A
cc
ur
ac
y
D
eg
ra
da
tio
n

Number of Trained Records

10
20
30

(c)

Figure 14: Lifetime accuracy degradation in a training job of 4 billion training samples, when using: (a) 2-bit, (b) 3-bit, and (c)
4bit quantized checkpoints. The lines represent the number of times the job had to resume from a quantized checkpoint

Interval number

%
 o

f m
od

el
 s

iz
e

0

25

50

75

100

125

0 1 2 3 4 5 6 7 8 9 10 11

One-shot baseline Intermittent baseline Consecutive increment

Figure 15: Bandwidth measure: checkpoint size per interval
of 30 minutes, for different checkpoint policies

Interval number

%
 o

f m
od

el
 s

iz
e

0

100

200

300

400

0 1 2 3 4 5 6 7 8 9 10 11

One-shot baseline Intermittent baseline Consecutive increment

Figure 16: Storage measure: the required storage capacity at
each interval of 30 minutes, for different checkpoint policies

checkpoint. We start with 2-bit quantization since it is the
most aggressive storage and bandwidth reduction technique
of all the approaches. The three lines represent the number of
training job failures (failures are uniformly distributed during
training), in which the model needs to be reconstructed from
a quantized checkpoint. With a single failure, the training
accuracy impact is well below the 0.01% threshold even after
training with 3 Billion records. However, when two or more
failures are encountered during a training run then the 2-bit
quantization exceeds the loss threshold of 0.01%.

6.2.1 Dynamic Bit-width Selection:

Figures 14(b) and 14(c) show the accuracy degradation when
resuming from 3-bit and 4-bit quantized checkpoints, respec-
tively. As expected, higher bit-widths allow resuming from
a checkpoint more times. For 3-bit quantization, a training
job may resume from a checkpoint up to 3 times, while for
4-bit quantization one may load the checkpoint up to 20 times.
While not shown in the figure, we also measured that with an

8-bit asymmetric quantization, a training job can resume from
a checkpoint over 100 times without exceeding the accuracy
loss threshold.

Based on the above set of results, Check-N-Run uses a
dynamically configurable bit-width selection. Check-N-Run
estimates the expected time of training based on the model
and the number of nodes. The probability of a node failure in
our training cluster (p) is provided as input to Check-N-Run.
This probability is computed from failure logs. Check-N-
Run then estimates the expected number of failures. Based
on this estimate, it picks the bit-width that will not exceed
the accuracy threshold. If the number of failures exceeds the
estimates during training, Check-N-Run automatically falls
back to 8-bit quantization.

6.3 Write Bandwidth and Storage Capacity
In this section, we evaluate the write bandwidth and storage
capacity reduction achieved by Check-N-Run, compared with
a baseline checkpointing system that uses neither quantization
nor differential views.

6.3.1 Differential Checkpointing Policy Comparison

Figure 15 shows the fraction of the model size that is stored
in each differential checkpoint, over checkpoint intervals of
30 minutes. This data is a proxy for the bandwidth needed
to store the checkpoint. It shows the checkpoint sizes at each
interval for different checkpoint policies. In the One-shot dif-
ferential method, the differential checkpoint includes all the
embedding vectors that were modified since the first check-
point, which is created at the first checkpoint interval. As can
be seen in the figure, the initial differential checkpoint is only
25% of the total model size, but as the checkpoint size keeps
increasing, it exceeds 50% of the model size after 10 intervals.
For Intermittent differential method, the figure shows how
the checkpoint size increases until Check-N-Run dynamically
switches to taking a full baseline checkpoint at interval 8, just
before the checkpoint size reaches 50% of the model size.
The new baseline checkpoint includes the entire model, but
the next checkpoint size is only about 25% of the full model
size

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 939

 0X

 2X

 4X

 6X

 8X

10X

12X

14X

16X

18X

L ≤ 1 1<L≤3 3<L<20 20 ≤ L

R
ed
uc
tio
n

Average Bandwidth Storage Capacity

Figure 17: Overall reduction of the checkpoint average write
bandwidth and storage capacity. L represents the number of
times the training job had to resume from a checkpoint.

Figure 16 shows the total required storage capacity (rela-
tive to the model size), over several checkpoint intervals of 30
minutes. The One-shot differential approach includes the first
checkpoint taken and the latest differential checkpoint at each
interval. As expected, the consumed capacity increases over
time. The reason is that every differential checkpoint stores
all the modified entries since the first checkpoint, along side
the first checkpoint itself. In the case of Intermittent differen-
tial, the required capacity increases until the full checkpoint
is triggered at interval 8. At that point, the consumed stor-
age capacity resets and includes only the newly taken full
checkpoint.

Figures 15 and 16 also show the impact of the Consecutive
incremental policy, which only stores the vectors that were
modified in the current checkpoint interval. The recovery
process is more complex, since all previous checkpoints must
be read for recovery. As can be seen, this approach reduces
the size of checkpoints over time and the corresponding write
bandwidth (e.g., the average write bandwidth in a duration of
12 intervals is 33% less than the other policies). Moreover, the
checkpoint size is stable, since the number of vectors that are
updated during an interval stays roughly the same. However,
since all the checkpoints have to be kept, the required storage
capacity increases rapidly, reaching almost ×4 the model
size after only 11 intervals. As such, Check-N-Run uses the
intermittent differential policy by default.

6.3.2 Overall Reduction

Figure 17 presents the overall reduction in write bandwidth
and storage capacity, when combining both quantization and
differential checkpointing (intermittent baseline policy), and
using the thresholds from section 6.2.1 for selecting the quan-
tization bit-width. When a training job is expected to resume
from checkpoint no more than one time, Check-N-Run re-
duces the average consumed write bandwidth and maximum
storage capacity by 17× and 8×, respectively. Even in the
not so common case of more than 20 failures, Check-N-Run
reduces the average bandwidth by 6× and the maximum stor-
age capacity by 2.5×. Note that these savings are not lin-
early proportional to the chosen quantization bit-width due to

the metadata structure. That structure includes the differen-
tial checkpoint index and quantization parameters. Metadata
structure can be further optimized in future work.

7 Related Work

Checkpointing has been explored in many distributed sys-
tems [2, 17, 27, 28, 35]. Checkpoint optimization schemes
include techniques to reduce latency [31], coordinating across
multiple snapshots for efficient reconstruction [27, 35], using
different checkpoint resolutions for providing varying levels
of recovery [8, 20]. The goal of Check-N-Run is to deal with
checkpoints that are terabytes in size. As such, reducing stor-
age and network bandwidth is important. Unlike traditional
distributed systems, where getting a consistent view across
different machines is a challenge [2, 28], Check-N-Run ex-
ploits the repetitive nature of synchronous training to initiate
checkpoints at the end of a training batch.

In terms of ML-specific checkpointing, Deepfreeze [24]
checkpoints DNN models using variable resolution, while
handling storage-specific API and sharding needs. Microsoft’s
ADAM uses zip compression to reduce checkpoint size of
DNN models [5]. CheckFreq uses dynamic rate tuning to
automatically decide when to initiate a checkpoint and a de-
coupled store-train pipleine [19]. Check-N-Run tackles re-
ducing storage and bandwidth needs through quantization
combined with incremental view. Similar to CheckFreq, it
also decouples checkpoint processing from training.

Quantization has been applied to ML models, particularly
in the context of inference. Prior works used floating to fixed
point quantization to improve compute efficiency [18], ternary
quantization for inference on mobile devices [37, 40], per-
layer heterogeneous quantization of DNNs [39], mixed pre-
cision quantization that adapts to underlying hardware capa-
bilities [34], quantization of gradient vectors for bandwidth
efficient aggregation [1,9,36], lossy training using 1-bit quan-
tization [29] and more. To the best of our knowledge, using
quantization to reduce checkpoint size of recommendation
models has not been made public.

8 Conclusion

This paper presents Check-N-Run, a high-performance check-
pointing system for training recommendation systems at scale.
The primary goal of Check-N-Run is to reduce the bandwidth
and storage costs without compromising accuracy. Hence,
Check-N-Run leverages differential checkpointing and dy-
namically selected quantization techniques to significantly
reduce the required write bandwidth and storage capacity for
checkpointing real-world models. Our evaluations show that
depending on the number of recovery events one may need to
adapt quantization of different bit widths. By combining such
adaptive quantization with differential checkpointing, Check-
N-Run provides 6-17x reduction in required bandwidth, while
simultaneously reducing the storage capacity by 2.5-8X.

940 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka,

and Milan Vojnovic. Qsgd: Communication-efficient
sgd via gradient quantization and encoding. In Advances
in Neural Information Processing Systems, pages 1709–
1720, 2017.

[2] K Mani Chandy and Leslie Lamport. Distributed
snapshots: Determining global states of distributed sys-
tems. ACM Transactions on Computer Systems (TOCS),
3(1):63–75, 1985.

[3] Jianmin Chen, Rajat Monga, Samy Bengio, and Rafal
Józefowicz. Revisiting distributed synchronous SGD.
CoRR, abs/1604.00981, 2016.

[4] Suming J. Chen, Zhen Qin, Zac Wilson, Brian Calaci,
Michael Rose, Ryan Evans, Sean Abraham, Donald Met-
zler, Sandeep Tata, and Mike Colagrosso. Improving
recommendation quality in google drive. In KDD ’20:
The 26th ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining, Virtual Event, CA, USA, August
23-27, 2020, pages 2900–2908. ACM, 2020.

[5] Trishul M. Chilimbi, Yutaka Suzue, Johnson Apacible,
and Karthik Kalyanaraman. Project adam: Building an
efficient and scalable deep learning training system. In
11th USENIX Symposium on Operating Systems Design
and Implementation, OSDI ’14, Broomfield, CO, USA,
October 6-8, 2014, pages 571–582. USENIX Associa-
tion, 2014.

[6] Yann Collet and Chip Turner. Smaller and faster data
compression with zstandard. http://www. rgoarchitects.
com/Files/fallacies. pdf, 2016.

[7] Paul Covington, Jay Adams, and Emre Sargin. Deep neu-
ral networks for youtube recommendations. In Proceed-
ings of the 10th ACM Conference on Recommender Sys-
tems, Boston, MA, USA, September 15-19, 2016, pages
191–198. ACM, 2016.

[8] Sheng Di, Mohamed-Slim Bouguerra, Leonardo Arturo
Bautista-Gomez, and Franck Cappello. Optimization of
multi-level checkpoint model for large scale HPC appli-
cations. In 2014 IEEE 28th International Parallel and
Distributed Processing Symposium, Phoenix, AZ, USA,
May 19-23, 2014, pages 1181–1190. IEEE Computer
Society, 2014.

[9] Nikoli Dryden, Tim Moon, Sam Ade Jacobs, and Brian
Van Essen. Communication quantization for data-
parallel training of deep neural networks. In 2016 2nd
Workshop on Machine Learning in HPC Environments
(MLHPC), pages 1–8. IEEE, 2016.

[10] Assaf Eisenman, Maxim Naumov, Darryl Gardner,
Misha Smelyanskiy, Sergey Pupyrev, Kim M. Hazel-
wood, Asaf Cidon, and Sachin Katti. Bandana: Using
non-volatile memory for storing deep learning models.
In Proceedings of Machine Learning and Systems 2019,
MLSys 2019, Stanford, CA, USA, March 31 - April 2,
2019. mlsys.org, 2019.

[11] Andrey Goder, Alexey Spiridonov, and Yin Wang.
Bistro: Scheduling data-parallel jobs against live pro-
duction systems. In 2015 USENIX Annual Technical
Conference, USENIX ATC ’15, July 8-10, Santa Clara,
CA, USA, pages 459–471. USENIX Association, 2015.

[12] Carlos Alberto Gomez-Uribe and Neil Hunt. The netflix
recommender system: Algorithms, business value, and
innovation. ACM Trans. Manag. Inf. Syst., 6(4):13:1–
13:19, 2016.

[13] Hui Guan, Andrey Malevich, Jiyan Yang, Jongsoo Park,
and Hector Yuen. Post-training 4-bit quantization on
embedding tables. In MLSys Workshop on Systems for
ML @ NeurIPS, 2019.

[14] Udit Gupta, Carole-Jean Wu, Xiaodong Wang, Maxim
Naumov, Brandon Reagen, David Brooks, Bradford Cot-
tel, Kim Hazelwood, Mark Hempstead, Bill Jia, et al.
The architectural implications of facebook’s dnn-based
personalized recommendation. In 2020 IEEE Inter-
national Symposium on High Performance Computer
Architecture (HPCA), pages 488–501. IEEE, 2020.

[15] Robert L Henderson. Job scheduling under the portable
batch system. In Workshop on Job Scheduling Strategies
for Parallel Processing, pages 279–294. Springer, 1995.

[16] Samuel Hsia, Udit Gupta, Mark Wilkening, Carole-Jean
Wu, Gu-Yeon Wei, and David Brooks. Cross-stack work-
load characterization of deep recommendation systems.
In 2020 IEEE International Symposium on Workload
Characterization (IISWC), pages 157–168. IEEE, 2020.

[17] R Koo and S Toueg. Checkpointing and recovery roll-
back for distributed systems. IEEE Transactions on
Software Engineering, 13(1):23–31, 1987.

[18] Darryl Lin, Sachin Talathi, and Sreekanth Annapureddy.
Fixed point quantization of deep convolutional networks.
In International conference on machine learning, pages
2849–2858. PMLR, 2016.

[19] Jayashree Mohan, Amar Phanishayee, and Vijay Chi-
dambaram. Checkfreq: Frequent, fine-grained DNN
checkpointing. In Marcos K. Aguilera and Gala Yadgar,
editors, 19th USENIX Conference on File and Storage
Technologies, FAST 2021, February 23-25, 2021, pages
203–216. USENIX Association, 2021.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 941

[20] Adam Moody, Greg Bronevetsky, Kathryn Mohror, and
Bronis R De Supinski. Design, modeling, and evalu-
ation of a scalable multi-level checkpointing system.
In SC’10: Proceedings of the 2010 ACM/IEEE Inter-
national Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–11. IEEE,
2010.

[21] Laurence Morissette and Sylvain Chartier. The k-means
clustering technique: General considerations and imple-
mentation in mathematica. Tutorials in Quantitative
Methods for Psychology, 9(1):15–24, 2013.

[22] Maxim Naumov, John Kim, Dheevatsa Mudigere, Srini-
vas Sridharan, Xiaodong Wang, Whitney Zhao, Serhat
Yilmaz, Changkyu Kim, Hector Yuen, Mustafa Ozdal,
et al. Deep learning training in facebook data centers:
Design of scale-up and scale-out systems. arXiv preprint
arXiv:2003.09518, 2020.

[23] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael
Shi, Jianyu Huang, Narayanan Sundaraman, Jongsoo
Park, Xiaodong Wang, Udit Gupta, Carole-Jean Wu,
Alisson G Azzolini, et al. Deep learning recommen-
dation model for personalization and recommendation
systems. arXiv preprint arXiv:1906.00091, 2019.

[24] Bogdan Nicolae, Jiali Li, Justin Wozniak, George
Bosilca, Matthieu Dorier, and Franck Cappello. Deep-
freeze: Towards scalable asynchronous checkpointing of
deep learning models. In CCGrid’20: 20th IEEE/ACM
International Symposium on Cluster, Cloud and Internet
Computing, 2020.

[25] Nvidia. Nvidia hgx2 datasheet.
https://images.nvidia.com/content/pdf/hgx2-
datasheet.pdf.

[26] Sinno Jialin Pan and Qiang Yang. A survey on transfer
learning. IEEE Transactions on knowledge and data
engineering, 22(10):1345–1359, 2009.

[27] Fabrizio Petrini, Kei Davis, and José Carlos Sancho.
System-level fault-tolerance in large-scale parallel ma-
chines with buffered coscheduling. In 18th International
Parallel and Distributed Processing Symposium (IPDPS
2004), CD-ROM / Abstracts Proceedings, 26-30 April
2004, Santa Fe, New Mexico, USA. IEEE Computer So-
ciety, 2004.

[28] James S Plank. An overview of checkpointing in unipro-
cessor and distributed systems, focusing on implementa-
tion and performance. Technical report, UT-CS-97-372,
1997.

[29] Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong
Yu. 1-bit stochastic gradient descent and its applica-
tion to data-parallel distributed training of speech dnns.

In INTERSPEECH 2014, 15th Annual Conference of
the International Speech Communication Association,
Singapore, September 14-18, 2014, pages 1058–1062.
ISCA, 2014.

[30] Brent Smith and Greg Linden. Two decades of recom-
mender systems at amazon.com. IEEE Internet Comput.,
21(3):12–18, 2017.

[31] Nitin H Vaidya. On checkpoint latency. Citeseer, 1995.

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. arXiv
preprint arXiv:1706.03762, 2017.

[33] Jizhe Wang, Pipei Huang, Huan Zhao, Zhibo Zhang,
Binqiang Zhao, and Dik Lun Lee. Billion-scale com-
modity embedding for e-commerce recommendation in
alibaba. In Proceedings of the 24th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data
Mining, KDD 2018, London, UK, August 19-23, 2018,
pages 839–848. ACM, 2018.

[34] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song
Han. Haq: Hardware-aware automated quantization
with mixed precision. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages
8612–8620, 2019.

[35] Long Wang, Karthik Pattabiraman, Zbigniew Kalbar-
czyk, Ravishankar K Iyer, Lawrence Votta, Christopher
Vick, and Alan Wood. Modeling coordinated check-
pointing for large-scale supercomputers. In 2005 Inter-
national Conference on Dependable Systems and Net-
works (DSN’05), pages 812–821. IEEE, 2005.

[36] Mingchao Yu, Zhifeng Lin, Krishna Narra, Songze Li,
Youjie Li, Nam Sung Kim, Alexander G. Schwing, Mu-
rali Annavaram, and Salman Avestimehr. Gradiveq:
Vector quantization for bandwidth-efficient gradient ag-
gregation in distributed CNN training. In Advances
in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems
2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada, pages 5129–5139, 2018.

[37] Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and
Gang Hua. Lq-nets: Learned quantization for highly
accurate and compact deep neural networks. In Proceed-
ings of the European conference on computer vision
(ECCV), pages 365–382, 2018.

[38] Weijie Zhao, Jingyuan Zhang, Deping Xie, Yulei Qian,
Ronglai Jia, and Ping Li. Aibox: Ctr prediction model
training on a single node. In Proceedings of the 28th
ACM International Conference on Information and
Knowledge Management, pages 319–328, 2019.

942 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[39] Yiren Zhou, Seyed-Mohsen Moosavi-Dezfooli, Ngai-
Man Cheung, and Pascal Frossard. Adaptive quan-
tization for deep neural network. arXiv preprint
arXiv:1712.01048, 2017.

[40] Chenzhuo Zhu, Song Han, Huizi Mao, and William J
Dally. Trained ternary quantization. arXiv preprint
arXiv:1612.01064, 2016.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 943

MLaaS in the Wild: Workload Analysis and Scheduling
in Large-Scale Heterogeneous GPU Clusters

Qizhen Weng
†*, Wencong Xiao*, Yinghao Yu*†

, Wei Wang
†
, Cheng Wang*,

Jian He*, Yong Li*, Liping Zhang*, Wei Lin*, and Yu Ding*

†
Hong Kong University of Science and Technology *Alibaba Group

{qwengaa, weiwa}@cse.ust.hk, {wencong.xwc, yinghao.yyh, wc189854, jian.h, jiufeng.ly, liping.z, weilin.lw, shutong.dy}@alibaba-inc.com

Abstract

With the sustained technological advances in machine
learning (ML) and the availability of massive datasets re-
cently, tech companies are deploying large ML-as-a-Service
(MLaaS) clouds, often with heterogeneous GPUs, to provi-
sion a host of ML applications. However, running diverse ML
workloads in heterogeneous GPU clusters raises a number of
challenges. In this paper, we present a characterization study
of a two-month workload trace collected from a production
MLaaS cluster with over 6,000 GPUs in Alibaba. We explain
the challenges posed to cluster scheduling, including the low
GPU utilization, the long queueing delays, the presence of
hard-to-schedule tasks demanding high-end GPUs with picky
scheduling requirements, the imbalance load across heteroge-
neous machines, and the potential bottleneck on CPUs. We
describe our current solutions and call for further investiga-
tions into the challenges that remain open to address. We
have released the trace for public access, which is the most
comprehensive in terms of the workloads and cluster scale.

1 Introduction

Driven by recent algorithmic innovations and the availability
of massive datasets, machine learning (ML) has achieved re-
markable performance breakthroughs in a multitude of real
applications such as language processing [23], image classifi-
cation [33,55], speech recognition [32,56,62], and recommen-
dation [30, 60, 74]. Today’s production clusters funnel large
volumes of data through ML pipelines. To accelerate ML
workloads at scale, tech companies are building fast parallel
computing infrastructures with a large fleet of GPU devices,
often shared by multiple users for improved utilization and
reduced costs. These large GPU clusters run all kinds of ML
workloads (e.g., training and inference), providing infrastruc-
ture support for ML-as-a-Service (MLaaS) cloud [2–4, 7, 8].

In this paper, we share our experiences in running ML
workloads in large GPU clusters. We present an extensive

characterization of a two-month workload trace1 collected
from a production cluster with 6,742 GPUs in Alibaba PAI
(Platform for Artificial Intelligence) [2]. The workloads are
a mix of training and inference jobs submitted by over
1,300 users, covering a wide variety of ML algorithms in-
cluding convolutional and recurrent neural networks (RNNs
and CNNs), transformer-based language models [23, 37, 56],
GNNs-based (graph neural network) recommendation mod-
els [31,57,75], and reinforcement learning [39,43,44]. These
jobs run in multiple ML frameworks, have different schedul-
ing requirements like GPU locality and gang scheduling,
and demand variable resources in a large range spanning
orders of magnitude. GPU machines are also heterogeneous
(see Table 1) in terms of hardware (e.g., V100, P100, T4)
and resource configurations (e.g., GPUs, CPUs, and memory
size). In comparison, prior workload analyses focus mainly
on training CNN and RNN models in homogeneous environ-
ments [18, 29, 36, 41, 65, 66, 72].

The large heterogeneity of ML workloads and GPU ma-
chines raises a number of challenges in resource management
and scheduling, making it difficult to achieve high utilization
and fast job completion. We present those challenges, describe
our solutions to some of them, and invite further research on
the open problems.

Low utilization caused by fractional GPU uses. In our
cluster, a task instance usually can only use parts of a GPU.
In fact, the median usage of streaming multiprocessors (SMs)
of an instance is 0.042 GPUs. Existing coarse-grained GPU
allocation schemes dedicate an entire GPU to one task in-
stance [36, 41, 72], and would result in extremely low utiliza-
tion in our cluster.

We address this problem with GPU sharing, a technique
that allows multiple ML tasks to time-multiplex a GPU in a
controlled manner [66]. Utilizing this feature, the scheduler
consolidates a large volume of low-GPU workloads onto a
small number of machines, using only 50% of the requested

1The trace was collected in July and August 2020, and is now open for
public access as part of the Alibaba Cluster Trace Program [1].

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 945

GPUs on average. Such consolidation causes no severe in-
terference: among high-utilization GPUs, only 4.5% run ML
tasks with potential contention on SMs.

Long queueing delays for short-running task instances.
Short-running task instances are prone to long queueing de-
lays caused by head-of-line blocking. In fact, around 9% of
short-lived instances spent more than half of their comple-
tion time waiting to be scheduled. An effective solution is to
predict the task run-time and prioritize short tasks over the
long ones. Existing approaches require specialized framework
support to track and estimate the training progress [41,46,49],
which is not always possible in production as users can run
standard or customized ML frameworks without such feature.

However, there is a silver lining. In our cluster, the ma-
jority of workloads are recurring, with 65% of tasks repeat-
edly executed at least 5 times in the trace. Through careful
feature engineering, we can predict the durations of most
recurring tasks within 25% error, sufficient to make quality
scheduling decisions as suggested by previous work [16].
Trace-driven simulations shows that using shortest-job-first
scheduling with predicted task durations reduces the average
completion time by over 63%.

Hard to schedule high-GPU tasks. Our cluster runs a
small portion of compute-intensive ML tasks for business-
critical, user-facing applications. These tasks request full
GPUs (no sharing) and can attain dramatic speedup on high-
end devices by exploiting advanced hardware features such
as NVLink [12] (see Section 6.1)—these picky requirements
make them difficult to schedule.

Our scheduler employs a simple reserving-and-packing
policy to differentiate those hard-to-schedule high-GPU tasks
from other tasks. It reserves high-end GPU machines (e.g.,
V100 with NVLinks) for a small number of high-GPU tasks
with picky scheduling requirements, while packing the other
workloads on less advanced machines, using GPU sharing.
The reserving-and-packing policy reduces the average queue-
ing delay by 68% for high-GPU tasks and 45% for all.

In our quest for optimized cluster management, a few chal-
lenges remain open, which have received less attention in the
literature.

Load imbalance. We observe imbalanced load running in
heterogeneous machines. In general, machines with low-end
GPUs are more crowded than those with high-end GPUs: the
former have over 70% CPUs and GPUs of these machines
allocated on average, while the latter have only 35% CPUs and
49% GPUs allocated. There is also a provisioning mismatch
between workloads and machines. On average, workloads
running in 8-GPU machines demand 1.9× more CPUs per
GPU than the machines can provide (12 CPUs per GPU),
whereas those running in 2-GPU machines request 53% fewer
CPUs per GPU than the machine specifications (32 or 48
CPUs per GPU).

Bottleneck on CPUs. While ML workloads perform train-

ing and inference on GPUs, many data processing (e.g., data
fetching, feature extraction, sampling) and simulation tasks
(e.g., reinforcement learning) involved in the pipeline run on
CPUs, which can also become a bottleneck. In fact, we find
that workloads running in machines with higher CPU utiliza-
tion are more likely to get slowdown. For example, in T4
machines, those slowed tasks measure an average of 33.5%
P75 CPU utilization, noticeably higher than that measured by
the accelerated tasks (21.3%). Similar results are also found
in V100 machines reserved for high-GPU workloads (50.6%
P75 CPU utilization for slowed tasks and 42.4% for the ac-
celerated), indicating that even GPU-demanding workloads
can be harmed by CPU contention.

We believe the observations made in our cluster do not
stand in isolation. We share the insights derived from our
analysis and discuss potential system optimization opportu-
nities in improving ML framework, adopting resource dis-
aggregation, and decoupling data pre-processing from GPU
training (see Section 7). We hope that the observations and
experiences shared in our study, as well as the release of the
PAI trace, can inspire follow-up research in optimizing ML
workload scheduling and GPU cluster management.

2 Background

Fast growing data and GPU demand. The support for scal-
able machine learning has become increasingly important in
production data processing pipelines. In our experience of
operating general-purpose ML platforms for production work-
loads, we have witnessed the fast growing demand of both
training data and GPU resources. In just a few years, the sheer
volume of training data for an ML job has grown orders of
magnitude, from the standard dataset of 100s GB (e.g., Im-
ageNet [22]) to an Internet scale of 10s or even 100s TB.
The massive volume of data forces ML jobs to scale out to
a large number of GPU machines. In our cluster, the largest
single ML job requests to run on over 1,000 GPUs, posing a
significant gang-scheduling challenge to the cluster.

Alibaba PAI. To accommodate the fast growing computing
demand of ML workloads, Alibaba Cloud offers Machine
Learning Platform for AI (PAI), an all-in-one MLaaS plat-
form that enables developers to use ML technologies in an
efficient, flexible, and simplified way. PAI provides various
services covering the entire ML pipeline, including feature en-
gineering, model training, evaluation, inference, and autoML.
Since its introduction in 2018, PAI has gained tens of thou-
sands of enterprises and individual developers, making it one
of the largest leading MLaaS platforms in China.

Figure 1 illustrates an architecture overview of PAI, where
users submit ML jobs developed in a variety of frameworks,
such as TensorFlow [14], PyTorch [48], Graph-Learn [75],
RLlib [38]. Upon the job submission, users provide the appli-
cation code and specify the required compute resources, such

946 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Resource Scheduler and Monitor

…

PS

worker worker worker

workerworker

evaluator

ML Platform for AI (PAI)

GPU NVLink

Users
Submit
Jobs

Split into
Tasks

Launch
Instances

GPU Server

Figure 1: Architecture overview of PAI.

Table 1: Machine specs of GPU clusters in the existing trace
analysis works. GPUs with † are equipped with NVLink [12].
The Philly trace does not reveal CPU specs and GPU types.

System #CPUs Mem (GiB) #GPUs GPU type #Nodes

PAI 64 512 2 P100 798
96 512 2 T4 497
96 512 8 Misc. 280
96 384 8 V100M32† 135
96 512/384 8 V100† 104
96 512 0 N/A 83

Philly [36] Unk. 528/264 2 12GB GPU 321
Unk. 528/264/132 8 24GB GPU 231

Tiresias [29] 20 256 4 P100† 15

Gandivafair [18] 12 224 4 K80 32
12 448 4 P100 12
12 448 4 V100 6

Themis [41] 24 448 4 K80 12
12 224 2 K80 8

HiveD [72] 24 224 4 K80 125
24 224 4 M60 75

Antman [66] 96 736 8 V100M32† 8

as GPUs, CPUs, and memory. Each job is translated into mul-
tiple tasks of different roles, such as parameter servers (PS)
and workers for a training job, and evaluator for an inference
job. Each task may consist of one or multiple instances and
can run on multiple machines. PAI employs Docker contain-
ers to instantiate tasks for simplified scheduling and execution
on heterogeneous hardware.

Trace analysis. Running diverse ML workloads in shared
GPU clusters at cloud scale raises daunting challenges. Trace
analysis is essential to understand those challenges and pro-
vide new insights on system optimization. However, existing
analyses are performed on GPU clusters with limited size,
workload diversity, and machine heterogeneity, and hence
cannot fully represent the state of the art (see Table 1). Take
Microsoft’s Philly trace [36] as an example. Whereas dis-
tributed training is now commonplace, the majority of Philly

100 101 102 103 104 105 106

of instances submitted per user
0

20
40
60
80

100

CD
F

(%
)

(a) CDF of the number of instances
run by a user.

1 2 101 102 103

of gang-scheduled instances
0

20
40
60
80

100

CD
F

(%
)

(b) CDF of gang-scheduled task in-
stances.

Figure 2: Heavily skewed distribution of task instances run
by users and the prevalence of gang-scheduling requirements.

workloads (> 82%) ran on a single GPU instance when the
trace was collected in 2017. It is also unclear what types of
GPUs were used to run those workloads, which may have
significant impact to scheduling [41, 46]: the performance of
new-generation GPUs can be 1.1–8× higher than the older
generations [18]. Moreover, the Philly trace only includes the
training workloads, whereas it is common to run both training
and inference jobs in a shared MLaaS platform [47, 51, 69].

The insufficiency of existing works motivates the release
of the PAI trace, which we examine next.

3 Workload Characterization

In this section, we analyze the ML workloads in the released
PAI trace. We start with an overview of the trace, followed by
a characterization of its temporal and spatial patterns.

3.1 Trace Overview

Trace information. The released PAI trace contains a hy-
brid of training and inference jobs running state-of-the-art
ML algorithms in mainstream frameworks [14, 48, 75]. Most
jobs request multiple GPUs. The trace records the arrival
time, completion time, resource requests and usages in GPUs,
CPUs, GPU memory and main memory of the workloads at
various levels (e.g., job, task, and instance) (Sections 3.2 and
3.3). The application semantics, such as whether the code is
performing training or inference, and in what ML framework,
are not available as our cluster scheduling system Fuxi [26,71]
only sees the execution containers and is agnostic to the
running applications. Nevertheless, we have manually ex-
amined some workloads and included their application names
(e.g., click-through rate prediction and reinforcement learn-
ing) in the trace to provide some clues whenever possible
(Sections 6.1 and 6.2). Machine-level information is also pro-
vided in the trace, including the hardware specs (Table 1) and
time-varying resource utilizations (Section 4) collected by the
daemon agents that periodically query the Linux kernel and
GPU driver (e.g., NVIDIA Management Library [9]) in the
host machines. The detailed schema and trace data are given
in the trace repository [1].

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 947

0 24 48 72 96 120 144 168
Hours from the beginning of a week (Sun. to Sat.)

0

300

600

900

1200

of

 ta
sk

s

Task

0

2500

5000

7500

10000

of

 in
st

an
ce

sInstance

(a) Number of tasks submitted and their instances in one week.

0 24 48 72 96 120 144 168
Hours from the beginning of a week (Sun. to Sat.)

0
1000
2000
3000
4000
5000
6000

Re
qu

es
te

d
re

so
ur

ce
s

CPU (10 vCPU cores)
GPU
Memory (100 GiB)

(b) Total resource requests of running tasks in one week.

Figure 3: Task submissions and resource requests roughly
follow diurnal patterns.

Jobs, tasks, and instances. In PAI, users submit jobs. Each
job has one or multiple tasks taking different computation
roles. Each task runs one or multiple instances in Docker
containers. For example, a distributed training job may have
a parameter-server (PS) task of 2 instances and a worker
task of 10 instances. All instances of a task have the same
resource demands and might be gang-scheduled (e.g., running
simultaneously for all PyTorch workers). Our characterization
in this subsection mainly focuses on task instances.

Heavy-skewed instance distribution. The PAI trace con-
tains more than 7.5 million instances of 1.2 million tasks
submitted by over 1,300 users. Figure 2a depicts the distribu-
tion of task instances run by users, which is heavily skewed.
More specifically, around 77% of task instances are submitted
by the top 5% users, each running over 17.5k instances, while
the bottom 50% users run less than 180 instances each.

The prevalence of gang-scheduling. Our distributed ML
jobs require gang-scheduling. As shown in Figure 2b, among
all task instances, around 85% have such requirements, in
which 20% must be gang-scheduled on more than 100 GPUs,
some even requesting over 1,000. Together, tasks with gang-
scheduled instances account for 79% of the total GPU de-
mands. The prevalence of these tasks makes it difficult to
achieve high utilization.

GPU locality. In addition to gang-scheduling, a task may
request to run all its instances on multiple GPUs co-located
in one machine, a requirement known as GPU locality. Al-
though such requirement often leads to prolonged scheduling
delays [29, 36, 72], it enables the use of high-speed GPU-to-
GPU interconnect within a single node (e.g., NVLink and
NVSwitch), which can dramatically accelerate distributed
training [12, 15, 36]. In our cluster, enforcing GPU locality
yields over 10× speedup for some training tasks (Section 6.1).

GPU sharing. PAI supports GPU sharing that allows mul-
tiple task instances to time-share a GPU at a low cost. With
this feature, users can specify GPU request in (0,1) and run

101 102 103 104 105 106

Instance run-time (sec)
0

20
40
60
80

100

CD
F

(%
)

PAI
Philly

(a) CDF of instance run-time.

0 25 50 75 100
Queueing / Completion (%)

0
20
40
60
80

100

CD
F

(%
)

Long tasks
All tasks
Short tasks

(b) CDF of normalized instance
queueing delays.

100 101 102 103 104 105

Instance queueing delay (sec)
0

20

40

60

80

100

CD
F

(%
)

< 0.25 GPUs
[0.25, 0.5) GPUs
[0.5, 1) GPUs
1 GPU
> 1 GPU

(c) CDF of queueing delays w.r.t.
GPU requests per instance.

100 101 102 103 104 105

Instance queueing delay (sec)
0

20

40

60

80

100

CD
F

(%
)

T4
MISC
P100
V100
V100M32

(d) CDF of queueing delays w.r.t.
GPU types.

Figure 4: CDF of instance run-time and queueing delays.

its task instances using parts of GPUs. We will show in Sec-
tion 5.1 that GPU sharing enables considerable savings on
GPU provisioning.

Various GPU types to choose from. PAI provides het-
erogeneous GPUs and allows users to specify the required
GPU types to run their tasks. The available choices include
NVIDIA Tesla T4, P100, V100, V100M32 (V100 SXM2 with
32 GB memory), and other GPUs of older generations (Misc
in Table 1), e.g., Tesla K40m, K80, and M60. In our cluster,
only 6% tasks require to run on specified GPUs, while the
others have no such limitation and can run on any GPUs.

3.2 Temporal Pattern
We next examine the temporal patterns of the PAI workloads.

Diurnal task submissions and resource requests. Fig-
ure 3 depicts task and instance submissions as well as the
overall resource requests in one week during the trace collec-
tion period. We observe rough diurnal patterns, where task
submissions in weekdays (from the 24th to 144th hours) are
slightly higher than in weekends. It is worth mentioning that
in addition to the daytime, midnight is also a rush hour for task
submissions (Figure 3a). Yet, most tasks submitted at mid-
night are less compute-intensive, having only a few instances
and requesting a small amount of resources (Figure 3b).

Instance run-time in a wide range. Figure 4a shows the
distribution of instance run-time (solid line). Similar to the
Philly trace [36] (dotted line), instance run-time varies in
a wide range spreading four orders of magnitude. The me-
dian run-time (23 minutes) is comparable with that of Philly
(26 minutes), while their 90th percentile (P90) run-time (4.5
hours) is shorter than that of Philly (25 hours).

948 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Non-uniform queueing delays. The queueing delay (aka
wait time or scheduling delay), measured from the moment of
task submission to the start of the task instance, varies greatly
among instances. Compared to the long-running instances,
short-running instances usually spend a larger portion of time
in queueing. To see this, we use the median run-time as a
threshold and divide instances into long-running and short-
running ones, where a long-running (short-running) task in-
stance has a longer (shorter) run-time than the median. In
Figure 4b, We compare the queueing delays of these task in-
stances relative to their completion times (queueing delay plus
run-time). Around 9% short-running instances spend more
than half of the completion time waiting to be scheduled; this
number drops to 3% when it comes to long-running instances.

A task instance’s queueing delay also depends on its GPU
request. Figure 4c shows that instances willing to share GPUs
(i.e., GPU request in (0,1)) can be quickly scheduled, with the
90th percentile (P90) queueing delay being 497 seconds. In
comparison, instances that do not accept GPU sharing need to
wait for a longer time, with the P90 delay being 1,150 (8,286)
seconds for those requesting one GPU (> 1 GPU).

Long queueing delays are also seen in instances requesting
high-end GPUs. As shown in Figure 4d, for instances running
on advanced V100 GPUs (including V100M32), the median
and P90 delays are 113 and 13,709 seconds, respectively. In
comparison, for instances running on low-end miscellaneous
GPUs, the median and P90 delays are only 11 and 360 sec-
onds, respectively.

3.3 Spatial Pattern
We finally present the spatial patterns of the PAI task instances
by analyzing their resource requests and usages. PAI collects
the system metrics of running tasks every 15 seconds and
provides visualization tools [2, 25] for users to analyze the
workload patterns and figure out their resource requests.

Heavy-tailed distribution of resource requests. Fig-
ures 5a, 5b, and 5c (blue solid lines) respectively depict the
distributions of the total CPUs, GPUs, and memory requested
by all instances. All three distributions are heavy-tailed, with
around 20% instances requesting large resource amounts and
the other 80% requesting small to medium. More specifically,
the P95 request demands 12 vCPU cores2, 1 GPU, and 59
GiB memory, more than twice the median request (6 vCPU
cores, 0.5 GPUs, and 29 GiB memory).

Uneven resource usage: Low on GPU but high on CPU.
Most users tend to ask for more resources than they actu-
ally need, resulting in a low resource usage (dotted lines in
Figures 5a, 5b, and 5c). In our cluster, the median instance re-
source usages are 1.4 vCPU cores, 0.042 GPUs, and 3.5 GiB
memory, much smaller than the median request. We stress

2In our cluster, each physical processor core consists of two vCPU cores,
using hyper-threading technology [42].

0 6 10 20 30
vCPU cores

0
20
40
60
80

100

CD
F

(%
)

CPU Request
CPU Usage

(a) CPU request and usage.

0.0 0.5 1.0 1.5 2.0
GPUs

0
20
40
60
80

100

CD
F

(%
)

GPU Request
GPU Usage

(b) GPU request and usage.

0 25 50 75 100
GiB of main memory

0
20
40
60
80

100

CD
F

(%
)

Mem Request
Mem Usage

(c) Memory request and usage.

-100 -10 -1 0 1 10 100
(Usage-request)/capacity (%)

0
20
40
60
80

100

CD
F

(%
)

CPU
GPU
Mem

(d) Usage minus request, normalized
by the machine capacity.

Figure 5: CDF of instance resource requests and actual usages.

that the low GPU usage is not caused by the low comput-
ing demand, but by contentions on other resource like CPU,
making GPUs idle for most of the time (Section 6.2). Fig-
ure 5b also shows that around 18% instances barely use GPUs:
they perform computations such as running parameter servers,
fetching and pre-processing data, which are mostly on CPUs
with small or no GPU involvement.

In PAI, instances of a task can use spare resources in the
host machines, making it possible to overuse more resources
than requested. Compared to GPU and memory, overuse of
CPUs is more prevalent. To see this, for each instance we mea-
sure the difference between its resource usage and request for
CPU, GPU, and memory—positive (negative) being overuse
(underuse). We normalize the results by the machine’s CPU,
GPU, and memory capacity, respectively, and depict the distri-
butions in Figure 5d. There are 19% task instances overusing
CPUs (blue solid line with X > 0). In comparison, only 3%
(9%) instances use more GPUs (memory) than they requested.

4 GPU Machine Utilization

Having studied the workload characterization, we turn to re-
source utilization in GPU machines.

4.1 Utilization of Compute Resources
We start to analyze the utilization of compute resources, in-
cluding CPU, GPU, main and GPU memory. Our cluster has
1,295 2-GPU machines and 519 8-GPU machines (Table 1).
Machines with 8 GPUs have a lower CPU-to-GPU ratio than
those with 2 GPUs. In light of their different configurations,
we perform measurement separately for the two types of ma-
chines. Each machine has time series data of resource utiliza-
tion measured every 15 seconds by the monitoring system.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 949

0 25 50 75 100
Utilization (%)

0
20
40
60
80

100

CD
F

(%
)

P90 of 8-GPU nodes

0 25 50 75 100
Utilization (%)

0
20
40
60
80

100

CD
F

(%
)

P90 of 2-GPU nodes

0 25 50 75 100
Utilization (%)

0
20
40
60
80

100

CD
F

(%
)

P50 of 8-GPU nodes

CPU
GPU
Mem
GPU Mem

0 25 50 75 100
Utilization (%)

0
20
40
60
80

100
CD

F
(%

)

P50 of 2-GPU nodes

CPU
GPU
Mem
GPU Mem

Figure 6: CDF of P90 and P50 (median) utilization of CPU,
GPU, main and GPU memory in different machine groups.

At each timestamp, we collect the utilization of all 8-GPU
machines and calculate the tail (P90) and the median (P50).
Together, we obtain a sequence of P90 and P50 utilizations
taken at different timestamps. We depict their distributions in
Figure 6 (two subfigures on the left). We perform the same
measurements in 2-GPU machines and depict the results in
the right two subfigures. Compared to memory (main and the
GPU’s), GPU and CPU have higher utilization. In 8-GPU ma-
chines (upper-left in Figure 6), the average P90 utilization of
GPU (red dash-dotted line) and CPU (blue solid line), i.e., the
arithmetic mean of P90 values from all timestamps, reaches
82% and 77%, respectively. In 2-GPU machines (upper-right
in Figure 6), the P90 GPU utilization remains high (77% on
average), while the P90 CPU utilization drops to 42% on av-
erage due to the large CPU-to-GPU ratio (32 or 48 CPUs per
GPU). In both types of machines, the P90 utilization of the
main and GPU memory stays below 60% at almost all time,
indicating that our tasks are less memory-intensive.

Compared to other resources, we measure a larger variation
of utilization on GPUs. As shown in Figure 6, the distribution
of P90 GPU utilization spans a wide range from less than 40%
to 100% of the computing power provided by the streaming
multiprocessors of the machine’s GPUs; the difference be-
tween the tail and the median utilization is also larger on GPU
than on other resources (comparing the top sub-figures with
the bottom). The large variation is partly due to the bursty
GPU usage patterns found in our ML workloads [65,66]. It is
also due to the design of our scheduler that prioritizes packing
over load balancing (Section 6.3).

4.2 Low Usage of Network and I/O

In addition to compute resources, network and I/O are also
frequently used in distributed ML. To understand their impact,

0 10 20 30
Machine network receive (Gbps)
0

20
40
60
80

100

CD
F

(%
)

Node B/W ≥ 10 Gbps
Node B/W ≥ 15 Gbps
Node B/W ≥ 32 Gbps

(a) CDF of machine network input.

10−410−310−210−1 100 101 102

Machine-level CPU usage (%)
0

20
40
60
80

100

CD
F

(%
) iowait

usr
kernel

(b) CDF of machine CPU time.

Figure 7: Low usage of network and I/O.

we measure the network input rate3 in machines with different
bandwidth guarantees (≥ 10 Gbps for P100 and Misc, ≥ 15
Gbps for T4, and ≥ 32 Gbps for V100) and depict their distri-
butions in Figure 7a. The P95 network input rate only reaches
54%, 48%, and 34% of the guaranteed bandwidth provided
in P100 (or Misc), T4, and V100 machines, respectively.

In terms of I/O, we collect machine-level CPU usage data,
including the I/O waiting time (iowait) and the execution time
in usr and kernel modes, respectively. Figure 7b shows their
distributions. The CPU time spent on iowait is three orders of
magnitude smaller than that in usr and kernel modes, meaning
that CPUs are mostly busy processing data rather than waiting
for the I/O to complete.

5 Opportunities for Cluster Management

In PAI, our goal of cluster management is two-fold: (1) achiev-
ing high utilization in GPU machines, and (2) completing as
many tasks as fast as possible. In this section, we describe the
opportunities and our efforts in achieving the two goals.

5.1 GPU Sharing
Unlike CPUs, GPUs do not natively support sharing and are
allocated as indivisible resources in many production clus-
ters [36, 72], where a single task instance runs exclusively
on a GPU. Although such allocation provides strong perfor-
mance isolation, it results in GPU underutilization, which is
particularly salient in our cluster as most instances can only
utilize a small portion of the allocated GPUs (Section 3.3).

To avoid this problem, the PAI cluster scheduler supports
GPU sharing which allows multiple task instances to run on
the same GPU in a space- and time-multiplexed manner. With
this feature, a task instance can request a fraction of GPU
(< 1 GPU) and is guaranteed to allocate the specified fraction
of GPU memory upon scheduling (space-multiplexed). When
needed, an instance can also use unallocated GPU memory
during execution. An instance, however, has no guaranteed
allocation of compute units (i.e., SMs), which are dynamically
shared among co-located instances (time-multiplexed).4

3Our trace does not log the network output. For most training and infer-
ence tasks, the network input is orders of magnitude larger than the output.

4Fine-grained sharing of compute units with isolation guarantee requires

950 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Hour of the day

0

2000

4000

6000

8000

GP

Us
 a

llo
ca

te
d w/o GPU sharing (simulated)

w/ GPU sharing (measured)

Figure 8: Box plots of the number of allocated GPUs with
and without GPU sharing. The boxes depict the 25th, 50th,
and 75th percentiles, respectively; the two whiskers are one
interquartile range (IQR) past the low and high quartiles.

0 20 40 60 80 100
GPU Utilization (%)

0
20
40
60
80

100

CD
F

(%
)

(a) CDF of GPU utilization.

0 24 48 72 96 120
Hours from beginning

0

100

200

300

400

500

600

GP

Us
 w

/ ≥
 9

5%
 u

til

≥2 instances on GPU
1 instance on GPU

(b) The number of GPUs with ≥ 95%
utilization in a 5-day period. The top-
stacked bars (orange) show GPUs run-
ning ≥ 2 instances.

Figure 9: Heavy utilization is rarely measured in GPUs; most
heavy-utilized GPUs run a single instance.

Benefits of GPU sharing. GPU sharing enables consider-
able savings on resource provisioning. To see this, we simu-
late the scenario of no GPU sharing, in which we replay the
trace and count the number of allocated GPUs in each hour.
Figure 8 compares the simulated results with the numbers
measured in the real system, binned in hour of the day. On
average, only 50% of GPUs are needed with sharing. In the
peak hour at around 10 am, the savings can be up to 73%.

Does GPU sharing cause contention? As the utilization
increases, instances running on a shared GPU start to con-
tend for streaming processors (SMs), causing interference. To
quantify how frequently the contention may occur, we collect
the utilization data of all GPUs in two months and depict their
distribution in Figure 9a. Heavy utilization (≥ 95%) is rarely
measured, which accounts for only 7% cases in the trace.
We further examine those heavy-utilized GPUs in which run-
ning instances have a high chance to contend with each other.
Figure 9b shows the number of heavy-utilized GPUs in a
5-day period, among which only a few (4.5% on average)
run multiple instances (the top-stacked bars). As the majority
of heavy-utilized GPUs run a single instance, no contention
occurs. We therefore believe GPU sharing does not cause
severe contention in our cluster.

high-level support of ML framework. In PAI, such support is provided by
AntMan [66]. Yet, it only applies to tasks running in the frameworks where
AntMan is implemented (currently supporting TensorFlow and PyTorch).

100 101 102 103 104

Task recurrence
0

20
40
60
80

100

CD
F

(%
)

Figure 10: CDF of task re-
currence.

0 1 2 3 4 5 6 7
Days from beginning

0
10
20
30
40
50
60

Ru
n-

tim
e

(s
ec

)

Task A Task B Task C

Figure 11: Submissions and in-
stance run-times of three batch
inference tasks using BERT.

5.2 Predictable Duration for Recurring Tasks
Knowing the duration (aka run-time) of ML task instances
is the key to making better scheduling decisions. Existing
schedulers for ML workloads predict the task instances du-
ration based on the training progress (e.g., number of it-
erations, loss curve, and target accuracy) and speed of the
task [29, 41, 46, 49]. Obtaining such information requires
specific framework support (e.g., TensorFlow and PyTorch),
which is not always possible in our cluster as users run a va-
riety of frameworks of standard or customized version, and
their submitted tasks may not perform iterative training (e.g.,
inference). In fact, our cluster scheduler [26, 71] is designed
for container workloads and is agnostic to the task semantics.

The prevalence of recurring tasks. Despite the scheduler
being agnostic to task progress, we find that most tasks are
recurring, and their instance run-times can be well predicted
from past executions. Yet, in our system, task recurrence can-
not be simply identified from the task ID or name, which is
uniquely generated for each submission. Instead, we turn to
the meta-information consistently specified by a task across
multiple submissions, such as the entry scripts, command-
line parameters, data sources and sinks. Hashing the meta-
information generates a unique Group tag, which we use to
identify the recurrence of a task. Following this approach,
we depict the distribution of task recurrences in Figure 10:
around 65% tasks repeatedly run at least 5 times in the trace.

In addition to periodic training, many recurring tasks per-
form batch inference. These tasks aggregate data from incom-
ing requests and then perform batch inference on a collective
of data in one go. Users can configure the task launching inter-
val, ranging from minutes to days. As an illustrative example,
Figure 11 shows three recurring tasks identified in the trace
that perform batch inference with pre-trained BERT [23] mod-
els. All three tasks run on a regular basis, with stable average
instance run-times that can be accurately predicted.

Instance duration prediction for recurring tasks. A re-
curring task can be submitted by different users with different
resource requests, and its instances may have different run-
times. We therefore predict the duration from past runs based
on three features, the task’s username (User), resource re-
quests (Resource, including GPU and other resources), and
group tag (Group). Taking these features as input, we predict

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 951

-∞ -80 -60 -40 -20 0 20 40 60 80 100
Estimate error (%) ±5%

0
5

10
15
20
25
30
35
40

Po
rti

on
 o

f i
ns

ta
nc

es
 (%

)

<Group,User,Resource>
<Group,User,GPU>
<Group,User>
<User,GPU>
<User>

Figure 12: Percentage prediction error, i.e., (true−pred)/true in
percentage, of duration estimates with different features.

the task’s average instances duration using the CART (Clas-
sification And Regression Trees [17]) algorithm with a tree
regressor. The regressor makes at most 10 splits for each tree
and uses the mean absolute error (MAE) as the splitting crite-
rion. We choose MAE instead of the standard mean squared
error (MSE) because the former is more robust to extreme
outliers in heavy-tailed distribution than the latter.

To evaluate the accuracy of our prediction, we consider
tasks that recur at least 5 times in the trace. We use 80% of
those tasks to train the predictor and the remaining 20% for
testing. Figure 12 compares the accuracy of the predictor
trained with different feature inputs, including Group, User,
Resource, and GPU (requested GPU types and numbers). We
use percentage prediction error [35] as the accuracy metric,
defined as (true−pred)/true×100%. Our evaluation shows
that Group is the most important feature that greatly improves
the prediction accuracy. Further complementing it with User
and Resource (or GPU) results in less than 25% prediction
error for 78% instances. According to prior studies [16], du-
ration predictions with such accuracy is sufficient to make
high-quality scheduling decisions.

Benefits for scheduling. We present a simple simulation
study to evaluate how the prediction of task instance duration
can help improve scheduling. We developed a discrete-time
simulator and use it to replay the trace. We sample tasks from
the trace and feed their resource requests, arrival times, real
and predicted run-times into the simulator. We assume ho-
mogeneous GPUs in simulation and respect the real duration
when scheduling a task instance to a GPU. Both the simulator
and experiment scripts are released along with the trace [1].

We configure two scheduling policies, first-in-first-out
(FIFO) and shortest-job-first (SJF), in simulation. Figure 13
shows the average task completion time in GPU clusters of
different sizes using FIFO and four SJF schedulers, where
SJF-Oracle makes scheduling decisions based on the real-
measured task instance duration (ground truth) and the others
use predictors trained with different input features. Compared
to FIFO, the four SJF schedulers reduce the average task
completion time by 63–77%, depending on the predictors
they use. In particular, the predictors trained with the Group
feature yield better performance; the more features are in-
cluded, the more accurate the predictions are, and the closer
the scheduling performance is to the optimum (SJF-Oracle).

0
5000

10000
15000
20000
25000
30000
35000
40000

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500Av
g.

 c
om

pl
et

io
n

tim
e

(s
ec

)

Num of GPUs in Cluster

SJF-Oracle SJF-<Group,User,GPU> SJF-<Group,User> SJF-<User> FIFO (baseline)

Figure 13: Average task completion time given different GPU
cluster sizes and various scheduling policies in simulation.

These results are in line with Figure 12.

6 Challenges of Scheduling

Compared to previous simulations, scheduling ML tasks of
large heterogeneity in production clusters is far more complex.
To understand the challenges posed by such heterogeneity,
in this section we present case studies for two representative
types of ML tasks with high and low GPU requests. We de-
scribe our scheduling policies deployed in production that
differentiate between the two types of tasks in light of their
different request and usage patterns. Yet, many challenges
remain open, which we discuss in detail.

6.1 Case Study of High-GPU Tasks

In our cluster, a small portion of tasks run compute-intensive
instances with high GPU requests (Section 3.3). These tasks
train state-of-the-art models or perform inference with trained
models for business-critical, user-facing applications. They
request powerful GPU devices with high memory or advanced
hardware features (e.g., NVLink).

NLP with advanced language models. Around 6.4% tasks
running in our cluster perform natural language process-
ing (NLP) using advanced models, such as BERT [23], AL-
BERT [37], and XLNet [67]. Among them, 73% have large
input and must run on GPUs with 16 GiB or higher mem-
ory (i.e., T4, P100, V100/V100M32). Figure 14a shows the
distribution of GPU requests and usages of NLP instances,
where 40% request more than 1 GPU and use over 0.4 GPUs
in computing power. Comparing Figure 5b and Figure 14a,
we observe much higher GPU requests and usages of NLP
tasks than that of general workloads.

Image classification with massive output. In our cluster,
some distributed training tasks request to run their worker
instances in one machine with high-speed GPU-to-GPU inter-
connects (e.g., NVLink) for much improved performance, a
requirement known as GPU locality. A typical example is to
train a classification model that classifies images of goods into
a large number of standard product units (SPUs). The model
can be a modified ResNet [33] with the last output layer
replaced by a softmax layer with 100,000 output of SPUs

952 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 2 4 6 8
GPUs

0
20
40
60
80

100

CD
F

(%
)

GPU Request
GPU Usage

(a) CDF of GPU requests and us-
ages of NLP task instances.

0
50

100
150
200
250
300
350
400

DenseNet-121 VGG ResNet-100K

Pe
r

ep
oc

h
du

ra
tio

n
(s

ec
) PCIe NVLink

1.12×

3.94×

10.54×

(b) Per-epoch duration of 3 classifi-
cation models trained in 8-GPU ma-
chines with and without NVLink.

Figure 14: High-GPU tasks (NLP and image classification).

0 3 6 9
vCPU cores

0
20
40
60
80

100

CD
F

(%
)

(a) CPU usage of instances.

0.0 0.1 0.2 0.3 0.4
GPUs

0
20
40
60
80

100

CD
F

(%
)

Inference
Training

(b) GPU usage of instances.

Figure 15: CDF of the CPU and GPU usage of click-through-
rate (CTR) instances.

(ResNet-100k). The presence of such a large fully-connected
layer mandates the exchange of massive gradient updates be-
tween worker instances, making communication a bottleneck.
For these tasks, meeting GPU locality is critically important.
Figure 14b compares the duration of a training epoch of three
classification models with a large number of output in 8-GPU
machines with and without NVLink (i.e., via PCIe). All three
models achieve salient speedup with NVLink: ResNet-100k,
the largest model, is accelerated by 10.5×.

6.2 Case Study of Low-GPU Tasks

The majority of tasks running in our cluster have low GPU
requests and usages (Section 3.3). To understand this some-
what unexpected result, we study three popular tasks. By
profiling their executions, we find that they spend a consider-
able amount of time on CPUs for data processing (e.g., data
fetching, feature extraction, sampling) and simulation (e.g.,
reinforcement learning), leaving GPUs under-utilized.

CTR prediction model training and inference. Among
all tasks in the trace, over 6.7% are for advertisement click-
through rate (CTR) prediction. These tasks use a variety of
CTR models [30, 60, 73, 74], with around 25% instances per-
forming training and the other 75% performing inference. Fig-
ure 15 shows the distributions of the CPU and GPU usages
of these instances. Compared to training, inference instances
have higher CPU utilization as they process a large volume
of data continuously arriving. Both instances have low GPU
utilization: over 75% instances use less than 0.1 GPUs.

DeepFM DCN DNN
Model

0

20

40

60

80

100

Du
ra

tio
n

pr
op

or
tio

n
(%

)

I/O Ops
GPU Ops
CPU Ops

(a) Duration breakdown of CTR pre-
diction instances.

0 CPU 10 CPU 20 CPU 40 CPU
Idle CPUs on 48-CPU Host

0

1

2

3

4

Pr
oc

. s
pe

ed
 (s

te
ps

/s
ec

)

(b) DeepFM training instances in-
terfered by the co-located load.

Figure 16: Microbenchmark of inference and training in-
stances of click-through-rate prediction models.

10−3 10−2 10−1 100 101

of vCPU cores (GPUs)
0

20
40
60
80

100

CD
F

(%
)

vCPU cores
GPUs

(a) CDF of CPU and GPU usage.

GraphSage BipGraphSage DeepWalk
Model

0

20

40

60

80

100

Du
ra

tio
n

pr
op

or
tio

n
(%

)

I/O Ops
GPU Ops
CPU Ops

(b) Instance duration breakdown.

Figure 17: Resource usage and duration breakdown of GNN
training instances.

We next profile the executions of three inference instances
with DeepFM, DCN, and DNN models, respectively. Fig-
ure 16a shows the run-time breakdown of I/O, GPU, and
CPU operations. The three instances spend around 80% run-
time on CPUs to fetch and process the next input batch
(IteratorGetNext in TensorFlow [20, 40]); GPU and I/O opera-
tions (e.g., MatMul, Sum, Cast, MEMCPYHtoD) only account
for 10% of the execution time, respectively.

The high CPU usage of these instances makes them prone
to interference from the co-located workload, especially in
machines with high CPU utilization. To see this, we run train-
ing instances of a DeepFM model in containers with 8 vCPU
cores. Together with an instance, we run some artificial load
using spare cores of the host machine to create CPU stress. We
configure varying load to control the level of stress. Figure 16b
shows the instance training speed in a 48-core machine under
varying stresses with 0 to 40 cores left idle (highest to no
stress). Though the co-located load run on different vCPU
cores not occupied by the instance, it still results in up to
28% slowdown of the training speed due to the contention
of other shared resources, such as cache, power, and memory
bandwidth [19, 21, 58].

GNN training. Graph Neural Network (GNN) training
comes as another popular computation, which accounts for
2% instances in our cluster, including GraphSage [31], Bi-
partite GraphSage [75], GAT [57], etc. Figure 17a shows
the distribution of CPU and GPU usage of GNN training in-
stances, where CPU is more heavily utilized than GPU. In
production GNN models, a graph must undergo a sequence

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 953

100 101 102 103

of instances in the task
0

20
40
60
80

100

CD
F

(%
)

(a) CDF of RL instances.

10−2 10−1 100 101 102 1030
20
40
60
80

100

CD
F

(%
)

vCPU cores
GPU
GB data input

(b) CDF of resource usage.

Figure 18: Characterization of reinforcement learning in-
stances.

of pre-processing, such as EdgeIteration, NeighborSampling,
and NegativeSampling [75], before turning into an embed-
ding (a computationally digestible format, usually vectors)
of a deep neural network. Such graph pre-processing is cur-
rently cost-effective when performing on CPUs. As shown in
Figure 17b, it accounts for 30–90% duration of each training
iteration in different models.

Reinforcement learning. Our cluster also runs many rein-
forcement learning (RL) tasks. An RL algorithm iteratively
generates a batch of data through parallel simulations on
CPUs and performs training with the generated data on GPUs
to improve the learning policy. Figure 18a shows that 72%
RL tasks have at least 10 gang-scheduled instances, with the
largest one running over 1,000 instances. Most RL instances
are used to run simulations, eating up lots of CPUs and net-
work bandwidth but only a small fraction of GPUs, as shown
in Figure 18b. In fact, in the largest RL task, each instance
requests only 0.05 GPUs.

6.3 Deployed Scheduling Policies
Compared to low-GPU tasks, high-GPU tasks have picky
scheduling requirements and are usually run by business-
critical applications. They are hence differentiated from other
tasks and scheduled as first-class citizens.

Reserving-and-packing. In our cluster, the scheduler em-
ploys a reserving-and-packing policy. That is, it intention-
ally reserves high-end GPUs (e.g., V100/V100M32 with
NVLinks) for high-GPU tasks, while packing the other work-
loads to machines with less advanced GPUs (e.g., T4 and
Misc). Specifically, for each task, the scheduler characterizes
its computation efficiency using a performance model that
accounts for many task features, such as the degree of paral-
lelism, the used ML model, the size of embedding [59,64,70],
and the historical profiles of other similar tasks. Tasks with
high computation efficiency larger than a certain threshold
are identified as high-GPU.

For each task, the scheduler generates an ordered sequence
of allocation plans; each plan specifies the intended GPU
device and is associated with an attempt timeout value. The
scheduler attempts allocation following the ordered plans: it
waits for the availability of the intended GPU specified in the

100 101 102 103 104 105 106

All inst(task) queueing delay (sec)
90
92
94
96
98

100

CD
F

(%
)

Balanced (inst)
R&P (inst)
Balanced (task)
R&P (task)

(a) Queueing delays of all instances
and tasks.

100 101 102 103 104 105 106

V100 inst(task) queueing delay (sec)
0

20
40
60
80

100

CD
F

(%
)

Balanced (inst)
R&P (inst)
Balanced (task)
R&P (task)

(b) Queueing delays of V100 in-
stances and tasks.

Figure 19: Task queueing delays in simulation with load-
balancing (Balanced) and reserving-and-packing (R&P).

current plan until timeout, and then moves on to the next plan
for another attempt. For high-GPU tasks, the allocations of
high-end GPUs are attempted before the less advanced ones
in the ordered plans; for other tasks, the order is reversed. Our
GPU scheduler is implemented atop Fuxi [26, 71], a locality-
tree based scheduling system.

Load-balancing. Given the potential resource contention
and interference between co-located task instances (Sec-
tion 6.2), maintaining load balancing across machines with
similar specs is also important. Therefore, under reserving-
and-packing, the scheduler also prioritizes instance schedul-
ing to machines with low allocation rate, measured as a
weighted sum of the allocated CPUs, memory, and GPUs
normalized by the machine’s capacity.

Benefits. Our scheduler prioritizes reserving-and-packing
over load-balancing. To justify this design, we evaluate two
scheduling policies using the simulator described in Sec-
tion 5.2: 1© simply load-balancing machines using progres-
sive filling (always scheduling a task’s instances to the
least utilized node), and 2© only performing reserving-and-
packing without considering load balancing (R&P). We sam-
ple 100,000 tasks with over 500,000 gang-scheduled instances
from the trace and feed them into the simulator. Figure 19a
shows the CDF of the queueing delays of all instances and
tasks under the two policies. Note that the queueing delay of a
task is also the queueing delay of its gang-scheduled instances.
Over 90% instances and tasks are launched immediately under
the two policies. Compared to load-balancing, reserving-and-
packing reduces the average task queueing by 45%, mostly
attributed to the significant cutoff of the tail latency by over
10,000 seconds. Figure 19b further compares the queueing de-
lays of business-critical tasks and instances requesting V100
GPUs under the two policies: reserving-and-packing reduces
the average task queueing delay by 68%. The simulation re-
sults justify our design of prioritizing reserving-and-packing
over load-balancing.

6.4 Open Challenges
However, our scheduler policy design is not without its prob-
lems, many of which remain open to address. We next discuss

954 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 2: Mismatch between machine specs and instance re-
quests, in terms of the provisioned/requested CPUs per GPU.

vCPU cores per GPU All nodes 8-GPU nodes 2-GPU nodes

Machine specs 23.2 12.0 38.1
Instance requests 21.4 22.8 18.1

those open challenges, which we believe also stand in other
GPU clusters with heterogeneous machines.

Mismatch between machine specs and instance requests.
We observe a mismatch between machine specs and instance
requests. Table 2 compares the average number of provisioned
and requested vCPU cores per GPU in machines with 8 and
2 GPUs and their running instances. In 8-GPU machines, 12
vCPU cores are provisioned for each GPU. Yet, the instances
running in those machines request 22.8 vCPU cores per GPU
on average. On the other hand, CPUs in 2-GPU machines are
over-provisioned, where the CPU-to-GPU ratio is more than
twice of the instance requests.

To understand how the mismatch may affect the machine
utilization, we randomly sample a number of nodes with dif-
ferent specs and depict the requests and usages of CPUs and
GPUs in heatmaps shown in Figure 20, where each row cor-
responds to one machine, and all values are normalized to the
machine’s capacity. Compared to 8-GPU nodes, 2-GPU ma-
chines have substantially underutilized CPUs despite GPUs
being heavily occupied. On average, P100 (T4) machines
have 31% (20%) CPUs allocated with only 19% (10%) CPU
utilization (Figures 20c and 20d).

We stress that the mismatch between machine specs and
instance requests is not fundamental, as the cluster-wide CPU-
to-GPU specs remains close to the overall instance requests
(23.2 vs. 21.4 as shown in Table 2). We therefore believe that
the mismatch can be avoided or at least mitigated by improved
scheduling (e.g., rescheduling some high-CPU instances in
8-GPU machines to 2-GPU nodes).

Overcrowded weak-GPU machines. Compared to other
machines, those with less advanced GPUs are overcrowded.
The problem becomes even more salient in 8-GPU nodes
(Misc GPUs) as shown in Figure 20a. On average, 77% CPUs
and 74% GPUs are allocated in these machines. CPUs are
better utilized than GPUs: the utilization of CPU is 43% on
average, while the average utilization of GPU is 18%. This
result is partly caused by our scheduling algorithm prioritizing
weak-GPU machines for low-GPU tasks (Section 6.3), which
account for a large instance population in our cluster.

Imbalanced load in high-end machines. Compared to
other nodes, high-end machines with advanced V100 GPUs
are less crowded (Figure 20b), with the average allocation
ratios of CPUs and GPUs being 35% and 49%, respectively.
These machines are usually reserved for a small number of
important high-GPU tasks, thus suffering from low utilization.
We also observe imbalanced load among V100 machines. In

0 20 40 60 80 100

CP
U

 R
eq

CP
U

 U
sg

G
PU

 R
eq

0 2 4 6 8 10 12 14 16 18 20
Days from beginning

G
PU

 U
sg

(a) Machines with 8 Misc GPUs.

CP
U

 R
eq

CP
U

 U
sg

G
PU

 R
eq

0 2 4 6 8 10 12 14 16 18 20
Days from beginning

G
PU

 U
sg

(b) Machines with 8 V100 GPUs.

CP
U

 R
eq

CP
U

 U
sg

G
PU

 R
eq

0 2 4 6 8 10 12 14 16 18 20
Days from beginning

G
PU

 U
sg

(c) Machines with 2 P100 GPUs.

CP
U

 R
eq

CP
U

 U
sg

G
PU

 R
eq

0 2 4 6 8 10 12 14 16 18 20
Days from beginning

G
PU

 U
sg

(d) Machines with 2 T4 GPUs.

Figure 20: Heatmap of requests and usages of CPU and GPU
in machines with different specs. Each row corresponds to
one machine.

Figure 20b, the machines near the bottom are more crowded
than the others. This suggests that the current load-balancing
algorithm still has plenty room to improve (Section 6.3).

CPU can be the bottleneck. As shown in Section 6.2, a
large number of ML tasks use CPUs more extensively than
GPUs. These tasks are more likely to get slowdown in ma-
chines with high CPU contentions. To see this, we study the
correlation between machine utilization and instance slow-
down in the trace and depict the results in Figure 21. Our
analysis focuses on the recurring tasks (Section 5.2). In each
task recurrence, we divide the instances into three groups:
1) instances with accelerated execution whose duration is
the shortest 15%, 2) normal execution whose duration is the
middle 70%, and 3) delayed execution whose duration is the
longest 15%. Figure 21a compares the CPU utilization in ma-
chines running accelerated, normal, and delayed instances. In
general, machines running delayed instances measure higher
CPU utilization than those running accelerated and normal
instances. However, such correlation is not found on GPUs.
As illustrated in Figure 21b, the distributions of GPU utiliza-
tion show no substantial differences across machines running
accelerated, normal, and delayed instances.

We next zoom in to the popular CTR prediction tasks with
high CPU usage (Section 6.2). Figure 22 shows the CDF of
CPU/GPU utilization in machines running accelerated and
delayed instances, respectively. In machines with over 24%
CPU utilization run 50% delayed instances but only 10%

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 955

T4 Misc P100 V100 V100M32
GPU type

0

25

50

75

100

M
ac

hi
ne

 C
PU

 U
til

. (
%

)

accelerated (15%) normal (70%) delayed (15%)

(a) CPU utilization of machines with various GPU types.

T4 Misc P100 V100 V100M32
GPU type

0

25

50

75

100

M
ac

hi
ne

 G
PU

 U
til

. (
%

)

accelerated (15%) normal (70%) delayed (15%)

(b) GPU utilization of machines with various GPU types.

Figure 21: Correlation between machine utilization (CPU
and GPU) and instance slowdown. Machines hosting delayed
instances have higher CPU utilization than those hosting nor-
mal and accelerated ones. In contrast, such correlation is not
found on GPUs. The boxes depict the 1/128, 1/64, . . . , 1/4, 1/2,
3/4, . . . , 63/64, 127/128 quantile values [34, 61].

0 25 50 75 100
Machine-level CPU usage (%)

0
20
40
60
80

100

CD
F

(%
)

delayed
accelerated

(a) CDF of machine CPU usage.

0 25 50 75 100
Machine-level GPU usage (%)

0
20
40
60
80

100

CD
F

(%
)

delayed
accelerated

(b) CDF of machine GPU usage.

Figure 22: The impact of resource utilization to the execution
of CTR prediction instances with high-CPU usages.

accelerated instances (Figure 22a), an evidence of strong cor-
relation between CPU contention and instance slowdown.
GPU contention, on the other hand, has no clear contribution
to instance slowdown (Figure 22b).

To summarize, task instance scheduling in GPU clusters
should also account for the potential interference caused by
CPU contentions. This essentially calls for a multi-resource
scheduler that jointly considers CPUs, GPUs, memory, I/O,
and network when making scheduling decisions.

7 Discussion

Support of elastic scheduling. One fundamental challenge
posed to GPU schedulers in heterogeneous clusters is the
gang-scheduling requirement of distributed training. Some
frameworks [6, 13] are hence developed to support elastic
scheduling which allows a training job to dynamically ad-
just the number of workers on the fly. Compared to gang-

scheduling jobs, elastic-scheduling jobs are easier to handle:
they can start with a small amount of resources and later scale
to more GPUs when the cluster becomes less crowded. How-
ever, elastic scheduling introduces non-determinism to final
model accuracy [27, 63].

Machine provisioning and resource disaggregation.
GPU schedulers should also account for machine provision-
ing: in our previous analysis, although 8-GPU machines pro-
vide abundant GPU processing power, 2-GPU machines can
be a better fit to tasks with heavy CPU processing. To make
the problem simplified, many system works propose to decom-
pose monolithic machines into a number of distributed, disag-
gregated hardware components for improved hardware elastic-
ity [53], despite the non-negligible communication overhead.
TensorFlow has recently made a framework-level attempt
towards this direction. It released an experimental data ser-
vice [5] to decouple data pre-processing from GPU training
so as to address the CPU bottleneck. However, it requires
changing user’s source code with non-trivial efforts.

8 Related Work

GPU sharing. GPU sharing can be supported at different
levels. At the GPU hardware level, NVIDIA recently released
the Multi-Instance GPU (MIG) [10] feature that enables par-
titioning a large GPU into multiple small GPU instances
with isolated memory and bandwidth. However, MIG is only
available on the latest A100 GPUs, and it does not support
arbitrary GPU partition. At the GPU software level, GPU
time-multiplexing can be implemented by intercepting CUDA
APIs [24,28,54]. Yet, it usually introduces non-trivial context
switching overhead and does not provide a good isolation be-
tween the co-located task instances. NVIDIA Multi-Process
Service (MPS) [11] offers an alternative solution, but it cannot
isolate failures among co-executed process. At the framework
level, by extending standard ML frameworks such as Ten-
sorFlow and PyTorch, AntMan [66] and Salus [68] enable
fine-grained GPU sharing and manage GPU memory for each
task instance at a low cost. However, Salus requires users
to adapt their code to the framework, while AntMan only
supports training tasks.

GPU cluster scheduler. Many GPU cluster schedulers have
been proposed recently (Table 1). Notably, Optimus [49] and
Tiresias [29] schedule distributed training jobs with an objec-
tive of minimizing the average completion time; Themis [41],
Gandivafair [18], and HiveD [72] further consider completion-
time fairness for the training jobs. All these works support
no GPU sharing, with the minimum allocation unit being
one GPU. The clusters used in evaluation are of limited size,
workload diversity, and machine heterogeneity.

ML workload characterization. In addition to computa-
tion, communication and I/O are also important for distributed
training and are thus the focus in the previous characterization

956 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

studies. For example, tf.data [45] reports that a majority of
production ML workloads read many terabytes of data and
spend a large proportion of time in data loading. Some ML
schedulers [50,52] study the training efficiency with different
network bandwidth and propose to mitigate the communica-
tion overhead for accelerated training. An earlier characteri-
zation of ML training tasks in Alibaba PAI [59] suggests to
replace the PS-Worker architecture with Ring AllReduce to
better exploit the high-speed NVLink among GPUs. These
works mainly focus on distributed training but leave aside the
general MLaaS workloads and cluster resource management.

9 Conclusion

In this paper, we characterized a two-month production trace
consisting of a mix of training and inference tasks in a large
GPU cluster of Alibaba PAI. We made a number of obser-
vations. Notably, the majority of tasks have gang-scheduled
instances and are executed recurrently. Most of them are small,
requesting less than one GPU per instance, whereas a small
number of business-critical tasks demand high-end GPUs
interconnected by NVLinks in one machine. For those low-
GPU tasks, CPU is often the bottleneck, which is used for
data pre-processing and simulation. To better schedule the
PAI workloads, our scheduler enables GPU sharing and em-
ploys a reserving-and-packing policy that differentiates the
high-GPU tasks from the low-GPU ones. We also identified
a few challenges that remain open to address, including load
imbalance in heterogeneous machines and the potential CPU
bottleneck. We have released the trace to facilitate future
research on improved GPU scheduling.

10 Acknowledgment

We are deeply indebted to our shepherd John Wilkes, who
has patiently gone through this work and helped shape the
final version. We thank the anonymous reviewers of NSDI ’22
for their valuable comments. We also thank colleagues from
Alibaba Group, including Kingsum Chow, Yu Chen, Jianmei
Guo, Guoyao Xu, Shiru Ren, Haiyang Ding, and many oth-
ers, for their feedback and assistance in the early stage of
this work. This work was supported in part by RGC GRF
Grant 16213120 and the Alibaba Research Internship Pro-
gram. Qizhen Weng was supported in part by the Hong Kong
PhD Fellowship Scheme.

References

[1] Alibaba cluster trace program. https://github.com/
alibaba/clusterdata, 2021.

[2] Alibaba machine learning platform for AI.
https://www.alibabacloud.com/product/
machine-learning, 2021.

[3] Amazon machine learning. https://docs.aws.
amazon.com/machine-learning, 2021.

[4] Azure AI. https://azure.microsoft.com/en-us/
overview/ai-platform/, 2021.

[5] Distributed tf.data service. https://github.com/
tensorflow/community/blob/master/rfcs/
20200113-tf-data-service.md, 2021.

[6] ElasticDL: A Kubernetes-native deep learn-
ing framework. https://github.com/
sql-machine-learning/elasticdl, 2021.

[7] Google Cloud Vertex AI. https://cloud.google.
com/vertex-ai, 2021.

[8] IBM Waston. https://www.ibm.com/watson, 2021.

[9] NVIDIA Management Library (NVML).
https://developer.nvidia.com/
nvidia-management-library-nvml, 2021.

[10] NVIDIA Multi-Instance GPU (MIG) user guide.
https://docs.nvidia.com/datacenter/tesla/
mig-user-guide/, 2021.

[11] NVIDIA Multi-Process Service (MPS). https:
//docs.nvidia.com/deploy/pdf/CUDA_Multi_
Process_Service_Overview.pdf, 2021.

[12] NVIDIA NVLink and NVSwitch. https://www.
nvidia.com/en-us/data-center/nvlink/, 2021.

[13] TorchElastic. https://pytorch.org/elastic, 2021.

[14] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, et al.
TensorFlow: A system for large-scale machine learning.
In Proc. USENIX OSDI, 2016.

[15] Marcelo Amaral, Jordà Polo, David Carrera, Seetharami
Seelam, and Malgorzata Steinder. Topology-aware GPU
scheduling for learning workloads in cloud environ-
ments. In Proc. ACM/IEEE SC, 2017.

[16] George Amvrosiadis, Jun Woo Park, Gregory R Ganger,
Garth A Gibson, Elisabeth Baseman, and Nathan De-
Bardeleben. On the diversity of cluster workloads and
its impact on research results. In Proc. USENIX ATC,
2018.

[17] Leo Breiman, Jerome Friedman, Charles J Stone, and
Richard A Olshen. Classification and regression trees.
CRC press, 1984.

[18] Shubham Chaudhary, Ramachandran Ramjee, Muthian
Sivathanu, Nipun Kwatra, and Srinidhi Viswanatha. Bal-
ancing efficiency and fairness in heterogeneous GPU
clusters for deep learning. In Proc. ACM EuroSys, 2020.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 957

https://github.com/alibaba/clusterdata
https://github.com/alibaba/clusterdata
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://docs.aws.amazon.com/machine-learning
https://docs.aws.amazon.com/machine-learning
https://azure.microsoft.com/en-us/overview/ai-platform/
https://azure.microsoft.com/en-us/overview/ai-platform/
https://github.com/tensorflow/community/blob/master/rfcs/20200113-tf-data-service.md
https://github.com/tensorflow/community/blob/master/rfcs/20200113-tf-data-service.md
https://github.com/tensorflow/community/blob/master/rfcs/20200113-tf-data-service.md
https://github.com/sql-machine-learning/elasticdl
https://github.com/sql-machine-learning/elasticdl
https://cloud.google.com/vertex-ai
https://cloud.google.com/vertex-ai
https://www.ibm.com/watson
https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvidia-management-library-nvml
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/
https://pytorch.org/elastic

[19] Shuang Chen, Christina Delimitrou, and José F Martínez.
Parties: QoS-aware resource partitioning for multiple
interactive services. In Proc. ASPLOS, 2019.

[20] Maxwell Collard. TensorFlow performance bottleneck
on IteratorGetNext. https://stackoverflow.com/
q/48715062, 2021.

[21] Christina Delimitrou and Christos Kozyrakis. Paragon:
QoS-aware scheduling for heterogeneous datacenters.
In Proc. ASPLOS, 2013.

[22] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. ImageNet: A large-scale hierarchical
image database. In Proc. IEEE CVPR, 2009.

[23] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[24] José Duato, Antonio J Pena, Federico Silla, Rafael Mayo,
and Enrique S Quintana-Ortí. rCUDA: Reducing the
number of GPU-based accelerators in high performance
clusters. In Proc. HPCS, 2010.

[25] Raj Dutt, Torkel Ödegaard, and Anthony Woods.
Grafana: The open observability platform. https:
//grafana.com/, 2021.

[26] Yihui Feng, Zhi Liu, Yunjian Zhao, Tatiana Jin, Yidi
Wu, Yang Zhang, James Cheng, Chao Li, and Tao Guan.
Scaling large production clusters with partitioned syn-
chronization. In Proc. USENIX ATC, 2021.

[27] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tul-
loch, Yangqing Jia, and Kaiming He. Accurate, large
minibatch SGD: Training ImageNet in 1 hour. arXiv
preprint arXiv:1706.02677, 2017.

[28] Jing Gu, Shengbo Song, Ying Li, and Hanmei Luo.
GaiaGPU: sharing GPUs in container clouds. In
ISPA/IUCC/BDCloud/SocialCom/SustainCom, 2018.

[29] Juncheng Gu, Mosharaf Chowdhury, Kang G Shin, Yibo
Zhu, Myeongjae Jeon, Junjie Qian, Hongqiang Liu, and
Chuanxiong Guo. Tiresias: A GPU cluster manager for
distributed deep learning. In Proc. USENIX NSDI, 2019.

[30] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li,
and Xiuqiang He. DeepFM: a factorization-machine
based neural network for CTR prediction. arXiv preprint
arXiv:1703.04247, 2017.

[31] William L Hamilton, Rex Ying, and Jure Leskovec. In-
ductive representation learning on large graphs. arXiv
preprint arXiv:1706.02216, 2017.

[32] Tomoki Hayashi, Ryuichi Yamamoto, Katsuki Inoue,
Takenori Yoshimura, Shinji Watanabe, Tomoki Toda,
Kazuya Takeda, Yu Zhang, and Xu Tan. Espnet-TTS:
Unified, reproducible, and integratable open source end-
to-end text-to-speech toolkit. In Proc. IEEE ICASSP,
2020.

[33] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proc. IEEE CVPR, pages 770–778, 2016.

[34] Heike Hofmann, Hadley Wickham, and Karen Kafadar.
Value plots: Boxplots for large data. J. Comput. Graph.
Stat., 26(3):469–477, 2017.

[35] Rob J Hyndman and George Athanasopoulos. Forecast-
ing: principles and practice. OTexts, 2018.

[36] Myeongjae Jeon, Shivaram Venkataraman, Amar Phan-
ishayee, Junjie Qian, Wencong Xiao, and Fan Yang.
Analysis of large-scale multi-tenant GPU clusters
for DNN training workloads. In Proc. USENIX
ATC, 2019. https://github.com/msr-fiddle/
philly-traces.

[37] Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
ALBERT: A lite BERT for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942, 2019.

[38] Eric Liang, Richard Liaw, Robert Nishihara, Philipp
Moritz, Roy Fox, Joseph Gonzalez, Ken Goldberg, and
Ion Stoica. Ray RLlib: A composable and scal-
able reinforcement learning library. arXiv preprint
arXiv:1712.09381, 2017.

[39] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel,
Nicolas Heess, Tom Erez, Yuval Tassa, David Silver,
and Daan Wierstra. Continuous control with deep rein-
forcement learning. arXiv preprint arXiv:1509.02971,
2015.

[40] Chi Keung Luk, Jose Americo Baiocchi Paredes, Russell
Power, and Mehmet Deveci. Debugging correctness is-
sues in training machine learning models, November 12
2020. US Patent App. 16/403,884.

[41] Kshiteej Mahajan, Arjun Balasubramanian, Arjun
Singhvi, Shivaram Venkataraman, Aditya Akella, Amar
Phanishayee, and Shuchi Chawla. Themis: Fair and effi-
cient GPU cluster scheduling. In Proc. USENIX NSDI,
2020.

[42] Deborah T Marr, Frank Binns, David L Hill, Glenn Hin-
ton, David A Koufaty, J Alan Miller, and Michael Upton.
Hyper-threading technology architecture and microar-
chitecture. Intel Technol. J., 6(1), 2002.

958 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://stackoverflow.com/q/48715062
https://stackoverflow.com/q/48715062
https://grafana.com/
https://grafana.com/
https://github.com/msr-fiddle/philly-traces
https://github.com/msr-fiddle/philly-traces

[43] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi
Mirza, Alex Graves, Timothy Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. Asynchronous
methods for deep reinforcement learning. In Proc.
ICML, 2016.

[44] Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep rein-
forcement learning. Nature, 518:529–533, 2015.

[45] Derek G Murray, Jiri Simsa, Ana Klimovic, and Ihor
Indyk. tf. data: A machine learning data processing
framework. arXiv preprint arXiv:2101.12127, 2021.

[46] Deepak Narayanan, Keshav Santhanam, Fiodar
Kazhamiaka, Amar Phanishayee, and Matei Zaharia.
Heterogeneity-aware cluster scheduling policies for
deep learning workloads. In Proc. USENIX OSDI,
2020.

[47] Jongsoo Park, Maxim Naumov, Protonu Basu, Summer
Deng, Aravind Kalaiah, Daya Khudia, James Law, Parth
Malani, Andrey Malevich, Satish Nadathur, et al. Deep
learning inference in Facebook data centers: Characteri-
zation, performance optimizations and hardware impli-
cations. arXiv preprint arXiv:1811.09886, 2018.

[48] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
PyTorch: An imperative style, high-performance deep
learning library. In Proc. NeurIPS, 2019.

[49] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu,
and Chuanxiong Guo. Optimus: an efficient dynamic
resource scheduler for deep learning clusters. In Proc.
ACM EuroSys, 2018.

[50] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao,
Bairen Yi, Chang Lan, Chuan Wu, and Chuanxiong Guo.
A generic communication scheduler for distributed DNN
training acceleration. In Proc. ACM SOSP, 2019.

[51] Vijay Janapa Reddi, Christine Cheng, David Kanter, Pe-
ter Mattson, Guenther Schmuelling, Carole-Jean Wu,
Brian Anderson, Maximilien Breughe, Mark Charlebois,
William Chou, et al. MLPerf inference benchmark. In
Proc. ACM/IEEE ISCA, 2020.

[52] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob
Nelson, Panos Kalnis, Changhoon Kim, Arvind Kr-
ishnamurthy, Masoud Moshref, Dan Ports, and Peter
Richtarik. Scaling distributed machine learning with
in-network aggregation. In Proc. USENIX NSDI, 2021.

[53] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying
Zhang. LegoOS: A disseminated, distributed OS for
hardware resource disaggregation. In Proc. USENIX
OSDI, 2018.

[54] Lin Shi, Hao Chen, Jianhua Sun, and Kenli Li. vCUDA:
GPU-accelerated high-performance computing in vir-
tual machines. IEEE Trans. Comput., 61(6):804–816,
2011.

[55] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception
architecture for computer vision. In Proc. IEEE CVPR,
2016.

[56] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Proc.
NIPS, 2017.

[57] Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph
attention networks. arXiv preprint arXiv:1710.10903,
2017.

[58] Luping Wang, Qizhen Weng, Wei Wang, Chen Chen,
and Bo Li. Metis: learning to schedule long-running
applications in shared container clusters at scale. In
Proc. ACM/IEEE SC, 2020.

[59] Mengdi Wang, Chen Meng, Guoping Long, Chuan Wu,
Jun Yang, Wei Lin, and Yangqing Jia. Characterizing
deep learning training workloads on Alibaba-PAI. In
Proc. IEEE IISWC, 2019.

[60] Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang.
Deep & cross network for ad click predictions. In Proc.
ACM ADKDD, 2017.

[61] Michael L Waskom. Seaborn: statistical data visualiza-
tion. J. Open Source Softw., 6(60):3021, 2021.

[62] Shinji Watanabe, Takaaki Hori, Shigeki Karita, Tomoki
Hayashi, Jiro Nishitoba, Yuya Unno, Nelson Enrique
Yalta Soplin, Jahn Heymann, Matthew Wiesner, Nanxin
Chen, Adithya Renduchintala, and Tsubasa Ochiai. ES-
Pnet: End-to-end speech processing toolkit. In Proc.
INTERSPEECH, 2018.

[63] Pijika Watcharapichat, Victoria Lopez Morales,
Raul Castro Fernandez, and Peter Pietzuch. Ako:
Decentralised deep learning with partial gradient
exchange. In Proc. ACM SoCC, 2016.

[64] Samuel Williams, Andrew Waterman, and David Patter-
son. Roofline: an insightful visual performance model
for multicore architectures. Commun. ACM, 52(4):65–
76, 2009.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 959

[65] Wencong Xiao, Romil Bhardwaj, Ramachandran Ram-
jee, Muthian Sivathanu, Nipun Kwatra, Zhenhua Han,
Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu Zhang,
et al. Gandiva: Introspective cluster scheduling for deep
learning. In Proc. USENIX OSDI, 2018.

[66] Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang,
Pengyang Hou, Zhi Li Li, Yihui Feng, Wei Lin, and
Yangqing Jia. AntMan: Dynamic scaling on GPU clus-
ter for deep learning. In Proc. USENIX OSDI, 2020.

[67] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell,
Ruslan Salakhutdinov, and Quoc V Le. XLNet: Gen-
eralized autoregressive pretraining for language under-
standing. arXiv preprint arXiv:1906.08237, 2019.

[68] Peifeng Yu and Mosharaf Chowdhury. Salus: Fine-
grained GPU sharing primitives for deep learning appli-
cations. In Proc. MLSys, 2020.

[69] Chengliang Zhang, Minchen Yu, Wei Wang, and Feng
Yan. Mark: Exploiting cloud services for cost-effective,
SLO-aware machine learning inference serving. In Proc.
USENIX ATC, 2019.

[70] Wei Zhang, Wei Wei, Lingjie Xu, Lingling Jin, and
Cheng Li. AI Matrix: A deep learning benchmark for
Alibaba data centers. arXiv preprint arXiv:1909.10562,
2019.

[71] Zhuo Zhang, Chao Li, Yangyu Tao, Renyu Yang, Hong
Tang, and Jie Xu. Fuxi: a fault-tolerant resource man-
agement and job scheduling system at internet scale. In
Proc. VLDB Endowment, 2014.

[72] Hanyu Zhao, Zhenhua Han, Zhi Yang, Quanlu Zhang,
Fan Yang, Lidong Zhou, Mao Yang, Francis CM Lau,
Yuqi Wang, Yifan Xiong, et al. HiveD: Sharing a GPU
cluster for deep learning with guarantees. In Proc.
USENIX OSDI, 2020.

[73] Guorui Zhou, Na Mou, Ying Fan, Qi Pi, Weijie Bian,
Chang Zhou, Xiaoqiang Zhu, and Kun Gai. Deep inter-
est evolution network for click-through rate prediction.
In Proc. AAAI, 2019.

[74] Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan,
Han Zhu, Xiao Ma, Yanghui Yan, Junqi Jin, Han Li, and
Kun Gai. Deep interest network for click-through rate
prediction. In Proc. ACM KDD, 2018.

[75] Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang
Zhou, Baole Ai, Yong Li, and Jingren Zhou. AliGraph: a
comprehensive graph neural network platform. In Proc.
VLDB Endowment, 2019.

960 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Evolvable Network Telemetry at Facebook

Yang Zhou† Ying Zhang‡ Minlan Yu† Guangyu Wang‡ Dexter Cao‡ Eric Sung‡ Starsky Wong‡

†Harvard University ‡Facebook

Abstract
Network telemetry is essential for service availability and
performance in large-scale production environments. While
there is recent advent in novel measurement primitives and
algorithms for network telemetry, a challenge that is not well
studied is Change. Facebook runs fast-evolving networks to
adapt to varying application requirements. Changes occur
not only in the data collection and processing stages but also
when interpreted and consumed by applications. In this pa-
per, we present PCAT, a production change-aware telemetry
system that handles changes in fast-evolving networks. We
propose to use a change cube abstraction to systematically
track changes, and an intent-based layering design to confine
and track changes. By sharing our experiences with PCAT, we
bring a new aspect to the monitoring research area: improving
the adaptivity and evolvability of network telemetry.

1 Introduction
Network telemetry is an integral component in modem, large-
scale network management software suites. It provides visi-
bility to fuel all other applications for operation and control.
At Facebook, we built a telemetry system that has been the
cornerstone for continuous monitoring of our production net-
works over a decade. It collects device-level data and events
from hundreds of thousands of heterogeneous devices, mil-
lions of device interfaces, and billions of counters, covering
IP and optical equipments in datacenter, backbone and edge
networks. In addition to data retrieval, our telemetry system
performs device-level and network-wide processing that gen-
erates time-series data streams and derives real-time states.
The system serves a wide range of applications such as alert-
ing, failure troubleshooting, configuration verification, traffic
engineering, performance diagnosis, and asset tracking.

While our telemetry system can adopt algorithm and system
proposals from the research community (e.g., [18,27,48,50]),
a remaining open challenge is Change. Changes happen fre-
quently in our network hardware and software to meet the
soaring application demands and traffic growth [16]. These
changes have a significant impact on the network telemetry
system. First, we have to collect data on increasingly heteroge-
neous devices. This is exaggerated as we introduce in-house
built FBOSS [13], which allows switches to update as fre-
quently as software. Second, we have growing applications
(e.g., [1]) that rely on real-time, comprehensive, and accu-
rate data from network telemetry systems. These applications
introduce diverse and changing requirements for the teleme-
try system on the types of data they need, data collection

frequency, and the reliability and performance of collection
methods.

The changes this paper considers include not only the net-
work events from the monitored data, but also those updates
to the telemetry system itself: modification to monitoring
intent, advance of device APIs, adjustment of frequency con-
figurations, mutation of processing, and restructure of storage
formats. Without explicitly tracking them in our network
telemetry system, we struggle to mitigate their impact to net-
work reliability. For example, a switch vendor may change
a packet counter format when it upgrades a switch version
without notifying Facebook operators. This format change
implicitly affects many counters in our telemetry database
(e.g., aggregated packet counters), leading to adverse impact
to downstream alerting systems and traffic engineering deci-
sions. This example highlights several challenges: (1) Produc-
tion telemetry is a complex system with many components
(e.g., data collection, normalization, aggregation) from many
teams (e.g., vendors, data processing team, database team,
application teams). A change at one component can lead to
many changes or even errors at other components. As a result,
when telemetry data changes, it is difficult to discern legiti-
mate data changes from semantic changes. (2) Sometimes,
we only detect the error passively when traffic engineering
team notices congestion. Yet, we cannot diagnose it easily
because the error involves many data. Even worse, it may
only affect a small portion of vendor devices due to phased
updates. Section 2 shares more such examples.

In this paper, we propose to treat changes as first-class
citizens by introducing PCAT, a Production Change-Aware
Telemetry system. PCAT includes three key designs:

First, inspired by the database community [8], we introduce
the change cube abstraction for telemetry to explicitly track
the time, entities, property, and components for each change,
and a set of primitives to explore changes systematically. Us-
ing change cubes and their primitives, we conduct the first
comprehensive study on change characterization in a produc-
tion telemetry system (Section 3). Our results uncover the
magnitudes and the diversity of changes in production, which
can be used for future telemetry and reliability research.

Second, we re-architect our telemetry system to be change-
aware and evolvable. In the first version of our telemetry
system, we have to modify configurations and code at many
devices every time a vendor changes the counter semantics
or collection methods, or an application changes monitoring
intents. To constrain the impact of changes, i.e., the number
of affected components, PCAT includes an intent-based lay-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 961

ering design (Section 4) which separates monitoring intents
from data collection and supports change cubes across layers.
PCAT enables change attribution by allowing network engi-
neers with rich network domain knowledge to define intents
while having software engineers building distributed data
collection infrastructure with high reliability and scalability.
PCAT then compiles intents to vendor-agnostic intermediate
representation (IR) data model, and subsequently to vendor-
specific collection models, and job models. The intent-driven
layering design reduces the number of cascading changes
by 54%-100%, and enables systematically tracking changes
through the monitoring process.

Third, we build several change-aware applications that ex-
plore the dependencies across change cubes to improve ap-
plication efficiency and accuracy. For example, Toposyncer
is our topology derivation service that builds on telemetry
data and serves many other applications. We transformed
Toposyncer to subscribe to change cubes based on derivation
dependencies and greatly reduce topology derivation delay
by up to 118s. We leverage correlation dependencies across
change cubes to enable troubleshooting and validation.

The main contribution of this paper is to bring the commu-
nity’s attention to a new aspect of telemetry systems—how
to adapt to changes from network devices, configurations,
and applications. We also share our experiences of building
change-aware telemetry systems and applications that can be
useful to other fast-evolving systems.

2 Motivation
To keep up with new application requirements and traffic
growth, data center networks are constantly evolving [16]. As
a result, changes happen frequently across all the components
in telemetry systems, ranging from device-level changes, col-
lection configuration changes, to changes in the applications
that consume telemetry data.

Our first generation of production telemetry system was not
built to systematically track changes. This brings significant
challenges for telemetry data collection at devices, integration
of telemetry system components, debugging network inci-
dents, and building efficient applications. In this section, we
share our experiences of dealing with changes in our teleme-
try system and discuss the system design and operational
challenges for tracking changes.

2.1 Bringing changes to first-class citizens
We motivate the needs of treating changes as first-class citizen
in network telemetry with a few examples.
1. Build trustful telemetry data. Many management appli-
cations rely on telemetry data to make decisions. However, in
production, telemetry data is always erroneous, incomplete,
or inconsistent due to frequent changes of devices and config-
urations. Moreover, there are constant failures in large-scale
networks (e.g., network connection issues, device overload,
message loss, system instability). Therefore, applications need

to know which time range and data source are trustful and how
to interpret and use the data. This requires tracking changes
for each telemetry data value and semantics.

For example, we collect device counters at various scopes
(e.g., interfaces, queues, linecards, devices, circuits, clusters).
These counters may have different semantics with device
hardware and software upgrades or network re-configurations.
For example, we have a counter for 90th percentile CPU us-
age within a time window of a switch. When we change the
switch architecture to mulitple subswitches [13], we set the
counter as the average of 90th percentile CPU of subswitches.
However, our alert on this counter cannot catch single sub-
switch CPU spikes that caused bursty packet drops. We need
to know when to change the alerts based on counter changes.
2. Track API changes across telemetry components. Our
telemetry system consists of multiple data processing compo-
nents, which are independently developed by different ven-
dors and teams. When one component changes its interfaces,
many other components may get affected without notice.
There are no principled ways to handle such changes across
telemetry components. For example, vendor-proprietary mon-
itoring interfaces often get changed without an explicit noti-
fication or detailed specification. This is because telemetry
interfaces are traditionally viewed as secondary compared to
other major features. However today cloud providers heav-
ily rely on telemetry data for decisions in a fine-grained and
continuous manner. If we do not update data processing logic
based on device-level changes, the inconsistency may cause
bugs and monitoring service exceptions.

In one incident, a routing controller had a problem of unbal-
anced traffic distribution, caused by incomplete input topol-
ogy: a number of circuits were missing from the derived
topology. This took the routing team and the topology team
over three days to diagnose. The root cause was an earlier
switch software upgrade that changed the linecard version
from integer (e.g., 3) to string (e.g., 3.0.0). Such a simple
format change was not compatible with the post-processing
code that aggregated the linecard information into a topology.
Thus, we missed several linecards in the topology, which then
mislead TE decision and cause congestion in the network.
This is not a one-off case, given many vendors and software
versions coexist in our continuously evolving networks.
3. Debug with change-aware data correlation. As teleme-
try components keep evolving, it is hard to attribute a problem
to a change using data correlation without explicitly tracking
changes and their impacts. For example, when we fail to get
a counter, the problem can come from data collection at the
device, the network transfer, or both.

In production, we make changes in small phases: first ca-
nary on a few devices serving non-critical applications, then
gradually on more devices to minimize disruptions to the net-
work [13]. In one incident, there were a small number of de-
vices with “empty data” errors for a power counter. The errors
increased gradually and ultimately went beyond 1% threshold

962 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Gen1

Collection
infra.

Device
-level

Gen2

Applications Applications: alerting, traffic dashboard, TE, maintenance, verification, etc

Network-wide Data Processing

Gen3 (PCAT)

§4.1 Intent models

§4.2

§5

Collection infrastructure§4.1

Vendor-agnostic
data models

(#intents)

(#intents×#vendors
×#device groups)

Job models

(#intents×#vendors
×#device groups)

(#intents×#vendors
×#device groups)

Derived models (#intents)

Vendor-specific
data models

(#intents×#vendors) Device-level Data ProcessingNet-wide

Storage
Backend

Derived
Topology (SQL)

Time series
Data (ODS)

Network
States (KV)

Configs
(SQL)

Models

System layer

Data

Discovered Non-
Numerical States

Discovered
Numerical Counters

Discovered
Configs

Normalized
Configs

Normalized
Numerical Counters

Normalized Non-
Numerical States

Figure 1: Generations towards change-aware telemetry.

after two weeks and triggered an alarm. This problem was dif-
ficult to troubleshoot due to its small percentage. We manually
explored the changes through correlation: checking whether
there were code changes before the failure, whether the failed
devices shared a common region (indicating regional failure),
a common vendor, or on common data types. We tried many
dimensions of correlation and finally found the errors were
mostly related to power and environment counters. The root
cause was a vendor changing its format but the processing
code could not recognize it. This example shows a tedious
manual process of data correlation to debug problems because
of gradual change rollouts. To improve debugging, we need
to use changes to guide data correlation.

2.2 Lessons from Previous Generations
We now discuss our previous two generations of telemetry sys-
tems prior to PCAT and their limitations in handling changes.
Gen1: Monolithic collection script. In a nutshell, a teleme-
try system is a piece of code that collects data using APIs from
the devices. Our first generation is naturally a giant script that
codifies what counters to collect. It hardcodes the collection
method, polling frequency, post-processing logic, and where
to store the data. Figure 1 illustrates Gen1 as intertwined
models and system blocks. It runs as multiple cron jobs, each
collecting data from different groups of devices. This design
is intuitive to implement but is not change-friendly. If a vendor
changes the format of a counter, we need to sweep through
the entire script to change the processing logic accordingly,
and redeploy the new code to all monitors. It has high mainte-
nance burdens as it relies on expert’s deep understanding of
the code to make changes. Further, tracking changes relies on
version control system in the form of code differences, which
do not reveal the intent directly.
Gen2: Decoupled counter definition from collection pro-
cess. As our network expanded, the hulking script in Gen1
became hard to manage. We moved to Gen2, which separates
the monitoring model (i.e., what counter to collect) from the
actual collection code, shown as orange and blue boxes in Fig-

ure 1. The separation allows us to track changes to data types
separately from the collection logic (e.g., sending requests,
handling connections). However, the intent is still mingled
with the vendor-specific counter definition. For instance, one
may want to collect the “packet drops per interface”. One
needs to specify the exact SNMP MIB entry name and the
specific API command. A low-level format change would
result in updates on all model definitions. Moreover, the data
collection system includes both the collection infrastructure
and data processing logic. The data processing logics scatter
across many places, e.g., when the data is collected locally at
the collector, or before it is put into the storage. To change
a piece of processing logic, we have to change many such
places, which is cumbersome to track. In addition, when a
piece of data is changed or is absent, tracing back on what
causes the change is manual and tedious.

2.3 Challenges and PCAT Overview
Our experiences of previous two generations indicate three
main challenges in handling changes: change abstraction,
attribution, and exploration. To address these challenges, we
build our Gen3 telemetry system – PCAT.
Change abstraction. In Gen1 and Gen2, changes were not
stored structurally. They exist either as diffs in code reviews
in Gen1, or logs to temporary files in Gen2. Without a uni-
form representation, each application needs to develop ad-hoc
scripts to parse each data source. This leads to not only dupli-
cate efforts but also missing changes or mis-interpretations.
A uniform and generic change abstraction allows hundreds
of engineers to publish and subscribe to changes to boost
reliable collaboration without massive coordination overhead.
In §3, we propose a generic abstraction called change cube to
tackle this challenge.
Change attribution. The second challenge is the turmoil
to ascribe the intent of the scattering changes. The solution
involves a surgically architectural change to a multi-layer
design, shown in Figure 1 and elaborated below.

Data collection. The first step is to collect data from de-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 963

vices, called discovered data. There are three types: numeric
counters, non-numeric states, and configurations (see Table 4
in Appendix). We use different protocols for collecting dif-
ferent data and for different devices: SNMP [10], XML, CLI,
Syslog [28], and Thrift for our in-house switches [13].

Device-level data processing (normalization). The data is
different in formats and semantics across devices, vendors,
and switch software. This makes it difficult for applications to
parse and aggregate the data from different devices. We use a
device-level data processing layer to parse the raw data to a
unified format across devices, vendors, and switch software.

Network-wide data processing. Next, we aggregate device-
level (normalized) counters, states, and configurations into
network-wide storage systems for applications to query. The
normalized non-numerical states (as network states) are stored
in a key-value store. We build a tool called Toposyncer which
constructs derived topology from normalized non-numerical
states. For example, from per-device data, we can construct
the device, its chassis, linecard, as well as cross-device links.

Data consumer applications. There are many critical net-
work applications that consume PCAT data. Network health
monitoring and failure detection use monitoring data to de-
tect and react to faults. Network control relies on real-time
data for making routing and load balancing decisions [2, 38].
Maintenance and verification use telemetry data to compare
network states before and after any network operations.

There are several advantages of the new design compared
to previous generations. First, compared to Gen2, Gen3 dis-
sects a monolithic data definition into three different types,
each focusing on defining one aspect of the monitoring. The
separation brings better scalability and manageability. We
describe the details in §4. Second, we not only care about
tracking changes in data format and code, but also need to
attribute changes to the right teams (i.e., who/what authored
the change). Change attribution builds the trust of the data for
applications. It facilitates collaboration across teams towards
transparent and verifiable system development. Gen3’s intent-
based layering design lets each team play by their strength
and work together seamlessly. Specifically, the network engi-
neers can leverage their rich domain knowledge and focus on
intent definition, while software engineers focus on scaling
the distributed collection system.
Change exploration. Many designs and operations require
a clear understanding of the relations amongst changes. For
example, to debug why a piece of data is missing, we always
find the last time the data appears and check what has changed
since then. We may find one change to be the cause, which
could be caused by another change somewhere else. Similarly,
when receiving a change of an interface state, we need to
reflect the change on the derived topology and upper-layer
applications. It motivates us to develop primitives for change
exploration that serves many applications. We demonstrate
the usage in real-time topology derivation in §5.

3 Changes in Facebook Network Telemetry
In this section, we define the change cube concept and explain
how they are generated in this system, together with exten-
sive measurement results by composing queries on top of the
change cubes.

3.1 Change Cube Definition
To systematically handle changes in network telemetry, we
leverage the concept of change cubes. Change cubes are used
in databases [8] to tackle the data change exploration prob-
lem by efficiently identifying, quantifying, and summarizing
changes in data values, aggregation, and schemas. Change
cube defines a set of schemas for changes and provides a set
of query primitives. However, changes in network telemetry
are different from those in databases in two aspects: (1) Net-
work telemetry generates streaming data with constant value
changes, so the change cubes in network telemetry do not
care about value changes but only changes in schema and
data aggregation. (2) Network telemetry has frequent changes
due to fast advances of hardware and software that result in
data semantics changes.
Change cubes. We define a change cube to be a tuple <
Time,Entity,Property,Type,Dependency >. We summarize
each field of the change cube in Table 1 and explain below.
• Time dimension captures when the change happens. It de-

pends on the granularity we detect changes, e.g., seconds,
minutes, or days.

• Entity represents a measurement object, e.g. a switch, a
linecard, as well as the models that describe what to mea-
sure and how.

• Property contains the fields or attributes of the entity that
get changed. For example, a loopback IP address of a switch,
an ingress packet drop of an interface.

• Layer dictates the layer or component in the telemetry sys-
tem (in Figure 1) where changes happen. We discuss how
we land in these choices in §4.

• Dependency dimension contains a list of other changes
that this change is correlated with. Each item in the list is a
<ChangeCube, Dependency Type> pair. We support two
dependency types: correlation dependency and derivation
dependency. Derivation dependency means that a lower-
layer change causes an upper-layer change. Correlation
dependency means two changes on correlated entities or
properties.

Primitives on change cubes. Next, we introduce the opera-
tors on the change cube, which are used to explore the change
sets. We leverage the operators proposed in [8] but redefine
and expand them in the context of telemetry systems.
• Sort f (C) applies function f to a set of change cubes C, on

one or a few dimensions to a comparable value, and uses
it to generate an ordered list of C. In our problem, sort is
mainly used with time to focus on the most recent changes.

• Slicep(C) means selecting a subset of C where the predicate

964 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Dimension Sub category Examples
Time Multiple time granularities Second, minute, hour, day
Entity Intent model High-level intent, e.g., packet drops at spine switches

Vendor-agnostic data model Counter scope, unit
Vendor-specific data model Format, API
Job model Collection channel, frequency, protocol
Derived model Derived network switch

Property Model fields IP address, network type
Change attributes LoC, reason

Layer Application Adding alert to detect a new failure type
Network-wide processing Topology discovery code logic
Device-level processing Normalization rule
Collection infrastructure Codebase for collection tasks

Dependency Correlation dependency BGP session and interface status
Derivation dependency Circuit is derived from two interfaces’ data

Table 1: Change Cube Definition.

p is true. It is used to filter an entity or a property value.
• Splita(C) partitions C to multiple subsets by attribute a.

An example is to split the changes by the layer to group
changes according to where they occur. A reverse operator
to Split is Union, which combines multiple change sets.

• Rank f (PC) After we split C to multiple sets PC, we further
analyze these sets and rank them based on a function, e.g.,
cube size, the time span, the volatility.

• TraceU p(c) and TraceDown(c). These two operators are
used with the Dependency field, which are new compared
to [8]. The former traces the changes that the current change
c depends on, and the latter traces the changes that depend
on the c. They are useful for debugging through layers and
validation across data.
Explicitly tracking changes in a structured representation

eases the diagnosis process. Considering the second example
in §2.1, when the switch software is updated, it populates a
change cube to the database, indicating the API’s return result
has changed. Consequently, it triggers another change cube
at the counter model level on this specific CPU counter. This
change cube in turn propagates through the monitoring stack
to job changes and retrieved data changes. The applications
using the CPU counters can subscribe to such data change,
which can then be notified immediately. The chain of change
notifications eliminates the post-mortem debugging after the
counter change causes application errors.

3.2 Changes in PCAT
Leveraging change cubes, we provide the first systematic
study of changes and their impact on network telemetry
systems. We populate change cubes of PCAT using multi-
ple ways. For the data stored in database, we leverage our
database change pub/sub infrastructure [39]. We subscribe to
the telemetry objects’ change log and translate them to change
cubes. For code changes in collection infrastructure, data
processing logics (both device-level and network-wide), and

Queries Formulas

Q1 (Fig. 2a) SortTime(Week)(Slicelayer=“application”(C))

Q2 (Fig. 2a) SortTime(Week)(Sliceentity=“vendor−agnostic data model”(C))

Q3 (Fig. 2c) ∑
c

c.LoC,c ∈ SplitTime(Week)(Slicelayer=“application”(C))

Q4 (Fig. 3a) SortTime(Day)(Sliceentity=“ job model” & property=“ f requency”(C))

Q5 (Fig. 3b) Splitnetwork type(Sliceentity=“ job model” & property=“ f requency”(C))

Q6 (Fig. 3c) Splitnetwork type(Sliceentity=“ job model” & property=“channel”(C))

Q7 (Fig. 4a) Splitblueprint type(Slicelayer=“application” & reason=“blueprint”(C))

Q8 (Fig. 4b) Splitvender(Slicelayer=“application” & reason=“new model”(C))

Table 2: Queries used in §3.2.

applications, we parse the logs in the code version control sys-
tem to generate change cubes. Intent model, data model (both
vendor-agnostic and -specific), and job model changes are cod-
ified and thus tracked through code changes [41]. They can be
populated using the same way as other code changes. We store
all change cubes to a separate database called ChangeDB and
develop APIs to explore these changes.

We analyze changes from the perspectives of devices, col-
lection configurations, and application intents, over seven
years (2012-2019). Our results below uncover surprisingly
frequent changes and quantify the diverse causes of changes.

3.2.1 Change Overview
Change frequency. We first quantify the code changes of
our monitoring system. We map one code commit to one
change cube, involving multiple lines of code across multiple
files. We group the changes into three categories according
to where they happen in Figure 1: collection infrastructure
(bottom layer), data & job models and processing (middle
two layers), and applications, representing the infrastructure,
data, and intent respectively. We construct queries using the
primitives defined earlier. We put the actual query to generate
the figures in Table 2. Q1 uses Slice to filter the changes in ap-
plication layer, and sorts the changes by time. We replace the
“application” with other values for changes in other layers. Q1

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 965

2012-1
2

2013-1
2

2014-1
2

2015-1
2

2016-1
2

2017-1
2

2018-1
2

2019-1
2

0

10

20

30

C
om

m
it

s
p

er
w

ee
k

Collection infra.
Model and processing
Application intent

(a) Changes per week over time1.

0 5 10 15 20 25 30
Commits per week

0.00

0.25

0.50

0.75

1.00

C
D

F

Collection infra.
Model and processing
Application intent

(b) Number of changes.

100 101 102 103 104

LOC change per week

0.00

0.25

0.50

0.75

1.00

C
D

F

Collection infra.
Model and processing
Application intent

(c) Magnitude of changes.

Figure 2: Change characteristics.

Change reasons %
Collection infrastructure 67.9

Adding new devices 17.8
Topology processing 8.30

Data format 4.86
Counter processing 1.19

Table 3: Change categoriza-
tion by change reasons.

2016-1
2

2017-1
2

2018-1
2

2019-1
2

0

20

40

N
o.

of
jo

b
m

o
de

ls
p

er
da

y

Collection frequency
changes

(a) Freq. over time.
DC/PoP BB

O
ptic

al

O
th

er
s

0

10

20

30

%
of

ch
an

ge
s

25

17.1

32.9

25

(b) Collection frequency.

PoP DC BB

O
ptic

al

O
th

er
s

0

10

20

30

40

%
of

ch
an

ge
s

36.5 35.4

16.9

6.88 4.23

(c) Mngt. channel.

Figure 3: Collection configuration changes2.

O
ptic

al

FBO
SS

Ven
dor

C

Ven
dor

B

O
th

er
s

0

20

40

60

%
ch

an
ge

s

53.8

10.3 10.3
5.13

20.5

(a) Add new data type.

Lin
ec

ar
d

Sys
te

m
O

ID

Par
t num

ber

O
th

er
s

0

20

40

60

%
of

ch
an

ge
s 54.5

35.7

6.7 3.12

(b) Blueprint.

Figure 4: Network configuration changes.

can be compiled into the following SQL: SELECT COUNT(*)
FROM ChangeDB WHERE layer = “application” GROUP
BY time_week ORDER BY time_week.

Figure 2a shows the number of changes per week. We
find that types of changes vary greatly as the telemetry sys-
tem scales. More model and processing changes occur at the
beginning (the year of 2013), as we begin by adding more
counters to monitor. When the number of counters reaches a
certain scale (the year of 2016), we realize the infrastructure
needs better scalability. Thus there are more changes to refac-
tor the collection infrastructure. Application intent follows
the same trend as data changes, as adding new data is often
driven by the need from applications.

Cumulatively across time, we show the average numbers
of weekly changes of three categories in Figure 2b. They are
on the same order of magnitude, with slightly more infrastruc-
ture changes. It can be as high as 25-30 changes per week.
Note that each change is deployed on many switches and the
changes it introduces to the network is significant.
Change magnitude. We quantify the magnitude of changes
in terms of Lines of Code (LoC) using query Q3. While most
code changes are not big, some changes could touch multiple
lines due to consolidation of processing logic and refactoring.
This is obtained by first getting a slice of changes of a given
category, splitting the changes into weeks, and summing up
the LoC property. Figure 2c shows that collection infrastruc-
ture has larger changes and the application has changes with
larger volatility. We can dig into the volatility of each change
set by computing its variance and use the Rank primitive.
Both figures show there exists a significant number of large
changes. For example, there are 27 weeks with more than
1000 LoC changes for collection infrastructure. However, as
the industry’s trend is to move away from monolithic changes

1The collection and processing infrastructure were not merged into the
codebase before 2015-04; so its commits are non-trackable before that.

2The “Other” contains some changes that are hard to classify program-
matically. The same applies to Figure 4.

to many small incremental changes [13], we expect to have
more frequent small changes going forward.
Change reason categorization. We analyze the breakdown
by reason of change using Splitreason(C), which is obtained
by parsing the commit log text and adding it to the ChangeDB.
Table 3 shows that one major reason is collection infrastruc-
ture changes (67.9%). Adding new devices to the network is
the second dominant reason (17.8%). Topology processing
changes occupy 8.3%. The fourth reason is adjusting the data
formats of collection models (4.86%). Lastly, 1.19% come
from the device-level counter processing code.

3.2.2 Device-Level Changes
In our large-scale networks, we constantly add new vendors
and devices to leverage a rich set of functions and to minimize
the risk of single-vendor failures. The number of devices
increased 19.0 times and the number of vendors increased
4.7 times as observed by PCAT in six years. Even with the
same vendor, we gradually increase the chassis types, which
have different combinations of linecard slots and port speeds.
More choices of chassis types allow us to have fine-grained
customization to our network needs. Furthermore, the number
of chassis types grows from 26 to 129 (4.4×). In addition, our
in-house software switch has tens of code changes daily and
deploys once every few days [13].

3.2.3 Collection Configuration Changes
Collection frequency. Applications adjust the collection fre-
quency to balance between data freshness and collection
overhead. We first analyze collection changes by counting
daily changes of collection frequencies over time, using query
Q4. Figure 3a shows that there are constant collection fre-
quency changes over time, with more frequent changes near
December 2018 – because of tuning collection frequencies
for newly-added optical devices. We analyze collection fre-
quency changes by applying Slice on both the entity and the
property. Interestingly, Figure 3b shows that optical devices

966 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

change frequency more often (32.9%) because they cannot
sustain high-frequency data polling and thus require more
careful frequency tuning.
Management channel changes. PCAT collects data from
the management interfaces at devices. As our management
network evolves, we frequently reconfigure management inter-
faces (e.g., IP addresses, in-band vs. out-of-band interfaces).
Backbone and PoP devices have multiple out-of-band net-
work choices for high failure resiliency. Figure 3c breaks the
IP preference changes into PoPs, DCs, and Backbones. PoPs
have more frequent channel changes (36.5%) because PoPs
are in remote locations and thus have more variant network
conditions. Selecting the right channel is important to keep
the device reachable during network outages so that we can
mitigate the impact quickly.

3.2.4 Application Intent Changes
Data type changes. PCAT supports an increasing number of
diverse applications over years. Applications may add new
types of data to collect (e.g., to debug new types of failures),
or remove some outdated data. Figure 4a shows how differ-
ent vendors add new data types. Optical device vendors add
more data (53.8%) because we recently start building our own
optical management software and thus need more counter
types. Indeed, optical devices generally have more types of
low-level telemetry data compared to IP devices, e.g., power
levels, signal-to-noise ratio. They are also less uniformed
across vendors than IP devices.
Hardware blueprint changes. Hardware blueprint specifies
the internal components (chassis, linecards) of each switch
and determines what data to collect. Figure 4b shows the per-
centage of changes for hardware blueprints such as linecard
map, system Object Identifier (OID) map, part number map,
and others (e.g., OS regex map). These changes are due to net-
work operations such as device retrofit and migration. They
may cause data misinterpretation if not treated carefully.

4 Change Tracking in Telemetry System
In this section, we describe the layering design of our current
intent-based telemetry system to help track changes.

4.1 Towards change-aware telemetry
Intent modeling. We use a thrift-based modeling language
that empowers network engineers to easily specify their mon-
itoring intents. Compared to other intent language proposed
in academia [19, 31, 32], our language puts more emphasis
on device state in addition to traffic flows, and defines ac-
tions in addition to monitoring. Our language contains three
components shown in Figure 5.
• Scope captures both the device-level scope (e.g., Backbone

Router) and network-level scope, (e.g., DC fabric network).
• Monitor specifies what to monitor in a vendor-agnostic way.

For example, an intent could be capturing packet discard
for the gold-level traffic class, which will get translated

Intent Language
Scope:
owner:= string
devices:= Enum:DeviceType

Monitor:
query := select Keys from Entities

where Conditions
groupby Keys
transformby TransformFunc
reduceby ReduceFunc

Keys := String
Entities := TimeSeriesi|DiscreteEventsi
Conditions := Conditions Op Conditions | Key Sign Value
Sign := <|>|!|=|contains|!contains
Op := &|!||
TransformFunc := rate|diff
ReduceFunc := avg|max|min|p90|count|filter

Action:
alert_name := string
action_type := emitter|detector
expire_time := Integer
priority := Enum:CriticalLevel
condition := Conditions Op Conditions | Key Sign Value

Detector Rule
Scope:
owner= “Data Center Network Engineering Team”
devices= DatacenterRouter
Monitor:
Select gold_class_discards from Switches.

PhysicalInterfaces
transformby rate
reduceby avg(60)

Action:
alert_name = “Gold Class Traffic Discard High”
action_type = Detector
expire_time= 300s
priority= MAJOR
condition = gold_class_discards > 0.01

Figure 5: Intent model.

ModelDef(
name='PhysicalInterface',
properties=[PropertyDef(name='if_name',type=STRING,transform=NONE),

PropertyDef(name='if_hc_in_octets',type=INT64,transform=RATE),
PropertyDef(name='if_in_discards',type=INT64,transform=RATE),
...],

children=[ModelDef(
name='GoldQueueCounters',
properties=[PropertyDef(name='queue_name',type=STRING),

PropertyDef(name='packet_count',type=INT64),
PropertyDef(name='byte_count',type=INT64),
PropertyDef(name='packet_discards',type=INT64)]),

ModelDef(
name='SilverQueueCounters',
...),

...]),
...

Figure 6: Data model.

to a specific SNMP MIB entry or particular counters. In
the left part of Figure 5, we describe the SQL-like query
language. The keys are monitored metrics and the entities
are time-series data streams and discrete events tables. We
also support data aggregation functions such as avg, count,
filter, which aggregate samples over time and devices.

• Action includes two types: Emitter and Detector. Emitters
subscribe to discrete network events that are pushed from
devices, and define actions upon receiving these events.
Detectors allow us to write formulas for various time-series
data, and set up a threshold for the formula value as the
alerting condition. A detector example is shown in the right
part of Figure 5; it defines a detector based on the key
gold_class_discards which captures the packet drops for
gold-class traffic on a physical interface. The discard is
transformed to rate, and aggregated every 60 seconds. The
alert is triggered if the threshold is greater than 0.01.
The intent model hides low-level changes. Vendors may

change the queue drop counter names, or the mapping be-
tween queues and gold-class traffic may change. The intent
configuration remains unchanged in both cases.
Runtime system. We handle heterogeneous intents with ho-
mogeneous software infrastructure. Thanks to separation, soft-
ware engineers can focus on the runtime execution system
to solve the hard system building problems: scheduling, load
balancing, scalability, and reliability. The runtime execution
system collects data from devices according to the model,
which includes a distributed set of engines and a centralized
controller to distribute jobs and collect data from these en-
gines. The centralized controller fetches the latest collection
and job models, combines with device information in our
database, and generates a sequence of jobs to be executed

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 967

ModelDef(
...
name='GoldQueueCounters',
...

).vendor1_implementation(
name='Vendor1_Cli_Impl',
engine=CLI,
engine_options=EngineOptions(

command='show interfaces {$if_name} red drops',
parser='parse_cli_vendor1_phy_if')

).vendor2_implementation(
name='Vendor2_Thrift_Impl',
engine=Thrift,
engine_options=EngineOptions(

function='getQueueDrops($high_pri_queues)',
parser='parse_thrift_vendor2_phy_if')

)
).vendor3_implementation(

name='Vendor3_Cli_Impl',
engine=CLI,
engine_options=EngineOptions(

command='show interfaces discards {$high_pri_queues}',
parser='parse_cli_vendor3_phy_if')

)

Job(
model_tree='GoldQueueCounters ',
backend_settings=[ODS('15m')],
device_impls=[

DeviceImpl(include_filter=DeviceFilter(
os_types={OSType.VENDOR1_OS},
device_roles=['Rack Switch']),
implementation= 'Vendor1_Cli_Impl',
parser='parse_cli_vendor1_phy_if'),

DeviceImpl(include_filter=DeviceFilter(
os_types=[OSType.VENDOR2_OS],
device_roles=['Fabric Switch']),
implementation= 'Vendor2_Thrift_Impl',
parser='parse_thrift_vendor2_phy_if’),

...
])

def _parse_Cli_Vendor1_Interface_Resets (ot, data):
otn=ot.root.add_child(ot.type.root)
for line in data:

regex_match=re.match('.*\s(\d+)\s+ pkt drops', line)
if regex_match:

……
return [otn]

show interfaces eth1 red drops
……

MTU 1500 bytes, BW 100000 Kbit/sec, DLY 100 usec,
……
1 minute output rate 5M bits/sec, 5304 packets/sec

……
245 output errors, 568 pkt drops, 2 interface resets
……

Figure 7: Collection method and job model.

with a given deadline. It dispatches jobs to designated engines
based on load and latency. The engine executes the collec-
tion command, performs device-level processing, and sends
data back to the corresponding storage. The system is heavily
engineered to tackle the reliability and scalability challenges.

4.2 Change reduction w/ vendor-agnostic IR
Next, we zoom into the intermediate layer between the intent
and the runtime. The high-level monitoring intent is translated
to the intermediate representation data model, which gets
mapped to the vendor-dependent collection model, and finally
is materialized to the job model on each device. We emphasize
that how the modular design principle is translated to different
models in order to limit the impact of changes.
Vendor-agnostic intermediate representation (IR) data
model. The data model is created based on the keys field
in the intent model. It specifies data schema in the following
way, as shown in Figure 6.
• Hierarchical. We choose a tree structure as an intermediate

representation, called the model tree. An example is shown
in Figure 7. An AggregateInterface model has multiple
child models, e.g., PhysicalInterface, BGPSessions. A
PhysicalInterface also has multiple child models. Mod-
els are like templates waiting to be filled in. When they
are materialized by actual monitoring data, we call them
objects. By organizing the materialized objects in the same
hierarchy as the model tree and adding a dummy root to
connect up the top-level objects, we get a materialized ob-
ject tree. The models define the data to be collected, which
is derived from the keys field in the intent model.

• Typed. The data model defines the types of data to make
interpretation of the data easier, e.g., if_hc_in_octets is
the incoming traffic in octets.

• Processing instruction. It also defines basic processing
primitives to go with the data using the trans f orm field,
e.g., computing a per-second rate from consecutive abso-
lute counts. Both the type and the processing instruction are
determined by the intent. Placing all the processing logic in
a separated blob makes it much easier to track the changes

in processing logic.
Vendor-dependent collection model. The IR model is fur-
ther compiled down to vendor-specific counter names, spe-
cific commands to use, e.g., a CLI command, Thrift func-
tion name. Figure 7 shows two collection methods for the
GoldQueueCounters data model: CLI and thrift. In each
implementation, we define the collection API and the post-
processing function in the parser field. We show an example
of the CLI parser function that matches the regex in the output
of a command on the vendor1 device. Creating this layer of
model separately allows us a place to capture all changes due
to vendor format and API changes, which are quite common.
Vendor-dependent job model. The job model combines the
collection method with a concrete set of devices, shown in Fig-
ure 7. The implementation field matches with what is defined
in the collection method. Instead of defining a job spec for
each device, we group devices and apply the same job spec for
all of them. Figure 7 uses DeviceFilter to define device role
(e.g., rack switches), OS type, region, device state, etc. Job
models are the input to the runtime execution to handle job
scheduling and manage job completion. Job model captures
the system aspects of changes. It can be adapted according to
performance and scalability requirement, which is indepen-
dently controlled from the intent or data specifications.

5 Change Exploration

Once PCAT collects data based on monitoring intents, we run
device-level and network-level processing to report the data
back to applications. Below, we build a few change-aware
applications by exploring dependencies across change cubes.

5.1 Change-driven Topology Derivation
Toposyncer is our topology generation service, part of the
collection infrastructure (see network-wide data processing
in Figure 1). It creates derived topology from normalized
device-level data (i.e., in vendor-agnostic format) (Figure 8).
For example, from per-device data (e.g., interface counters,
BGP sessions), Toposyncer constructs the device, its chassis,
linecard, as well as cross-device links.
Toposyncer overview Toposyncer has four processes: (1)
Sync_device constructs nodes with multiple sub-components:
sub-switches, chassis, line cards (line 2-11 in Figure 9). It also
derives device-level attributes such as power and temperature,
control and management plane settings. (2) Sync_port derives
physical and logical interfaces on each node and their settings
(IP address, speed, QoS) (line 12-13). (3) Sync_circuit con-
structs cross-device circuits. A circuit is modeled as an entity
with two endpoints, pointing to the interface of each end’s
router [41]. For each interface, it searches for all possible
neighbors based on various protocol data, e.g., LLDP, MAC
table, LACP table. In case some data source is incomplete,
we search all data sources, independently identify all possible
neighbors from each data source, and consolidate the results.

968 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Linecard
Normalized
device data

Routing control

Physical if Logical if

Queue

Device Hardware blueprints
System OID map

Linecard mapLinecard

Physical if Logical if

Circuit

DeviceDesired model

Derivation
Correlation

Matching?

Sync_device Sync_circuitSync_port Sync_protocolToposyncer

Routing control

Linecard

Physical if Logical if

Circuit

DeviceDerived topology

Routing control

Drainer Audits MPLS
Assets

management
…Alerts

Applications

Figure 8: Data dependency graph. Toposyncer consumes the device data,
desired model and hardware blueprints to generate derived data. PCAT
verifies the derived data with the desired model.

1: procedure DERIVETOPOLOGY(Collection, Desired,
HdwTemps, DependencyG)

2: for d ∈ Desired.Devices do
3: DeviceObj, dep = sync_device(Collection, d)
4: DependencyG.add(dep)
5: blueprint = getBlueprint(HdwTemps, d)
6: for chassis_temp ∈ blueprint do
7: derived_chassis = sync_chassis(Collection,

chassis_temp)
8: for linecard_model ∈chassis_temp do
9: derived_chassis.add(sync_linecard(Collection,

linecard_model))
10: DeviceObj.addchassis(derived_chassis)
11: DeviceObjs.add(DeviceObj)
12: for d ∈ DeviceOb js do
13: derived_ifaces = sync_port(Collection, d)
14: for i f ace ∈ derived_i f aces do
15: neighbors.add(findNeighbors(iface, Collection))
16: circuits = sync_circuits(iface, neighbors)
17: sync_protocol(Collection, circuits)
18: procedure UPDATETOPOLOGY(UpdateQ, DependencyG)
19: while U pdateQ 6= /0 do
20: changei = UpdateQ.pop()
21: dependent_objs = changei.Dependency
22: update_func=findFunc(dependent_objs)
23: update_func(dependent_objs, changei)

Figure 9: Toposyncer algorithm

(4) Sync_protocol creates the protocol layers on top of the
circuits, such as OSPF areas, BGP sessions and their states.

Toposyncer uses two additional data sources as templates
to guide the construction: the desired model which defines
the operator’s intent topology and hardware blueprints which
include hardware specifications, as shown at the bottom in
Figure 8. Figure 9 shows the process. It uses desired device
data (names, IP addresses) to decide what device to derive
(line 2). Then, it uses the hardware blueprints and desired
data to handle ambiguity. For instance, to figure out “what
is this chassis”, it first checks the discovered chassis name
in raw data from the device. But often the discovered name
is not uniquely mapped to a chassis but to several possible
chassis versions, e.g., two versions with 4 linecards, one ver-
sion with 8 linecards. Toposyncer cross-checks with hardware
blueprints and picks the best match3 (line 6-8). This process
is similar to other topology services [29, 41], but we focus
on derived models and how we populate them automatically
from telemetry data.
Improve Toposyncer with change cubes. Our first imple-
mentation of Toposyncer did not utilize changes. It ran pe-
riodically against the latest snapshots of collected data at
a fixed frequency (e.g., 15 minutes). This method leads to
stale derived data, which affects the freshness and accuracy
of upper-layer applications. Another challenge is debugging.
When a piece of data (e.g., a circuit) is missing in the de-
rived topology, it is hard to find out whether it is because of a
raw data change, a normalized data change, a desired model
change, a hardware blueprint change, or other reasons. We
tackle these problems using change cubes and the dependency
primitives below.

3When the guess is wrong, it exhibits as a discrepancy between desired
and derived topology. We add alarming to detect such differences and involve
humans to manually investigate.

Build change cubes. We generate change cubes for nor-
malized data, desired model, hardware blueprint, as well as
Toposyncer code changes, shown as each dotted box in Fig-
ure 8. We generate these cubes by parsing database transaction
logs and model/code changes from version control system
logs and publish them to ChangeDB. For example, when an
operator changes the configuration of an SNMP MIB for a
device, we generate a record to the DB.

Derivation dependency. We populate the derivation de-
pendency across change cubes A and B if we derive data
A from data B. In the above example, the MIB change will
result in multiple change cubes of job models. We build the
dependency between the MIB config change and the rest of
job model changes. Figure 8 shows derivation dependency in
solid arrows across objects in different layers (each large dash
box representing a layer). The dependency exists between
data objects as well as between code and data.

Subscription to change cubes. Toposyncer subscribes to
the change cubes and invokes corresponding processing logic
accordingly, shown in line 19-23. For example, sync_port sub-
scribes to the device data (e.g., Thrift_Fboss_Linecards).
Snmp_entPhysicalTable), and a hardware blueprint (i.e.,
linecard map). If the hardware blueprint changes, i.e., the
same linecard name is mapped to a different hardware
blueprint, the change cube will be published and sync_port
triggers its function sync_phy_iface function on the impacted
interfaces. Similar pub/sub relation is also built between appli-
cations and derived data. For instance, as shown in Figure 8,
a drainer application subscribes to interface status and the
routing control messages to determine if it is safe to perform
an interface drain operation.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 969

5.2 Improve Trust on Data Quality
Real-world telemetry data may contain dirty or missing data.
By exploring the change history, one can better judge whether
the current values are trustworthy. Observing patterns of data
changes can help predict the occurrences of future changes
and identify missing changes.
Correlation dependency. Amongst normalized device data
or derived data, data have relationships between them, shown
as dash arrows within each large dash box in Figure 8. The re-
lationship represents the physical dependency across objects,
such as “contain”, “connect”, “originate”. Previous topology-
modeling works Robotron [41] and MALT [29] focus on the
desired model and the correlation dependency in it. The de-
sired model is built for the purpose of capturing topology
intents and generating configurations. Here we use the model
together with change cubes to verify if the actual topology’s
change is legit by comparing it against the desired models. A
change cube generated from the desired object should have a
matching change cube in the derived object, and vice versa.
This can be done with a Slice on the entity, Sort by time, and
compare the Entity of the changes.

This correlation dependency can also be used for cross-
layer validation of data quality. We implement if-then vali-
dation rules based on the correlation dependency on change
cubes. We give two examples below. One use case is hard-
stop fault detection. One rule is that if the logical interface
fails (i.e., a specific change cube on a logical interface), then
the routing session going through it will also fail (i.e., another
change cube on the routing session must exist). If we observe
significant errors at the lower layer but no upper failure, it
indicates a measurement issue. In another use case, the ag-
gregate interface consists of multiple physical interfaces. If
a member physical interface reports packet errors, then the
packet errors from aggregated interface should be larger than
or equal to the physical interface errors. If the rule is not satis-
fied, it indicates some issues. These cross-layer dependencies
can help us detect change-induced problems more quickly.

6 Evaluation
This section evaluates how the layer design of PCAT has
helped with change tracking and how much benefit the change
cube method has brought to use cases.

6.1 Change tracking implementation
First, we examine whether tracking all the changes is even
feasible in a production environment. We show the change
cube data volume grows with time in Figure 10a. Drawing
from the experiences of Facebook’s data infrastructure team,
we employ a two-tier storage solution. We have an in-memory
database to hold the change data for the most recent 30 days
and have a disk-based SQL database for longer historical data.
At the same time, the change data is published to our pub-
lish/subscribe system [4] for real-time propagation. Next, we

0 5 10 15 20 25 30
Days

0M

5M

10M

15M

#
of

T
op

os
yn

ce
r

ch
an

ge
cu

b
es

(a) # of change cubes over time.

27 28 29 30 31 32
Query time (second)

0.00

0.25

0.50

0.75

1.00

C
D

F

(b) Query distribution time.

Figure 10: Scalability and performance of change tracking.

2016-1
2

2017-0
6

2017-1
2

2018-0
6

2018-1
2

2019-0
6

2019-1
2

0K

50K

100K

L
O

C
ch

an
ge

s Infrastructure

Configurations

(a) LoC changes over time.
2016-1

2

2017-0
6

2017-1
2

2018-0
6

2018-1
2

2019-0
6

2019-1
2

0

50

100

150

200

N
o.

of
en

gi
ne

er
s

Software engineers

Network engineers

(b) Engineers over time.

Figure 11: Separating configurations with telemetry infra.

evaluate the performance of exploration using the primitives
defined in §3.1, which is implemented using SQL statements.
Figure 10b shows the query distribution time for data stored
on disk, most of which centers around 27-32 seconds, due to
the large data volume. For shorter duration of data in memory,
it takes less than one second.

6.2 Benefits of separation
Analyzing change data over time helps us evaluate the long-
term benefit of the layer design. We show it from three aspects.
Decoupled evolvement of configurations and infrastruc-
ture. We categorize changes broadly to configuration changes
vs. infrastructure changes. We quantify the magnitude of the
change using the Lines of Code (LOC) change. Figure 11a
shows that the changes for configurations are 3.1 times more
than core collection infrastructure changes. The sudden jumps
for configurations in January 2019 are due to adding a large
set of optical devices, which was not monitored by PCAT.
The second increase around July 2019 is due to the migration
to Gen3, resulting in a large number of new models added.
The result shows that we increase the monitoring scope by
configuration layer changes with a stable infrastructure.
Scaling with divided responsibility. The separation in soft-
ware systems has a long-term impact on the organization
growth and people aspects. In Figure 11b, we analyze the
change authors and categorize by their roles. It shows the
number of network engineers who have made changes to con-
figurations is increasing at a much faster pace than software
engineers, with 7.2 times more people recently. The increase
around June 2019 is due to both migration to Gen3 and adding
more optical devices to monitor. It is clear that both of these
changes are carried out by network engineers. It shows that
PCAT enables network engineers to work on different network
types while a small number of software engineers maintain in-
frastructure. It will boost a healthy collaboration environment
where each team can play by their strength.
Confining the impact of changes. We use the number of
change cubes as an approximate of the volume of changes.

970 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2016-1
2

2017-0
6

2017-1
2

2018-0
6

2018-1
2

2019-0
6

2019-1
2

0

20

40

N
o.

of
ch

an
ge

cu
b

es
p

er
w

ee
k

Data model
Job Model
Device-level
Network-wide

(a) Change cubes across time.

0 5 10
No. of change cubes per week

0.00

0.25

0.50

0.75

1.00

C
D

F

Device-level Gen2
Network-wide Gen2

Gen3
Gen3

(b) CDF of change frequency.

Figure 12: Change cube frequency.

Dat
a

m
odel

Jo
b

m
odel

Dev
-le

ve
l

Net
-w

id
e

Dat
a+

Jo
b

Dat
a+

Dev
-le

ve
l

Jo
b+

Dev
-le

ve
l

Dat
a+

Jo
b

+
Dev

-le
ve

l

0

25

50

%
of

co
rr

el
at

ed
ch

an
ge

s

7.6

54.3

1.4
13.820.1

0.5 1.6 0.6

(a) Overall correlations.

Dev
-le

ve
l

Dat
a

+
Dev

-le
ve

l Jo
b

+
Dev

-le
ve

l

Dat
a+

Jo
b

+
Dev

-le
ve

l

0

50

100
%

of
co

rr
el

at
ed

ch
an

ge
s

45.1

9.8
31.4

13.7

86.4

4.5 9.1
0.0

Gen2 Gen3

(b) Device-level correlations.

Figure 13: Correlated changes.

Figure12a shows its trends across time for data models, job
models, device-level processing, and network-wide process-
ing. The maximum numbers range from 15 to 50 for different
categories. The models (data and job) have more changes due
to the frequent intent changes. The infrastructure layers (de-
vice and network-wide processing) are more stable. Recently
there are more data model and job model changes, because
of Gen2-to-Gen3 migration. To directly illustrate the benefit
of modular design in Gen3 (§4.2), Figure12b compares the
frequency of change cubes for device-level and network-wide
processing in Gen2 and Gen3 (after 2019-02). We observe that
the average change frequency for network-wide processing in
Gen3 is 38.1% lower than Gen2, while device-level remains
similar. This means the modular design in Gen3 further pre-
vents the changes in lower data model and job model layers
from impacting upper processing layers, confining the impact
of lower-layer changes. Note that we discounted the changes
due to Gen2-to-Gen3 migration to have a fair comparison.
Reducing correlated changes. We find change cubes that oc-
cur close in time as correlated changes (e.g., data and job mod-
els are modified in the same commit). We show that PCAT’s
way of separating layers and models has helped reduce cor-
related changes. We first present the breakdown of different
correlation combinations in both generations in Figure 13a.
The largest combination is data and job, accounting for 20.1%.
It is because adding new devices requires adding both data and
job models. There are a small fraction of changes that require
updating data, job, and device-level processing all together.
Most of them are due to adding some specific counters that
require special processing. Figure13b further breaks down
all correlated changes related to device-level processing for
Gen2 and Gen3. It shows that Gen3 has significantly reduced
the correlated changes by 54.1%, 71.0%, and 100.0% (i.e.,
the second-to-last bar pairs) accordingly.

6.3 Benefits of change-driven Toposyncer
The first benefit is explicitly tracking changes in a centralized
manner. Figure14a shows the magnitude of the changes over

0 5 10 15 20 25 30
Days

0M

0.5M

1M

1.5M

2M

N
o.

of
ch

an
ge

s
p

er
da

y

(a) No. of changes to Toposyncer.

0 50 100 150 200 250
Lagging reduction (Seconds)

0.00

0.25

0.50

0.75

1.00

C
D

F

ISIS interface

BGP session

(b) Lagging reduction.

Figure 14: Change-driven Toposyncer.

time to Toposyncer. Note that this is much higher than the
changes presented earlier, since it includes the changes of raw
data for network states.

The second benefit lies in the efficiency and accuracy im-
provement to applications. We evaluate it using the lagging
time, i.e. the time between the change happening and when
changes are reflected in derived topology by Toposyncer. Fig-
ure 14b shows the topology derivation is much more timely:
reducing 118.76s lagging time for ISIS interface updates, and
108.93s for BGP session state updates, averagely.

7 Lessons and Future Directions

We discuss our lessons from building PCAT and the opportu-
nities for future research.
Efficiency vs. adaptivity. We work closely with vendors to
improve the efficiency of data collection primitives at switches
(similar to academic work on reducing memory usage and
collection overhead with high accuracy [24,26,46]). However,
pursuing efficiency brings us challenges on adaptivity. Dif-
ferent devices have different programming capabilities and
resource constraints to adopt efficient algorithms. Introducing
new primitives also adds diversity and dynamics to upper
layers in the telemetry system. For example, we work with
vendors to support a sophisticated micro-burst detection on
hardware. However, if only a subset of switches supports this
new feature, applications need complex logic to handle de-
tected and missed micro-bursts. Thus we have a higher bar
for adopting efficient algorithms due to adaptivity concerns.

To support diverse data collection algorithms, we need
a full-stack solution with universal collection interfaces at
switches and change-aware data processing and aggregation
algorithms. Recent efforts on standardizing switch interfaces
such as OpenConfig [3] is a great first step but does not put
enough emphasis on standardizing telemetry interfaces. Re-
cent trends on open-box switches (e.g., FBOSS [13]) bring
new opportunities to develop adaptive telemetry primitives.
Trustful network telemetry. Telemetry becomes the founda-
tion for many network management applications. Thus we
need to know which data at which time period is trustful. How-
ever, building a trustful telemetry system is challenging in an
evolving environment with many changes of devices, network
configurations, and monitoring intents. Fast evolution also
introduces more misconfigurations and software bugs. Explic-
itly tracking change cubes and exploring their dependencies
in PCAT is only the first step.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 971

We need more principled approaches for telemetry verifi-
cation and validation across monitoring intents, data models,
and collection jobs. Compared with configuration verification
work [7, 35], telemetry verification requires quantifying the
impact of changes to the measurement results. One opportu-
nity is that we can leverage cross-validations across multiple
counters covering the same or related network states or across
aggregated statistics over time. For example, we collect power
utilizations (watts) from both switches and power distribution
units (PDUs). In this way, we can validate the correctness of
these utilization counters by comparing the PDU value with
the sum of switch values.

Telemetry systems are complex time-series databases. We
can leverage provenance techniques [12] to support change
tracking, data integration, and troubleshooting. One challenge
is that we cannot build a full provenance system due to vendor-
proprietary code and network domain-specific data aggrega-
tion algorithms. There are also unexpected correlation depen-
dencies across data.
Integration between telemetry and management applica-
tions. Our production networks are moving towards self-
driving network management with a full measure-control
loop. PCAT shows that changes bring a new complexity to
the measure-control loop. Control decisions not only affect
the network state that telemetry system captures but also the
telemetry system itself. For example, an interface change may
affect a counter scope. A traffic engineering control change
may affect data aggregation because traffic traverses through
different switches. These telemetry data changes in turn affect
control decisions. We need to identify solutions that can feed
control-induced changes directly into the telemetry systems.

Another question is how to present large-scale multi-layer
telemetry data to control applications. Rather than providing
a unified data stream, control applications can benefit from
deciding what time, at what granularity, frequency, and avail-
ability level for data collection and the resulting overhead and
accuracy in the telemetry system. One lesson we learned is
to have the telemetry data available when it is mostly needed.
For example, the network’s aggregated egress traffic counter,
which is collected at the edge PoPs, is a strong indicator of
the business healthiness. To ensure its high availability, we
need to give control applications the option to transfer the
counter on more expensive out-of-band overlay networks.
Moreover, we may extend the intent model to explicitly ex-
press the reliability-cost tradeoffs and adapt the tradeoffs
during changes. We also need new algorithms and systems
that can automatically integrate data at different granularities,
frequencies, and device scopes to feed in control applications.

8 Related Work
Network evolvement. Several existing works have also
pointed out the importance of considering changes. Both
Robotron [41] and MALT [29] discuss it in the context of
topology modeling, but miss the practical challenges of net-

work monitoring. [16] discusses network availability during
changes, while we focus on telemetry systems during changes.
Other monitoring techniques. PCAT is a passive approach.
Active measurement injects packets into the network [14, 17,
18,34,49], and they are complements to passive measurement.
The design principle of PCAT to handle changes can be ap-
plied to existing monitoring systems [20, 25, 36, 44, 48, 50],
languages and compilers [9, 19, 32, 33]. PCAT also bene-
fits from recent software-defined measurement frameworks
[25, 27, 32, 46, 48]. For example, similar to OpenSketch [48],
PCAT frees network engineers from configuring different
measurement tasks manually. PCAT ’s intent model design
borrows ideas from the query language in Marple [32].
There are many memory-efficient monitoring algorithms
[22, 23, 26, 30, 46] that focus on the expressiveness and per-
formance of network monitoring. They provide adaptivity but
only to a limited type of new queries, resource changes, or
network condition changes. Here, PCAT focuses on a broader
set of adaptivity (e.g., adaptive to counter semantics changes,
data format changes, and more).
Dependency in network management. Dependency graph
has been widely used for root cause localization [5, 6, 37, 42,
43, 47, 50]. Statesman [40] captures domain-specific depen-
dencies among network states. We share some similarities but
use dependency to tackle the change propagation.
Techniques from database and software engineering.
Data provenance [12, 15] encodes causal relations between
data and tables in metadata. Several works [11, 45] apply
provenance to network diagnosis. [8] proposes the change
cube concept and applies it to real-world datasets. All the
above works focus on data face-value. On the other hand, soft-
ware engineering community studies the problem of how
a change in one source code propagates to impact other
code [21, 51]. Ours looks at changes from telemetry systems
from both data, configurations, and code.

9 Conclusion
This paper presents the practical challenge of a monitoring
system to support an evolving network in Facebook. We pro-
pose explicitly tracking changes with change cubes and ex-
ploring changes with a set of primitives. We present extensive
measurements to illustrate its prevalence and complexity in
production, then share experiences in building a change-aware
telemetry system. We hope to inspire more research on adap-
tive algorithms and evolvable systems in telemetry.

Acknowledgments
We thank our shepherd Chuanxiong Guo and the anonymous
reviewers for their insightful comments. Yang Zhou and Min-
lan Yu are supported in part by NSF grant CNS-1834263.

972 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Express backbone. https://engineering.fb.com/d
ata-center-engineering/building-express-ba
ckbone-facebook-s-new-long-haul-network/.

[2] Introducing proxygen facebook c++ http framework.
https://code.fb.com/production-engineering
/introducing-proxygen-facebook-s-c-http-fr
amework.

[3] OpenConfig YANG model. http://www.openconfig
.net/projects/models/.

[4] Scribe. https://github.com/facebookarchive/s
cribe.

[5] Behnaz Arzani, Selim Ciraci, Luiz Chamon, Yibo Zhu,
Hongqiang Harry Liu, Jitu Padhye, Boon Thau Loo, and
Geoff Outhred. 007: Democratically finding the cause
of packet drops. In 15th {USENIX} Symposium on Net-
worked Systems Design and Implementation ({NSDI}
18), pages 419–435, 2018.

[6] Paramvir Bahl, Ranveer Chandra, Albert Greenberg,
Srikanth Kandula, David A Maltz, and Ming Zhang.
Towards highly reliable enterprise network services via
inference of multi-level dependencies. ACM SIGCOMM
Computer Communication Review, 37(4):13–24, 2007.

[7] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David
Walker. A general approach to network configuration
verification. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication,
pages 155–168, 2017.

[8] Tobias Bleifuß, Leon Bornemann, Theodore Johnson,
Dmitri V Kalashnikov, Felix Naumann, and Divesh Sri-
vastava. Exploring change: a new dimension of data an-
alytics. Proceedings of the VLDB Endowment, 12(2):85–
98, 2018.

[9] Kevin Borders, Jonathan Springer, and Matthew Burn-
side. Chimera: A declarative language for streaming
network traffic analysis. In Presented as part of the 21st
{USENIX} Security Symposium ({USENIX} Security
12), pages 365–379, 2012.

[10] Jeffrey D Case, Mark Fedor, Martin L Schoffstall, and
James Davin. Simple network management protocol
(snmp). Technical report, 1990.

[11] Ang Chen, Yang Wu, Andreas Haeberlen, Wenchao
Zhou, and Boon Thau Loo. The good, the bad, and
the differences: Better network diagnostics with differ-
ential provenance. In Proceedings of the 2016 ACM
SIGCOMM Conference, pages 115–128. ACM, 2016.

[12] James Cheney, Laura Chiticariu, Wang-Chiew Tan, et al.
Provenance in databases: Why, how, and where. Foun-
dations and Trends® in Databases, 1(4):379–474, 2009.

[13] Sean Choi, Boris Burkov, Alex Eckert, Tian Fang,
Saman Kazemkhani, Rob Sherwood, Ying Zhang, and
Hongyi Zeng. Fboss: building switch software at scale.
In Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication (SIG-
COMM), pages 342–356. ACM, 2018.

[14] Cisco. Ip slas configuration guide, cisco ios release
12.4t. http://www.cisco.com/c/en/us/td/docs/
ios-xml/ios/ipsla/configuration/12-4t/sla-
12-4t-book.pdf.

[15] Mahmoud Elkhodr, Belal Alsinglawi, and Mohammad
Alshehri. Data provenance in the internet of things.
In 2018 32nd International Conference on Advanced
Information Networking and Applications Workshops
(WAINA), pages 727–731. IEEE, 2018.

[16] Ramesh Govindan, Ina Minei, Mahesh Kallahalla,
Bikash Koley, and Amin Vahdat. Evolve or die: High-
availability design principles drawn from googles net-
work infrastructure. In Proceedings of the 2016 ACM
SIGCOMM Conference, pages 58–72. ACM, 2016.

[17] Nicolas Guilbaud and Ross Cartlidge. Google localiz-
ing packet loss in a large complex network. Nanog57,
Feb 2013.

[18] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong
Dang, Ray Huang, Dave Maltz, Zhaoyi Liu, Vin Wang,
Bin Pang, Hua Chen, et al. Pingmesh: A large-scale
system for data center network latency measurement
and analysis. In Proceedings of the 2015 ACM Confer-
ence on Special Interest Group on Data Communication,
pages 139–152, 2015.

[19] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feam-
ster, Jennifer Rexford, and Walter Willinger. Sonata:
Query-driven streaming network telemetry. In Proceed-
ings of the 2018 Conference of the ACM Special Interest
Group on Data Communication, pages 357–371, 2018.

[20] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyaku-
mar, David Mazières, and Nick McKeown. I know what
your packet did last hop: Using packet histories to trou-
bleshoot networks. In NSDI, volume 14, pages 71–85,
2014.

[21] Ahmed E Hassan and Richard C Holt. Predicting change
propagation in software systems. In 20th IEEE Inter-
national Conference on Software Maintenance, 2004.
Proceedings., pages 284–293. IEEE, 2004.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 973

https://engineering.fb.com/data-center-engineering/building-express-backbone-facebook-s-new-long-haul-network/
https://engineering.fb.com/data-center-engineering/building-express-backbone-facebook-s-new-long-haul-network/
https://engineering.fb.com/data-center-engineering/building-express-backbone-facebook-s-new-long-haul-network/
https://code.fb.com/production-engineering/introducing-proxygen-facebook-s-c-http-framework
https://code.fb.com/production-engineering/introducing-proxygen-facebook-s-c-http-framework
https://code.fb.com/production-engineering/introducing-proxygen-facebook-s-c-http-framework
http://www.openconfig.net/projects/models/
http://www.openconfig.net/projects/models/
https://github.com/facebookarchive/scribe
https://github.com/facebookarchive/scribe
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipsla/configuration/12-4t/sla-12-4t-book.pdf
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipsla/configuration/12-4t/sla-12-4t-book.pdf
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipsla/configuration/12-4t/sla-12-4t-book.pdf

[22] Qun Huang, Xin Jin, Patrick PC Lee, Runhui Li,
Lu Tang, Yi-Chao Chen, and Gong Zhang. Sketchvisor:
Robust network measurement for software packet pro-
cessing. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, pages
113–126, 2017.

[23] Qun Huang, Patrick PC Lee, and Yungang Bao. Sketch-
learn: Relieving user burdens in approximate measure-
ment with automated statistical inference. In Proceed-
ings of the 2018 Conference of the ACM Special Interest
Group on Data Communication, pages 576–590, 2018.

[24] Qun Huang, Haifeng Sun, Patrick PC Lee, Wei Bai, Feng
Zhu, and Yungang Bao. Omnimon: Re-architecting
network telemetry with resource efficiency and full ac-
curacy. In Proceedings of the Annual conference of
the ACM Special Interest Group on Data Communica-
tion on the applications, technologies, architectures, and
protocols for computer communication, pages 404–421,
2020.

[25] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu.
Flowradar: A better netflow for data centers. In 13th
{USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 16), pages 311–324, 2016.

[26] Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron Kass-
ner, Vladimir Braverman, Roy Friedman, and Vyas
Sekar. Nitrosketch: Robust and general sketch-based
monitoring in software switches. In Proceedings of the
ACM Special Interest Group on Data Communication,
pages 334–350. 2019.

[27] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger,
Vyas Sekar, and Vladimir Braverman. One sketch to
rule them all: Rethinking network flow monitoring with
univmon. In Proceedings of the 2016 ACM SIGCOMM
Conference, pages 101–114, 2016.

[28] Chris Lonvick. The bsd syslog protocol. Technical
report, 2001.

[29] Jeffrey C Mogul, Drago Goricanec, Martin Pool, Anees
Shaikh, Douglas Turk, Bikash Koley, and Xiaoxue Zhao.
Experiences with modeling network topologies at mul-
tiple levels of abstraction. In 17th {USENIX} Sympo-
sium on Networked Systems Design and Implementation
({NSDI} 20), pages 403–418, 2020.

[30] Masoud Moshref, Minlan Yu, Ramesh Govindan, and
Amin Vahdat. Scream: Sketch resource allocation for
software-defined measurement. In Proceedings of the
11th ACM Conference on Emerging Networking Experi-
ments and Technologies, pages 1–13, 2015.

[31] Masoud Moshref, Minlan Yu, Ramesh Govindan, and
Amin Vahdat. Trumpet: Timely and precise triggers

in data centers. In Proceedings of the 2016 ACM SIG-
COMM Conference, pages 129–143, 2016.

[32] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan,
Prateesh Goyal, Venkat Arun, Mohammad Alizadeh, Vi-
malkumar Jeyakumar, and Changhoon Kim. Language-
directed hardware design for network performance mon-
itoring. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, pages
85–98, 2017.

[33] Srinivas Narayana, Mina Tahmasbi, Jennifer Rexford,
and David Walker. Compiling path queries. In 13th
{USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 16), pages 207–222, 2016.

[34] Yanghua Peng, Ji Yang, Chuan Wu, Chuanxiong Guo,
Chengchen Hu, and Zongpeng Li. detector: a topology-
aware monitoring system for data center networks. In
2017 USENIX Annual Technical Conference (USENIX
ATC 17), pages 55–68. USENIX Association, 2017.

[35] Santhosh Prabhu, Kuan Yen Chou, Ali Kheradmand,
Brighten Godfrey, and Matthew Caesar. Plankton: Scal-
able network configuration verification through model
checking. In 17th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 20), pages
953–967, 2020.

[36] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter,
and Alex C Snoeren. Inside the social network’s (data-
center) network. In ACM SIGCOMM Computer Com-
munication Review, volume 45, pages 123–137. ACM,
2015.

[37] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, and Alex C
Snoeren. Passive realtime datacenter fault detection and
localization. In 14th {USENIX} Symposium on Net-
worked Systems Design and Implementation ({NSDI}
17), pages 595–612, 2017.

[38] Brandon Schlinker, Hyojeong Kim, Timothy Cui, Ethan
Katz-Bassett, Harsha V Madhyastha, Italo Cunha, James
Quinn, Saif Hasan, Petr Lapukhov, and Hongyi Zeng.
Engineering egress with edge fabric: Steering oceans of
content to the world. In Proceedings of the Conference
of the ACM Special Interest Group on Data Communi-
cation, pages 418–431. ACM, 2017.

[39] Yogeshwer Sharma, Philippe Ajoux, Petchean Ang,
David Callies, Abhishek Choudhary, Laurent Demailly,
Thomas Fersch, Liat Atsmon Guz, Andrzej Kotulski,
Sachin Kulkarni, Sanjeev Kumar, Harry Li, Jun Li, Ev-
geniy Makeev, Kowshik Prakasam, Robbert Van Re-
nesse, Sabyasachi Roy, Pratyush Seth, Yee Jiun Song,
Benjamin Wester, Kaushik Veeraraghavan, and Peter

974 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Xie. Wormhole: Reliable pub-sub to support geo-
replicated internet services. In 12th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 15), Oakland, CA, May 2015. USENIX Associa-
tion.

[40] Peng Sun, Ratul Mahajan, Jennifer Rexford, Lihua Yuan,
Ming Zhang, and Ahsan Arefin. A network-state man-
agement service. In Proceedings of the 2014 ACM con-
ference on SIGCOMM, pages 563–574, 2014.

[41] Yu-Wei Eric Sung, Xiaozheng Tie, Starsky HY Wong,
and Hongyi Zeng. Robotron: Top-down network man-
agement at facebook scale. In Proceedings of the 2016
ACM SIGCOMM Conference, pages 426–439. ACM,
2016.

[42] Praveen Tammana, Rachit Agarwal, and Myungjin Lee.
Simplifying datacenter network debugging with path-
dump. In 12th {USENIX} Symposium on Operating Sys-
tems Design and Implementation ({OSDI} 16), pages
233–248, 2016.

[43] Cheng Tan, Ze Jin, Chuanxiong Guo, Tianrong Zhang,
Haitao Wu, Karl Deng, Dongming Bi, and Dong Xiang.
Netbouncer: active device and link failure localization
in data center networks. In 16th {USENIX} Sympo-
sium on Networked Systems Design and Implementation
({NSDI} 19), pages 599–614, 2019.

[44] Mea Wang, Baochun Li, and Zongpeng Li. sFlow: To-
wards resource-efficient and agile service federation in
service overlay networks. IEEE, 2004.

[45] Yang Wu, Ang Chen, and Linh Thi Xuan Phan. Zeno:
Diagnosing performance problems with temporal prove-
nance. In 16th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 19), pages
395–420, 2019.

[46] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi
Gong, Yang Zhou, Rui Miao, Xiaoming Li, and Steve

Uhlig. Elastic sketch: Adaptive and fast network-wide
measurements. In Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communi-
cation, pages 561–575. ACM, 2018.

[47] Da Yu, Yibo Zhu, Behnaz Arzani, Rodrigo Fonseca,
Tianrong Zhang, Karl Deng, and Lihua Yuan. dshark:
a general, easy to program and scalable framework for
analyzing in-network packet traces. In 16th {USENIX}
Symposium on Networked Systems Design and Imple-
mentation ({NSDI} 19), pages 207–220, 2019.

[48] Minlan Yu, Lavanya Jose, and Rui Miao. Software
defined traffic measurement with opensketch. In NSDI,
volume 13, pages 29–42, 2013.

[49] Hongyi Zeng, Peyman Kazemian, George Varghese,
and Nick McKeown. Automatic test packet genera-
tion. In Proceedings of the 8th international conference
on Emerging networking experiments and technologies,
pages 241–252. ACM, 2012.

[50] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg,
Guohan Lu, Ratul Mahajan, Dave Maltz, Lihua Yuan,
Ming Zhang, Ben Y Zhao, et al. Packet-level telemetry
in large datacenter networks. In Proceedings of the
2015 ACM Conference on Special Interest Group on
Data Communication, pages 479–491, 2015.

[51] Thomas Zimmermann, Andreas Zeller, Peter Weissger-
ber, and Stephan Diehl. Mining version histories to
guide software changes. IEEE Transactions on Soft-
ware Engineering, 31(6):429–445, 2005.

APPENDIX
The first step of PCAT is to collect data from devices, which

we call discovered data. There are three types of data includ-
ing numeric counters, non-numeric states, and configurations.
Table 4 shows the examples for each category.

Types Categories & examples Impact of software upgrades

Counters

Device utilization: CPU&memory utilization, routing table size, etc Ambiguity between percentage and absolute values.
Device internal status: Interface error counter, power supply tempera-
ture, fan speeds, linecard version, optical CRC error counter, etc

XML format gets changed; linecard version format
changes from integer to string.

Packet processing counters: Packet drops, errors, queue length, etc Ambiguity of interface stats meaning.
Protocol counters: BGP neighbor received routes, etc General empty data error.

States
Interface state: Interface up, down, drained, configured IP address,
MAC address, etc

Hex-decimal change causes MAC address retrieving
error.

Protocol state: BGP neighbor state, etc State meaning ambiguity.
Configs BGP policy, queuing algorithm, etc Raw config format changed.

Table 4: Different discovered data in PCAT.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 975

SwarmMap: Scaling Up Real-time Collaborative Visual SLAM at the Edge

Jingao Xu1∗, Hao Cao1∗, Zheng Yang1B, Longfei Shangguan2

Jialin Zhang1, Xiaowu He1, Yunhao Liu1

1School of Software, Tsinghua University 2University of Pittsburgh & Microsoft

Abstract
The Edge-based Multi-agent visual SLAM plays a key role
in emerging mobile applications such as search-and-rescue,
inventory automation, and industrial inspection. This algo-
rithm relies on a central node to maintain the global map and
schedule agents to execute their individual tasks. However,
as the number of agents continues growing, the operational
overhead of the visual SLAM system such as data redundancy,
bandwidth consumption, and localization errors also scale,
which challenges the system scalability.

In this paper, we present the design and implementation
of SwarmMap, a framework design that scales up collabo-
rative visual SLAM service in edge offloading settings. At
the core of SwarmMap are three simple yet effective system
modules — a change log-based server-client synchronization
mechanism, a priority-aware task scheduler, and a lean repre-
sentation of the global map that work hand-in-hand to address
the data explosion caused by the growing number of agents.
We make SwarmMap compatible with the robotic operating
system (ROS) and open-source it1. Existing visual SLAM
applications could incorporate SwarmMap to enhance their
performance and capacity in multi-agent scenarios. Compre-
hensive evaluations and a three-month case study at one of
the world’s largest oil fields demonstrate that SwarmMap
can serve 2× more agents (>20 agents) than the state of the
arts with the same resource overhead, meanwhile maintaining
an average trajectory error of 38cm, outperforming existing
works by >55%.

1 Introduction
Visual simultaneous localization and mapping (SLAM) sys-
tems take video streams from one or multiple cameras as
input, reconstructing the 3D map of environment while simul-
taneously determining the position and orientation of cameras
with respect to their surroundings [29, 34, 36]. With the size
of the mapping area expanding rapidly, collaborative visual

BZheng Yang (hmilyyz@gmail.com) is the corresponding author. Jingao
Xu and Hao Cao are co-primary authors.

1Code and data at https://github.com/MobiSense/SwarmMap.

SLAM that involves multiple agents has been attracting grow-
ing interest from both academia and industry [25, 39, 40, 49].
For instance, Amazon, JD, and Alibaba have deployed dozens
of picking and sorting robots in their logistics warehouses
to save labor cost [45]; DJI and Amazon have also been de-
veloping drone grouping and swarming technology for urban
modeling, express delivery, and industrial inspection [12]. In
these scenarios, each agent has to conduct not only the local-
ization but mapping tasks in real-time due to (i) upper layer
applications require the latest updated environment map to
perform the subsequent maintenance and scheduling tasks,
especially in those dynamic environments; and (ii) since the
two modules are tightly coupled, an agent also relies on a high-
quality on-board map for a better localization performance
and vice-versa [3, 47].

The SLAM agents profile the environment with their cam-
eras, exchange data with each other, and execute vision tasks
in real-time, with a significant computation overhead. The lim-
ited computation resource on the agent soon becomes the bot-
tleneck, impairing system accuracy [3, 40, 47]. Edge-offload
has emerged as a promising alternative due to the following
two reasons. First, by offloading bulky tasks to edge devices,
the agents only need to run light-weight and time-sensitive
jobs locally, which effectively mitigates on-board resource
shortage [3,47]. Second, by fusing and further optimizing the
visual map globally at a centralized edge device, map informa-
tion that is originally unavailable to each other can be easily
shared among agents [39, 40]. This will benefit collaborative
missions such as collision avoidance and path planning.

Albeit inspiring, the growing number of agents brings new
issues that challenge the scalability of edge-based real-time
collaborative visual SLAM systems (§2.2):
• Map synchronization stresses the network bandwidth.
Mobile agents like drones and robots heavily rely on wireless
links to communicate with an edge device. However, wireless
spectrum is a limited and overcrowded resource. Streaming
large volumes of map data over wireless links will soon satu-
rate the medium and cause significant delays.
• FCFS-based job scheduling impairs the localization ac-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 977

https://github.com/MobiSense/SwarmMap

Warehouse Area

Worker

C

C

A

B

Crude Oil

Separator

Autonomous

Inspection Vehicle

Wellhead

A

D

Oil Pipeline

Inspection

Drone

D

B

Figure 1: Industrial inspection is carried out by 10 drones and 2 autonomous vehicles in one of the world’s largest oil-field
(>170km2) in the Middle East. These agents are coordinated by SwarmMap that runs on an Nvidia AGX Xavier edge server.

curacy. An edge device has to processes large volumes of
requests from agents, which may cause significant delays to
latecomers (i.e., those requests positioned in the tail of the
queue). However, agents in different states are not equally
sensitive to the queuing delay. The conventional first-come,
first-served (FCFS) pipeline will exacerbate the localization
error on those time-sensitive agents.
•Map expansion exacerbates the memory footprint. The
size of the global visual map increases sharply with a grow-
ing number of agents, which is likely to exceed the limited
memory capacity allocated to SLAM tasks by an edge node,
causing memory overflow.

However, the current practice of edge-offload focuses pri-
marily on computation-oriented task partitioning [3, 8, 23, 40,
47]. They fail to address the data explosion and its impact
on transmission, scheduling, and storage. Hence these pio-
neer designs cannot scale with the sheer size of the real-time
collaborative visual SLAM systems.
In this work, we present SwarmMap, a framework to scale up
the real-time collaborative visual SLAM services at resource-
constrained edge devices. SwarmMap does not innovate vi-
sual SLAM algorithms. Instead, it proposes functionality and
resource abstractions of existing SLAM algorithms and pro-
vides additional system services to enhance system scalability.
Hence, most variations of collaborative visual SLAM systems
can take advantage of our design. With SwarmMap, the upper-
layer user can outsource agent task scheduling and processing
instead of understanding every detail of SLAM algorithms
to manually adapt. SwarmMap contains three key plug-in
modules, as described below.

First, we design a Map Information Tracker (Mapit) to
maintain map data consistency between the agents and the
edge while remarkably saving network bandwidth. Unlike
existing methods that transfer bulky map data with each
other [39, 40], Mapit records the operations associated with
the map modification on the agent and transmits these opera-
tions to the edge. The edge node then follows these operations
to update its local map. This allows the map synchronization

between them at the minimum bandwidth consumption even
compared with state-of-the-arts (e.g., CarMap [2]).

Second, we introduce a SLAM-specific task-aware sched-
uler (STS) that prioritizes requests based on the status of their
producer (i.e., agent). The STS scheduler runs on both the
agent and the edge. The agent STS evaluates agent status
around the clock and updates this information with the edge
through heartbeat packets. The edge STS designs a multi-level
queue to ensure those urgent tasks will be processed timely.

Third, we propose a Map Backbone Profiling (MBP) tech-
nique to alleviate the storage overhead while retaining the
mapping accuracy. This technique is based on an observa-
tion that the data quality among different agents’ maps can
be balanced by elements in co-visible areas. We propose a
set of metrics to detect high-quality map elements and use
them to offset those low-quality counterparts, thereby elevat-
ing the overall map quality. Applying model compression to
this high-quality map allows us to remove large portions of
redundant map data without sacrificing the map accuracy.

We evaluate SwarmMap on a testbed consisting of 4
Nvidia Jetson boards, 4 smartphones, 4 DJI RoboMasters,
and 4 drones. Following the standard SLAM evaluation
pipeline [2, 6, 28, 47], we further compare SwarmMap with
two state-of-the-art (SOTA) edge-assisted multi-agent SLAM
systems (CCM-SLAM [40] and Multi-UAV [39]) on three
gold-standard SLAM datasets (TUM [11], KITTI [10], and
EuRoC [9]) as well as a self-labeled dataset collected at a
22,927 sqft shopping mall. We also compare SwarmMap with
CarMap [2] and Sum-Map [27] to evaluate each functional
module in SwarmMap. Our head-to-head comparison shows
that SwarmMap can serve 2× more agents than these SOTA
systems with the same resource overhead, meanwhile main-
taining an absolute trajectory error within 38cm when serving
20 agents, outperforming these SOTA systems by >55%.
Real-world deployment. We have developed a real-time col-
laborative visual SLAM system based on SwarmMap and
deployed it in one of the world’s largest oil-field (>170km2)
for industrial inspection (shown in Fig. 1). Our system con-

978 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Local

Mapping

Loop

Closing

Global Map

Optimize

Tracking
Local

Mapping

Local Map

Generate

Update

Optimize

…
Location

Tracking
Local

Mapping

Local Map

Backbone

Generate

…
…

§
4
.M
a
p
it

:
M

a
p

 I
n

fo
rm

a
ti

o
n

 T
ra

c
k
e
r

§5.STS: SLAM-specific

Task Scheduling

Global Mapping, Fusing,

and Optimizing

§3.MBP: Map

Backbone Profiling

Global Map

Backbone

Edge Node

§6.Edge Node

Implementation

…
…

S
L
A

M
-b

a
s
e
d

 M
u

lt
i-
a
g

e
n

t

C
o
lla

b
o
ra

ti
v
e

 T
a
s
k
s

Upload

Figure 2: Workflow of existing edge-assisted SLAM [3, 47]

sists of twelve agents that communicate with an Nvidia Jetson
AGX Xavier [46] edge node through Wi-Fi mesh networks.
A three-month pilot study shows that SwarmMap achieves an
average localization accuracy of 0.36m. The link throughput
and RAM consumption are below 17MB/s and 26GB respec-
tively, meeting inspection demands within the constraints of
available resources.

In summary, this paper makes three contributions. First,
we quantify the scalability challenges of deploying real-time
collaborative visual SLAM at the edge to motivate framework
support. Second, we design and implement SwarmMap as
a framework to address the scalability issues spanning from
communication, computation, to storage. As far as we are
aware of, SwarmMap is the first system solution to scale up
the collaborative visual SLAM in edge settings. Third, we
deploy SwarmMap in one of the world’s largest oil fields for
industrial inspections in the Middle East. Our three-month pi-
lot study demonstrates that SwarmMap makes a great process
towards fortifying multi-agent collaborative visual SLAM to
a fully practical system for wide deployment.
Contribution to the community. We implement Swar-
mMap as a software package of the robot operating system
(ROS [26]), the dominating OS in the robotics field. We be-
lieve SwarmMap can provide a collection of tools for both
academia and industry, and further enable fast prototyping of
visual SLAM-based applications in multi-agent scenarios.

2 Background and Motivation
The data volume scales with the number of agents, and the
need for framework support arises from the excessive band-
width consumption and memory footprint caused by the data
explosion. We discuss these in detail in this section.

2.1 Edge-assisted visual SLAM systems

The visual SLAM consists of multiple sub-tasks with diverse
workloads. Edge-offload places those bulky tasks to an edge
server, leaving an agent light-weight and time-sensitive jobs.
The agent can thus run visual SLAM in real-time. We use
ORB-SLAM2 [29], a top-ranked open-source visual SLAM
system, to illustrate the SLAM operations under edge settings
(refer to Fig. 2).
Front-end. Mobile agents run Tracking and part of the Lo-
cal Mapping module locally. The Tracking module extracts
2D ORB feature points from each video frame and instantly
estimates the pose of onboard camera(s) based on the ge-
ometry relationship between these feature points and the

pre-constructed local map (i.e., a set of 3D map-points and
keyframes2 in which they appear). As the mobile agent moves,
the Local Mapping module updates the local map timely.
Back-end. Due to high computation costs, the optimization
part of the Local Mapping module is offloaded to the edge
device, where the bundle adjustment (BA) algorithms [42]
kick in to improve the pose and 3D location accuracy of those
newly generated keyframes and map-points. The edge server
also runs a Loop Closing module to detect repeated paths and
leverage them to re-calibrate the global map.
Data transfer in-between. To improve the map accuracy,
each agent periodically sends keyframes and map-points to
the edge server for fine-grained optimization. The optimized
visual map is then streamed to the clients.

2.2 The scalability issues
As more agents get involved, running real-time collabora-
tive visual SLAM on edge environment becomes increasingly
complex, facing several challenges: (i) the frequent data trans-
fer between agents and edge is likely to saturate wireless links,
causing significant delays; (ii) the queueing delay on edge
node exacerbates localization errors; (iii) the data volume
grows sharply, threatening the data storage at the edge node.
We discuss these issues below.
C1: Excessive bandwidth consumption. The life-cycle of
a collaborative visual SLAM system consists of cold-start
and maintenance two sessions. In the cold-start session, the
agents transfer all observed keyframes and map-points data
to the edge server. The edge server then generates a global
map of the entire space and optimizes the local map for each
agent. Once the global map generation has been completed,
the SLAM system enters the long-term maintenance session
during which each agent regularly revisits each site and cali-
brates the mapping offset. However, since map elements are
tightly coupled, a minor modification on a single map ele-
ment will spread to many other elements. This will cause a
significant amount of data transfer in the maintenance.

To reduce bandwidth consumption, recent works [2,40] de-
sign compact map representations and transfer the difference
before and after map element calibration (as opposed to trans-
ferring the entire calibrated map element [39, 47]). Although
these systems can effectively reduce bandwidth consump-
tion in the cold-start session, they encounter two issues in
the maintenance session due to the frequent map updates: (i)
extra computation overhead. The acquisition of element-level
differences requires pair-wise map feature comparison across
the entire map. This will lead to extra computation workload
pressure on resource-limited mobile agents; and (ii) limited
data volume reduction. Since a minor change on an element
will spread to a batch of coupled elements. the volume of data
to be transferred is still bulky.

2Keyframes are a subset of selected frames. Each keyframe stores the
camera pose, the map-points it observed, and the co-visibility relationships
with other keyframes.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 979

(a) Excessive bandwidth consumption (b) Severe localization errors (c) Large data storage overhead
Figure 3: The scalability issues in multi-agent scenarios.

To validate our analysis, we measure the bandwidth require-
ment of three state-of-the-art (SOTA) systems in different
number of agents settings. The results are shown in Fig. 3a.
Compared with the vanilla Multi-UAV [39], we observe that
CarMap [2] and CCM-SLAM [40] can effectively reduce the
transmission workload during map synchronization. However,
when serving more than ten agents, both systems still produce
excessive wireless traffic that can easily go beyond the link
capacity3; thus, significant system delays are expected.
C2: Severe localization errors. Under the edge settings, the
localization accuracy of an agent highly depends on the qual-
ity of the local map which is optimized at the edge side. Typi-
cally, an agent needs to periodically (within 5s) send optimiza-
tion requests to the edge server for every 3-5 newly generated
keyframes [3,47]. As the number of agents scales, the concur-
rent requests from different agents block at the edge node’s
processing pipeline, resulting in excessive queuing delays.
Consequently, some agents get their optimization tasks done
untimely, causing severe localization errors. This situation is
worsened by the fact that agents in different running states
(e.g., flying speeds, self-tracking qualities) are not equally
sensitive to the waiting delay. Recent multi-agent collabora-
tive SLAM solutions focus on map fusion and optimization
on edge or cloud servers, but ignore the task queuing issue for
each agent. The conventional first-come, first-served (FCFS)
scheduling will inevitably exacerbate the localization error
on those task-sensitive agents (demonstrated in §5.3).

We measure the localization error (in m) of three related
works in a different number of agents settings. The results
are shown in Fig. 3b. Considering the accuracy requirement
from a broad range of SLAM applications, we treat 1m and
1.5m as acceptable localization errors for indoor (warehouse
inspection) and outdoor (anomaly detection) scenarios. Ev-
idently, all these three systems fail to meet the localization
requirement when serving more than 5 and 10 agents indoors
and outdoors respectively, leaving room for improvements.
C3: Large data storage overhead. The global map main-
tained by the edge server contains large redundancy due to
the following two reasons. First, to ensure the inspection
efficacy, different agents will re-visit the same area at cer-
tain intervals, causing significant path duplication. Second, to

3The measurement shows the maximum throughput in an outdoor mesh
and an indoor 2.4 GHz Wi-Fi network is 15MB/s and 30MB/s, respectively.

complete the 3D map reconstruction, different agents have to
share a co-visible area, resulting in bulky data redundancy. As
the number of agents grows, the data redundancy increases
sharply, and the data volume is likely to exceed the limited
memory capacity of the edge node.

We set up an edge-based collaborative visual SLAM testbed
using a commercial edge device Nvidia Jetson AGX Xavier
(with 32GB RAM and costs $599) and measure its RAM
usage in different numbers of agent settings. We repeat the
measurement on a powerful server with 4× higher storage
capacity (i.e., Dell PowerEdge T630 with 128GB RAM and
costs $6,899) for comparison. The results are shown in Fig. 3c.
In accordance with our analysis, as the system proceeds, the
RAM usage increases rapidly and soon saturates the memory
capacity of both the edge node and the high-end server. This
limitation is worsened by the mismatch between the limited
storage capacity of the edge node and the growing fidelity
of video streams (i.e., 4K or 8K videos). Such high memory
demand limits the maximum number of agents to five, which
sets a strong barrier for the practical deployment of the edge-
based collaborative visual SLAM system.

Due to the device heterogeneity (e.g., cameras on drones
and robots may differ drastically in video resolution and frame
rate) and diverse running status, the quality of maps pro-
vided by different agents may vary largely. An ideal map
compression should remove those low-quality redundancy
while retaining the high-quality counterpart. However, exist-
ing works ignore such difference when compressing the map
data [27, 32, 43], resulting in degraded SLAM performance
(details in §5.3).

2.3 SwarmMap: System goals
SwarmMap takes a solid step forward in solving these scala-
bility issues. We list the system goals below.
Goal 1: Functionality and resource abstraction. Swar-
mMap should provide functionality and resource abstractions
of existing SLAM algorithms. This allows any variation of
map-point- and keyframe-based collaborative SLAM algo-
rithms to take advantage of SwarmMap.
Goal 2: Plug and play. SwarmMap should be implemented
as a plug-in module, exposing well-defined APIs to end-users
for adaption. This avoids the deeply embedded manual code
changes that may again challenge the system’s scalability.

980 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Goal 3: Resource overhead reduction. SwarmMap should
effectively reduce the resource overhead spanning data stor-
age, client-edge communication, and task scheduling while
ensuring the precision and real-time performance.

3 Design
In this section, we first describe the high-level system archi-
tecture and then present each module design in SwarmMap.

3.1 System overview
SwarmMap is a framework design to scale up collaborative
visual SLAM service in edge offloading settings. To achieve
this goal, we make the following layer-wise functionality and
resource abstractions: (i) agent layer, where each agent local-
izes itself and builds surrounding local maps in real-time; (ii)
network layer, which enables communications and data inter-
actions between mobile and edge for map synchronization;
and (iii) edge layer, which fuses, optimizes, and maintains
the global map. This layer-wise abstraction provides a clear
view of map data transfer, processing, and storage in SLAMs.
Key functional modules. SwarmMap designs three plug-in
modules to address the resource overhead and scheduling
issues across these three layers.
• The Mapit (Map Information Tracker) module tracks sys-
tem operations associated with map data calibration. It then
transfers these operations to the peer(s) for map synchroniza-
tion (§3.2).
• The STS (SLAM-specific Task Scheduling) module opti-
mizes the batch request execution and manages the resource
allocations among multiple agents (§3.3).
• The MBP (Map Backbone Profiling) module compresses
the map data uploaded by individual agents while ensuring
the overall mapping accuracy (§3.4).
SwarmMap Architecture. Fig. 4 shows the system architec-
ture. SwarmMap shares similar edge-based architecture with
previous works and provides extra system support on both the
mobile agent and edge server side, as discussed below.
• On the mobile agent side, SwarmMap tracks the run-time
status of each agent through a light-weight evaluation-based
mechanism STS (mobile part). It then follows a dedicated
information exchanging protocol Mapit to communicate and
update map elements with the edge server.
• On the edge side, the edge node prioritizes the agents’ re-
quests by STS (edge part) based on their run-time status. It
then takes into account the data quality of maps reported by
individual agents and extracts a lean presentation of the over-
all map through a map backbone profiling algorithm (MBP).
Finally, the optimized and compressed map backbones will
be sent to each mobile agent by Mapit.

3.2 Mapit: Map Information Tracker
The inevitable frequent map data synchronization between
clients and edge consumes large bandwidth in both cold-start

Tracking
Local

Mapping

Local Map

Backbone

Generate

…
…

§
3
.2

 M
a
p
it

:
M

a
p

 I
n

fo
rm

a
ti

o
n

 T
ra

c
k
e
r

§3.3 STS: SLAM-specific

Task Scheduling

§3.4 MBP: Map

Backbone Profiling

Global Map

Backbone

…
…

S
L
A

M
-b

a
s
e

d
 M

u
lt
i-

a
g

e
n

t

C
o
lla

b
o

ra
ti
v
e
 T

a
s
k
s

Status

Evaluation

STS

Local

Mapping

Loop

Closing

Global Map Fusing

Edge Node

M
o
b
ile

 A
g
e
n
ts

Figure 4: System architecture of SwarmMap. Compared with
the conventional edge-based visual SLAM architecture, the
added plug-in modules are highlighted in orange.

and maintenance sessions, circumscribing the system capacity
(i.e., the number of supported agents). Recent works (e.g.,
CarMap [2] and CCM-SLAM [40]) propose a compact map
representation that greatly reduces the data transfer in the cold-
start session. However, their effectiveness fails to translate
to a sufficient reduction in the maintenance session (§2.2-
C1). Therefore, in SwarmMap we focus on the data transfer
reduction in the maintenance session.

Our design is based on an observation that the map change
on one side can be reproduced on the other side (e.g., agent vs.
edge) by solely transferring the map change operations. This
enables a light-weight map synchronization by avoiding trans-
ferring massive map-point data and the bulky geographical
descriptors such as their spatial locations, features, observa-
tion relationships with keyframes [28]. Compared with the
current practice, our design also achieves higher synchroniza-
tion efficiency because it does not require a pair-wise map
element comparison, which leads to extra computation work-
load pressure on resource-limited mobile agents.

To realize this basic idea, we design Mapit, a light-weight
map information tracker to automate the operation tracking
and reproducing on mobile and edge. Mapit runs as a daemon
on both sides, monitoring the SLAM function calls and log-
ging corresponding map operations (e.g., move a map-point
by 2cm). It then transfers this log to the agent (or the server),
based on which the agent reproduces these operations locally.
The map data are synchronized at the end.

The Mapit package periodically4 synchronizes the map
operation logs, and consists of five atomic operations: add,
aggregate, push, merge, and pull (shown in Fig. 5).
¬ Mapit add. The atomic operation add registers a hook for
each SLAM function call (listed in Table 3) and maintains a
recording queue. Whenever an important function is called,
an operation record containing its name, parameters, and in-
fluence on map elements is added to the operation queue.

4Similar to current practice [2, 3, 39], we empirically set the period to 2s.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 981

Log

Log

…

②Mapit aggregate

③Mapit push Agg.

Logs

④Mapit merge

⑤Mapit pull Agg.

Logs

Mobile Agent

Edge Server Timeline

Mapit push

from another agent Mapit pull

:Map on the Agent/Edge

:Operations Reproduce

/

/

Figure 5: Workflow of the Mapit.

 Mapit aggregate. At the end of each period, Mapit ag-
gregates the records in the operation queue to reduce their
size. The intuition is that some removals or merges on cer-
tain types of functions will generate equivalent effects. For
instance, if a function changes the location of a map-point
and is marked as overwritten, we only need to focus on
the latest record of it and ignore all the previous operations
on the map-point. As for those marked as stackable, the
implication is that records about modifying a same element
can be merged by parameters. In this way, Mapit produces a
minimal set containing necessary information.
® Mapit push. After aggregating records, the atomic opera-
tion push on an agent sends the packed records to the edge
server. By reproducing these operations, the map maintained
on edge keeps synchronized with the ones on the client.
¯ Mapit merge. On the edge server, the merge module peri-
odically checks if there exists an overlap between the maps
uploaded by individual agents and the global map. Once an
overlap is detected, different maps will be coordinated and
fused by the upper-layer SLAM algorithms (e.g., Sim3 opti-
mization algorithm [28]). The map fusion process will operate
and update some map elements, and hence the merge module
also records these operations on the map elements in the same
way as add and aggregate.
° Mapit pull. The pull module can be treated as the reverse
operation of push. It requests aggregated map modification
logs generated by map optimization and merge, from the edge
server to the agent. Additionally, if the global map has already
been created (i.e., the whole system is in the maintenance
session), Mapit will also transfer a set of closest map-points
(e.g., associated with the next 5 keyframes) to the agent in
the pull process. The benefit of this strategy is to enhance the
agent’s localization performance since these map-points with
a high probability of appearing in the future would provide
prior information for the tracking module on the agent side.

3.3 STS: SLAM-Specific Task Scheduling
As more agents get involved in SLAM systems, processing
agents’ requests (e.g., local map optimization) can cause ex-
cessive queuing delays. Since agents in different running
states are not equally sensitive to the waiting delay, conven-
tional FCFS scheduling may exacerbate localization errors

on time-sensitive agents and hurt SLAM performance (§2.2-
C2). To our best knowledge, there is still a lack of scheduling
strategy tailor to multi-agent SLAM tasks.

To address this issue, we introduce STS – the first SLAM-
Specific Task Scheduler that guides the edge to strategically
prioritize requests. Specifically, STS divides agents into emer-
gency and non-emergency groups based on the agents’ status.
It timely reorders the requests based on the following princi-
ples:
(i) Prioritizing requests from agents in the emergency group.
(ii) Among those non-emergency agents, STS prioritizes re-
quests from agents that can provide higher information gain
for global map construction or optimization.

The first principle aims to prevent each agent from losing
self-tracking, and the second is for achieving a better overall
global mapping performance. We propose a set of metrics to
characterize the agent status and design a multi-level queue
to schedule the requests from agents.

3.3.1 Agent Status Evaluation and Updating

Agent side. Each agent regularly updates its status with the
edge by sending heartbeat packets. Since both environment
and device dynamics may fluctuate violently during an agent’s
movement, the heartbeat interval should be shorter than the
agent’s request interval (i.e., 2s). In SwarmMap we expose
the heartbeat setting (100ms by default) to end-users so that
they can easily adapt to different environment settings. We
define three variables that can fairly reflect an agent’s status:
• Tracking state: a 1-bit Boolean value shows whether an
agent is traceable or not. An agent’s tracking state is set to
LOST if its latest ORB feature maps cannot well match the
local feature map. This variable is provided by the tracking
module in many visual SLAM systems [29].
• Velocity burst: a 1-bit Boolean value shows whether an
agent’s speed changes abruptly or not. An abrupt change of
velocity may result in motion blur in videos and make it hard
for clients to extract visual features. In SwarmMap, we set the
variable Velocity burst to True if the current moving speed is
20% greater than the averaged speed over the latest N frames,
where N is a variable exposed to end-users. N = 10 by default.
• Tracked map-points number: an 8-bit variable represents the
number of map-points observed by an agent. A larger number
indicates the tracking module is running more stable.
Server side. Due to the heterogeneous device capability (e.g.,
cameras on different agents may differ in resolutions) and di-
versified trajectory, each agent contributes unequally to global
map construction and optimization. SwarmMap prioritizes
requests from those agents that can provide higher informa-
tion gain for global map construction and optimization. To
this end, we design the following two metrics to measure the
information gain of each agent:
• Map-point score (MS) is defined as the average score of all
map-points observed by an agent (the way to calculate the
map-point score will be introduced in §3.4). A higher average

982 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Tracking State: Normal

Velocity Burst: False

MP Number: 30

Agent 1 Status

Tracking State: LOST

Velocity Burst: ----

MP Number: ----

Agent 2 Status

Tracking State: Normal

Velocity Burst: TRUE

MP Number: 6

Agent 3 Status

Tracking State: Normal

Velocity Burst: False

MP Number: 27

Agent 4 Status

Agent Side Evaluation

Tracking State: Normal

Velocity Burst: False

MP Number: 30

Contr. Score: 0.8

Agent 1 Status

Tracking State: LOST

Velocity Burst: ----

MP Number: ----

Contr. Score: -1

Agent 2 Status

Tracking State: Normal

Velocity Burst: TRUE

MP Number: 6

Contr. Score: 0.1

Agent 3 Status

Tracking State: Normal

Velocity Burst: False

MP Number: 27

Contr. Score: 0.2

Agent 4 Status

Edge Side Evaluation

Multi-level Queue

Scheduling

Req.

2

Lost Handling Queue

Lost Prevention Queue

Map Enrichment Queue

Req.

3

Req.

1

…

…

… Req.

4

Priority
Low High

Figure 6: Workflow of the STS with an example.

score reflects that the current position is likely to have been
visited before. On the contrary, a lower score indicates the
agent is exploiting new or partially observed areas. Hence,
STS prioritizes tasks with a lower map-point score.
• Map elements generation speed (MG) characterizes the
number of unobserved map-points and keyframes uploaded
by the latest mapit push operation. An agent with a higher
map element generation speed contributes more to the edge’s
global map generation and optimization.

STS normalizes each metric and computes each agent’s
contribution score as normalized MG - normalized MS.

3.3.2 Multi-level Queue Scheduling

On the edge side, STS designs three queues with different
priorities to facilitate agent request scheduling.
• Lost Handling Queue. If an agent’s tracking state is
marked as LOST, STS will push its request into this queue.
• Lost Prevention Queue. If an agent has a velocity burst
and merely tracks few map-points, it may become prone to
LOST, and STS will push its request into this queue.
• Map Enrichment Queue. For those agents with stable
running status (i.e., without the risk of losing self-tracking),
STS will push their requests into this queue and sort them by
their mapping contribution scores.

The lost handling queue owns the highest priority, followed
by lost prevention queue and map enrichment queue. Upon the
reception of an agent’s request, STS inserts this request into
one of these three queues based on the agent’s tracking status
and mapping contribution. The back-end SLAM algorithm
pops requests from queues based on their priority.

We take Fig. 6 as an example to explain the job scheduling
in SwarmMap. Suppose there are four agents in the system,
with agent 2 in lost tracking status and agent 3 facing the
velocity burst issue. STS will push agent 2 and 3’s requests
into the lost handling and prevention queue, respectively. The
request from agent 1 and 4, two agents not in emergency
states, will be pushed into the map enrichment queue. Since

agent 1’s mapping contribution score is higher than agent 4,
the request from agent 1 will be put at the head of the queue.
The edge processes these requests in the order of 2-3-1-4.

3.4 MBP: Map Backbone Profiling

The global map maintained by the edge node contains large
redundancy (§2.2-C3). Due to the device heterogeneity (e.g.,
the onboard cameras may differ in resolution and frame rate)
and diverse running status, the quality of maps contributed by
different agents may vary largely. Existing map compression
works [6, 13, 14] ignore such difference, resulting in infor-
mation loss and hence degraded performance. The relevant
works, CarMap and CCM-SLAM, design lean map represen-
tations to reduce the transmitted data volume for a faster map
synchronization. However, they still need to reconstruct the
huge global map through these compact representations on
both mobile agent and edge node. Therefore, the memory
footprint remains high when more agents are connected.

To address this issue, we introduce a map backbone profil-
ing (MBP) algorithm. Unlike the current practice, we do not
greedily remove redundant map elements in co-visible areas.
Instead, we first leverage these redundant elements to generate
a series of virtual keyframes and use them to improve those
low-quality map segments. Once the overall quality of the
global map got improved, we can thus compress the global
map without compromising the mapping quality.

MBP first evaluates the quality and importance of each map
element. It then (i): finds high-quality map-points that could
be leveraged to generate virtual keyframes; (ii): searches for
low-quality map segments that need to be improved; and
(iii): improves the overall map quality by inserting virtual
keyframes to those low-quality map segments. Finally, MBP
operates map compression on the balanced global map.

3.4.1 Map Element Evaluation

Map-point evaluation has been extensively studied in related
works [14]. The gold-standard metrics include the observing
path length, maximum observing distance, maximum observ-
ing angle, and mean re-projection error. We borrow these
metrics (detailed in §A.2) to evaluate a map-point and pro-
pose three new metrics to adapt to collaborative scenarios:
• Observed number represents the number of keyframes, in
which the map-point is observed, across the entire global map.
A higher score indicates multiple agents can observe a map
point over a long period.
• Update frequency is defined as the total number of times
the map-point was modified or updated by all agents in the
last round of Mapit push operations. Map-points with high
update frequency suggest a potential hot spot in a trajectory.
•Moving velocity records the speed of a mobile device when
it generates the map element. A higher score indicates a poten-
tial blurriness that may influence the stability of the map-point.
We take its negative value to evaluate the map-point score.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 983

(a) Original Map

(b) After MBP

(c) After Sum-Map

2.1GB

1.2GB

0.9GB

Virtual
Keyframes

Figure 7: A running demo of MBP. The left column shows
the map elements uploaded by different agents, while the
right column presents partial zooming-in maps. The dotted
keyframes in (b) are the synthetic virtual keyframes.

MBP normalizes each metric by its maximum value. We
then define the score of a map-point as the sum of all normal-
ized metrics values. The score of a keyframe is the sum of all
observing map-point scores.

3.4.2 Map Backbone Generation

The map backbone generation consists of two steps: virtual
keyframe generation and map compression.
Virtual keyframe generation. The trajectory of an individ-
ual agent is first segmented with the awareness of where over-
laps occur. The quality of each map segment is defined as the
sum of all map element scores (i.e., scores of all keyframes
and map-points) within it. For each map segment with low
quality (e.g., its score is in the bottom 20%), MBP search
for high-quality map-points in its neighborhood (i.e., within
60◦ field-of-view of its keyframes) even though the original
keyframes do not observe these map-points. Furthermore,
MBP synthesizes virtual keyframes that could observe these
high-quality map-points, and the pose (i.e., spatial location
and orientation) of each keyframe can be calculated by the
ICP algorithm [38] and optimized by BA [42]. Since the vir-
tual keyframes only consider whether a map point is good
enough regardless of which agent uploads it, they can supple-
ment those low-quality segments.
Map compression. Once the quality of map segments is more
balanced, MBP performs the similar map compression algo-
rithm proposed by Sum-Map [27], eliminating redundancy by
generating an enhanced minimum spanning tree across the
global map. In addition, we introduce an extra optimization
goal that guides the spanning tree to cover as many high-
quality map elements as possible.

Fig. 7 compares the map compression performance of
MBP and Sum-Map. Map elements from different agents

are marked in red, blue, and brown in the figure. Although
Sum-Map obviously reduces the map size, it neglects the map
quality difference, making the compressed map of trace 2 too
sparse and harming the SLAM performance. In contrast, with
reducing the map size by nearly half, MBP inserts several
virtual keyframes, balancing the map quality among different
agents and ensuring mapping accuracy.

4 Implementation

We implement SwarmMap as an open-source package and
make it compatible with ROS [26]. It contains 18,000
LOC (line of C++ code). SwarmMap is built upon ORB-
SLAM2 [29], the top-ranked open-source SLAM algorithm
that has been widely used by both research and industry com-
munities. Our implementation avoids modifications on SLAM
functions (e.g., tracking, local mapping, loop closing). This
allows any variation of ORB-SLAM algorithms such as Dy-
naSLAM [5], ORB-SLAM3 [7], as well as other map-point-
and keyframe-based collaborative SLAM algorithms (e.g.,
Multi-UAV [39], C-ORB [22], CCM-SLAM [40]) to take
advantage of SwarmMap (demonstrated in §A.5). Addition-
ally, we also expose well-packaged APIs to facilitate users to
modify some parameters (map synchronization period, status
evaluation metrics, etc.) in SwarmMap according to specific
upper-layer applications. A high-level abstraction of Swar-
mMap’s implementation is detailed in §A.3.

5 Evaluation
In this section, we first present the experimental methodology
(§5.1), followed by the overall performance of SwarmMap
compared against SOTA systems (§5.2). We then conduct
an ablation study to understand each functional module in
SwarmMap (§5.3). Further, we demonstrate the portability
of SwarmMap by plugging it into baseline SLAM systems
(§A.5).

5.1 Experimental Methodology
Field studies. We deploy 12 agents including 4 smartphones,
4 drones, and 4 mobile robots on a 22,927 sqft shopping
mall. These agents collaboratively localize themselves and
mapping the environment in real-time. The ground truth is
obtained through the Kinect 360 RGB-D and Opti-Track [33]
cameras. We also build a dataset using these video streams
for trace-driven evaluation.
Trace-driven evaluations. Following the conventional visual
SLAM evaluation methodology [2, 22, 40, 47], we also con-
duct comprehensive trace-driven evaluations based on public
SLAM datasets (KITTI [10], EuRoC [9], and TUM [11]) and
the handcrafted dataset mentioned above. The characteriza-
tion of three public datasets is summarized in Table 4. In our
evaluations, the movement speed of mobile agents various sig-
nificantly, ranging from 0.5m/s (indoor DJI RoboMasters) to
15m/s (ourdoor vehicles), representing the status of devices in

984 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

3 5 10 15 20
Number of agents

0

20

40

60

AT
E

(c
m

)

8773 115SwarmMap
CCM-SLAM
Multi-UAV

(a) ATE comparison on public datasets.

3 5 10 15 20
Number of agents

0.0
0.5
1.0
1.5
2.0
2.5

Lo
ca

tio
n

Er
ro

r (
m

) SwarmMap
CCM-SLAM
Multi-UAV

(b) Location error comparison on our dataset.

S-5 S-15 C-5 C-15 M-5 M-15
System-Agents Number

0

50

100

150

200

Av
er

ag
e

La
te

nc
y (

m
s) 281 305Upload

Optimize
Download
Total

(c) Map updating latency comparison
Figure 8: Overall performance comparison with a growing number of agents.

real world usage. Similar to the standard collaboration SLAM
evaluation pipeline [19, 39, 40], we cut the video stream into
overlapped segments and feed them to different agents to
emulate the multi-agent scenario.

Edge Setup. Most of the previous works cannot be deployed
on a resource-constrained edge node to support large numbers
of agents because they consume a considerable amount of net-
work bandwidth and edge computational resources (§2). We
thus use a powerful server, which is equipped with an Intel(R)
Xeon(R) CPU E5-2620v4 of 2.10GHz main frequency and
64GB RAM running Ubuntu 18.04, to explore the capacity
of these systems and compare them with SwarmMap. The
agents communicate with the server through 2.4 GHz and
5 GHz Wi-Fi links in the shopping mall and our laboratory.
The maximally achievable link throughput measured with
iperf3 is 27.4MB/s and 46.1MB/s, respectively.

Metrics. We use absolute trajectory error (ATE, in cm) to
evaluate SLAM accuracy on the three public datasets while
adopting location error (in m) to evaluate the positioning
accuracy in field studies and our handcrafted shopping mall
dataset. ATE is a golden metric for evaluating the tracking per-
formance of SLAM algorithms [11]. Since ATE pre-calibrates
the generated trace with the ground-truth trajectories before
measuring the absolute errors, it achieves fewer errors than
the actual location errors. To evaluate system overhead, we
count the bandwidth demand (in MB/s) of all participants
in the system (defined as the sum of the average volume of
data transferred per second by all agents). Similar to previous
works [40, 47], we store the global map in RAM rather than
SSD during system operation for faster map recall and update.
We hence record the RAM usage (in GB) on the edge server
to measure the memory consumption.

Map updating latency. Similar to previous works such as
Edge-SLAM [3] and CCM-SLAM [40], SwarmMap adopts
the same edge-assisted architecture where the tracking task is
running locally on the agents. This allows an agent to localize
itself in real-time (i.e., >30 fps with camera rate). We thus
take the map updating latency (in ms)–the delay until the
agent gets the latest optimized map from the server–as the
metric to evaluate the real-time performance of map updating
in SwarmMap. Map updating latency takes into account both
the map synchronization and optimization latency.

5.2 Overall Performance Comparison

We first compare SwarmMap with CCM-SLAM [40] and
Multi-UAV [39], two most relevant SOTA edge-based multi-
agent SLAM systems, to evaluate the overall performance.

5.2.1 Accuracy Comparison
We first evaluate the average ATE and location error in a
different number of agent settings. The results are depicted
in Fig. 8a and Fig. 8b. As seen, SwarmMap achieves the
best tracking and localization performance in all scenarios.
Compared with related works, SwarmMap reduces ATE by
> 30%, 20%, 20%, 50%, 55% for scales with 3, 5, 10, 15, 20
agents, respectively. The location errors are also significantly
degraded by >40% when serving more than 10 agents. On the
other hand, the performance of CCM-SLAM and Multi-UAV
degrades remarkably with the growing number of agents. (i.e.,
the ATE and location errors expand 3× and 7× respectively
from 3 to 20 agents). When serving more than 10 agents in the
shopping mall, they fail to guarantee that the average location
error of each client is within 1.5m, which is typically the
localization precision requirement for indoor drones [48]. In
contrast, SwarmMap can still bound ATE and location error
within 40cm and 1.4m even serving 20 agents. Generally
speaking, above delightful results come from the fact that the
localization performance of each agent highly depends on the
quality of the on-board maintained local map [3, 47], and the
three modules (Mapit, STS, and MBP) in SwarmMap exactly
enable each agent to acquire an optimized local map in time.

5.2.2 Map Updating Latency Comparison

We further examine the end-to-end latency of each agent from
uploading map segments to eventually obtaining the opti-
mized map from the edge node. To save space in the figure,
we denote SwarmMap, CCM-SLAM, and Multi-UAV as S, C,
and M, respectively. Fig. 8c shows the averaged latency on
map uploading, optimizing, and downloading of each system
in different number of agent settings. As seen, the total latency
of SwarmMap is around 95ms and 105ms for 5 and 15 agents
respectively, outperforming baselines by > 40% and 65%.
The majority part of the latency reduction comes from the
data uploading and downloading because Mapit reduces the
amount of data transfers to a large extent. On the other hand,

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 985

3 5 10 15 20
Number of agents

0

10

20

30

40

50

Ba
nd

wi
dt

h
De

m
an

d
(M

B/
s) SwarmMap

CCM-SLAM
Multi-UAV

(a) Bandwidth Requirement

20 30 40 50 60 70 80 90
Time (% of Execution)

0

5

10

15

20

25

RA
M

 U
sa

ge
 (G

B)

SwarmMap-5
SwarmMap-15
CCM-5
CCM-15

(b) Server RAM Usage
Figure 9: Resource overhead comparison with a growing
number of agents.

the processing latency also drops around 10% when serving
15 agents as STS module reduces the averaged queuing delay.

5.2.3 Resource Overhead Comparison

Bandwidth Demand. We then measure the bandwidth de-
mand of these three systems. As depicted in Fig. 9a, on av-
erage, SwarmMap reduces > 35%, 20%, 30%, 25%, 20% of
network bandwidth requirement when serving 3, 5, 10, 15, 20
mobile agents compared with existing works. Said differently,
SwarmMap could serve more agents with the same wireless
link throughput. For instance, under 27.4MB/s shopping mall
bandwidth limitation, SwarmMap can support more than 20
agents while existing works merely around 10.
RAM Usage. We stitch the 00-05 trajectories on the KITTI
dataset to generate a trajectory with 16.2km length and con-
duct a 30min experiment to measure the RAM usage. As
shown in Fig. 9b, compared to CCM-SLAM, SwarmMap
saves an average memory overhead of 2GB and 6GB when
serving 5 and 15 agents, respectively, and the map size be-
comes stable under an upper bound (as seen, 15GB when
serving 15 agents) once the whole scene is well mapped.
Unlike CCM-SLAM which requires transmission of a large
volume of map elements, SwarmMap leverages Mapit and
significantly reduces the bandwidth demand for map synchro-
nization. In addition, the MBP module prunes the size of
the global map maintained and optimized on the server, thus
reducing the system overhead on computational resources.

Generally speaking, SwarmMap aims to scale the collabo-
rative SLAM service with the same resource overhead at the
edge. SwarmMap will achieve a better performance with more
computational resources are allocated and advanced resource
management technologies (e.g., swap or virtual memory) are
leveraged on edge, which are left as future works.

5.3 Ablation Study

We then conduct an ablation study to understand the effective-
ness of each module in SwarmMap.
Performance of Mapit. We compare Mapit with CarMap [2],
CCM-SLAM [40], and benchmark (e.g., edgeSLAM [47] and
Edge-SLAM [3] that directly transmit the entire map with-
out feature compression). Table 1 records the average data
interaction speed (i.e., the average amount of map data up-
loaded and downloaded by each agent per second) of them

Table 1: Transmitted data volume comparison.

Solution Average Data Interaction Speed (MB/s)
TUM KITTI EuRoc Shopping Mall

Mapit 1.3 1.1 1.3 1.4
CarMap 1.9 0.9 1.2 1.8

CCM-SLAM 3.2 1.9 2.2 2.9
Benchmark 5.2 4.3 4.7 4.9

Table 2: Map compression performance comparison.

Solution KITTI 02 KITTI 05
Map Size (GB) ATE (cm) Map Size (GB) ATE (cm)

MBP 3.1 7.6 1.9 6.4
Sum-Map 2.8 10.7 1.8 9.3

Benchmark 5.2 7.4 4.1 5.8

on different datasets. As seen, Mapit saves nearly two times
the bandwidth compared to CCM-SLAM and benchmark on
all datasets. Mapit performs slightly worse than CarMap on
KITTI and EuRoc datasets, where the operating environments
are relatively large (e.g., broad city roads). In these scenarios,
the agents spend most of their time in the cold-start session
during which they continuously transfer the newly generated
map elements. In contrast, on TUM and our shopping mall
datasets, the SLAM system completes the environment profil-
ing quickly and soon enters the maintenance session during
which Mapit eliminates map data transfer and saves the band-
width by adopting the strategy of transmitting only records of
map modifications rather than the modifications themselves.

Performance of STS. We evaluate STS by counting the aver-
age tracking lost percentage (i.e., proportion of video frames,
with which agents fail to track themselves, in all video frames)
of SwarmMap with (w/) and without (w/o) STS. As depicted
in Fig. 10, despite the increasing service scale, SwarmMap (w/
STS) maintains a stable service quality, and the lost percentage
is within 4% in all scenarios. In contrast, the lost percentage
of CCM-SLAM as well as SwarmMap (w/o STS) increases
rapidly, and the average lost percentage is at least 8% when
serving more than 10 agents, which may lead to a terrible self-
tracking and environmental mapping performance. Generally
speaking, the STS strategy enables SwarmMap to prioritize
tasks depending on the agent emergence states and prevent
most agents from losing self-tracking.

Performance of MBP. We finally compare MBP with a map
compression algorithm Sum-Map [27]. Specifically, we eval-
uate the map size after compression by their approaches and,
equally important, the localization accuracy of each agent
using the compressed map for self-tracking. The results are
recorded in Table 2. We conduct experiments on the KITTI
02 and 05 trajectories because of the large map redundancy
in them. The benchmark (only store the global map without
compressing it) shows the size of the original map and the
ATE by using it. As seen, MBP reduces the original map size
by almost half. Although the map compression ratio of MBP
is a little smaller than that of Sum-Map, MBP barely sacrifices
the accuracy of the global map.

986 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 3 5 10 15 20
Number of agents

0%

4%

8%

12%

16%
Tr

ac
kin

g
Lo

st
Pe

rc
en

ta
ge

SwarmMap w/ STS
SwarmMap w/o STS
CCM-SLAM

Figure 10: Tracking stability comparison.

6 Oil-field Case Study
Based on SwarmMap, we have developed a real-time collab-
orative visual SLAM system and deployed it in one of the
world’s largest oil-field (> 170km2) in the Middle East for
industrial inspection. The details about the deployment setups
can be found in §A.6. We conduct a three-month pilot study
(from June 2021 to August 2021) and summarize our main
findings regarding the SLAM accuracy and system overhead.
SLAM Accuracy. We calculate the average location error
of each agent during inspections and present these results
in Fig. 11 and Fig. 12. Note that we cannot directly obtain
ground-truth in the same way as in the experiment (e.g., de-
ploy expensive Lidar or Opti-Track cameras), hence we col-
lect the video frames captured by all agents and run the multi-
agent ORB-SLAM3 offline afterward without considering
the system latency. On this basis, we take the difference be-
tween the real-time localization performance of SwarmMap
and offline processed results as the location error. As shown
in Fig. 11, the average location error is 19.3cm and 29.1cm
in indoor and outdoor scenarios, respectively, satisfying the
task requirement (1m and 1.5m for indoor and outdoor in-
spections). Fig. 12 further illustrates the performance of each
agent, and we find that two outdoor inspection drones (agents
9 and 10) suffer from a higher location error (up to 1m). The
reason behind it is that these two drones are carrying out
oil pipeline inspection at the border of the oil field; they fly
faster (e.g., > 5m/s) and far away from the edge server (e.g.,
15km). Therefore, they may experience certain delays due to
the data forwarding through multi-hop mesh networks. Such
a transmission delay may set a barrier for the drones to obtain
the optimized map in time, causing localization errors. Never-
theless, the worst localization error of these two drones still
satisfies the localization requirement in the outdoor scenario.
Latency. We measure each agent’s onboard localization la-
tency (the delay on estimating its own location from an input
image) and map updating latency. The results are depicted
in Fig. 13. We observe that each agent could localize itself
in a real-time manner (i.e., the localization delay is within
35ms, typically the camera inter-frame interval). The average
map updating delay is around 100ms. Although agent 9 suf-
fers from a higher map updating delay (an average of 191ms)
due to multi-hop data forwarding, it can still localize itself in
real-time by leveraging its local map data.
Bandwidth demand. We record the total bandwidth demand

for indoor (4 agents) and outdoor (8 agents) inspection tasks.
Fig. 14 shows a snapshot over a span of 175 minutes. We find
there is a drop in bandwidth demand at 45min and 75min, re-
spectively. This is because the SLAM system enters the main-
tenance session at these two time points. Thanks to Mapit,
the transferred data volume in the maintenance session is
significantly reduced, with 4MB/s for indoor and 11MB/s for
outdoor inspections. Additionally, due to the relatively higher
flight speed and map updating delay for outdoor drones, the
edge server needs to frequently transmit updated maps to
them in Mapit pull to prevent them from losing self-tracking,
which results in the outdoor bandwidth demand fluctuates
more dramatically than indoor ones.
RAM Usage. We further record the edge’s RAM usage when
executing the indoor and outdoor inspection tasks. As shown
in Fig. 15, the maximum RAM usage in the indoor and out-
door scenarios is around 20GB and 12GB, both of which are
well below the capability (32GB) of the edge node.
On-board CPU Usage. We also record the CPU occupancy
rate of SwarmMap task (mobile part) on agent 1 (indoor
drone) and 6 (outdoor drone) and plot these results in Fig. 16.
The CPU usage of the outdoor drone is in the range of 20%-
35%, while the indoor drone is 22%-43% during the 210
minutes of inspections. Due to the high dynamics of the in-
door environment, the agent has to frequently update the local
map although the whole area is well-mapped, which takes up
more CPU resources than outdoor environments. Note that
SLAM is an underlying algorithm that provides an agent with
location and environmental information, and SwarmMap still
leaves more than 50% CPU computational resources for each
agent to perform upper-layer applications (e.g., context-aware
interaction, object detection, or segmentation).

7 Related work
We review the most related works in this section.

Visual SLAM. One of the most fundamental algorithms in
robotics has been a topic of research in robotics and mobile
systems for several decades [6]. It consists of the concurrent
construction of a surrounding environment and the state esti-
mation of the robot moving within it. Typically, systems use
monocular cameras [15, 20], stereo cameras [29], or RGB-D
cameras [31]. Some of the more well-known visual SLAM
examples include RGBD-SLAM [16], RTAB-Map [21], and
ORB-SLAM [7,28,29]. Although SwarmMap is implemented
on the top of ORB-SLAM2 [29], it can be easily ported to
other map point-based visual SLAM like S-PTAM [34]. Other
multi-map merging or optimization algorithms leveraged in
recent work like ORB-SLAM3 [7], can also be integrated
into SwarmMap. Our platform can also be applied to some
feature/map point-based multi-sensor SLAM systems like
VI-ORB [30], VINS [35], mmWave SLAM [24, 44].

Edge-assisted Real-time SLAM. Recent studies [2, 3, 8,
23,40,47] speed up the computation-intensive tasks on agents
by task partition and offloading workload to an edge server.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 987

0 10 20 30 40 50 60
Location Error (cm)

0.0

0.2

0.4

0.6

0.8

1.0
CD

F

Indoor Inspection
Outdoor Inspection

Figure 11: Different scenarios accuracy.

1 2 3 4 5 6 7 8 9 10 11 12
Agent #ID

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ca

tio
n

Er
ro

r (
m

)

Figure 12: Accuracy of different agents.

1 2 5 6 9 11
Agent #ID

0
30
60
90

120
150
180

Av
er

ag
e

La
te

nc
y (

m
s) Localization

Map Updating

Figure 13: Latency measurement.

25 50 75 100 125 150 175
Time (min)

0

5

10

15

20

Ba
nd

wi
dt

h
De

m
an

d
(M

B/
s)

Indoor (4 agents)
Outdoor (8 agents)

Figure 14: Bandwidth consumption.

25 50 75 100 125 150 175
Time (min)

0

5

10

15

20

RA
M

 U
sa

ge
 (G

B)

Indoor (4 agents)
Outdoor (8 agents)

Figure 15: Edge server RAM usage.

25 50 75 100 125 150 175
Time (min)

10%

20%

30%

40%

50%

60%

On
-b

oa
rd

 C
PU

 U
sa

ge Indoor Drone
Outdoor Drone

Figure 16: Mobile CPU occupation.
Therein, edgeSLAM [47] and Edge-SLAM [3] enable mobile
agents to run visual SLAM in real-time. They split the origi-
nal ORB-SLAM2 architecture and offload the local mapping
and loop closure tasks to an edge server. CarMap [2] lever-
ages the map constructed by crowdsourced agents and designs
a near real-time map update framework between client and
cloud. Muti-UAV [39] and CCM-SLAM [40] leverage a cen-
tral server with potentially larger computational capacity to
merge and optimize maps constructed by different agents,
while each agent maintains partial local maps for tracking.
However, as the number of serving agents scales, these works
face severe scalability issues including excessive bandwidth
consumption, severe localization errors, and large data stor-
age. SwarmMap is the first work that solves these scalability
issues based on the same edge settings.

Multi-agent Collaborative SLAM. Collaborative SLAM
has been explored recently [6]. C2TAM [37], C-ORB [22],
and CVI-SLAM [19] present collaborative SLAM frame-
works based on PTAM [20], ORB-SLAM2 [29], and VI-
ORB [7] respectively. CSfM [17] also proposes a framework
to coordinate maps upload from different agents. In general,
the system goals of these works and SwarmMap are orthogo-
nal: above systems mainly focus on map fusion, optimization,
and segmentation to generate a high-quality global map of
the environment, ignoring the real-time performance of each
agent and the entire system. In contrast, SwarmMap aims
at solving the scalability issues and support each agent for
real-time tracking, mapping, and map updating. Inspired by
current efforts, we could integrate some map merging, opti-
mizing, and even compressing algorithms proposed by recent
works [6, 13, 14, 27, 49] into SwarmMap for a better SLAM
performance, which are left as future works.

8 Discussion
We briefly discuss limitations and future work in this section.
The capacity of SwarmMap. Although SwarmMap signif-

icantly reduces the bandwidth consumption and memory
overhead for collaborative visual SLAM systems, such re-
source consumption still grows linearly with the number of
the agents, which still fundamentally limits the system ca-
pacity. The way to make the resource consumption grow
sub-linearly [18] with respect to the number of agents worth
further research. On the other hand, the current Mapit design
merely focuses on reducing bandwidth consumption in the
maintenance session. Serving the system throughput the entire
life-cycle with Mapit could potentially save more bandwidth.
Map optimization algorithms integration. SwarmMap pro-
vides a basic map transmission and management platform
for multi-agent SLAM. To date, SLAM map optimization is
still a trending topic in the robotics field. Integrating existing
advanced technologies (e.g., map compression, fusion, and
semantic recognition) into SwarmMap for a better system
performance is an ongoing work. Furthermore, efficient map
data sharing not only between mobile and edge, but among
different agents could also benefit upper layer applications.

9 Conclusions
We have presented the design and implementation Swar-
mMap, a framework to support real-time collaborative visual
SLAM at edge devices. SwarmMap proposes functionality
and resource abstractions of SLAM systems and provides
three light-weight system services to address the communica-
tion, storage, and scheduling issues in edge-based scenarios.
We implement SwarmMap as a software package on the ROS
platform so that most variations of visual SLAM systems can
directly benefit from it. Extensive evaluations and a three-
month pilot study demonstrate its superior performance.

Acknowledgements
We thank the MobiSense group, the anonymous reviewers
and our shepherd, Ramesh Govindan, for their insightful com-
ments. This work is supported in part by the NSFC under
grant 61832010, 61972131.

988 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Numba GPU Acceleration. https://numba.pydata.
org/.

[2] Fawad Ahmad, Hang Qiu, Ray Eells, Fan Bai, and
Ramesh Govindan. Carmap: Fast 3d feature map up-
dates for automobiles. In Proceedings of the USENIX
NSDI, 2020.

[3] Ali J Ben Ali, Zakieh Sadat Hashemifar, and Karthik
Dantu. Edge-slam: edge-assisted visual simultaneous
localization and mapping. In Proceedings of the ACM
Mobisys, 2020.

[4] ArduPilot. https://ardupilot.org/ardupilot/.

[5] Berta Bescos, José M Fácil, Javier Civera, and José
Neira. Dynaslam: Tracking, mapping, and inpainting in
dynamic scenes. IEEE Robotics and Automation Letters,
3(4):4076–4083, 2018.

[6] Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif,
Davide Scaramuzza, José Neira, Ian Reid, and John J
Leonard. Past, present, and future of simultaneous lo-
calization and mapping: Toward the robust-perception
age. IEEE Transactions on robotics, 2016.

[7] Carlos Campos, Richard Elvira, Juan J Gómez Ro-
dríguez, José MM Montiel, and Juan D Tardós. Orb-
slam3: An accurate open-source library for visual,
visual–inertial, and multimap slam. IEEE Transactions
on Robotics, 2021.

[8] Tiffany Yu-Han Chen, Lenin Ravindranath, Shuo Deng,
Paramvir Bahl, and Hari Balakrishnan. Glimpse: Con-
tinuous, real-time object recognition on mobile devices.
In Proceedings of the ACM Sensys, 2015.

[9] EuRoC Dataset. https://projects.asl.ethz.ch/
datasets/.

[10] KITTI Dataset. http://www.cvlibs.net/datasets/
kitti/eval_odometry.php.

[11] TUM Dataset. https://vision.in.tum.de/data/
datasets/rgbd-dataset/tools.

[12] DJI drones for industrial inspection. https://www.
dji.com/products/industrial.

[13] M. Dymczyk, S. Lynen, M. Bosse, and R. Siegwart.
Keep it brief: Scalable creation of compressed local-
ization maps. In 2015 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages
2536–2542, 2015.

[14] Marcin Dymczyk, Thomas Schneider, Igor Gilitschen-
ski, Roland Siegwart, and Elena Stumm. Erasing bad
memories: Agent-side summarization for long-term
mapping. In Proceedings of the IEEE IROS, 2016.

[15] Jakob Engel, Thomas Schöps, and Daniel Cremers. Lsd-
slam: Large-scale direct monocular slam. In Proceed-
ings of the Springer ECCV, 2014.

[16] Nikolas Engelhard, Felix Endres, Jürgen Hess, Jürgen
Sturm, and Wolfram Burgard. Real-time 3d visual slam
with a hand-held rgb-d camera. In Proceedings of the
RGB-D Workshop on 3D Perception in Robotics at the
European Robotics Forum, Vasteras, Sweden, volume
180, pages 1–15, 2011.

[17] Christian Forster, Simon Lynen, Laurent Kneip, and Da-
vide Scaramuzza. Collaborative monocular slam with
multiple micro aerial vehicles. In Proceedings of the
IEEE IROS, 2013.

[18] Samvit Jain, Xun Zhang, Yuhao Zhou, Ganesh Anan-
thanarayanan, Junchen Jiang, Yuanchao Shu, Paramvir
Bahl, and Joseph Gonzalez. Spatula: Efficient cross-
camera video analytics on large camera networks. In
Proceedings of the IEEE/ACM SEC, 2020.

[19] Marco Karrer, Patrik Schmuck, and Margarita Chli. Cvi-
slam—collaborative visual-inertial slam. IEEE Robotics
and Automation Letters, 3(4):2762–2769, 2018.

[20] Georg Klein and David Murray. Parallel tracking and
mapping for small ar workspaces. In Proceedings of the
IEEE ISMAR, 2007.

[21] Mathieu Labbé and François Michaud. Rtab-map as an
open-source lidar and visual simultaneous localization
and mapping library for large-scale and long-term online
operation. Journal of Field Robotics, 2019.

[22] Fu Li, Shaowu Yang, Xiaodong Yi, and Xuejun Yang.
Corb-slam: a collaborative visual slam system for mul-
tiple robots. In International Conference on Collabo-
rative Computing: Networking, Applications and Work-
sharing. Springer, 2017.

[23] Luyang Liu, Hongyu Li, and Marco Gruteser. Edge
assisted real-time object detection for mobile augmented
reality. In Proceedings of the ACM Mobicom, 2019.

[24] Chris Xiaoxuan Lu, Stefano Rosa, Peijun Zhao, Bing
Wang, Changhao Chen, John A Stankovic, Niki Trigoni,
and Andrew Markham. See through smoke: robust in-
door mapping with low-cost mmwave radar. In Proceed-
ings of the ACM MobiSys, 2020.

[25] Yunfei Ma, Nicholas Selby, and Fadel Adib. Drone
relays for battery-free networks. In Proceedings of the
ACM Sigcomm, 2017.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 989

https://numba.pydata.org/
https://numba.pydata.org/
https://ardupilot.org/ardupilot/
https://projects.asl.ethz.ch/datasets/
https://projects.asl.ethz.ch/datasets/
http://www.cvlibs.net/datasets/kitti/eval_odometry.php
http://www.cvlibs.net/datasets/kitti/eval_odometry.php
https://vision.in.tum.de/data/datasets/rgbd-dataset/tools
https://vision.in.tum.de/data/datasets/rgbd-dataset/tools
https://www.dji.com/products/industrial
https://www.dji.com/products/industrial

[26] ROS Melodic. https://wiki.ros.org/melodic.

[27] Peter Mühlfellner, Mathias Bürki, Michael Bosse, Woj-
ciech Derendarz, Roland Philippsen, and Paul Furgale.
Summary maps for lifelong visual localization. Journal
of Field Robotics, 33(5):561–590, 2016.

[28] Raul Mur-Artal, Jose Maria Martinez Montiel, and
Juan D Tardos. Orb-slam: a versatile and accurate
monocular slam system. IEEE Transactions on Robotics,
31(5):1147–1163, 2015.

[29] Raul Mur-Artal and Juan D Tardós. Orb-slam2: An
open-source slam system for monocular, stereo, and rgb-
d cameras. IEEE Transactions on Robotics, 33(5):1255–
1262, 2017.

[30] Raúl Mur-Artal and Juan D Tardós. Visual-inertial
monocular slam with map reuse. IEEE Robotics and
Automation Letters, 2(2):796–803, 2017.

[31] Richard A Newcombe, Steven J Lovegrove, and An-
drew J Davison. Dtam: Dense tracking and mapping in
real-time. In Proceedings of the IEEE ICCV, 2011.

[32] Van Opdenbosch et al. Data Compression for Collabo-
rative Visual SLAM. PhD thesis, Technische Universität
München, 2019.

[33] Opti-Track. https://optitrack.com/.

[34] Taihú Pire, Thomas Fischer, Gastón Castro, Pablo
De Cristóforis, Javier Civera, and Julio Jacobo Berlles.
S-ptam: Stereo parallel tracking and mapping. Robotics
and Autonomous Systems, 93:27–42, 2017.

[35] Tong Qin, Peiliang Li, and Shaojie Shen. Vins-mono:
A robust and versatile monocular visual-inertial state
estimator. Proceedings of the IEEE Transactions on
Robotics, 2018.

[36] Hang Qiu, Fawad Ahmad, Fan Bai, Marco Gruteser, and
Ramesh Govindan. Avr: Augmented vehicular reality.
In Proceedings of the ACM MobiSys, 2018.

[37] Luis Riazuelo, Javier Civera, and JM Martınez Montiel.
C2tam: A cloud framework for cooperative tracking and
mapping. Robotics and Autonomous Systems, 62(4):401–
413, 2014.

[38] Szymon Rusinkiewicz and Marc Levoy. Efficient vari-
ants of the icp algorithm. In Proceedings of the IEEE
3-D digital imaging and modeling, 2001.

[39] Patrik Schmuck and Margarita Chli. Multi-uav collab-
orative monocular slam. In Proceedings of the IEEE
ICRA, 2017.

[40] Patrik Schmuck and Margarita Chli. Ccm-slam: Ro-
bust and efficient centralized collaborative monocular si-
multaneous localization and mapping for robotic teams.
Journal of Field Robotics, 36(4):763–781, 2019.

[41] CUDA Toolkit. https://developer.nvidia.com/
cuda-toolkit.

[42] Bill Triggs, Philip F McLauchlan, Richard I Hartley, and
Andrew W Fitzgibbon. Bundle adjustment—a modern
synthesis. In Proceedings of the Springer International
workshop on vision algorithms, 1999.

[43] Dominik Van Opdenbosch and Eckehard Steinbach. Col-
laborative visual slam using compressed feature ex-
change. IEEE Robotics and Automation Letters, 4(1):57–
64, 2018.

[44] Teng Wei, Anfu Zhou, and Xinyu Zhang. Facilitating
robust 60 ghz network deployment by sensing ambient
reflectors. In Proceedings of the USENIX NSDI, 2017.

[45] Amazon Warehouse with Robots. https://www.
wired.com/story/amazon-warehouse-robots/.

[46] Nvidia Jetson AGX Xavier. https:
//developer.nvidia.com/embedded/
jetson-agx-xavier-developer-kit.

[47] Jingao Xu, Hao Cao, Danyang Li, Kehong Huang, Chen
Qian, Longfei Shangguan, and Zheng Yang. Edge as-
sisted mobile semantic visual slam. In Proceedings of
the IEEE INFOCOM, 2020.

[48] Shengkai Zhang, Wei Wang, and Tao Jiang. Wi-fi-
inertial indoor pose estimation for microaerial vehi-
cles. Transactions on Industrial Electronics, 68(5):4331–
4340, 2020.

[49] Danping Zou, Ping Tan, and Wenxian Yu. Collaborative
visual slam for multiple agents: A brief survey. Virtual
Reality & Intelligent Hardware, 1(5):461–482, 2019.

A Appendix

A.1 Functions Registered in Mapit
In the Mapit add module, we dig the insights about how map
elements get changed and find these changes mainly caused
by certain important SLAM functions, a fraction of which is
listed in Table 3. Thus, modifications that happened to the
map can be recorded as calling history of these functions.
For certain functions shown in the table, some removal and
compression on the records will not harm data consistency.
For instance, if a function is marked as overwritten, it indi-
cates that its only effective change on a map element is the
latest one i.e., changing the pose of a map point. As for those

990 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://wiki.ros.org/melodic
https://optitrack.com/
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://www.wired.com/story/amazon-warehouse-robots/
https://www.wired.com/story/amazon-warehouse-robots/
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit

Table 3: Functions that could change the map element (only some fundamental functions are listed)
Target Function Type Description

KeyFrame SetPose overwritten set the pose of the keyframe
KeyFrame AddMapPoint unique add a map point to the keyframe
KeyFrame EraseMapPointMatch unique remove a map point from the keyframe
KeyFrame SetBadFlag unique mark the keyframe bad and delete it
MapPoint SetWorldPos overwritten set map point position in the world coordinate
MapPoint AddObservation unique add a keyframe that observes the map point
MapPoint EraseObservation unique remove a keyframe from observations
MapPoint SetBadFlag unique mark the map point bad and delete it
MapPoint IncreaseVisible stackable increase the count that map point is observed
MapPoint IncreaseFound stackable increase the count that map point is matched
MapPoint SetLastTrackedTime overwritten set the last tracked time of the map point
MapPoint UpdateNormalAndDepth overwritten update the normal vector and depth of the map point

Map Clear overwritten clear the current map
Map AddLoopClosing unique add a keyframe to loop closing queue

Table 4: Dataset Description
Dataset Label Trajectory Sequence Total Time (min) Total Path (m) Total Frames Environment

T-M (TUM Medium & Easy)
fr2_desk

fr3_long_office_household
1.66
1.45

18.88
21.46

2965
2585 office

T-D (TUM Difficult)
fr2_large_with_loop
fr2_large_no_loop

2.88
1.87

39.11
10.93

5182
3359 industrial hall

K-M (KITTI Medium & Easy) 00 / 05 7.57 / 4.79 3724.18 / 2205.58 4541 / 2761 city road
K-D (KITTI Difficult) 02 / 04 7.77 5067.23 / 393.65 4661 / 271 city road
E-M (EuRoC Medium & Easy) MH_01 / MH_02 2.47 / 2.50 68.52 / 73.50 3682 / 3040 machine hall
E-D (EuRoC Difficult) MH_04 / MH_05 1.65 / 1.85 91.70 / 97.59 2033 / 2273 machine hall
Shopping Mall (Our Dataset) N/A 15 314.2 24,365 shopping mall

marked stackable, the implication is that records about mod-
ifying the same element can be merged by parameters and
still yield the same effect.

A.2 Map-point Evaluation Metrics
A typical SLAM map consists of two types of elements, map
points and keyframes. Map points represent discrete 3D land-
marks in the global coordinate, and keyframes are selected
frames indicating poses and positions of the corresponding
camera (as illustrated in Fig. 18 with corresponding notations
in Table 5). EBM [14] introduces several features based on
local geometry information; we list four important metrics to
evaluate a map-point we used in MBP:
• Observing Path Length. The distance traveled while ob-
serving the map-point and is obtained as

φ
i
d = ∑

j∈S i

‖t j+1
G − t j

G‖2.

•Maximum Observing Distance. The distance traveled be-
tween two most distant keyframes on a track, and each of
them observes the map-point. Its computation requires maxi-
mization over all keyframes observing the same map-point,
i.e.,

φ
i
δ
= max

j,k∈S i
‖tG j− tGk‖2.

• Maximum Observing Angle. The maximum angle be-
tween two keyframes that could observe the map-point and is

obtained as

φ
i
a = max

j,k∈S i
arccos(r j,i

G · r
k,i
G).

• Mean Re-projection Error. Apart from the map-point
track geometry, it is also worth considering the consistency
of the map in the map-point’s locality. EBM calculate the
average re-projection error of each map-point to represent the
mapping stability, i.e.,

φ
i
p =

∑ j∈S i‖mi, j−m′i, j‖2

|S i|
.

A.3 SwarmMap Abstraction

Fig. 17 shows the high-level abstraction of SwarmMap’s im-
plementation. The MBP module assists the map fusion and op-
timization unit to eliminate the data redundancy in the global
map. The STS module replaces those handcrafted request
handlers in conventional SLAM implementations [19, 39, 40]
and thus alleviates the end users’ development overhead. Fi-
nally, we replace the communication unit and map handlers
with a unified Mapit module. Such a layered implementation
decouples SwarmMap’s functional modules, allowing the end-
users to turn on/off each module as they need. It also avoids
the deeply embedded manual code changes (e.g., defining
handlers) that again challenge the system scalability.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 991

Communication Unit

Map Handler Map Handler Map Handler

Request
Handler

Request
Handler

Request
Handler

Map Fusion and Optimization

Multi-agent Collaborative Applications

Tracking &
Mapping

Local Map
Map Handler

Agent 1
Tracking &
Mapping

Local Map
Map Handler

Agent 2
Tracking &
Mapping

Local Map
Map Handler

Agent 𝑛
Tracking &
Mapping

Local Map

Agent 1
Tracking &
Mapping

Local Map

Agent 2
Tracking &
Mapping

Local Map

Agent 𝑛…… ……

Mapit:
Map Information Tracker

STS:
SLAM-specific Task Scheduling

Map Fusion and Optimization

MBP:
Map Backbone Profiling

Agent Layer

Network Layer

Edge Layer

Global Map Global Map Backbone

…… ……

…… ……

Conventional Implementation SwarmMap’s Implementation

Figure 17: High-level abstraction of SwarmMap’s implemen-
tation. The arrow shows the data flow.

: KeyFrame Position

: Map Point

: Observation between

Keyframe and Map Point

MapPoint

KeyFrame KeyFrame

: Set of keyframes

 observing map point

: Set of map points

 observed by keyframe

Figure 18: Observation connection between keyframes and
map-points.

A.4 Experimental Dataset Description

We list the public datasets, the trajectories we used, and our
handcrafted shopping mall dataset in Table 4. We select repre-
sentative trajectories with different difficulty levels (in terms
of environmental dynamics, path length, feature point spar-
sity, ambient light intensity, etc..) in TUM, KITTI, and EuRoc
datasets, respectively.

A.5 Plug-and-play

We demonstrate the portability of SwarmMap by integrating
each of its components into two different SLAM systems.
We add STS, Mapit, and MBP to ORB-SLAM3 [7], the lat-
est follow-up of the ORB-SLAM system, and measure the

Table 5: Notation Description
Notation Description

XG
i position of map point i in global coordinate G

tG j position of keyframe j in global coordinate G
S i set of all keyframes observing map point i

rG j,i unit-length observing vector starting from the
observing keyframe j to map point i in global
coordinate G

P j set of all map points observed by keyframe j
M i set of all agents observing map point i
t i
c, t

i
l creation and last tracked time for map point i

Mesh Backbone Node

Remote Transmission Unit

Deployment
Scenario

Mesh
Node

Figure 19: Mesh network deployment in the Oil-field.

accuracy gain brought by each module. Fig. 20 shows the
results. As seen, all these three modules contribute to localiza-
tion accuracy. When serving 5 agents, STS, Mapit, and MBP
decrease location errors by around 50% and 30%, and 10%,
respectively. The contribution of each component also grows
with an increasing number of agents.

We also integrate SwarmMap into our baselines CCM-
SLAM, Multi-UAV, and ORB-SLAM3 (abbreviated as C, M,
and O, respectively) to explore the location error reduction.
As depicted in Fig. 21, the location error of CCM-SLAM,
Multi-UAV, and ORB-SLAM3 decreases by 13.4%, 12.2%,
and 16.7% respectively in 5 agents settings. When serving
15 agents, the error decreases further to 17.2%, 31.3%, and
29.6%.
Remarks. These results show that most existing works in
multi-agent scenarios (especially scenarios with more agents)
can directly benefit from SwarmMap. It is worth mentioning
that we do not re-design or modify the code structure of these
existing works for integration. We merely provide a wrapper
to hook up these systems and SwarmMap (i.e., call the API
defined in SwarmMap).

A.6 Case Study Setups

Our system consists of 12 mobile agents to perform daily
inspection tasks both indoors and outdoors. These agents
communicate with an Nvidia Jetson AGX Xavier edge node
through Wi-Fi mesh networks, as shown in Fig. 19.
Inspection agents. We have deployed 12 mobile agents to
perform daily inspection tasks, including 4 DJI Inspire drones
(Agent #ID 1-4, equipped with 2K cameras) for indoor ware-
house inspection as well as 6 DJI Inspire (#ID 5-10) and 2
inspection vehicles (#ID 11-12, equipped with 1080P cam-
eras) for outdoor oil-field inspection. For drones, we integrate
the mobile part of SwarmMap into ArduPilot [4], a widely-
used open source drone development platform. The output
localization and mapping results are streamed to the Ardupi-
lot Mega controller through a Micro-USB port for supporting
upper-layer applications (e.g., real-time drone flight control,
abnormal events detection). The two inspection vehicles are
equipped with Nvidia Jetson TX1 as their computing units.
Edge server. We implement the edge side of SwarmMap on
an Nvidia Jetson AGX Xavier edge node with a 32GB 256-
Bit LPDDR4x RAM, a 16-core ARM v8.2 64-bit CPU, and a

992 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

3 5 10 15 20
Number of agents

0

1

2

3

4

Lo
ca

tio
n

Er
ro

r (
m

) 4.23 5.31w/ Mapit+STS
+MBP
w/ Mapit + STS
w/ STS
Benchmark

Figure 20: Performance of each module.

C-5 C-15 M-5 M-15 O-5 O-15
System-Agents Number

0.0

0.5

1.0

1.5

2.0

Lo
ca

tio
n

Er
ro

r (
m

) w/ SwarmMap
Benchmark

Figure 21: Performance gains.

512-core Volta GPU. We also turn on the GPU acceleration by
Numba [1] and CUDA [41] to speed up the back-end global
map optimization procedure. The power consumption of the
edge node is below 30W, which is less than the available
power supply in the industrial scenario.
Wireless Network. The 4 indoor inspection drones commu-
nicate with the edge node via 2.4 GHz WiFi, while the 8
outdoor inspection agents communicate through a mesh net-

work. In order to make the mesh network cover the whole
170km2 outdoor oil-field (the west-east distance is around
30km), 24 communication nodes, including 4 mesh backbone
nodes and associated 20 remote transmission units (RTU)
are deployed (shown in Fig. 19). The maximum throughput
measured by iperf3 in the outdoor mesh and indoor WiFi
network is 14.3MB/s and 26.8MB/s, respectively.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 993

In-Network Velocity Control of Industrial Robot Arms

Sándor Laki1, Csaba Györgyi1, József Pető2, Péter Vörös1, and Géza Szabó3

1ELTE Eötvös Loránd University, Budapest, Hungary
2Budapest University of Technology and Economics, Budapest, Hungary

3Ericsson Research, Budapest, Hungary

Abstract
In-network computing has emerged as a new computational
paradigm made possible with the advent of programmable
data planes. The benefits of moving computations tradition-
ally performed by servers to the network have recently been
demonstrated through different applications. In this paper, we
argue that programmable data planes could be a key tech-
nology enabler of cloud and edge-cloud robotics, and in gen-
eral could revitalize industrial networking. We propose an
in-network approach for real-time robot control that sepa-
rates delay sensitive tasks from high-level control processes.
The proposed system offloads real-time velocity control of
robot arms to P4-enabled programmable data planes and only
keeps the high-level control and planning at the industrial con-
troller. This separation allows the deployment of industrial
control in non-real-time environments like virtual machines
and service containers running in a remote cloud or an edge-
computing infrastructure. In addition, we also demonstrate
that our method can smoothly control 100s of robot arms with
a single P4-switch, enables fast reroute between trajectories,
solves the precise synchronization of multiple robots by de-
sign and supports the plug-and-play deployment of new robot
devices in the industrial system, reducing both operational
and management costs.

1 Introduction

In the recent decade, there has been an increasing demand
from customers towards the manufacturing industry to pro-
vide more and more customized products. Personalized pro-
duction is one of the key motivations for manufacturers to
start leveraging new technologies that enable to increase, for
instance, the flexibility of production lines. High flexibility,
in general, is needed to realize cost-effective and customized
production by supporting fast reconfiguration of production
lines, as well as, easy application development. Fast recon-
figuration and agile behavior can be achieved by moving the

Source code is available at https://github.com/slaki/nsdi22.

robot control from the pre-programmed local robot controllers
to the cloud. In industrial robotics research, cloud robotics is
a major topic and in the last years, several studies [9, 11, 13]
have shown the benefits of connecting robots to a centralized
processing entity: a) usage of more powerful computing re-
sources in a centralized cloud especially for solving Machine
Learning (ML) tasks; b) lower cost per robot as functionalities
are moved to a central cloud; c) easy integration of external
sensor data and easier collaboration or interaction with other
robots and machinery; e) reliability of functions can be im-
proved by running multiple instances as a hot standby in the
cloud and the operation can immediately be taken over from
faulty primary function without interruption.

Though centralized processing has clear benefits in making
the management of industrial processes simple and flexible,
cloud-based solutions cannot satisfy the low latency and high
reliability network requirements of real-time industrial con-
trol (e.g., velocity or torque control of actuators, robot arms,
conveyor belts, etc.). Industry 4.0 and 5G propose the use of
edge computing infrastructure for this purpose, moving these
tasks to the computing nodes located close to the industrial
environment. Though the propagation delay can significantly
be reduced with this setup, edge-computing nodes rely on the
same virtualization technologies as remote cloud infrastruc-
tures. Existing solutions require real-time operating systems
to eliminate the effects of CPU scheduling and ensure precise
timing (e.g., in velocity control the velocity vectors need to
be sent to the robot arms with accurate timing). Newer robot
arms have 2 ms or less update time. The real-time velocity
control of hundreds of such robot arms requires an ultra-fast
response time that is hard to satisfy with traditional edge
computing infrastructure.

With the advent of PISA switches [3] and the P4 lan-
guage [2], a new era has begun in which programmable net-
work devices can not only perform pure packet forwarding
but simple computations as well. This trend led to the birth of
a new computational paradigm called in-network computing,
where server-based computations or a part of them are moved
to programmable data planes. This new way of using network-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 995

https://github.com/slaki/nsdi22

ing hardware can open up the fields for low-latency real-time
calculations on the application level during the communica-
tion. Foremost, they can split long, distant control loops into
smaller ones to deal with transport latency, enable computa-
tions at line rate and ensure real-time response time in orders
of microseconds, solving the previously described problems
of cloud and edge-cloud robotics.

In this paper, we investigate how cloud robotics can benefit
from the advances of in-network computing. In particular,
we propose a system in which high-level control of indus-
trial processes can be deployed in the cloud (or edge cloud)
while low-level speed control of the robot arms is offloaded to
the programmable data plane (switch, smart NIC, or service
card). Similarly to recent practical deployment options [6],
we only assume reliable network connections with low la-
tency between industrial robots and the programmable data
plane. This design has the advantage that the high-level in-
dustrial controller does not require real-time OS and has less
strict end-to-end delay requirements. Our vision is that P4-
programmable data planes (e.g., smart NICs, service cards,
switches) could complement the computational capabilities
of cloud and edge cloud infrastructures for use cases where
real-time operation, ultra-fast response time, high throughput,
or all of these are required. Though the proposed method
controls robot arms independently, we also demonstrate that
it can easily synchronize the low level control processes of
multiple robots and thus can potentially provide support for
coordinated operation.

Moving low-level robot control to the network poses many
challenges that are addressed in this paper: 1) How can veloc-
ity control be implemented with the limited instruction-set of
programmable hardware data planes? 2) What is an efficient
trajectory representation? 3) What to do if the entire trajec-
tory does not fit into the memory? 4) How can match-action
tables be used as playback buffers of trajectories? 5) How can
trajectory segments be loaded in the limited memory of the
switch and updated without violating timing requirements?
6) What constraints are needed for the data and control plane
interactions? 7) How can the low-level control of multiple
robot arms be synchronized? 8) How can switching to an al-
ternative trajectory be solved in run-time (e.g., implementing
a collision avoidance or emergency stop operations)?

2 Related Work

The related work of this paper covers a wide area of expertise
from various research fields. We grouped them according to
the different topics.
Traditional characteristics of robots. An industrial robot
has many metrics and measurable characteristics, which will
have a direct impact on the effectiveness of a robot during the
execution of its tasks. The main measurable characteristics
are repeatability and accuracy. In a nutshell, the repeatability
of a robot might be defined as its ability to achieve repetition

of the same task. While, accuracy is the difference (i.e., the
error) between the requested task and the realized task (i.e.,
the task actually achieved by the robot). For more details
about the calculation of accuracy and repeatability, see [10].
The ultimate objective is to have both; a robot that can re-
peat its actions while hitting the target every time. When the
current mass production assembly lines are designed, robots
are deployed to repeat a limited set of tasks as accurately and
as fast as possible to maximize productivity and minimize
the number of faulty parts. The reprogramming of the robots
rarely occurs, e.g., per week, per month basis and it takes a
long time, e.g., days, requiring a lot of expertise.
Network aspects Authors of [7] compare the network pro-
tocols used nowadays in industry applications e.g., Modbus,
Profinet, Ethercat. All investigated Industrial Ethernet (IE)
systems show similar basic principles, which are solely im-
plemented in different ways. Several solutions apply a shared
memory and most systems require a master or a compara-
ble management system, which controls the communication
or has to be configured manually. Shared memory is imple-
mented via data distribution mechanisms that are based on
high frequency packet sending patterns. These packets have
to be transmitted with strict delivery time and small jitter.
IE protocols rely so heavily on the transport network that
protocol mechanisms common in broadband usage like re-
liable transmission, error detection, etc. are not among the
basic features of industrial protocols. Authors of [1] sum-
marize the fundamental trade-offs in 5G considering various
dimensions of block-lengths, spectral efficiency, latency, en-
ergy consumption, reliability, etc. Numerous aspects have to
be solved during an industry automation task even when the
robot stands still.
In-Network Industrial Control In-network control is a way
to offload critical control tasks into network elements man-
aged and organized through a remote environment. In the past
few years, numerous papers offered solutions for In-Network
Complex Event Processing (CEP). These works focus on
sensor data-driven event triggering based on specific thresh-
old values. Authors of [15] demonstrate such a system for
a strongly delay-sensitive use case, controlling an inverted
pendulum. By outsourcing the control to a distant controller,
they show how a very low RTT of 5-20ms can break the entire
system or make it oscillate badly. By combining in-network
processing with the distant controller, they were able to utilize
the ultra-low latency of local communication, and the control
of the pendulum showed identical results as with fully local
control. This paper mainly focuses on the implementation
of the LQR controller in P4 and the limitations of the P4
language. Though the method we propose in this paper also
uses a controller (PID-like) in the middle of the pipeline, it
goes much further by providing an abstract representation
of function components with error bounds that can poten-
tially be used in any controller algorithms. In addition, our
approach also handles many other problems: trajectory-based

996 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

control, switching between trajectories, synchronization of
multiple robots, etc. In [12] authors demonstrate their own
P4-based CEP rule specification language. P4CEP’s system
model works with a collection of end-systems that are inter-
connected by programmable network processing elements.
End-systems are differentiated into event sources, and event
sinks where the sinks can react to certain conditions observed
by the event sources. FastReact [20] is another In-Network
CEP system that advocates the idea to outsource parts of an
industrial controller logic to the data plane by making the pro-
grammable switches able to cache the history of sensor values
in custom data structures, and trigger local control actions
from the data plane. [4] shows a robot control system where a
P4 switch is located between an emulated robot arm and the
controller. The switch can analyze both sides of the traffic. If
it detects that a position threshold is violated by the robot, it
sends back an emergency stop message within a very short
time due to the local communication. This work only covers
this simple failure detection scenario and cannot deal with the
more advanced control of robot arms we show in this paper.

3 System Design

The main goal of this paper is to demonstrate the feasibil-
ity and practical benefits of programmable data planes in
low-level industrial control. To this end, we show how real-
time velocity control of robot arms can be implemented in
P4-programmable network devices and how they can be inte-
grated into the existing industrial ecosystem. Fig. 1 depicts
the high-level architecture of the proposed system, enclos-
ing one or more robot arms, a P4-switch, and an industrial
controller. It is important to note that this is a practical deploy-
ment option. The first phase of the introduction of wireless
communication into production cells looks similar [6].
Robot arms. We assume simple robot arms without in-built
intelligence. Each robot arm consists of a number of joints
controlled by actuators (i.e., servo motors). The actuators
work independently, stream their internal state (position and
velocity) at a constant frequency (generally in the range of
100Hz-1kHz) and require velocity control messages at a pre-
defined rate (generally 100Hz-500Hz) to keep the movement
smooth. Note that lost command messages may cause lags
in the movement or deviance from the desired path to be fol-
lowed. In our system model, each robot arm is handled as a
set of actuators controlled in sync. However, many complex
industrial processes also require the synchronized operation
of multiple robots (or other devices like conveyor belts, etc.).
In the proposed system, this case can naturally be deduced
to the single robot case by handling the cooperative robots
as a single entity with all the actuators of the participating
individual robots.
P4-switch. A programmable packet processing device sup-
porting the P4 language [2] (e.g., PISA switch, smartNIC, or
distributed service card) that processes the status streams of

Private or public

WAN

Industrial

controller
P4-switch

Trajectory information

Status message
Velocity command

Low latency, reliability High latency, jitter, loss

Figure 1: System overview.

the robot joints and generate the velocity control commands
from the state messages and the desired trajectory provided by
the industrial controller. We assume a highly reliable network
connection with suitably small propagation delay (depending
on the robot’s control frequency) between the P4-switch and
the robots.
Industrial controller. It is responsible for coordinating the
industrial processes at a high-level and thus planning the
trajectories to be followed by the robot arms, re-planning tra-
jectories if needed (e.g., for collision avoidance), verification
of the process, failure detection and response, and synchroniz-
ing high-level processes. In our system design, the controller
could be deployed at remote or edge cloud infrastructure. In
the case of remote cloud deployment, the delay between the
switch and the industrial controller could be in the order of
10-100ms with significant jitter. In both cases, the high-level
industrial controller does not require real-time OS and thus
can operate in a VM. Note that the industrial controller also
gets the status information of the robots needed for tracking
the whole industrial process, but cannot directly send com-
mands to the actuators. Instead, it fills the match-action tables
of the switch with a sequence of trajectory points needed for
the P4-switch for controlling the robots at a low-level.

During operation, each robot arm executes the trajectory
planned by the industrial controller. A trajectory is repre-
sented by a sequence of trajectory points (TPs), where each
TP has a unique identifier and is associated with a relative
timestamp (starting with 0) and the expected state (joint ve-
locities and positions) of the robot arm at the given point of
the operational timeline. Two consecutive TPs may be far
from each other in both time and joint spaces. In the proposed
method, the P4-programmable switch is responsible for the
transition between the two TPs by continuously updating the
joint velocities of the robot arm.

A trajectory example is depicted in Fig. 2. The initial trajec-
tory plan on the top is a sequence of snapshots describing the
robot states at discrete points of time. In the snapshot images,
the orange arm illustrates the final configuration to be reached
and the other denotes the desired state in the given TP. A robot
state is described by two vectors representing the desired joint
velocities and joint positions. Note that though the robot arm
moves in the Cartesian space (as shown in the figure), the in-
dustrial controller maps the trajectory to the joint space (with

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 997

Initial trajectory plan (a)

... ...

...

tpId=58

nextTpId=59

SecDuration=Δ
(a)

i

tpId=59

nextTpId=60

SecDuration=Δ
(a)

i+1

tpId=60

nextTpId=6163

SecDuration=Δ
(a)

i+2

Trajectory was

replanned

Current time

Robot moves

towards TP 59

Past Future

tpId=63

nextTpId=64

SecDuration=Δ
(b)

1

tpId=64

nextTpId=65

SecDuration=Δ
(b)

2

tpId=65

nextTpId=66

SecDuration=Δ
(b)

3

Δ
(a)

i Δ
(a)

i+1 Δ
(a)

i+2 Δ
(b)

1 Δ
(b)

2 Δ
(b)

3

tpId=61

nextTpId=62

SecDuration=Δ
(a)

i+3

Modified trajectory plan (b)

Timeti ti+1

Figure 2: Trajectory example with re-planning.

units of rad/s and rad). One can also see that the transition
from one TP to another needs to be performed in the allocated
section duration of ∆ j. In the figure, the robot is heading TP
59. The new joint velocities to be set are calculated from the
current state of the robot arm and the desired state in TP 59.
Older TPs (e.g., 58 in the figure) have become obsolete. As
soon as the target TP is reached, we switch to the next TP (60
in the example), heading the new associated robot state and
also considering ∆

(a)
i+2 dedicated for the transition (from TP

59 to 60).

3.1 System Requirements

In this section, we identify the minimal set of requirements
needed for low-level real-time control of robot arms in most
industrial use cases. We need to consider them during the
implementation of the proposed system.
Velocity-control requirement. The smallest building blocks
to be controlled are the actuators in our system. Actuators
can be controlled independently. Each of them periodically
generates status messages carrying the current joint velocity
(rad/s) and joint position (rad) values. These messages first
need to be parsed by the P4-switch responsible for low level
control. Then, the switch has to calculate the new velocity
value by applying feed-forward control (e.g., PID) that com-
bines the state, timing, and trajectory information. Finally, the
result shall be written into a command message and sent back
to the actuator. Actuators are using different state reporting
and command execution frequencies (generally the former is
higher). Actuators operate at a given frequency. Each actuator
first waits for a command message in a time window of con-
stant length. If the time window is over, the actuator executes
the command. If multiple commands are received in a time

window, only the latest is kept and all the others are dropped.

Timing requirement. The precise timing of control com-
mands is crucial since the actuators of the robot arms expect
incoming commands with a given frequency and do not toler-
ate large timeouts and jitter. In case of bursty arrival, a part of
the commands may not be executed, leading to unexpected
deviations from the desired trajectory. For example, an UR5e
robot arm expects commands at 125 Hz, requiring a command
message every 8ms. In addition, there are timing requirements
between the P4-switch and the industrial controller on loading
trajectory information. This requirement especially important
if the entire trajectory cannot be stored in the switch (or it is
not intended), and the controller periodically loads new TPs
and deletes obsolete ones.

Synchronization requirement. Though we assume that ac-
tuators can be controlled separately, they are not independent.
They belong to a single physical structure with its own kine-
matics. Thus, the actuators of a single robot need to be coupled
in the control process. In addition, most industrial processes
require the cooperation of multiple robot arms. Synchroniza-
tion requirements can be defined on different time-scales. For
example, if a robot stops in a position and then another pro-
cess is started, but there is no strict time constraint (e.g., few
seconds are acceptable) between the two processes, a remote
industrial controller can even solve the synchronization. How-
ever, in several cases, this light synchronization is not enough,
and thus the low-level control processes also need to work in
sync (on a millisecond or sub-millisecond scale).

Trajectory switching requirement. The industrial controller
continuously monitors the whole industrial process, and in-
tervenes if needed (e.g., in case of failure or simple recon-
figuration, or for collision avoidance purposes). This case is
illustrated by Fig. 2 where the trajectory is modified (the red

998 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

point on the timeline), resulting in that after TP 60 the robot
moves towards TP 63 instead of 61. Trajectory switching is
needed when a robot is reconfigured or when an obstacle ap-
pears in the robot cell and collision avoidance can be ensured
by the new trajectory.
Communication requirement. To reduce packet processing
overhead in the P4-switch, we assume that robot arms apply
a datagram-based communication protocol (e.g., native Ether-
net frames, UDP packets, etc.) for sending status information
and receiving commands. Both status and command messages
consist of simple decimal fields in a binary format that can be
parsed by the P4-switch with ease.

4 Robot Arm & Network Protocol

The robot arm used in our experiments is an UR5e [17]. UR5e
is a lightweight, adaptable collaborative industrial robot with
six joints (6-DOF). It is commonly used in research as it has a
programmable interface, can be remotely controlled, provides
industrial grade precision, and can operate alongside humans
with no safeguarding. The robot vendor also provides a real-
time emulation environment (URSim) that is fully compliant
with the real robot arms and thus can be used for testing
validation purposes.

UR5e can receive external commands described in UrScript
[19] language via its network interface. It communicates with
external controllers over TCP by default. However, the net-
work protocol can be customized by adding a URCap [18]
plugin (called daemon) to the robot. To make the commu-
nication simple and stateless, we created a URCap daemon
implementing the translation between the original TCP-based
and our UDP-based protocols.

During the protocol design we considered two practical
aspects: 1) P4 capable devices are not suited for deep packet
inspection, and thus cannot parse the entire content of large
packets. It implies that every important field used for robot
control has to be close enough to the beginning of the packet.
2) Both status and command messages of the original commu-
nication interface rely on floating point fields. However, the
P4 language does not support floating-point arithmetic. This
problem can be handled by multiplying each floating-point
value with a properly large constant and then using the stan-
dard decimal operations. Though it is possible to implement
this conversion in P4, it is much simpler and comfortable if
the value is already in a decimal format in the used protocol.

Considering the above aspects, we use the same header
structure for status and command messages encapsulated into
simple IP/UDP packets. The introduced robot header (rh)
consists of four fields: 1) a robot ID (rh.RId) used as a unique
identifier of the robot arm, 2)a joint ID (rh.JointId) which
determines the joint (or in general the actuator) of the given
robot, 3) a joint velocity (rh.velocity) expressing the current
speed (in rad/s) of the given joint in the status messages or
the new joint-speed value to be set in the commands, and 4) a

joint position (rh.position) which is the current position (in
rad) of the given joint in the status messages, and unset in the
commands.

5 Velocity Control in Data Plane

Though our prototype is implemented in P4-16 with the Tofino
Native Architecture (TNA), we aim at keeping the data plane
description in this section general. In our model, the switch
consists of two packet processing pipelines: an ingress and an
egress. The two parts have different roles and responsibilities
in the proposed implementation:

• Ingress pipeline: This part is responsible for 1) deter-
mining the current TP for the robot arm the status packet
is sent by, 2) stepping the current TP to the next TP along
the trajectory if required, or 3) switching to another tra-
jectory in case of re-planning.

• Egress pipeline: This block solves the low-level veloc-
ity control by calculating the new joint velocity value
based on the available information (state packet and tra-
jectory).

5.1 Ingress pipeline
We assume that each TP can be identified by a unique ID.
The memory layout of the ingress pipeline is depicted in
Fig. 3. One can observe that we maintain three registers for
each robot to be controlled. They store the identifiers of the
current (REGt p), the next (REGnextT p) TPs, and the absolute
timestamp (REGnextTime) when the control has to step along
the trajectory to the next TP. Fig. 2 provides a good illustration
of the role of these three values. Accordingly, the robot moves
towards the current TP (59) which should be reached at ti+1
(REGnextTime) when we step forward to the next TP (60).

The ingress pipeline also contains two tables for storing the
trajectory as a sequence of TPs and branching points where we
can switch to another trajectory. Table TPStepper represents
the trajectory to be followed by a robot arm as a linked list
of TP identifiers. For each TP p, it stores the duration needed
for moving from the previous TP to p and the identifier of the
next TP that follows p along the trajectory. One can observe
that the next TP determines how the robot arm continues its
operation after reaching p.

The current and next TPs usually belong to the same tra-
jectory, but in some cases, re-planning is required. Table
TrajectorySwitcher solves this problem by switching be-
tween two trajectories. If there is a TP p along the original
trajectory which could also be the starting point of the new
trajectory, the switch can be implemented by replacing the
next TP of p with the appropriate TP along the new trajectory.
Thus after the branching point p, the robot arm starts follow-
ing the new trajectory also loaded into table TPStepper.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 999

Let us consider the example in Fig. 3 (see Fig. 2 for illus-
tration). Table TPStepper is applied at time ti when TP 59
becomes the new TP (m.t pId = 59) the robot arm is heading
towards. At this point of time, the next TP is unknown and
is filled from the table. The table also provides the section
duration (m.secDuration = ∆

(a)
i+1) allocated for reaching TP

59. This information is used for determining the absolute
timestamp (ti +∆

(a)
i+1) when the current TP is replaced by the

next one (TP 60) and then table TPStepper is applied again.
Though it sets REGnextT p to 61 (next TP along the initial tra-
jectory), table TrajectorySwitcher overwrites it with 63,
the starting point of the new trajectory.

Algorithm 1 describes the ingress pipeline at a high ab-
straction level. At arrival, the status message from a robot
executes the program block starting with line 3. First, the
trajectory state (T pId, nextT pId and the nextTime) is red
from the registers. T pId denotes the current TP the robot is
currently heading towards and nextT pId identifies the next
TP. Then table TrajectorySwitcher is applied that replaces
the nextT pId if the current TP is a branching point. In most
cases, there is no hit in this table. In line 6, we check if
nextTime is reached. If this condition is true, further actions
(see line 11-16) are needed since we have to move to the
next TP, update states (table TPStepper) and write them into
the registers. In high-performance hardware data planes like
Barefoot Tofino, registers can only be accessed once during
the pipeline to ensure line-rate performance even at the Tbps
scale. This constraint can be resolved by resubmitting the
packet (lines 8-9). In this case, the ingress pipeline is exe-
cuted twice only. Though packet resubmission can reduce
the overall throughput, in practice this step is only performed
when the current TP is reached. Note that in software targets
the proposed pipeline could be implemented without the need
for resubmission, but in turn, we can expect higher latency
and performance limitations.

The proposed implementation has further practical bene-
fits. In case of repetitive tasks which is usual in industrial
scenarios, we can simply create loops in table TPStepper
by setting the next TP to a TP visited previously. The syn-
chronization of different robot arms can be solved either by
merging the multiple robot arms into a single entity whose
TPs represent the joint states of all participating robots or by
creating a self-loop at the starting point of trajectories to be
synchronized. In the latter case, if the section duration is long
enough for inserting branching points to trajectories to be
executed into table TrajecotrySwitcher, the internal clock
of the P4-switch ensures that robot arms start operating at the
same time and are kept in sync during the industrial process.

5.2 Egress pipeline
The egress pipeline is responsible for calculating the velocity
value to be set from the current state of the robot joint and
the current TP (t pId). The new velocity value is computed

Algorithm 1: Ingress pipeline (pseudo-code)

Robot header: rh, Metadata: m;
Registers: REGt p, REGnextT p, REGnextTime;
Tables: TrajectorySwitcher, TPStepper;
apply block

1 if rh.isValid() then
2 if m.resubmitted==0 then
3 m.tpId = REGt p(rh.RId);
4 m.nextTpId = REGnextT p(rh.RId);
5 m.nextTime = REGnextTime(rh.RId);
6 TrajectorySwitcher.apply();
7 if m.nextTime>now() then
8 m.resubmit_needed = 1;
9 m.resubmit_data = m.nextTpId;

10 else
11 m.tpId = m.resubmit_data;
12 TPStepper.apply();
13 REGt p(rh.RId) = m.tpId;
14 REGnextT p(rh.RId) = m.nextTpId;
15 REGnextTime(rh.RId) += m.secDuration;

16 send_back();
17 else
18 Handling normal traffic (e.g., l2 forwarding);

by a simple PID-like controller, as the weighted sum of three
values:

vnew = vcurr + c1(vtrg− vcurr)+ c2(ptrg− pcurr),

where cis are constants, vcurr and pcurr denote the current
speed and position of the robot joint while vtrg and ptrg are
the desired joint velocity and position in the current TP. One
can observe that the new velocity can be composed of three
linear transformations: (1− c1)vcurr, c1vtrg, c2 pdi f f , where
pdi f f = ptrg− pcurr. Each actuator may have different phys-
ical properties and thus require different ci constants in the
transformations. The three Transform tables in Fig. 4 are
used for approximating these linear transformations.

The egress control block is described in Algorithm 2. We
first apply table TargetData to obtain the desired joint speed
and joint position in the current TP (m.t pId). The actual state
of the robot joint is carried by the robot header (rh). Lines 3-7
perform the primitive calculations needed for the P-controller
mentioned previously. The new velocity is calculated as a sum
of different components. Each component is calculated from
metadata fields (diffPos stores the position difference) filled
previously or from header fields by a transformation. The
transformations are approximated by ternary or longest-prefix
match (LPM) tables filled in run-time (see Sec. 5.3). If the
calculated velocity value is too large, it can cause damage to
the robot arm. To take the physical limits of the robot joints
into account we introduce the table LimitVelocity checking

1000 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ti+1...

Registers

REGnextTime

59...

60...

REGtp

REGnextTp

bit<32>

bit<16>

bit<16>

Number of robots

table TrajectorySwitcher

rh.RId: exact m.tpId: exact Action

53 321 Set(m.nextTpId=52)

Default NoAction

... ...

table TPStepper

rh.RId: exact m.tpId: exact Action

55 59
Set(m.nextTpId=60,
m.secDuration=Δ(a)

i+1)

Default NoAction

... ...

Tables

55 60 Set(m.nextTpId=63)

55 60
Set(m.nextTpId=61,
m.secDuration=Δ(a)

i+2)... ...

1
2

4 5

3

55

Figure 3: Memory layout at ingress.

whether the calculated velocity value is outside of the safety
range, and mapping it into the normal range if needed. The
calculated joint speed is encoded into the velocity field of
robot header rh and sent back to the robot as a command
message (lines 9-11).

Algorithm 2: Egress pipeline (pseudo-code)

Robot header: rh, Metadata: m;
Registers: -;
Tables: TargetData, LimitVelocity,

TransformTrgVelocity, TransformCurrVelocity,
TransformDiffPosition;

apply block
1 if rh.isValid() then
2 TargetData.apply();
3 m.diffPos = m.trgPos - rh.position;
4 TransformTrgVelocity.apply();
5 TransformCurrVelocity.apply();
6 TransformDiffPosition.apply();
7 rh.velocity += m.trgVel + m.diffPos;
8 LimitVelocity.apply();
9 swap_ipAddresses();

10 swap_udpPorts();
11 clear_checksums();
12 else
13 Handling normal traffic;

5.3 Approximating transformations
The new velocity value is calculated by applying transfor-
mations on some header or metadata fields. In our proof-of-
concept P-controller, these transformations are simple multi-
plications with predefined constants, but this design enables
us to apply even non-linear mappings.

Such a transformation can be approximated by a Longest-
Prefix-Match (LPM) or a ternary-match table as depicted in
Fig. 4. The match key is the parameter of the function (e.g.,
a header or metadata field), considering the most significant
n bits starting with 1 (positive case) or 0 (negative case), as
illustrated in Fig. 5. The action parameter is the function value

calculated from the significant bits only. Since we only use
simple weight functions in our implementation, the relative
error of the approximated output equals the relative error of
the input, more precisely the relative error of the estimation
based on the most significant n bytes. The estimated value for
the input can vary between the largest and smallest possible
values with the given prefix. During this process, we skip the
leading zeros (or ones in case of negative values) and ignore
the last k bits. Depending on this estimation, the relative error
is less than or equal to 1/2n−1.

This approach fits well with the velocity control use case.
If the input is small – suggesting that we are close to the
target TP, we need to make a more precise movement – the
approximation has a small absolute error. If the input has
a higher absolute value – meaning that we are far from the
target value, and high precision control is not needed – the
method provides an acceptable higher absolute error.

This method can be improved with a small trick. The num-
ber of possible outputs is exactly the number of ternary en-
tries. However, we can calculate the approximated value
of (c− 1)x instead of cx and add one more x to the re-
sult in the P4 program. This technique applied in Table
TransformDiffPosition helped to improve the stability of
the applied P-controller.

5.4 Limiting joint velocities
The different joints have their own physical properties that de-
termine the maximum applicable velocity. To check the speed
constraints and limit the velocity if needed, we apply table
LimitVelocity. Let x be the velocity value (rh.velocity) to
be tested and c be a constant value. Starting with the positive
case, we can always decide whether x > c if x has the same n
long prefix as c but x[n+1] = 1 and c[n+1] = 0. Note that
x[1] denotes the most significant bit of x. The negative case is
similar. If x has the same n long prefix as c but x[n+1] = 0
and c[n+1] = 1 then x < c. For an input of k bits, we need
at most k entries in the table for each constant check. Fig. 4
shows a small example with the necessary prefix checks, con-
sidering a 16-bit long input value and predefined constant
c. In the case of signed inputs, the first bit shall be handled
carefully, but comparing to a negative number can be done
similarly.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1001

table TransformTrgVelocity

m.trgVel: lpm
Action

m.trgVel =

0b 1000 0..0/4 f(0b 1000 0..0)

Default NoAction

... ...

table TargetData

rh.RId: exact m.tpId: exact Action

55 59
Set(m.trgPos=120,

m.trgVel=1123)

Default NoAction

... ...

rh.JointId: exact

2

Tables

table LimitVelocity

rh.RId: exact rh.JointId: exact Action

53 0 rh.velocity = c

Default NoAction

... ...

rh.velocity: lpm

0b 1/1

55 60
Set(m.trgPos=180,

m.trgVel=123)
2

53 0 rh.velocity = c0b 01/2
0b 1001 0..0/4 f(0b 1001 0..0)

0b 1010 0..0/4 f(0b 1010 0..0)

0b 1011 0..0/4 f(0b 1011 0..0)

0b 1100 0..0/4 f(0b 1100 0..0)

0b 1101 0..0/4 f(0b 1101 0..0)

0b 1111 0..0/4 f(0b 1111 0..0)

0b 0100 00..0/5 f(0b 0100 00..0)

0b 0100 10..0/5 f(0b 0100 10..0)

0b 0101 00..0/5 f(0b 0101 00..0)

0b 0101 10..0/5 f(0b 0101 10..0)

table TransformCurrVelocity

rh.velocity: lpm
Action

rh.velocity =

0b 1000 0..0/4 g(0b 1000 0..0)

Default NoAction

... ...
0b 1001 0..0/4 g(0b 1001 0..0)

table TransformDiffPosition

m.diffPos: lpm
Action

m.diffPos +=

0b 1000 0..0/4 h(0b 1000 0..0)

Default NoAction

... ...
0b 1001 0..0/4 h(0b 1001 0..0)

rh.velocity = f(x) + g(y) + h(z)

53 0 rh.velocity = c0b 001/3

53 0 rh.velocity = c0b 0001/4

53 0 rh.velocity = c0b 0000 1111 1/9

53 0 rh.velocity = c0b 0000 1111 01/10

53 0 rh.velocity = c0b 0000 1111 0111/12

53 0 rh.velocity = c0b 0000 1111 0110 1/13

53 0 rh.velocity = c0b 0000 1111 0110 011/15

53 0 rh.velocity = c0b 0000 1111 0110 0101/16

rh.velocity = c if rh.velocity > c
(where c = 0b 0000 1111 0110 0100)

Figure 4: Memory layout at egress.

0 0 … ... 0 0 ? ? ? � � … … � �1 1 0 0 1 0

128-n-k bit n bit k bit

Figure 5: Considering the most significant n bits starting with
1 (positive case).

6 ROS integration

In this section, we briefly introduce our industrial controller
implementation based on the Robot Operating System (ROS)
[14] and its MoveIt [5] library used for generating and execut-
ing trajectories in a robot agnostic manner. ROS is an open-
source robotics framework used in various robotics-related
research since it can easily be extended and customized for
specific use cases. Our ROS-based industrial controller uses
MoveIt for motion planning and mobile manipulation of
robots. In the proposed system, it generates a JointTrajec-
tory message containing an array of points (timestamps, 6
joint positions, 6 joint velocities), as UR5e has six joints (as
shown in Fig. 2).

The architecture of the industrial controller is shown in
Fig. 6. The components developed to support the proposed
system are marked by gray. They have been integrated with
the standard MoveIt architecture consisting of trajectory gen-
eration using MoveIt planning, trajectory execution with
MoveIt using standard ROS interface, and communication
via the ROS driver of the UR5e arm.

To generate trajectories we can use RVIZ, a ROS visualizer
software, with a MoveIt Motion Planning Plugin. Using RVIZ,
we can generate trajectories interactively from a start point to
a selected endpoint. Another way to generate trajectories is
by 1) creating waypoints in Cartesian space, 2) then sending
those points to a ROS node, 3) it computes a trajectory in
joint space (defined by the joint angles of the robot) and 4)

ROS
UR

driver

UR
Robot

Trajectory
exporter

proxy

Switch control plane

MoveItt rajectory
execution

Alternative
trajectory

generation

Trajectory generation

MoveIt trajectory
planning

Waypoints

RVIZ

ROS

 Switch data plane

Figure 6: Trajectory generation and execution

finally it visits them in order.
The resulting joint trajectory is sent to MoveIt trajectory

execution, which uses the ROS action interface defined by
the UR driver to execute the trajectory on URSim/UR5e or it
can also send the trajectory to the P4-switch’s control plane
via the Trajectory Exporter proxy, which fills the appropriate
tables and let the switch execute the trajectory instead of the
ROS UR driver.

6.1 Alternate trajectory generation
We developed Alternate trajectory generation to extend the
existing capabilities of the system. Alternate trajectory gen-
eration and execution is a feature that leverages the ability
of the P4 system to quickly change chains of trajectories, to
execute prepared alternate trajectories in response to external
changes e.g., in the robot’s surroundings.

The alternate trajectory generation node uses MoveIt’s tra-

1002 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

jectory planning to prepare multiple branching trajectory frag-
ments, then concatenates them into a single trajectory. The
alternate trajectories are placed after each other, therefore the
timestamps of the whole branching trajectory are not strictly
incremental. Fig. 7 shows this process, the numbers indicate
the timestamps of the trajectory’s start and endpoints.

0 102 4

0 10
2 10

4 10

Figure 7: Generating a single trajectory from alternate ones

As the timestamps do not strictly increase, we can not
use the trajectory execution of MoveIt. MoveIt is not able to
execute alternate trajectories. Therefore we send the encoded
trajectory to a proxy ROS component (node) which forwards
the trajectory to the P4-switch.

We are also able to generate alternate trajectories on the fly
when a trajectory is already being executed. We achieve this
by keeping track of what is the current time in the currently
executed trajectory. As we know the current time, we know
where the robot will be in a ∆t time. That point can be the start
point of an alternate trajectory. To ensure a smooth transition
during the switch between alternate trajectories we need to
estimate the position of the switching as accurately as possible.
To do this we need to estimate the 1) the latency between the
industrial controller and the switch (RT T), and 2) the expected
trajectory generation time (tprocessing). For the estimation of
the start position (pstart(t)) at time (t) we came up with the
following formulae:

∆t = tprocessing +RT T

ppredict(t) = ptra j(t +∆t)

+ pstatus(t)− ptra j(t)

+(vstatus(t)− vtra j(t))×∆t

pstart(t) = bppredict(t)×
1

g(t)
c∗g(t)

Where the error is estimated on the trajectory calculation side
by calculating the difference of the position of the joints re-
ceived in the last status message and the executed trajectory
position. This is further adjusted by the difference of the cur-
rent velocity of the joints and trajectory velocity times ∆t.
A binning of the values with an integer division and mul-
tiplication with the original granularity (g(t)) is applied on
the predicted position value to replicate the behavior of the
ternary table on the trajectory planner side and consider the
granularity of the number representation in the specific time.
g(t) can be derived from the maximum of relative error (Mrel ,
see Sec. 5.3) by g(t) = l pm(ptra j(t),Mrel).

Fig. 8 shows an example on the error of pstart(t) compared
to pstatus(t +∆t), which is the joint position at the time of
switching.

–: ptra j(t +∆t)
–: +pstatus(t)− ptra j(t))
–: +(vstatus(t)−vtra j(t))×∆t

Figure 8: An example on the error of pstart(t) compared to
the later joint state

7 Evaluation

We carried out several experiments analyzing whether the pro-
posed implementation can hold the identified system require-
ments. To this end, we deployed a simple testbed consisting
of two servers (AMD Ryzen Threadripper 1900X 8C/16T
3.8 GHz, 128 GB RAM) and a Barefoot Tofino-based switch
(STORDIS BF2556X-1T). One of the servers (called Server-
A) is equipped with a dual port 10 Gbps NIC (Intel 82599ES)
that supports hardware-based timestamping. This node is con-
nected to the switch via two 10 Gbps links. The other server
(Server-B) is equipped with a Mellanox ConnectX-5 dual
port NIC whose ports are connected to the switch via two
100 Gbps links. For latency experiments, we used MoonGen
tool [8] on Server-A with hardware-based timestamping to
generate robot and mixed traffic. During the latency mea-
surements, Server-B continuously generated non-robot back-
ground traffic with IP/TCP packets of size 1280B. We aimed
to demonstrate the case that some ports of the P4-switch are
dedicated to handling robot traffic while others forward nor-
mal traffic in parallel. For operational experiments, we used
a real UR5e robot arm connected to the switch and Server-B
was running one emulated UR5e [17] robot using the official
URSim robot emulator. Note that the emulator provided by
the robot vendor is fully realistic and works in real-time. Dur-
ing the experiments, we did not realize notable differences
between the emulated and the real robot arm. In this scenario,
our ROS-based industrial controller was run on Server-A and
communicated with the control plane of the switch, loading
and removing trajectory points.

The performed evaluation scenarios were designed to as-
sess the proposed system in various common robotic use
cases: 1) Pick and place actions: See Sec. 7.3, 2) Welding,
painting, gluing: See Sec. 7.4, 3) Robot to robot collaboration:
See Sec. 7.2, 4) Heterogeneous sensor and actuator deploy-
ment in the robot cell: See Sec. 7.1, 5) Agile control, safety,
robot to human collaboration: See Sec. 7.5. The estimation

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1003

about scalability is covered by Appx. A.

7.1 Response time analysis and traffic load

A robot cell usually contains various sensor and actuator el-
ements, meaning that there are other traffic sources in the
robot cell than the one generated by the robot arm itself. The
Supervisory Control And Data Acquisition (SCADA) sys-
tems also generate considerate background traffic. This is
why it is important to evaluate the proposed system on a het-
erogeneous traffic mix. To this end, we carried out latency
measurements under various traffic loads. In this scenario,
MoonGen (Server-A) sent latency probes in every ms, mixed
with various background traffic. The latency probes were
valid robot status messages and thus they went through the
entire robot control pipeline.

We evaluated the system with two different background
traffic: 1) Simple IP packets of 64B and 1280B sizes were
generated at variable sending rates (1-10 Gbps). The switch
applied simple port forwarding and only the latency probes
went through the robot-control pipeline. With small packet
sizes the observed response time of robot traffic was in the
range of [0.6µs, 1.3µs]. With packet size of 1280B the re-
sponse time shifted towards 2µs as the load increased. This
phenomenon was caused by one or more large background
packets wedging between two latency probes. Note that at
10 Gbps transmitting a packet of size 1280B takes approx.
1µs. We also compared these measurements to the latency of a
simple port forwarding program, the differences were not sig-
nificant (<0.2µs). 2) Robot status messages were generated
as background traffic, and thus all the packets went through
the entire robot control pipeline. The latency results were
basically identical with the previously described case of us-
ing 64B IP packets. The response time was ranging between
0.6µs and 1.3µs.

Though these measurements only show the response time
in under-loaded situations without queueing effect, they are
represented in most industrial environments where a num-
ber of assumptions can be made: 1) predictable and stable
load since the device settings determine the packet genera-
tion frequencies; each device operates as a constant bit-rate
source. The packet sizes are known and thus the overall load
can easily be predicted. For example, a 6-DoF robot operat-
ing at 500 Hz (e.g., UR5e sends status messages at this rate;
sending in every 2ms) generates approx. 1.5 Mbps status traf-
fic on the upstream direction. Thus, the packet processing
pipeline is required to ensure non-blocking operation at 3000
packets/s for a single robot. Considering 1000 robot arms
which is far above the number of robots used in industrial
setups nowadays, the required forwarding rate is 3M pack-
ets/s (approx. 1.5 Gbps) on average. However, considering
synchronized robots whose status messages are sent within
a short time window, the bursty arrival at the P4-switch can
lead to higher peak rates to be handled. For example, if status

messages from all the robots arrive within a time window of
1ms (50% of the 2ms sending interval), the observed temporal
rate could be 3 Gbps or higher. One can observe that these
arrival rates can easily be served by currently available P4-
hardware including both smartNICs, DSCs, and P4-switches.
2) The robot-control traffic can be separated from other
traffic either by assigning dedicated ports and/or pipes to robot
traffic or using simple priority queues giving higher priority to
industrial traffic than background packets. Note that priority
queueing is supported by most of the networking elements
(also including non-P4-programmable ones). This scenario is
examined in more detail in Appx. C.

We also tested our pipeline enforcing the packet resub-
mission at ingress, but it had no visible effect on the latency
distribution. Finally, we repeated all the delay measurements
with generating robot traffic at 100 Gbps from Server-B, but
it has no effect on the observed latency at Server-A.

7.2 Synchronization measurements
Robot to robot collaboration is an important use case in any
industrial robot cell deployment. To speed up the assembly
process a usual deployment contains a robot arm moving the
part to be worked with into various reachable positions for
the other arm that has various grippers and executes a specific
assembling order. The two arms need perfect synchronization
otherwise the resulting product is faulty.

In this operational experiment, we launch the real UR5e
robot arm and an instance of the URSim robot emulator, both
are controlled by the switch and we start the trajectories in
sync and out of sync. Fig. 9 shows the time shift between the
start times of the two robots. The experiment was repeated
20 times. In the synchronized case, we created a single entity
from the two robot arms with 2×6 joints and launched the
trajectory by adding an entry to the TrajectorySwitcher table.
The result is a fully synchronized operation as depicted by
blue in the figure. In the non-synchronized case, the two en-
tries are inserted independently to start the two robots. Note
that we observe an 8 ms time shift in the worst case that is
comparable with the control frequency of the robots (125 Hz)
and can simply be caused by the 8 ms real-time window of the
robots. Though the observed time-shift is basically negligible
for two robot arms, we assume that it may be much more
significant if a larger number of robots is launched indepen-
dently.

7.3 Accuracy at stop position
The accuracy and repeatability of a robotic arm are essential
key performance indicators (KPIs) that need to be maintained
even in a cyber-physical-system, i.e., remote control over
the network. The basic pick and place, and palletizing use
cases mostly depend on them. It is a bare minimum that the
proposed system works well in these use cases.

1004 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 2 4 6 8 10
Time-shift [ms]

0.0

0.5

1.0

E
C

D
F

Out of sync

In sync

Figure 9: Time shift.

−1.0 −0.5 0.0 0.5 1.0

Joint Position Error [rad× 10−7]

0.0

2.5

5.0

N
or

m
.

H
is

to
gr

am

×107

Approaching Stopped

Figure 10: Joint position error at stop.

We performed experiments to analyze the accuracy of the
control at the stop position (at the end of the trajectory) of the
robot arm. One can observe in Fig. 10 that the error from the
expected joint position was about 0.5×10−7 rad which was
caused by the applied number representation (see Sec. 5.3).
The green bars illustrate the deviance when the joint speed is
not absolute zero, but the joint is close to its target position.
Note that 0.5×10−7rad error in the joint position corresponds
to 0.5µm with a 1m long robot arm. In a robot arm with
multiple joints, the cumulative position error is still in the
order of micrometers.

7.4 Accuracy along the trajectory

The assembling quality and the endurance of a product mostly
depend on the quality of gluing, welding and painting work.
To ensure this, the robot needs to be accurate not only in the
goal positions but all along the planned trajectory.

Though the proposed implementation is highly config-
urable and supports the fine tuning of the applied P-controller,
more advanced controllers (e.g., PID) can obviously provide
more precise control. In this experiment, we measure the accu-
racy of the robot head at the trajectory points and compare the
results to the PID-based velocity control of ROS. Both ROS
and the emulated robot run on the same server, representing
ideal circumstances for ROS-based control.

Fig. 11a and 11b depict the TPs (green points) as well as
the path of the tool at the end of the robot arm (solid curves)
for controls based on ROS and P4-Switch, resp. Both paths
show a similar character. The accuracy of the two solutions
is presented in Fig. 11c. ROS’s fine-tuned PID-controller
provides a 0.1 mm accuracy in the worst case which is 3.2

mm in the case of our proof-of-concept P-controller. The
median accuracy values are 0.04 mm and 2.23 mm for ROS
and P4-Switch, respectively.

7.5 Continuous table management

Industry 4.0 introduces the concept of agile robot cell control
that requires fast reaction to external events, e.g., based on
camera or force sensor feedback. Ensuring safety during robot
and human collaboration is also critical. It is essential for the
proposed system to react fast to external triggers.

In this experiment, we used the same measurement setup
as in Sec. 7.1. We generated robot traffic at 10 Gbps and sam-
pled the latency every 1 ms. In the beginning, we loaded 3.4K
trajectory points to the switch and then started the operation.
In every 1 second, we add 1.6K new TPs and remove 10K
outdated TPs, illustrating the case when the switch is only
used as a playback buffer, and the trajectory segments are
loaded incrementally, while the old points are removed. Note
that inserting a trajectory point with 6 joints requires the inser-
tion of 12 entries into two exact-match tables. According to
realistic scenarios, a trajectory normally contains 5-10 points
in a second. Fig. 12 illustrates the latency samples and their
moving average (on the bottom), and also shows the number
of trajectory points (black) loaded into the switch in time,
marking the insertion (blue) and removal (red) phases (on the
top). One can observe that the insertion does not affect the
packet processing latency in this scenario.

8 Discussion on Possible Deployment

Apart from the theoretic aspect and the successful proof study
that the proposed system is feasible to deploy, the possibil-
ity of a real industrial deployment is much dependent on the
cost factors. A simple calculation reveals that a Tofino-based
router costs approx. 9500 USD and it can serve up to 500-
1000 robots in parallel which means that the cost of control-
ling a robot is less than 10-20 USD. It is less than applying
mini PCs for hobby use, e.g., Raspberry Pis, and far less than
certified industrial robot controllers or routers. The energy
consumption of the proposed setup is expected to be much
lower than the sum of industrial routers and robot controllers.
A network device has better transported traffic per watt ratio
than a general purpose computation device that the current
robot controllers contain. Though in industry, usually low per-
formance, but reliable old CPUs are applied. According to [3]
a programmable switch will result in about 14% extra cost,
compared to a non-programmable one, due to the larger area
requirement for transistors. It is an interesting aspect if energy
saving can be achieved by switching non-working elements
on and off. One can observe that the capabilities of a Tofino
are far more than what is required for the robot control use
case. The utilization of the device can be improved by only

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1005

x (m)

−0.6−0.4−0.2
0.0

y
(m

)

0.2
0.4

0.6
0.8

z
(m

)

−0.2

0.0

0.2

0.4

(a) ROS (PID-control)

x (m)

−0.6−0.4−0.2
0.0

y
(m

)

0.2
0.4

0.6
0.8

z
(m

)

−0.2

0.0

0.2

0.4

(b) P4-Switch (P-control)

10−3 10−2 10−1 100 101

Accuracy [mm]

0.0

0.2

0.4

0.6

0.8

1.0

E
C

D
F

2.6mm0.2mm

0.02mm 1.61mm

ROS P4-Switch

(c) Tool position accuracy in the TPs

Figure 11: Path of the robot arm tool in the Cartesian-space and the observed accuracy in the TPs.

2500

5000

7500

#
T

P
s

Add TPs Remove TPs

0 2000 4000 6000 8000 10000
Time [ms]

0

1000

L
at

en
cy

[n
s]

Mean

Figure 12: Dynamic insertion and removal of trajectory
points.

dedicating a part, e.g., a quarter of the switch to robot control
while other parts can work on other tasks (e.g., routing).

The current workflow of a robot is that when it is switched
on, it starts streaming out the internal status messages at a con-
stant rate. Production cells are expected to operate 24 hours
a day, so little can be done dynamically, apart from the fact
that the default power consumption is significantly lower than
current systems. The typical power consumption of a Tofino
switch is around 110 W [16], while an average server requires
400-600 W. A modern server CPU alone can consume 165 W
(Intel Xeon Gold 6348H Processor) at full load. If we com-
pare the costs of purchasing a server with similar processing
power and memory to the cheapest P4-Switch, the difference
is not too significant. For a brief discussion on x86 alterna-
tives see Appx. B. Also note that this is the first commercially
available version of the Tofino switch, and as more and more
new models appear and become more available, prices are
expected to drop.

Considering the edge-cloud deployment scenario men-
tioned in Sec. 1, offloading computations that are simple but
have real-time requirements that cannot be satisfied in a virtu-
alized environment also have practical benefits. In this case,

distributed service cards or smart NICs with P4 programmabil-
ity could be more cost effective solutions than a Tofino-based
switch. They cost around 1500-3000 USD, also enables line
rate (10-40 Gbps) processing with sub-millisecond response
time, and have a typical power consumption of 20-50 W.

9 Conclusion

In this paper, we have introduced the first in-network control
system that uses P4-programmable network devices for not
just triggering events based on threshold values, but to do
low-lever real-time velocity control for highly delay-sensitive
robotic arms that can be used in industrial automation. With
several experiments, we have proved that our system satis-
fies the most crucial factors of industrial robot control. We
measured the latency and observed that it meets the require-
ments needed for real-time control even during the constant
insertion and deletion of lookup table entries. We witnessed
a maximum of an 8 ms time shift in the worst-case scenario
between synchronous robots, making them fully capable of
collaboration. We evaluated the end-position precision per
joint to be under 0.5µm for a 1 m long robot arm, while the
accuracy along the whole trajectory to be lower than 2.6 mm
in the worst-case.

Acknowledgment

We thank the anonymous reviewers for their valuable feed-
back on earlier versions of this paper. S. Laki and P. Vörös
also thank the support of the "Application Domain Specific
Highly Reliable IT Solutions" project that has been imple-
mented with the support provided from the National Research,
Development and Innovation Fund of Hungary, financed un-
der the Thematic Excellence Programme TKP2020-NKA-06
(National Challenges Subprogramme) funding scheme.

1006 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Mehdi Bennis, Mérouane Debbah, and H. Vincent Poor.
Ultra-Reliable and Low-Latency Wireless Communi-
cation: Tail, Risk and Scale. CoRR, abs/1801.01270,
2018.

[2] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard,
Nick McKeown, Jennifer Rexford, Cole Schlesinger,
Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. P4: Programming protocol-independent
packet processors. SIGCOMM Comput. Commun. Rev.,
44(3):87–95, July 2014.

[3] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Vargh-
ese, Nick McKeown, Martin Izzard, Fernando Mujica,
and Mark Horowitz. Forwarding metamorphosis: Fast
programmable match-action processing in hardware for
sdn. SIGCOMM Comput. Commun. Rev., 43(4):99–110,
August 2013.

[4] Fabricio E Rodriguez Cesen, Levente Csikor, Carlos
Recalde, Christian Esteve Rothenberg, and Gergely Pon-
grácz. Towards low latency industrial robot control in
programmable data planes. In 2020 6th IEEE Confer-
ence on Network Softwarization (NetSoft), pages 165–
169. IEEE, 2020.

[5] David Coleman, Ioan Alexandru Sucan, Sachin Chitta,
and Nikolaus Correll. Reducing the barrier to entry of
complex robotic software: a moveit! case study. ArXiv,
abs/1404.3785, 2014.

[6] Comau 5G deployment.
https://www.ericsson.com/en/reports-and-
papers/ericsson-technology-review/articles/industrial-
automation-enabled-by-robotics-machine-intelligence-
and-5g, 2017.

[7] P. Danielis, J. Skodzik, V. Altmann, E. B. Schweissguth,
F. Golatowski, D. Timmermann, and J. Schacht. Survey
on real-time communication via ethernet in industrial
automation environments. In Proceedings of the 2014
IEEE Emerging Technology and Factory Automation
(ETFA), pages 1–8, 2014.

[8] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer,
Florian Wohlfart, and Georg Carle. Moongen: A script-
able high-speed packet generator. In Proceedings of the
2015 Internet Measurement Conference, IMC ’15, page
275–287, New York, NY, USA, 2015. Association for
Computing Machinery.

[9] Y. Guo, X. Hu, B. Hu, J. Cheng, M. Zhou, and R. Y. K.
Kwok. Mobile cyber physical systems: Current chal-
lenges and future networking applications. IEEE Access,
6:12360–12368, 2018.

[10] ISO: International Organization for Standardization.
1998. Manipulating industrial robots – Performance cri-
teria and related test methods, NF EN ISO9283. https:
//www.iso.org/standard/22244.html, 1998.

[11] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg. A survey
of research on cloud robotics and automation. IEEE
Transactions on Automation Science and Engineering,
12(2):398–409, April 2015.

[12] Thomas Kohler, Ruben Mayer, Frank Dürr, Marius
Maaß, Sukanya Bhowmik, and Kurt Rothermel. P4cep:
Towards in-network complex event processing. In Pro-
ceedings of the 2018 Morning Workshop on In-Network
Computing, pages 33–38, 2018.

[13] D. W. McKee, S. J. Clement, J. Almutairi, and J. Xu.
Massive-scale automation in cyber-physical systems:
Vision amp;amp; challenges. In 2017 IEEE 13th In-
ternational Symposium on Autonomous Decentralized
System (ISADS), pages 5–11, March 2017.

[14] Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust,
Tully Foote, Jeremy Leibs, Eric Berger, Rob Wheeler,
and Andrew Ng. Ros: an open-source robot operating
system. In Proc. of the IEEE Intl. Conf. on Robotics and
Automation (ICRA) Workshop on Open Source Robotics,
Kobe, Japan, May 2009.

[15] Jan Rüth, René Glebke, Klaus Wehrle, Vedad Cause-
vic, and Sandra Hirche. Towards in-network industrial
feedback control. In Proceedings of the 2018 Morn-
ing Workshop on In-Network Computing, pages 14–19,
2018.

[16] Nik Sultana, John Sonchack, Hans Giesen, Isaac Pe-
disich, Zhaoyang Han, Nishanth Shyamkumar, Shivani
Burad, André DeHon, and Boon Thau Loo. Flightplan:
Dataplane disaggregation and placement for p4 pro-
grams. In 18th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 21). USENIX
Association, April 2021.

[17] Universal Robot 5e. https://www.universal-
robots.com/products/ur5-robot/, 2020.

[18] URCap. https://www.universal-robots.com/about-
universal-robots/news-centre/launch-of-urcaps-the-
new-platform-for-ur-accessories-and-peripherals/,
2014.

[19] URScript. https://www.universal-robots.com/how-
tos-and-faqs/how-to/ur-how-tos/ethernet-socket-
communication-via-urscript-15678/, 2017.

[20] Jonathan Vestin, Andreas Kassler, and Johan Åkerberg.
Fastreact: In-network control and caching for industrial
control networks using programmable data planes. In

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1007

https://www.iso.org/standard/22244.html
https://www.iso.org/standard/22244.html

2018 IEEE 23rd International Conference on Emerging
Technologies and Factory Automation (ETFA), volume 1,
pages 219–226. IEEE, 2018.

0 200 400 600 800 1000
#Robots

10

20

30

#S
ta

ge
s

200 TPs/robot

100 TPs/robot

50 TPs/robot

Ingress
Egress

(a) Stage occupancy.

0 200 400 600 800 1000
#Robots

10

20

30

40

50

Re
la

tiv
e

SR
AM

 si
ze

50k TPs

200 TPs/robot
100 TPs/robot
50 TPs/robot

(b) SRAM usage.

0 200 400 600 800 1000
#Robots

10−2

100

102

104

#T
Ps

50k TPs

tep=0.1s, rtp=10TPs/s
tep=1s, rtp=10TPs/s
tep=0.1s, rtp=43TPs/s
tep=1s, rtp=43TPs/s

(c) TPs to be stored.

0 200 400 600 800 1000
#Robots

10−3

10−2

10−1

100

M
in

. t
ep

 (s
ec

) rtp=43TPs/s

rtp=10TPs/s

tupd=300ms
tupd=150ms

tupd=100ms

(d) Min. episode time.

Figure 13: Resource usage of different setups with variable
number of robot arms, different trajectory granularity and
control plane speed.

A Scalability estimation

We have carried out various micro-benchmark measurements
to estimate the scalability of the proposed in-network robot
control method in terms of both computational, memory re-
sources and the speed of interaction between data and control
planes. Fig. 13a-13b show the first experiment group where
the number of trajectory points stored by the switch for each
robot is varied. We consider three settings: 50, 100 and 200
TPs/robots. Note that in an average case, a trajectory consists
of 10 TPs in every second. These numbers can be interpreted
in two ways: 1) this is the number of TPs in the entire tra-
jectory of a given robot, 2) the TPs related to a trajectory
episode as discusses in Sec. 7.5 (Note that an epsiode of n
TPs requires space for storing at least 3n TPs in the pipeline:
expired episode to be deleted, active episode that is under
execution, upcoming episode that will be executed after the
active one). The TPs are stored in exact tables of the pipeline
that are mapped to the SRAM. One can observe that both the
number of stages and the SRAM usage scale linearly with
the number of robot arms. The increase in SRAM usage ex-
presses the rising number of table entries (6 entries in two
tables for each TP). Note that the SRAM usage could be the
same or similar in other P4-targets (e.g., smartNICs, DSCs).
However, the increase in the number of stages is directly re-
lated to the physical structure of underlying P4-device, and
could vary from target to target. In our case, SRAM is dis-
tributed among stages, and if the table is too large, it is spread
among multiple stages, increasing the stage occupancy. Note
that the P4-switch we used for evaluation is able to store at
most 50K TPs without any limitation. The TCAM usage of
the proposed method is limited and predictable. Tables used
for approximating the calculations in the PID-like controller
are mapped to the TCAM area whose size only depends on
the required control precision (Sec. 5.3).

Fig. 13c-13d focus on the dynamic use case discussed in
Sec. 7.5, showing the relationship between resource usage
(#TPs), the number of robots, the length of episodes (tep), the
granularity of trajectories (rt p: normal usage with 10 TPs/s;
fine-grained movement with 43 TPs/s) and the time (tupd)
needed the control plane for updating tables storing TPs in
data plane. Note that tupd in the figure illustrates the time
needed for adding and removing 1.6K TPs (2x10K entries),
and according to our measurements the update time scales
linearly with the number of TPs, but it cannot go below 1
ms. One can observe that in this dynamic scenario the speed
of the control plane determines both the minimum length of
a trajectory episode and the maximum number of robots to
be controlled for a given rt p. In our prototype control plane
tupd is almost 300 ms, and thus for rt p=10 TPs/s 500 robot
arms can be controlled with tep ≥ 1s. One can also see that it
requires less memory resources than the 50K limit and thus
the speed of the control plane has become the bottleneck in
this case, limiting the number of robots to be integrated.

1008 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 Gbps 5 Gbps 1 Gbps 5 Gbps 9 Gbps
Background traffic load

102

103

104

105

106

107

R
es

p
on

se
ti

m
e

(n
s)

No priority queue Using priority queue

64 byte packets

1280 byte packets

Figure 14: The observed response times in case of a 5Gbps
bottleneck

Though the first generation P4-programmable hardware
targets including smartNICs and switches have well-known
limitations, they can still be used for offloading real-time
computational tasks. We think that the next generation of such
devices that are on the horizon will give a momentum to the
use of in-network computing and enable supporting various
applications that require ultra-low latency, high-throughput
real-time and/or predictable performance. We believe that
real-time cloud and edge cloud applications like robot control
are one of the potential use cases that can benefit from in-
network computation.

B Comparison to x86

We have shown in the previous section that a single P4-switch
can be scaled up to control 500 or even 1000 robot arms, de-
pending on the use cases and settings. However, the low-level
velocity vector calculation can also be separated from the in-
dustrial controller and offloaded to a dedicated computer in a
traditional scenario. In this section, we consider a distributed
ROS deployment where the low-level control is coordinated
by a robot-driver node in ROS. For each robot arm, a dedi-
cated process is executed to receive status messages, perform
the calculations and send velocity commands. Robot-driver
nodes require real-time Linux kernel to ensure the timing
requirements. We evaluated the driver node of UR5e in a
multi-core server equipped with two CPUs (2x Intel Xeon
CPU E5-2630 2.30GHz 6C/12T, 32GB RAM). A single con-
trol process resulted in 0.19 CPU usage (out of 12, the number
of logical cores) in idle state which went up to 0.42 after the
robot arm was connected. The CPU usage scaled linearly
with the number of robot arms. The CPU limit was reached
with 45 emulated robot arms after that ROS processes started
interfering each other. The total system load was around 95%.

C Interference with regular network traffic

In Sec. 7.1, we have shown that the response time in under-
loaded situations is around 1-2µs. Though we think that the
separation of control and regular traffic could be possible in
most environments, in this section we investigate how regular
traffic with different load level affects the processing of con-
trol messages. To make the interference more visible, the port
rates of the switch are limited to 1Gbps, 5Gbps and 9Gbps.
90% of the test traffic is regular traffic (i.e., non robot control
packets) while the remaining 10% consists of robot control
messages. The load level is varied from 1Gbps to 9Gbps. The
same testbed is used as in Sec. 7.1.

In Fig. 14, we have created an artificial bottleneck of 5Gbps
by rate limiting the used egress port. The left side of the
figure depicts the case when the regular and robot control
traffic is not separated from each other. The packet size in
the regular traffic is either 64 or 1280 bytes, marked with red
or blue, resp. One can observe that when the arrival rate is
1 Gbps which is much smaller than the bottleneck capacity,
the response time is around 1µs as in our previous analysis.
Note that no packet loss is experienced in this case. However,
when the arrival rate of the test traffic is increased to 5Gbps,
the outgoing port starts being congested, packets accumulate
in the buffer and thus the observed latency of robot control
packets significantly increases (3× 106 ns = 3ms) due to
queueing and a part of the packets is lost. One can note that
the increased response times and packet losses degrade the
performance of our robot control method, making it unreliable.
With an arrival rate of 9Gbps, almost all robot control packets
are lost due to congestion. Regular traffic with high intensity
has a clear impact on the robot control traffic if they share the
same buffer.

However, most P4 programmable devices allow to define
multiple queues for each egress port and apply strict priority
scheduling between them. As depicted on the right side of
Fig. 14, directing regular and robot control traffic into two
separate buffers, applying strict priority scheduling between
them and giving higher priority to robot control traffic can
easily solve the problem of interference. Even in extreme
congestion situations (5Gbps or 9Gbps background load) the
response times still remain in sub-millisecond order with zero
packet loss.

Note that we have obtained similar results for other bottle-
neck capacities.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1009

Enabling IoT Self-Localization Using Ambient 5G Signals

Suraj Jog†, Junfeng Guan†, Sohrab Madani†, Ruochen Lu⋆, Songbin Gong†, Deepak Vasisht†, Haitham Hassanieh†

University of Illinois at Urbana Champaign†, University of Texas at Austin⋆

Abstract – This paper presents ISLA, a system that enables

low power IoT nodes to self-localize using ambient 5G signals

without any coordination with the base stations. ISLA operates

by simply overhearing transmitted 5G packets and leverages

the large bandwidth used in 5G to compute high-resolution

time of flight of the signals. Capturing large 5G bandwidth

consumes a lot of power. To address this, ISLA leverages

recent advances in MEMS acoustic resonators to design a RF

filter that can stretch the effective localization bandwidth to

100 MHz while using 6.25 MHz receivers, improving ranging

resolution by 16×. We implement and evaluate ISLA in three

large outdoors testbeds and show high localization accuracy

that is comparable with having the full 100 MHz bandwidth.

1 Introduction

Recent years have witnessed a tremendous growth in the num-

ber of connected IoT devices, with surveys projecting up to

31 billion deployed IoT nodes by 2030 [38]. With such ubiq-

uitous deployment of IoT nodes, the ability to localize and

track these nodes with high accuracy is essential for many

applications. For example, in data driven agriculture, it can

enable real time micro-climate monitoring and livestock track-

ing [39]. In smart cities, IoT sensors are deployed throughout

the city for tasks such as air quality monitoring, tracking buses,

trains, and cars, and monitoring the structural health of infras-

tructure [22]. In the era of Industry 4.0, it can also enable wide

area inventory tracking and facilitate factory automation [24].

Today, the most prevalent outdoors localization technol-

ogy is GPS which is mainly used in cars and mobile phones.

However, off-the-self GPS chips can consume about the same

power as the entire IoT device, thus reducing the battery life

to half in addition to the extra hardware costs [5]. Due to

this, past work has proposed the use of cellular networks or

dedicated IoT base stations for localization [9, 27]. These

solutions, however, either achieve very low resolution of 100s

of meters [9, 18] or require active participation of the base

stations to jointly compute the location or tightly synchronize

the base stations [27,40,45]. Realizing such solutions in prac-

tice requires the cooperation of cellular providers to bear the

additional cost of modifying the base stations and a back end

server to support the localization feature.

In this paper, we ask whether an IoT device can accurately

localize itself simply by listening to ambient 5G cellular sig-

nals, without any coordination with the 5G base stations?

Doing so would allow us to easily deploy self-localizing IoT

nodes is wide areas without the need to modify the cellular

base stations or deploy new base stations for localization.

5G cellular networks present unique opportunities for en-

abling accurate localization. First, the small cell architecture

in 5G networks will lead to a very high density of 5G base

stations, with up to 40 to 50 base stations deployed per square

km [15], thereby allowing us to leverage more anchor points

in the network for increased localization accuracy. Second,

the 5G standard is designed to support very high data rates

and can have OFDM signals spanning up to 100 MHz in band-

width in the sub-6 GHz frequency range, and up to 400 MHz

bandwidth in the mmWave frequency range [37]. Such large

bandwidth can be used for accurate localization. To see how,

consider the 5G OFDM signal shown in Fig. 1(a) where data

bits are encoded in N frequency subcarriers. We can use the

preamble which contains known bits to compute the channel

impulse response (CIR) by taking an inverse FFT. The CIR in

Fig. 1(a) shows the Time-of-Flight (ToF) of different signal

paths. Estimating the ToF from few base stations allows us to

localize the device. The larger the bandwidth of the signal, the

higher the resolution. In fact, we can achieve a resolution of 3

meters for 100 MHz and 0.75 meters for 400 MHz signals.1

Leveraging these opportunities, however, is challenging

since power-constrained and low-cost IoT nodes cannot cap-

ture the large bandwidth of the 5G signals. They are equipped

with low-power and low-speed Analog-to-Digital Converters

(ADCs) that can only capture a narrow bandwidth. In fact,

while IoT has been one of the cornerstone applications in

the design of 5G, it is only supported in narrowband chunks

for low data rate applications [2, 3]. Therefore, while the 5G

standard does allocate higher bandwidth (up to 400 MHz)

for mobile broadband and high data rate applications, IoT

nodes can capture only a very small fraction of this band-

width (∼ 20× smaller [37]). As a result, they significantly

lose out on the ToF resolution that was made possible by the

high bandwidth 5G signals as shown in Fig. 1(b). Moreover,

it is infeasible to measure the absolute time-of-flight without

any coordination or synchronization with the base stations.

In this paper, we present ISLA, a system that enables IoT

Self-Localization using Ambient 5G signals. ISLA does not

require any coordination with or modifications to the base

stations. The key enabler of ISLA is the use of MEMS (micro-

electro-mechanical-system) acoustic resonators. Past work

[11, 12] has demonstrated that we can use such MEMS res-

onators to design new kinds of RF filters that look like a

spike-train in the frequency domain, as shown in Fig. 1(c).

To understand how we can leverage such MEMS spike-train

filters, consider the 5G OFDM signal shown in Fig. 1(a).

1The resolution is computed as c/B where c is the speed of light and B is

the bandwidth of the signal.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1011

1012 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

approach with several baselines [9, 21, 43] and show up to

4−11× higher localization accuracy. Finally, we show that

ISLA achieves a comparable performance to having a full 100

MHz receiver while using a 16× lower sampling rate.

Contributions: We make the following contributions:

• We present, to the best of our knowledge, the first system

that allows IoT nodes to localize themselves using ambient

5G signals without any coordination with the base stations.

• We demonstrate the ability to reduce the sampling rate by

16× while retaining the benefits of high bandwidth 5G

signals by leveraging recent advances in MEMS RF filters.

• We implement and evaluate ISLA to demonstrate accurate

localization in 3 outdoor settings.

2 Related Work

Localization has been extensively studied in cellular, WiFi,

and IoT networks. Our work differs from past research in

that it is the first to enable self-localization using ambient 5G

signals without requiring coordination with the base stations.

A. Cellular Based Localization: Several studies [9, 17, 18,

29,33] have proposed to use nearby cell tower information and

statistics in order to localize a mobile device. These methods,

however, have a median accuracy of around 100 to 500 meters,

and are mostly useful for very coarse localization. To improve

localization accuracy, [4, 35] propose to combine WiFi APs

with cellular base stations. Despite their relatively higher ac-

curacy, these methods require fingerprinting the surroundings

and as such require extensive training and do not generalize to

new locations. More recent work exploits massive MIMO and

millimeter wave for localization in 5G [30, 31, 42]. However,

all of this work requires coordination with base stations and

assumes the devices can capture the entire bandwidth of the

5G signals which does not work for IoT devices.

B. IoT Based Localization: [5] leverages TV whitespaces

to achieve high localization accuracy for LoRA IoT devices.

However, it requires all base stations to be tightly synchro-

nized at the physical layer (time and phase) in order to mea-

sure TDoA (Time Difference of Arrival). Recent work [27]

designs low power backscatter devices that leverage LoRa for

localization to achieve high accuracy. However, the system

mainly targets indoor applications where software radios can

be deployed as base stations to sample the I/Q of the signal

and localize the IoT node. Moreover, its current system de-

sign [27] supports only a single node. The authors of [34]

propose an outdoors localization technique for SigFox IoT

devices based on fingerprinting. However, as mentioned ear-

lier, fingerprinting requires constant training and cannot scale

to new environments. Finally, there is a lot of work on using

UWB or RFID nodes for localization [10,13, 41]. However,

these works focus on indoors and short range as the range of

UWB and RFIDs is limited to 10-30 meters [7, 14].

C. IoT Self-Localization: LivingIoT [19] enables self-

localization on IoT nodes. It designs a miniaturized device

that can be carried by a bumblebee and uses backscatter for

communication. The node localizes itself by extracting the

angle to the Access Point from the amplitude measurements

using an envelop detector. The technique, however, requires

the APs to switch the phase across two antennas to change the

received amplitude at the IoT node, and hence, cannot be ap-

plied to 5G without modifying the base stations. [26] enables

self-localization by placing a camera on a WISP RFID but

only operates within a range of 3.6 m from the RFID reader.

D. WiFi Based Localization: There has been a lot of work on

indoor localization using WiFi [6,21,25,32,40,43,44,46,47].

The closest to our work are [21, 40, 43] which estimate the

channel impulse response (CIR) and time of flight (ToF)

from the WiFi access point (AP). Chronos [40] hops be-

tween WiFi channels to compute the CIR at high resolution.

However, it requires tight timing coordination with the AP

to compensate for carrier frequency offset (CFO) and ensure

phase coherence across the measurements. ISLA, on the other

hand, captures measurements from many frequencies across

a wideband without hopping by using the MEMS filter, and

hence, does not require any coordination with the base sta-

tions. SpotFi [21] combines measurements across antennas

with large WiFi bandwidth to separate Line of Sight (LoS)

path from multipath reflections in the CIR using MUSIC

along two dimensions: ToF and Angle of Arrival (AoA). mD-

Track [43] also incorporates Doppler shifts and Angle of

Departure (AoD) in addition to ToF and AoA and iteratively

refines the CIR to achieve a better estimate of the LoS path.

In section 10, we adapt SpotFi’s and mD-Track’s CIR esti-

mation algorithms to our setting and demonstrate that ISLA’s

algorithm achieves 4−11× higher accuracy. It is worth not-

ing, however, that for our application, these past works cannot

benefit from the doppler or AoA/AoD dimensions.

E. MEMS Filter: Recent work has used MEMS spike-train

filters for the application of wideband spectrum sensing [12].

However, [12] can only detect signal power at different fre-

quencies and cannot recover complex I and Q samples needed

for estimating the CIR. Furthermore, [12] deals with collisions

resulting from aliasing by using co-prime sub-sampling rates.

Such approach does not apply in the context of 5G OFDM

signals, since, as we show in section 5 the sub-sampling factor

can only be a power of 2. ISLA instead co-designs the hard-

ware filter together with sampling rate to avoid collisions.

3 Background

A. Spike-Train MEMS Filters: Our work builds on recent

advances in MEMS RF filters. MEMS filters can work be-

tween a few MHz and 30 GHz and can be integrated with ICs

to form a chip-scale RF front-end solution for IoT devices.

Past work on MEMS RF filters optimize for filters with a

single passband [36, 48], however, the MEMS filter used by

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1013

1014 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the Channel Impulse Response CIR(τ). Since the preamble

bits cn are known, we can compensate for cn and compute the

CIR(τ) by taking an IFFT of the channel values hn. However,

this requires capturing the entire bandwidth of the 5G OFDM

signal. Our goal is to recover the CIR using a narrowbandwith.

To do so, we leverage the MEMS spike-train filter.

The spike-train filter response is made up of uniformly

spaced passbands as shown in Fig. 2(b). The spike-train

filter serves to sparsify the OFDM symbol by selectively

passing subcarriers that fall inside the MEMS passbands,

while suppressing all other frequencies. Let the set of fre-

quencies passed by the spike-train be indexed by M. Then,

the frequency domain of the signal X̃(f) (x̃(t) in the time

domain) after passing through the spike-train filter will be

X̃(f) = ∑i∈M cihiδ(f − fi).
This sparse spectrum is shown in Fig. 2(b). Next, the IoT

receiver subsamples the signal x̃(t) using a low-speed ADC

that samples at a rate R = B/P, where B is the bandwidth of

the transmitted symbol and P is an integer corresponding to

the subsampling factor. Let y(t) be the subsampled signal,

that is, y(t) = x̃(P× t), and let Y (f) be its frequency domain

representation. Then Y (f) is an aliased version of X̃(f):

Y (f) =
P−1

∑
i=0

X̃(f + iR) (2)

Y (f) will cover a narrow bandwidth equal to R MHz as

depicted in Fig. 2(c). The process of aliasing is as follows.

Any frequency f j, j ∈ M, that falls outside the narrowband

of the IoT device, will alias onto the frequency bin f̃ j inside

the narrowband after subsampling, such that f j − f̃ j = z×R,

where z is some integer. Note that for every f j, we have a

unique f̃ j. So given the measurement at the aliased frequency

f̃ j, we can potentially recover the channel value h j at the

corresponding unaliased frequency f j.

However, recovering these channel values from the aliased

spectrum is non-trivial because multiple of the frequency sub-

carriers passed by the spike-train filter may collide by aliasing

on top of each other and summing up. This is unfavorable

since now we are unable to extract the channel values for any

of the colliding frequencies. Past work addresses this by lever-

aging multiple co-prime subsampling factors, which ensures

that the same frequencies don’t collide repeatedly.

Unfortunately, we do not have such flexibility to choose any

sub-sampling factor here. This is because in order to recover

the channel value h j from the aliased frequency f̃ j, we need

to ensure that the complex scaling factor c j ×h j encoded on

subcarrier f j remains preserved upon aliasing. This is crucial

because the wireless channel information is contained inside

this scaling factor. The following lemma states the condition

that ensures this:

Lemma 5.1. For a sub-sampling factor P and N OFDM

subcarriers, the complex valued scaling factors for each sub-

carrier will be preserved upon aliasing if N = z×P, for some

integer z, given the aliasing results in no collisions.

The proof for the above lemma is in Appendix A. Thus,

to be able to recover channel values, we are restricted to

subsample the signal by an integer factor of N. Further, since

the OFDM subcarriers in the 5G standard are set to powers

of 2, we can only subsample the wideband signal by powers

of 2.

Due to this lack of choice in subsampling factors, we in-

stead shift our focus on designing the spike-train filter such

that the frequencies passed by the filter do not collide upon

aliasing. We achieve this by leveraging the structured periodic

sparsity of the spike-train, and design a filter that ensures no

collisions for the given subsampling factor P.

Doing so significantly simplifies our recovery algorithm. In

particular, given that (1) the frequency response of the spike-

train filter and its collision-free aliasing patterns are known,

and that (2) the scaling factors at the frequency subcarriers

remain preserved upon aliasing, we can now simply rearrange

the frequencies in Y(f) to their corresponding unaliased fre-

quency positions as shown in Fig. 2(d). Further, we can extract

the channel values at these unaliased frequencies by dividing

the complex scaling factor c j ×h j by the known preamble bit

c j. Thus, by leveraging the spike-train filter, ISLA is able to

extract wideband channel values on a narrow band IoT device.

Next, we discuss the design parameters of the spike-train filter

that ensures no collisions.

Spike-Train Filter Design: We explain the spike-train fil-

ter design with a specific example, shown in Fig. 3(a). Let

the wideband transmitted OFDM signal (B MHz bandwidth)

be comprised of 32 frequency subcarriers, indexed from -

16 to 15, with 0 denoting the carrier frequency bin. From

Lemma 5.1, we want the subsampling factor P to divide

N = 32. So we choose P = 4, that is, the IoT receiver subsam-

ples the signal by 4×. This implies that the IoT receiver is

only able to capture N
P
= 8 frequency bins centered around the

carrier frequency as shown by the shaded region in Fig. 3(a).

Let this narrow band set of frequencies be denoted as fNB.

Recall that when you subsample a B MHz signal by P×,

then all frequency subcarriers spaced by R = B
P

MHz will

alias onto the same frequency bin in the narrow band spec-

trum. Here, this translates into all frequencies spaced by 8

subcarriers aliasing onto the same narrowband bin. This is

depicted in Fig. 3(a) through the color coding scheme. For

instance, the subcarriers at {−9,−1,7,15} (represented as

purple colored) would all appear at frequency bin -1 in the

narrow band spectrum upon aliasing. For a given subcarrier k

in the narrow band spectrum, that is, k ∈ {−4, . . . ,3}, let us

denote the set of subcarriers that would alias into k as Ik. So

we have I−1 = {−9,−1,7,15}.

The spike-train filter will selectively pass frequency sub-

carriers in the wideband OFDM signal, which after aliasing

can be recovered from the narrow band signal at the receiver.

Let the set of frequency subcarriers passed by the spike-train

filter be denoted by fM , where M ∈ [−15, . . . ,16]. We want

the following conditions to hold:

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1015

1016 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1017

1018 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1019

0 10 20 30 40 50 60 70 80 90

Localization Error (in meters)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

�✁✂

 ISLA

 Md-Track

 Spot-Fi

 RSSI

0 50 100 150 200 250 300 350 400

Localization Error (in meters)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

✄☎✆

 ISLA

 Md-Track

 Spot-Fi

 RSSI

0 100 200 300 400 500 600 700

Localization Error (in meters)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

✝✞✟

 ISLA

 Md-Track

 Spot-Fi

 RSSI

Figure 8: ISLA’s localization accuracy compared against baselines across different testbeds: (a) Campus (b) Parking lot (c) Farm.

station is equipped with a single antenna and the IoT device

does not have high mobility relative to the base station.

Note that, systems like Spot-Fi and mD-Track were not de-

signed for ambient localization, and thus need to be adapted

here. Specifically, we leverage the ToF estimates provided by

these baselines for the LoS path, and in turn self-localize the

client by computing the relative ToF, as described in Section 7.

(3) RSSI: Past work leverages RSSI measurements to localize

clients in outdoor cellular networks, by either using approxi-

mate path loss models for trilateration, or by using the known

locations of nearby cells as coarse estimates. We implemented

one recent RSSI baseline [9].

(4) Spike-train filter-adapted baselines: To provide a fair com-

parison against ISLA, we modify Spot-Fi and mD-Track to

leverage the spike-train filter and utilize the wideband chan-

nel measurements for localization. It is non-trivial to adapt

Spot-Fi for the spike-train filter since the spatial smoothing

technique used in Spot-Fi requires uniformly spaced channel

measurements across frequency, whereas the spike-train filter

samples the OFDM frequency bins non-uniformly. To address

this, we restructure the spatial smoothing subarray from [21]

that allows Spot-Fi to be applied across the non-uniform fre-

quencies sampled by the spike-train filter.

10.2 Results

Unless otherwise specified, for all results, we utilize 5 ran-

domly chosen base stations as the anchor points.

A. Localization Accuracy Comparison against Baselines:

We compare ISLA’s localization against the baselines in Fig. 8.

Note that, while ISLA is designed specifically to leverage the

wideband channel sensed by the MEMS filter, the baselines

are implemented without modification and thus utilize only

the narrowband channel for localization.

From Fig. 8, ISLA achieves a median localization accuracy

of 1.58 meters in the campus testbed, 17.6 meters in the park-

ing lot testbed, and 37.8 meters in the farm testbed. Across

the same three testbeds, Spot-Fi achieves median accuracies

of 17.05 meters, 61.2 meters and 156.6 meters, whereas mD-

Track achieves 18.11 meters, 71.8 meters, and 183.1 meters

respectively. Thus, ISLA improves the localization accuracy

over Spot-Fi and mD-track by ∼ 11× in the campus testbed,

and by ∼ 4× in the parking lot and farm. ISLA is able to

achieve such high gains since it leverages the spike-train filter

to sense wideband channel on the narrowband device, which

allows for much higher resolution compared to the baselines

operating solely in the narrowband. Further, the localization

improvement over the narrowband baselines is most signif-

icant in the campus testbed, since it has the most multipath

from surrounding buildings, and thus ToF resolution is critical

to separate out the LoS path from reflections.

Lastly, the RSSI baseline achieves median accuracies of

64.54 meters, 120.7 meters, and 260.8 meters respectively

across the three testbeds. RSSI based methods generally have

poor performance, as they tend to oversimplify path loss mod-

els that map RSSI values to distance, which does not hold for

real world multipath channels.

B. Comparison against Spike-train-adapted Baselines:

Next, we evaluate how leveraging the spike-train filter would

benefit the performance of our narrowband baselines. Fig. 9

shows the CDF of localization accuracy comparing ISLA

against the modified baselines that utilize the wideband chan-

nel from the spike-train filter. The RSSI baseline is not in-

cluded here since its localization performance does not de-

pend on bandwidth. Compared to its narrowband implemen-

tation, Spot-Fi’s median accuracy improves to 11.08 meters

in the Campus testbed, 49.07 meters in the Parking Lot, and

137.76 meters in the farm. Similarly, mD-Track’s median per-

formance improves to 15.48 meters, 51.45 meters and 103.78

meters in the three testbeds respectively. Thus, Spot-Fi and

mD-Track see improvements in localization accuracy by up

to 54% and 76% respectively. This shows that other localiza-

tion techniques can also benefit from the wide-band channel

sensing capabilities enabled by the spike-train filter.

Additionally, Fig. 9 shows that given the same channel in-

formation, ISLA’s off-grid CIR estimation algorithm is able

to better resolve and estimate the relative ToF compared to

Spot-Fi and mD-Track. This is because these baselines were

designed to leverage multiple information dimensions to sep-

arate out the multipath components, with both baselines lever-

aging 3 or more antennas for separation in the AoA domain,

and mD-Track further using the additional dimensions of

Doppler and AoD as well. In contrast, here the IoT device

has to separate out multipath in the ToF domain alone, and

ISLA is able to achieve very accurate localization owing to its

off-grid estimation algorithm.

C. ISLA Leveraging Different Amounts of Spectrum: In

this experiment, we compare ISLA’s localization algorithm

applied across three different amounts of spectrum utilization

— (1) ISLA applied only to the wideband sparse channel sensed

by the spike-train filter (without combining with narrowband

channel), (2) ISLA applied only to the narrowband channel of

1020 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 10 20 30 40 50 60

Localization Error (in meters)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

�✁✂

 ISLA

 MEMS-adapted Md-Track

 MEMS-adapted Spot-Fi

0 50 100 150 200 250

Localization Error (in meters)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

✄☎✆

 ISLA

 MEMS-adapted Md-Track

 MEMS-adapted Spot-Fi

0 50 100 150 200 250 300 350 400 450

Localization Error (in meters)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

✝✞✟

 ISLA

 MEMS-adapted Md-Track

 MEMS-adapted Spot-Fi

Figure 9: ISLA’s localization accuracy compared against MEMS filter adapted baselines at: (a) Campus (b) Parking lot (c) Farm.

0 5 10 15 20 25 30 35

Localization Error (in meters)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

 Narrowband Spectrum

 Full 100 MHz Spectrum

 Wideband Sensing with MEMS Filter

0 20 40 60 80 100 120 140 160

Localization Error (in meters)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

 Narrowband Spectrum

 Full 100 MHz Spectrum

 Wideband Sensing with MEMS Filter

0 100 200 300 400 500

Localization Error (in meters)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

 Narrowband Spectrum

 Full 100 MHz Spectrum

 Wideband Sensing with MEMS Filter

0 20 40 60 80 100 120

Localization Error in meters

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

 5 Base Stations

 15 Base Stations

 25 Base Stations

(a) Campus (b) Parking Lot (c) Agricultural Farm (d) ISLA’s localization error vs #BSs

Figure 10: (a-c) Comparison of ISLA’s localization accuracy when leveraging different amounts of spectrum across all three testbeds. (d)

ISLA’s localization error with different number of visible base stations.

IoT device, and (3) ISLA applied across the entire 100 MHz

bandwidth of the received 5G signal. Fig. 10 plots the CDF

of localization accuracy achieved across the three testbeds.

ISLA applied on the narrowband channel performs the

poorest, achieving median accuracies of 7.9 meters, 58.9 me-

ters and 142.52 meters in the campus, parking lot and farm

testbeds. In contrast, ISLA along with the spike-train filter

can achieve corresponding median accuracies of 1.68 meters,

18.8 meters and 45.04 meters. Thus, ISLA along with spike-

train achieves an improvement in localization accuracy of

3.16×−4.7× compared to ISLA applied in the narrowband

spectrum, despite both baselines capturing the same amount

of channel measurements. The advantage of spike-train stems

from the fact that it enables the narrowband receiver to capture

channel measurements that span a much larger bandwidth,

which results in much higher ToF resolution.

On the other hand, ISLA’s localization algorithm applied

on the full 100 MHz spectrum achieves median accuracies of

1.38 meters, 11.44 meters and 25.8 meters respectively on the

three testbeds. Thus, ISLA with the spike-train filter reduces

the localization accuracy by only 1.21×, 1.64×, and 1.74×
respectively compared to this upper bound. This demonstrates

that the spike-train filter can enable a narrowband device to

achieve localization accuracy within a factor of 2× compared

to a broadband receiver, despite the fact that it subsamples the

signal by 16× below Nyquist.

D. Localization with Number of Anchor Base Stations:

In Fig. 10(d), we compare ISLA’s localization performance

with 5, 15 and 25 base stations used as anchor points respec-

tively, in the parking lot testbed. With 5 base stations, ISLA

achieves a median accuracy of 17.6 meters, which improves

to 9.27 meters with 15 base stations, and 4.26 meters with 25

base stations. This improvement becomes even more signifi-

cant at the tail, with ISLA achieving 90th percentile accuracy

of 73.16 meters with 5 base stations, which improves to 10.9

meters accuracy with 25 base stations at 90th percentile. Thus,

leveraging more base stations can significantly improve the

localization accuracy achieved by ISLA.

E. Tracking Objects: We move the IoT device across an

L-shaped trajectory (160 meters in length and 85 meters in

width) in the parking lot testbed, and collect packet trans-

missions from the base stations at different points along this

trajectory. In this experiment, we pick 7 fixed base stations

to utilize as anchor points, and we show the ground truth

trajectory and corresponding estimated trajectory by ISLA

in Fig. 11(a). As can be observed, ISLA’s high localization

accuracy allows to faithfully capture the shape of the ground

truth trajectory.

10.3 Microbenchmarks

A. CIR Estimation using Fabricated MEMS Spike-train

Filter: To verify the equivalence between our outdoor imple-

mentation and using the prototype with the fabricated MEMS

spike-train filter at 400 MHz, we conduct indoor experiments

at 400 MHz. Specifically, we evaluate the error in recon-

structed CIR and estimated ToF values between the prototype

with the fabricated filter and ISLA with the digital filter im-

plementation. In Fig. 11(b), we show the CDF of the errors

in ToF values (converted to distance (meters)) recovered by

the two approaches, for both LoS and NLoS paths. We can

see that the position of the LoS path in the CIR estimated

from both approaches are very close, with the median error

between their estimates being 0.075 meters. The error in the

NLoS paths is higher, with a median error of 1.05 meters.

However, this will not affect the localization performance

between the two since localization only uses the LoS path.

This microbenchmark demonstrates that ISLA’s approach of

applying the filter and subsampling in digital is equivalent

to using the fabricated filter from a localization perspective,

and that the results shown in this paper are representative of a

fully implemented system.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1021

1022 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Cell Mapper cell tower locations. https://www.

cellmapper.net. Accessed: Mon, Sep 13, 2021.

[2] 3GPP. Study on narrow-band internet of things (NB-

IoT) / enhanced machine type communication (eMTC)

support for non-terrestrial networks (NTN). Technical

Report (TR) 36.763, 3rd Generation Partnership Project

(3GPP), 06 2021.

[3] Godfrey Anuga Akpakwu, Bruno J Silva, Gerhard P

Hancke, and Adnan M Abu-Mahfouz. A survey on

5g networks for the internet of things: Communication

technologies and challenges. IEEE access, 6:3619–3647,

2017.

[4] Heba Aly and Moustafa Youssef. Dejavu: an accurate

energy-efficient outdoor localization system. In Pro-

ceedings of the 21st ACM SIGSPATIAL International

Conference on Advances in Geographic Information

Systems, pages 154–163, 2013.

[5] Atul Bansal, Akshay Gadre, Vaibhav Singh, Anthony

Rowe, Bob Iannucci, and Swarun Kumar. Owll: Ac-

curate lora localization using the tv whitespaces. In

Proceedings of the 20th International Conference on

Information Processing in Sensor Networks (co-located

with CPS-IoT Week 2021), pages 148–162, 2021.

[6] Sujittra Boonsriwai and Anya Apavatjrut. Indoor wifi lo-

calization on mobile devices. In 2013 10th International

Conference on Electrical Engineering/Electronics, Com-

puter, Telecommunications and Information Technology,

pages 1–5. IEEE, 2013.

[7] Mathieu Bouet and Aldri L Dos Santos. Rfid tags: Posi-

tioning principles and localization techniques. In 2008

1st IFIP Wireless Days, pages 1–5. IEEE, 2008.

[8] Stephen Boyd, Stephen P Boyd, and Lieven Vanden-

berghe. Convex optimization. Cambridge university

press, 2004.

[9] Rizanne Elbakly and Moustafa Youssef. Crescendo: An

infrastructure-free ubiquitous cellular network-based lo-

calization system. In 2019 IEEE Wireless Communica-

tions and Networking Conference (WCNC), pages 1–6.

IEEE, 2019.

[10] Sinan Gezici and Zafer Sahinoglu. Uwb geolocation

techniques for ieee 802.15.4a personal area networks.

MERL Technical report, 2004.

[11] Songbin Gong, Yong-Ha Song, Tomas Manzaneque,

Ruochen Lu, Yansong Yang, and Ali Kourani. Lithium

niobate mems devices and subsystems for radio fre-

quency signal processing. In 2017 IEEE 60th Inter-

national Midwest Symposium on Circuits and Systems

(MWSCAS), pages 45–48. IEEE, 2017.

[12] Junfeng Guan, Jitian Zhang, Ruochen Lu, Hyungjoo Seo,

Jin Zhou, Songbin Gong, and Haitham Hassanieh. Effi-

cient wideband spectrum sensing using MEMS acoustic

resonators. In 18th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 21), pages

809–825. USENIX Association, April 2021.

[13] Fredrik Gustafsson and Fredrik Gunnarsson. Mobile

positioning using wireless networks: possibilities and

fundamental limitations based on available wireless net-

work measurements. IEEE Signal processing magazine,

22(4):41–53, 2005.

[14] Ismail Guvenc and Chia-Chin Chong. A survey on toa

based wireless localization and nlos mitigation tech-

niques. IEEE Communications Surveys & Tutorials,

11(3):107–124, 2009.

[15] Yixue Hao, Min Chen, Long Hu, Jeungeun Song, Mojca

Volk, and Iztok Humar. Wireless fractal ultra-dense

cellular networks. Sensors, 17(4):841, 2017.

[16] Haitham Hassanieh, Lixin Shi, Omid Abari, Ezzeldin

Hamed, and Dina Katabi. Ghz-wide sensing and de-

coding using the sparse fourier transform. In IEEE

INFOCOM 2014 - IEEE Conference on Computer Com-

munications, pages 2256–2264, 2014.

[17] Mohamed Ibrahim and Moustafa Youssef. Cellsense:

An accurate energy-efficient gsm positioning system.

IEEE Transactions on Vehicular Technology, 61(1):286–

296, 2011.

[18] Mohamed Ibrahim and Moustafa Youssef. A hidden

markov model for localization using low-end gsm cell

phones. In 2011 IEEE International Conference on

Communications (ICC), pages 1–5. IEEE, 2011.

[19] Vikram Iyer, Rajalakshmi Nandakumar, Anran Wang,

Sawyer B. Fuller, and Shyamnath Gollakota. Living iot:

A flying wireless platform on live insects. In The 25th

Annual International Conference on Mobile Computing

and Networking, MobiCom ’19, 2019.

[20] Michio Kadota, Shuji Tanaka, Yasuhiro Kuratani, and

Tetsuya Kimura. Ultrawide band ladder filter using SH0

plate wave in thin LiNbO3 plate and its application. In

2014 IEEE International Ultrasonics Symposium, pages

2031–2034, 2014.

[21] Manikanta Kotaru, Kiran Joshi, Dinesh Bharadia, and

Sachin Katti. Spotfi: Decimeter level localization using

wifi. In Proceedings of the 2015 ACM Conference on

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1023

Special Interest Group on Data Communication, pages

269–282, 2015.

[22] Somansh Kumar and Ashish Jasuja. Air quality moni-

toring system based on IoT using raspberry pi. In 2017

International Conference on Computing, Communica-

tion and Automation (ICCCA), pages 1341–1346. IEEE,

2017.

[23] Ruochen Lu, Tomás Manzaneque, Yansong Yang, Jin

Zhou, Haitham Hassanieh, and Songbin Gong. Rf filters

with periodic passbands for sparse fourier transform-

based spectrum sensing. Journal of Microelectrome-

chanical Systems, 27(5):931–944, 2018.

[24] E Manavalan and K Jayakrishna. A review of internet

of things (IoT) embedded sustainable supply chain for

industry 4.0 requirements. Computers & Industrial

Engineering, 127:925–953, 2019.

[25] Andreas Marcaletti, Maurizio Rea, Domenico Giustini-

ano, Vincent Lenders, and Aymen Fakhreddine. Filtering

noisy 802.11 time-of-flight ranging measurements. In

Proceedings of the 10th ACM International on Confer-

ence on emerging Networking Experiments and Tech-

nologies, pages 13–20, 2014.

[26] Saman Naderiparizi, Yi Zhao, James Youngquist, Alan-

son P Sample, and Joshua R Smith. Self-localizing

battery-free cameras. In Proceedings of the 2015 ACM

International Joint Conference on Pervasive and Ubiq-

uitous Computing, pages 445–449, 2015.

[27] Rajalakshmi Nandakumar, Vikram Iyer, and Shyamnath

Gollakota. 3d localization for sub-centimeter sized de-

vices. In Proceedings of the 16th ACM Conference on

Embedded Networked Sensor Systems, pages 108–119,

2018.

[28] Aymen Omri, Mohammed Shaqfeh, Abdelmohsen Ali,

and Hussein Alnuweiri. Synchronization procedure in

5g nr systems. IEEE Access, 7:41286–41295, 2019.

[29] Jeongyeup Paek, Kyu-Han Kim, Jatinder P Singh, and

Ramesh Govindan. Energy-efficient positioning for

smartphones using cell-id sequence matching. In Pro-

ceedings of the 9th international conference on Mo-

bile systems, applications, and services, pages 293–306,

2011.

[30] Joan Palacios, Guillermo Bielsa, Paolo Casari, and Joerg

Widmer. Communication-driven localization and map-

ping for millimeter wave networks. In IEEE INFOCOM

2018-IEEE Conference on Computer Communications,

pages 2402–2410. IEEE, 2018.

[31] Joan Palacios, Paolo Casari, and Joerg Widmer. Jade:

Zero-knowledge device localization and environment

mapping for millimeter wave systems. In IEEE INFO-

COM 2017-IEEE Conference on Computer Communi-

cations, pages 1–9. IEEE, 2017.

[32] Anshul Rai, Krishna Kant Chintalapudi, Venkata N Pad-

manabhan, and Rijurekha Sen. Zee: Zero-effort crowd-

sourcing for indoor localization. In Proceedings of the

18th annual international conference on Mobile comput-

ing and networking, pages 293–304, 2012.

[33] Hamada Rizk, Ahmed Shokry, and Moustafa Youssef.

Effectiveness of data augmentation in cellular-based

localization using deep learning. In 2019 IEEE Wireless

Communications and Networking Conference (WCNC),

pages 1–6. IEEE, 2019.

[34] Hazem Sallouha, Alessandro Chiumento, and Sofie

Pollin. Localization in long-range ultra narrow band IoT

networks using rssi. In 2017 IEEE International Con-

ference on Communications (ICC), pages 1–6. IEEE,

2017.

[35] Ahmed Shokry, Marwan Torki, and Moustafa Youssef.

Deeploc: a ubiquitous accurate and low-overhead out-

door cellular localization system. In Proceedings of

the 26th ACM SIGSPATIAL International Conference

on Advances in Geographic Information Systems, pages

339–348, 2018.

[36] Y. Song and S. Gong. Wideband spurious-free lithium

niobate rf-mems filters. Journal of Microelectromechan-

ical Systems, 26(4):820–828, 2017.

[37] Parvathanathan Subrahmanya and Amir Farajidana. 5g

and beyond: Physical layer guiding principles and re-

alization. Journal of the Indian Institute of Science,

100:263–279, 2020.

[38] Adam Thierer and Andrea Castillo. Projecting the

growth and economic impact of the internet of things.

George Mason University, Mercatus Center, June, 15,

2015.

[39] Deepak Vasisht, Zerina Kapetanovic, Jongho Won,

Xinxin Jin, Ranveer Chandra, Sudipta Sinha, Ashish

Kapoor, Madhusudhan Sudarshan, and Sean Stratman.

Farmbeats: An iot platform for data-driven agriculture.

In 14th USENIX Symposium on Networked Systems De-

sign and Implementation (NSDI 17), pages 515–529,

2017.

[40] Deepak Vasisht, Swarun Kumar, and Dina Katabi.

Decimeter-level localization with a single wifi access

point. In 13th USENIX Symposium on Networked Sys-

tems Design and Implementation (NSDI 16), pages 165–

178, 2016.

1024 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[41] Jue Wang and Dina Katabi. Dude, where’s my card?

rfid positioning that works with multipath and non-line

of sight. In Proceedings of the ACM SIGCOMM 2013

conference on SIGCOMM, pages 51–62, 2013.

[42] Fuxi Wen, Henk Wymeersch, Bile Peng, Wee Peng Tay,

Hing Cheung So, and Diange Yang. A survey on 5g

massive mimo localization. Digital Signal Processing,

94:21–28, 2019.

[43] Yaxiong Xie, Jie Xiong, Mo Li, and Kyle Jamieson.

md-track: Leveraging multi-dimensionality for passive

indoor wi-fi tracking. In The 25th Annual Interna-

tional Conference on Mobile Computing and Network-

ing, pages 1–16, 2019.

[44] Jie Xiong and Kyle Jamieson. Arraytrack: A fine-

grained indoor location system. In 10th USENIX Sympo-

sium on Networked Systems Design and Implementation

(NSDI 13), pages 71–84, 2013.

[45] Jie Xiong, Karthikeyan Sundaresan, and Kyle Jamieson.

Tonetrack: Leveraging frequency-agile radios for time-

based indoor wireless localization. In Proceedings of

the 21st Annual International Conference on Mobile

Computing and Networking, pages 537–549, 2015.

[46] Chouchang Yang and Huai-Rong Shao. Wifi-based

indoor positioning. IEEE Communications Magazine,

53(3):150–157, 2015.

[47] Chaoyun Zhang, Paul Patras, and Hamed Haddadi. Deep

learning in mobile and wireless networking: A survey.

IEEE Communications surveys & tutorials, 21(3):2224–

2287, 2019.

[48] C. Zuo, N. Sinha, and G. Piazza. Very high frequency

channel-select mems filters based on self-coupled piezo-

electric AlN contour-mode resonators. Sensors and

Actuators A: Physical, 160(1):132 – 140, 2010.

A Proofs

Here we re-state the lemmas and provide proofs.

Lemma 5.1 For a sub-sampling factor P and N OFDM sub-

carriers, the complex valued scaling factors for each subcar-

rier will be preserved upon aliasing if N = z×P, for some

integer z, given the aliasing results in no collisions.

Proof of lemma 5.1: Assume that x[n] is a discrete signal

from 0 to N −1, and we are sub-sampling (or decimating) it

by a factor of P, meaning y[n] = X [n×P] for some integer P.

Then the Discrete Fourier Transform of y[n], denoted by Ŷ [k]

is

Ŷ [k] =
⌊N/P⌋−1

∑
n=0

x[nP]e
− j2 2π

⌊N/P⌋
kn

=
1

P

N−1

∑
n=0

x[n]
P−1

∑
m=0

e j 2π
P mne

− j2 2π
⌊N/P⌋

kn
P

=
1

P

P−1

∑
m=0

(N−1

∑
n=0

x[n]e
− j(2π

N n)(k
N/P

⌊N/P⌋
−N

P m))
.

Now if P divides N, in other words N = Pz for some integer

z, the above simplifies to

Ŷ [k] =
1

P

P−1

∑
m=0

(N−1

∑
n=0

x[n]e− j(2π
N n)(k−zm)

)

=
1

P

P−1

∑
m=0

X̂ [k− zm],

where X̂ is the DFT of x[n]. This proves that, as long as there

is no collision, meaning that there is at most one index m in

the above equation for which X̂ [k−zm] 6= 0, then the complex

values of X̂ [k] will be fully preserved upon sub-sampling. This

proves the lemma.

We also point out that if P does not divide N, then the

complex values are not preserved. Specifically, if N/P is not

a proper integer, Ŷ [k] will be in terms of X̂ [k N/P

⌊N/P⌋ −
N
P

m]

where inside the argument, k
N/P

⌊N/P⌋ −
N
P

m, is not necessarily

an integer. As a result, the original information of X̂ [k] is never

repeated in any of the Ŷ indices. In fact, Ŷ would closely relate

to an interpolated version of X̂ with the Dirichlet kernel.

Lemma 5.2 Consider an OFDM symbol with N frequency

subcarriers, indexed as { f −N
2
, . . . ,0, . . . , f N

2 −1} with inter-

frequency spacing of ∆ f , and a narrowband receiver that

subsamples by P×. If P2 divides N, then the ideal filter param-

eters that meet all three requirements are: (1) f 0
M = f −N

2
, (2)

(
N
P2 −1

)
×∆ f < ∆S < N

P2 ×∆ f , and (3) ∆F = N
P
(1+ 1

P
)×∆ f .

Proof of Lemma 5.2: First, we show that no two frequencies

collide after aliasing. Let q = N
P

, and assume that two frequen-

cies fα and fβ collide. Let fα be k-th subcarrier (for 0≤ k <P)

covered at the i-th passband (0 ≤ i <
⌈

∆S
∆ f

⌉
), and let fβ have

k′ and i′ as corresponding indices. To collide after aliasing,

fα − fβ = (k− k′)∆F +(i− i′)∆ f must be an integer multi-

ple of q∆ f . However, |k− k′| ≤ P−1 and |i− i′|< N
P2 . Thus

| fα− fβ|

∆ f
< (P−1

P
+ 1

P
)q= q, meaning we must have fα− fβ = 0,

proving the first design requirement. Second, we note that

P passbands that do not overlap (since ∆S < ∆F), and each

passband covers exactly N
P2 subcarriers. We therefore have

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1025

1026 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Accelerating Collective Communication in Data Parallel Training
across Deep Learning Frameworks

Joshua Romero1, Junqi Yin2, Nouamane Laanait2∗, Bing Xie2, M. Todd Young2, Sean Treichler1,
Vitalii Starchenko2, Albina Borisevich2, Alex Sergeev3†, Michael Matheson2

1NVIDIA, Inc. 2Oak Ridge National Laboratory 3Carbon Robotics

Abstract
This work develops new techniques within Horovod, a generic
communication library supporting data parallel training across
deep learning frameworks. In particular, we improve the
Horovod control plane by implementing a new coordina-
tion scheme that takes advantage of the characteristics of
the typical data parallel training paradigm, namely the re-
peated execution of collectives on the gradients of a fixed set
of tensors. Using a caching strategy, we execute Horovod’s
existing coordinator-worker logic only once during a typical
training run, replacing it with a more efficient decentralized
orchestration strategy using the cached data and a global
intersection of a bitvector for the remaining training dura-
tion. Next, we introduce a feature for end users to explicitly
group collective operations, enabling finer grained control
over the communication buffer sizes. To evaluate our pro-
posed strategies, we conduct experiments on a world-class
supercomputer — Summit. We compare our proposals to
Horovod’s original design and observe 2× performance im-
provement at a scale of 6000 GPUs; we also compare them
against tf.distribute and torch.DDP and achieve 12% better
and comparable performance, respectively, using up to 1536
GPUs; we compare our solution against BytePS in typical
HPC settings and achieve about 20% better performance on
a scale of 768 GPUs. Finally, we test our strategies on a sci-
entific application (STEMDL) using up to 27,600 GPUs (the
entire Summit) and show that we achieve a near-linear scaling
of 0.93 with a sustained performance of 1.54 exaflops (with
standard error +- 0.02) in FP16 precision.

1 Introduction

The recent successes of Deep Neural Networks (DNNs) have
encouraged continued investment across industries and do-
main sciences. Ranging from the traditional AI (e.g., im-
age processing, speech recognition), to pharmaceutical and
∗Nouamane Laanait conducted this research when he was with Oak Ridge

National Laboratory.
†Alex Sergeev conducted this research when he was with Uber, Inc.

biomedical sciences (e.g., drug discovery), and to fusion, com-
bustion and nuclear energy (e.g., disruption predictor, nuclear
power plant) [29–34], more and more applications are actively
exploiting ever-larger DNNs for production use.

With the growing applications of ever-larger DNNs, data
parallelism in DNN training faces unprecedented challenges
when synchronizing gradients1 throughout distributed train-
ing runs. Deep learning (DL) frameworks, such as PyTorch [5]
and TensorFlow [7], can exploit data parallelism for DNN
training. In such a training run, an application creates multi-
ple replicas of a model and distributes the replicas among a
group of accelerators (e.g., CPUs, GPUs, TPUs, etc). Each
accelerator executes on a different portion of training data
across a number of iterations; at each iteration, it performs
forward/backward pass computations independently, but syn-
chronizes gradients (typically via global averaging) among
the accelerators before applying weight updates (§2.1). In par-
ticular, accelerators synchronize tensors (multi-dimensional
arrays) of gradients for the same set of parameters to ensure a
globally consistent state for the model replicas.

This work advances collective communication in data par-
allel training. We propose several enhancements to Horovod
[3] [25], a generic communication library designed to be in-
dependent to the framework runtimes, enabling its use across
numerous popular DL frameworks with the same underlying
backend implementation. Our ideas were motivated by two
observations on Horovod. First, we observed that Horovod’s
core design is not scalable (see Figure 3) as it relies on a
coordinator-worker control plane to orchestrate collective op-
erations. At larger scales, this design choice leads to the single
coordinator becoming overwhelmed and leaves the applica-
tion runtime dominated by the orchestration process. Second,
we found that Horovod’s buffering mechanism (Tensor Fu-
sion) fails to reliably generate optimal buffer sizes for efficient
network bandwidth utilization (§2.2).

1Centralized training (also called synchronous training) synchronizes
gradients among accelerators; decentralized training (asynchronous training)
synchronizes parameters [13] [14] [21]. This work optimizes centralized
training and discusses gradient synchronization accordingly.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1027

To address these inefficiencies, we improve the control
plane with a new coordination scheme that takes advantage
of characteristics of a typical data parallel training paradigm,
namely the repeated execution of collectives on a fixed set
of gradients (§2.1). Using a caching strategy, we execute
Horovod’s existing coordinator-worker logic only once during
a training run, replacing it with a more efficient decentralized
orchestration strategy using a globally intersected bitvector
for the remaining training duration (§3.1). Moreover, we in-
troduce a feature for end users to explicitly group collective
operations within Horovod, enabling finer grained control
over the communication buffer sizes used for reductions.

While the implementation details vary, most DL-based com-
munication libraries use similar design principles to optimize
the performance of gradient synchronization. First, these li-
braries will employ mechanisms to facilitate overlapping of
gradient synchronization and backward pass. That is, rather
than waiting for gradients of all parameters to be computed
and then synchronizing them across accelerators altogether at
once, gradients will be synchronized actively as they are com-
puted during the backward pass. Second, rather than launching
a synchronization operator (e.g., AllReduce) for each gradient
individually, the libraries employ bucketing/packing/fusion
strategies (e.g., torch.DDP [18], tf.distribute [6], Horovod)
to aggregate the gradients of multiple parameters and execute
AllReduce on larger communication buffers for improved
bandwidth utilization.

The contributions described in this work are mainly en-
hancements specific to Horovod, overcoming inefficiencies
in its framework-agnostic design and original coordinator-
worker strategy. The framework native communication li-
braries, like tf.distribute and torch.DDP, are closely integrated
within their respective frameworks with access to internal
details. With access to these details, the implementation of
well-organized and performant communication and similar
advanced features like grouping are simpler in these libraries.
While the implementation details in this paper are Horovod
specific, the proposed grouping technique is generally appli-
cable to any other collective communication libraries.
In particular, we summarize our contributions as follows:
1. We implement a light weight decentralized coordination
strategy by utilizing a response cache to enable Horovod to
reuse coordination-related information collected at applica-
tion runtime, accelerating the orchestration process.
2. We enable grouping to provide end users with explicit
controls over tensor fusion in Horovod.
3. Our developments are incorporated in Horovod and pub-
licly available in Horovod v0.21.0.
4. We conduct experiments to evaluate our solution on a world-
class supercomputer — Summit. The results show that: 1)
our solution outperforms Horovod’s existing strategies across
scales consistently. 2) Compared to the framework native com-
munication libraries such like tf.distribute and torch.DDP, we
achieve comparable and/or better performance across scales

consistently. Compared to a PS (parameter server)-based com-
munication library BytePS [24], we achieve 20% better per-
formance using up to 768 GPUs. 3) we further evaluate our
solution on a scale up to 27,600 GPUs (the entire Summit)
and show that we achieve near-linear scaling of 0.93 with a
sustained performance of 1.54 exaflops (with standard error
+- 0.02) in FP16 precision.

2 Background and Motivation

2.1 Data Parallelism in DNN Training
For data parallelism in distributed DNN training, a typical ap-
plication run usually executes an iterative learning algorithm
(e.g., SGD) among a number of GPUs; each GPU works on
an identical replica and the same set of parameters of a DNN
model. Here, a parameter is the bias or weight of a DNN
layer; the value of a parameter or the value of a parameter’s
gradient is a multi-dimensional array, referred to as a tensor.
In the run, a training dataset is partitioned into one or more
equal-sized batches; each batch is processed on a different
GPU. After a run starts, the model replicas, parameters, and
the data structures of tensors are all fixed and determined.

During an iteration, each GPU updates parameters of a
model replica by the following computational procedure:
1. the forward pass to compute loss. 2. the backward pass
to compute gradients of the parameters. 3. the optimization
step to update the parameters. In order to ensure model repli-
cas are updated identically and remain in a globally consistent
state, the gradients between GPUs are synchronized via av-
eraging before updating parameters; this is referred to as
centralized learning. Decentralized learning [13] [14] [21]
maintains local consistency based on communication graphs 2

and synchronizes parameters. Moreover, for both centralized
and decentralized learning, GPUs synchronize the same set of
parameters/gradients across iterations. In this work, we focus
on centralized learning and discuss collective communication
in gradient synchronization/reduction.
Observation 1 . For a DNN training run on a DL frame-
work, the model replicas and parameters are all fixed. Across
iterations in the run, GPUs repeatedly synchronize the same
set of tensors for parameters/gradients.

2.2 Communication Libraries for Gradient
Synchronization

2.2.1 Framework-native Libraries

For data parallel training, the key communication operations
that occurs are AllReduce operations which average gradients
among GPUs. Within an iteration, the framework processes

2In decentralized learning, GPUs are structured into a communication
graph (e.g., ring or torus); each GPU only synchronizes among its local
neighbors on the graph.

1028 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

on GPUs each generate a set of gradients during the backward
pass that must be globally reduced before being used to update
the model parameters.

DL frameworks typically use dependency graphs to sched-
ule compute operations, the use of which may result in non-
deterministic ordering of operations. This is because in gen-
eral, the order of operations through the compute graph that
satisfies all dependencies is not unique. As a result, the or-
der of operations executed can vary across framework pro-
cesses within a single iteration, or even between iterations on
a single process. This leads to problems in handling gradient
communication between processes, as the operations generat-
ing gradients may occur in varied orders across processes. If
each framework process naively executes a blocking AllRe-
duce on the gradients in the order they are produced locally,
mismatches may arise leading to either deadlock or data cor-
ruption. A communication library for DL must be able to
manage these non-deterministic ordering issues to ensure that
AllReduce operations are executed between processes in a
globally consistent order.

The framework-native communication libraries (e.g.,
tf.distribute and torch.DDP) are designed to be closely inte-
grated within the framework and have direct access to internal
details, such as the model definition and expected set of gradi-
ents to be produced each iteration. Access to this information
enables these libraries to directly discern the communication
required during an iteration and more easily implement a per-
formant communication schedule. For example, torch.DDP is
a wrapper around a model in PyTorch, and utilizes the informa-
tion contained in the model about gradients to determine how
to schedule AllReduce operations during an iteration. While
access to this information can simplify the implementation of
these communication libraries, it ties their implementations
strictly to the frameworks they were designed to support.

2.2.2 Framework-agnostic Libraries

In contrast to the framework-native communication libraries,
a framework-agnostic library avoids any reliance on internal
framework details and makes communication scheduling de-
cisions based on information deduced during runtime. This
design choice enables the library to operate across numerous
frameworks, but the lack of access to internal information
presents unique challenges. This section discusses the design
of Horovod, a framework-agnostic communication library.

Horovod is a generic communication library developed to
execute collective communication in data parallel training
on GPUs, CPUs and TPUs, and with support for various DL
frameworks. It serves as a high-level communication library
that leaves network routing details (e.g., network reordering)
handled by lower-level libraries, such as MPI, etc. Without
loss of generality, this section discusses how Horovod inte-
grates with MPI and TensorFlow on GPUs. Assuming this
scenario, a distributed training run has N identical model repli-

Coordinator

1

2

3 3 3 3

Control flow from workers to coordinator
Control flow from coordinator to workers

1 2 3 Steps to enforce a globally consistent order
for the computed gradients across workers

Tensor queue Fusion buffer

Worker Worker Worker Worker

Figure 1: Coordinator-worker control model in Horovod’s
original design. The coordination progresses in three steps
(see details in §2.2.2): First, the coordinator gathers the lists of
requests from all workers; Second, the coordinator processes
the request lists, and then generates and broadcasts a response
list when observing one or more common requests from all
workers; Third, after receiving the response list, each worker
proceeds to execute collective operations.

cas, and is executed on N GPUs managed by Horovod with
MPI and TensorFlow. In the run, each GPU serves as both an
MPI rank and a TensorFlow process3, which conducts com-
putations for a model replica across iterations, with Horovod
providing communication routines to synchronize gradients
across TensorFlow processes.

This work introduces new techniques to Horovod after
v0.15.2. In this section, we summarize the existing strategies
based on v0.15.2. We use the terms rank, process, and GPU
to refer to MPI rank, TensorFlow process, and their hosting
GPU in turn, and use the terms coordinator and worker to
refer to the Horovod threads spawned from the processes.

Similar to the framework-native libraries, Horovod must
deal with the non-deterministic ordering of computations (dis-
cussed in §2.2.1). As it is agnostic to frameworks and lacking
the knowledge of framework internal details, Horovod’s de-
sign uses a control plane to resolve the non-deterministic
ordering issue, where a coordinator-worker communication
model is adopted to orchestrate collective communication and
ensure a globally consistent order of execution.

Figure 1 presents a simple diagram of Horovod’s control
plane, with four threads each launched in a DL framework
process. Particularly, the thread in Rank 0 serves as both
the coordinator and a worker, and the other threads each
serve as a different worker on a different GPU. During the
course of a training run, the coordinator and workers execute
the control logic periodically, with each execution referred

3For Horovod with TensorFlow, it is possible to use multi-GPUs per
rank. But in production use, most users let each rank use a different GPU.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1029

to as a cycle. In Horovod, the time between two sequential
cycles is a configurable parameter with a default setting of 1
ms. To ensure synchronous cycles across Horovod threads,
the communication operations in control plane (e.g., gather,
broadcast) are blocking.

When a cycle starts, the coordinator first gathers lists of
requests from all workers. Each request contains the metadata
(e.g., tensor name, operation) that defines a specific collective
operation on a specific tensor requested to be executed by
the framework. The requests are collected from the worker’s
local tensor queue and are structured as a request list.

Next, the coordinator processes the request lists and counts
the submissions of each request (identified by tensor name)
from workers. When the coordinator observes that a common
request has been submitted by all workers, it prepares that
request for execution by generating a corresponding response.
The coordinator generates a list of responses and broadcasts
the list to all workers. Here, each response contains the meta-
data (e.g., tensor names, data type, collective operation) that is
used by the Horovod backend to execute a collective operation
(e.g., AllReduce). Optionally, before broadcasting, the coordi-
nator will preprocess the response list, aggregating multiple
compatible responses into larger fused responses, a process
referred to as Tensor Fusion in Horovod documentation.

After receiving the response list, each worker proceeds to
execute collective operations, one operation per response in
the received response list. The portion of the Horovod back-
end executing collective operations is referred to as the data
plane. For each response, a worker will access required in-
put tensor data from the framework, execute the requested
collective operation, and populate the output tensors for the
framework’s continued use. A key characteristic of this de-
sign is that the order of execution for collective operations
is defined by the order of responses in the list produced by
the coordinator. As such, a globally consistent ordering of
collective operation execution is achieved across workers.

At a high-level, Horovod’s design can be described as a
set of mailboxes, where each worker is free to submit request
for collectives in any order to their assigned mailbox, and
eventually retrieve the desired output. The control plane is
responsible for coordinating these requests across mailboxes,
ensuring that only requests submitted by all workers are ex-
ecuted and are executed in a globally consistent order. One
observation from this analogy is that Horovod’s design is in-
herently unaware of any aspects of DL training, in particular
that in typical DL workloads, a fixed set of gradient tensors
will be repeatedly AllReduced during the course of a train-
ing run (discussed in §2.1). As a result, Horovod’s design
unnecessarily communicates redundant information to the
coordinator at every iteration, leading to poor scalability.

Beyond coordination alone, tensor fusion may cause ineffi-
ciency in the data plane. Ideally, the tensor fusion process will
generate well balanced fused responses throughout training,
yielding larger sized communication buffers for improved

Figure 2: Histogram of AllReduce message size in Horovod’s
original design of Tensor Fusion. We present the results of a
training run of ResNet50 with 96 GPUs on Summit (§4.1).

network utilization. In practice, as the tensor fusion is closely
tied to cycle that runs at an arbitrary user-defined tic rate, the
resulting communication buffer sizes can be highly dynamic
and varied, even when comparing iteration to iteration in a
run. Figure 2 presents the fused AllReduce message sizes
on ResNet50 as an example to illustrate the performance of
tensor fusion. In summary, it is possible to have the Horovod
cycles occur at favorable times during the training iteration,
where the collective responses are well distributed across
the Horovod cycles running during the iteration, resulting
in correspondingly well-balanced fused communication mes-
sage sizes. On the other hand, the Horovod cycles can occur
at unfavorable times during the iteration, with some cycles
completing with a few or even just one available collective
response, yielding less efficient communication on smaller
buffers. In the worst case, a single trailing gradient tensor
for the iteration can be missed by all previous cycles run
during the iteration, inducing additional latency equal to the
user-defined cycle time, just to reduce a single gradient tensor.

We report the detailed information about the original de-
sign of Horovod’s control plane in the supplementary materi-
als (Section 1), including pseudo code listings for Horovod
coordinator-worker coordination logic and Horovod cycle,
and the data structures for request list and response list.
Observation 2 . The dynamic nature of tensor fusion can fail
to generate buffer sizes for efficient network utilization. Thus,
we are motivated to introduce a more explicit and strict control
mechanism for tensor fusion that can improve performance.

2.2.3 Hierarchical Approach in Horovod

Kurth et al. [15] were the first to observe the scaling issue
in Horovod’s control plane. In particular, the coordinator-
worker coordination strategy was found to be highly ineffi-
cient. When increasing the number of workers, the time cost
of the communication and processing grows linearly since
the coordinator needs to communicate/process the request list

1030 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

from each worker. Especially at large scale, the cost of this co-
ordination strategy was found to quickly dominate the training
runtime. Their proposed solution was to introduce a hierar-
chical tree-based variant of the original coordinator-worker
control model, using a hierarchy of coordinators splitting up
the coordination tasks. It is clear that this hierarchical con-
trol strategy outperforms the original control plane with a
logarithmic complexity, but at the same time, it suffers from
the same issue as the original strategy does: the hierarchical
coordination strategy redundantly communicates metadata
for repeated operations across iterations in a training run.

Beyond the hierarchical coordination strategy, the authors
also introduced a hybrid/hierarchical AllReduce in Horovod’s
data plane. Even with these improvements, their approach was
not able to achieve efficient scaling with Horovod, requiring
the introduction of a gradient lag. With gradient lag enabled,
the gradients of a previous iteration are used to update weights
in the current step, providing a longer window for overlapping
the slower communication at scale with computation.

We present the hierarchical control plane in detail in the
supplemental materials (Section 1) and discuss the perfor-
mance of the hierarchical approach in Section 2.3.
Observation 3 . Although existing Horovod solutions adopt
different coordination strategies, they both fail to take ad-
vantage of characteristics of DL workloads and repeat the
same metadata communications in the control plane across
iterations in a training run.

2.3 Discussions on Horovod Performance

We focus on understanding the performance of ex-
isting Horovod solutions, including Horovod_MPI,
Horovod_NCCL, and the hierarchical AllReduce
(Hierarchical_AllReduce). Here, Horovod_MPI refers
to the Horovod implementation with MPI for both the
coordinator-worker communication in the control plane and
AllReduce in the data plane. Horovod_NCCL refers to the im-
plementation that uses MPI for control plane communication
and NCCL for AllReduce in the data plane. In particular,
NCCL v2.4.0 was used in this experiment, with tree-based
communication algorithm options available along with
existing systolic ring algorithm. Hierarchical_AllReduce
represents the solution using MPI for the control plane
communication and MPI+NCCL for the AllReduce in the
data plane. In all three solutions, the coordinator-worker
communication uses the control plane as shown in Figure 1.
Moreover, all these solutions are available in Horovod [3].

We conducted experiments on STEMDL (See supplemen-
tary materials Section 3), a scientific application developed
to solve a long-standing inverse problem on scanning trans-
mission electron micro-scopic (STEM) data by employing
deep learning. The DNN model in STEMDL is a fully-
convolutional dense neural network with 220 million parame-
ters; each GPU generates/reduces 880MB of gradients at an

iteration. We ran the experiments on Summit supercomputer
(§4.1), where each Summit node contains 6 GPUs.

We first consider the scalability results, shown in the left
subfigure of Figure 3. It is clear that, after introducing the
tree-based communication algorithms, Horovod_NCCL is able
to deliver the best performance for all scales. When we in-
crease the number of GPUs, Horovod_NCCL expands its lead
in system throughput. For example, when using 6000 GPUs, it
outperforms Hierarchical_AllReduce and Horovod_MPI
by 3.2× and 5.4×, respectively.

Figure 3 (right subfigure) also reports the GPU utilization
of the Horovod solutions across scales. The results show that,
across all tested configurations, the GPU utilization is below
55%. When increasing the number of GPUs, the GPU uti-
lization decreases progressively. We observed a much lower
GPU utilization with 6000 GPUs (see Figure 6). This in-
dicates that, although the NCCL-based AllReduce delivers
good performance, the entire gradient reduction procedure in
Horovod (e.g., coordination and execution) is highly ineffi-
cient. It leaves GPU resources underutilized and compromises
system throughput. In this work, we argue that the inefficiency
originates from both the control plane and AllReduce and in-
troduce techniques (discussed in §3) to overcome these issues.

We limit the evaluation on Horovod_MPI to 1536 GPUs as
we see noticeably poor performance. We skip the evaluations
of the hierarchical tree-based coordinator-worker communi-
cation (Figure 1 in supplementary materials) and the gradient
lag proposed in the hierarchical approach (§2.2.3), as they
are currently neither included as part of Horovod nor publicly
available. To summarize, Kurth et al. reported in [15] that, the
entire hierarchical approach obtained the parallel efficiencies
of ∼ 60% when using fully synchronous gradient reduction,
only achieving above 90% on the Summit supercomputer
with gradient lag enabled. In particular, researchers showed
that gradient lag sometimes yields low training accuracy, and
concluded that, without carefully tuning the related hyperpa-
rameters, this type of techniques is not generally applicable to
DNN training [9,10,20]. Moreover, we show that our solution
obtains up to 93% of parallel efficiency on Summit using
a fully synchronous gradient reduction (discussed in §4.4),
1.5× better than the performance of the hierarchical approach
without gradient lag reported in [15].

3 Boosting Collective Communication in DNN
Training with Caching and Grouping

This work proposes to advance collective communication
in centralized learning across various DL frameworks. We
introduce new techniques to Horovod to improve its scala-
bility and efficiency in both the control plane and the data
plane. For the control plane, we develop a strategy to record
the coordination information on the repeated requests for the
same collective operations on the same parameters across

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1031

Figure 3: Performance and GPU utilization of existing
Horovod strategies on STEMDL workload.

iterations in a training run (discussed in §2.1). In particular,
we develop a light weight decentralized coordination strat-
egy by utilizing a response cache. This cache introduces a
means for Horovod to store the metadata about the repeated
collective requests at each worker locally and bypass the re-
dundant coordinator-worker communication entirely after the
cache is populated. Moreover, we introduce grouping as a
feature to Horovod’s data plane. With grouping enabled, a
user can request grouped collective operations for specific
tensor groups, enforcing explicit control over Horovod’s ten-
sor fusion. We later show in experiments (§4) that, these two
techniques can lead to significant performance improvement
and obtain near-linear scaling in the production runs on a
world-class supercomputer. Our techniques are adopted by
Horovod and are publicly accessible in v.0.21.0.

In general, our proposals are built within Horovod’s ex-
isting control logic (discussed in §2.2.2): we execute cycles
to coordinate collective communication in DNN training;
in our system, blocking communications are used to ensure
synchronous cycles across workers and the network routing
details (e.g., network reordering) are managed by lower-level
communication libraries, such as MPI. Additionally, our mod-
ifications support both MPI and Gloo [2] libraries for control
plane communication. We discuss the performance evaluation
using MPI for control plane communication and either MPI
or NCCL for data plane communication in Section 4.

3.1 Orchestrating Collective Communication
with Caching

In contrast to the framework-native communication libraries
like tf.distribute or torch.DDP, Horovod is designed to be
generic. It utilizes lightweight bindings into frameworks to
allow the Horovod runtime to process gradient reduction, and
has no access to any data associated with the framework run-
times (e.g., iteration, parameters, models, etc.). In particular,
Horovod interacts with DL frameworks via custom framework
operations that enable the frameworks to pass a tensor and
requested collective operation to the Horovod backend, and re-
ceive the output tensor after the collective is executed. These

custom operations are defined for each supported framework,
as the mechanisms to share tensor data can vary between
frameworks, but otherwise the remainder of the code base is
generic. This design choice enables Horovod to work across
numerous DL frameworks using the same underlying code,
but at the same time, this generic design leads to the ineffi-
ciency at scale with its centralized coordinator-worker control
plane.

As is summarized in Observation 1 , in a typical data
parallel training run, there is a fixed set of gradients that
needs to be AllReduced across iterations. Horovod’s existing
coordinator-worker design does not take advantage of this
aspect of the workload, and will redundantly process the same
collective communication requests through the coordinator at
each iteration (Observation 3). Although this design choice
allows Horovod to be dynamic and service any collective
request submitted from workers, it is unnecessarily inefficient
for the typical use case with a fixed set of repeated collective
operations.

This section introduces a caching strategy that enables
Horovod to capture and register repeated collective operations
at runtime. With the cached metadata, we build a decentralized
coordination among workers, replacing the existing strategy
with significant performance improvement.

3.1.1 Response Cache

As Horovod does not have direct access to the framework-
runtime metadata (e.g., iteration, tensors), any pattern of col-
lective operations launched during a training run must be de-
duced at runtime based on prior collective requests observed.
In order to capture the metadata about repeated collective
operations, we introduce a response cache to Horovod. This
cache can be used to identify repeated operations, as well as
store associated response data structures generated by the co-
ordinator to be reused without a repeated processing through
the coordinator-worker process.

Each worker maintains a response cache locally. To con-
struct the cache, Horovod threads will use the existing
coordinator-worker control plane implementation. Specifi-
cally, workers send requests to the coordinator and receive a
list of responses from the coordinator to execute. Instead of
executing the collective operations immediately and destroy-
ing the response objects, the workers first store the response
objects in a local cache, where each unique response is added
to a linked-list structure. Additional tables are kept mapping
tensor names to response objects in the cache as well as in-
teger position indices in the linked list. A key characteristic
of the cache design is that its structure is fully determinis-
tic based on the order that response entries are added to the
cache. In this design, the cache is populated using the list
of responses received by the coordinator when a collective
request is first processed. As the coordinator design already
enforces a global ordering of responses, responses are added

1032 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Rank 0

Cache
A : (0, R

A
)

B : (2, R
B
)

C : (1, R
C
)

C B

Rank 1
B

Rank 2 Rank 3
B C

1 0 0 1 0 0 1 0 0 1 0 0

A A A A

AllReduce

Cache
A : (0, R

A
)

B : (2, R
B
)

C : (1, R
C
)

Cache
A : (0, R

A
)

B : (2, R
B
)

C : (1, R
C
)

Cache
A : (0, R

A
)

B : (2, R
B
)

C : (1, R
C
)

Rank 0

Cache
A : (0, R

A
)

B : (2, R
B
)

C : (1, R
C
)

A C B

Rank 1
AB

Rank 2 Rank 3
A B A C

1 0 0 1 0 0 1 0 0 1 0 0

AllReduce

Cache
A : (0, R

A
)

B : (2, R
B
)

C : (1, R
C
)

Cache
A : (0, R

A
)

B : (2, R
B
)

C : (1, R
C
)

Cache
A : (0, R

A
)

B : (2, R
B
)

C : (1, R
C
)

Rank 0

Cache
A : (0, R

A
)

B : (2, R
B
)

C : (1, R
C
)

A C B

Control Plane

Data Plane

Rank 1
AB

Rank 2 Rank 3
A B A C

1 1 1 1 0 1 1 0 1 1 1 0

Bitvector

Cache
A : (0, R

A
)

B : (2, R
B
)

C : (1, R
C
)

Cache
A : (0, R

A
)

B : (2, R
B
)

C : (1, R
C
)

Cache
A : (0, R

A
)

B : (2, R
B
)

C : (1, R
C
)

1 2 3

Figure 4: Illustration of AllReduce with Caching. We depict an example with 4 workers (0, 1, 2, 3) reducing 3 tensors (A, B, C).
The strategy works in three steps: 1. Each worker populates a bitvector, setting bits according to entries in the response cache and
the pending tensors in their local queues. 2. Workers synchronize the bitvectors via a global set intersection to identify common
pending tensors. In this example, the bit associated with tensor A is shown as common across the workers. 3. Tensor A is sent to
the data plane for AllReduce. When the AllReduce operation is done, Tensor A is removed from the queues on all workers.

to the cache on each worker in a globally consistent order
which in turn ensures caches on each worker remain identical
across workers. The data structure for each entry in the cache
is the same as a response list discussed in Section 2.1. The
cache implemented has a user-configurable capacity, with a
default size of 1024 unique responses.

Using a combination of the cached responses and the glob-
ally consistent structure of the caches, a lightweight decentral-
ized coordination scheme is enabled, as illustrated in Figure 4.

3.1.2 Cache-based Coordination with Response Cache
and Bitvector

Once the response cache is created, it is utilized together with
a bitvector to implement a lightweight decentralized coordi-
nation scheme. To achieve this, we take advantage of the fact
that the response cache is constructed in a way that guarantees
global consistency across workers. As a result, the structure of
the response cache, in particular the index position of cached
response entries, can be used to maintain a global indexing
scheme of requests that are repeated that can be leveraged
for coordination. We present the strategy in Figure 4, report
the corresponding pseudo code in Algorithms 1 and 2, and
summarize its procedure below.
1. At the start of a cycle, each worker performs the same oper-
ations as it does in the original design: it retrieves the pending
requests from its local tensor queue, yielding a RequestList.
2. Each request in RequestList is checked against the response
cache. If the request has an associated entry in the cache, the
position of the cached entry is added to a set, CacheBits. Oth-
erwise, this request does not have an associated cached entry
and a flag is set to indicate that an uncached (i.e. previously
unobserved) request is pending.

Algorithm 1 Horovod cycle with caching
1: procedure RUNCYCLEONCE
2: RequestList← PopMessagesFromQueue()

3: CacheBitsg,UncachedInQueueg← CacheCoordination(RequestList)

4: UncachedRequestList← []
5: for M in RequestList do
6: cached← ResponseCache.cached(M)
7: if cached then
8: bit← ResponseCache.GetCacheBit(M)
9: if bit 6∈CacheBitsg then

10: PushMessageToQueue(M) . Replace messages correspond-
ing to uncommon bit positions
to framework queue for next cy-
cle

11: end if
12: else
13: UncachedRequestList.append(M) . Collect any uncached messages
14: end if
15: end for

16: ResponseList← ResponseCache.GetResponses(CacheBitsg) . Retrieve
cached responses corresponding to common bit positions

17: if not UncachedInQueueg then . All messages cached, skip
master-worker coordination
phase

18: FusedResponseList← FuseResponses(ResponseList) . Tensor Fusion
19: else . Use master-worker coordination

to handle uncached messages
20: FusedResponseList←MasterWorkerCoordination(UncachedRequestList,

ResponseList)
21: end if

22: for R in FusedReponseList do
23: ResponseCache.put(R) . Add response to cache
24: PerformOperation(R) . Perform collective operation
25: end for
26: end procedure

3. Each worker populates a bit vector, BitVector, setting bits
corresponding to values in CacheBits. It also sets a bit to
indicate whether it has uncached requests in its queue. The
bit vectors across workers are globally intersected using an

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1033

Algorithm 2 Decentralized coordination with response cache
and bitvector

1: procedure CACHECOORDINATION(RequestList)
2: CacheBits←{}, UncachedInQueue← False

3: for M in RequestList do . Check for cached messages
4: cached← ResponseCache.cached(M)
5: if cached then
6: bit← ResponseCache.GetCacheBit(M)
7: CacheBits.insert(bit) . Collect bit positions for

cached entries
8: else
9: UncachedInQueue← True . Record uncached message

exists
10: end if
11: end for

12: BitVector← SetBitvector(CacheBits, UncachedInQueue) . Set bits in local
bitvector

13: BitVectorg← Intersect(BitVector) . AllReduce using binary
AND op to get global
bitvector

14: CacheBitsg,UncachedInQueueg← DecodeBitVector(BitVectorg) . Get
common bit positions and flag

15: return CacheBitsg,UncachedInQueueg
16: end procedure

AllReduce with the binary AND operation, resulting in a
globally reduced bitvector, BitVectorg. Through this opera-
tion, only bits corresponding to requests that are pending on
all workers remain set, while others are zero.
4. Each worker decodes BitVectorg, collecting indices of any
remaining set bits to form CacheBitsg, the set of cache indices
corresponding to requests currently pending on all workers.
Additionally, it extracts whether any worker has pending un-
cached requests in queue.
5. Each request in RequestList is checked against the entries
in CacheBitsg. If the request has an associated cache entry
but has a position not in CacheBitsg, this means that only
a subset of workers have this cached request pending. This
request is pushed back into the internal tensor queue to be
checked again on a subsequent cycle. If the request has an
associated cache entry with a position in CacheBitsg, this
means that the request is pending on all workers and is ready
for communication. The associated response is retrieved from
the cache and added to the ResponseList. If the request is not
cached, it is added to a list of uncached requests that needs to
be handled via the coordinator-worker process.
6. If there are no uncached requests pending on any worker,
the coordinator-worker process is completely skipped and
workers proceed to process locally generated ResponseLists
composed of response entries from the cache. Otherwise,
uncached requests are handled via the coordinator-worker
process, with the coordinator rank generating a ResponseList
containing the cached response entries along with new re-
sponses corresponding to the uncached requests.

It is worth highlighting that with this cache-based con-
trol, the coordinator-worker logic is only executed during
cycles where previously unobserved requests are submitted
to Horovod. In cycles where all requests are cached (i.e. re-
peated), the coordinator-worker control plane is never exe-

Cycle 0

Cycle 1

Cycle 2

T0

T1T2 T3

T4T5

T6

Default:

Cycle 0 : {T0, T2, T3, T5}
Cycle 1 : {T1, T4}
Cycle 2 : {T6}

Cycle 0 : {}
Cycle 1 : {T0, T1, T2, T3}
Cycle 2 : {T4, T5, T6}

With Grouping:

Figure 5: Illustration of Grouping. A task graph with nodes
that generate requests Tn is depicted on the left, with the
dashed boxes indicating requests visible to Horovod at 3 sub-
sequent cycles. The nodes are colored to depict assignment
to two groups (blue/solid borders and green/dashed borders).
By default, a worker will submit all requests observed in a
cycle to be processed/executed which can yield unbalanced
sets of requests. With grouping enforced, requests are only
submitted when complete groups are available.

cuted. For a typical DL workload with a fixed set of gradients
to reduce every iteration, the response cache will eventually
contain entries corresponding to this entire set. As a result, the
poorly scaling coordinator-worker process will be skipped for
all training iterations, except the first one, where all requests
are initially observed and placed into the cache.

3.2 Grouping

The response cache described in the previous section ad-
dresses inefficiencies in the Horovod control plane. In this
section, we describe a method to improve the data plane per-
formance of Horovod through explicit grouping of AllReduce
operations. In particular, we introduce a feature to Horovod
that enables users to submit grouped collective operations, al-
lowing explicit control over Horovod’s tensor fusion (§2.2.2).

As is shown in Figure 5, in place of submitting individual
collective requests per tensor, a user can submit a grouped
collective (e.g. hvd.grouped_allreduce) for multiple ten-
sors. Collective requests submitted within a group are treated
as a single request in Horovod’s control plane; that is, no
request in the group is considered ready for the data plane
until all requests in the group are submitted. As a result, the
tensors within a group are guaranteed to be processed by the
data plane during the same cycle and fused, along with any
other responses ready for execution during the cycle.

This new grouping mechanism can be used to control how
gradient AllReduces are scheduled during an iteration. In
particular, the gradient AllReduce requests for a single iter-
ation can be assigned to one or more groups to explicitly
control the fused communication buffer sizes that Horovod

1034 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

generates for gradient reduction, avoiding issues that can arise
using the default dynamic fusing strategy as described in Sec-
tion 2.2.2. To ease use, this functionality is exposed to users
via a new argument, num_groups to Horovod’s high-level
DistributedOptimizer wrapper. By setting this argument,
the set of gradient tensors to be AllReduced within the itera-
tion are evenly distributed into the number of groups specified.
In the implementation described here, the gradients lists are
split into groups of equal number of tensors, without consid-
eration of buffer size.

Beyond this basic splitting, advanced users can achieve
more optimal data plane communication performance by man-
ually tuning the distribution of gradient tensors across the
groups, to target fusion buffer sizes for improved network
efficiency and/or achieving better overlap of communication
and computation. We discuss the performance with different
grouping configurations in Section 4.

We note that the framework native communication libraries
like torch.DDP also support gradient fusion/bucketing and ex-
pose options to split gradient reduction into groups of approx-
imately fixed message size. These native implementations
generally leverage access to framework-level details, like in-
formation about the constructed model, to form these groups.
As Horovod does not have access to these framework-level
details directly, this grouping mechanism provides a means
to provide such information via associating sets of tensors
coming from the model to groups.

4 Experiment

4.1 Environment Setup
Hardware. We performed all experiments on Summit super-
computer [27] at the Oak Ridge Leadership Computing Facil-
ity. As the 2nd fastest supercomputer in the world, Summit is
a 148.6 petaFLOPS (double precision) IBM-built supercom-
puter, consisting of 4,608 AC922 compute nodes with each
node equipped with 2 IBM POWER9 CPUs and 6 NVIDIA
V100 GPUs. Summit is considered as ideally suited for Deep
Learning workloads, due to its node-local NVMe (called burst
buffer) and Tensor Cores on V100 for faster low-precision
operations. Moreover, its NVLink 2.0 and EDR InfiniBand
interconnect provides 50 GB/s and 23 GB/s peak network
bandwidths for intra-node and inter-node communication.

Software. The techniques proposed in this work are imple-
mented based off Horovod v0.15.2 and have been incorpo-
rated in v0.21.0. We measured the performance with two com-
munication backends, including NCCL v2.7.8 and Spectrum
MPI (a variant of OpenMPI) v10.3.1.2. To evaluate the perfor-
mance of our proposals across DL frameworks and to compare
against the state-of-the-art communication libraries, we inte-
grated our solutions in Horovod with TensorFlow (v2.3.1) and
PyTorch (v1.6.0). We compared our solutions to tf.distribute
in TensorFlow v2.4 (TensorFlow supports grouping since

Figure 6: Performance and GPU utilization of Horovod’s
strategies. We compare our new techniques to the existing
Horovod implementations using STEMDL (see Figure 3).

v2.4), torch.DDP in PyTorch v1.6.0, and BytePS (v0.2.5). In
particular, BytePS is a deep learning framework that adopts
PS (parameter server) as its communication model. BytePS
is considered as an alternative to Horovod in a cloud envi-
ronment. For tf.distribute and torch.DDP, we conducted the
experiments with both NCCL and MPI; for BytePS, we con-
ducted experiments simply with NCCL as BytePS does not
support MPI. We configure BytePS in co-locate mode with
one server and one worker per Summit node. We choose
this configuration because it is recommended by the BytePS
team as the best practice for high-performance computing
(HPC) [1]. Moreover, we evaluated the scalability of our tech-
niques with STEMDL, where the results are from an earlier
incarnation of this work based on Horovod v0.15.2 built with
NCCL v2.4, but the conclusions are similar.

Workloads. We evaluated our solution on GPU-based work-
loads. Starting with the STEMDL workload (message size
880MB per GPU), we compared our new techniques to the
existing Horovod strategies (see Figures 3 and 6) with Tensor-
Flow. We then broadened the experiments to compare with
tf.distribute, torch.DDP, and BytePS on Resnet50 (102MB per
GPU). Finally, we demonstrated our approach on ResNet50
and two more popular networks: EfficientNet-B0 (21MB per
GPU) and VGG19 (574MB per GPU). We limit our interest in
communication and use random synthetic data (of dimension
(224, 224, 3)) as input to avoid impacts of I/O performance
on the results. The training is in single precision with batch
size of 64. We conducted the scalability experiments on the
production code STEMDL using TensorFlow. We briefly dis-
cuss STEMDL in Section 2.3, report its source code in a
GitHub repository (listed in Availability) and leave detailed
documentation in Section 3 of the supplementary materials.

4.2 Evaluations on Horovod’s Strategies

This section evaluates the performance of various strategies
in Horovod. We compare the performance of caching and
grouping to the existing strategies across scales. Figure 6 re-
ports the results, in which we follow the definitions about the

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1035

Figure 7: Performance of caching on ResNet50. We evaluate
Horovod with caching enabled and disabled with both NCCL
(left) and MPI (right) backends, and also compare the results
to the performance of BytePS with NCCL (left).

existing strategies given in Section 2.3 and name the results
of our techniques as Caching (cached-based coordination
enabled) and Caching+Grouping (both caching and group-
ing enabled), respectively. Similar to Figure 3, we focus on
analyzing performance (left subfigure) and GPU utilization
(right subfigure). Here, performance refers to the the floating-
point operations performed per second (FLOPs). It is clear
that our solutions outperform the existing strategies across
scales consistently. When increasing the number of GPUs in
use, the performance advantage grows rapidly. In particular,
at the scale of 6000 GPUs, Caching+Grouping and Caching
obtain 1.97× and 1.64× GPU performance improvement,
and equally 1.48× utilization improvement, over the Horovod
baseline in NCCL-AllReduce. Accelerated by our techniques,
175 petaFLOPS in FP16 precision (more detailed discussion
can be seen in supplementary materials Section 2) can be
delivered with less than a quarter of Summit.

We conclude that our techniques achieve better perfor-
mance than the existing strategies, especially at scale.

4.3 Evaluations across Frameworks and Com-
munication Libraries

Next, we evaluate caching and grouping with both Tensor-
Flow and Pytorch, and compare our techniques to tf.distribute,
torch.DDP, and BytePS.

4.3.1 Caching and Grouping across Frameworks

We first analyze the caching performance on Horovod with
TensorFlow and Pytorch. Figure 7 presents the results. It
suggests that, for the results with both NCCL and MPI,
the caching-enabled Horovod (TF-Caching:on and PyTorch
Caching:on) first delivers equally good performance; and
when increasing the number of GPUs to 384 and more, the
caching-enabled Horovod delivers better performance consis-
tently with both TensorFlow and Pytorch. In particular, com-
pared to the caching-disabled Horovod (TF-Caching:off
and PyTorch Caching:off) with NCCL on 768 GPUs, the

Figure 8: Performance of grouping on ResNet50. We evaluate
Horovod with varied grouping configurations on 768 GPUs
with caching enabled (top) and disabled (bottom) and with
NCCL (left) and MPI (right) backends.

caching strategy achieves 2.5× (TF-Caching:on) and 1.6×
(PyTorch Caching:on) performance improvement, respec-
tively. Compared to the caching-disabled Horovod with MPI
on 768 GPUs, the caching strategy achieves 1.53× and 1.15×
performance improvement, respectively.

Figure 7 also presents the performance of BytePS (BytePS).
It is shown clearly that BytePS delivers better performance
than the cache-disabled Horovod consistently, and delivers
equally good performance as the caching strategy does on the
range of 6 GPUs — 384 GPUs, and delivers 20% lower per-
formance than the caching strategy does on 768 GPUs. This
suggests that, at larger scales, BytePS exhibits the scalability
issue in typical HPC settings such as Summit. We leave the
further study on the performance of BytePS on HPC clusters
as future work.

Next, we report the grouping benefit in Figure 8. In the case
with caching enabled (Caching:on) , comparing to the case
without grouping (# groups = 0), the training throughput on
768 GPUs with Horovod (NCCL backend) obtains a decent
5% boost with 5 or 10 tensor groups for TensorFlow, although
the gain for PyTorch is less significant. For the much slower
MPI backend, the improvement becomes marginal or negative.
When the caching is turned off (Caching:off) , there is a
performance boost for PyTorch with the optimal group size,
while for TensorFlow, it benefits mostly from grouping on
the MPI backend. This indicates complicated interactions
between the grouping and caching optimization.

To obtain a better understanding on the grouping behav-
ior under different frameworks and communication fabrics,
we plot the timing breakdown in Horovod for a 768-GPU
training in Figure 9. For each iteration, the timing consists
of two parts: coordination (control plane) and AllReduce
(data plane). The timing for the AllReduce portion is further

1036 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 9: The inner timing breakdown in Horovod (NCCL
backend) for a 768-GPU training with caching enabled and
disabled (left) and grouping (# groups = 5) (right), respec-
tively, during the training of ResNet50.

Figure 10: Scaling comparisons among Horovod, tf.distribute,
and torch.DDP for the training of EfficientNet-B0, ResNet50,
and VGG19. Training throughput (images/s) of ResNet50
(left). Scaling efficiency using up to 1536 GPUs (right).

split into wait (denoted [3] in Horovod as WAIT_FOR_DATA
and WAIT_FOR_OTHER_TENSOR_DATA for time on waiting for
framework to deliver gradient data and other data in the
same fused collective, respectively) and actual communica-
tion (NCCL AllReduce). The case is slightly complicated for
grouping. On one hand, the NCCL AllReduce time is almost
cut in half because the grouped messages (orders of 10 MB)
can better utilize network bandwidth; on the other hand, the
wait time increases due to the coordination of groups. The
overall performance of grouping depends on the trade-off
between the aforementioned 2 factors. Too small number of
groups (larger message and longer wait time) or too slow
communication fabric (smaller or no gain in larger message
communication) may result in worse performance with group-
ing, as indicated in Figure 8.

4.3.2 Evaluations across Communication Libraries

With both caching and grouping enabled, we compare the scal-
ing efficiency of Horovod with tf.distribute and torch.DDP.
To conduct a fair comparison, we ran all three libraries us-
ing a NCCL backend, and configure tf.distribute to use its

AllReduce mode (MultiWorkerMirroredStrategy), simi-
lar to Horovod and torch.DDP. In contrast to the experiments
with TensorFlow v2.3.1 reported in the previous sections,
this section contains experiments run using tf.distribute in
TensorFlow v2.4 as it supports a comparable grouping fea-
ture and is a more recent release. Moreover, we disabled
the broadcast_buffers option in torch.DDP to ensure
that no additional collective operations outside the gradient
AllReduces are performed during testing. We set the bucket
size/pack size for grouping in torch.DDP and tf.distribute to
25MB as it is the default configuration for torch.DDP.

We present the results in Figure 10. As is shown clearly in
the left subfigure, using up to 1536 GPUs, Horovod delivers
93% and 96% of scaling efficiencies with TensorFlow and
PyTorch, respectively, while tf.distribute and DDP achieve
81% and 97% of the efficiencies, respectively. To further
illustrate the scaling on different communication volumes, we
plot the scaling efficiency for EfficientNet-B0, ResNet50, and
VGG19 (right subfigure). Our approach shows an average
of 12% better scaling than tf.distribute and a comparable
performance to DDP, across model sizes, and the advantage
becomes bigger as communication volume increases.

To obtain a better understanding of the performance of
the three libraries, we profiled the training of ResNet50 with
the libraries using Nsight Systems [4] (an NVIDIA profiling
tool) and observed how well the AllReduce operations overlap
with computation within a training iteration for each library.
The results (see details in supplementary materials Section
4) show that all three libraries group tensors for AllReduce
to a similar number of large buffers per iteration (4 or 5). In
particular, we observed >95% of AllReduce overlapped with
computation when using Horovod and torch.DDP, and the
number dropped to ∼75% when using tf.distribute.

We conclude that our solution performs well with both
TensorFlow and PyTorch. Moreover, it delivers comparable
and/or better performance than tf.distribute and torch.DDP,
especially for large communication volumes.

4.4 Scaling Analysis on Production Code

This section evaluates the scaling efficiency of our solutions
using a scientific DNN training code, STEMDL. The purpose
of the section is to demonstrate a use case that stresses the
communication layer of DL training at extreme scales (e.g.
27k GPUs). Our expectation is that if a communication im-
plementation can scale well in this scenario, it should be well
suited to many other workloads operating with far fewer tasks.
Beyond scaling efficiency, we also evaluate the power con-
sumption and overall performance of the production runs of
STEMDL on the fully-scaled Summit, and leave the detailed
documentation (e.g., the metrics and evaluations) to Section
2 in the supplementary materials, due to space limitations.

Figure 11 presents the scaling results. With both caching
and grouping enabled, Horovod achieves a scaling efficiency

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1037

Figure 11: Scaling efficiency of STEMDL using up to 27,600
GPUs, the entire Summit.

of 0.93 at 27,600 GPUs and reach a sustained performance
of 1.54 exaflops (with standard error +- 0.02) and a peak
performance of 2.15 exaflops (with standard error +-0.02) in
FP16 precision. Moreover, on a single GPU, our proposals
attain 59.67 and 83.92 teraflops as the sustained and peak
performance, respectively. It suggests that each GPU achieves
49.7% and 70% of the theoretical peak performance of a V100
(120 teraflops) as its sustained and peak performance. To the
best of our knowledge, it exceeds the single GPU performance
of all other DNN trained on the same system to date.

We conclude that our techniques can attain near-linear scal-
ing on up to 27,600 GPUs.

5 Related Work

Other than collective AllReduce, another popular scheme for
data parallelism is parameter server. Incorporated with many
acceleration techniques such as hierarchical strategy, priority-
based scheduling, etc, BytePS [12, 24] has shown better scal-
ing performance than Horovod in a cloud environment where
parameter servers run on CPU-only nodes, because the net-
work bandwidth can be more efficiently utilized4. We com-
pared our solutions with BytePS on a typical HPC setting and
the results (see Figure 7) show that our techniques perform
better in such settings.

One promising direction is to further reduce the commu-
nication volume via compression [8, 11, 26, 35, 36], decen-
tralized learning [13, 14, 19], or staled/asynchronized com-
munication [9, 10,20]. The compression techniques include
quantization, sparsification, sketching, etc, and the combined

4In current ring-based AllReduce (as implemented in NCCL), each
model replica sends and receives 2(N−1)/N times gradients (N being num-
ber of GPUs), so the total message volume transferred in network per model
is 2x of the gradient volume for large N.

method [22] has shown 2 orders of magnitude in communi-
cation volume reduction without loss of accuracy. For decen-
tralized learning, depending on the communication graphs for
model replicas, the communication complexity is reduced to
O(Deg(graph)) independent of scale. Staled/asynchronized
communication can boost the communication performance
by relaxing the synchronization requirement across model
replicas, which usually comes with some cost in model con-
vergence. These developments are orthogonal to our approach,
and in principle, our techniques can apply on top of them.

Beyond proposals for improving collective communication
in DNN training. Kungfu [23] is proposed to auto-tune the
parameters in both DNN models and DL frameworks based
on runtime monitoring data. This effort is complementary to
ours: we propose techniques in Horovod with introduction
of parameters that may benefit tremendously from appropri-
ate tuning. Another significant recent study [28] proposed
Drizzle to improve large scale streaming systems with group
scheduling and pre-scheduling shuffles. Similar to our ap-
proach, Drizzle reused scheduling decisions to reduce coor-
dination overhead across micro-batches. But different to our
decentralized coordination proposal, Drizzle amortized the
overhead of centralized scheduling.

6 Conclusion

We have shown that by introducing a new coordination strat-
egy and a grouping strategy we exceed the state of the art
in scaling efficiency. This opens up, in particular, opportuni-
ties in exploiting the different levels of parallelism present in
many systems (e.g. intra-node vs inter-node) such as Summit
to train even larger DNN models.

Acknowledgments

We would like to thank the anonymous reviewers and our
shepherd, Shivaram Venkataraman, for their invaluable com-
ments that improved this paper. This research was partially
funded by a Lab Directed Research and Development project
at Oak Ridge National Laboratory, a U.S. Department of En-
ergy facility managed by UT-Battelle, LLC. An award of
computer time was provided by the INCITE program. This
research also used resources of the Oak Ridge Leadership
Computing Facility, which is a DOE Office of Science User
Facility supported under Contract DE-AC05-00OR22725.

Availability

The proposed techniques have been upstreamed to the
Horovod main distribution [3]. The code for full Summit
distributed training and the software for data generation are
made public [16, 17].

1038 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] BytePS Best Practice. https://github.
com/bytedance/byteps/blob/master/docs/
best-practice.md.

[2] Gloo. https://github.com/facebookincubator/
gloo.

[3] Horovod. https://github.com/horovod/horovod.

[4] Nvidia Nsight. https://developer.nvidia.com/
nsight-systems.

[5] PyTorch. https://pytorch.org/.

[6] tf.distribute in TensorFlow. https://www.
tensorflow.org/api_docs/python/tf/
distribute.

[7] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,
Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. TensorFlow: A system for large-
scale machine learning. In Proceedings of the 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI’16), 2016.

[8] Naman Agarwal, Ananda Theertha Suresh, Felix Yu,
Sanjiv Kumar, and H. Brendan McMahan. cpSGD:
Communication-efficient and differentially-private dis-
tributed SGD. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems
(NIPS’18), 2018.

[9] Suyog Gupta, Wei Zhang, and Fei Wang. Model ac-
curacy and runtime tradeoff in distributed deep learn-
ing: A systematic study. In Proceedings of the 26th
International Joint Conference on Artificial Intelligence
(IJCAI’17), 2017.

[10] Qirong Ho, James Cipar, Henggang Cui, Jin Kyu Kim,
Seunghak Lee, Phillip B. Gibbons, Garth A. Gibson,
Gregory R. Ganger, and Eric P. Xing. More effective
distributed ML via a stale synchronous parallel param-
eter server. In Proceedings of the 26th International
Conference on Neural Information Processing Systems
(NIPS’13), 2013.

[11] Nikita Ivkin, Daniel Rothchild, Enayat Ullah,
Vladimir braverman, Ion Stoica, and Raman Arora.
Communication-efficient distributed SGD with sketch-
ing. In Advances in Neural Information Processing
Systems (NIPS’19), 2019.

[12] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong
Cui, and Chuanxiong Guo. A unified architecture for
accelerating distributed DNN training in heterogeneous
GPU/CPU clusters. In Proceedings of the 14th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI’20), 2020.

[13] Anastasia Koloskova*, Tao Lin*, Sebastian U Stich, and
Martin Jaggi. Decentralized deep learning with arbitrary
communication compression. In Proceedings of the
International Conference on Learning Representations
(ICLR’20), 2020.

[14] Anastasia Koloskova, Sebastian U Stich, and Martin
Jaggi. Decentralized stochastic optimization and gos-
sip algorithms with compressed communication. In
Proceedings of the 36th International Conference on
Machine Learning (ICML’19), 2019.

[15] Thorsten Kurth, Sean Treichler, Joshua Romero, Mayur
Mudigonda, Nathan Luehr, Everett Phillips, Ankur Ma-
hesh, Michael Matheson, Jack Deslippe, Massimiliano
Fatica, Prabhat, and Michael Houston. Exascale deep
learning for climate analytics. In Proceedings of the In-
ternational Conference for High Performance Comput-
ing, Networking, Storage, and Analysis (SC’18), 2018.

[16] Nouamane Laanait, Michael A Matheson, Suhas Som-
nath, Junqi Yin, and USDOE. STEMDL. https://
www.osti.gov//servlets/purl/1630730, 9 2019.

[17] Nouamane Laanait, Junqi Yin, and USDOE.
NAMSA. https://www.osti.gov//servlets/
purl/1631694, 8 2019.

[18] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar,
Pieter Noordhuis, Teng Li, Adam Paszke, Jeff Smith,
Brian Vaughan, Pritam Damania, and Soumith Chintala.
PyTorch distributed: Experiences on accelerating data
parallel training. Very Large Data Bases Conference
(VLDB’20), 2020.

[19] Youjie Li, Mingchao Yu, Songze Li, Salman Avestimehr,
Nam Sung Kim, and Alexander Schwing. Pipe-SGD: A
decentralized pipelined SGD framework for distributed
deep net training. In Proceedings of the 32nd Interna-
tional Conference on Neural Information Processing
Systems (NIPS’18), 2018.

[20] Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu.
Asynchronous parallel stochastic gradient for nonconvex
optimization. In Proceedings of the 28th International
Conference on Neural Information Processing Systems
(NIPS’15), 2015.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1039

https://github.com/bytedance/byteps/blob/master/docs/best-practice.md
https://github.com/bytedance/byteps/blob/master/docs/best-practice.md
https://github.com/bytedance/byteps/blob/master/docs/best-practice.md
https://github.com/facebookincubator/gloo
https://github.com/facebookincubator/gloo
https://github.com/horovod/horovod
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems
https://pytorch.org/
https://www.tensorflow.org/api_docs/python/tf/distribute
https://www.tensorflow.org/api_docs/python/tf/distribute
https://www.tensorflow.org/api_docs/python/tf/distribute
https://www.osti.gov//servlets/purl/1630730
https://www.osti.gov//servlets/purl/1630730
https://www.osti.gov//servlets/purl/1631694
https://www.osti.gov//servlets/purl/1631694

[21] Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. Asyn-
chronous decentralized parallel stochastic gradient de-
scent. In Proceedings of the 35th International Confer-
ence on Machine Learning (ICML’18), 2018.

[22] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and Bill
Dally. Deep gradient compression: Reducing the com-
munication bandwidth for distributed training. In Pro-
ceedings of the International Conference on Learning
Representations (ICLR’18), 2018.

[23] Luo Mai, Guo Li, Marcel Wagenländer, Konstantinos
Fertakis, Andrei-Octavian Brabete, and Peter Pietzuch.
Kungfu: Making training in distributed machine learn-
ing adaptive. In Proceedings of the 14th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI’20), 2020.

[24] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao,
Bairen Yi, Chang Lan, Chuan Wu, and Chuanxiong Guo.
A generic communication scheduler for distributed DNN
training acceleration. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles (SOSP’19),
2019.

[25] Alexander Sergeev and Mike Del Balso. Horovod: fast
and easy distributed deep learning in tensorflow. CoRR,
abs/1802.05799, 2018.

[26] Ryan Spring, Anastasios Kyrillidis, Vijai Mohan, and
Anshumali Shrivastava. Compressing gradient optimiz-
ers via count-sketches. In Proceedings of the 36th Inter-
national Conference on Machine Learning (ICML’19),
2019.

[27] Sudharshan S. Vazhkudai, Bronis R. de Supinski,
Arthur S. Bland, Al Geist, James Sexton, Jim Kahle,
Christopher J. Zimmer, Scott Atchley, Sarp Oral, Don E.
Maxwell, Veronica G. Vergara Larrea, Adam Bertsch,
Robin Goldstone, Wayne Joubert, Chris Chambreau,
David Appelhans, Robert Blackmore, Ben Casses,
George Chochia, Gene Davison, Matthew A. Ezell, Tom
Gooding, Elsa Gonsiorowski, Leopold Grinberg, Bill
Hanson, Bill Hartner, Ian Karlin, Matthew L. Leininger,
Dustin Leverman, Chris Marroquin, Adam Moody, Mar-
tin Ohmacht, Ramesh Pankajakshan, Fernando Pizzano,
James H. Rogers, Bryan Rosenburg, Drew Schmidt,
Mallikarjun Shankar, Feiyi Wang, Py Watson, Bob
Walkup, Lance D. Weems, and Junqi Yin. The design,
deployment, and evaluation of the coral pre-exascale
systems. In International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis
(SC’18), 2018.

[28] Shivaram Venkataraman, Aurojit Panda, Kay Ouster-
hout, Michael Armbrust, Ali Ghodsi, Michael J Franklin,
Benjamin Recht, and Ion Stoica. Drizzle: Fast and

adaptable stream processing at scale. In Proceedings of
the 26th Symposium on Operating Systems Principles
(SOSP’17), 2017.

[29] Bing Xie, Jeffrey Chase, David Dillow, Oleg Drokin,
Scott Klasky, Sarp Oral, and Norbert Podhorszki. Char-
acterizing output bottlenecks in a supercomputer. In Pro-
ceedings of the International Conference for High Per-
formance Computing, Networking, Storage, and Analy-
sis (SC’12), 2012.

[30] Bing Xie, Jeffrey Chase, David Dillow, Scott Klasky, Jay
Lofstead, Sarp Oral, and Norbert Podhorszki. Output
performance study on a production petascale filesys-
tem. In HPC I/O in the Data Center Workshop (HPC-
IODC’17), 2017.

[31] Bing Xie, Yezhou Huang, Jeffrey Chase, Jong Youl Choi,
Scott Klasky, Jay Lofstead, and Sarp Oral. Predicting
output performance of a petascale supercomputer. In
Proceedings of the International ACM Symposium on
High-Performance Parallel and Distributed Computing
(HPDC’17), 2017.

[32] Bing Xie, Sarp Oral, Christopher Zimmer, Jong Youl
Choi, David Dillow, Scott Klasky, Jay Lofstead, Nor-
bert Podhorszki, and Jeffrey S Chase. Characterizing
output bottlenecks of a production supercomputer: Anal-
ysis and implications. ACM Transactions on Storage
(TOS’20), 2020.

[33] Bing Xie, Zilong Tan, Phil Carns, Jeff Chase, Kevin
Harms, Jay Lofstead, Sarp Oral, Sudharshan Vazhkudai,
and Feiyi Wang. Applying machine learning to under-
stand write performance of large-scale parallel filesys-
tems. In the 4TH International Parallel Data Systems
Workshop (PDSW’19), 2019.

[34] Bing Xie, Zilong Tan, Phil Carns, Jeff Chase, Kevin
Harms, Jay Lofstead, Sarp Oral, Sudharshan S Vazhku-
dai, and Feiyi Wang. Interpreting write performance of
supercomputer I/O systems with regression models. In
Proceedings of the 36th IEEE International Parallel and
Distributed Processing Symposium (IPDPS’21), 2021.

[35] Min Ye and Emmanuel Abbe. Communication-
computation efficient gradient coding. In Proceedings of
the 35th International Conference on Machine Learning
(ICML’18), 2018.

[36] Yue Yu, Jiaxiang Wu, and Longbo Huang. Double
quantization for communication-efficient distributed op-
timization. In Advances in Neural Information Process-
ing Systems (NIPS’19), 2019.

1040 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Cocktail: A Multidimensional Optimization for Model Serving in Cloud

Jashwant Raj Gunasekaran, Cyan Subhra Mishra, Prashanth Thinakaran, Bikash Sharma,
Mahmut Taylan Kandemir, Chita R. Das

The Pennsylvania State University, University Park, PA
{jashwant, cyan, prashanth, mtk2, cxd12}@psu.edu, bikash.nitrkl@acm.org

Abstract
With a growing demand for adopting ML models for a variety
of application services, it is vital that the frameworks serving
these models are capable of delivering highly accurate predic-
tions with minimal latency along with reduced deployment
costs in a public cloud environment. Despite high latency,
prior works in this domain are crucially limited by the accu-
racy offered by individual models. Intuitively, model ensem-
bling can address the accuracy gap by intelligently combining
different models in parallel. However, selecting the appro-
priate models dynamically at runtime to meet the desired
accuracy with low latency at minimal deployment cost is a
nontrivial problem. Towards this, we propose Cocktail, a cost
effective ensembling-based model serving framework. Cock-
tail comprises of two key components: (i) a dynamic model
selection framework, which reduces the number of models
in the ensemble, while satisfying the accuracy and latency
requirements; (ii) an adaptive resource management (RM)
framework that employs a distributed proactive autoscaling
policy, to efficiently allocate resources for the models. The
RM framework leverages transient virtual machine (VM) in-
stances to reduce the deployment cost in a public cloud. A
prototype implementation of Cocktail on the AWS EC2 plat-
form and exhaustive evaluations using a variety of workloads
demonstrate that Cocktail can reduce deployment cost by
1.45×, while providing 2× reduction in latency and satisfy-
ing the target accuracy for up to 96% of the requests, when
compared to state-of-the-art model-serving frameworks.

1 Introduction
Machine Learning (ML) has revolutionized user experience
in various cloud-based application domains such as product
recommendations [70], personalized advertisements [44], and
computer vision [13, 43]. For instance, Facebook [44, 82]
serves trillions of inference requests for user-interactive ap-
plications like ranking new-feeds, classifying photos, etc. It
is imperative for these applications to deliver accurate predic-
tions at sub-millisecond latencies [27,34,35,39,44,83] as they
critically impact the user experience. This trend is expected
to perpetuate as a number of applications adopt a variety of
ML models to augment their services. These ML models are
typically trained and hosted on cloud platforms as service end-
points, also known as model-serving framework [6, 28, 60].
From the myriad of ML flavours, Deep Neural Networks

(DNNs) [54] due to their multi-faceted nature, and highly gen-
eralized and accurate learning patterns [45,73] are dominating
the landscape by making these model-serving frameworks
accessible to developers. However, their high variance due to
the fluctuations in training data along with compute and mem-
ory intensiveness [59,65,84] has been a major impediment in
designing models with high accuracy and low latency. Prior
model-serving frameworks like InFaas [83] are confined by
the accuracy and latency offered by such individual models.

Unlike single-model inferences, more sophisticated tech-
niques like ensemble learning [15] have been instrumental
in allowing model-serving to further improve accuracy with
multiple models. For example, by using the ensembling 1

technique, images can be classified using multiple models in
parallel and results can be combined to give a final prediction.
This significantly boosts accuracy compared to single-models,
and for this obvious advantage, frameworks like Clipper [27]
leverage ensembling techniques. Nevertheless, with ensem-
bling, the very high resource footprint due to sheer number
of models that need to be run for each request [27, 56], ex-
acerbates the public cloud deployment costs, as well as leads
to high variation in latencies. Since cost plays a crucial role
in application-provider consideration, it is quintessential to
minimize the deployment costs, while maximizing accuracy
with low latency. Hence, the non-trivial challenge here lies
in making the cost of ensembling predictions analogous to
single model predictions, while satisfying these requirements.

Studying the state-of-the-art ensemble model-serving
frameworks, we observe the following critical shortcomings:
• Ensemble model selection policies used in frameworks

like Clipper [27] are static, as they ensemble all available
models and focus solely on minimizing loss in accuracy. This
leads to higher latencies and further inflates the resource foot-
print, thereby accentuating the deployment costs.
• Existing ensemble weight estimation [87] has high com-

putational complexity and in practice is limited to a small
set of off-the-shelf models. This leads to significant loss in
accuracy. Besides, employing linear ensembling techniques
such as model averaging are compute intensive [80] and not
scalable for a large number of available models.
• Ensemble systems [27,80] are not focused towards model

deployment in a public cloud infrastructure, where resource

1We refer to ensemble-learning as ensembling throughout the paper.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1041

selection and procurement play a pivotal role in minimizing
the latency and deployment costs. Further, the resource provi-
sioning strategies employed in single model-serving systems
are not directly extendable to ensemble systems.

These shortcomings collectively motivate the central
premise of this work: how to solve the complex optimiza-
tion problem of cost, accuracy and latency for an ensem-
bling framework? In this paper, we present and evaluate
Cocktail2, which to our knowledge is the first work that pro-
poses a cost-effective model-serving system by exploiting
ensembling techniques for classification-based inference, to
deliver high accuracy and low latency predictions. Cocktail
adopts a three-pronged approach to solve the optimization
problem. First, it uses a dynamic model selection policy to
significantly reduce the number of models used in an ensem-
ble, while meeting the latency and accuracy requirements.

Figure 1: Benefits of Cocktail. Re-
sults are normalized (higher the
better).

Second, it utilizes dis-
tributed autoscaling poli-
cies to reduce the la-
tency variability and re-
source consumption of
hosting ensemble mod-
els. Third, it minimizes
the cost of deploying
ensembles in a public
cloud by taking advan-
tage of transient VMs,

as they can be 70-90% cheaper [3] than traditional VMs.
Cocktail, by coalescing these benefits, is capable of operating
in a region of optimal cost, accuracy and latency (shown in
Figure 1) that prior works cannot achieve. Towards this, the
key contributions of the paper are summarized below:

1. By characterizing accuracy vs. latency of ensemble models,
we identify that prudently selecting a subset of available
models under a given latency can achieve the target ac-
curacy. We leverage this in Cocktail, to design a novel
dynamic model selection policy, which ensures accuracy
with significantly reduced number of models.

2. Focusing on classification-based inferences, it is important
to minimize the bias in predictions resulting from multi-
ple models. In Cocktail, we employ a per-class weighted
majority voting policy, that makes it scalable and effec-
tively breaks ties when compared to traditional weighted
averaging, thereby minimizing the accuracy loss.

3. We show that uniformly scaling resources for all models
in the ensemble leads to over-provisioning of resources
and towards minimizing it, we build a distributed weighted
auto-scaling policy that utilizes the importance sampling
technique to proactively allocate resources to every model.
Further, Cocktail leverages transient VMs as they are
cheaper, to drastically minimize the cost for hosting model-
serving infrastructure in a public cloud.

2Cocktail is ascribed to having the perfect blend of models in an ensemble.

Applications
Image

Recognition NLP Recommender
Systems

Models

VM

VM
VM

VM VM
VM

Frameworks

Cloud

Resources

SLO

Ac
cu

ra
cy

La
te

nc
y

Users

Burstables Spot CPU GPU

Co
st

La
te

nc
y

Figure 2: The overall framework for model-serving in public cloud.

4. We implement a prototype of Cocktail using both CPU
and GPU instances on AWS EC2 [5] platform and ex-
tensively evaluate it using different request-arrival traces.
Our results from exhaustive experimental analysis demon-
strate that Cocktail can minimize deployment cost by 1.4×
while meeting the accuracy for up-to 96% of the requests
and providing 2× reduction in latency, when compared to
state-of-the-art model serving systems.

5. We show that ensemble models are inherently fault-
tolerant over single models, since in the former, failure of
a model would incur some accuracy loss without complete
failure of the requests. It is observed from our failure-
resilience results that Cocktail can adapt to instance fail-
ures by limiting the accuracy loss within 0.6%.

2 Background and Motivation
We start by providing a brief overview of model-serving in
public cloud and ensembling, followed by a detailed analysis
of their performance to motivate the need for Cocktail.

2.1 Model Serving in Public Cloud
Figure 2 shows the overall architecture of a model-serving
framework. There are diverse applications that are typically
developed, trained and hosted as web services. These services
allow end-users to submit queries via web server interface.
Since these inference requests are often user-facing, it is
imperative to administer them under a strict service level ob-
jective (SLO). We define SLO as the end-to-end response
latency required by an application. Services like Ads and
News Feed [39, 44] would require SLOs within 100ms, while
facial tag recommendation [83] can tolerate up to 1000ms.
A myriad of model architectures are available to train these
applications which by themselves can be deployed on appli-
cation frameworks like TensorFlow [1], PyTorch [62] etc.
Table 1 shows the different models available for image predic-
tion, that are pretrained on Keras using ImageNet [29] dataset.
Each model has unique accuracy and latencies depending on
the model architecture. Typically denser models are designed
with more parameters (ex. NASLarge) to classify complex

1042 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Model (Acronym) Params
(10k)

Top-1
Accuracy(%)

Latency
(ms) Pf

MobileNetV1 (MNet) 4,253 70.40 43.45 10
MobileNetV2 (MNetV2) 4,253 71.30 41.5 10
NASNetMobile (NASMob) 5,326 74.40 78.18 3
DenseNet121 (DNet121) 8,062 75.00 102.35 3
DenseNet201 (DNet201) 20,242 77.30 152.21 2
Xception (Xcep) 22,910 79.00 119.2 4
Inception V3 (Incep) 23,851 77.90 89 5
ResNet50-V2 (RNet50) 25,613 76.00 89.5 6
Resnet50 (RNet50) 25,636 74.90 98.22 5
IncepResnetV2 (IRV2) 55,873 80.30 151.96 1
NasNetLarge (NasLarge) 343,000 82.00 311 1

Table 1: Collection of pretrained models used for image classification.

classes of images. These 11 models are a representative set
to classify all images belonging to 1000 classes in Imagenet.
Depending on the application type, the maximum ensemble
size can vary from tens to hundreds of models.

The entire model framework is typically hosted on re-
sources like VMs or containers in public cloud. These re-
sources are available in different types including CPU/GPU
instances, burstables and transient instances. Transient in-
stances [69] are similar to traditional VMs but can be revoked
at any time by the cloud provider with an interruption notice.
The provisioning latency, instance permanence and packing
factor of these resources have a direct impact on the latency
and cost of hosting model-serving. We explain instance “pack-
ing factor” and its relationship with latency in Section 2.3.2.
In this paper, we focus on improving the accuracy and latency
from the model selection perspective and consider instances
types from a cost perspective. A majority of the model serving
systems [6, 83, 86] in public cloud support individual model
selection from available models. For instance, InFaas [83]
can choose variants among a same model to maintain accu-
racy and latency requirements. However, denser models tend
to have up to 6× the size and twice the latency of smaller
models to achieve increased accuracy of about 2-3%. Besides
using dense models, ensembling [15] techniques have been
used to achieve higher accuracy.
Why Ensembling? An Ensemble is defined as a set of clas-
sifiers whose individual decisions combined in some way to
classify new examples. This has proved to be more accurate
than traditional single large models because it inherently re-
duces incorrect predictions due to variance and bias. The
commonly used ensemble method in classification problems
is bagging [33] that considers homogeneous weak learners,
learns them independently from each other in parallel, and
combines them following some kind of deterministic aver-
aging process [18] or majority voting [49] process. For fur-
ther details on ensemble models, we refer the reader to prior
works [14, 57, 58, 61, 64, 77, 78, 88].

2.2 Related Work

Ensembling in practice: Ensembling is supported by com-
mercial cloud providers like Azure ML-studio [11] and AWS
Autogluon [31] to boost the accuracy compared to single
models. Azure initially starts with 5 models and scales up to

Features C
lip

pe
r[

27
]

R
afi

ki
[8

0]

In
fa

as
[8

3]

M
A

rk
[8

6]

Sa
ge

m
ak

er

Sw
ay

am
[3

4]

C
oc

kt
ai

l

Predictive Scaling 7 7 7 3 7 3 3

SLO Guarantees 3 7 3 3 7 3 3

Cost Effective 7 7 3 3 7 7 3

Ensembling 3 3 7 7 3 7 3

Heterogeneous Instances 7 3 3 3 3 7 3

Dynamic ensemble selection 7 7 7 7 7 7 3

Model abstraction 3 3 3 7 7 7 3

Table 2: Comparing Cocktail with other related frameworks.

200 using a hill-climb policy [17] to meet the target accuracy.
AWS combines about 6-12 models to give the best possible
accuracy. Users also have the option to manually mention the
ensemble size. Unlike them, Cocktail’s model selection pol-
icy tries to right-size the ensemble for a given latency, while
maximizing accuracy.
Model-serving in Cloud: The most relevant prior works to
Cocktail are InFaas [83] and Clipper [27], which have been
extensively discussed and compared to in Section 6. Recently
FrugalML [20] was proposed to cost-effectively choose from
commercial MLaaS APIs. While striking a few similarities
with Cocktail, it is practically limited to image-classification
applications with very few classes and does not address re-
source provisioning challenges. Several works [37, 38] like
MArk [86] proposed SLO and cost aware resource procure-
ment policies for model-serving. Although our heterogeneous
instance procurement policy has some similarities with MArk,
it is significantly different because we consider ensemble
models. Rafiki [80] considers small model sets and scales
up and down the ensemble size by trading off accuracy to
match throughput demands. However, Cocktail’s resource
management is more adaptive to changing request loads and
does not drop accuracy. Pretzel [52] and Inferline [26] are
built on top of Clipper to optimize the prediction pipeline
and cost due to load variations, respectively. Many prior
works [2, 25, 35, 63, 74, 75] have extensively tried to reduce
model latency by reducing overheads due to shared resources
and hardware interference. We believe that our proposed
policies can be complementary and beneficial to these prior
works to reduce the cost and resource footprint of ensembling.
There are mainstream commercial systems which automate
single model-serving like TF-Serving [60], SageMaker [6],
AzureML [10], Deep-Studio [28] etc.
Autoscaling in Public Cloud: There are several research
works that optimize the resource provisioning cost in pub-
lic cloud. These works are broadly categorized into: (i)
multiplexing the different instance types (e.g., Spot, On-
Demand) [12, 23, 34, 41, 42, 68, 79], (ii) proactive resource
provisioning based on prediction policies [34,36,40,41,69,86].
Cocktail uses similar load prediction models and auto-scales
VMs in a distributed fashion with respect to model ensem-
bling. Swayam [34] is relatively similar to our work as it han-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1043

Baseline(BL) NASLarge IRV2 Xception DNet121 NASMob
#Models 10 8 7 5 2
BL_Latency 311(ms) 152(ms) 120(ms) 100(ms) 98(ms)
E_Latency 152(ms) 120(ms) 103(ms) 89(ms) 44(ms)

Table 3: Comparing latency of Ensembling (E_Latency) with single
(baseline) models.

dles container provisioning and load-balancing, specifically
catered for single model inferences. Cocktail’s autoscaling
policy strikes parallels with Swayam’s distributed autoscaling;
however, we further incorporate novel importance sampling
techniques to reduce over-provisioning for under-used models.
Table 2 provides a comprehensive comparison of Cocktail
with the most relevant works across key dimensions.

2.3 Pros and Cons of Model Ensembling
In this section, we quantitatively evaluate (i) how effective
ensembles are in terms of accuracy and latency compared
to single models, and (ii) the challenges in deploying en-
semble frameworks in a cost-effective fashion on a public
cloud. For relevance in comparison to prior work [27, 83]
we chose image inference as our ensemble workload. While
ensembling is applicable in other classification workloads like
product recommendations [24,53], text classification [71] etc,
the observations drawn are generic and applicable to other
applications.

2.3.1 Ensembling Compared to Single Models

To analyze the accuracy offered by ensemble models, we con-
duct an experiment using 10000 images from ImageNet [29]
test dataset, on a C5.xlarge [8] instances in AWS EC2 [5].
For a given baseline model, we combine all models whose
latency is lower than that of the baseline, and call it full-
ensemble. We perform ensembling on the predictions using
a simple majority voting policy. The latency numbers for
the baseline models and the corresponding ensemble models
along with the size of the ensemble are shown in Table 3. In
majority voting, every model votes for a prediction for each
input, and the final output prediction is the one that receives
more than half of the votes. Figure 3a, shows the accuracy
comparison of the baseline (single) and static ensemble (ex-
plained in Section 3) compared to the full-ensemble. It is
evident that full-ensemble can achieve up to 1.65% better
accuracy than single models.

Besides accuracy again, ensembling can also achieve lower
latency. The latency of the ensemble is calculated as the time
between start and end of the longest running model.As shown
in Table 3, in the case of NASLarge, the ensemble latency is
2× lower (151ms) than the baseline latency (311ms). Even
a 10ms reduction in latency is of significant importance to
the providers [35]. We observe a similar trend of higher en-
semble accuracy for other four baseline models with a latency
reduction of up to 1.3×. Thus, depending on the model sub-
set used in the ensemble, it achieves better accuracy than
the baseline at lower latencies. Note that in our example
model-set, the benefits of ensembling will diminish for lower

NASLarge IRV2 Xception DNet121 NASMob

0.5

1.0

1.5

Ac
cu

ra
cy

 L
os

s(
%

)

Static Single

(a) Accuracy loss compared to full-
ensemble.

NASLarge IRV2 XceptionDNet121NASMob0

2

4

6

Co
st
($
)

Single-OD Ensemble-OD Ensemble-spot

(b) Cost of full-ensembling hosted
on OD and Spot instances.

Figure 3: Cost and accuracy of ensembling vs single models.

accuracies (< 75%) because single models can reach those
accuracies. Hence, based on the user constraints, Cocktail
chooses between ensemble and single models.

2.3.2 Ensembling Overhead

While ensembling can boost accuracy with low latency, their
distinctive resource hungry nature drastically increases the
deployment costs when compared to single models. This is
because more VMs or containers have to be procured to match
the resource demands. However, note that the “Packing factor”
(Pf) for each model also impacts the deployment costs. Pf in
this context is defined as the number of inferences that can be
executed concurrently in a single instance without violating
the inference latency (on average). Table 1 provides the Pf for
11 different models when executed on a C5.xlarge instance.
There is a linear relationship between Pf and the instance size.
It can be seen that smaller models (MNet, NASMob) can be
packed 2-5× more when compared to larger models (IRV2,
NASLarge). Thus, the ensembles with models of higher Pf
have significantly lower cost.

The benefits of Pf is contingent upon the models chosen
by the model selection policy. Existing ensemble model se-
lection policies used in systems like Clipper use all off-the-
shelf models and assign weights to them to calculate accu-
racy. However, they do not right-size the model selection
to include models which primarily contribute to the major-
ity voting. We compare the cost of hosting ensembles using
both spot (ensemble-spot) and OD (ensemble-OD) instances
with the single models hosted on OD (single-OD) instances.
Ensemble-spot is explained further in the next section. We run
the experiment over a period of 1 hour for 10 requests/second.
The cost is calculated as the cost per hour of EC2 c5.xlarge
instance use, billed by AWS [5]. We ensure all instances are
fully utilized by packing multiple requests in accordance to
the Pf . As shown in Figure 3b, Ensemble-OD is always ex-
pensive than single-OD for the all the models. Therefore, it is
important to ensemble an “optimal” number of less compute
intensive models to reduce the cost.

3 Prelude to Cocktail
To specifically address the cost of hosting an ensembling-
based model-serving framework in public clouds without
sacrificing the accuracy, this section introduces an overview
of the two primary design choices employed in Cocktail.
How to reduce resource footprint? The first step towards
making model ensembling cost effective is to minimize the

1044 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

number of models by pruning the ensemble, which reduces
the overall resource footprint. In order to estimate the right
number of models to participate in a given ensemble, we
conduct an experiment where we chose top N

2 accurate models
(static) from the full-ensemble of size N. From Figure 3a, it
can be seen that the static policy has an accuracy loss of up
to 1.45% when compared to full-ensemble, but is still better
than single models. This implies that the models other than
top N

2 yields a significant 1.45% accuracy improvement in
the full-ensemble but they cannot be statically determined.

Peacock Panda Quill Slug Cup
Class

0

50

100

Ac
cu
ra
cy

MNetV2 IRV2 NASLarge

Figure 4: Class-wise Accuracy.

Therefore, a full-ensemble
model participation is not
required for all the inputs
because, every model is in-
dividually suited to classify
certain classes of images
when compared to other

classes. Figure 4 shows the class-wise accuracy for three
models on 5 distinct classes. It can be seen that for simpler
classes like Slug, MNetV2 can achieve similar accuracy as the
bigger models, while for difficult classes, like Cup and Quill,
it experiences up to 3% loss in accuracy. Since the model
participation for ensembling can vary based on the class of
input images being classified, there is a scope to develop a dy-
namic model selection policy that can leverage this class-wise
variability to intelligently determine the number of models
required for a given input.
Key Takeaway: Full ensemble model-selection is an overkill,
while static-ensemble leads to accuracy loss. This calls for
a dynamic model selection policy which can accurately de-
termine the number of models required, contingent upon the
accuracy and scalability of the model selection policy.
How to save cost? Although dynamic model selection poli-
cies can significantly reduce the resource footprint as shown
in Figure 3b, the cost is still 20-30% higher when compared
to a single model inference. Most cloud providers offer tran-
sient VMs such as Amazon Spot instances [69], Google Pre-
emptible VMs [9], and Azure Low-priority VMs [7], that can
reduce cloud computing costs by as much as 10× [3]. In Cock-
tail, we leverage these transient VMs such as spot instances
to drastically reduce the cost of deploying ensembling model
framework. As an example, we host full-ensembling on AWS
spot instances. Figure 3b shows that ensemble-spot can re-
duce the cost by up to 3.3× when compared to ensemble-OD.
For certain baselines like IRV2, ensemble-spot is also 1.5×
cheaper than single-OD. However, the crucial downside of
using transient VMs is that they can be unilaterally preempted
by the cloud provider at any given point due to reasons like in-
crease in bid-price or provider-induced random interruptions.
As we will discuss further, Cocktail is resilient to instance
failures owing to the fault-tolerance of ensembling by com-
puting multiple inferences for a single request.
Key takeaway: The cost-effectiveness of transient instances,
is naturally suitable for hosting ensemble models.

Fast
Cache

MobileNet
NasNet

ResNet50
DenseNet121

Dynamic Model
Selection

. . .

Aggregator
Master VM

User Requests

…… … … …

Queries
Cost aware Procurement

Importance Sampling

Model-1 Model-2 Model-3 Model-4 Model-n

output

Heterogeneity

Prediction Policy

Au
to

sc
al

er

Re
so

ur
ce

 C
on

tr
ol

le
r

Load Balancer

 argmax O1
(latency)

 argmin O2
(accuracy)

CPU GPUCPUGPU

Objectives
1a

3

4b

1b

2 4

4a

4b

1

6

6b

6a

w1 w2 w3 wkw4

3

5 Bin-Packing

Weight Matrix

L

N

Figure 5: High-level overview of Cocktail design.

4 Overall Design of Cocktail
Motivated by our observations, we design a novel model-
serving framework, Cocktail, that can deliver high-accuracy
and low-latency predictions at reduced cost. Figure 5 depicts
the high-level design of Cocktail. Users submit requests to
a master VM, which runs a model selection algorithm, 1a

to decide the models to participate in the ensemble. The
participating models are made available in a model cache 1b

for faster access and avoid re-computation for requests having
similar constraints. Then, individual queries are dispatched
to instances pools 2 dedicated for each model. The results
from the workers are ensembled using an weighted majority
voting aggregator 3 to agree upon a correct prediction. To
efficiently address the resource management and scalability
challenges, Cocktail applies multiple strategies.

First, it maintains dedicated instance pools to serve indi-
vidual models which simplifies the management and load
balancing overheads for every model. Next, the resource con-
troller 4 handles instance procurement, by exploiting both
CPU and GPU instances 4a in a cost-aware 4b fashion, while
the load balancer 5 ensures all procured instances are bin-
packed by assigning queries to appropriate instances. We
also design an autoscaler 6 , which utilizes a prediction pol-
icy 6a to forecast the request load and scale instances for
every model pool, thereby minimizing over-provisioning of
resources. The autoscaler further employs an importance sam-
pling 6b algorithm to estimate the importance of each model
pool by calculating percentage of request served by it in a
given time interval. The key components of the design are
explained in detail below.

4.1 Dynamic Model Selection Policy
We use a window-based dynamic model selection policy using
two objective functions as described below.
Objective functions: In order to reduce cost and latency
while maximizing the accuracy, we define a latency-accuracy
metric (µAL) and cost metric (µc):

µAL =
Acctarget

Lattarget
µC = k×

N

∑
m=1

inst_cost
Pfm

where N is the number of models used to ensemble and
inst_cost is the VM cost. Each model m has a packing factor

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1045

Pfm and k is a constant which depends on the VM size in
terms of vCPUs (xlarge, 2xlarge, etc). Our first objective
function (O1) is to the maximize µAL such that target accuracy
(Acctarget) is reached within the target latency (Lattarget).

maxµAL :
{

Acctarget ≥ Acctarget ±Accmargin
Lattarget ≤ Lattarget ±Latmargin

To solve O1, we determine an initial model list by choosing
the individual models satisfying Lattarget and then create a
probabilistic ensemble that satisfies the Acctarget . Cocktail
takes the accuracy of each model as a probability of cor-
rectness and then iteratively constructs a model list, where
the joint probability of them performing the classification is
within the accuracy target. We tolerate a 0.2% (Accmargin)
and 5ms (Latmargin) variance in Acctarget and Lattarget , respec-
tively. Next, we solve for the second objective function (O2)
by minimizing µC, while maintaining the target accuracy.

minµC :
{

Acctarget ≥ Acctarget ±Accmargin

(O2) is solved by resizing the model list of size N and fur-
ther through intelligence resource procurement (described in
section 4.2), and thus maximizing Pf and minimizing k simul-
taneously. For N models, where each model has a minimum
accuracy ‘a’, we model the ensemble as a coin-toss problem,
where N biased coins (with probability of head being a) are
tossed together, and we need to find the probability of major-
ity of them being heads. For this, we need at least bN

2 c+ 1
models to give the same results. The probability of correct
prediction is given by

N

∑
i=bN

2 c+1

(
N
i

)
ai (1−a)(N−i)

Model Selection Algorithm: To minimize µC, we design
a policy to downscale the number of models, if more than
N/2+1 models vote for the same classification result. Algo-
rithm 1 describes the overall design of the model selection
policy 1a . For every monitoring interval, we keep track of the
accuracy obtained from predicting all input images within the
interval. If the accuracy of the interval reaches the threshold
accuracy (target + error_margin), we scale down the num-
ber of available models in the ensemble. For consecutive
sampling intervals, we calculate the Mode (most frequently
occurring) of the majority vote received for every input. If
the Mode is greater than needed votes bN/2c+ 1 we prune
the models to bN/2c+1. While down-scaling, we drop the
models with the least prediction accuracy in that interval. If
there is a tie, we drop the model with least packing factor
(Pf). It can so happen that dropping models can lead to drop
in accuracy for certain intervals, because the class of images
being predicted are different. In such cases, we up-size the
models (one at a time) by adding most accurate model from
the remaining unused models.

Algorithm 1 Model Selection and Weighted Majority Voting
1: procedure FULL_ENSEMBLE(MODELLIST, SLO)
2: for model ∈ModelList do
3: if model.latency ≤ SLO.latency then
4: Model.add(model)
5: end if
6: end for O1

7: end procedure
8: procedure DYNAMIC_MODEL_SCALING(Models)
9: if curr_accuracy ≥ accuracy_threshold then

10: if maxvote > N
2 + 1 then O2

11: to_be_dropped← maxvote− N
2 +1

12: Models.drop(to_be_dropped)
13: end if
14: else
15: addModel← f ind_models(remaining_models)
16: Models.append(addModel)
17: end if
18: end procedure
19: procedure WEIGHTED_VOTING(Models)
20: for model in ∀Models do
21: class← model.predicted_class
22: weighted_vote[class]+ = weights[model.class]
23: end for
24: Pclass←max(weighted_vote,key = class)
25: returnPclass
26: end procedure

4.1.1 Class-based Weighted Majority Voting

The model selection policy described above ensures that we
only use the necessary models in the majority voting. In or-
der to increase the accuracy of majority voting, we design
a weighted majority voting policy 3 . The weight matrix is
designed by considering the accuracy of each model for each
class, giving us a weight matrix of L×N dimension, where L
is the number of unique labels and N is the number of models
used in the ensemble. The majority vote is calculated as a
sum of model-weights for each unique class in the individual
prediction of the ensemble. For instance, if there are 3 unique
classes predicted by all the ensemble models, we sum the
weights for all models of the same class. The class with the
maximum weight (Pclass) is the output of the majority vote.
Hence, classes that did not get the highest votes can still be
the final output if the models associated with that class has a
higher weight, than the combined weights of highest voted
class. Unlike commonly used voting policies which assign
weights based on overall correct predictions, our policy incor-
porates class-wise information to the weights, thus making it
more adaptable to different images classes.

In order to determine the weight of every class, we use
a per-class dictionary that keeps track of the correct predic-
tions of every model per class. We populate the dictionary
at runtime to avoid any inherent bias that could result from
varying images over time. Similarly, our model selection pol-
icy is also changed at runtime based on correct predictions
seen during every interval. An important concern in majority
voting is tie-breaking. Ties occur when two sets of equal
number of models predict a different result. The effectiveness

1046 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 2 Predictive Weighted Instance Auto Scaling
1: procedure WEIGHTED_AUTOSCALING(Stages)
2: Predicted_load← DeepARN_Predict(load)
3: for every Interval do
4: for model in ∀Models do
5: modelweight ← get_popularity(model)
6: Weight.append(modelweight)
7: end for
8: end for
9: if Predicted_load ≥ Current_load then

10: for model in ∀Models do
11: I_n← (Predicted_load - Current_load)×modelweight
12: launch_workers(est_VMs)
13: model.workers.append(est_VMs)
14: end for
15: end if
16: end procedure

of weighted voting in breaking ties is discussed in Section 6.

4.2 Resource Management
Besides model selection, it is crucial to design an optimized
resource provisioning and management scheme to host the
models cost-effectively. We explain in detail the resource
procurement and autoscaling policy employed in Cocktail.

4.2.1 Resource Controller

Resource controller determines the cost-effective combina-
tion of instances to be procured. We explain the details below.
Resource Types: We use both CPU and GPU instances 4a

depending on the request arrival load. GPU instances are
cost-effective when packed with a large batch of requests for
execution. Hence, inspired from prior work [27, 86], we de-
sign an adaptive packing policy such that it takes into account
the number of requests to schedule at time T and Pf for every
instance. The requests are sent to GPU instances only if the
load matches the Pf of the instance.
Cost-aware Procurement: The cost of executing in a fully
packed instance determines how expensive is each instance.
Prior to scaling-up instances, we need to estimate the cost 4b

of running them along with existing instances. At any given
time T , based on the predicted load (Lp) and running instances
RN , we use a cost-aware greedy policy to determine the num-
ber of additional instances required to serve as An = Lp−Cr,
where Cr = ∑

N
i=1 Pfi , is the request load which can be handled

with RN . To procure An instances, we greedily calculate the
least cost instance as min∀i∈instances Costi×An/Pfi . Depend-
ing on the cost-effectiveness ratio of An/Pfi , GPUs will be
preferred over CPU instances.
Load Balancer: Apart from procuring instances, it is
quintessential to design a load balancing and bin-packing 5

strategy to fully utilize all the provisioned instances. We
maintain a request queue at every model pool. In order to
increase the utilization of all instances in a pool at any given
time, the load balancer submits every request from the queue
to the lease remaining free slots (viz. instance packing factor
Pf). This is similar to an online bin-packing algorithm. We
use an idle-timeout limit for 10 minutes to recycle unused

instances from every model pool. Hence, greedily assigning
requests enables early scale down of lightly loaded instances.

4.2.2 Autoscaler

Along with resource procurement, we need to autoscale
instances to satisfy the incoming query load. Though reactive
policies (used in Clipper and InFaas) can be employed which
take into account metrics like CPU utilization [83], these
policies are slow to react when there is dynamism in request
rates. Proactive policies with request prediction are know
to have superior performance [86] and can co-exist with
reactive policies. In Cocktail, we use a load prediction model
that can accurately forecast the anticipated load for a given
time interval. Using the predicted load 6a , Cocktail spawns
additional instances, if necessary, for every instance pool. In
addition, we sample SLO violations for every 10s interval
and reactively spawn additional instances to every pool
based on aggregate resource utilization of all instances. This
captures SLO violations due to mis-predictions.
Prediction Policy: To effectively capture the

Model RMSE
MWA 77.5
EWMA 88.25
Linear R. 87.5
Logsitic R. 78.34
Simple FF. 45.45
LSTM 28.56
DeepArEst 26.67

Table 4: Prediction models.

different load arrival patterns,
we design a DeepAR-
estimator (DeepARest) based
prediction model. We zeroed
in on the choice of using
DeepARest by conducting
(Table 4) an in-depth com-
parison of the accuracy loss
when compared with other
state-of-the-art traditional and ML-based prediction models
used in prior works [47, 86]. As shown in Algorithm 2, for
every model under a periodic scheduling interval of 1 minute
(Ts), we use the Predicted_load (Lp) at time T + Tp and
compare it with the current_load to determine the number
of instances (In).Tp is defined as the average launch time
for new instances. (Ts) is set to 1 minute as it is the typical
instance provisioning time for EC2 VMs. To calculate (Lp),
we sample the arrival rate in adjacent windows of size W
over the past S seconds. Using the global arrival rate from all
windows, the model predicts (Lp) for Tp time units from T .
Tp is set to 10 minutes because it is sufficient time to capture
the variations in long-term future. All these parameters are
tunable based on the system needs.
Importance Sampling: An important concern in autoscaling
is that the model selection policy dynamically determines
the models in the ensemble for a given request constraints.
Autoscaling the instances equally for every model based on
predicted load, would inherently lead to over-provisioned
instances for under-used models. To address this concern,
we design a weighted autoscaling policy which intelligently
auto-scales instances for every pool based on the weights.
As shown in Algorithm 2, weights are determined by
frequency in which a particular model is chosen for requests
(get_popularity) with respect to other models in the ensemble.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1047

The weights are multiplied with the predicted load to scale
instances (launch_workers) for every model pool. We name
this as an importance sampling 6b technique, because the
model pools are scaled proportional to their popularity.

5 Implementation and Evaluation
We implemented a prototype of Cocktail and deployed it on
AWS EC2 [5] platform The details of the implementation
are described below. Cocktail is open-sourced at https://
github.com/jashwantraj92/cocktail

5.1 Cocktail Prototype Implementation
Cocktail is implemented using 10KLOC of Python. We de-
signed Cocktail as a client-server architecture, where one
master VM receives all the incoming requests which are sent
to individual model worker VMs.
Master-Worker Architecture: The master node handles the
major tasks such as (i) concord model selection policy, (ii)
request dispatch to workers VMs as asynchronous future tasks
using Python asyncio library, and (iii) ensembling the pre-
diction from the worker VMs. Also all VM specific metrics
such as current_load, CPU utilization, etc. reside in the mas-
ter node. It runs on a C5.16x [8] large instance to handle
these large volume of diverse tasks. Each worker VMs runs a
client process to serve its corresponding model. The requests
are served as independent parallel threads to ensure timely
predictions. We use Python Sanic web-server for commu-
nication with the master and worker VMs. Each worker VM
runs tensorflow-serving [60] to serve the inference requests.
Load Balancer: The master VMs runs a separate thread
to monitor the importance sampling of all individual model
pools. It keeps track of the number of requests served per
model in the past 5 minutes. This information is used for cal-
culating the weights per model for autoscaling decisions. We
integrate a mongodb [21] database in the master node to main-
tain all information about procured instances, spot-instance
price list, and instance utilization. The load prediction model
resides in the master VM which constantly records the arrival
rate in adjacent windows. Recall that the details of the pre-
diction were described in Section 4.2.2. The DeepAREst [4]
model was trained using Keras [22] and Tensorflow, over
100 epochs with 2 layers, 32 neurons and a batch-size of 1.
Model Cache: We keep track of the model selected for en-
sembling on a per request constraint basis. The constraints are
defined as <latency,accuracy> pair. The queries arriving
with similar constraints can read the model cache to avoid
re-computation for selecting the models. The model cache
is implemented as a hash-map using Redis [16] in-memory
key-value store for fast access.
Constraint specification: We expose a simple API to de-
velopers, where they can specify the type of inference task
(e.g., classification) along with the <latency,accuracy>
constraints. Developers also need to indicate the primary ob-
jective between these two constraints. Cocktail automatically

Dataset Application Classes Train-set Test-set
ImageNet [29] Image 1000 1.2M 50K

CIFAR-100 [50] Image 100 50K 10K
SST-2 [72] Text 2 9.6K 1.8K

SemEval [66] Text 3 50.3K 12.2K

Table 5: Benchmark Applications and datasets.

chooses a set of single or ensemble models required to meet
the developer specified constraints.
Discussion: Our accuracy and latency constraints are limited
to the measurements from the available pretrained models.
Note that changing the models or/and framework would lead
to minor deviations. While providing latency and top-1% ac-
curacy of the pretrained models is an offline step in Cocktail,
we can calculate these values through one-time profiling and
use them in the framework. All decisions related to VM au-
toscaling, bin-packing and load-prediction are reliant on the
centralized mongodb database, which can become a potential
bottleneck in terms of scalability and consistency. This can be
mitigated by using fast distributed solutions like Redis [16]
and Zookeeper [46]. The DeepARest model is pre-trained
using 60% of the arrival trace. For varying load patterns,
the model parameters can be updated by re-training in the
background with new arrival rates.

5.2 Evaluation Methodology

We evaluate our prototype implementation on AWS EC2 [8]
platforms. Specifically, we use C5.xlarge, 2xlarge,
4xlarge, 8xlarge for CPU instances and p2.xlarge for
GPU instances.
Load Generator: We use different traces which are given
as input to the load generator. Firstly, we use real-world re-
quest arrival traces from Wikipedia [76], which exhibit typical
characteristics of ML inference workloads as it has recurring
diurnal patterns. The second trace is production twitter [48]
trace which is bursty with unexpected load spikes. We use
the first 1 hour sample of both the traces and they are scaled
to have an average request rate of 50 req/sec.
Workload: As shown in Table 5 we use image-classification
and Sentiment Analysis (text) applications with two datasets
each for our evaluation. Sentiment analysis outputs the sen-
timent of a given sentence as positive negative and (or) neu-
tral. We use 9 different prominently used text-classification
models from transformers library [81] (details available in
appendix) designed using Google BERT [30] architecture
trained on SST [72] and SemEval [66] dataset. Each request
from the load-generator is modelled after a query with spe-
cific <latency,accuracy> constraints. The queries consist
of images or sentences, which are randomly picked from the
test dataset. In our experiments, we use five different types of
these constraints.

As an example for the Imagenet dataset shown in Figure 6,
each constraint is a representative of <latency, accuracy> com-
bination offered by single models (shown in Table 1). We
use one constraint (blue dots) each from five different regions

1048 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/jashwantraj92/cocktail
https://github.com/jashwantraj92/cocktail

0

100

200

300

400

70 75 80 85

La
te

nc
y

(m
s)

Accuracy (%)

Const1 Const2 Const3 Const4 Const5

Figure 6: Constraints used in our workloads.

(categorized by dotted lines) picked in the increasing order
of accuracy. Each of these picked constraints (named const1
- const5 in the Figure) represents a single baseline model,
whose corresponding ensemble size ranges from small (2) to
large (10), as shown in Table 3. Note that the latency is the
raw model execution latency, and does not include the addi-
tional network-transfer overheads incurred. We picked the
constraints using a similar procedure by ordering constraints
across five different categories for CIFAR-100, SST-2 and
SemEval (twitter tweets) datasets. The list of models used
for them are given in the Appendix. We model two different
workload mixes by using a combination of these five query
constraint types. Based on the decreasing order of accuracy,
we categorize them into Strict and Relaxed workloads.

5.2.1 Evaluation Metrics

Most of our evaluations of Cocktail for image-classification
are performed using the Imagenet dataset. To further demon-
strate the sensitivity of Cocktail to dataset and applicability
to other classification applications, we also evaluate it us-
ing CIFAR-100 and Sentiment-Analysis application. We use
three important metrics: response latency, cost and accuracy
for evaluating and comparing our design to other state-of-
the-art systems. The response latency metric includes model
inference latency, communication/network latency and syn-
chronization overheads. Queries that do not meet response
latency requirements (>700ms) are considered as SLO vio-
lations. The cost metric is the billing cost from AWS, and
the accuracy metric is measured as the percentage of requests
that meet the target accuracy requirements.

We compare these metrics for Cocktail against (i) In-
Faas [83], which is our baseline that employs single model
selection policy; (ii) Clipper [27], which uses static full model
selection policy (analogous to AWS AutoGluon); and (iii)
Clipper-X which is an enhancement to Clipper with a simple
model selection (drop one model at a time) that does not uti-
lize the mode-based policy enforced in Cocktail. Both InFaas
and Clipper share Cocktail’s implementation setup to ensure
a fair comparison with respect to our design and execution
environment. For instance, both Clipper and InFaas employ
variants of a reactive autoscaler as described in Section 4.2.2.
However, in our setup, both benefit from the distributed au-
toscaling and prediction policies, thus eliminating variability.
Also note that InFaas is deployed using OnDemand instances,
while both Clipper and Cocktail use spot instances.

6 Analysis of Results
This section discusses the experimental results of Cocktail
using the Wiki and Twitter traces. To summarize the overall
results, Cocktail providing 2× reduction in latency, while
meeting the accuracy for up-to 96% of the requests under
reduced deployment cost by 1.4×, when compared to InFaaS
and Clipper.

6.1 Latency, Accuracy and Cost Reduction
Latency Distribution: Figure 7 shows the distribution of to-
tal response latency in a standard box-and-whisker plot. The
boundaries of the box-plots depict the 1st quartile (25th per-
centile (PCTL)) and 3rd quartile (75th PCTL), the whiskers
plot the minimum and maximum (tail) latency and the middle
line inside the box depict the median (50 PCTL). The total
response latency includes additional 200-300ms incurred for
query serialization and data transfer over network. It can
be seen that the maximum latency of Cocktail is similar to
the 75th PCTL latency of InFaas. This is because the single
model inference have up to 2x higher latency to achieve higher
accuracy. Consequently, this leads to 35% SLO violations
for InFaas in the case of Strict workload. In contrast, both
Cocktail and Clipper can reach the accuracy at lower latency
due to ensembling, thus minimizing SLO violations to 1%.

Also, the tail latency is higher for Twitter trace (Figure 7c,
7d) owing to its bursty nature. Note that the tail latency
of Clipper is still higher than Cocktail because Clipper
ensembles more models than Cocktail, thereby resulting in
straggler tasks in the VMs. The difference in latency between
Cocktail and InFaas is lower for Relaxed workload when
compared to Strict workload (20% lower in tail). Since the
Relaxed workload has much lower accuracy constraints,
smaller models are able to singularly achieve the accuracy
requirements at lower latency.

Accuracy violations: The accuracy is mea-
sured as a moving window average with
size 200 for all the requests in the workload.

Accuracy Met (%)Scheme Strict Relaxed
InFaas 21 71
Clipper 47 89
Cocktail 56 96

Table 6: Requests meeting target
accuracy averaged for both Trace.

Both Clipper and Cock-
tail can meet the ac-
curacy for 56% of re-
quests, which is 26%
and 9% more than In-
Faas and Clipper re-
spectively. This is be-
cause, intuitively ensembling leads to higher accuracy than
single models. However, Cocktail is still 9% better than Clip-
per because the class-based weighted voting, is efficient in
breaking ties when compared to weighting averaging used in
Clipper. Since majority voting can include ties in votes, we
analyzed the number of ties, which were correctly predicted
for all the queries. Cocktail was able to deliver correct predic-
tions for 35% of the tied votes, whereas breaking the ties in
Clipper led only to 20% correct predictions.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1049

InFaas Clipper Cocktail
Policy

0

500

1000

1500

Re
sp

. L
at

en
cy

 (m
s)

(a) Wiki-trace: Strict workload.

InFaas Clipper Cocktail
Policy

0

500

1000

1500

Re
sp

. L
at

en
cy

 (m
s)

(b) Wiki-trace: Relaxed workload.

InFaas Clipper Cocktail
Policy

0

500

1000

1500

La
te
nc
y

(c) Twitter-trace: Strict workload.

InFaas Clipper Cocktail
Policy

0

500

1000

1500

Re
sp

. L
at

en
cy

 (m
s)

(d) Twitter-trace: Relaxed workload.

Figure 7: Latency Distribution of InFaas, Clipper and Cocktail for two workload mixes using both Wiki and Twitter traces.

Strict Relaxed0

20

40

60

80

Co
st
($
)

InFaas Clipper Clipper-X Cocktail

(a) Wiki Trace.

Strict Relaxed0

50

100

Co
st
($
)

InFaas Clipper Clipper-X Cocktail

(b) Twitter Trace.

Figure 8: Cost savings of Cocktail compared to three schemes.

Const1 Const2 Const3 Const4
Query

0

5

10

#M
od

el
s

Clipper Clipper-X Cocktail

(a) Average number of models
used in the ensemble.

IR
V2

DN
et
20

1
NA

SM
ob

DN
et
12

1
Xc
ep

MN
et

In
ce
p

MN
et
V2

RN
et
50

V2
RN

et
50

Model

0

50

100

Im
po

rta
nc
e(
%
)

(b) Distribution of requests served
by each individual model.

Figure 9: Benefits of dynamic model selection policy.

Note that, changing the target accuracy to tolerate a 0.5%
loss, increases the percentage of requests that meet accuracy
to 81% for Cocktail, when compared to 61% for InFaas.
The requests meeting accuracy are generally higher for the
Relaxed workload because the target accuracy is much lower.
Overall, Cocktail was able to deliver an accuracy of 83%
and 79.5% on average for the Strict and Relaxed workloads,
respectively. This translates to 1.5% and 1% better accuracy
than Clipper and InFaas. We do not plot the results for
Clipper-X, which achieves similar accuracy to Cocktail, but
uses more models as explained in Section 6.2.1.

Cost Comparison: Figure 8 plots the cost savings of
Cocktail when compared to InFaas, Clipper and Clipper-X
policies. It can be seen that, Cocktail is up to 1.45× more
cost effective than InFaas for Strict workload. In addition,
Cocktail reduces cost by 1.35× and 1.27× compared to
Clipper and Clipper-X policies, owing to its dynamic model
selection policy, which minimizes the resource footprint of
ensembling. On the other hand, Clipper uses all models
in ensemble and the Clipper-X policy does not right size
the models as aggressively as Clipper, hence they are more
expensive. Note that, all the schemes incur higher cost for
twitter trace (Figure 8b) compared to wiki trace (Figure 8a).
This is because the twitter workload is bursty, thereby leading
to intermittent over-provisioned VMs.

6.2 Key Sources of Improvements
The major improvements in terms of cost, latency, and accu-

racy in Cocktail are explained below. For brevity in explana-
tion, the results are averaged across Wiki and Twitter traces
for strict workload.

6.2.1 Benefits from dynamic model selection

Figure 9a plots the average number of models used for queries
falling under the first four different constraint (const) types.
Here, Cocktail reduces the number of models by up to 55%
for all four query types. This is because our dynamic pol-
icy ensures that the number of models are well within N/2
most of the time, whereas the Clipper-X policy does not ag-
gressively scale down models. Clipper, on the other hand,
is static and always uses all the models. The percentage of
model-reduction is lower for Const2, 3 and 4 because, the
total models used in the ensemble is less than Const1 (8, 7
and 6 models, respectively). Still, the savings in terms of
cost will be significant because even removing one model
from the ensemble amounts to ∼20% cost savings in the long
run (Clipper vs Clipper-X ensemble in Figure 8). Thus, the
benefits of Cocktail are substantial for large ensembles while
reducing the number of models for medium-sized ensembles.

Figure 9b shows the breakdown of the percentage of re-
quests (Const1) served by the each model. As seen, Incep-
tionResNetV2, Densenet-201, Densenet121, NasnetMobile
and Xception are the top-5 most used models in the ensem-
ble. Based on Table 1, if we had statically taken the top N/2
most accurate models, NasNetmobile would not have been
included in the ensemble. However, based on the input im-
ages sent in each query, our model selection policy has been
able to identify NasNetMobile to be a significantly contribut-
ing model in the ensemble. Further, the other 5 models are
used by up to 25% of the images. Not including them in the
ensemble would have led to severe loss in accuracy. But, our
dynamic policy with the class-based weighted voting, adapts
to input images in a given interval by accurately selecting the
best performing model for each class. To further demonstrate
the effectiveness of our dynamic model selection,

Figure 10b,10c plots the number models in every sampling
interval along with cumulative accuracy and window accuracy
within each sampling interval for three schemes. We observe
that Cocktail can effectively scale up and scale down the mod-
els while maintaining the cumulative accuracy well within the
threshold. More than 50% of the time the number of models
are maintained between 4 to 5, because the dynamic policy is
quick in detecting accuracy failures and recovers immediately

1050 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Clipper (b) Clipper-X (c) Cocktail

Figure 10: Figures (a), (b) and (c) shows the number of models used in ensemble with corresponding cumulative accuracy and window accuracy
over a 1 hour period for requests under Const1. Figure (d) shows the effects of distributed autoscaling with importance sampling.

Strict Relaxed0

25

50

75

#V
M
s

InFaas Clipper Clipper-X Cocktail

(a) Wiki Trace.

Strict Relaxed0

25

50

75

#V
M
s

InFaas Clipper Clipper-X Cocktail

(b) Twitter Trace.

Figure 11: Number of VMs spawned for all four schemes.

0 1000 2000 3000
Time interval (10s)

0

50

100

#V
M

s

Bline model1 model2 model3

(a) Cumulative #VMs.

0 25 50 75
Time interval (10s)

79
80
81
82

Ac
cu

ra
cy

BL1
BL2

BL3
const1

const2 const3

(b) Failure Analysis.

Figure 12: Sensitivity analysis of VMs.

by scaling up models. However, Clipper-X does not scale
down models as frequently as Cocktail, while ensuring similar
accuracy. Clipper is less accurate than Cocktail and further it
uses all 10 models throughout.

6.2.2 Benefits from Autoscaling

Figure 11 plots the reduction in the number of VMs used by all
four schemes. It can be seen that both Cocktail and Clipper-X
spawn 49% and 20% fewer VMs than Clipper for workload-1
on Twitter trace. Cocktail spawns 29% lesser VMs on top of
Clipper-X, because it is not aggressive enough like Cocktail
to downscale more models at every interval. It is to be noted
that the savings are lower for Relaxed workload because, the
number of models in the ensemble are inherently low, thus
leading to reduced benefits from scaling down the models.
Intuitively, InFaas has the least number of VMs spawned
because it does not ensemble models. Cocktail spawns upto
50% more VMs than InFaas, but in turns reduces accuracy
loss by up to 96%.

To further capture the benefits of the weighted autoscal-
ing policy, Figure 12a plots the number of VMs spawned
over time for the top-3 most used models in the ensemble
for Const1. The Bline denotes number of VMs that would
be spawned without applying the weights. Not adopting an
importance sampling based weighted policy would result in
equivalent number of VMs as the Bline for all models. How-
ever, since Cocktail exploits importance sampling by keeping
track of the frequency in which models are selected, the num-

ber of VMs spawned for model1, model2 and model-3 is upto
3× times lesser than uniform scaling. Figure 9b shows the
most used models in decreasing order of importance. The au-
toscaling policy effectively utilizes this importance factor in
regular intervals of 5 minutes. Despite using multiple models
for a single inference, importance sampling combined with
aggressive model pruning, greatly reduces the resource foot-
print which directly translates to the cost savings in Cocktail.

6.2.3 Benefits of Transient VMs

The cost-reductions in Cocktail are akin to cost-savings of
transient VMs compared to On-Demand (OD) VMs. We pro-
file the spot price of 4 types of C5 EC2 VMs over a 2-week
period in August 2020. It was seen that, the spot instance
prices have predictable fluctuations. When compared to the
OD price , they were up to 70% cheaper. This price gap is cap-
italized in Cocktail to reduce the cost of instances consumed
by ensembling. Note that, we set the bidding price conser-
vatively to 40% of OD. Although, Cocktail spawns about
50% more VMs than InFaas, the high Pf of small models
and spot-instance price reductions combined with autoscaling
policies lead to the overall 30-40% cost savings.

6.3 Sensitivity Analysis

In this section, we analyze the sensitivity of Cocktail with
respect to various design choices which include (i) sampling
interval of the accuracy measurements, (ii) spot-instance fail-
ure rate and (iii) type of datasets and applications.

6.3.1 Sampling Interval

To study the sensitivity with respect to the sampling interval
for measure accuracy loss/gain, we use four different intervals
of 10s, 30s, 60s and 120s. Figure 13 plots the average number
of models (bar- left y-axis) and cumulative accuracy (line-
right y-axis) for the different sampling intervals for queries
with three different constraints. It can be seen that the 30s
interval strikes the right balance with less than 0.2% loss in
accuracy and has average number models much lesser than
other intervals. This is because, increasing the interval leads
to lower number of scale down operations, thus resulting in a
bigger ensemble. As a result, the 120s interval has the highest
number of models.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1051

10 30 60 120
Sampling-Interval

0

2

4

6
#M

od
el
s

82.25

82.50

82.75

Ac
cu
ra
cy

(a) Queries under Constraint-1.

10 30 60 120
Sampling-Interval

0

2

4

6

#M
od

el
s

81.0

81.2

81.4

Ac
cu
ra
cy

(b) Queries under Constraint-2.

10 30 60 120
Sampling-Interval

0

2

4

6

#M
od

el
s

79.0

79.2

79.4

Ac
cu
ra
cy

(c) Queries under Constraint-3.

Figure 13: Sensitivity analysis of model selection with respect to sampling interval. The average number of models is in primary axis and
cumulative accuracy in secondary axis.

6.3.2 Cocktail Failure Resilience

We use spot instances to host models in Cocktail. As previ-
ously discussed in Section 3, spot instances interruptions can
lead to intermittent loss in accuracy as certain models will be
unavailable in the ensemble. However for large ensembles
(5 models are more), the intermittent accuracy loss is very
low. Figure 12b plots the failure analysis results for top three
constraints by comparing the ensemble accuracy to the target
accuracy. The desired accuracy for all three constraints are
plotted as BL1, BL2 and BL3. We induce failures in the in-
stances using chaosmonkey [19] tool with a 20% failure proba-
bility. It can be seen that queries in all three constraints suffer
an intermittent loss in accuracy of 0.6% between the time
period 240s and 800s. Beyond 800s, they quickly recover
back to the required accuracy because additional instances are
spawned in place of failed instances. However, in the case of
InFaas, this would lead to 1% failed requests due to requests
being dropped from the failed instances.

An alternate solution would be to restart the queries in
running instances but that leads to increased latencies for the
1% requests. In contrast, Cocktail incurs a modest accuracy
loss of well within 0.6% and quickly adapts to reach the
target accuracy. Thus, Cocktail is inherently fault-tolerant
owing to the parallel nature in computing multiple inferences
for a single request. We observe similar accuracy loss or
lower for different probability failures of 5%, 10% and 25%,
respectively (results/charts omitted in the interest of space).
Discussion: For applications that are latency tolerant, we can
potentially redirect requests from failed instances to existing
instances, which would lead to increased tail latency. The
results we how are only for latency intolerant applications.
Note that, the ensembles used in our experiments are at-least
4 models or more. For smaller ensembles, instance failures
might lead to higher accuracy loss, but in our experiments,
single models typically satisfy their constraints.

6.3.3 Sensitivity to Constraints

Figure 14 plots the sensitivity of model selection policy un-
der a wide-range of latency and accuracy constraints. In
Figure 14a, we vary the latency under six different constant
accuracy categories. It can be seen that for fixed accuracy of
72%, 78% and 80%, the average number of models increase
with increase in latency, but drops to 1 for the highest latency.
Intuitively, singe large models with higher latency can satisfy

0
2
4
6
8
10

0

100

200

300

400

72 78 80 81.5 83.5 85

Av
eg

ae
#M

od
el

s

La
te

nc
y

(m
s)

Accuracy (%)

Latency Average #Models

(a) Fixed Accuracy.

0

2

4

6

8

60

70

80

90

60 70 100 120 150 350

Av
er

ag
e

#M
od

el
s

Ac
cu

ra
cy

 (%
)

Latency (ms)

accuracy Average #Model

(b) Fixed Latency.

Figure 14: Sensitivity Constraints under fixed latency and accuracy.
Bar graphs (latency) plotted using primary y-axis and line graph
(#models) plotted using secondary y-axis.

Const1 Const2 Const3 Const4
Query

0

5

10
#M

od
el
s

Clipper Clipper-X Cocktail

(a) Image Classification-Cifar-100.

Const1 Const2 Const3 Const4
Query

0.0

2.5

5.0

7.5

#M
od

el
s

Clipper Clipper-X Cocktail

(b) Sentiment analysis.

Figure 15: Average number of models used in the ensemble.

the accuracy, while short latency models need to be ensem-
bled to reach the same accuracy. For accuracy greater than
80%, the ensemble size drops with higher latencies. This is
because the models which offer higher accuracy are typically
dense and hence, smaller ensembles are sufficient. In Fig-
ure 14b, we vary the accuracy under six different constant
latency categories. It can be seen that for higher accuracies,
Cocktail tries to ensemble more models to reach the accuracy,
while for lower accuracy it resorts to using single models.

6.3.4 Sensitivity to Dataset

To demonstrate the applicability of Cocktail to multiple
datasets, we conducted similar experiments as elucidated in
Section 5.2.1 using the CIFAR-100 dataset [50]. It comprises
of 100 distinct image classes and we trained 11 different
models including the nine that are common from Table 1. Fig-
ure 15a plots the average number of models used by the three
policies for the top four constraints. It can be seen that Cock-
tail shows similar reduction (as Imagenet) while using only
4.4 models on average. As expected, Clipper and Clipper-X
use more models than Cocktail (11 and 5.4, respectively) due
to non-aggressive scaling down of the models used.

Figure 16a plots the latency reduction and accuracy boost
when compared to InFaaS (baseline). While able to reduce
60% of the models used in the ensemble, Cocktail also re-
duces latency by up to 50% and boosts accuracy by up to
1.2%. Cocktail was also able to deliver modest accuracy gain

1052 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Const1 Const2 Const3 Const4
Baseline

0

20

40

La
te
nc
y-
re
du

ct
io
n

0.50

0.75

1.00

Ac
cu
ra
cy
-G
ai
n

(a) Image Classification:Cifar100.

Const1 Const2 Const3 Const4
Baseline

0

10

20

30

La
te
nc
y-
re
du

ct
io
n

0.6

0.8

1.0

1.2

Ac
cu
ra
cy
-G
ai
n

(b) Sentiment Analysis.

Figure 16: Latency reduction (%) plotted as bar graph(primary y-
axis) and accuracy gains (%) plotted as line graph (secondary y-axis)
over InFaaS.

Strict Relaxed0

20

40

60

80

Co
st
($
)

InFaas Clipper Clipper-X Cocktail

(a) Wiki Trace.

Strict Relaxed0

25

50

75

100

Co
st
($
)

InFaas Clipper Clipper-X Cocktail

(b) Twitter Trace.

Figure 17: Cost savings of Cocktail for Sentiment Analysis.

of 0.5% than Clipper (not plotted). The accuracy gain seen
in CIFAR-100 is lesser than ImageNet dataset because the
class-based weighted voting works effectively when handling
large number of classes (100 in CIFAR vs 1000 in ImageNet).
Nevertheless, Cocktail is able to deliver the accuracy at 2x
lower latency than InFaaS and 1.35x lower cost than Clipper.

6.4 General Applicability of Cocktail

To demonstrate the general applicability of Cocktail to other
classification tasks, we evaluated Cocktail using a Sentiment
Analysis application for two datasets. The results reported
are averaged across both the datasets. Figure 15b plots the
average number of models used by the three policies for the
top four constraints. As shown for Const1, Cocktail shows
similar reduction (as image-classification) with only using
4.8 models on average, which is 40% and 26% lower than
Clipper and Clipper-X, respectively. Cocktail is also able to
reduce the number of models by 30% and 50% for medium
ensembles (Const2 & Const3) as well.

Figure 16b plots the latency reduction and accuracy gain,
compared to InFaaS (baseline). While being able to reduce
50% of the models used in the ensemble, Cocktail also re-
duces latency by up to 50% and improves accuracy by up
to 1.3%. Both Cocktail and Clipper deliver the same overall
accuracy (96%, 94.5%, 93.5%, and 92%)). Since sentiment
analysis only has 2-3 classes, there are no additional accuracy
gains by using the class-based weighted voting. However, the
model selection policy effectively switches between differ-
ent models based on the structure of input text (equivalent to
classes in images). For instance, complex sentences are more
accurately classified by denser models compared to smaller.
Despite the lower accuracy gains, Cocktail is able to reduce
the cost (Figure 17) of model-serving by 1.45× and 1.37×
for Wiki trace compared to InFaaS and Clipper, respectively.

7 Concluding Remarks
There is an imminent need to develop model serving systems
that can deliver highly accurate, low latency predictions at re-
duced cost. In this paper, we propose and evaluate Cocktail, a
cost-effective model serving system that exploits ensembling
techniques to meet high accuracy under low latency goals.
In Cocktail, we adopt a three-fold approach to reduce the
resource footprint of model ensembling. More specifically,
we (i) develop a novel dynamic model selection, (ii) design a
prudent resource management scheme that utilizes weighted
autoscaling for efficient resource allocation, and (iii) lever-
age transient VM instances to reduce the deployment costs.
Our results from extensive evaluations using both CPU and
GPU instances on AWS EC2 cloud platform demonstrate that
Cocktail can reduce deployment cost by 1.4×, while reducing
latency by 2× and satisfying accuracy for 96% of requests,
compared to the state-of-the-art model-serving systems.

Acknowledgments
We are indebted to our shepherd Manya Ghobadi, the anony-
mous reviewers and Anup Sarma for their insightful com-
ments to improve the clarity of the presentation. Special
mention to Nachiappan Chidambaram N. for his intellec-
tual contributions. This research was partially supported
by NSF grants #1931531, #1955815, #1763681, #1908793,
#1526750, #2116962, #2122155, #2028929 ,and we thank
NSF Chameleon Cloud project CH-819640 for their generous
compute grant. All product names used in this publication
are for identification purposes only and may be trademarks of
their respective companies.

References
[1] Martín Abadi. Tensorflow: learning functions at scale. In Acm Sigplan

Notices. ACM, 2016.
[2] Deepak Agarwal, Bo Long, Jonathan Traupman, Doris Xin, and Liang

Zhang. Laser: A scalable response prediction platform for online
advertising. In Proceedings of the 7th ACM international conference
on Web search and data mining, pages 173–182, 2014.

[3] Ahmed Ali-Eldin, Jonathan Westin, Bin Wang, Prateek Sharma, and
Prashant Shenoy. Spotweb: Running latency-sensitive distributed web
services on transient cloud servers. In Proceedings of the 28th Inter-
national Symposium on High-Performance Parallel and Distributed
Computing, pages 1–12, 2019.

[4] Amazon. Deepar estimator. https://docs.aws.amazon.com/
sagemaker/latest/dg/deepar.html,February2020.

[5] Amazon. EC2 pricing. https://aws.amazon.com/ec2/pricing/.
[6] Amazon. Sagemaker. https://aws.amazon.com/sagemaker/, February

2018.
[7] Amazon. Azure Low priority batch VMs., February 2018.

https://docs.microsoft.com/en-us/azure/batch/batch-low-pri-vms .
[8] Amazon. EC2 C5 Instances., February 2018.

https://aws.amazon.com/ec2/instance-types/c5/ .
[9] Amazon. Google Preemptible VMs., February 2018.

https://cloud.google.com/preemptible-vms .
[10] Azure. Machine Learning as a Service., February 2018.

https://azure.microsoft.com/en-us/pricing/details/machine-learning-
service/ .

[11] Azure. Ensembling in Azure ML Studio., February 2020.
https://docs.microsoft.com/en-us/azure/machine-learning/studio-
module-reference/multiclass-decision-forest .

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1053

 https://docs.aws.amazon.com/sagemaker/latest/dg/deepar.html , February 2020
 https://docs.aws.amazon.com/sagemaker/latest/dg/deepar.html , February 2020

[12] Ataollah Fatahi Baarzi, Timothy Zhu, and Bhuvan Urgaonkar. Burscale:
Using burstable instances for cost-effective autoscaling in the public
cloud. In Proceedings of the ACM Symposium on Cloud Computing,
New York, NY, USA, 2019. Association for Computing Machinery.

[13] Marian Stewart Bartlett, Gwen Littlewort, Mark Frank, Claudia Lain-
scsek, Ian Fasel, and Javier Movellan. Recognizing facial expression:
machine learning and application to spontaneous behavior. In 2005
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05), volume 2, pages 568–573. IEEE, 2005.

[14] Eric Bauer and Ron Kohavi. An empirical comparison of voting
classification algorithms: Bagging, boosting, and variants. Machine
learning, 36(1-2):105–139, 1999.

[15] William H Beluch, Tim Genewein, Andreas Nürnberger, and Jan M
Köhler. The power of ensembles for active learning in image classifi-
cation. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 9368–9377, 2018.

[16] Josiah L Carlson. Redis in action. Manning Publications Co., 2013.
[17] Rich Caruana, Alexandru Niculescu-Mizil, Geoff Crew, and Alex

Ksikes. Ensemble selection from libraries of models. In Proceedings of
the twenty-first international conference on Machine learning, page 18,
2004.

[18] Jesús Cerquides and Ramon López De Mántaras. Robust bayesian
linear classifier ensembles. In European Conference on Machine
Learning, pages 72–83. Springer, 2005.

[19] Michael Alan Chang, Bredan Tschaen, Theophilus Benson, and Lau-
rent Vanbever. Chaos monkey: Increasing sdn reliability through
systematic network destruction. In Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Communication, pages
371–372, 2015.

[20] Lingjiao Chen, Matei Zaharia, and James Zou. Frugalml: How to use
ml prediction apis more accurately and cheaply. In Advances in Neural
Information Processing Systems (NeurIPS), 2020.

[21] Kristina Chodorow. MongoDB: the definitive guide: powerful and
scalable data storage. " O’Reilly Media, Inc.", 2013.

[22] Francois Chollet. Deep Learning mit Python und Keras: Das Praxis-
Handbuch vom Entwickler der Keras-Bibliothek. MITP-Verlags GmbH
& Co. KG, 2018.

[23] Andrew Chung, Jun Woo Park, and Gregory R. Ganger. Stratus:
Cost-aware container scheduling in the public cloud. In SoCC, 2018.

[24] Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks
for youtube recommendations. In Proceedings of the 10th ACM con-
ference on recommender systems, pages 191–198, 2016.

[25] Daniel Crankshaw, Peter Bailis, Joseph E Gonzalez, Haoyuan Li, Zhao
Zhang, Michael J Franklin, Ali Ghodsi, and Michael I Jordan. The
missing piece in complex analytics: Low latency, scalable model man-
agement and serving with velox. arXiv preprint arXiv:1409.3809,
2014.

[26] Daniel Crankshaw, Gur-Eyal Sela, Corey Zumar, Xiangxi Mo, Joseph E.
Gonzalez, Ion Stoica, and Alexey Tumanov. Inferline: ML inference
pipeline composition framework. CoRR, abs/1812.01776, 2018.

[27] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J. Franklin,
Joseph E. Gonzalez, and Ion Stoica. Clipper: A low-latency online pre-
diction serving system. In 14th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 17), pages 613–627, Boston,
MA, March 2017. USENIX Association.

[28] Deepstudio. Deep Learning Dtudio, February 2020.
https://docs.deepcognition.ai/ .

[29] J. Deng, W. Dong, R. Socher, L. Li, and and. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition, June 2009.

[30] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language un-
derstanding, 2019.

[31] Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro
Larroy, Mu Li, and Alexander Smola. Autogluon-tabular: Robust and
accurate automl for structured data, 2020.

[32] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng,
Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al.
Codebert: A pre-trained model for programming and natural languages.
arXiv preprint arXiv:2002.08155, 2020.

[33] Mikel Galar, Alberto Fernandez, Edurne Barrenechea, Humberto
Bustince, and Francisco Herrera. A review on ensembles for the
class imbalance problem: Bagging-, boosting-, and hybrid-based ap-
proaches. IEEE Transactions on Systems, Man, and Cybernetics, Part
C (Applications and Reviews), 42(4):463–484, 2012.

[34] Arpan Gujarati, Sameh Elnikety, Yuxiong He, Kathryn S. McKinley,
and Björn B. Brandenburg. Swayam: Distributed Autoscaling to
Meet SLAs of Machine Learning Inference Services with Resource
Efficiency. In USENIX Middleware Conference, 2017.

[35] Arpan Gujarati, Reza Karimi, Safya Alzayat, Antoine Kaufmann, Ymir
Vigfusson, and Jonathan Mace. Serving dnns like clockwork: Perfor-
mance predictability from the bottom up. In 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 20), Banff,
Alberta, November 2020. USENIX Association.

[36] Jashwant Raj Gunasekaran, Prashanth Thinakaran, Nachiappan
C.Nachiappan, Mahmut Taylan Kandemir, and Chita R. Das. Fifer:
Tackling Resource Underutilization in the Serverless Era. In USENIX
Middleware Conference, 2020.

[37] Jashwant Raj Gunasekaran, Prashanth Thinakaran, Mahmut Taylan
Kandemir, Bhuvan Urgaonkar, George Kesidis, and Chita Das. Spock:
Exploiting serverless functions for slo and cost aware resource procure-
ment in public cloud. In IEEE CLOUD, 2019.

[38] Jashwant Raj Gunasekaran, Prashanth Thinakaran, Cyan Subhra
Mishra, Mahmut Taylan Kandemir, and Chita R. Das. Towards
designing a self-managed machine learning inference serving system
inpublic cloud, 2020.

[39] U. Gupta, S. Hsia, V. Saraph, X. Wang, B. Reagen, G. Wei, H. S.
Lee, D. Brooks, and C. Wu. Deeprecsys: A system for optimiz-
ing end-to-end at-scale neural recommendation inference. In 2020
ACM/IEEE 47th Annual International Symposium on Computer Archi-
tecture (ISCA), pages 982–995, 2020.

[40] Rui Han, Moustafa M. Ghanem, Li Guo, Yike Guo, and Michelle
Osmond. Enabling cost-aware and adaptive elasticity of multi-tier
cloud applications. Future Gener. Comput. Syst., 32(C):82–98, March
2014.

[41] Aaron Harlap, Andrew Chung, Alexey Tumanov, Gregory R. Ganger,
and Phillip B. Gibbons. Tributary: spot-dancing for elastic services
with latency SLOs. In ATC, 2018.

[42] Aaron Harlap, Alexey Tumanov, Andrew Chung, Gregory R. Ganger,
and Phillip B. Gibbons. Proteus: Agile ML Elasticity Through Tiered
Reliability in Dynamic Resource Markets. In Eurosys, 2017.

[43] Johann Hauswald, Michael A. Laurenzano, Yunqi Zhang, Cheng Li,
Austin Rovinski, Arjun Khurana, Ronald G. Dreslinski, Trevor Mudge,
Vinicius Petrucci, Lingjia Tang, and Jason Mars. Sirius: An open
end-to-end voice and vision personal assistant and its implications for
future warehouse scale computers. In ASPLOS, 2015.

[44] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhulgakov,
M. Fawzy, B. Jia, Y. Jia, A. Kalro, J. Law, K. Lee, J. Lu, P. Noordhuis,
M. Smelyanskiy, L. Xiong, and X. Wang. Applied machine learning
at facebook: A datacenter infrastructure perspective. In 2018 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), pages 620–629, Feb 2018.

[45] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen,
Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vi-
jay Vasudevan, et al. Searching for mobilenetv3. In Proceedings of the
IEEE International Conference on Computer Vision, pages 1314–1324,
2019.

[46] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin
Reed. Zookeeper: Wait-free coordination for internet-scale systems.
In USENIX annual technical conference, 2010.

[47] Minoru Kawashima, Charles E Dorgan, and John W Mitchell. Hourly
thermal load prediction for the next 24 hours by arima, ewma, lr and

1054 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

an artificial neural network. Technical report, American Society of
Heating, Refrigerating and Air-Conditioning Engineers . . . , 1995.

[48] Abeer Abdel Khaleq and Ilkyeun Ra. Cloud-based disaster manage-
ment as a service: A microservice approach for hurricane twitter data
analysis. In GHTC, 2018.

[49] J Zico Kolter and Marcus A Maloof. Dynamic weighted majority: An
ensemble method for drifting concepts. Journal of Machine Learning
Research, 8(Dec):2755–2790, 2007.

[50] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-100 (cana-
dian institute for advanced research), 2010. http://www.cs.toronto.
edu/~kriz/cifar.html.

[51] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gim-
pel, Piyush Sharma, and Radu Soricut. Albert: A lite bert for
self-supervised learning of language representations. arXiv preprint
arXiv:1909.11942, 2019.

[52] Yunseong Lee, Alberto Scolari, Byung-Gon Chun, Marco Domenico
Santambrogio, Markus Weimer, and Matteo Interlandi. PRETZEL:
Opening the black box of machine learning prediction serving systems.
In 13th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 18), pages 611–626, Carlsbad, CA, October 2018.
USENIX Association.

[53] Romain Lerallut, Diane Gasselin, and Nicolas Le Roux. Large-scale
real-time product recommendation at criteo. In Proceedings of the 9th
ACM Conference on Recommender Systems, pages 232–232, 2015.

[54] Weibo Liu, Zidong Wang, Xiaohui Liu, Nianyin Zeng, Yurong Liu, and
Fuad E Alsaadi. A survey of deep neural network architectures and
their applications. Neurocomputing, 234:11–26, 2017.

[55] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoy-
anov. Roberta: A robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692, 2019.

[56] Zhenyu Lu, Xindong Wu, Xingquan Zhu, and Josh Bongard. Ensemble
pruning via individual contribution ordering. In Proceedings of the
16th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’10, page 871–880, New York, NY, USA, 2010.
Association for Computing Machinery.

[57] Cyan Subhra Mishra, Jack Sampson, Mahmut Taylan Kandemir, and
Vijaykrishnan Narayanan. Origin: Enabling on-device intelligence
for human activity recognition using energy harvesting wireless sensor
networks. In 2021 Design, Automation Test in Europe Conference
Exhibition (DATE), pages 1414–1419, 2021.

[58] Soo-Jin Moon, Jeffrey Helt, Yifei Yuan, Yves Bieri, Sujata Banerjee,
Vyas Sekar, Wenfei Wu, Mihalis Yannakakis, and Ying Zhang. Alem-
bic: Automated model inference for stateful network functions. In 16th
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 19), pages 699–718, Boston, MA, February 2019. USENIX
Association.

[59] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri,
Nikhil R Devanur, Gregory R Ganger, Phillip B Gibbons, and Matei
Zaharia. Pipedream: generalized pipeline parallelism for dnn training.
In Proceedings of the 27th ACM Symposium on Operating Systems
Principles, pages 1–15, 2019.

[60] Christopher Olston, Noah Fiedel, Kiril Gorovoy, Jeremiah Harmsen,
Li Lao, Fangwei Li, Vinu Rajashekhar, Sukriti Ramesh, and Jordan
Soyke. Tensorflow-serving: Flexible, high-performance ml serving.
arXiv preprint arXiv:1712.06139, 2017.

[61] Nikunj C Oza. Online bagging and boosting. In 2005 IEEE interna-
tional conference on systems, man and cybernetics, volume 3, pages
2340–2345. Ieee, 2005.

[62] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, et al. Pytorch: An imperative style, high-performance
deep learning library. In Advances in neural information processing
systems, pages 8026–8037, 2019.

[63] Heyang Qin, Syed Zawad, Yanqi Zhou, Lei Yang, Dongfang Zhao, and
Feng Yan. Swift machine learning model serving scheduling: a region

based reinforcement learning approach. In Proceedings of the Inter-
national Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1–23, 2019.

[64] Xueheng Qiu, Le Zhang, Ye Ren, Ponnuthurai N Suganthan, and Gehan
Amaratunga. Ensemble deep learning for regression and time series
forecasting. In 2014 IEEE symposium on computational intelligence
in ensemble learning (CIEL), pages 1–6. IEEE, 2014.

[65] Atul Rahman, Jongeun Lee, and Kiyoung Choi. Efficient fpga acceler-
ation of convolutional neural networks using logical-3d compute array.
In 2016 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 1393–1398. IEEE, 2016.

[66] Sara Rosenthal, Noura Farra, and Preslav Nakov. SemEval-2017 task 4:
Sentiment analysis in Twitter. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017), pages 502–518,
Vancouver, Canada, August 2017. Association for Computational
Linguistics.

[67] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf.
Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter.
arXiv preprint arXiv:1910.01108, 2019.

[68] Prateek Sharma, David Irwin, and Prashant Shenoy. Portfolio-driven
resource management for transient cloud servers. Proc. ACM Meas.
Anal. Comput. Syst., 1(1), June 2017.

[69] Prateek Sharma, Stephen Lee, Tian Guo, David Irwin, and Prashant
Shenoy. Spotcheck: Designing a derivative iaas cloud on the spot
market. In Proceedings of the Tenth European Conference on Computer
Systems, pages 1–15, 2015.

[70] Steven A Shaya, Neal Matheson, John Anthony Singarayar, Nikiforos
Kollias, and Jeffrey Adam Bloom. Intelligent performance-based prod-
uct recommendation system, October 5 2010. US Patent 7,809,601.

[71] Richard Socher, Yoshua Bengio, and Chris Manning. Deep learning for
nlp. Tutorial at Association of Computational Logistics (ACL), 2012.

[72] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D
Manning, Andrew Y Ng, and Christopher Potts. Recursive deep
models for semantic compositionality over a sentiment treebank. In
Proceedings of the 2013 conference on empirical methods in natural
language processing, pages 1631–1642, 2013.

[73] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking model scaling
for convolutional neural networks. arXiv preprint arXiv:1905.11946,
2019.

[74] P. Thinakaran, J. R. Gunasekaran, B. Sharma, M. T. Kandemir, and
C. R. Das. Phoenix: A constraint-aware scheduler for heteroge-
neous datacenters. In 2017 IEEE 37th International Conference on
Distributed Computing Systems (ICDCS), June 2017.

[75] P. Thinakaran, J. R. Gunasekaran, B. Sharma, M. T. Kandemir, and
C. R. Das. Kube-Knots: Resource Harvesting through Dynamic
Container Orchestration in GPU-based Datacenters. In CLUSTER,
2019.

[76] Guido Urdaneta, Guillaume Pierre, and Maarten Van Steen. Wikipedia
workload analysis for decentralized hosting. Computer Networks,
2009.

[77] Alexander Vezhnevets and Vladimir Vezhnevets. Modest adaboost-
teaching adaboost to generalize better. In Graphicon, pages 987–997,
2005.

[78] Jasper A Vrugt and Bruce A Robinson. Treatment of uncertainty using
ensemble methods: Comparison of sequential data assimilation and
bayesian model averaging. Water Resources Research, 43(1), 2007.

[79] Cheng Wang, Bhuvan Urgaonkar, Neda Nasiriani, and George Kesidis.
Using burstable instances in the public cloud: Why, when and how?
SIGMETRICS, June 2017.

[80] Wei Wang, Jinyang Gao, Meihui Zhang, Sheng Wang, Gang Chen,
Teck Khim Ng, Beng Chin Ooi, Jie Shao, and Moaz Reyad. Rafiki:
machine learning as an analytics service system. Proceedings of the
VLDB Endowment, 12(2):128–140, 2018.

[81] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond,
Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi
Louf, Morgan Funtowicz, et al. Huggingface’s transformers: State-of-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1055

http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html

the-art natural language processing. arXiv preprint arXiv:1910.03771,
2019.

[82] Carole-Jean Wu, David Brooks, Kevin Chen, Douglas Chen, Sy Choud-
hury, Marat Dukhan, Kim Hazelwood, Eldad Isaac, Yangqing Jia, Bill
Jia, et al. Machine learning at facebook: Understanding inference at the
edge. In 2019 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 331–344. IEEE, 2019.

[83] Neeraja J. Yadwadkar, Francisco Romero, Qian Li, and Christos
Kozyrakis. A case for managed and model-less inference serving.
In Proceedings of the Workshop on Hot Topics in Operating Systems,
New York, NY, USA, 2019. Association for Computing Machinery.

[84] Tien-Ju Yang, Andrew G. Howard, Bo Chen, Xiao Zhang, Alec Go,
Vivienne Sze, and Hartwig Adam. Netadapt: Platform-aware neural
network adaptation for mobile applications. CoRR, abs/1804.03230,
2018.

[85] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan
Salakhutdinov, and Quoc V Le. Xlnet: Generalized autoregressive pre-
training for language understanding. arXiv preprint arXiv:1906.08237,
2019.

[86] Chengliang Zhang, Minchen Yu, Wei Wang, and Feng Yan. Mark:
Exploiting cloud services for cost-effective, slo-aware machine learning
inference serving. In ATC, 2019.

[87] Honglei Zhuang, Chi Wang, and Yifan Wang. Identifying outlier arms
in multi-armed bandit. In Advances in Neural Information Processing
Systems, pages 5204–5213, 2017.

[88] Sheikh Ziauddin and Matthew N Dailey. Iris recognition performance
enhancement using weighted majority voting. In 2008 15th IEEE
International Conference on Image Processing, pages 277–280. IEEE,
2008.

Appendix
A Modeling of Ensembling
While performing an ensemble it is important to be sure that
we can reach the desired accuracy by combining more models.
In our design, we solve our first objective function (described
in Section 4.1) by combining all available models which
meet the latency SLO. To be sure that the combination will
give us the desired accuracy of the larger model, we try to
theoretically analyse the scenario. We formulate the problem
conservatively as following.

We perform an inference by ensembling ’N’ models, and
each of these models have accuracy ’a’. Therefore the prob-
ability of any model giving a correct classification is ’a’.
We assume the output to be correct if majority of them, i.e.
bN/2c+ 1 of them give the same result. Then, the final ac-
curacy of this ensemble would be the probability of at least
bN/2c+1 of them giving a correct result.

To we model this problem as a coin-toss problem involving
N biased coins with having probability of occurrence of head
to be a. Relating this to our problem, each coin represents
a model, and an occurrence of head represents the model
giving the correct classification. Hence, the problem boils
down to find the probability of at least bN/2c+1 heads when
all N coins are tossed together. This is a standard binomial
distribution problem and can be solved by using the following
formula:

Phead =
N

∑
i=bN

2 c+1

(
N
i

)
ai (1−a)(N−i).

To further quantify, let us consider the case where we need
to determine if we can reach the accuracy of NasNetLarge
(82%) by combining rest of the smaller models which have
lesser latency than NasNetLarge. We have 10 (therefore N =
10) such models and among them the least accurate model is
MobileNetV1 (accuracy 70%, therefore a = 0.70). We need to
find the probability of at least 6 of them being correct. Using
the equation above we find the probability to be

Phead =
10

∑
i=b 10

2 c+1=6

(
10
i

)
0.7i (1−0.7)(10−i) = 0.83

This corresponds to an accuracy of 83%, which is greater than
our required accuracy of 82%). Given all the other models
have higher accuracy, the least accuracy we can expect with
such an ensemble is 83%. This analysis forms the base of our
ensemble technique, and hence proving the combination of
multiple available models can be more accurate than the most
accurate individual model.

B Why DeepARest Model?
We quantitatively justify the choice of using DeepARest by
conducting a brick-by-brick comparison of the accuracy loss

1056 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

when compared with other state-of-the-art prediction models
used in prior work.

Table 4 shows the root mean squared error (RMSE) in-
curred by all the models. The ML models used in these
experiments are pre-trained with 60% of the Twitter arrival
trace. It is evident that the LSTM and DeepAREst have lowest
RMSE value. DeepARest is 10% better than LSTM model.
Since the primary contribution in Cocktail is to provide high
accuracy and low latency predictions at cheaper cost, appli-
cation developers can adapt the prediction algorithm to their
needs or even plug-in their own prediction models.

C System Overheads
We characterize the system-level overheads incurred due
to the design choices in Cocktail. The mongodb database
is a centralized server, which resides on the head-node.
We measure the overall average latency incurred due to all
reads/writes in the database, which is well within 1.5ms.
The DeepARest prediction model which is not in the critical
decision-making path runs as a background process incurring
2.2 ms latency on average. The weighted majority voting
takes 0.5ms and the model selection policy takes 0.7ms. The
time taken to spawn new VM takes about 60s to 100s de-
pending on the size of the VM instance. The time taken to
choose models from the model-cache is less than 1ms. The
end-to-end response time to send the image to a worker VM
and get the prediction back, was dominated by about 300ms
(at maximum) of payload transfer time.

D Instance configuration and Pricing
Instance vCPUs Memory Price
C5a.xlarge 4 8 GiB $0.154
C5a.2xlarge 8 16 GiB $0.308
C5a.4xlarge 16 32 GiB $0.616
C5a.8xlarge 32 64 GiB $1.232

Table 7: Configuration and Pricing for EC2 C5 instances.

E CIFAR-100 and BERT Models
Table 8 shows the different models available for image predic-
tion, that are pretrained on Keras using CIFAR-100 dataset.

Model Params
(M)

Top-1
Accuracy(%)

Latency
(ms) Pf

Albert-base [51] 11 91.4 55 7
CodeBert [32] 125 89 79 6
DistilBert [67] 66 90.6 92 5
Albert-large 17 92.5 120 4
XLNet [85] 110 94.6 165 3
Bert [30] 110 92 185 3
Roberta [55] 355 94.3 200 2
Albert-xlarge 58 93.8 220 1
Albert-xxlarge 223 95.9 350 1

Table 9: Pretrained models for Sentiment Analysis using BERT.

Similarly Table 9 shows the different models trained for
BERT-based sentiment analysis on twitter dataset.

Model Params (M) Top1 Accuracy % Latency (ms) Pf
Squeezenet 4,253,864 70.10 43.45 10
MobileNEt V2 4,253,864 68.20 41.5 10
Inception V4 23,851,784 76.74 74 6
Resnet50 95,154,159 79.20 98.22 5
ResNet18 44,964,665 76.26 35 6
DenseNet-201 20,242,984 79.80 152.21 2
DenseNet-121 8,062,504 78.72 102.35 3
Xxception 22,910,480 77.80 119.2 4
NasNet 5,326,716 77.90 120 3
InceptionResnetV2 2,510,000 80.30 251.96 1

Table 8: Pretrained models for CIFAR-100 using Imagenet.

F Spot Instance Price Variation

We profile the spot price of 4 types of C5 EC2 VMs over a
2-week period in August 2020. The price variation is shown
in Fig18.

0 100 200 300
Time

0.1

0.2

0.3

Pr
ice

 ($
)

xlarge 2xlarge 4xlarge 8xlarge

Figure 18: Spot instance price variation (time is in hours).

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1057

Data-Parallel Actors:
A Programming Model for Scalable Query Serving Systems

Peter Kraft
Stanford University

Fiodar Kazhamiaka
Stanford University

Peter Bailis
Stanford University

Matei Zaharia
Stanford University

Abstract
We present data-parallel actors (DPA), a programming model
for building distributed query serving systems. Query serving
systems are an important class of applications characterized
by low-latency data-parallel queries and frequent bulk data up-
dates; they include data analytics systems like Apache Druid,
full-text search engines like ElasticSearch, and time series
databases like InfluxDB. They are challenging to build be-
cause they run at scale and need complex distributed function-
ality like data replication, fault tolerance, and update consis-
tency. DPA makes building these systems easier by allowing
developers to construct them from purely single-node compo-
nents while automatically providing these critical properties.
In DPA, we view a query serving system as a collection of
stateful actors, each encapsulating a partition of data. DPA
provides parallel operators that enable consistent, atomic, and
fault-tolerant parallel updates and queries over data stored
in actors. We have used DPA to build a new query serving
system, a simplified data warehouse based on the single-node
database MonetDB, and enhance existing ones, such as Druid,
Solr, and MongoDB, adding missing user-requested features
such as load balancing and elasticity. We show that DPA can
distribute a system in <1K lines of code (>10× less than
typical implementations in current systems) while achieving
state-of-the-art performance and adding rich functionality.

1 Introduction
Specialized systems that perform data-parallel, low-latency
computations and frequent bulk data updates are becoming
ubiquitous. These query serving systems include search en-
gines like ElasticSearch and Solr [9, 13], online analytics
(OLAP) systems like Druid and Clickhouse [11, 70], time-
series databases like InfluxDB and OpenTSDB [14, 17], and
many others [10, 15, 18, 21, 40, 51, 52]. These systems are
critical to everyday applications: for example, Walmart uses
ElasticSearch to check purchases for fraud in real time [6],
Target and Capital One use Druid and InfluxDB for real-time
monitoring in their production services [5, 7], and Facebook
developed Unicorn [40] to provide graph-based search.

Developing query serving systems is challenging because
their workloads typically run at large scale. Therefore, query
serving system developers must implement complex dis-
tributed functionality, including data replication, update con-
sistency, fault tolerance, and load balancing. These features
vary little between query serving systems, but must be re-
implemented in each of them, typically in custom distribution

layers comprising tens of thousands of lines of complex code
(e.g., ~70K lines in Druid) written over many person-years.
As a result of this complexity, not only are new query serv-
ing systems hard to build, but existing ones are difficult to
adapt to changing user demands. For example, most query
serving systems were designed for fixed-size on-premise clus-
ters, although users increasingly deploy them in the cloud.
Therefore, they do not provide user-requested cloud features
such as elastic cluster auto-scaling [3,4]. Adding any new dis-
tributed feature to an existing, large codebase can take years,
even when there is strong user demand [60, 74].

Ideally, developers would be able to write query serving
systems using a high-level programming model that simplifies
distributing their data and computations across a cluster. Un-
fortunately, current distributed programming models do not
support the unique workloads of query serving systems, with
their combination of data-parallel low-latency queries and
frequent bulk data updates. Actor models like Erlang [29], Or-
leans [35] and Ray [61] can manage mutable state, but lack ab-
stractions, such as consistency and atomicity, for data-parallel
operations. Parallel processing frameworks like Spark [72]
can execute data-parallel queries, but lack abstractions for
managing data, assuming it to be immutable.

In this paper, we propose a new programming model called
data-parallel actors (DPA) that extends the actor model to
support the unique needs of query serving systems. DPA
allows developers to construct a distributed query serving
system from purely single-node components, as we show
in Figure 1. The DPA runtime then automatically provides
the system with complex distributed features such as fault
tolerance, consistency, load balancing, and elasticity.

Designing a programming model for query serving systems
is challenging because of their wildly different query and data
models, from search engines to timeseries databases to docu-
ment stores. DPA’s insight is that the distributed functionality
of a query serving system can be implemented largely inde-
pendently of how the system stores and processes data on
individual nodes. Therefore, DPA represents a query serving
system as a collection of black-box data partitions, each en-
capsulated in a stateful actor. However, while conventional
actor models focus on concurrency, where there are many
actors but clients only communicate with one at a time, query
serving systems also require parallelism: one operation can
run over data in many actors, often with consistency and atom-
icity requirements. Thus, DPA provides parallel operators and
updates over its stateful actors. Parallel operators let develop-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1059

DPA Application (Written by Developer)

Actor Implementation

DPA Runtime (Uniserve)

Queries

DPA Interface

Scalability

Load Balancing

Consistency

Durability

Fault Tolerance

Elasticity

Figure 1: With DPA, a developer can construct a distributed query
serving system from single-node components: code for actors and
queries (blue) that implement per-node data structures and query pro-
cessing logic. A DPA runtime like Uniserve (orange) manages actors
and executes queries, automatically providing distributed features.

ers construct queries from generic operations such as map and
broadcast, while parallel updates offer configurable consis-
tency and atomicity guarantees. DPA defines these operations
and enforces their guarantees, but is agnostic to how each
node processes its part of the work. Thus, DPA separates
responsibilities in building a query serving system, so that
developers only implement single-node data structures and
operations but receive a robust, performant distributed system.

We show that DPA can express the functionality of a wide
range of current query serving systems, while adding pow-
erful user-requested features that production systems lack.
For example, we used DPA to wrap the existing single-node
components in an OLAP system (Druid), search engine (Solr)
and NoSQL database (MongoDB) into stateful actors in a
few hundred lines of code. The DPA ports match the original
systems on standard performance benchmarks, but also auto-
matically receive user-demanded missing features like load
balancing and elasticity, improving performance on skewed
workloads by up to 3×. DPA’s generality makes it a powerful
abstraction for developing new query serving systems.

We implement the DPA programming model in a runtime
called Uniserve. Uniserve manages stateful actors and ex-
ecutes queries, automatically providing distributed features
like durability, fault tolerance, load balancing, and elasticity.
Because workloads require different implementations of these
features, Uniserve allows developers to configure systems’
consistency guarantees and load balancing and auto-scaling
behavior without modifying their core application code.

To evaluate DPA and Uniserve, we use them to distribute
four systems: the three ports discussed above (Druid, Mon-
goDB, and Solr) and a new simplified data warehouse we
built based on the single-node database MonetDB [50]. We
distribute each system with <1K lines of code. Nevertheless,
on standard benchmarks, our ports match the originals’ perfor-
mance, while our data warehouse matches Amazon Redshift
and outperforms Spark SQL. Each DPA-based system auto-
matically receives powerful features, including fault tolerance,
durability, consistency, load balancing, and elasticity. Some

of these features, particularly load balancing and elasticity,
are missing and frequently requested by users in Druid, Mon-
goDB, and Solr. By adding these features, DPA improves
these systems’ performance by up to 3× on skewed work-
loads. In summary, our contributions are:

• We identify query serving systems as an important emerg-
ing class of distributed systems defined by low-latency
data-parallel queries and frequent bulk updates. We show
that their workloads are not supported by existing high-
level distributed programming models.

• We propose data-parallel actors (DPA), a novel pro-
gramming model for building distributed query serving
systems from purely single-node components. We build
a DPA runtime, Uniserve, which automatically provides
fault tolerance, consistency, durability, load balancing,
and elasticity to query serving systems built with DPA.

• We demonstrate the power and practicality of DPA by
using it to build a simplified data warehouse and porting
the popular systems Solr, Druid, and MongoDB to it.
Our implementations require <1K lines of code (replac-
ing tens of thousands) but match or outperform current
systems while providing rich missing functionality.

2 Background and Motivation
In this section, we give three examples of widely used query
serving systems, then make the case for DPA.

2.1 Case Studies

Apache Solr. Solr [9] is a distributed full-text search system.
It provides a rich query language for searching text documents
and is optimized to serve thousands of queries per second
at millisecond latencies. Solr stores documents in inverted
indexes based on Apache Lucene [34].

Apache Druid. Druid [70] is a high-performance analytics
system. It provides fast ingestion and real-time search and
aggregation of time-ordered tabular data, such as machine
logs. Druid achieves its high performance through specialized
segment data structures that store data in a tabular format opti-
mized with summarization, compression, and custom indexes.

MongoDB. MongoDB [15] is a NoSQL document database.
Unlike Solr and Druid, it is not primarily an analytics sys-
tem, but is often used for analytics [16]. MongoDB performs
search and aggregation queries over semi-structured data. It
uses a schemaless document-oriented data format, backed up
by indexes, to give users flexibility in how their data is stored
and queried without sacrificing performance.

2.2 Motivating DPA

Solr, Druid, and MongoDB are popular [12] query serving
systems that serve different workloads. However, while their
physical data structures and query execution strategies are di-
verse, all use custom distribution layers to distribute data and

1060 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Fault Tolerance Load Balancing Elasticity

Solr X
Druid X X
MongoDB X X
Uniserve

Table 1: Distributed features of query serving systems.

queries while handling failure and ensuring data consistency.
These distribution layers are difficult to implement, requiring
tens of thousands of lines of complex code (~90K LoC in
Solr, ~70K LoC in Druid, and ~120K LoC in MongoDB).

The difficulty of distributing query serving systems com-
plicates developing new systems, but also causes existing
systems to lack user-demanded features. For example, Solr,
Druid, and MongoDB struggle to provide load balancing and
elasticity, as shown in Table 1. As a result, their users must
over-provision clusters [45], go through the difficult and error-
prone [3, 4] process of manually integrating external auto-
scalers, or risk poor performance when load skews or spikes.

One reason popular systems are missing important features
is that the requirements for distributed systems change over
time. For example, elasticity is considered important today be-
cause most query serving systems run in the cloud, where scal-
ing the size of a cluster is easy. However, many existing sys-
tems (including Druid, Solr, and MongoDB) were built when
the cloud was less popular, so support for auto-scaling was
less important and was not included. Unfortunately, the com-
plexity of query serving systems’ distribution layers makes
it difficult to add new features when users demand them. For
example, adding strongly consistent replication to MongoDB
required designing a novel consensus protocol because design
choices made early in MongoDB’s lifetime precluded using
any existing protocol [74]. Similarly, adding support for joins
to Druid has been a slow, multi-year process because the sys-
tem was originally built assuming queries would not require
communication between data sources [60].

DPA helps solve these problems by separating responsibili-
ties in a query serving system. A developer using DPA is only
responsible for the core, unique functionality of their system:
storing and querying data. DPA and its runtime Uniserve take
responsibility for distribution and scalability, automatically
providing distributed features like fault tolerance, consistency,
load balancing, and elasticity. As user demands change, new
features can be added to Uniserve with minimal modifica-
tions to underlying systems. This makes it easier to build new
query serving systems and maintain existing ones, as they
can obtain state-of-the-art distributed functionality by simply
implementing the DPA interface in a ~1K LoC shim layer.

3 DPA Overview and Interface
DPA lets developers construct a distributed query serving
system from purely single-node components. To use DPA, a
developer must first implement an actor object that encapsu-

lates a data partition like a Solr index or Druid segment. They
must then implement a query planner that translates incom-
ing user queries to the DPA parallel operators. We show the
interface for actors and operators in Figure 2.

3.1 Actors and Data

In DPA, developers express a query serving system as a col-
lection of stateful single-node actors, each encapsulating a
partition of data and exposing methods for manipulating and
querying it. Query serving systems use a wide variety of data
representations, from Solr inverted indexes to Druid table
segments, so DPA actors can encapsulate any data structure
the developer chooses for storing a collection of records. We
sketch the interface for an actor in Figure 2. DPA views an ac-
tor’s implementation as a black box. Actors are only required
to implement four core methods: create, destroy, serialize, and
deserialize (an optional fifth method, snapshot, is discussed in
§4.2), which the DPA runtime uses for data management. The
DPA runtime also maps multiple actors to each physical ma-
chine and performs load balancing and auto-scaling. Actors
typically implement other methods, e.g., custom methods for
querying a search index, which are invoked by DPA operators
or update functions when the runtime schedules those to run
against an actor. Unlike in some general-purpose actor run-
times, actors in DPA can only communicate through DPA’s
APIs; they cannot pass arbitrary messages to each other.

DPA actors are organized into tables, logical collections
of data comprising multiple actors. Tables enable systems to
manage multiple datasets and address queries and updates.
To partition data across actors in a table, DPA maps records
inserted in the system to actors based on partition keys; all
records with the same key are assigned to the same actor.

3.2 Data Updates

In a conventional actor model, clients communicate with one
actor at a time, updating its state directly. In a query serving
system, however, users often need to update data partitioned
across several actors, typically with consistency or atomicity
concerns. Therefore, DPA lets developers implement parallel
update functions, which update multiple actors in a single ta-
ble. To perform updates, users implement an UpdateFunction
interface with several methods, as shown in Figure 2.

Users invoke update functions on DPA tables and supply
them with sets of records to add or change. For example, if a
user is maintaining a library catalog in Solr, they might supply
an update function with records containing information on
new books. The runtime maps the records to actors by parti-
tion key, then runs the user’s update function on each actor
with its corresponding records.

To support the diverse data models of query serving sys-
tems, DPA provides configurable consistency and atomicity
guarantees for updates. These change how updates are im-
plemented. If developers only require eventually consistent
updates, they need only implement an “update” method ap-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1061

Actor Interface
create() → Actor
destroy()
serialize() →File
deserialize(File) →Actor
snapshot()→Actor

Record Interface
getPartitionKey() →Int

Update Function Interface
updatedTableName() →Table
consistencyLevel()→Level
update(Actor, List[Record])
prepare(Actor, List[Record]) → Bool
commit(Actor)
abort(Actor)

Parallel Operator Interface
inputs()→List[Operator|Table]
keysToQuery() →Map[Int, List[Int]]
operator() → OperatorFunction

Parallel Operator Functions
map(Actor) → Data
scatter(Actor) → List[(K, C)]
gather(K, List[C], Actor) → Data

query(Actor) → V
combine(List[V]) → V’

Create a new (empty) actor.
Destroy an actor.
Serialize an actor’s data to files on disk.
Reconstruct an actor from files on disk.
Create a snapshot of an actor’s data.

Get a record’s partition key.

Name of the table to be updated.
What consistency level to use? (§4.2)
Apply eventually consistent update to an actor.
Prepare a serializable update.
Atomically make prepared changes visible.
Roll back prepared changes.

What are the input operators and tables?
For inputs, what partition keys are used?
The operator function. Signature depends on
the operator (see below).

Apply a transformation to data.
Partition data into (attribute, chunk) pairs.
Combine chunks with the same attribute, plus
actors whose partition key matches that
attribute; materialize the output.
Query an actor to obtain a value.
Combine values into a query answer.

Figure 2: The DPA interface. It consists of callback functions imple-
mented by the developer and invoked by Uniserve to manage data
and execute queries.

plying an update to an actor. However, if they need stronger
guarantees such as serializability, they must implement the
participant protocol of two-phase commit (prepare, commit
and abort). We discuss consistency in Section 4.2.

3.3 Queries

Unlike traditional actor models, query serving systems ex-
ecute parallel queries over data stored in many actors. To
enable these queries, DPA provides a small but general set
of parallel operators which let developers construct queries
from generic operations like map and broadcast. We list the
parallel operators in Figure 2 and diagram them in Figure 3.

Users write queries by subclassing one of several paral-
lel operator classes (e.g., MapOperator) and implementing
appropriate callback functions. Queries may be composed
of multiple operators. In practice, we expect developers to
implement a query planner in their system’s client library that
translates queries to DPA operators for execution by the DPA
runtime. Most existing query serving systems have similar
planners. Both the query planning logic and operator execu-
tion callbacks can be single-node: the DPA runtime handles
the work of distributing a plan’s computation by executing
each operator on each actor that contains relevant data.

Operators cannot modify actor state (only updates can),
but instead materialize output data that later operators can
read. The input to each operator is a list of tables and of data
materialized by other operators. Operators can specify what
partitions of their input data to query through their keysTo-
Query method, listing specific partition keys for each input.

DPA provides five generic parallel operators that we found
sufficient to support the serving systems we considered (Sec-

Actor 1 Actor 2 Actor 3

b) Retrieve and Combine Operators compute the result of a
query. A retrieve operation computes values from actors in parallel,
then a combine operation combines them into a query result.

Data 1 Data 2 Data 3

a) Map Operators apply a transformation to several actors in
parallel, materializing the transformed data.

Actor 1
Attrs: A, B, C

Actor 2
Attrs: A, B, C

Actor 3
Attrs: A, B, C

c) Scatter and Gather Operators enable collective operations. A
gather operation computes (attribute, data chunk) pairs from actors.
A scatter operation combines chunks with the same attribute and
materializes the result. Scatter can also (not shown) combine chunks
with other actors whose partition key matches the chunk attribute.

Data 1
Attr: A

Data 2
Attr: B

Data 3
Attr: C

Queried
Actors

Transformed
Data

Actor 1 Actor 2 Actor 3

Value 1 Value 2 Value 3

Queried
Actors

Retrieved
Values

Combined ValuesResult to
Return

Queried
Actors

A B C
Data Chunks
with Attribute

Transformed
Data

A B C A B C

Figure 3: The five DPA parallel operators.

tion 5), though more operators could be added:

Map. The map operator applies a function to actors in paral-
lel and materializes the transformed data. For example, a map
operator might search for documents in a collection based on
a field, or in a subset of actors specified via keysToQuery.

Retrieve and Combine. The retrieve operator computes a
value from an actor and returns it to the DPA client. It is used
to retrieve the results of a query. If retrieve is executed on
many actors in parallel, it must be followed by a combine oper-
ator, which aggregates retrieved values. Retrieve and combine
must be the last two operators executed in a query. For exam-
ple, if in Solr we have several actors storing indexed text data
and wish to search it for the word “computer,” we can execute
a retrieve operation to find documents containing the word
“computer” on each actor, then combine these results.

Scatter and Gather. The last two operators, scatter and
gather, provide data communication between actors, enabling
collective operations such as broadcast and shuffle. The scat-
ter operator produces from an actor a set of (attribute, chunk)
pairs, where the attribute can be any value and the chunk con-
tains data stored in a developer-defined serialized format. A

1062 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

scatter operator must be followed by a gather operator. Gather
executes one time for each attribute produced by the preced-
ing scatter. Each execution of gather takes in all data chunks
associated with that attribute, along with any actor containing
data whose partition key matches the gather attribute, and
materializes combined and transformed data.

To demonstrate scatter and gather, consider a shuffle join in
a data warehouse setting. Say we have tables of customer
data C(c_id,country) and order data O(o_id,c_id, price),
both partitioned across several actors. We wish to com-
pute the total amount of money spent by each French
customer: SELECT c_id, SUM(price) FROM C, O WHERE
C.country=‘France’ GROUP BY c_id. First, we execute a
scatter operation on every actor containing data from C or
O. This operator returns (attribute, chunk) pairs where every
attribute corresponds to a set of customers (range of values
of c_id) and every chunk contains data associated with those
customers. We then execute a gather operator on the results of
the scatter. Each gather execution takes in a unique attribute
and all its associated chunks. In other words, it takes in all
records from both tables corresponding to a set of customers.
The operator executes the original query on this data, com-
puting the amount of money spent by each French customer.
Each execution materializes new data containing results for
a different set of customers; this data collectively forms the
result of the original query. Subsequent operators could then
query this data; for example retrieve and combine operators
could be used to find the ten top-spending French customers.

3.4 Case Study: Solr

We now describe how to create a DPA port of the distributed
full-text search system Solr [9]. Natively, Solr stores data by
sharding text documents across Lucene inverted indexes (cus-
tom data structures enabling ultra-fast search [34]) on several
machines. When Solr receives a new document, it hashes it,
uses the hash to pick a shard, and adds it to that shard’s index.
To port Solr’s distributed data storage capabilities to DPA, we
encapsulate inverted indexes in actors. We add data to actors
in units of Solr documents, which act as DPA records. Just
like Solr, we hash documents to obtain a partition key, then
use it to assign them to actors.

All Solr queries are searches: they take in a criterion, such
as a query string, and return a list of documents that satisfy it.
This list may be aggregated by grouping or faceting. Natively,
Solr distributes queries by searching each shard separately,
then combining results on a single node [20]. To port Solr’s
distributed query capabilities to DPA, we must translate Solr
queries to DPA queries. Because all Solr queries are searches,
we can implement them using DPA retrieve and combine op-
erators. Each retrieve operator searches its target actor for
a set of results, then the results are combined and returned.
For example, in a query that searches for books whose title
contains the word “goblin,” retrieve operators run in parallel
on every queried actor, searching their data for “goblin.” A

System Instance

Client Instance (Query Planner)

Uniserve
Server Layer

Uniserve Client Layer

S
e

rv
e

rs

Uniserve Coordinator

Manages

System Instance

Uniserve
Server Layer

DPA
Queries
+ Updates

Query
Results

DPA
Queries
+ Updates

Query
Results

Write
Replication

Load Balancing

DPA Actor Data

Fault RecoveryAuto-Scaling

Scatter/
Gather

DPA Actor Data

DPA Actor Data

DPA Actor Data

Figure 4: The Uniserve architecture. Servers run a thin Uniserve
layer (orange) above actors encapsulating partitions of data (gray)
stored in instances of the underlying system (blue). A coordinator
manages cluster state and provides distributed features.

combine operator then combines the results. The DPA port
of Solr is implemented in <1K lines of code (replacing ~90K
lines of native Solr code), and can execute any query recog-
nized by the standard Solr parser. As we show in Section 7,
our port matches native Solr performance while providing
features lacking in native Solr, such as load balancing.

4 Uniserve: A Runtime for DPA
We implement DPA in a runtime called Uniserve. In the DPA
programming model, developers take responsibility for im-
plementing actors and queries on a single node, but Uniserve
takes responsibility for distributing them, managing actors and
executing queries at scale. Uniserve automatically provides
critical distributed features such as fault tolerance, durability,
consistency, load balancing, and elasticity.

4.1 Architecture

A Uniserve cluster consists of many data servers. Each runs a
thin Uniserve layer over developer-provided single-node code
responsible for physical data storage. Clients send queries
and updates to servers. Each client runs a thin Uniserve layer
above a developer-provided query planner. A central coordi-
nator manages cluster state with the help of ZooKeeper [49].
Uniserve additionally requires an external durable storage
system (e.g. S3 or HDFS) to back up data. We diagram the
Uniserve cluster architecture in Figure 4.

Servers store data and execute queries. In each server, a thin
Uniserve layer runs above developer-provided single-node
code responsible for physical data storage and query execu-
tion. For example, if we were to distribute Solr using DPA
and Uniserve, each server would run a Uniserve layer above
a single-node Solr instance. DPA actors encapsulate physical
partitions of data stored in this system, so for example each
actor might encapsulate a Solr inverted index. The Uniserve
layer facilitates query execution. It receives query operators

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1063

and updates from clients and executes them in the underlying
system using the DPA interface. Additionally, it handles up-
date replication, maintains a log of the most recent updates,
periodically backs up data to durable storage, and transfers
actors between servers in response to coordinator commands.

Clients plan queries and submit them to servers. In each
client, a thin Uniserve layer runs alongside a developer-
provided query planner. The query planner receives user
queries (or update requests) in some query language and trans-
lates them to DPA parallel operators (or update functions).
The client then submits these to the appropriate servers, even-
tually receiving and returning a result. Clients learn actor
locations from the coordinator and ZooKeeper so they know
to which servers to send queries or updates.

A Uniserve cluster contains a single coordinator that man-
ages cluster state. It is responsible for many distributed capa-
bilities including load balancing, failure recovery, and elastic-
ity, which we discuss in more detail later. It backs up cluster
state to ZooKeeper. To minimize query latency at scale, the
coordinator is entirely off the query critical path.

4.2 Update Consistency and Atomicity

Conventional actor runtimes do not provide cross-actor data
consistency guarantees, assuming operations occur on a single
actor at a time. Query serving systems, however, perform par-
allel updates on partitioned and replicated data, so Uniserve
provides cross-actor consistency and atomicity guarantees.

Query serving systems typically ingest bulk data for analyt-
ics; for example time series in Druid or logs in Solr. Updates
are usually append-only, but modification of existing data
is possible. Most updates are batched, and systems provide
high update throughput but not necessarily low update latency.
Many systems, like Druid, do not support transactional se-
mantics. However, they still provide update consistency and
atomicity guarantees of varying strength.

Uniserve automatically provides primary-backup actor
replication and data consistency guarantees to query serving
systems. Because query serving system data models vary, we
make these guarantees configurable: when implementing an
update function (§3.2), developers can choose a level of con-
sistency appropriate to their data model. Uniserve provides
the consistency levels most common in the query serving
systems we surveyed. In the remainder of this section, we
describe these guarantees and what developers must imple-
ment to obtain them. Then, in Section 4.3, we explain how
Uniserve upholds its guarantees in case of failures.

Eventual Consistency. By default, Uniserve provides even-
tual consistency, guaranteeing only that all replicas of an actor
eventually converge to the same state. Many systems, like
Solr and Druid, use eventual consistency [19]. To write an
eventually consistent update function, developers need only
implement an “update” method. To execute an eventually con-
sistent update, Uniserve applies it to the primary of an actor
synchronously, then replicates it asynchronously. All replicas

of an actor apply the same updates in the same order.

Serializable Updates. Uniserve can guarantee serializabil-
ity for updates, so the outcome of a sequence of updates is
equivalent to the outcome of the updates executed serially.
As implemented, this also guarantees linearizability, so read
queries made after an update completes always reflect the up-
date. This functionality was recently added to MongoDB [74]
and is common in data warehouses. To write a serializable
update function, developers must implement the participant
protocol of two-phase commit, with separate prepare, commit,
and abort stages. Uniserve only commits an update if it has
successfully prepared on all actors and their replicas, aborting
if failures occur. We currently do not allow multiple serializ-
able updates to run concurrently on the same table, but plan
to add concurrency control in the future.

Full Serializability. Uniserve can make updates serializ-
able (and therefore atomic) with respect to read queries, so
a parallel read query either sees an update applied to all ac-
tors or to none of them, as in SQL databases. To obtain this
guarantee, developers must both provide serializable update
functions and implement the optional snapshot actor method
(Figure 2). Using this method, Uniserve creates a versioned
copy of each actor’s data upon update and ensures that read
queries see consistent data versions across actors. We expect
developers to implement snapshot using optimizations such
as shadow paging and copy-on-write to minimize its cost.

4.3 Fault Tolerance and Failure Recovery

Uniserve assumes a fail-stop model for failures, where the
only way servers fail is by crashing. It also assumes that if
a server crashes, it remains crashed until restarting (when it
will be treated as a new server). Moreover, it assumes the
coordinator and ZooKeeper are always available; if either
fails the cluster will be unavailable until they are restarted,
with the coordinator restoring its state from ZooKeeper.

Durability. Uniserve provides update durability through
replication and through asynchronous backup to durable stor-
age such as S3. If all replicas of an actor fail, the coordina-
tor orders a random surviving server to load the actor from
durable storage. Thus, Uniserve can only lose data if all repli-
cas of an actor fail, and will only lose data committed since the
last backup. Additionally, eventually consistent updates can
be lost if the primary fails before the updates are replicated.

Update Fault Tolerance. When providing eventual consis-
tency, Uniserve only guarantees that all replicas of an actor
will eventually converge to the same state. Therefore, it is
possible for an update to partially succeed—to succeed on
some actors but fail on others. If the primary of an actor fails,
the coordinator chooses the replica with the most advanced
update as the new primary, relying on the guarantee that all
replicas apply the same updates in the same order. All other
replicas then sync with the new primary, applying missing
updates from its log to converge to its state.

1064 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

When providing serializability, Uniserve guarantees that all
updates either totally succeed or abort. Uniserve only commits
an update if it has successfully prepared on all actors and their
replicas, aborting if any failures occur. To ensure the cluster
remains in a consistent state in case of a client crash, the client
writes ahead any commit or abort decision to ZooKeeper;
servers can reference this if the client fails (or abort if the
client fails before making a decision).

Query Fault Tolerance. If a failure occurs during the exe-
cution of a parallel operator on an actor, the client retries with
a different replica. It keeps retrying until it has exhausted all
replicas; this occurs only if all are lost, in which case the actor
must be restored from durable storage and the query fails.

4.4 Load Balancing and Data Placement

Query serving systems often have unpredictable workloads
skewed towards a small number of data items or partitions, so
load balancing is necessary for consistent performance [45].
The obvious way to balance load is through fine-grained query
scheduling, but this is impractical for query serving systems
because of their strict latency requirements and because all
queries must run on specific data partitions. Instead, Uniserve
balances load through data placement, managing the actor-to-
server assignment to ensure no server is overloaded.

By default, Uniserve provides a greedy load balancing algo-
rithm, similar to that of E-Store [67], which repeatedly moves
the most-loaded actors from the most-loaded servers to the
least-loaded servers while also replicating actors whose load
exceeds average server load. However, some applications may
want to instead use a custom algorithm. Therefore, we allow
developers to define a data placement policy, which uses in-
formation on cluster utilization to compute an assignment
of actors to servers. If a policy is provided, Uniserve takes
responsibility for collecting its input data and implementing
its output assignment, moving actors to new locations.

A data placement policy must be expressed as a function
that takes in the total query load (self-reported by the underly-
ing system) and memory and disk usage of each actor, as well
as the current assignment of actors to servers. It returns an
updated assignment of actors to servers, expressed as a map
from actor number to a list of server IDs. Assignments may
replicate actors across multiple servers, either for redundancy
or to spread out their load.

To physically move actors during load balancing, Uniserve
first prefetches, from durable storage, replicas of reassigned
actors on their target servers. These then sync with the actor
primary, applying updates from its log. Only after replicas
are ready does Uniserve notify clients of the actor movement.
Then, after notifying clients, it deletes the original copies of
the actors if necessary. If some of the deleted actors were
primaries, Uniserve designates randomly selected replicas as
new primaries. This procedure ensures high query availability
during shard transfer, but if a primary is removed updates may
briefly block while a new primary is designated.

System Type Data Type Query Operations

Druid [70] OLAP Indexed Tables Aggregations, joins
Pinot [51] OLAP Indexed Tables Aggregations
ClickHouse [11] OLAP Indexed Tables Aggregations, joins
Atlas [10] Timeseries DB Time series Aggregations
InfluxDB [14] Timeseries DB Time series Aggregations
Solr [9] Full-Text Search Indexed text Text search
ElasticSearch [13] Full-Text Search Indexed text Text search
Unicorn [40] Graph Database Social Graphs Graph Search
FAISS [52] Vector Database Vectors Vector Search
Pinecone [18] Vector Database Vectors Vector Search
Vespa [21] Vector Database Vectors Vector Search
MongoDB [15] NoSQL Documents Aggregations, search
MonetDB [50] Data Warehouse Relational Tables SQL

Table 2: Systems we believe can be distributed with or ported to
DPA and their properties. Systems we have implemented are in bold.

4.5 Elasticity and Auto-Scaling

Query serving system load often varies over time, so they ben-
efit from elasticity, the ability to dynamically adjust cluster
size. As a result, when deployed in an elastic cloud environ-
ment such as EC2, Uniserve automatically scales cluster size
in response to load changes.

By default, Uniserve provides a utilization-based auto-
scaling algorithm similar to the algorithms used in cloud
auto-scalers [32]. It adds servers if CPU utilization exceeds
an upper threshold and removes them if it is below a lower
threshold. However, like in load balancing, Uniserve also
gives developers the option of defining their own auto-scaling
policy, which uses information on cluster utilization to decide
whether to add or remove nodes. Uniserve provides the policy
with its input and physically executes its commands, adding
or removing nodes and transferring actors as necessary.

An auto-scaling policy must be defined as a function that
takes in the CPU utilization, memory and disk usage, and total
query load of each server. It returns the number of servers to
be added or removed, as well as the IDs of the servers to be
removed, if any (chosen randomly if there is no preference).

Uniserve periodically executes the policy (using a con-
figurable interval) and adjusts cluster size. After adding or
removing a server, Uniserve uses the load balancer to reas-
sign actors; if servers are removed this reassignment is done
preemptively so availability is not affected.

5 Generality of DPA
In this section, we demonstrate the generality of DPA by
describing some of the diverse systems it can distribute, sum-
marized in Table 2. We also discuss its limitations.

OLAP Systems and Time Series Databases. OLAP sys-
tems rapidly answer multidimensional analytics queries over
tables. They are closely related to time series databases, which
query time-ordered data. Both typically store data in a com-
pressed and indexed columnar format. Their workloads usu-
ally filter, group, and aggregate this data. This naturally fits
DPA: we partition data by key columns across actors (e.g.,
by time range) to support partition filtering, and implement

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1065

most aggregations with retrieve and combine operators, using
scatter and gather to shuffle or broadcast data if necessary.
We implement a port of Druid [70], which is both an OLAP
system and timeseries database, on DPA; its design patterns
generalize to others from both categories such as Pinot [51],
Clickhouse [11], Atlas [10] and InfluxDB [14].

Full-Text Search. Full-text search systems execute search
queries over text data stored in specialized data structures such
as inverted indexes [34]. Because all their queries are searches,
they are easy to fit to DPA, as we showed in Section 3.4. We
implement a port of one full-text search system, Solr [9], and
can generalize to others like ElasticSearch [13].

Vector Databases. Vector databases store data using vector
indexes to perform fast nearest neighbor search, often for ma-
chine learning workloads. Recent examples are Pinecone [18],
Vespa [21], and FAISS [52]. Like full-text search systems,
they easily fit DPA as their queries are searches.

Graph Databases. Graph databases represent data using
a graph data model. Some graph database queries are data-
parallel, including whole-graph algorithms like PageRank and
queries like finding all checkins at a certain location in a social
network graph [40]. Others are not; for example, a graph
traversal query, like finding all nodes within N hops of a target,
is most efficiently implemented using breadth-first search,
not data-parallel operators such as iterative self-joins. Data-
parallel graph databases such as Facebook’s Unicorn [40]
search engine fit the DPA programming model.

Other Systems. DPA can distribute other systems with
data-parallel queries. For example, we implement a DPA port
of the NoSQL document store MongoDB. We also implement
a simplified OLAP data warehouse based on the single-node
columnar database MonetDB.

Limitations of DPA. DPA has two major limitations. First,
its query model works best for data-parallel queries. As we
have shown, this is sufficient for many popular query serv-
ing systems, but not some specialized query types like graph
traversal queries. Nonetheless, we believe DPA would have
made many of today’s query serving systems easier to develop,
and can augment them with missing functionality.

Second, DPA is not designed to provide low latency for
small point updates, especially with transactional guarantees.
Small transactional updates are rare in query serving systems
because these are often updated in bulk (e.g., using data col-
lected in a message queue like Kafka). However, they are
common in other contexts such as online transactional pro-
cessing (OLTP) workloads, which DPA does not target.

6 Distributing Systems with DPA
To demonstrate the practicality of DPA, we use it to distribute
four systems. First, we port Druid, Solr, and MongoDB to
DPA, replacing their native distribution layers. Then, we build

a new system using DPA: a simplified data warehouse based
on the single-node column store MonetDB.

We implement each of our four systems in <1K lines of
code (LoC). This number includes all code needed to imple-
ment the DPA interfaces with each system’s already-existing
single-node implementation, but not any code in Uniserve.
This demonstrates that DPA simplifies building distributed
query serving systems, as it replaces custom distribution lay-
ers totaling ~90K LoC in Solr, ~120K LoC in MongoDB, and
~70K LoC in Druid. For comparison, Uniserve itself is ~10K
LoC. This smaller size is because Uniserve makes use of tools
like ZooKeeper and gRPC for basic functionality that other
systems implemented themselves.

Solr. We described the port of Solr in Section 3.4.

Druid. In our port of Druid [70], actors encapsulate single-
node Druid datasources. These are analogous to database
tables and are backed by Druid segments, which are opti-
mized tabular stores for timeseries data. We implement most
actor manipulation and update functionality using the Druid
datasource API. Serializing and deserializing data is easy
because Druid segments live in portable directories on disk.

All Druid queries aggregate filtered and grouped data from
datasources. Our port supports most common Druid queries:
simple aggregations (sums, counts, or averages) of filtered and
grouped data. It could easily be extended to support any other
query by adding support for more aggregation operators. Our
Druid queries use retrieve and combine operators to separately
query actors then aggregate the results. Druid uses a similar
model natively. We can also use scatter and gather operators
to support Druid’s recently-added [60] broadcast joins.

MongoDB. In our port of MongoDB [15], actors encapsu-
late single-node MongoDB collections, analogous to database
tables. We implement most actor manipulation and update
functionality using the MongoDB API for manipulating col-
lections. We implement actor data serialization and deserial-
ization using the mongodump and mongorestore tools.

MongoDB queries apply an “aggregation pipeline” of op-
erators to a collection. These operators perform tasks such
as filtering, grouping, and accumulating documents. We can
support any MongoDB operator, but so far have only imple-
mented operations for filtering, projecting, summing, count-
ing, and grouping data. Our query implementations are simi-
lar to those in our Druid port and those in native MongoDB:
querying actors separately, then combining the results.

MonetDB. We have built using DPA a simplified data ware-
house based on the single-node column store MonetDB [50].
It stores data in MonetDBLite [65], the embedded implemen-
tation of MonetDB. Each server runs MonetDBLite embed-
ded in the same JVM as the Uniserve layer. Actors encapsu-
late MonetDB tables and implement interface methods using
equivalents in the MonetDBLite API.

Our simplified data warehouse supports a large subset of

1066 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

SQL, including selection, projection, equijoins, grouping, and
aggregation. We implement simple aggregation queries with
retrieve and combine operators, as in other systems. To exe-
cute more complex queries, such as joins, we use scatter and
gather operators to shuffle or broadcast data, then use retrieve
and combine operators to produce a query result.

7 Experimental Evaluation
We evaluate DPA and Uniserve using the four systems dis-
cussed in Section 6. As we have shown, DPA makes distribut-
ing these systems considerably simpler; each requires <1K
lines of code to distribute as compared to the tens of thousands
of lines in custom distribution layers (~90K in Solr, ~120K in
MongoDB, and ~70K in Druid). Our evaluation shows that:

1. Distributed systems built using DPA and a specialized
single-node system, such as our MonetDB-based simpli-
fied data warehouse, can match or outperform compara-
ble distributed systems such as Spark-SQL and Redshift.

2. DPA ports of distributed systems match the performance
of natively distributed systems under ideal conditions,
such as static workloads without load skew.

3. DPA ports of distributed systems provide new features
such as elasticity and load balancing and so outperform
natively distributed systems under less ideal conditions –
workloads that change, have load skew, or have failures.

7.1 Experimental Setup

We run most benchmarks on a cluster of m5d.xlarge AWS
instances, each with four CPUs, 16 GB of RAM, and an at-
tached SSD. We evaluate using Apache Solr 8.6.1, Apache
Druid 0.20.1, MongoDB 4.2.3, and MonetDBLite-Java 2.39.
We use four data servers for smaller-scale benchmarks and
forty for large-scale benchmarks. In both cases, an additional
node is set aside for the coordinator.

When benchmarking Solr, Druid, and MongoDB natively,
we place the master (Solr ZooKeeper instance, Druid coordi-
nator, MongoDB config and mongos servers) on a machine
by itself and a data server (SolrCloud node, Druid historical,
MongoDB server) on each other node. We also disable query
caching and set the minimum replication factor to 1.

When benchmarking systems with Uniserve, we use the
implementations described in Section 6. We place the Unis-
erve coordinator and a ZooKeeper server on a machine by
themselves and data servers on the other nodes.

7.2 Experiment Workloads

We evaluate each system with a representative workload taken
when possible from the system’s own benchmarks. All of our
comparison systems achieve state-of-the-art performance on
their benchmarks, so DPA also achieves state-of-the-art per-
formance by matching them. We benchmark Solr with queries
from the Lucene nightly benchmarks [59]. We run each query

on a dataset of 1M Wikipedia documents (more for large-scale
benchmarks) taken from the nightly benchmarks. We use two
representative nightly benchmark queries–an exact query for
the number of documents that include the phrase “is also” and
a sloppy query for the number of documents that include a
phrase within edit distance four of the phrase “of the.”

We benchmark Druid with two of the benchmark queries
from the Druid paper [54, 70]. These are TPC-H queries mod-
ified by the Druid developers to reflect the strengths of Druid;
we run each against 6M rows of TPC-H data. The queries
we use are sum_all, which sums four columns of data; and
parts_details, which performs a group-and-aggregate.

We benchmark MongoDB using YCSB [39], simulating an
analytics workload. Before running the workload, we insert
10M sequential items (10GB of data) into the database. We
run a workload of 100% scans, where each scan retrieves one
field from each of uniformly between 1000 and 2000 items.
We base our YCSB client implementation on the MongoDB
YCSB client from the YCSB GitHub repository [22].

We benchmark our data warehouse using representative
TPC-H queries (Q1, Q3, and Q10) at scale factors of 5 and
25, requiring 5GB and 25GB of data respectively.

7.3 Benchmarks

Ideal Conditions. We first benchmark our Solr, Druid, and
MongoDB ports on a uniform workload where each data item
is equally likely to be queried. We run each benchmark with
several client workers; each repeatedly makes the query and
waits for it to complete, recording throughput and latency. We
start with a single worker and add more until throughput no
longer increases, showing results in Figure 5. We find that, as
expected, our ports’ performance is similar to native system
performance on all benchmarks.

Scalability. We next evaluate Uniserve scalability, scaling
the Solr benchmarks with one client worker from four to
forty servers. We scale the amount of data to maintain a
constant 5 GB of data per server. We show results in Figure 6.
Because all queries access all data, we expect performance
to be near-constant as the number of servers (and amount of
data) increases, and indeed it is.

Data Warehouse Benchmarks. We next benchmark our
simplified data warehouse based on MonetDB, comparing
its performance with native MonetDB, Spark-SQL [28], and
Redshift [47]. We use three TPC-H queries: Q1, an aggrega-
tion query; Q3, a three-way join; and Q10, a four-way join.
We implement Q3 and Q10 using scatter and gather operators
to perform both broadcast and shuffle joins. We show results
in Figure 7. We run multiple trials of each benchmark, report-
ing the average of results after performance stabilizes. This
ensures Spark-SQL and Redshift can cache data in memory.

We first investigate the overhead Uniserve adds to single-
node MonetDB. On a single node, our data warehouse per-
forms the same as native MonetDB on the aggregation query

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1067

200 300 400 500
Throughput (queries/sec)

10

100

La
te

nc
y

(m
s)

a) Solr Exact

20 30
Throughput (queries/sec)

100

1000

La
te

nc
y

(m
s)

b) Solr Sloppy

25 30
Throughput (queries/sec)

100

1000

La
te

nc
y

(m
s)

d) Druid Sum

2.75 3.00 3.25
Throughput (queries/sec)

1000

10K
La

te
nc

y
(m

s)
e) Druid Parts Details

500 1000
Throughput (queries/sec)

10

100

La
te

nc
y

(m
s)

f) Mongo YCSB

Native p50 Native p99 Uniserve p50 Uniserve p99

Figure 5: Throughput versus latency for native systems and DPA
ports on uniform and static query workloads. Our ports match native
system performance.

10 20 30 40
Number of Servers

0

10

20

30

40

Th
ro

ug
hp

ut
 (q

/s
ec

) a) Solr Exact

10 20 30 40
Number of Servers

0.0
0.2
0.4
0.6
0.8
1.0

Th
ro

ug
hp

ut
 (q

/s
ec

) b) Solr Sloppy
Uniserve Throughput Ideal Throughput

Figure 6: Uniserve scalability on the Solr benchmarks.

Q1 but worse on Q3 and Q10 due to the communication cost
of shuffling. We then compare our system to Spark-SQL and
Redshift on 160 cores (forty servers for Uniserve and Spark-
SQL, five dc2.8xlarge Redshift servers). We find that our
data warehouse outperforms Spark-SQL and matches Red-
shift. This shows that by distributing a single-node system like
MonetDB, DPA can in <1K lines of code match or outperform
popular distributed systems like Redshift and Spark-SQL on
their core workloads.

Update Performance. We next investigate Uniserve up-
date performance. We benchmark 1 MB, 10 MB, and 100 MB
updates on Solr, Druid, and MongoDB, using each system’s
benchmark dataset. We use these bulk writes because they
are typical of query serving system workloads. We compare
native system performance to Uniserve performance, showing
results in Figure 8. For Solr and Druid, we provide eventual
consistency, matching those systems’ semantics; for Mon-
goDB we enable update serializability (through two-phase
commit in Uniserve) and perform the update on four partitions
in parallel. We find that across the board, Uniserve matches

Q1 Q3 Q100

1000

2000

3000

La
te

nc
y

(m
s) 2446

407 367

2440

853 444

a) 4 Cores (Single Node), Scale Factor 5

Q1 Q3 Q100

1000

2000

3000

La
te

nc
y

(m
s)

2316 2666
2069

424 539 459289 334 190

b) 160 Cores, Scale Factor 25

MonetDB Spark-SQL Redshift Uniserve

Figure 7: Comparison between our simplified data warehouse,
single-node MonetDB, Spark-SQL, and Redshift on TPC-H queries
Q1, Q3, and Q10 on 4 cores (single-node) and on 160 cores with
TPC-H scale factors of 5 and 25. Uniserve is competitive on a single
node and outperforms Spark-SQL and matches Redshift at scale.

1M 10M 100M0

50000

Ti
m

e
(m

s)
810 4740

38K
930 4990

39K
a) Solr

1M 10M 100M0

50000
Ti

m
e

(m
s)

80 690 725090 660 6490

b) Mongo

1M 10M 100M0

100000

Ti
m

e
(m

s)

35K 40K
80K

35K 40K
82K

c) Druid

Native Uniserve

Figure 8: Execution time of 1 MB, 10 MB, and 100 MB updates
with native systems and with Uniserve. Uniserve matches native
system performance.

native system update performance.

Hotspots. To demonstrate the importance of load balancing,
we next investigate the performance of the default Uniserve
load balancer on benchmarks with load skew. We compare
against Druid, whose load balancer ensures each server hosts
the same amount of data but does not balance query load.
First, we execute a workload where 7/8 of the queries are
sent to a single slice of data (four months) and scatter the rest
uniformly on the remainder of the data, showing results in
Figure 9a. Because Uniserve balances load in the hotspot, it
outperforms Druid by up to 3×.

We next repeat the experiment, fixing the number of clients
at twelve but varying the fraction of queries sent to the hotspot.
We show results in Figure 9b. We find that changing skew
does not affect Uniserve performance because Uniserve keeps
load balanced under any load distribution. However, Druid
performance worsens with increasing skew.

Dynamic Load. To demonstrate the importance of elastic-
ity in query serving systems, we next investigate the perfor-
mance of the default Uniserve auto-scaler on a dynamic work-
load. We run the Solr sloppy benchmark for six hours sending

1068 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

50 100 150
Throughput (queries/sec)

100

1000

La
te

nc
y

(m
s)

a) Varying Throughput

0.25 0.50 0.75
Fraction of Load to Hotspot

0

500

1000

1500

2000

La
te

nc
y

(m
s)

b) Varying Skew
Druid p50 Druid p99 Uniserve p50 Uniserve p99

Figure 9: Effect of query skew and load balancing for Druid- and
Uniserve-distributed queries. On the left, we vary throughput in a
workload where one slice of data receives 7/8 of queries; Uniserve
balances load and so outperforms Druid. On the right, we vary
the fraction of queries received by the hot slice; Uniserve keeps
performance constant as skew increases but Druid does not.

queries at a target throughput, which varies from 240 to 1300
uniformly distributed queries per minute. Uniserve starts with
one server and adds or removes more as load changes. We
show results in Figure 10. We see that Uniserve is always able
to scale to meet the target throughput. As load increases, it
adds servers so there are always enough to process each query
in time. As load decreases, it removes unnecessary servers but
keeps enough to process incoming queries. Because the target
query runs in parallel on all actors, adding servers decreases
latency (as the query can run in parallel on more cores on
more servers) and removing servers increases latency.

Importantly, Uniserve can resize clusters without losing per-
formance. By prefetching replicas of moved actors onto new
servers before serving any queries, Uniserve guarantees that
queries need not contend with actor transfers for resources. As
a result, Uniserve can add or remove servers without affecting
throughput or median latency. Tail latency does spike briefly
when a server is added, but this represents only the handful
of queries sent between when Uniserve notifies servers of the
new server and when it notifies clients.

Failures. We next investigate how Uniserve deals with
server failures, using the Druid sum_all benchmark. We run
this benchmark for ten minutes with a client sending 500 asyn-
chronous queries uniformly per minute. Three minutes into
the benchmark, we kill -9 a data server. We record how
many queries succeed during each minute of the benchmark.
We run the benchmark twice, once starting with four replicas
of each data partition or actor (one on each server), and once
with just a single replica. We show results in Figure 11.

When all servers have replicas of all partitions (11b), Unis-
erve recovers instantly, routing queries to replicas. Druid,
however, takes thirty seconds to route queries to replicas, re-
sulting in hundreds of query failures. When there is only one
replica of each partition (11a), both systems fail hundreds of
queries but recover within thirty seconds by restoring replicas
from durable cloud storage. However, while all queries sent to
Uniserve either fail or successfully complete, some “success-
ful” Druid queries return incorrect results. This experiment
confirms previously-reported issues Druid faces in large-scale

0

500

1000

Th
ro

ug
hp

ut
 (q

ue
rie

s/
m

in
ut

e) a) Target and Actual Query Throughput

Target
Actual

0

25

50

75

100

CP
U

Us
ag

e
(%

) b) Average Cluster CPU Usage

0

2

4

Se
rv

er
s

c) Number of Cluster Servers

0 50 100 150 200 250 300 350
Time Elapsed (min)

100

1000

La
te

nc
y

(m
s)

d) p50 and p99 Query Latency

p99
p50

Figure 10: On the Solr sloppy benchmark with Uniserve auto-
scaling, varying target throughput and observing effects on actual
throughput, average cluster CPU usage, the number of cluster servers,
and query latencies. Uniserve scales the cluster so that actual through-
put always matches target throughput; resizing causes only brief (<1
sec) spikes in query latency. Latency decreases as cluster size in-
creases because all queries run on all data and their parallelism
increases as the data is spread over more servers.

deployments [56] and shows Uniserve can address them.

8 Related Work
Actors Actor models are abstractions for concurrent compu-
tation built around stateful agents called actors [26]. Prior sur-
veys [53] identified five characteristics of an actor model: ac-
tors encapsulate their own state, exhibit location transparency,
are mobile, are scheduled fairly, and communicate through
message passing. DPA actors exhibit four of these properties:
they encapsulate shards of data, are addressable through parti-
tion keys, can be moved between servers, and share resources
on each machine. However, unlike prior actor models, DPA ac-
tors do not communicate via message passing but are instead
acted on by parallel operators and updates. Other systems
based on actors include Erlang [30], a programming langauge
with built-in actor support; Akka [8], which supports actors
on the JVM, including persistent actors with durable state;
Orleans [33,35], which supports virtual actors that are only in-
stantiated on-demand when required; and Ray [61,69], where
developers can call remote procedures on stateful actors.

Critically, most existing actor models focus on concurrent
computations, not the parallel ones performed by query serv-
ing systems and DPA. Most actor models do not support
cross-actor transactions, requiring users to manually imple-
ment protocols such as two-phase commit. Even in systems

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1069

2.5 5.0 7.5 10.0
Time Elapsed (min)

0

200

400

Qu
er

ie
s/

M
in

ut
e a) Druid - RF 1

2.5 5.0 7.5 10.0
Time Elapsed (min)

0

200

400

Qu
er

ie
s/

M
in

ut
e b) Druid - RF 4

Druid Queries/Minute Uniserve Queries/Minute

Figure 11: Query throughput (targeting 500 queries/min) of Druid-
and Uniserve-distributed sum_all queries when one data server is
killed after three minutes. The left graph shows performance starting
with a single replica of each partition; the right graph with four.

like Ray which allow many actors to be accessed in paral-
lel, there is only limited support for collective operators like
gather or scatter [23] and no support for consistency or atom-
icity guarantees across actors. DPA instead reasons about
parallel operators directly, taking advantage of the fact that
query serving systems mostly need to support bulk updates
as opposed to many concurrent write transactions, and of-
fers multiple consistency levels to support different system
designs. Eldeeb and Bernstein extended Orleans with a trans-
actional actor concept [43], but that work focused on allowing
clients to make multiple calls to the same actor as a single
transaction and tracking these calls’ effects on downstream
actors through message passing, which would be expensive
for the large data-parallel operations that DPA targets. Early
versions of Akka also supported transactional actors on the
same server [2], but this was removed because the mechanism
was hard to extend to multiple servers [1].

Other Distributed Programming Models One class of
programming model often used for parallel queries are batch
frameworks like MapReduce [42], Hadoop [66], Percola-
tor [64], Dryad [71], and Spark [72]. Unlike query serving
systems, these only execute computations and do not provide
abstractions for managing data, typically assuming its im-
mutability. Moreover, they are not designed for low latency
and typically do not implement many of the optimizations
used in query serving systems, such as augmenting data with
secondary indexes. Researchers have attempted to build up-
datable data structures over Spark RDDs, such as PART [41],
but these are greatly limited by the immutability of RDDs.

Streaming and dataflow systems like Spark Streaming [27,
73], Naiad [62], and Flink [36] execute queries in real time on
streaming data. However, unlike query serving systems, they
focus primarily on continuous computation (incrementally
updating the result of a query as data comes in) and do not
perform data management or low-latency query serving. They
are often used to write data into a query serving system.

Cluster management systems like Helix [46], Mesos [48],
and YARN [68] are designed to deploy distributed systems
at scale. Mesos and YARN are primarily concerned with as-
signing resources to each application. Helix, like Uniserve,

automatically manages the applications running on it, provid-
ing features such as elasticity and fault tolerance. However, it
is not designed for query serving workloads and lacks a query
model and abstractions for consistency and atomicity.

Auto-sharding systems like Slicer [25], Centrifuge [24],
and Shard Manager [55] assign data and queries to shards
based on partition keys, like DPA. Slicer and Centrifuge only
manage key affinity, telling applications what keys are as-
signed to what servers. Shard Manager goes further and man-
ages data placement, moving data shards between servers.
However, unlike Uniserve, these systems do not provide high-
level abstractions on top of shards, such as parallel operators
and updates with consistency and atomicity guarantees.

Thor [58] stores data in persistent distributed objects for
heterogeneous applications to access. These objects resemble
DPA actors, but Thor must run object operations on client
machines and does not provide high-level abstractions such
as a query model or configurable consistency guarantees.

Middleware systems for databases automatically distribute
data and queries across existing database installations and
provide features like fault tolerance [57, 63] and load balanc-
ing [31]. However, these solutions are typically specialized to
particular database types, like relational databases [37, 38] or
NoSQL stores [44], and do not provide general abstractions
to support a wide range of data and query models like DPA.

9 Conclusion
Query serving systems are an important emerging class of
distributed systems that power many Internet applications.
Traditionally, they are implemented from scratch, requiring
substantial effort to add distributed query processing and data
management functionality. We presented data-parallel ac-
tors (DPA), a high-level programming model that allows de-
velopers to build reliable and performant distributed query
serving systems from single-node data structures and logic.
We showed that DPA can express the functionality of a wide
range of query serving systems by building a simplified data
warehouse and porting Druid, Solr, and MongoDB to DPA
in <1K lines of code, matching performance and adding rich
missing functionality such as automatic load balancing and
auto-scaling. We believe DPA is a valuable tool to help orga-
nizations more easily develop these important systems.

Acknowledgments We thank the anonymous reviewers and
our shepherd Mahesh Balakrishnan. This research was sup-
ported in part by affiliate members and other supporters of the
Stanford DAWN project—Ant Financial, Facebook, Google,
and VMware—as well as Toyota Research Institute, Cisco,
SAP, and the NSF under CAREER grant CNS-1651570. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect the views of the NSF. Toyota Research
Institute (TRI) provided funds to assist the authors with their
research but this article solely reflects the opinions and con-
clusions of its authors and not TRI or any other Toyota entity.

1070 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Akka 2.4 migration guide. https://doc.akka.io/

docs/akka/2.4/project/migration-guide-2.3.
x-2.4.x.html.

[2] Akka transactors documentation. https://doc.akka.
io/docs/akka/2.2/scala/transactors.html,
2015.

[3] How to Setup ElasticSearch Cluster with Auto-Scaling
on Amazon EC2? https://stackoverflow.com/
questions/18010752/, 2015.

[4] MongoDB Cluster with AWS Cloud Formation
and Auto-Scaling. https://stackoverflow.com/
questions/30790038/, 2016.

[5] Why Architecting for Disaster Recovery is Important
for Your Time Series Data. https://www.influxdata.
com/customer/capital-one/, 2018.

[6] How Walmart is Combating Fraud and Saving
Consumers Millions. https://www.elastic.co/
elasticon/tour/2019/dallas/, 2019.

[7] Enterprise Scale Analytics Platform Powered
by Druid at Target. https://imply.io/
virtual-druid-summit, 2020.

[8] Akka. https://akka.io/, 2021.

[9] Apache Solr. https://lucene.apache.org/solr/,
2021.

[10] Atlas. https://github.com/Netflix/atlas, 2021.

[11] ClickHouse. https://clickhouse.tech/, 2021.

[12] DB-Engines Ranking. https://db-engines.com/
en/ranking, 2021.

[13] Elasticsearch. www.elastic.co, 2021.

[14] InfluxDB. https://www.influxdata.com/, 2021.

[15] MongoDB. https://www.mongodb.com/, 2021.

[16] MongoDB for Analytics. https://www.mongodb.
com/analytics, 2021.

[17] OpenTSDB. http://opentsdb.net/, 2021.

[18] Pinecone. https://www.pinecone.io/, 2021.

[19] Shards and Indexing Data in SolrCloud, Aug 2021.

[20] Solr Distributed Requests. https://solr.apache.
org/guide/8_8/distributed-requests.html,
2021.

[21] Vespa. https://vespa.ai/, 2021.

[22] YCSB GitHub. https://github.com/
brianfrankcooper/YCSB, 2021.

[23] Ray collective communication. https://docs.ray.
io/en/latest/ray-collective.html, 2022.

[24] Atul Adya, John Dunagan, and Alec Wolman. Cen-
trifuge: Integrated lease management and partitioning
for cloud services. In NSDI, volume 10, pages 1–16,
2010.

[25] Atul Adya, Daniel Myers, Jon Howell, Jeremy Elson,
Colin Meek, Vishesh Khemani, Stefan Fulger, Pan Gu,
Lakshminath Bhuvanagiri, Jason Hunter, et al. Slicer:
Auto-sharding for Datacenter Applications. In 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pages 739–753, 2016.

[26] Gul A Agha. Actors: A model of concurrent compu-
tation in distributed systems. Technical report, Mas-
sachusetts Inst of Tech Cambridge Artificial Intelligence
Lab, 1985.

[27] Michael Armbrust, Tathagata Das, Joseph Torres, Bu-
rak Yavuz, Shixiong Zhu, Reynold Xin, Ali Ghodsi, Ion
Stoica, and Matei Zaharia. Structured streaming: A
declarative api for real-time applications in apache spark.
In Proceedings of the 2018 International Conference
on Management of Data, SIGMOD ’18, page 601–613,
New York, NY, USA, 2018. Association for Computing
Machinery.

[28] Michael Armbrust, Reynold S Xin, Cheng Lian, Yin
Huai, Davies Liu, Joseph K Bradley, Xiangrui Meng,
Tomer Kaftan, Michael J Franklin, Ali Ghodsi, et al.
Spark SQL: Relational Data Processing in Spark. In
Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, pages 1383–1394,
2015.

[29] Joe Armstrong. A History of Erlang. In Proceedings
of the Third ACM SIGPLAN Conference on History of
Programming Languages, pages 6–1, 2007.

[30] Joe Armstrong. Erlang. Communications of the ACM,
53(9):68–75, September 2010.

[31] Jaiganesh Balasubramanian, Douglas C Schmidt,
Lawrence Dowdy, and Ossama Othman. Evaluating the
Performance of Middleware Load Balancing Strategies.
In Proceedings. Eighth IEEE International Enterprise
Distributed Object Computing Conference, 2004. EDOC
2004., pages 135–146. IEEE, 2004.

[32] Jeff Barr. New AWS Auto Scaling – Unified Scaling
For Your Cloud Applications. 2018.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1071

https://doc.akka.io/docs/akka/2.4/project/migration-guide-2.3.x-2.4.x.html
https://doc.akka.io/docs/akka/2.4/project/migration-guide-2.3.x-2.4.x.html
https://doc.akka.io/docs/akka/2.4/project/migration-guide-2.3.x-2.4.x.html
https://doc.akka.io/docs/akka/2.2/scala/transactors.html
https://doc.akka.io/docs/akka/2.2/scala/transactors.html
https://stackoverflow.com/questions/18010752/
https://stackoverflow.com/questions/18010752/
https://stackoverflow.com/questions/30790038/
https://stackoverflow.com/questions/30790038/
https://www.influxdata.com/customer/capital-one/
https://www.influxdata.com/customer/capital-one/
https://www.elastic.co/elasticon/tour/2019/dallas/
https://www.elastic.co/elasticon/tour/2019/dallas/
https://imply.io/virtual-druid-summit
https://imply.io/virtual-druid-summit
https://akka.io/
https://lucene.apache.org/solr/
https://github.com/Netflix/atlas
https://clickhouse.tech/
https://db-engines.com/en/ranking
https://db-engines.com/en/ranking
www.elastic.co
https://www.influxdata.com/
https://www.mongodb.com/
https://www.mongodb.com/analytics
https://www.mongodb.com/analytics
http://opentsdb.net/
https://www.pinecone.io/
https://solr.apache.org/guide/8_8/distributed-requests.html
https://solr.apache.org/guide/8_8/distributed-requests.html
https://vespa.ai/
https://github.com/brianfrankcooper/YCSB
https://github.com/brianfrankcooper/YCSB
https://docs.ray.io/en/latest/ray-collective.html
https://docs.ray.io/en/latest/ray-collective.html

[33] Phil Bernstein, Sergey Bykov, Alan Geller, Gabriel Kliot,
and Jorgen Thelin. Orleans: Distributed virtual actors
for programmability and scalability. Technical Report
MSR-TR-2014-41, March 2014.

[34] Andrzej Białecki, Robert Muir, and Grant Ingersoll.
Apache Lucene 4. In SIGIR 2012 Workshop on Open
Source Information Retrieval, page 17, 2012.

[35] Sergey Bykov, Alan Geller, Gabriel Kliot, James R
Larus, Ravi Pandya, and Jorgen Thelin. Orleans: Cloud
Computing for Everyone. In Proceedings of the 2nd
ACM Symposium on Cloud Computing, pages 1–14,
2011.

[36] Paris Carbone, Asterios Katsifodimos, Stephan Ewen,
Volker Markl, Seif Haridi, and Kostas Tzoumas. Apache
flink: Stream and batch processing in a single engine.
Bulletin of the IEEE Computer Society Technical Com-
mittee on Data Engineering, 36(4), 2015.

[37] Emmanuel Cecchet, George Candea, and Anastasia Ail-
amaki. Middleware-Based Database Replication: the
Gaps Between Theory and Practice. In Proceedings of
the 2008 ACM SIGMOD International Conference on
Management of Data, pages 739–752, 2008.

[38] Emmanuel Cecchet, Marguerite Julie, and Willy
Zwaenepoel. C-JDBC: Flexible Database Clustering
Middleware. In USENIX Annual Technical Conference,
number CONF, 2004.

[39] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking Cloud
Serving Systems with YCSB. In Proceedings of the 1st
ACM symposium on Cloud computing, pages 143–154,
2010.

[40] Michael Curtiss, Iain Becker, Tudor Bosman, Sergey
Doroshenko, Lucian Grijincu, Tom Jackson, Sandhya
Kunnatur, Soren Lassen, Philip Pronin, Sriram Sankar,
et al. Unicorn: A system for searching the social graph.
Proceedings of the VLDB Endowment, 6(11):1150–
1161, 2013.

[41] Ankur Dave, Joseph E Gonzalez, Michael J Franklin,
and Ion Stoica. Persistent adaptive radix trees: Efficient
fine-grained updates to immutable data.

[42] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Sim-
plified Data Processing on Large Clusters. 2004.

[43] Tamer Eldeeb and Phil Bernstein. Transactions for dis-
tributed actors in the cloud. Technical Report MSR-TR-
2016-1001, October 2016.

[44] Felix Gessert, Florian Bücklers, and Norbert Ritter.
Orestes: A scalable database-as-a-service architecture

for low latency. In 2014 IEEE 30th international con-
ference on data engineering workshops, pages 215–222.
IEEE, 2014.

[45] Mainak Ghosh, Ashwini Raina, Le Xu, Xiaoyao Qian,
Indranil Gupta, and Himanshu Gupta. Popular is
Cheaper: Curtailing Memory Costs in Interactive Ana-
lytics Engines. In Proceedings of the Thirteenth EuroSys
Conference, pages 1–14, 2018.

[46] Kishore Gopalakrishna, Shi Lu, Zhen Zhang, Adam Sil-
berstein, Kapil Surlaker, Ramesh Subramonian, and Bob
Schulman. Untangling cluster management with helix.
In Proceedings of the Third ACM Symposium on Cloud
Computing, SoCC ’12, New York, NY, USA, 2012. As-
sociation for Computing Machinery.

[47] Anurag Gupta, Deepak Agarwal, Derek Tan, Jakub
Kulesza, Rahul Pathak, Stefano Stefani, and Vidhya
Srinivasan. Amazon Redshift and the Case for Sim-
pler Data Warehouses. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of
Data, pages 1917–1923, 2015.

[48] Benjamin Hindman, Andy Konwinski, Matei Zaharia,
Ali Ghodsi, Anthony D. Joseph, Randy Katz, Scott
Shenker, and Ion Stoica. Mesos: A platform for fine-
grained resource sharing in the data center. In 8th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 11), Boston, MA, March 2011.
USENIX Association.

[49] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira,
and Benjamin Reed. Zookeeper: Wait-free coordination
for internet-scale systems. In USENIX annual technical
conference, volume 8, 2010.

[50] S Idreos, F Groffen, N Nes, S Manegold, S Mullender,
and M Kersten. Monetdb: Two decades of research
in column-oriented database. IEEE Data Engineering
Bulletin, 2012.

[51] Jean-François Im, Kishore Gopalakrishna, Subbu Sub-
ramaniam, Mayank Shrivastava, Adwait Tumbde, Xiao-
tian Jiang, Jennifer Dai, Seunghyun Lee, Neha Pawar,
Jialiang Li, et al. Pinot: Realtime OLAP for 530 Mil-
lion Users. In Proceedings of the 2018 International
Conference on Management of Data, pages 583–594,
2018.

[52] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-
scale similarity search with gpus. IEEE Transactions on
Big Data, 7(3):535–547, 2021.

[53] Rajesh K Karmani, Amin Shali, and Gul Agha. Actor
frameworks for the jvm platform: a comparative analy-
sis. In Proceedings of the 7th International Conference

1072 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

on Principles and Practice of Programming in Java,
pages 11–20, 2009.

[54] Xavier Léauté. Benchmarking Druid. 2014.

[55] Sangmin Lee, Zhenhua Guo, Omer Sunercan, Jun Ying,
Thawan Kooburat, Suryadeep Biswal, Jun Chen, Kun
Huang, Yatpang Cheung, Yiding Zhou, Kaushik Veer-
araghavan, Biren Damani, Pol Mauri Ruiz, Vikas Mehta,
and Chunqiang Tang. Shard manager: A generic shard
management framework for geo-distributed applications.
In Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles, SOSP ’21, page 553–569,
New York, NY, USA, 2021. Association for Computing
Machinery.

[56] Roman Leventov. The Challenges of Running Druid at
Large Scale, Nov 2017.

[57] Yi Lin, Bettina Kemme, Marta Patiño-Martínez, and
Ricardo Jiménez-Peris. Middleware Based Data Repli-
cation Providing Snapshot Isolation. In Proceedings of
the 2005 ACM SIGMOD International Conference on
Management of Data, pages 419–430, 2005.

[58] Barbara Liskov, Atul Adya, Miguel Castro, Sanjay Ghe-
mawat, R Gruber, U Maheshwari, Andrew C Myers,
Mark Day, and Liuba Shrira. Safe and efficient sharing
of persistent objects in thor. ACM SIGMOD Record,
25(2):318–329, 1996.

[59] Michael McCandless. Lucene nightly benchmarks.
2020.

[60] Gian Merlino. Druid Initial Join Support, Oct 2019.

[61] Philipp Moritz, Robert Nishihara, Stephanie Wang,
Alexey Tumanov, Richard Liaw, Eric Liang, Melih Eli-
bol, Zongheng Yang, William Paul, Michael I. Jordan,
and Ion Stoica. Ray: A distributed framework for emerg-
ing AI applications. In 13th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI 18),
pages 561–577, Carlsbad, CA, October 2018. USENIX
Association.

[62] Derek G. Murray, Frank McSherry, Rebecca Isaacs,
Michael Isard, Paul Barham, and Martín Abadi. Na-
iad: A timely dataflow system. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems
Principles, SOSP ’13, page 439–455, New York, NY,
USA, 2013. Association for Computing Machinery.

[63] Marta Patiño-Martinez, Ricardo Jiménez-Peris, Bettina
Kemme, and Gustavo Alonso. MIDDLE-R: Consistent
Database Replication at the Middleware Level. ACM
Transactions on Computer Systems (TOCS), 23(4):375–
423, 2005.

[64] Daniel Peng and Frank Dabek. Large-scale incremental
processing using distributed transactions and notifica-
tions. In Proceedings of the 9th USENIX Symposium on
Operating Systems Design and Implementation, 2010.

[65] Mark Raasveldt. MonetDBLite: An Embedded Analyti-
cal Database. In Proceedings of the 2018 International
Conference on Management of Data, pages 1837–1838,
2018.

[66] Konstantin Shvachko, Hairong Kuang, Sanjay Radia,
and Robert Chansler. The Hadoop Distributed File Sys-
tem. In 2010 IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST), pages 1–10. Ieee,
2010.

[67] Rebecca Taft, Essam Mansour, Marco Serafini, Jennie
Duggan, Aaron J Elmore, Ashraf Aboulnaga, Andrew
Pavlo, and Michael Stonebraker. E-Store: Fine-Grained
Elastic Partitioning for Distributed Transaction Process-
ing Systems. Proceedings of the VLDB Endowment,
8(3):245–256, 2014.

[68] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Dou-
glas, Sharad Agarwal, Mahadev Konar, Robert Evans,
Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth
Seth, Bikas Saha, Carlo Curino, Owen O’Malley, San-
jay Radia, Benjamin Reed, and Eric Baldeschwieler.
Apache hadoop yarn: Yet another resource negotiator.
In Proceedings of the 4th Annual Symposium on Cloud
Computing, SOCC ’13, New York, NY, USA, 2013. As-
sociation for Computing Machinery.

[69] Stephanie Wang, Eric Liang, Edward Oakes, Ben Hind-
man, Frank Sifei Luan, Audrey Cheng, and Ion Stoica.
Ownership: A distributed futures system for fine-grained
tasks. In 18th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 21), pages 671–
686. USENIX Association, April 2021.

[70] Fangjin Yang, Eric Tschetter, Xavier Léauté, Nelson Ray,
Gian Merlino, and Deep Ganguli. Druid: A Real-Time
Analytical Data Store. In Proceedings of the 2014 ACM
SIGMOD International Conference on Management of
Data, pages 157–168, 2014.

[71] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu,
Ulfar Erlingsson, Pradeep Gunda, and Jon Currey.
DryadLINQ: A System for General-Purpose Distributed
Data-Parallel Computing Using a High-Level Language.
8th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2009.

[72] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauly, Michael J.
Franklin, Scott Shenker, and Ion Stoica. Resilient Dis-
tributed Datasets: A Fault-Tolerant Abstraction for In-
Memory Cluster Computing. In Presented as part of the

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1073

9th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 12), pages 15–28, San Jose,
CA, 2012. USENIX.

[73] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy
Hunter, Scott Shenker, and Ion Stoica. Discretized
streams: Fault-tolerant streaming computation at scale.
In Proceedings of the Twenty-Fourth ACM Sympo-
sium on Operating Systems Principles, SOSP ’13, page

423–438, New York, NY, USA, 2013. Association for
Computing Machinery.

[74] Siyuan Zhou and Shuai Mu. Fault-tolerant replication
with pull-based consensus in mongodb. In 18th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 21), pages 687–703. USENIX Associ-
ation, April 2021.

1074 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Orca: Server-assisted Multicast for Datacenter Networks

Khaled Diab Parham Yassini Mohamed Hefeeda
School of Computing Science

Simon Fraser University
Burnaby, BC, Canada

Abstract
Group communications appear in various large-scale data-

center applications. These applications, however, do not cur-
rently benefit from multicast, despite its potential substantial
savings in network and processing resources. This is because
current multicast systems do not scale and they impose con-
siderable state and communication overheads. We propose a
new architecture, called Orca, that addresses the challenges
of multicast in datacenter networks. Orca divides the state
and tasks of the data plane among switches and servers, and
it partially offloads the management of multicast sessions
to servers. Orca significantly reduces the state at switches,
minimizes the bandwidth overhead, incurs small and constant
processing overhead, and does not limit the size of multicast
sessions. We implemented Orca in a testbed to demonstrate
its performance in terms of throughput, consumption of server
resources, packet latency, and the impact of server failures.
We also implemented a sample multicast application in our
testbed, and showed that Orca can substantially reduce its
communication time, through optimizing the data transfer
between nodes using multicast instead of unicast. In addition,
we simulated a datacenter consisting of 27,648 hosts and han-
dling 1M multicast sessions, and we compared Orca versus
the state-of-art system in the literature. Our results show that
Orca reduces the switch state by up to two orders of mag-
nitude, the communication overhead by up to 19X, and the
control overhead by up to 14X, compared to the state-of-art.

1 Introduction

Many modern datacenter applications require group com-
munications in the form of one-to-many or many-to-many
patterns. Examples of these applications include distributed
databases, telemetry systems, consensus protocols, and ma-
chine learning systems. Multicast can efficiently support
these communication patterns. For example, in distributed
databases, multicast can be used to distribute and replicate
data among servers [69]. For telemetry systems, multicast is

suitable for sending updates and monitoring data to collector
nodes [46,67]. In addition, multicast can be used for state ma-
chine replication tasks in the Paxos consensus protocol and its
variations [21,39,45,53]. Furthermore, multicast can improve
the performance of iterative algorithms that distribute data
from a server to multiple working nodes. Examples of such
algorithms appear in training machine learning models [28],
text mining [48], and recommendation systems [36].

In addition to the above applications, an efficient multicast
primitive would benefit various systems that naturally per-
form group communication. For example, publish-subscribe
systems [37, 58, 68] typically send each message to a group
of receivers. These systems are the substrate for many appli-
cations such as activity trackers, log aggregators, and stream
processing frameworks. Moreover, in the emerging serverless
platforms [2, 60], a common pattern is that a worker commu-
nicates with multiple other workers to enroll them in a single
burst computation [7, 8], which can efficiently be realized
using multicast.

Despite its potential significant bandwidth savings, multi-
cast faces multiple challenges that slow down its deployment
by major cloud providers [62]. First, to forward packets on
links belonging to the multicast tree, multicast forwarding
requires maintaining state at all switches for each session,
which imposes substantial memory overheads on switches.
Second, updating and refreshing this state upon changes gen-
erates a storm of messages, which reduces the scalability of
switches as they are required to process numerous control
packets. Finally, since multicast trees in datacenters could
potentially span many switches and servers, encoding these
trees into labels could impose substantial processing, commu-
nication and/or bandwidth overheads.

As a result, there has been a lack of efficient and scalable
multicast systems that support large numbers of sessions. For
example, in practice, switch vendors are forced to limit the
number of IP multicast sessions per switch [55], because of
the inefficiencies introduced by the group management [50]
and tree construction [16] protocols of IP multicast. This
is not cost-effective for cloud providers. In addition, while

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1075

current datacenter multicast approaches, e.g., [5, 6, 32, 43],
improve upon the basic IP multicast, they also do not scale
well and impose substantial overheads on the network, as we
show in this paper. To partially mitigate the lack of efficient
multicast systems, many datacenter applications had to rely
on (inefficient) application-layer protocols [51]. For example,
Apache Spark [40] implements its own primitives [9] such as
Cornet [36] and HTTP-based multicast.

This paper presents a new architecture, called Orca, to re-
alize efficient multicast forwarding that can support millions
of concurrent multicast sessions in datacenter networks. The
idea of Orca is to offload some of the state maintained at
network switches to end servers. To achieve this idea, Orca
computes fixed-size and compact labels and attaches them to
packets of multicast sessions. These labels effectively enable
shifting some of the data plane tasks to servers. As a result,
Orca significantly reduces the state at switches, minimizes
the bandwidth overhead, incurs small and constant processing
overhead, does not limit the size of multicast sessions, and
eliminates redundant traffic. Realizing the proposed server-
assisted multicast approach, however, faces multiple chal-
lenges at the control and data planes that Orca addresses. At
the control plane, the proposed architecture needs to calculate
optimized labels, manage state at servers, and handle failures.
At the data plane, it requires packet processing algorithms at
switches and servers that sustain the line-rate performance
and minimize the latency and resource consumption.

This paper makes the following contributions.
• We introduce the idea of server-assisted (or offloaded)

multicast for scalable multicast services in datacenters.

• We design a hierarchical control plane that efficiently
manages multicast sessions and their dynamics, handles
network failures, and does not impose high control over-
heads (§3.3 and §3.4).

• We present a scalable data plane algorithm to pro-
cess multicast packets within high-speed datacenter net-
works, without introducing redundant traffic or requiring
switches to maintain large states (§3.5).

• We design and implement APIs to transparently integrate
multicast into datacenter applications (§4).

• We implement the proposed multicast approach and eval-
uate its performance in a testbed using programmable
switches to demonstrate its practicality (§5). Our results
show that the proposed approach can support high-speed
traffic, uses small CPU resources at servers, and imposes
small and predictable packet delays.

• We show the potential significant gains achieved by us-
ing multicast instead of unicast in datacenter applications.
We implemented a sample application using Orca and
the unicast approach used in current systems such as
Apache Spark [40]. For this application that has only
12 receivers, our results show that Orca can reduce the

communication time by almost an order of magnitude;
larger savings are expected for applications with more
receivers. In addition, since an Orca sender transmits
only one copy per packet regardless of the number of
receivers in the session, the required CPU resources are
significantly reduced, compared to using unicast.

• We compare Orca against the closest system in the lit-
erature, Elmo [5], in large-scale simulations (§6). Our
results show that Orca reduces the switch state by up to
two orders of magnitude, the communication overhead
by up to 19X, and the control overhead by up to 14X
compared to Elmo in large-scale datacenter networks.

2 Related Work

Internet Multicast. IP multicast is not practical for datacen-
ter networks because of its limited scalability for both the
control and data planes [11, 52]. Specifically, its group man-
agement and tree construction protocols, e.g., IGMP [50] and
PIM [16], need to maintain state at routers belonging to each
multicast session. Moreover, to refresh this state, these proto-
cols generate control messages that routers need to process.
These overheads limit the number of multicast sessions, and
they could delay a receiver joining a session for up to 23
seconds [66], which is not practical for datacenters. Further-
more, current multicast approaches designed for ISP networks,
e.g., [1, 43], introduce significant communication overheads,
and thus they are not suitable for datacenter networks.
Datacenter Multicast. Multiple approaches, e.g., [5, 32, 35],
attempted to address the challenges of IP multicast. Li et
al. [35] propose a multi-class Bloom filter (MBF) to sup-
port multicast in datacenter networks. For every interface,
MBF uses a Bloom filter to store whether packets of a session
should be duplicated on that interface. MBF may introduce re-
dundant traffic due to the probabilistic nature of Bloom filters.
Li and Freedman [32] partition the IP address space and aggre-
gate addresses for different sessions. However, this approach
consumes the limited flow table resources in switches and
limits the number of supported multicast sessions. Elmo [5]
encodes links of a multicast tree into rules to be attached to
packets and maintained at switches. Elmo is the state-of-art
multicast system for datacenters, and we compare against it.

Other works, e.g., [9, 10, 25], enabled multicast in circuit-
switched datacenter networks. For example, Republic [9] and
Blast [25] realize multicast by using additional optical circuit
switches. Orca is designed to be deployed in the common
packet-switched networks. Application-layer multicast ap-
proaches could also be used in datacenters, by concurrently
sending unicast flows to multiple receivers. This, however,
results in inefficient bandwidth utilization [47, 49, 51], and
increases the CPU load on the sender.
Server-assisted Data Planes. While Orca is the first server-
assisted multicast for datacenters, to the best of our knowledge,

1076 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

it is not the first work to utilize server resources to implement
parts of the data plane. For examples, Katta et al. [17] propose
an OpenFlow [26] rule caching system using both switch
TCAM and server memory, which is managed by a controller.
In contrast, we design Orca to reduce the state maintained at
switches instead of improving how the large number of rules
are stored. A recent work [4] offloads the state of network
functions to the server memory using RDMA. Unlike this
system, Orca has small header sizes and its agents maintain
small state instead of large network function state. Moreover,
Orca simplifies how state is fetched, managed, and replicated.

3 Orca: Server-assisted Multicast

We start this section by specifying the design goals of Orca.
Then, we present an overview of Orca describing its main
components and how they work together. This is followed by
the details of each component. In the Appendix, we describe
various overheads, extensions, and limitations of Orca.

3.1 Design Goals

The objective of this paper is to design a multicast architecture
for datacenter networks that achieves the following goals:

• Reduce State at Switches. Maintaining large state at
network switches not only consumes their scarce mem-
ory resources, but it also increases the number and fre-
quency of exchanged update messages to handle network
failures and session dynamics. This forces switches to
process many control messages while forwarding data
packets, which may slow down the data plane [66].

• Minimize Communication Overhead. We aim at min-
imizing the header size per packet to reduce the com-
munication (or bandwidth) overhead, which is critical
to decreasing the total transmission time. We note that
some of the existing multicast systems, e.g., [5], attach
labels that can be as large as the packet payload.

• Support Large-scale Multicast Sessions. As datacenter
applications become complex, the numbers of multicast
sessions and receivers per session are expected to grow
at high rates [70]. Existing systems, e.g., [32], do not
efficiently scale to support the growing demands and
high dynamics of recent datacenter applications.

• Avoid Redundant Traffic. Switches should forward
packets only on links belonging to the multicast tree.
This is because redundant traffic wastes network re-
sources and overloads switches. Many of the existing
multicast systems, e.g., [5, 35], cannot avoid sending re-
dundant traffic without imposing a substantial amount
of communication overheads by using large label sizes
and/or increasing the state size maintained at switches.

Simultaneously realizing these goals is challenging as they
are inter-dependent and pose conflicting trade-offs. For exam-
ple, although attaching a large label to packets reduces switch
state, it significantly increases the communication overhead
and packet processing at switches. Our approach to concur-
rently achieve these design goals is to attach a small and
fixed-size label to packets of every multicast session. This
substantially minimizes the communication overhead and re-
duces packet processing on switches. In addition, we carefully
calculate and process labels to eliminate redundant traffic. Fur-
thermore, to reduce state at switches, we make servers assist
in forwarding the packets. As a result, switches will be able
to support large-scale multicast sessions.

3.2 Overview

Orca is designed for multi-rooted Clos topologies that are
widely deployed in datacenter networks. We use the leaf-spine
topology throughout the paper, but the same principles apply
for other tree-based topologies. In the leaf-spine topology, the
top layer consists of core switches that connect different leaf-
spine planes. Spine switches connect leaf switches to other
leaf switches and to core switches. Every leaf switch connects
a rack of servers to the datacenter network. Each server runs a
hypervisor switch and hosts multiple virtual machines (VMs).

In traditional IP multicast, network switches need to main-
tain state about each multicast session, which imposes sig-
nificant overheads on the switches. In contrast, the proposed
approach carefully offloads most of the work needed to man-
age multicast sessions to end hosts in the datacenter, which
enables efficient and scalable multicast–a long standing prob-
lem. In addition, unlike IP multicast, Orca uses labels to direct
the forwarding of multicast packets through the network. Each
label consists of different components, each of which encodes
a specific datacenter layer (i.e., leaf, spine, or core). However,
as the size of a multicast tree grows, simple stacking of label
components would lead to large, variable-size, labels and thus
significant communication and processing overheads.

The proposed architecture is based on three key insights
that enable us to design small and fixed-size labels and achieve
scalability. First, a large portion of the label overhead comes
from encoding the tree downstream links belonging to leaf
switches, and that this overhead increases for multicast trees
with large numbers of receivers. Second, labels belonging to
leaf downstream links are not needed until the packet reaches
a leaf switch. Third, servers in datacenters already host hy-
pervisor switches to process various packet types. Based on
these insights, we logically divide the data plane at the leaf
layer: between each leaf switch and the servers connected to
it. Then, we offload handling of the leaf downstream labels to
some of the servers. To process the labels, these servers run
an Orca agent, which can run on SmartNICs or CPU cores by
integrating it with an existing hypervisor switch or running it
as a standalone process.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1077

C
on

tr
ol

 P
la

ne
D

at
a

P
la

ne

Centralized Ctrl.

Leaf Ctrl.

Agent Ctrl....

Hyper.
Switch

VMs

Multicast tree

1 2 3 4

Calculate labels/state

Update agent state
Handle agent failures

1 2 3 4

Orca
Agents

Spine

Leaf

Core

Source
Label

src

Leaf
Label

Figure 1: The proposed multicast architecture.

As illustrated in Figure 1, Orca is composed of two compo-
nents: (i) Hierarchical Control Plane and (ii) Server-assisted
Data Plane. The Control Plane is composed of three con-
trollers: Centralized, Leaf, and Agent. The Centralized con-
troller creates labels to represent multicast trees and decides
the state that needs to be maintained at network switches;
details are presented in §3.3. A leaf controller is deployed on
each leaf switch, while agent controllers are deployed on VMs
within racks. All three components of the Hierarchical Con-
trol Plane collaborate to handle network and agent failures as
well as to manage the dynamic nature of multicast sessions, as
described in §3.4. The Data Plane, presented in §3.5, instructs
switches and Orca agents how to process packets.

At a high-level, a multicast session is created and managed
as follows, refer to Figure 1. The tree spanning the source and
receivers has one path from the source VM to any core switch,
then it reaches the receivers by branching to spine and leaf
switches. The tree is then given to the centralized controller,
which creates a fixed-size label (referred to as source label)
to represent a part of the tree. It is important to notice that
although the multicast tree can be large and spans many parts
of the datacenter network, Orca optimizes the source label and
keeps its size small and constant, as described in §3.3. The
source label is sent to the source of the session, which attaches
it to each packet. The packet is then sent upstream to spine and
core switches, which forward it based on various components
of the source label in that packet. Then, the packet is sent
downstream from the spine and core switches, using other
components of the source label, to the leaf switches that have
receivers of the session in their racks. Each leaf switch sends
the packet to an active Orca agent within its rack. The agent
replaces the source label with another label (called leaf label)
and sends it back to the leaf switch. The leaf label contains the
information needed by the leaf switch to forward the packet
to the end receivers within the rack.

Active Agent

Eth Orca payload

leafStatus
leaf us

spine ds

core ds

leafStatus
leaf ds

src

Leaf

Spine

Core

spine us

agent leaf recsrc leaf

replaced
by

agent

orcaTypesessionID srcMAC

Source Label Leaf Labela b
a

b

Figure 2: Structure of the Orca header. The color of each label
component matches the corresponding link in the network.

3.3 Calculating Labels
Labels play a critical role in the proposed multicast architec-
ture, and they need to be carefully designed to ensure proper
functioning of the multicast system as well as minimize the
communication and processing overheads.

The centralized controller computes a fixed-size source
label that consists of four components and a single leafS-
tatus bit. Figure 2 illustrates the header format of an Orca
data packet and the label structure. The four label components
encode tree links belonging to leaf upstream (us), spine up-
stream, spine downstream (ds), and core downstream links.
When a data packet reaches an active agent, the source label is
replaced with the corresponding leaf label to forward packets
to the multicast receivers.

The centralized controller calls the CALCULATELABELS
algorithm (pseudo code is given in Algorithm 1) to calculate a
source label to be attached to packets of the multicast session,
a set of leaf labels to be maintained at the agents and state
to be maintained at spine switches (if needed). No session
state is needed at core or leaf switches. The algorithm takes as
input the multicast tree T. It groups tree links of each network
layer and encodes their IDs independently in a fixed-size label
component.

The algorithm first creates a bitmap of size (in bits):
1+max(Ld ,dlog(Lu)e+Pd +F + dlog(Pu)e+Cd),

where Ld , Lu, Pd , Pu, and Cd are the maximum numbers of
downstream and upstream ports per leaf switch, downstream
and upstream ports per spine switch, and downstream ports
per core switch. F is the size of a filter encoding the spine
downstream links. This bitmap accommodates the leaf labels
that will be inserted by agents. A typical datacenter switch
has 48 ports [5]. Thus, the size of Orca label is 19 bytes in
most practical cases.

The first bit in an Orca source label is the leafStatus bit,
which indicates whether an agent has replaced a source label
with a leaf label. The remaining bits are used to encode links
of the multicast tree based on four cases as follows.
Case 1: Leaf and Spine Upstream. For the leaf and spine
upstream links, the CALCULATELABELS algorithm maps
the two link IDs to outgoing ports in the leaf and spine

1078 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 1 The CALCULATELABELS algorithm.
Input: T: multicast tree
Output: L: computed source label sent to the source VM
Output: S: state sent to a subset of the spine switches
Output: F: set of leaf labels, each is sent to an agent

1: function CALCULATELABELS(T)
2: 〈L,S〉 = CALCULATESOURCELABEL(T)
3: F = CALCULATELEAFLABELS(T)
4: return 〈L, S, F〉
5: function CALCULATESOURCELABEL(T)
6: size=1+max(Ld ,dlog(Lu)e+ Pd + F + dlog(Pu)e+

Cd)
7: L = BitString(size)
8: L.append(0) // Set leafStatus to 0 (source label)
9: Case 1: Leaf and Spine Upstream.

10: L.append(T.lea f _us_link().port_num)
11: L.append(T.spine_us_link().port_num)
12: Case 2: Spine Downstream.
13: // Common downstream ports across spine switches
14: C = FINDCOMMONPORTS(T.spine_switches())
15: L.append(MAPTOBITSTRING(C,Pd))
16: // Call Algorithm 2
17: 〈D, S〉 = ENCSPINEDSLINKS(T, C, F)
18: L.append(D)
19: Case 3: Core Downstream.
20: core_links = T.core_ds_links()
21: L.append(MAPTOBITSTRING(core_links,Cd))
22: return 〈L, S〉
23: function CALCULATELEAFLABELS(T)
24: F = {}
25: Case 4: Leaf Downstream.
26: for (lea f ∈ T.lea f _switches()) do
27: // Each bit set to 1 represents a session receiver
28: lbl = MAPTOBITSTRING(lea f .ds_links(),Ld))
29: F = F∪ lbl
30: return F

switches and encodes these port numbers as two labels of
sizes dlog(Lu)e and dlog(Pu)e bits, respectively.
Case 2: Spine Downstream. Since the multicast tree may
include more than one spine switch, reserving a bit per spine
downstream link significantly increases the label size. Instead,
we trade off large label sizes, which impose overhead on every
single multicast packet, with a small state maintained at a
subset of the spine switches. Specifically, we encode the spine
downstream links using two label components with a total size
of Pd +F bits. The first label component encodes the common
downstream ports across all spine switches belonging to the
multicast tree using Pd bits. For example, if a tree has three
spine switches and the first two outgoing ports belong to the
tree for each of the three spine switches, then the calculated
label is 1100. . .0. We refer to this set of common ports as C.

The second label component uses a probabilistic set mem-
bership data structure (a.k.a filter) to encode the remaining
spine downstream links in a label D of size F bits. Since these
filters trade off membership accuracy for space efficiency, they
may result in false positives, which occur when some spine
downstream links that do not belong to the multicast tree are
incorrectly included in the computed filter. False positives
result in redundant traffic. To address this issue, we calculate
a state alongside the label. This state can have zero or more
entries, and each entry takes the form 〈sID, linkID〉, where
sID is the ID of the spine switch that should maintain this
state and linkID is the ID of the downstream link identified
as a false positive during the encoding. The filter supports
two functions: (i) D = encode(l) to encode an input item l
(link ID in our case) into a bit string D of size F bits using a
hash function, and (ii) check(l,D) to check whether a given
item l belongs to D using the same hash function. Our link
encoding algorithm can use any filter, e.g., Bloom [54] and
Cuckoo [27] filters, that can support: (1) adding an item to
an existing filter, (2) testing whether an item exists (poten-
tially with false positives), and (3) avoiding false negatives.
A false negative happens when a link in the multicast tree is
not represented in the filter.

The CALCULATELABELS algorithm calls the ENCSPINED-
SLINKS function, the pseudo code is shown in Algorithm 2
in the Appendix. This function encodes spine downstream
links of the multicast tree into a label D and calculates the
state S to be maintained by spine switches. To calculate S,
we need to identify false positive links belonging to spine
switches. We refer to the subset of the spine downstream
links that may be false positives as candidates. There are two
conditions for a spine downstream link to be a false positive
candidate. First, it has to be attached to a spine switch that
belongs to the multicast tree, as packets of that session do not
reach other spine switches. Second, it should not belong to
the spine downstream links of the multicast tree. Otherwise,
it is not a false positive.

The ENCSPINEDSLINKS function has three steps. First,
it encodes every link l in the set of spine downstream links
using the encode function. Then, it computes the false positive
candidates based on the two conditions mentioned earlier.
Finally, it calculates the state that needs to be maintained at
spine switches by checking all false positive candidates stored
in cands and adding only the links that collide with the spine
downstream links encoded in D and not belonging to C.
Case 3: Core Downstream. The CALCULATELABELS algo-
rithm maps IDs of core downstream tree links to a bitmap of
size Cd bits, where Cd is the maximum number of downstream
ports in the core layer. The label bits identify the outgoing
ports at the core switch belonging to the multicast tree. Thus,
a bit at location i in the label is set to 1 if the core switch
should duplicate packets on the ith port.
Case 4: Leaf Downstream. For every leaf switch belong-
ing to the multicast tree, the CALCULATELABELS algorithm

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1079

calculates a leaf label that encodes all link IDs to reach the
receivers of the session within the rack managed by that leaf
switch. Each leaf label simply maps the link IDs into a bitmap
of size Ld bits.

3.4 Handling Session Dynamics and Failures
Orca employs simple, but effective, mechanisms to manage
the dynamic nature of multicast sessions, and to mitigate
network and agent failures. We only assume the continuous
availability of the top-level, centralized controller of Orca,
which can be achieved through mechanisms usually used for
such datacenter functions, e.g., [42].
Session Dynamics. Multicast receivers can join and leave
any time during the sessions by calling corresponding APIs
that communicate with the centralized controller (§4).

When a joining/leaving event is received, the centralized
controller runs a simple method (Case 4 in §3.3) to update
leaf labels at the agents. The controller then sends the updated
leaf labels to the corresponding leaf controllers. The message
also includes a unique sequence number. Each leaf controller
relays the new leaf label to all active and standby agents
within its rack. An agent updates its memory with the new
label if the received sequence number is larger than the largest
sequence number it has processed so far. Agents then send
confirmation messages to upstream controllers indicating that
the new changes were processed successfully.
Orca Agent Failures. In each rack, we maintain N Orca
agents active and M as standby, where N,M are configurable
parameters. All agents within a rack maintain the same leaf
label per multicast session. The leaf switch in the same rack
distributes the labeling workload among the N active agents,
in a round robin manner. This adds more reliability and re-
duces the labeling load on individual agents.

All agents, active and standby, send heartbeat packets to
the leaf controller at a fixed rate. If the leaf controller does not
receive any heartbeats from an agent within a timeout period
T , the agent is assumed failed. T is in the same order of the
RTT within a single rack, which is often a few milliseconds
[19]. If the failed agent was active, the leaf controller replaces
it by one of the standby agents, otherwise the controller just
removes the failed agent from the standby set.

We note that Orca agents deployed in a rack operate in-
dependently of agents deployed in other racks. Thus, our
approach localizes failures within each rack, which reduces
the control overhead and increases the control plane respon-
siveness. In other words, a leaf controller handles only the
failures of its downstream agents. In addition, heartbeats pro-
vide responsiveness and simplicity, which is sufficient in our
system as all agents maintain the same state. The state is up-
dated across all agents when there is a change in the multicast
tree, which is detected by the centralized controller.
Network Failures. The centralized controller detects network
(link and switch) failures using existing systems such as [12].

Once a failure is detected, the controller re-calculates new
source and leaf labels for the impacted sessions (§3.3). It also
computes a new state at switches (if needed). To mitigate
losses during network or agent failures, applications can use
reliable transport protocols, e.g., [9].

3.5 Server-assisted Data Plane Forwarding

The data plane in Orca consists of leaf, spine and core
switches, as well as agents deployed at servers. The data plane
components process received packets as described below.
Leaf Switch. For a packet received on a downstream port,
the leaf switch data plane processes that packet based on the
leafStatus bit. If this bit is zero, i.e., a packet from the
source, the data plane reads the first log(dLue) bits after the
leafStatus bit as a leaf upstream label component, and for-
wards the packet based on the upstream port number encoded
in that component. If the leafStatus is set to 1, this means
the active agent has inserted a leaf label into the packet header.
Thus, the data plane uses the leaf label component of size Ld
bits to forward/duplicate the packet to corresponding servers.
Specifically, a bit set at location i instructs the data plane to
duplicate the packet on its ith port.

If a packet is received on an upstream port, the data plane
forwards the packet on a port connected to one of the active
agents, which is set and updated by the leaf controller.
Spine Switch. For a packet received on a downstream port,
the data plane processes both the upstream and downstream
label components. First, the packet is forwarded to a core
switch by reading the spine upstream label, which encodes
the outgoing port number. Second, since the packet may be
forwarded/duplicated on the spine downstream links, the data
plane runs the PROCSPINEDSLABEL algorithm to process
the two spine downstream labels (pseudo code is shown in
Algorithm 3 in the Appendix). This algorithm is executed for
packets received on upstream ports as well. The algorithm
first identifies the common links C by reading the first label.
If a link is set to one in the label, the switch duplicates the
packet on that link. Then, the algorithm uses the second label
D and state State maintained by the spine switch to decide
which of the other downstream links belong to the tree.

For each link l /∈ C, the algorithm decides to not forward
the packet on l if it is not encoded in D. This is because filters
in Orca do not produce false negatives. When l.id exists in the
label, the algorithm needs to check the maintained state State
as l.id may be a false positive. Recall that the state contains
the false positive links computed by the control plane. The
algorithm duplicates the packet only if l.id does not exists in
State[sID].
Core Switch. The data plane reads the core downstream label
component (of size Cd bits) to forward/duplicate the packet to
downstream spine switches. Similar to the leaf downstream la-
bel, this label encodes which downstream ports the incoming
packet should be forwarded on.

1080 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Orca Agent. For incoming packets from a leaf switch, the
agent data plane checks the leafStatus bit. If it is set to 0
(i.e., it has no leaf label), the agent reads the corresponding
leaf label from the leaf label map and inserts it into the packet
header and sets the leafStatus bit to 1. If the leafStatus
bit is 1, this packet is destined to receiver VMs.
Overheads and Limitations of Orca. We describe Orca
overheads and limitations in the Appendix. In summary, Orca
agents require small processing resources at servers as the
computation performed on packets is simple. In addition, Orca
adds a small latency to packets at the leaf layer only. Further-
more, deploying Orca in graph-based datacenter networks
requires changes in some of its components.

4 Implementation and Orca APIs

We briefly describe the implementation of Orca components
which are illustrated in Figure 3.
Orca APIs for Multicast Applications. We implemented
two sets of interfaces for multicast applications. The first
one is between the agent and applications to provide send
and recv functionalities seamlessly to the application. These
APIs use Unix domain sockets to communicate with the agent.
When using send at the source, the agent gets data from
the sockets, attaches Orca label and transmits the packets
to the leaf switch. Receivers use recv to instruct the agent
to relay available data to the application. The second set of
APIs is between applications and the centralized controller to
create, join and leave multicast sessions. We implemented
the communication and data encoding/decoding using gRPC
[64] and Protocol Buffers.
Orca Agents. We implemented the agent using BESS [23,61]
in about 640 lines of C++, where packet processing is done
completely in the user space using DPDK [63]. The agent
leverages Receive Side Scaling (RSS) to receive packets on
different RX queues, each is assigned to a single core.
Orca Hierarchical Controller. The centralized and leaf con-
trollers are implemented in about 3K lines of Golang. The
current implementation of the leaf controller communicates
with the data plane through raw or Unix domain sockets, but
it can easily support other interfaces. For instance, in our
testbed, the leaf controller process is deployed to the worksta-
tion hosting a NetFPGA, and it uses PCIe to exchange control
packets with the NetFPGA, which is done through the RIFFA
framework [18]. Communications between the centralized
and leaf controllers are done using gRPC [64].
Switch Data Plane. Since Orca’s data plane processing
is simple, it can easily be implemented in different pro-
grammable switches. We implemented the data plane of Orca
in NetFPGA SUME [29] and tested it on multiple of them.
We used the open source project in [56], and implemented a
Verilog module to decide the outgoing ports. We measured the
number of clock cycles and resource usage of our implemen-
tation using Xilinx tools. Our implementation of core and leaf

Developer

Agent
Attach

Source Label

IPC
Sock

Multicast App

Orca APIs

Agent
Detach

Leaf Label

IPC
Sock

Multicast App

Orca APIs

Agent
Replace

Source Label

RX TX RX TX

Orca Switch
Ctrl. Plane

Data Plane

PCIe

Orca Switch
Ctrl. Plane

Data Plane

PCIe

Orca Controller

sender
s = Session()
s.create()
s.send(data)
s.terminate()

recv
s = Session()
s.join()
s.recv()
s.leave()

TX RX
Data Pkts

Source Label Leaf Label

Ctrl.
Pkts

Calculate Labels

Handle Dynamics

Calculate Tree

Switch gRPC Endpoint
App gRPC Endpoint

Developer

Figure 3: Implementation of Orca components.

switches maps the corresponding bitmaps to outgoing ports,
which is done in one clock cycle. We implemented the spine
switch algorithm in three clock cycles to identify common
ports and check the Bloom filter using a bitwise-AND be-
tween the label and hashed link IDs stored at the switch, read
state from memory, and decide the outgoing ports. In terms
of resource usage, our algorithm utilizes a tiny percentage of
the available hardware resources. It uses 0.12% and 0.16% of
the available lookup tables (LUTs) and registers, respectively.

5 Evaluation of Orca in Testbed

We evaluate Orca in a testbed to demonstrate its potential ben-
efits to applications and asses the performance of its data plane
and control plane components. The testbed has three NetF-
PGA SUME switches [29] representing a spine and two leaf
switches, each of which has four 10GbE ports. The testbed
also has five workstations to act as Orca agents and multicast
senders and receivers. We configure our testbed to only have
one active agent per rack to stress our labeling algorithm at
servers. Each workstation is equipped with a dual-port Intel
82599ES 10GbE NIC. Each leaf switch is connected to two
workstations, and the spine switch is connected to one work-
station. We generate traffic at line rate from a multicast source
and transmit it to leaf switches through the spine switch.

5.1 Benefits of Orca
We implemented a sample multicast application that has the
same behavior of the iterative machine learning algorithms
implemented in Spark [40]. In these algorithms, the data to
be processed is often written to files, and a server iteratively
sends them to all receivers for processing. In our application, a
server reads a file and transmits it in chunks. In every iteration,
after a file is sent, the server awaits acknowledgment of file
reception from the receivers. The next round starts only after
receiving all acknowledgments. This emulates the aggregation
phase in distributed data processing frameworks [44], which
indicates all workers have updated their model parameters. In
our implementation, we set the payload size to the maximum

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1081

88 176 352 704 1408
Workload Size (MB)

0

5

10

15

Co
m

m
. T

im
e

(m
s) £103

Unicast
Orca

(a) Communication time

4 8 12
Receivers

0

5

10

15

Co
m

m
. T

im
e

(m
s) £103

Unicast, 1 core for all dsts
Unicast, 1 core/4 dsts
Unicast, 1 core/2 dsts
Unicast, 1 core/dst
Orca, 1 core for all dsts

(b) Required CPU resources

Figure 4: Benefits of Orca.

UDP message length. We run each instance of the client
application inside a separate Docker container on the receiver
machines.
Performance Metrics. We compare Orca versus the current
unicast approach used in systems such as Apache Spark [40].
In particular, we demonstrate the potential benefits of Orca
in terms of the communication time, impact of available pro-
cessing capacity at the sender on the communication time,
and total transmitted traffic.

The running time of datacenter applications consists of
communication and computation times. The communication
time of an application is the total time spent on sending data
and receiving corresponding acknowledgments without in-
cluding the computation times. We measure the communica-
tion time of Orca versus unicast, as this is the main aspect
being optimized by Orca and it does not control or modify the
computations. In addition, we aim at showing that Orca can
present the same packet to the application layer much faster
compared to the current unicast approaches.

Depending on the application and its total computation
time, Orca can reduce the running times of a variety of ap-
plications. For example, the authors in [36] reported that the
communication time of data-intensive tasks using unicast can
be larger than the computation time, especially as the number
of workers increases. Thus, optimizing data transfer is critical
for these applications.
Workloads. The number and size of the transmitted files are
similar to the ones used in the distributed latent Dirichlet
allocation (LDA) algorithm [9, 30]. LDA identifies topics
in the input documents and maps each document to a set of
topics. The vocabulary training set is the data transmitted to
the worker nodes. To calculate the workload size, we run the
algorithm on a synthetic dataset containing 16,923 documents
and 100 topics using the tool in [71]. To evaluate Orca using
realistic workloads, we create five different workloads with
sizes of 88MB, 176MB, 352MB, 704MB, and 1.4GB.
Results. We conduct experiments using concurrent 4, 8 and
12 receivers and the five different workloads mentioned above.

Figure 4a shows the communication time for Orca and uni-
cast for different workloads when the number of receivers
is 12. The sender in the multicast session uses one CPU
core to transmit the traffic. These results show that Orca can

significantly reduce the communication time for all consid-
ered workloads. In addition, the figure shows that, unlike the
case for Orca, the communication time for unicast grows in a
super-linear manner with the workload size. This is because
the unicast sender needs more time to transmit packets to each
of the concurrent 12 receivers, whereas Orca transmits only
a single packet for all receivers. Packet transmission at high
rates also requires processing cycles.

To analyze the impact of the available processing capac-
ity at the sender on the communication time, we allocate a
varying number of CPU cores to transmit the traffic of the
multicast session in the case of unicast. For Orca, only one
CPU core is used. In Figure 4b, we plot the communication
time for the largest workload (1.4GB) for Orca and unicast,
as we vary the number of available CPU cores. The figure
shows that Orca has a fairly stable communication time as the
number of receivers increases, despite using only one CPU
core to transmit all packets of the session. In contrast, unicast
needs more CPU cores to send the traffic to different receivers
to reduce the communication time. In our testbed, allocating a
single core per receiver for unicast could not sustain the high
packet rate at the sender for 8 and 12 receivers.

Next, we measure the total transmitted traffic from the
sender for the largest workload as well as the label overhead
of Orca. When using Orca, the total outgoing traffic is only
1.51 GB, compared to 18.01 GB when using unicast. This
means the sender in the unicast model would need to transmit
12X more traffic, which not only consumes more bandwidth,
but also requires more processing and memory resources to
transmit much more packets. The total label overhead of Orca
is 7.69 MB which represents only 0.51% of the transmitted
multicast traffic.

Although current multicast approaches may yield similar
benefits to applications, they cannot scale well to support a
large number of multicast sessions. Therefore, we compare
the scalability of Orca versus the state-of-art multicast system
using large-scale simulations in §6.

Summary: For a sample application with 4–12 receivers,
Orca achieves substantial savings in communication time,
required processing resources at the sender, and bandwidth,
compared to the current unicast approach.

5.2 Data Plane Performance

Throughput of Spine Switches. We report the throughput of
the spine switch; we omit the results of leaf and core switches
as they run simple forwarding algorithms.

We transmit labelled packets of many concurrent multicast
sessions at the maximum link speed (i.e., 10 Gbps) from
the source to the spine switch. The labels instruct the spine
switch to duplicate packets to two leaf switches. We run this
experiment five times for every packet size and compute the
average across them. We compare the incoming packet rate
against the outgoing packet rates observed at the two leaf

1082 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

64 128 256 512 1024
Packet Size (Bytes)

0

5

10

15

Pk

ts
/s

ec
 (M

ill
io

ns
)

Tx
Rx1
Rx2

(a) Spine switch throughput

1 2 3 4 5 6 7 8
CPU Cores

0
5

10
15
20
25
30
35
40

Th
ro

ug
hp

ut
 (G

bp
s)

Pkt Size=1024B
Pkt Size=512B
Pkt Size=256B
Pkt Size=128B
Pkt Size=64B

(b) Agent throughput

100K 200K 300K 400K 500K
Active Sessions

0
400
800

1200
1600
2000

Cy

cl
es

/p
ac

ke
t Avg.

50th

95th

99.99th

(c) CPU usage per packet

64 128 256 512 1024
Packet Size (Bytes)

0
5

10
15
20
25

Pa
ck

et
 L

at
en

cy
 (¹

s)

(d) Packet latency

Figure 5: Data plane performance of Orca.

switches in Figure 5a. Our results show that the packet rates
are the same (i.e., no packet losses). We also measure the
achieved throughput at the two interfaces, and confirm that
the spine switch can sustain the 10 Gbps for all packet sizes.
Agent Scalability. We stress and evaluate the scalability of
the agent data plane. In this setup, we deploy two NICs (i.e.,
4x10GbE ports) at the agent workstation and direct labeled
traffic at rate of 40Gbps from the other two workstations.
The labels have the leafStatus set to zero, which indicates
that the agent needs to label them using a corresponding leaf
label. We measure the throughput of the packets after being
processed by the agent.

Figure 5b shows the throughput versus the number of al-
located cores for the data plane, which shows that the agent
scales well to support high rates. We measure the smallest
packet size at which the agent can sustain the 40Gbps traffic
using a single core. Our results show that the agent can sustain
this rate using 1 core for packets of size 560 bytes or larger.
For enterprise datacenters, the average packet size is reported
to be 850 bytes [41]. Furthermore, data-intensive jobs like
Hadoop workloads often use 1500-byte packets [20]. That is,
Orca agents require only a few cores per rack to support many
multicast sessions at high rates. Major datacenters deploy 24–
48 servers per rack [14, 65], and each typically has more than
16 cores. That is, even for applications that require small 64-
byte packets and send at an aggregate rate of 40Gbps, an Orca
agent would need up to 1–2% of the available CPU resources
in a rack when SmartNICs are unavailable.

In addition, recall from §5.1 that Orca requires only one
CPU core at the sender side regardless of the number of re-
ceivers, whereas the current unicast approach needs a pro-
portional number of CPU cores to sustain the transmission
rate especially as the number of receivers increases. Thus,
the processing capacity needed to run Orca agents will likely
be offset by the savings in the processing capacity needed to
transmit the traffic in the unicast approach.
Agent CPU Usage. Recall that an active agent needs to look
up a leaf label from its memory using the session ID. We
measure the total number of CPU cycles needed by the agent
to process packets (including labeling and memory lookup).
We stress the agent by allocating leaf labels for 1M sessions at

the agent. In this experiment, the sender randomly transmits
traffic belonging to a subset of the total sessions, which we
refer to as active sessions. We use large numbers of active
sessions to stress the agent.

Figure 5c shows different statistics of the used number of
CPU cycles per packet (measured by rdtsc) when the packet
size is 1024 bytes. The results show the efficiency of the
agent even without any code optimizations. For example, the
agent running on a 3.8GHz CPU needs an average of 99 ns
per packet when the number of active sessions is 100K per
rack. We note that the number of CPU cycles is constant for
different packet sizes, since the agent processes fixed-size
labels. To put these numbers in context, existing, optimized,
software switches such as OVS [24] and PISCES [15] use
409 and 426 cycles/packet, on average, to handle IP packets,
respectively. The average for Orca is 375 cycles/packet when
handling 100K active sessions.
Packet Latency and Jitter. We measure the packet latency
and jitter of Orca at the leaf layer, which is defined as the
total duration from when a packet is sent to the leaf switch
to the time it is received by a multicast receiver connected
to that switch. We emulate a dynamic traffic scenario, where
the sender starts transmitting traffic at 1Gbps and increases
the sending rate with 1Gbps steps every 20 seconds until it
saturates the link, and holds this transmission rate for another
20 seconds.

Figure 5d shows the packet latency for different packet
sizes. For 64-byte packets, the median latency is 11.3 µs.
The packet latency slightly increases for large packet sizes
because of the increased transmission time. Notice that in
latency-sensitive applications, where latency for individual
packets are important, smaller packets are more prevalent [57]
where Orca has short packet latency.

We next measure the packet inter-arrival jitter, which is
calculated as the difference between the current packet delay
and previous packet delay. Our results show that Orca im-
poses negligible variance in packet latency. The average and
maximum inter-arrival jitter values for 1024-byte packets are
1.135 µs and 3.3 µs, respectively.

Summary: The Orca data plane is scalable and can sustain
high throughputs even with small packet sizes. Orca agents

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1083

1 5 10 15 20 25 30
Heartbeat Timeout T (ms)

0
5

10
15
20
25
30

Fa
ilo

ve
r D

el
ay

 (m
s)

(a) Failover delay at a failure

1 5 10 15 20 25 30
Heartbeat Timeout T (ms)

0

1

2

3

Lo
ss

 %

Pkt size=64

Pkt size=128

Pkt size=256

Pkt size=512

Pkt size=1024

(b) Loss rate during a failure

P1 P2 P3 P4
Controller Placement

0
1
2
3
4
5

Jo
in

 D
el

ay
 (m

s)

0.48 0.69 0.86 1.12

2.65 2.44
2.91 2.79

Netowrk delay
Control plane delay

(c) Receiver join delay

P1 P2 P3 P4
Controller Placement

0
250
500
750

1000
1250

Ev

en
ts

/s
ec

(d) Confirmation msgs. throughput

Figure 6: Control plane performance of Orca.

can process large numbers of concurrent sessions, use low
CPU resources, and only add a small latency to packets.

5.3 Control Plane Performance

Responsiveness to Agent Failures. Orca localizes agent fail-
ures within the rack, thus we analyze failures for a single rack.
We measure the performance while an active agent is han-
dling traffic at 10Gbps. We manually crash the active agent
and measure the following metrics at a receiver: failover de-
lay, throughput, and data loss rate. We report the results for
the worst-case scenario, where the rack has only one active
agent. Failover delay is the time when the receiver does not
receive traffic due to active agent failure and when it receives
traffic again. Figure 6a shows the average failover delay for
all packet sizes when we control the heartbeat timeout. The re-
sults confirm the fast response of the control plane in choosing
a new active agent when the original agent fails. For instance,
receivers can resume receiving traffic within 1.04 ms after an
active agent fails when T is 1 ms.

We next measure the observed throughput at the receiver
during a failure, where we crash the agent after two seconds.
For 1024-byte packets and heartbeat timeout of 1ms, we ob-
serve a throughput drop by up to 0.012% only. In addition, for
all packet sizes, the total throughput drop is less than 0.013%
during a failure. Our results confirm that Orca quickly re-
stores the transmission to full capacity after a failure. Finally,
we plot the loss rate caused by an agent failure in Figure 6b.
When the heartbeat timeout is 1 ms, Orca incurs a loss rate of
0.18%, on average, across all packet sizes. We note that such
losses can be easily mitigated by using reliable multicast [9].
Receiver Joining Delay. We assess the performance of the
proposed method for updating leaf labels when a new receiver
joins. Recall that when a session changes, Orca sends new leaf
labels to the corresponding agents. This impacts how quickly
a joining receiver would receive traffic. In addition, network
delays between the control plane components in datacenters
might vary depending on the placement of the controllers and
receivers. We emulate different controller placement setups in
our testbed by adding synthetic delays at the network interface
queues of the workstations (using tc) to stress our system.

We consider four different placement setups (P1–P4) starting
with no synthetic delay in P1 with mean RTT of 479 µs and
adding 200 µs of delay every step till we reach a mean RTT of
1,120 µs (maximum 1,326 µs) in P4 setup. These RTT values
follow what is reported in [19] where the 99th percentile RTT
between two hosts is 1.34 ms. We note that even the lowest
RTT in our setup (i.e., P1) is larger than the median RTT
inside a rack in datacenter networks which is 268 µs [19].

We measure the receiver join delay, which is the time dura-
tion from when a receiver sends a join request for a session
and the time the first packet of that session is received by the
receiver. For each placement setup, the experiment is repeated
for 30 join events. Figure 6c shows the average join delay
as well as the contribution of network delays. We report that
even in the worst-case scenario (P4), the average join delay is
less than 4 ms. In total, the median and 99th-percentile delays
are 3.12 ms and 6.53 ms, respectively. To put these numbers
into perspective, note that inserting a new rule into an Open-
Flow switch takes 1–3 ms, and rule modification delays vary
from 2–18 ms [22].

We next measure the throughput of processed confirmation
messages at the centralized controller in Figure 6d, which
represents the end-to-end performance. In the P1 setup, Orca
handles an average of 1,147 msgs/sec (SD is 74). As increas-
ing latency affects gRPC, the average throughput of the largest
delay scenario is 662 msgs/sec (SD is 14).

Summary: Orca recovers quickly from failures and it sup-
ports dynamic multicast sessions. Furthermore, the failure
detection mechanism in Orca is localized to individual racks.

6 Orca versus State-of-Art

We analyze the performance and scalablity of Orca and com-
pare it against the state-of-art system, Elmo [5], using large-
scale simulations. We use the open-source code of Elmo.

Elmo employs three stages to encode a multicast tree. Elmo
encodes switches of a tree as a union of multiple bitmaps
representing outgoing ports. When the label size reaches a
pre-configured value, Elmo installs forwarding state entries at
switches without exceeding their capacities. Otherwise, Elmo
calculates a default entry that may result in redundant traffic.

1084 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 10K 20K 30K 40K 50K
Switch State (# entries)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 S

w
itc

he
s

Max Orca state
= 437

Orca
Elmo-1
Elmo-2
Elmo-3
Elmo-4

(a) Switch state CDF

1 2 3 4 5 6 7 8 9 10
Receiver Density (%)

0

30

60

90

120

Se
ss

io
n

St
at

e Orca
Elmo-1
Elmo-2
Elmo-3
Elmo-4

(b) Session state

Uni-S Uni-C WVE-S WVE-C
Dataset

0
50

100
150
200
250
300

La
be

l S
iz

e
(B

yt
es

) Orca
Elmo-1
Elmo-2
Elmo-3
Elmo-4

(c) Comm. Overhead

Uni-S Uni-C WVE-S WVE-C
Dataset

0
10
20
30
40
50

Up

da
te

s/
se

c

£103 Orca
Elmo-1
Elmo-2
Elmo-3
Elmo-4

(d) Message update rate

Figure 7: Performance of Orca versus Elmo.

6.1 Simulation Setup
Topology and VM Placement. We simulate a multi-rooted
Clos topology consisting of 48 pods, each has 576 48-port leaf
and spine switches. This results in a large datacenter network
of 27,648 hosts. We use a setup similar to [5, 32]: There are
3,000 tenants, each has a number of VMs ranging from 10 to
5,000. The maximum number of VMs per server is 20. We
use two VM placement strategies. The first one is a Clustered
placement (denoted by C), which places at most 12 tenant
VMs per rack. The second is a Scattered strategy (denoted by
S), and it places at most one tenant VM per rack.
Multicast Sessions and Datasets. Multicast receivers per
session are randomly chosen from all tenant VMs. The size
of these sessions follows two different distributions similar
to [5, 32]. The first distribution follows a workload from the
IBM WebSphere Virtual Enterprise (WVE) [32], and the sec-
ond one is a uniform distribution (Uni). The minimum and
maximum session sizes for both distributions are 5 and 5,000
receivers, respectively.

We generate four datasets representing various workload
characteristics and VM placement strategies. We denote a
dataset using its session size distribution and VM placement
strategy, e.g., a dataset with uniform session sizes and scat-
tered strategy is referred to as Uni-S. We simulate 1M mul-
ticast sessions per dataset, where each tenant has sessions
proportional to the number of its VMs.
Orca and Elmo Parameters. We set the filter size in Orca to
69 bits to compute byte-aligned label. For Elmo, we control
two parameters to analyze different aspects of it, and set them
according to [5]. The first one is the number of rules encoded
in Elmo label, which is set to be either 10 or 30. The second
parameter is the redundancy limit that controls the amount
of redundant traffic caused by sharing a single rule in Elmo
label. We set this parameter to be 0 (no redundant traffic) or
12. We refer to the Elmo four configurations as Elmo-1 (10,
0), Elmo-2 (10, 12), Elmo-3 (30, 0) and Elmo-4 (30, 12).

6.2 Data Plane Performance
Switch State. Figure 7a shows the CDF of the switch state for
the Uni-S dataset. The results for other datasets are similar.

The figure shows that Orca significantly reduces the state
size compared to all considered configurations of Elmo. For
example, in Orca, 99% of switches need to only maintain up
to 253 entries in their memory, and no switch maintains more
than 437 entries. In contrast, for Elmo-1, which calculates
the smallest label sizes (i.e., 100 bytes on average), 99% of
switches need to maintain up to 47.7K entries in their memory,
with some switches need to maintain as many as 53.5K entries.
Elmo could not reduce the state even when it doubles the
label size. For example, in Elmo-4, 99% of switches need to
maintain up to 24K entries in their memory (maximum is 30K
entries). This is a significant improvement because it indicates
that Orca requires much lower switch memory to support the
same number of multicast sessions and much fewer control
messages to update the switch state.

We next study the impact of session size on the required
state to be maintained for that session in Figure 7b. The figure
shows that Orca scales well, and it can reduce the session
state by up to 55X compared to Elmo. For example, when a
session has 2.5K receivers, Orca needs to maintain state at
up to two switches only. Elmo-1, however, needs to maintain
state at up to 110 switches.

These significant gains are achieved because, unlike Elmo,
Orca does not require maintaining state at any leaf or core
switch. In addition, the proposed spine labels can encode most
of the spine downstream links while requiring small state at
few spine switches.

Summary: Orca reduces state size by up to two orders
of magnitude compared to Elmo, and can support a large
number of concurrent multicast sessions.
Communication Overhead. Figure 7c shows that Orca re-
duces the communication overhead by using a small and
fixed-size label of size 19 bytes to forward traffic of 1M ses-
sions. On the other hand, Elmo uses much larger labels. For
example, in the Uni-S dataset, the average and maximum la-
bel sizes of Elmo-4 are 211 bytes and 368 bytes, respectively;
SD is 62 bytes.

Elmo introduces variations in the label size for the same
configuration across different datasets. This means that
changes in VM placement strategy or shifts in traffic patterns
introduce unpredictable forwarding performance in Elmo, as

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1085

its switches need to process labels with varying sizes. For ex-
ample, changing the VM placement strategy from clustered to
scattered in Elmo-4 increases the average label size by 148%
because receivers in the scattered strategy span more racks
compared to the clustered one. For the same configuration, a
shift in traffic pattern from WVE to Uni increases the average
label size by 42% as Elmo needs to encode more receivers
using the same label size. This is because the WVE distri-
bution is skewed, and thus, fewer sessions have large group
sizes compared to the Uni distribution. In contrast, Orca has a
fixed-size label of 19 bytes because it utilizes the key insights
described in §3.2.

Summary: Orca reduces the communication overhead by
up to 19X compared to Elmo while being robust against VM
placement strategies and session sizes.
Redundant Traffic. We define the redundant traffic per ses-
sion as the ratio between the number of receivers that receive
unwanted traffic to the total number of receivers in the ses-
sion. By design, Orca does not introduce any redundant traffic.
Elmo may introduce redundant traffic to reduce state size by
controlling the redundancy limit parameter as it shares the
same rule among multiple switches. We analyze the traf-
fic redundancy of Elmo-2 and Elmo-4 for the Uni-S dataset.
Other Elmo configurations have redundancy limit of 0 sim-
ilar to Orca but they require maintaining much larger state
at switches. Our results show that, for Elmo-2, 25% of the
sessions have more than 67% redundant traffic, with a maxi-
mum value of 172%. For Elmo-4, with much larger labels, the
maximum redundant traffic is 113%. That is, the traffic could
erroneously be sent to more destinations not participating in
the multicast session than the actual receivers.

Summary: Orca does not introduce any redundant traffic,
whereas Elmo may impose up to 172% redundant traffic.

6.3 Control Plane Performance

Session Dynamics. We randomly generate 1,000 receiver
joining/leaving events per second with joining probability
of 0.5. Every event changes a multicast tree, and thus, the
state maintained at switches may need to be refreshed. Re-
freshing the state requires the control plane to send update
messages to the switches. We measure the total number of up-
date messages per second sent by the controller for both Orca
and Elmo. We report the results for all datasets in Figure 7d.
For example, the Orca controller needs to send an average
of 1,889 messages per second (SD is 45) for the WVE-S
dataset. On the other hand, the Elmo controller needs to send
19.9K, 10K, 9.5K and 615 messages per second on average
for Elmo-1, Elmo-2, Elmo-3 and Elmo-4, respectively. This
is because Orca maintains state only at a small number of
switches. Elmo-4 does not need to update many switches.
It, however, imposes the largest label size among all Elmo
configurations with high amount of traffic redundancy.

Summary: Orca reduces the rate of update messages by

up to 10X compared to Elmo.
Network Failures. Similar to session changes, a core or
spine switch failure triggers Orca and Elmo to update state
at switches if needed. For the WVE-S dataset, Orca needs
to send 3,900 messages per core switch failure on average,
while Elmo-1, Elmo-2, Elmo-3, and Elmo-4 needs to send an
average of 56.2K, 31.2K, 27.6K, and 1.7K messages per core
switch failure, respectively. For a spine switch failure, Elmo-1,
Elmo-2, Elmo-3, and Elmo-4 send 34.7K, 20.6K, 18K, and
1.2K messages per failure, respectively, whereas Orca sends
4,890 messages per failure. Although Elmo-4 requires sending
fewer messages per failure, it imposes significant overheads
in terms of the label size and traffic redundancy.

Summary: Compared to Elmo, Orca reduces the control
overhead for handling failures by up to 14X.
Running Time. Orca calculates labels faster than Elmo. We
report the running time of Orca and Elmo in the Appendix.

7 Conclusions and Future Work

We presented Orca, an efficient multicast architecture for data-
center networks. Orca splits the data plane operations between
leaf switches and servers. That is, Orca offloads managing
multicast sessions from leaf switches to servers. Orca has a
scalable control plane that handles session dynamics and net-
work failures. It also has a simple data plane that can sustain
high rates and can easily be implemented in programmable
switches. The server component in Orca can be implemented
on SmartNICs, or on regular CPU cores if SmartNICs are
not available. We implemented lightweight APIs to seam-
lessly integrate multicast into datacenter applications. We also
implemented Orca in a testbed that contains programmable
switches. We evaluated a sample multicast application in our
testbed. Our results show that Orca can substantially reduce
the communication time compared to unicast. In addition,
we assessed the performance of Orca in terms of its through-
put, resource usage, packet latency and the impact of failures.
Moreover, we compared Orca versus the state-of-art multicast
system, Elmo, using large-scale simulations. Compared to
Elmo, Orca reduces the switch state by up to two orders of
magnitude and the label size by up to 19X.

This work can be extended in multiple directions. For exam-
ple, we plan to extend Orca to support various group commu-
nication primitives needed by modern datacenter applications.

Acknowledgments

We thank our shepherd, Sujata Banerjee, and the anonymous
reviewers for their insightful and helpful comments. This
work was partially supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC).

1086 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Khaled Diab and Mohamed Hefeeda. Yeti: Stateless and
generalized multicast forwarding. In Proc. of USENIX
NSDI’22, Renton, WA, April 2022.

[2] Arjun Singhvi, Arjun Balasubramanian, Kevin Houck,
Mohammed Danish Shaikh, Shivaram Venkataraman,
and Aditya Akella. Atoll: A scalable low-latency server-
less platform. In Proc. of ACM SoCC’21, pages 138–
152, Seattle, WA, November 2021.

[3] Stewart Grant, Anil Yelam, Maxwell Bland, and Alex C.
Snoeren. Smartnic performance isolation with fairnic:
Programmable networking for the cloud. In Proc. of
ACM SIGCOMM’20, pages 681–693, Virtual Event, Au-
gust 2020.

[4] Daehyeok Kim, Zaoxing Liu, Yibo Zhu, Changhoon
Kim, Jeongkeun Lee, Vyas Sekar, and Srinivasan Seshan.
Tea: Enabling state-intensive network functions on pro-
grammable switches. In Proc. of ACM SIGCOMM’20,
pages 90–106, Virtual Event, August 2020.

[5] Muhammad Shahbaz, Lalith Suresh, Jen Rexford, Nick
Feamster, Ori Rottenstreich, and Mukesh Hira. Elmo:
Source-routed multicast for public clouds. In Proc. of
ACM SIGCOMM’19, pages 458–471, Beijing, China,
August 2019.

[6] Toerless Eckert, Gregory Cauchie, and Michael Menth.
Traffic Engineering for Bit Index Explicit Replication
(BIER-TE). Internet-draft, Internet Engineering Task
Force, July 2019. Work in Progress.

[7] Collin Lee and John Ousterhout. Granular Computing.
In Proc. of ACM HotOS’19, pages 149–154, Bertinoro,
Italy, May 2019.

[8] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti,
Chia-che Tsai, Anurag Khandelwal, Qifan Pu, Vaishaal
Shankar, João Carreira, Karl Krauth, Neeraja Jayant Yad-
wadkar, Joseph E. Gonzalez, Raluca Ada Popa, Ion Sto-
ica, and David A. Patterson. Cloud programming simpli-
fied: A berkeley view on serverless computing. February
2019. arXiv: 1902.03383.

[9] Xiaoye Steven Sun, Yiting Xia, Simbarashe Dzina-
marira, Xin Sunny Huang, Dingming Wu, and TS Eu-
gene Ng. Republic: Data multicast meets hybrid rack-
level interconnections in data center. In Proc. of IEEE
ICNP’18, pages 77–87, Cambridge, United Kingdom,
September 2018.

[10] Xiaoye Steven Sun and TS Eugene Ng. When creek
meets river: Exploiting high-bandwidth circuit switch
in scheduling multicast data. In Proc. of IEEE ICNP’17,
pages 1–6, Toronto, Canada, October 2017.

[11] O. Komolafe. Ip multicast in virtualized data centers:
Challenges and opportunities. In Proc. of IFIP/IEEE
IM’17, pages 407–413, Lisbon, Portugal, May 2017.

[12] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, and Alex C.
Snoeren. Passive realtime datacenter fault detection
and localization. In Proc. of USENIX NSDI’17, pages
595–612, Boston, MA, March 2017.

[13] Asaf Valadarsky, Gal Shahaf, Michael Dinitz, and
Michael Schapira. Xpander: Towards optimal-
performance datacenters. In Proc. of ACM CoNEXT’16,
pages 205–219, Irvine, CA, December 2016.

[14] Adrian M Caulfield, Eric S Chung, Andrew Putnam,
Hari Angepat, Jeremy Fowers, Michael Haselman,
Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-Young
Kim, et al. A cloud-scale acceleration architecture. In
Proc. of IEEE MICRO’16, pages 1–13, Taipei, Taiwan,
October 2016.

[15] Muhammad Shahbaz, Sean Choi, Ben Pfaff, Changhoon
Kim, Nick Feamster, Nick McKeown, and Jennifer Rex-
ford. Pisces: A programmable, protocol-independent
software switch. In Proc. of ACM SIGCOMM’16, pages
525–538, Florianopolis, Brazil, August 2016.

[16] Bill Fenner, Mark J. Handley, Hugh Holbrook, Isidor
Kouvelas, Rishabh Parekh, Zhaohui (Jeffrey) Zhang,
and Lianshu Zheng. Protocol Independent Multicast
- Sparse Mode (PIM-SM): Protocol Specification (Re-
vised). RFC 7761.

[17] Naga Katta, Omid Alipourfard, Jennifer Rexford, and
David Walker. Cacheflow: Dependency-aware rule-
caching for software-defined networks. In Proc. of ACM
SOSR’16, pages 1–12, Santa Clara, CA, March 2016.

[18] Matthew Jacobsen, Dustin Richmond, Matthew Hogains,
and Ryan Kastner. Riffa 2.1: A reusable integration
framework for fpga accelerators. ACM Trans. Reconfig-
urable Technol. Syst., 8(4), September 2015.

[19] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong
Dang, Ray Huang, Dave Maltz, Zhaoyi Liu, Vin Wang,
Bin Pang, Hua Chen, et al. Pingmesh: A large-scale
system for data center network latency measurement
and analysis. In Proc. of ACM SIGCOMM’15, pages
139–152, London, United Kingdom, August 2015.

[20] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter,
and Alex C Snoeren. Inside the social network’s (data-
center) network. In Proc. of ACM SIGCOMM’15, pages
123–137, London, United Kingdom, August 2015.

[21] Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fer-
nando Pedone, and Robert Soulé. Netpaxos: Consensus
at network speed. In Proc. of ACM SOSR’15, pages 1–7,
Santa Clara, CA, June 2015.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1087

[22] Keqiang He, Junaid Khalid, Aaron Gember-Jacobson,
Sourav Das, Chaithan Prakash, Aditya Akella, Li Erran
Li, and Marina Thottan. Measuring control plane latency
in sdn-enabled switches. In Proc. of ACM SOSR’15,
pages 1–6, Santa Clara, CA, June 2015.

[23] Sangjin Han, Keon Jang, Aurojit Panda, Shoumik Palkar,
Dongsu Han, and Sylvia Ratnasamy. Softnic: A software
nic to augment hardware. Technical Report UCB/EECS-
2015-155, EECS Department, University of California,
Berkeley, May 2015.

[24] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jack-
son, Andy Zhou, Jarno Rajahalme, Jesse Gross, Alex
Wang, Joe Stringer, Pravin Shelar, et al. The design and
implementation of open vswitch. In Proc. of USENIX
NSDI’15, pages 117–130, Oakland, CA, May 2015.

[25] Yiting Xia, TS Eugene Ng, and Xiaoye Steven Sun.
Blast: Accelerating high-performance data analytics ap-
plications by optical multicast. In Proc. of IEEE INFO-
COM’15, pages 1930–1938, Hong Kong, China, April
2015.

[26] Diego Kreutz, Fernando M. V. Ramos, Paulo Es-
teves Veríssimo, Christian Esteve Rothenberg, Siamak
Azodolmolky, and Steve Uhlig. Software-defined net-
working: A comprehensive survey. Proc. of the IEEE,
103(1):14–76, January 2015.

[27] Bin Fan, Dave G. Andersen, Michael Kaminsky, and
Michael D. Mitzenmacher. Cuckoo filter: Practically
better than bloom. In Proc. of ACM CoNEXT’14, pages
75–88, Sydney, Australia, December 2014.

[28] Mu Li, David G. Andersen, Jun Woo Park, Alexander J.
Smola, Amr Ahmed, Vanja Josifovski, James Long, Eu-
gene J. Shekita, and Bor-Yiing Su. Scaling distributed
machine learning with the parameter server. In Proc.
of USENIX OSDI’14, page 583–598, Broomfield, CO,
October 2014.

[29] Noa Zilberman, Yury Audzevich, G. Adam Covington,
and Andrew W. Moore. NetFPGA SUME: Toward 100
Gbps as research commodity. IEEE Micro, 34(5):32–41,
September 2014.

[30] Zhuhua Cai, Zekai J Gao, Shangyu Luo, Luis L Perez,
Zografoula Vagena, and Christopher Jermaine. A com-
parison of platforms for implementing and running very
large scale machine learning algorithms. In Proc. of
ACM SIGMOD’14, pages 1371–1382, Snowbird, UT,
June 2014.

[31] Dan Li, Mingwei Xu, Ying Liu, Xia Xie, Yong Cui,
Jingyi Wang, and Guihai Chen. Reliable multicast in
data center networks. IEEE Transactions on Computers,
63(8):2011–2024, May 2014.

[32] Xiaozhou Li and Michael J Freedman. Scaling IP
multicast on datacenter topologies. In Proc. of ACM
CoNEXT’13, pages 61–72, Santa Barbara, CA, Decem-
ber 2013.

[33] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Bal-
aji Prabhakar, Amin Vahdat, and Masato Yasuda. Less
is more: trading a little bandwidth for ultra-low latency
in the data center. In Proc. of USENIX NSDI’12, pages
253–266, San Jose, CA, April 2012.

[34] Ankit Singla, Chi-Yao Hong, Lucian Popa, and
P. Brighten Godfrey. Jellyfish: Networking data cen-
ters randomly. In Proc. of USENIX NSDI’12, pages
225–238, San Jose, CA, April 2012.

[35] Dan Li, Henggang Cui, Yan Hu, Yong Xia, and Xin
Wang. Scalable data center multicast using multi-class
bloom filter. In Proc. of IEEE ICNP’11, pages 266–275,
Vancouver, Canada, October 2011.

[36] Mosharaf Chowdhury, Matei Zaharia, Justin Ma,
Michael I. Jordan, and Ion Stoica. Managing data trans-
fers in computer clusters with orchestra. In Proc. of
ACM SIGCOMM’11, page 98–109, Toronto, Canada,
August 2011.

[37] Jay Kreps, Neha Narkhede, and Jun Rao. Kafka: a dis-
tributed messaging system for log processing. In Proc.
of ACM Workshop on Networking Meets Databases
(NetDB’11), pages 1–7, Athens, Greece, June 2011.

[38] Theophilus Benson, Aditya Akella, and David A Maltz.
Network traffic characteristics of data centers in the wild.
In Proc. of ACM IMC’10, pages 267–280, Melbourne,
Australia, November 2010.

[39] Parisa Jalili Marandi, Marco Primi, Nicolas Schiper,
and Fernando Pedone. Ring paxos: A high-throughput
atomic broadcast protocol. In Proc. of IEEE/IFIP
DSN’10, pages 527–536, Chicago, IL, June 2010.

[40] Matei Zaharia, Mosharaf Chowdhury, Michael J.
Franklin, Scott Shenker, and Ion Stoica. Spark: Clus-
ter computing with working sets. In Proc. of USENIX
HotCloud’10, pages 1–7, Boston, MA, June 2010.

[41] Theophilus Benson, Ashok Anand, Aditya Akella, and
Ming Zhang. Understanding data center traffic charac-
teristics. ACM SIGCOMM Computer Communication
Review, 40(1):92–99, 2010.

[42] Albert Greenberg, James R. Hamilton, Navendu Jain,
Srikanth Kandula, Changhoon Kim, Parantap Lahiri,
David A. Maltz, Parveen Patel, and Sudipta Sengupta.
Vl2: A scalable and flexible data center network. In
Proc. of ACM SIGCOMM’09, page 51–62, Barcelona,
Spain, October 2009.

1088 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[43] Petri Jokela, András Zahemszky, Christian Es-
teve Rothenberg, Somaya Arianfar, and Pekka Nikander.
Lipsin: Line speed publish/subscribe inter-networking.
In Proc. of ACM SIGCOMM’09, pages 195–206,
Barcelona, Spain, August 2009.

[44] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simpli-
fied data processing on large clusters. Communications
of the ACM, 51(1):107–113, 2008.

[45] Leslie Lamport. Fast paxos. Distributed Computing,
19(2):79–103, 2006.

[46] Matthew L Massie, Brent N Chun, and David E Culler.
The ganglia distributed monitoring system: design, im-
plementation, and experience. Parallel Computing,
30(7):817–840, 2004.

[47] Dejan Kostić, Adolfo Rodriguez, Jeannie Albrecht, and
Amin Vahdat. Bullet: High bandwidth data dissemina-
tion using an overlay mesh. In Proc. of ACM SOSP’03,
pages 282–297, Bolton Landing, NY, October 2003.

[48] David M Blei, Andrew Y Ng, and Michael I Jordan.
Latent dirichlet allocation. Journal of machine Learning
research, 3(Jan):993–1022, 2003.

[49] Miguel Castro, Peter Druschel, Anne-Marie Kermar-
rec, Animesh Nandi, Antony Rowstron, and Atul Singh.
Splitstream: high-bandwidth multicast in cooperative en-
vironments. ACM SIGOPS Operating Systems Review,
37(5):298–313, 2003.

[50] Bradley Cain, Steve E. Deering, Bill Fenner, Isidor Kou-
velas, and Ajit Thyagarajan. Internet Group Manage-
ment Protocol, Version 3. RFC 3376.

[51] Suman Banerjee, Bobby Bhattacharjee, and Christopher
Kommareddy. Scalable application layer multicast. In
Proc. of ACM SIGCOMM’02, pages 205–217, Pitts-
burgh, PA, August 2002.

[52] Christophe Diot, Brian Neil Levine, Bryan Lyles, Hassan
Kassem, and Doug Balensiefen. Deployment issues for
the IP multicast service and architecture. IEEE Network,
14(1):78–88, January 2000.

[53] Leslie Lamport. The part-time parliament. ACM Trans.
Comput. Syst., 16(2):133–169, May 1998.

[54] Burton H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Commun. ACM, 13(7):422–426,
July 1970.

[55] Multicast Command Reference for Cisco ASR 9000
Series Routers. https://bit.ly/3AaVGDQ. [Online;
accessed February 2022].

[56] NetFPGA SUME Reference Learning Switch Lite.
https://bit.ly/2UrUFlx. [Online; accessed Febru-
ary 2022].

[57] 10Gb Ethernet: The Foundation for Low-Latency,
Real-Time Financial Services Applications and Other,
Latency-Sensitive Applications. https://bit.ly/
33xtYST. [Online; accessed February 2022].

[58] Apache ActiveMQ. http://activemq.apache.org.
[Online; accessed February 2022].

[59] Apache Hadoop. https://hadoop.apache.org/.
[Online; accessed February 2022].

[60] Apache openwhisk. https://openwhisk.apache.
org/. [Online; accessed February 2022].

[61] Bess (berkeley extensible software switch). https://
github.com/NetSys/bess. [Online; accessed Febru-
ary 2022].

[62] Bringing Multicast to the Cloud. https://bit.ly/
3jP7naY. [Online; accessed February 2022].

[63] Data plan development kit (DPDK). https://intel.
ly/2GYxLAV. [Online; accessed February 2022].

[64] gRPC - An RPC library and framework. https://
github.com/grpc/grpc. [Online; accessed February
2022].

[65] Introducing data center fabric, the next-generation Face-
book data center network. https://bit.ly/3bWEDKG.
[Online; accessed February 2022].

[66] Multicast group capacity: Extreme comes out on top.
https://bit.ly/2H5sQ1n. [Online; accessed Febru-
ary 2022].

[67] Open Config, Streaming Telemetry. https://bit.ly/
3kf7EEj. [Online; accessed February 2022].

[68] RabbitMQ. http://www.rabbitmq.com. [Online; ac-
cessed February 2022].

[69] Using reliable multicast for data distribution with
opendds. https://bit.ly/3bWFefo. [Online; ac-
cessed February 2022].

[70] Why the world’s largest hadoop installation may soon
become the norm. https://tek.io/33gDCsU. [On-
line; accessed February 2022].

[71] Xiaoye Sun. LDA Data Generator. https://github.
com/sunxiaoye0116/data_generator/tree/dev.
[Online; accessed February 2022].

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1089

https://bit.ly/3AaVGDQ
https://bit.ly/2UrUFlx
https://bit.ly/33xtYST
https://bit.ly/33xtYST
http://activemq.apache.org
https://hadoop.apache.org/
https://openwhisk.apache.org/
https://openwhisk.apache.org/
https://github.com/NetSys/bess
https://github.com/NetSys/bess
https://bit.ly/3jP7naY
https://bit.ly/3jP7naY
https://intel.ly/2GYxLAV
https://intel.ly/2GYxLAV
https://github.com/grpc/grpc
https://github.com/grpc/grpc
https://bit.ly/3bWEDKG
https://bit.ly/2H5sQ1n
https://bit.ly/3kf7EEj
https://bit.ly/3kf7EEj
http://www.rabbitmq.com
https://bit.ly/3bWFefo
https://tek.io/33gDCsU
https://github.com/sunxiaoye0116/data_generator/tree/dev
https://github.com/sunxiaoye0116/data_generator/tree/dev

Appendix A Supplementary Materials

This appendix includes materials that complement the con-
tents presented in the paper.

A.1 Encoding Spine Downstream Links
The pseudo code of the ENCSPINEDSLINKS algorithm is
shown in Algorithm 2. This algorithm encodes spine down-
stream links of the multicast tree into a label D and calculates
the state S to be maintained by spine switches.

A.2 Processing Spine Downstream Labels
The pseudo code of the PROCSPINEDSLABEL algorithm is
shown in Algorithm 3. The algorithm processes two spine
downstream labels: the common links among spine switches
in the tree (denoted by C), and the filter that encodes the
remaining spine downstream links (denoted by D).

A.3 Overheads of Orca
Multicast offers significant bandwidth savings compared to
unicast, and thus, it can scale data-intensive tasks that domi-
nate datacenter networks. The authors of [36] reported that
the communication time of data-intensive tasks using unicast
can be larger than the computation time, especially as the
number of workers increases. Achieving the benefits of mul-
ticast has been a long-standing problem. Orca achieves the
benefits of multicast at the expense of the small overheads
described below.
Server Resources. Orca agents require processing resources
at servers. However, the computation performed on packets
(mostly replacing labels) is quite simple and the memory
needed to store leaf labels is small. Thus, Orca agents can
easily be implemented on SmartNICs, which are getting pop-
ular in datacenters [3]. In this case, no CPU cores are taken
away from the servers. Orca agents can also run on regular
CPU cores. In this case, the agents consume only a small
fraction of the available computing resources in each rack, as
shown in the evaluation section. We note that since Orca is a
multicast paradigm, the sender in the session transmits only
one copy of each packet regardless of the number of receivers
in the session. In contract, in unicast, the sender needs to send
a separate copy of each packet to every receiver, which for
large-scale applications with many receivers and/or high data
rates requires allocating additional CPU cores at the sender
to sustain the needed data rate. That is, at the whole system
level, the CPU resources used by Orca agents can be offset
by the savings of CPU resources at the sender.
Packet Latency. Orca adds latency to packets at the leaf layer
only, because the packets need to be sent to Orca agents for
relabeling. This latency is in the order of one RTT within the
rack, because of the simple processing done on packets by

Algorithm 2 Encode spine downstream links.
Input: T: multicast tree
Input: C: common ports in spine downstream switches
Input: F : filter size in bits
Output: D: computed spine downstream label
Output: S: state sent to a subset of the spine switches

1: function ENCSPINEDSLINKS(T, C, F)
2: A Calculate a spine downstream label
3: D = BitString(size=F)
4: for (l ∈ T.spine_ds_links()) do
5: if (l /∈ C) then
6: D = D ∪ encode(l.id)
7: B Calculate false positive candidates
8: cands = {}
9: for (u ∈ T.spine_switches()) do

10: for (l ∈ u.ds_links()) do
11: if (l /∈ T.spine_ds_links()) then
12: cands = cands ∪ (u, l.dst)
13: C Calculate spine switch state
14: S = {}
15: for (l ∈ cands) do
16: if (check(l.id,D) and l /∈C) then //false positive
17: S = S∪{〈l.src, l.id〉} // add link to state
18: return 〈D, S〉

Orca agents. Most throughput-intensive datacenter applica-
tions, e.g., MapReduce [44], Hadoop [59], and Spark [40],
can easily tolerate this small latency [33].
Communications Overheads. Orca achieves substantial
bandwidth savings compared to the commonly-used unicast
model. Orca, on the other hand, attaches a small, fixed-sized
label (19 bytes) to each packet in typical datacenters; Orca
label is smaller than the IP header. In addition, Orca uses
additional bandwidth between leaf switches and agents de-
ployed on servers within the same rack. Prior studies, how-
ever, reported that links at leaf layer are under-utilized. For
instance, the study in [38] has found that the datacenter edge
is lightly utilized: 80% of the time, the utilization is less than
10% for cloud and enterprise datacenters. A recent study by
Facebook [20] reported that links between leaf switches and
servers have a 1-minute average utilization of less than 1%.

A.4 Extensions and Limitations of Orca
Multipath Routing. In Orca, the multicast tree has one path
from the source VM to any core switch, then it reaches the
receivers by branching to spine and leaf switches. Orca can
support multipath routing to achieve reliability and load bal-
ancing as follows. The centralized controller can compute
multiple trees, each has the same source and receivers of the
session but consists of different links. For example, the cen-
tralized controller can choose a different core switch as the
root for each tree. It then calculates a different source label

1090 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 3 Process a spine downstream label.
Input: D: spine downstream label
Input: l: downstream link attached to the spine switch
Input: C: set of common ports in spine downstream switches
Input: State: state maintained at the spine switch
Output: true if duplicating a pkt on link l, else false

// Runs for every link attached to the spine switch
1: function PROCSPINEDSLABEL(D, l, State)

// Links belonging to C
2: If index(l.id) ∈ C then return true

// Checking the filter for index(l.id) /∈ C
3: If not check(l.id,D) then return false

// sID is the session ID included in the packet header
4: return l.id /∈ State[sID]

for each tree, and instructs the source VM to store the new
labels and spine switches to maintain state (if needed). The
source attaches different source labels to the packets to in-
struct switches to forward them on links of different trees.
Leaf labels are identical for all trees as they have the same
receivers. As in other multipath routing systems, packet re-
ordering may occur in this case and would need to be handled
by the application.
Reliability and Congestion Control in Multicast. Prior
works, e.g., [9, 31], proposed various methods for reliable
transmission and congestion control for datacenter multicast.
These methods can be used on top of Orca. In addition, the

Orca agent can reduce the number of control messages, e.g.,
ACK or NACK, since it can aggregate them per rack.
Incremental Deployment. Orca can run on legacy switches
by encapsulating its labels in VLAN or VXLAN headers. The
header identifier can be used to instruct switches to duplicate
incoming packets.
Limitations of Orca. Deploying Orca in graph-based data-
center networks, e.g., Jellyfish [34] and Xpander [13], may
require changes in some components of Orca. For example,
although our server-assisted approach will work at the leaf
layer in Jellyfish, Jellyfish’s lack of structure does not allow
Orca to use the same algorithms at other layers. A new label
calculation algorithm would need to be designed to encode
tree links without imposing assumptions on their layers.

A.5 Additional Simulation Results
We evaluate the running time of Orca and Elmo spent by the
centralized controller when sessions change.
Running Time. Orca is simple and enables more updates
per second to be processed by the control plane. For the Uni-
S dataset, the average running time for Orca to calculate a
session label is 0.34 ms (SD is 0.4 ms), while this average is
up to 7.286 ms (SD is 9.8 ms) for Elmo-3. The average (SD)
running times for Elmo-1, Elmo-2 and Elmo-4 are 6.1 ms (5.7
ms), 5.5 ms (5.6 ms) and 6.5 ms (8.6 ms), respectively. These
times were measured on a workstation with a 2.3 GHz CPU.

Summary: Orca calculates labels 21X faster than Elmo.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1091

Yeti: Stateless and Generalized Multicast Forwarding

Khaled Diab Mohamed Hefeeda
School of Computing Science

Simon Fraser University
Burnaby, BC, Canada

Abstract
Current multicast forwarding systems suffer from large state
requirements at routers and high communication overheads.
In addition, these systems do not support generalized multi-
cast forwarding, where traffic needs to pass through traffic-
engineered paths or requires service chaining. We propose a
new system, called Yeti, to efficiently implement generalized
multicast forwarding inside ISP networks and supports vari-
ous forwarding requirements. Yeti completely eliminates the
state at routers. Yeti consists of two components: centralized
controller and packet processing algorithm. We propose an
algorithm for the controller to create labels that represent gen-
eralized multicast graphs. The controller instructs an ingress
router to attach the created labels to packets in the multicast
session. We propose an efficient packet processing algorithm
at routers to process labels of incoming packets and forwards
them accordingly. We prove the correctness and efficiency
of Yeti. In addition, we assess the performance of Yeti in
a hardware testbed and using simulations. Our experimen-
tal results show that Yeti can efficiently support high speed
links. Furthermore, we compare Yeti using real ISP topolo-
gies in simulations against the closest systems in the literature:
a rule-based approach (built on top of OpenFlow) and two
label-based systems. Our simulation results show substantial
improvements compared to these systems. For example, Yeti
reduces the label overhead by 65.3%, on average, compared
to the closest label-based multicast approach in the literature.

1 Introduction

Recent large-scale Internet applications have introduced a
renewed interest in scalable multicast services. Examples of
such applications include live Internet broadcast (e.g., Face-
book Live), IPTV [27], webinars and video conferencing [22],
and massive multiplayer games [26]. The scale of these appli-
cations is unprecedented. For instance, due to the COVID-19
pandemic, a recent study [2] reported an increase by one or-
der of magnitude within two months in video conferencing

traffic passing though a major European ISP. Moreover, Face-
book Live aims to stream millions of live sessions to millions
of concurrent users [8, 41]. To reduce the network load of
such applications, ISPs can use multicast to efficiently carry
the traffic through their networks. Examples of commercial
systems using multicast include AT&T UVerse [40] and BT
YouView [37]. Beyond multimedia systems, multicast is also
useful for various applications such as real-time stock market
updates, cloud applications [33], and publish-subscribe sys-
tems [24,36,39]. For instance, the CIO of the Japan Exchange
Group highlighted the importance of multicast for their stock
trading operations [32].

Large ISPs need to support generalized multicast forward-
ing to handle various business requirements. Specifically,
providers of large-scale live applications require ISPs carry-
ing their traffic to meet target quality metrics or SLAs (service
level agreements), especially for popular/paid live multicast
sessions. To meet the SLAs for various customers, ISPs may
need to direct the traffic to network paths different from the
minimum-cost ones computed by the routing protocols de-
ployed in the ISP network. This is usually referred to as traffic
engineering. Prior works, e.g., [7, 11, 12, 16], have proposed
algorithms to support various traffic engineering objectives.

In addition, ISP customers may require their multicast traf-
fic to pass though an ordered sequence of network services
such as firewall, intrusion detection, and video transcoding
before reaching the destinations. This is referred to as service
chaining. Network services are usually deployed as virtual
functions running on servers attached to some of the core
routers in the ISP network. Previous works, e.g., [1, 5], pre-
sented algorithms for calculating optimal network paths to
satisfy service chaining requirements.

Given the service chaining and traffic engineering require-
ments of recent applications, multicast sessions can no longer
be represented as simple spanning trees. Rather, they need
to be represented as general graphs. Efficiently forwarding
traffic of multicast sessions represented as arbitrary graphs is,
however, a challenging problem. One of the main concerns is
the state that needs to be maintained at routers, which grows

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1093

linearly with the number of multicast sessions. This state also
needs to be frequently updated to handle session changes and
network dynamics, which imposes substantial communication
and processing overheads, especially on core routers that need
to support high-speed links carrying numerous sessions.

In this paper, we address the lack of scalable and gen-
eralized multicast forwarding systems for large-scale ISPs.
In particular, we propose a fully stateless approach, called
Yeti, to implement generalized multicast graphs. Yeti sup-
ports fast adaptation to network dynamics such as routers
joining/leaving sessions and link failures, and it does not im-
pose significant communication overheads. To the best our
knowledge, Yeti is the first multicast forwarding system that
supports multicast sessions with traffic engineering and ser-
vice chaining requirements. A high-level overview of Yeti is
illustrated in Figure 1.

The main idea of Yeti is to completely move the forward-
ing information for each graph to the packets themselves as
labels. Designing and processing such labels, however, pose
key challenges that need to be addressed. First, we need to
efficiently encode the graph forwarding information in as
few labels as possible. Second, the processing overheads and
hardware usage at routers need to be minimized. This is to
support many concurrent multicast sessions, and to ensure
the scalability of the data plane. Third, forwarding packets
should not introduce ambiguity at routers. That is, while min-
imizing label redundancy and overheads, we must guarantee
that routers will forward packets on and only on the links of
the multicast graph. Yeti addresses these challenges.

This paper makes the following contributions:
• We propose a generalized multicast forwarding system

that completely eliminates the state at routers; a long-
standing problem for multicast. The proposed system
supports service chaining and traffic engineering require-
ments.

• We design a control-plane algorithm to calculate an opti-
mized label for each generalized multicast graph.

• We design an efficient packet processing algorithm for
routers to handle labels attached to packets. The algo-
rithm forwards packets only on links of the multicast
graph. And it does not introduce any redundant traffic or
create loops in the network.

• We present proofs to show the correctness of Yeti.
• We implement Yeti in a hardware testbed using a pro-

grammable router (NetFPGA) to demonstrate its practi-
cality. Our results show that Yeti can support high-speed
links carrying thousands of multicast sessions.

• We compare Yeti against a rule-based approach imple-
mented using OpenFlow and the closest label-based ap-
proaches, LIPSIN [25] and BIER-TE [3], in simulations
using real ISP topologies with different sizes. Our simu-
lation results show that unlike Yeti which does not main-
tain state at any core router, the rule-based approach
requires maintaining state at every router in the session

Yeti Controller
Topology

Create Labels

Multicast Source

Core Ingress Egress

C
on

tr
ol

 P
la

n
e

D
at

a
P

la
n

e

...

a c b

1

2

3

4

6

5 11

12

7

9

10

8

Service

Congested Link

Router

Join/Leave

Update Label

Figure 1: High-level overview of Yeti.

and LIPSIN maintains state at about 20% of the routers.
In addition, Yeti reduces the label overhead by 65.3%,
on average, compared to BIER-TE.

2 Related Work

We divide the related multicast forwarding works in the liter-
ature into stateful, stateless, and hybrid approaches.
Stateful Multicast Approaches. These multicast approaches
require storing forwarding state about sessions at routers. The
traditional IP multicast [31] is an example of such approaches.
IP multicast is implemented in core routers produced by most
vendors. However, it suffers from scalability issues in real de-
ployments [29]. In particular, the group management and tree
construction protocols, e.g., IGMP [28] and PIM [13], require
maintaining state at routers for each session, and they gener-
ate control messages among routers to refresh and update this
state. Thus, in practice, router manufacturers tend to limit the
number of multicast sessions [38]. In addition, IP multicast
uses shortest paths and cannot implement generalized graphs.

Recent SDN-based protocols, e.g., OpenFlow [17], can im-
plement rule-based approaches, where a controller installs
header-matching rules and actions to forward/duplicate pack-
ets. Since OpenFlow stores state at every router along the
multicast trees, the total forwarding state at routers grows
with the number of sessions.
Stateless Multicast Approaches. There are a few recent pro-
posals for designing stateless multicast forwarding systems.
For example, BIER [10] encodes global router IDs of tree
receivers in the label as a bitmap. BIER supports only short-
est paths and cannot realize traffic-engineered ones. A recent
amendment to BIER, called BIER-TE [3], supports traffic-
engineered trees. BIER-TE maps each bit position in the
label to one of the links attached to routers in the network.
It encodes the links of a multicast tree as corresponding bit
positions in the calculated label. Upon receiving a packet,

1094 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

a BIER-TE router checks the bit positions in the label. If
the router matches one of its links in the label, it clears its
position in the label and forwards/duplicates the packet on
that link. The bitmap structure used in BIER-TE allows it to
only implement multicast sessions represented as trees, and
it cannot implement general multicast distribution graphs, as
such graphs could have cycles to allow the multicast traffic to
be processed by the specified set of network services. This is
illustrated in the example multicast distribution graph in Fig-
ure 1, where packets of the session traverse the link between
routers 4 and 7 three times to be processed by the services
a→b→c.
Hybrid Multicast Approaches. Yeti is not the first system
that moves forwarding information as labels attached to pack-
ets. However, prior systems did not support generalized for-
warding, and they needed to maintain state at some or all
routers belonging to the multicast tree. We refer to these sys-
tems as hybrid approaches. For example, the early work by
Chen et al. [30] proposed a label-based system that attaches
link IDs to every packet in a multicast session, and removes
unwanted portions of the label as the packet traverses the net-
work. The processing algorithm in [30] requires maintaining
state at every router belonging to a multicast session in order
to remove the labels, which is not scalable. Later works, e.g.,
mLDP [23], enable multicast in label-switched paths (LSPs).
mLDP forwards traffic on the shortest paths and thus cannot
support traffic-engineered trees. It also requires an additional
protocol to distribute labels among routers.

LIPSIN [25] uses a Bloom filter as label to encode global
link IDs of a tree. LIPSIN may result in redundant traffic
or forwarding loops, because of the probabilistic nature of
Bloom filters. Thus, LIPSIN requires an additional protocol
where downstream routers notify upstream ones if they falsely
receive a packet. This protocol imposes additional state and
communication overheads on routers.

Segment routing (SR) [4] is a recent proposal to support
traffic-engineered unicast flows. It was later extended to sup-
port multicast by considering every tree as a segment in the
network. It attaches one label containing the tree ID to pack-
ets of a session. Routers along the tree maintain a mapping
between that label and the output interfaces. That is, the SR
multicast extensions require maintaining state at routers for
every tree.

In §5, we compare Yeti versus a rule-based approach im-
plemented in OpenFlow, LIPSIN, and BIER-TE as they are
the closest stateful, hybrid, and stateless multicast systems,
respectively, that can support traffic engineering requirements.

3 Problem Definition and Solution

We start this section by specifying the considered problem
and its challenges. We next describe an overview of Yeti and
its main components. This is followed by the details of each

component. In the Appendix §C, we present an illustrative
example of Yeti to demonstrate its details.

3.1 Problem Definition and Challenges

The problem considered in this paper is how to efficiently
forward the traffic of a generalized multicast session that may
need to be processed by an ordered set of network services
and/or directed through a specific set of network paths within
the ISP network.

For illustration, consider the ISP network in the lower part
of Figure 1, which contains ingress, core, and egress routers
marked by different shapes and colors. Some of the core
routers are connected to servers offering various (virtual-
ized) network services such as intrusion detection and video
transcoding. There is a multicast source connected to the
ingress router and multiple receivers reachable through the
three egress routers. The creator of the multicast session re-
quires the traffic to be processed by the three network services
a→b→c in order. In addition, the ISP implements traffic engi-
neering mechanisms for various objectives, e.g., to minimize
the maximum link utilization (MLU), which requires the traf-
fic to avoid the link 3→ 5 in this example. The colored arrows
in the figure show the different paths taken by the traffic of
the multicast session to reach all receivers. These paths form
a graph (not tree), which we refer to as the multicast distri-
bution graph G. Note that nodes in the distribution graph
represent routers, not end users. The top right part of Figure 1
shows the graph for the multicast session marked in the lower
part of the figure.

Our problem then becomes how to get routers in the ISP
to forward the traffic of a multicast session represented by an
arbitrary multicast distribution graph G. Existing algorithms
in the literature, e.g., [1, 12], can be used to calculate G to
satisfy various service chaining and traffic engineering re-
quirements; our proposed (forwarding) solution is orthogonal
to the calculation of G and can work with any of them.

The arbitrary nature of the distribution graph makes de-
signing scalable multicast forwarding systems a challenging
problem. A possible approach to address this problem is to
maintain state (e.g., in the form of match-action rules) at
routers. However, as mentioned in §2, maintaining state at
routers is not scalable even for traditional multicast forward-
ing without service chaining and traffic engineering require-
ments. This is because the state, which grows linearly with the
number of multicast sessions, not only consumes the scarce
SRAM resources of routers, but it also needs to be frequently
updated to handle network failures and session dynamics (e.g.,
router joining/leaving). The cost of updating the state consists
of two factors. First, routers need to process many update
(control) messages while processing data packets, which may
result in slowing down the data plane operations. Second,
frequent state updates negatively impact the network agility
and consistency, because the control plane has to schedule the

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1095

updates to corresponding routers to ensure consistency [20],
since greedy state updates may result in violating the SLA
objectives [6].

To reduce state, a part or all of the forwarding information
can be moved to labels which are attached to the packets
of multicast sessions, where routers use these labels in the
forwarding decisions. However, efficiently representing multi-
cast graphs in compact labels is difficult, especially for multi-
cast sessions that have service chaining and traffic engineering
requirements. If not carefully designed, labels representing a
multicast graph can grow large in size and hence impose sig-
nificant communication overheads, and more critically they
could introduce ambiguity at routers, i.e., routers may not be
able to decide which interface(s) to forward the packets on.
This may introduce duplicate packets and forwarding loops,
which substantially increases the load on the ISP network and
wastes its bandwidth and processing resources.

In summary, forwarding generalized multicast graphs
presents multiple challenges that Yeti addresses. Specifically,
stateful approaches reduce scalability as they impose sub-
stantial memory and processing overheads on switches. On
the hand, current stateless approaches significantly increases
packet sizes and may introduce forwarding ambiguity. This
would defeat the main purpose of deploying multicast in the
first place. Yeti breaks this long-standing trade-off between
scalability, efficiency, and correctness by completely mov-
ing the forwarding state into compact labels, and carefully
processing them in the data plane.

3.2 Solution Overview

Yeti is a stateless multicast forwarding system that efficiently
implements general multicast graphs inside a single ISP net-
work; extending Yeti to support multiple ISPs is described
in §3.6. As shown in Figure 1, the ISP network has data and
control planes. The data plane is composed of routers. Every
router is assigned a unique ID, and it maintains two data struc-
tures: Forwarding Information Base (FIB) and interface list.
FIB provides reachability information between routers using
shortest paths. The interface list maintains the IDs of all local
interfaces. The control plane (or the controller) learns the ISP
topology, shortest paths between routers, and interface IDs
for every router, which is done using common intra-domain
routing and monitoring protocols.

Yeti consists of a centralized controller and a packet pro-
cessing algorithm. The controller calculates the distribution
graph for a multicast session using existing algorithms, e.g.,
[1, 12], and it creates, using our algorithm in §3.4, an opti-
mized set of labels L to realize this graph in the data plane.
As detailed in §3.3, Yeti defines four types of labels; each
serves a specific purpose in encoding the graph efficiently.
The controller sends the set of labels L to the ingress router
of the session, which in turn attaches them to all packets of
the session. When a graph G changes (due to link failure

Name Type Content Content Size (bits)

FSP 00 Global router ID 1+ dlog2 Ne
FTE 01 Local interface ID dlog2 Ie
MCT 10 Interface bitmap I
CPY 11 Label range (in bits) dlog2 (N× size(FTE))e

Table 1: Label types in Yeti. N is the number of routers, and I
is the maximum number of interfaces per router.

or egress router joining/leaving the session), the controller
creates a new set of labels and sends them only to the ingress
router, no other routers need to be updated.

The packet processing algorithm, described in §3.5, is de-
ployed at core routers. It processes the labels attached to
packets and forwards/duplicates packets based on these la-
bels. It also determines the subset of labels to attach to the
forwarded packets such that the subsequent routers can real-
ize the distribution graph without any ambiguity, forwarding
loops, or redundant traffic. We present a theorem proving the
correctness of Yeti in §3.6.

We present an illustrative example in the Appendix. This
example implements the distribution tree in Figure 1, and
it shows the details of creating labels at the controller and
processing packets at routers.

3.3 Label Types in Yeti

Yeti is a label-based system. Thus, one of the most important
issues is to define the types and structures of labels in order
to minimize the communication and processing overheads,
while still being able to represent generalized multicast graphs.
We propose the four label types shown in Table 1. The first
two label types are called Forward Shortest Path (FSP) and
Forward Traffic Engineered (FTE). They are used by routers
to forward packets on paths that have no branches. The other
two label types are Multicast (MCT) and Copy (CPY). The
MCT label instructs routers to duplicate a packet on multiple
interfaces, and the CPY label copies a subset of the labels.
Every label consists of two fields: type and content. The type
field is used by routers to distinguish between labels during
parsing, and the content field contains the information that
this label carries. The size of a label depends on the size of
the content field.

We use the example topology in Figure 2 to illustrate the
rationale used in defining Yeti labels. In the figure, solid lines
denote tree links and the dotted line denotes a link on the
shortest path to some destinations. The ISP avoids it because
it is congested in this example.

We divide a multicast graph into path segments and branch-
ing points. A path segment is a contiguous sequence of routers
without branches. If a path satisfies any sub-sequence of the
service chaining requirements of a session, the path segment

1096 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 2 4

7

3 6 8

10

11

12
5

a

b

TE Link

Path Segment

Branching Point

Shortest Path
bet. 6 & 8

c

a
a b

ca b

Processed by

Figure 2: Illustration of path segments and branching points
in Yeti. Segment 3→ 8 does not follow the shortest path.

ends when there is a router with at least one service. A branch-
ing point refers to a router that duplicates packets on mul-
tiple interfaces. For the example in Figure 2, there are five
path segments: {1→2}, {2→4→7}, {7→4}, {7→10}, and
{3→6→5→8}. Routers 4 and 8 are branching points.

The basic label in Yeti is FTE, where a router is instructed
to forward the packet carrying the label on a specific interface.
In many situations, however, packets follow a sequence of
routers on the shortest path. For these situations, we define
the FSP label, which replaces multiple FTE labels with just
one FSP label. An FSP label contains a global router ID,
which instructs routers to forward incoming packets on the
shortest path to that router. In addition, the first bit in an FSP
label indicates whether the packet will be processed at the
corresponding router. For example, in Figure 2, instead of
using two FTE labels for the links {6→ 5} and {5→ 8}, Yeti
uses one FSP label with destination ID set to node 8. In large
topologies, FSP labels significantly reduces label overheads.

FTE and FSP labels can represent path segments, but they
cannot handle branching points where packets need to be
duplicated on multiple interfaces. Notice that, after a branch-
ing point, each branch needs a different set of labels because
packets will traverse different routers. To handle branching
points, we introduce the MCT and CPY labels. The MCT
label instructs routers to duplicate packets on multiple inter-
faces using a bitmap of size I bits, where I is the maximum
interface count per router. The bitmap represents local inter-
face IDs, where the bit locations of the interfaces that the
packet should be forwarded on are set to one. The CPY label
does not represent a forwarding rule. Instead, it instructs a
router to copy a subset of labels when duplicating packets to
a branch without copying all labels. Specifically, consider a
router that duplicates packets to n branches. The MCT label
is followed by n sets of labels to steer traffic in these branches,
where every label set starts with a CPY label. The CPY label
of one branch contains an offset of label sizes (in bits) to be
duplicated to that branch. For example, in Figure 2, router
4 will process an MCT label followed by two CPY labels
for the traffic represented with a green arrow, one for each
of the two branches. The CPY label content size in Table 1

1 2 4 7

3 6

8

10

11 12

5

a b c

4

7
Services are ordered

a
a b

ca b

Processed by

Figure 3: The resulting tree T for the graph G in Figure 2.

uses the worst-case scenario. This happens when the graph
has the largest diameter, which is O(N) and every link is
traffic-engineered, where N is the number of core routers.

3.4 Creating Yeti Labels at the Controller
The ENCODEGRAPH algorithm, shown in Algorithm 1, runs
at the controller to create labels. We omit the pseudo code for
some functions that the algorithm calls due to space limita-
tions. When the distribution graph G changes, the algorithm
calls the BUILDTREE function to create a tree T that reflects
the order of network services needed before reaching the
destinations. Then, the ENCODEGRAPH algorithm calls the
CREATELABELS function with the created tree to calculate a
new set of labels L to encode the graph paths and sends them
to the ingress router, which attaches them to every packet in
the session. The details of our algorithms are as follow.
Building the Tree. The BUILDTREE function traverses the
multicast graph and creates a list of tuples for every path and
provided services on that path. For example, in Figure 2, the
tuple 〈{7→ 4},{a→ b}〉 represents packets traversing the
path {7→ 4} after processed by the services a and b.

The BUILDTREE function then traverses these tuples from
the tuple starting with the source node. The function keeps
track of the current parent and visited nodes in the tree, and
builds the tree T as follows. For every tuple, the function
creates nodes with every router ID and the provided services in
that tuple. For the tuple mentioned earlier, the function creates
the nodes: (7,{a→ b}) and (4,{a→ b}). The function adds
a node to T if it did not exist before. Then, the function adds
that node to the children of current parent, and sets the new
node as the current parent. If a node exists in the tree, the
function sets it as the current parent. Figure 3 depicts the
resulting tree of the graph in Figure 2.
Creating Labels. The CREATELABELS algorithm divides T
into segments and branching points. The algorithm calculates
FSP and FTE labels for every segment, and MCT and CPY la-
bels at branching points. The label order is important because
it reflects which routers process what labels. The algorithm
traverses the core routers of T in a depth-first search order
starting from the core router connected to the ingress router.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1097

Algorithm 1 Encode a multicast graph into labels.
Input: G: multicast graph
Input: S: ordered list of services in the session
Input: P: shortest path map
Output: L: labels to be sent to the ingress router

1: function ENCODEGRAPH(G, S, P)
2: T = BUILDTREE(G, S)
3: return CREATELABELS(G.src, T, S, P)
4: function CREATELABELS(source, T, S, P)
5: L = {}, pth_seg = {}, stack = {source}
6: while (stack.size() > 0) do
7: r = stack.pop() // a router in T
8: // Services provided by r for the session
9: srv = S.at(r)

10: core_children = T.core_children(r)//core routers
11: children = T.children(r) //core and egress routers
12: // Build a path segment pth_seg
13: if (core_children.size() == 1) then
14: pth_seg.append(r); stack.push(children[0])
15: // Handle a path segment (create FSP & FTE)
16: // S[0] is the next expected service
17: if (core_children.size() == 0 or S[0]∈ srv) then
18: pth_seg.append(r)
19: lbls = CALCSEGMENTLBL(T, pth_seg, P)
20: L.push(lbls); pth_seg = {}
21: S.remove(srv)
22: // Handle branching point (create MCT & CPY)
23: else if (children.size() > 1) then
24: if (pth_seg.size() > 0) then
25: pth_seg.append(r)
26: lbls=CALCSEGMENTLBL(T, pth_seg, P)
27: L.push(lbls); pth_seg = {}
28: 〈mct_lbl, cpy〉 = CREATEMCT(children)
29: L.push(mct_lbl)
30: if (cpy) then // Creating CPY labels
31: for (c ∈ children) do
32: // A recursive call for each branch
33: br_lbls = CREATELABELS(c, T, S, P)
34: o f f set = CALCLABELSIZE(br_lbls)
35: L.push(CPY(o f f set));L.push(br_lbls)
36: return L

It keeps track of the router r that is being visited, and one path
segment (pth_seg). Once a router r is visited, if r has only
one core child (Line 13 in Algorithm 1), this means that r
belongs to the current segment. The algorithm then appends
r to pth_seg, and pushes its child to the stack to be traversed
later. For example, the algorithm pushes routers 3, 6, 5 and
8 in Figure 3 to pth_seg because each of them has only one
child. If r has no core children or it provides some services
(has a path segment), or r has more than one child (has a
branching point), the algorithm calculates labels as follows.

Handling Path Segments. The CREATELABELS algorithm
creates a label for a path segment when pth_seg ends. This
happens in three cases. First, when r is connected to an egress
router (e.g., router 10 in Figure 3). Second, when r is a branch-
ing point and pth_seg is not empty (e.g., router 8 in Figure 3).
Third, when r provides at least on service (e.g., router 2 in
Figure 3). In all cases, the algorithm appends r to pth_seg and
calculates FSP and FTE labels using CALCSEGMENTLBL.

CALCSEGMENTLBL takes as inputs a tree T, a path seg-
ment pth_seg and the shortest path map P, and calculates the
FSP and FTE labels of the given pth_seg. It divides pth_seg
into two sub-paths: one that follows the shortest path, and one
that does not. It then recursively applies the same to the lat-
ter sub-path. Specifically, CALCSEGMENTLBL concurrently
traverses pth_seg and the shortest path between source and
destination. It stops when the traversal reaches a router in
pth_seg that does not exist in the shortest path. This means
that this router does not follow the shortest path, hence, it adds
an FSP label for the previous router. If pth_seg has routers
that do not follow the shortest path, CALCSEGMENTLBL
adds an FTE label and recursively calls itself using a subset
of pth_seg that is not traversed so far. CALCSEGMENTLBL
does not generate two consecutive FSP labels. When it cal-
culates an FSP label, it either terminates, or creates an FTE
label followed by a recursive call.

For the example in Figure 3, the CALCSEGMENTLBL algo-
rithm processes the segment {3→ 6→ 5→ 8} as follows. It
finds that the link (3, 6) is not on the shortest path from 3 to 8.
It calculates an FTE label for this link, and recursively calls
itself with the sub-path {6→ 5→ 8} as an input, for which
the algorithm creates an FSP label with router ID 8.
Handling Branching Points. The CREATELABELS algorithm
calculates MCT and CPY labels at branching points. The
algorithm calls CREATEMCT that returns MCT label and a
boolean value cpy indicating whether CPY labels are required.
To create an MCT label, CREATEMCT initializes an empty
bitmap of width I +1 (I is the maximum interface count per
router). For every child c of r, it sets the bit location in this
bitmap that represents the interface ID between r and c. It
checks if CPY labels are needed as follows. If any child c has
at least one core child, this means that this core child needs
labels to forward/duplicate packets. Otherwise, if all children
have no other core children, the router r is either directly
connected to an egress router, or its children are connected to
egress routers. Thus, these routers do not need more labels
and Yeti does not create CPY labels for these branches. For
example, at router 4 in Figure 3, core children 3 and 7 have
other core children which are 6 and 10, respectively. Hence,
two CPY labels are created for the two branches at 4. The
algorithm does not create CPY labels at router 8, because its
core children 11 and 12 have no other core children.

Recall that a CPY label copies a subset of labels at a spe-
cific branch. If CPY labels are needed at the branching point
and r has n children/branches, the MCT label is followed by

1098 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

n CPY labels, and every CPY label is followed by labels to
forward packets on the corresponding branch. Specifically,
the algorithm iterates over the children of r. For every child c,
the algorithm adds an FSP label if the child provides services.
Then, the algorithm recursively calls CREATELABELS to cre-
ate labels of the corresponding branch (Line 33). The created
CPY label for a branch contains the size of this branch labels
in bits to be copied. We calculate this size by accumulating
the size of every label type in br_lbls (Line 34).
Time and Space Complexities. In the worst-case scenario,
when every router is a branching point, the ENCODEGRAPH
algorithm needs to create labels for each branch. Thus,
the time complexity of the ENCODEGRAPH algorithm is
O(K2N2 +M), where N is the number of routers, M is the
number of links, and K is the maximum service chain length.
We note that the values of N, M and K are not large for re-
alistic ISP networks. The number of ISP routers N is in the
range of 10’s–100’s [9,18], most ISP networks are sparse with
number of links M ranging from 500 to around 2,000, and the
length of service chains K ranges from 2–10 [1]. Given these
practical values, the ENCODEGRAPH algorithm can easily run
on a commodity server. Notice that the CALCSEGMENTLBL
algorithm processes the segment after all routers of that seg-
ment is traversed. Thus, it only adds linear overhead to the
first term of the time complexity. The space complexity of
the ENCODEGRAPH algorithm is O(N2D), where D is the
diameter of the network.

3.5 Processing Yeti Packets

The proposed packet processing algorithm is to be deployed
at core routers, and it processes Yeti packets. This is done by
setting a different Ethernet type for Yeti packets at ingress
routers. A core router checks the Ethernet type of incoming
packets, and invokes the processing algorithm if they are Yeti
packets. The algorithm forwards/duplicates packets and it
removes labels that are not needed by next routers. It also
copies a subset of labels at branching points.

The packet processing algorithm works as follows. If the
packet has no labels, this means the packet reached a core
router that is attached to an egress router. So, the packet is
forwarded to that egress router. Otherwise, the algorithm pro-
cesses labels according to the following cases:
(1) FSP Label. If the FSP label content is not the receiving
router ID, it means that this router belongs to a path segment.
The algorithm then forwards the packet along the shortest
path based on the underlying intra-domain routing protocol
without removing the label. If the FSP content equals the
router ID, this means that the path segment ends at this router.
The algorithm first checks whether the packet needs to be
processed by services connected to that router. If the first bit is
set, then the packet is forwarded to the datacenter. Otherwise,
the algorithm removes the current label and calls the packet
processing algorithm again to process next labels. This is

because the packet may have other labels.
(2) FTE Label. The algorithm removes the label, extracts the
local interface ID, and forwards the packet on that interface.
(3) MCT Label. The algorithm first copies the original labels,
and removes the labels from the packet. It then extracts the
MCT content into mct. The MCT label contains the inter-
face ID bitmap (mct.intfs) and whether it is followed by CPY
labels (mct.has_cpy). The algorithm iterates over the router
interfaces in ascending order of their IDs. It locates the inter-
faces to duplicate the packet on. For every interface included
in the MCT label, the algorithm clones the packet. If the MCT
label is followed by CPY labels, the algorithm removes the
corresponding CPY label, extracts the following labels based
on the offset value, and forwards the cloned packet on the
corresponding interface.
Time and Space Complexities. The time complexity of the
algorithm is O(I), where I is the maximum interface count
per router. The algorithm does not require additional space at
routers.

3.6 Analysis and Practical Considerations
Analysis. The following theorem proves the correctness of
Yeti. That is, Yeti forwards packets on and only on links be-
longing to the multicast graph. This is a critical objective for
large-scale multicast sessions, as redundant traffic wastes net-
work resources and overloads routers. Due to space limitation,
we show the full proof in the Appendix §A.

Theorem 1 (Correctness). Yeti forwards packets on and only
on links that belong to the multicast graph.

Proof Sketch. Yeti guarantees correctness by creating an or-
dered set of labels to realize the given multicast distribution
graph. We analyze the order and type of the created labels
and prove that they do not result in forwarding loops or re-
dundant traffic while delivering the traffic to all receivers in
the multicast session.

Practical Considerations. The description of Yeti has fo-
cused on offering a scalable multicast service within a single
ISP using programmable routers. In the Appendix §B, we de-
scribe simple techniques to enable Yeti across multiple ISPs
and its incremental deployment.

4 Evaluation in a Testbed

We present a proof-of-concept implementation of the pro-
posed multicast forwarding system, and we conduct experi-
ments in a testbed with a NetFPGA programmable router.

In addition, since switches that support the P4 program-
ming language [21], e.g., Tofino, are getting popular in prac-
tice, we also implemented Yeti in P4. We obtained a license
for the Intel P4 software development environment (SDE)
version 9.5.0, which contains various tools, including a P4

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1099

A

Yeti
Router

C

B

Traffic
Generator

Traffic
Measurement28

Bytes12
Bytes

Ethernet
MCT

CPY

Payload

D

Figure 4: Setup of our testbed.

compiler (bf-p4c) and a switch model. The compiler pro-
duces code that runs on Tofino switches. We validated our
implementation using the switch model included in the SDE.
The details of the P4 implementation of Yeti are presented in
Appendix §D.

4.1 Testbed Setup
The testbed, shown in Figure 4, has a Yeti Router representing
a core router in an ISP topology that receives and processes
packets of concurrent multicast sessions. We implemented
the Yeti Router in a programmable processing pipeline using
NetFPGA SUME [19], which has four 10GbE ports. The
testbed also has a 40-core server with an Intel X520-DA2
2x10GbE NIC, which is used to generate traffic of multicast
sessions at high rate using MoonGen [14].

Our router implementation is based on the open source
project in [34]. This project contains three main Ver-
ilog modules: input_arbiter, output_port_lookup and
output_queues. Our implementation modifies the last two
modules in the router as follows. The output_port_lookup
module is modified to read the first label to decide which
ports to forward/duplicate the packet on. For each duplicated
packet, it decides the labels to be detached and maintains this
information in the packet metadata. We also modified the
output_queues module to runs at every output queue of the
router, and detach labels that are not needed in the outgoing
packets.

4.2 Experiments and Results
We transmit labelled packets of concurrent multicast sessions
at the maximum link speed in our testbed (10 Gbps) from
the traffic-generating server to the Yeti Router. We stress Yeti
by transmitting traffic that requires copying and rearranging
labels for each packet. In every experiment, we attach labels
with different sizes to each packet. These labels contain MCT
and CPY labels. The MCT label instructs the Yeti Router to
duplicate packets on two ports B and C in Figure 4. We report
the results for a sample label size of 28 bytes. This is because,
as we show in §5, most of the packets have this label size for

Latency (µsec) 50th% 95th% 99.9th%

Yeti 960.4 973 1,042
MAC forwarding 960.3 972.9 1,040

Difference 0.1 0.1 2

Table 2: Packet latency (in µsec) measured in our testbed.

traffic engineering and service chaining scenarios in different
ISP networks. The CPY labels instruct Yeti to copy 12 and 16
bytes to ports B and C, respectively. We measure the outgoing
traffic on port B. The main parameter that we control is the
packet size, which we vary from 64 to 1024 bytes. We report
three important metrics for the design of high-end routers:
packet latency, resource usage, and throughput.
Latency. We report the packet processing latency at port B
in Figure 4 when the Yeti Router processes CPY labels (i.e.,
the worst-case scenario in terms of processing). We measure
the latency by timestamping each packet at the traffic gener-
ator, and taking the difference between that timestamp and
the time the packet is received at port B. We use the Berkeley
Extensible Software Switch [15] to timestamp packets. Since
it may add overheads while timestamping and transmitting
packets, we compare the latency of Yeti processing against
the basic forwarding in the same testbed, which is done by
matching the fixed-length MAC address. Table 2 shows mul-
tiple statistics of the packet latency for both Yeti and unicast
forwarding when the packet size is 1,024 bytes. The table
shows that the latency of Yeti processing under stress is close
to the simple unicast forwarding. For example, the difference
of the 95th percentiles of packet latency is only 0.1 µsec when
the packet size is 1,024 bytes.
Resource Usage. We measure the resource usage of the
packet processing algorithm, in terms of the number of used
look-up tables (LUTs) and registers in the Yeti Router, which
are generated by the Xilinx Vivado tool after synthesizing and
implementing the project. Our implementation uses 12,677
slice LUTs and 1,701 slice registers per port. Relative to the
available resources, the used resources are only 3% and 0.2%
of the available LUTs and registers, respectively. Thus, Yeti
requires small amount of resources while it can forward traffic
of many concurrent multicast sessions.
Throughput. In Figure 5, we compare the rate of incoming
packets to the Yeti Router versus the rate of packets observed
at port B. The figure shows that the numbers of transmitted
and received packets per second are the same (i.e., no packet
losses). The figure also shows that our algorithm can sustain
the required 10 Gbps throughput for all packet sizes.

We realize that core routers have large port density and high
speeds. We believe that Yeti can achieve line-rate performance
in these routers, because Yeti processes each incoming packet
independently and adds small processing latency per packet
as shown in Table 2.

1100 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

64 128 256 512 1024
Packet Size (Bytes)

0
2
4
6
8

10
12
14
16

#
 P

k
ts

/s
ec

 (
M

il
li

o
n

s)

Tx

Rx

0

2

4

6

8

10

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

Figure 5: Throughput of received traffic from our testbed.

5 Evaluation using Simulation

We analyze the performance of Yeti and compare it against
the closest multicast approaches using simulation.

5.1 Simulation Setup
Simulator. We implemented a Python-based simulator to
compare the performance of different multicast systems in
large setups using realistic ISP topologies. The simulator has
two components. The first acts as the Yeti controller in Fig-
ure 1. When this component receives an egress router event, it
updates the corresponding multicast graph, and then generates
labels using Algorithm 1. The second component simulates
the packet processing algorithm in §3.5. The simulator also
implements prior systems for comparisons.
ISP Topologies. We use 14 topologies in the Internet Topol-
ogy Zoo dataset [35]. This dataset represents a wide range of
actual ISPs, where the number of routers ranges from 36 to
197, and the number of links ranges from 152 to 486.
Multicast Sessions. We simulate dynamic and diverse multi-
cast sessions. The source of each session is randomly selected
from one of the ISP routers. The session bandwidth is ran-
domly chosen from the set {0.5, 1, 2, 5, 10} Mbps, which
represents the bandwidth values of different types of applica-
tions. The session duration is randomly assigned to a value
from {10, 20, 40, 60, 80, 100, 120} minutes. These values
reflect a wide range of short to long multicast sessions. In
addition, while the session is active, we make its receivers
join and leave according to random events generated from a
Poisson distribution, where 60% of these are join events and
40% are leave events. We make the receiver join rate 50%
higher than the leave rate to incrementally stress the system
with more multicast receivers as the time passes.

Each multicast session requires a set of network services,
or service chain. We vary the length of the service chain from
3 to 5 as these lengths represent common service usage pat-
terns [1, 42]. To represent practical deployment of services
in ISPs, we divide services to essential and supplementary
according to their popularity [42]. Essential services such as
firewalls are deployed at all ISP locations, whereas supple-
mentary services such as video encoders are only deployed
at some of the ISP locations. To stress our system, we set
the percentage of ISP locations that provide supplementary

services to only 25%. Each multicast session includes two
randomly chosen essential services and the rest of the services
are supplementary ones, also randomly chosen.

Since Yeti does not dictate how multicast graphs are com-
puted, we use the algorithms in [12] and [1] to calculate the
graphs based on the traffic engineering and service chaining
requirements, respectively.
Experiments and Statistics. We simulate the operation of an
ISP managing concurrent and dynamic multicast sessions over
an extended period of time (24 hours), where about 200,000
sessions are created over the simulation period. Specifically,
we first choose one of the 14 ISP topologies and generate the
multicast sessions using the characteristics described above.
Then, we repeat the experiment for the same ISP topology
five times, starting from different seeds for the random distri-
butions. Thus, for each ISP topology, we collect and analyze
statistics from about 1M randomly generated, diverse, and dy-
namic multicast sessions. Then, the whole process is repeated
for each of the 14 ISP topologies.

We report the 95-percentile of various performance metrics
in the following subsections, as it reflects the performance
over extended number of sessions. We present representa-
tive samples of our figures, using the ISP topologies with
the largest and median numbers of routers. We also present
averages and normalized averages (per router) across all ISP
topologies, to infer the performance in general settings. When
we present the (normalized) averages, we report the standard
deviation in each case preceded by ±.

Yeti is the first multicast forwarding system to support
service chaining and traffic engineering. Thus, we first com-
pare a simpler version of Yeti against the state-of-art systems
for multicast sessions with traffic engineering requirements
as these cannot support service chaining. Then, we analyze
the performance of Yeti for multicast sessions with traffic
engineering and service chaining requirements.

5.2 Yeti vs Stateful and Hybrid Approaches

We compare Yeti versus the closest stateful and hybrid mul-
ticast forwarding systems, which are OpenFlow [17] and
LIPSIN [25]. We implemented a rule-based multicast for-
warding system using OpenFlow [17] (referred to as RB-OF),
because rule-based is a general packet processing model that
is supported in many networks. The rule-based system is
stateful as it installs match-action rules in routers.

LIPSIN is a hybrid approach that encodes the tree link
IDs of a session using a Bloom filter. For every link, the
LIPSIN controller maintains D link ID tables with different
hash values. LIPSIN creates the final label by selecting the
table that results in the minimum false positive rate. Since
LIPSIN may result in false positives, each router maintains
state about incoming links and the label that may result in
loops for every session passing through this router. We set
the filter size of LIPSIN to the 99th-percentile of the label

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1101

0 5 10 15 20 25 30 35 40
Receiver Density (%)

0

15

30

45

60

75

90

S
ta

te
 (

#
ro

u
te

rs
)

Yeti

Yeti RB-OF LIPSIN

(a) #Routers=110

0 5 10 15 20 25 30 35 40
Receiver Density (%)

0

25

50

75

100

125

150

S
ta

te
 (

#
ro

u
te

rs
)

Yeti

Yeti RB-OF LIPSIN

(b) #Routers=197

Figure 6: State size.

size of Yeti. This enables LIPSIN to encode a large number
of links per tree in its labels. We use the same parameters
proposed for LIPSIN: we set D to 8 tables and use five hash
functions per link. We use Bloom filters and Murmurhash3
hashing functions.
State Size. Figure 6 shows the 95-percentile of the state size
per multicast session as the density of receivers varies, which
corresponds to the number of core routers needed to maintain
state. The results are shown for the median and largest topolo-
gies with sizes 110 and 197 routers, respectively. The results
for other topologies are similar (shown in Appendix §E).

First, notice that Yeti does not require any state at any core
router. In contrast, RB-OF needs to maintain state at each
router and that state increases with the topology size as well as
the density of receivers in each multicast session. For example,
the state size increases from 80 to 130 rules when the receiver
density increases from 10% to 30%. LIPSIN, on the other
hand, needs to maintain state at up to 20 routers when the
receiver density is 40%. In this case, multicast graphs span
50% of the routers. That is, LIPSIN needs to maintain state at
up to 20% of the routers in the multicast graph.
State Update Rate. Maintaining state at routers does not only
consume their limited SRAM, but also increases the overheads
of updating this state at routers when the distribution graph
changes [6, 20].

We assess the average number and percentage of routers to
be updated when a single multicast tree changes, and show
the results for sample ISP topologies with various sizes in
Table 3. Recall that the Yeti controller needs to update one
and only one (ingress) router when a session changes, which
is independent of the topology size. The state for RB-OF and
LIPSIN, on the other hand, grows with the topology size and
number of receivers in the multicast sessions. Thus, as Table 3
shows, RB-OF and LIPSIN controllers need to update up to
103.3 and 19.6 core routers per each distribution graph change,
respectively. That is, Yeti reduces the number of routers to
be updated by up to 103X and 20X compared to RB-OF and
LIPSIN, respectively.

To demonstrate the generality of Yeti performance, we
calculate the average percentage of routers in the ISP topology
to be updated for each change in the multicast distribution
graph, which is taken over all 14 ISP topologies. We present

ISP Size RB-OF LIPSIN Yeti Saving (%)

49 18.9 4.9 1.0 94.7 / 79.7
84 55.9 12.3 1.0 98.2 / 92.0
125 76.8 19.6 1.0 98.7 / 95.0
158 91.2 11.8 1.0 98.9 / 91.5
197 103.3 18.7 1.0 99.0 / 94.7

Norm.
Avg. (%) 48±10 9±3 1±0.6 97.5 / 87.1

Table 3: Number of routers that need to be updated for each
change in the multicast distribution graph. The shown savings
in the right most column are relative to RB-OF and LIPSIN,
respectively. The averages in the bottom row are computed
across all 14 ISP topologies and normalized by the number
of routers in each topology, and they represent the average
percentage of routers to be updated for each change.

the results in the last row in Table 3, which show that Yeti
reduces the average state update rate by 97.5% and 87.1%
compared to RB-OF and LIPSIN, respectively.

In summary, compared to stateful and hybrid approaches,
Yeti scales well and can handle dynamic multicast sessions,
as it does not require maintaining state at any router, and it
significantly reduces the need for frequent state updates.

5.3 Yeti vs A Stateless Approach

We compare Yeti against BIER-TE [3], which is a recent
label-based multicast forwarding system. We implemented
the basic features of BIER-TE as described in [3], which are
the bit positions for the forward-connected, forward-routed
and local-decap actions. This means that we conservatively
report the minimum size of BIER-TE labels for every ISP
topology. Since Yeti and BIER-TE are stateless and both use
labels, we only analyze the label size and its imposed total
overhead.

We first asses the label size per packet for multiple receiver
densities. We present the CDF of the label size for the me-
dian and largest topologies in Figure 7; the results for other
topologies are given in Appendix §E. Figure 7 indicates that
the label size for Yeti is much smaller than that of BIER-TE
in practical scenarios. For example, for the topology with
the median number of routers (110 routers), Figure 7a, and
receiver density of 30%, Yeti reduces the label size for 50%
of the packets by 91.6% compared to BIER-TE. Moreover,
the label size in Yeti for 90% of the packets is less than 19
bytes, while the label size of BIER-TE is 64 bytes. For the
largest topology in our dataset (197 routers) and for receiver
density of 30%, Figure 7b shows that the label size in Yeti is
15X smaller than BIER-TE for 50% of the packets.

We further analyze the behavior of Yeti and the dynamics
of its label size as packets traverse the network. In Figure 8,

1102 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 25 50 75
Label Size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
P

ac
k

et
s

Yeti-10%

Yeti-20%

Yeti-30%

Yeti-40%

BIER-TE

(a) #Routers=110

0 50 100 150
Label Size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
P

ac
k

et
s

Yeti-10%

Yeti-20%

Yeti-30%

Yeti-40%

BIER-TE

(b) #Routers=197

Figure 7: Label size CDF for different receiver densities.

we plot the average label size for Yeti and BIER-TE versus
the number of hops from source, for the median and largest
topologies, more results for other topologies are given in
Appendix §E. The figure shows that the label size for BIER-
TE depends on the topology size, it is 64 and 110 bytes, for
the median and largest topologies, respectively. In contrast,
the label size in Yeti decreases quickly as the packet moves
away from the source. For example, in Figure 8a, the label
size of Yeti is reduced by 16.9% and 67.8% after traversing
1 and 5 hops, respectively. The label size of Yeti becomes
smaller than that of BIER-TE after traversing 2 hops only,
and Yeti reduces the label size by 87.5% after traversing the
first 50% of the hops.

Finally, we assess the total end-to-end label overhead of
Yeti and BIER-TE, which we define as the label size multi-
plied by the number of network hops the packet traverses; this
is the area under the curves in Figure 8. Table 4 summarizes
the label overhead in bytes for multiple sample topologies.
The results show that Yeti achieves substantial savings, up to
70.2%, compared to BIER-TE. In addition, we report the aver-
age label overhead per router across all 14 ISP topologies. On
average, Yeti needs only 4 bytes per router to forward packets
of multicast sessions, whereas BIER-TE requires 11.4 bytes
per router, that is Yeti achieves an average saving of 65.3% in
the label overhead.

In summary, the label size in Yeti quickly decreases as
packets move towards the multicast destinations, because
routers copy only a subset of labels for every branch. This
results in substantial savings in the label overheads compared
to the closest label-based multicast forwarding system, BIER-
TE. In addition, BIER-TE cannot satisfy the service chaining
requirements for multicast traffic, while Yeti can.

5.4 Analysis of Yeti

We analyze the performance of Yeti in terms of effectiveness
of FSP labels, label size, processing overheads and running
time to satisfy various forwarding requirements.
Effectiveness of FSP Labels. We study the importance of
the proposed FSP label type. Recall that a single FSP label
represents multiple routers in a path segment if that segment
is on the shortest path. To show the importance of FSP label

0 4 8 12 16 20
Hops (from source)

0

15

30

45

60

75

90

L
ab

el
 S

iz
e

(b
y

te
s)

Yeti BIER-TE

(a) #Routers=110

0 5 10 15 20 25 30
Hops (from source)

0

30

60

90

120

150

180

L
ab

el
 S

iz
e

(b
y

te
s)

Yeti BIER-TE

(b) #Routers=197

Figure 8: Label size as packets traverse the network.

ISP Size BIER-TE Yeti Saving (%)

49 299.3 89.3 70.2
84 1,283.3 508.5 60.4
125 1,761.5 588.5 66.6
158 3,123.0 1,176.2 62.3
197 3,190.0 1,062.6 66.7

Norm. Avg.
(bytes/router) 11.4±4.8 4.0±1.8 65.3

Table 4: Label overhead in bytes for Yeti and BIER-TE.

across different topologies, we plot the average FSP saving
for sample topologies in Figure 9a as well as the average over
all ISP topologies. We observe consistent savings across the
topologies which range from 4 to 9 routers per FSP label. That
is, one FSP label saves 4–9 other labels, reducing the label
overhead by up to 9X. The average FSP saving is 5.8±1.8
routers.

Next, we asses the FSP savings to satisfy service chaining
requirements with different chain lengths in Table 5. As the
results show, FSP labels efficiently encode path segments in
the distribution graphs. For instance, an FSP label can encode
about 6 routers on average for typical chain lengths.
Label Size. In Figure 9b, we plot the label size of Yeti ver-
sus the number of hops from source for service chaining
requirements. The figure shows the results for the median
topology of size 110. The results indicate that the label size
of Yeti quickly decreases for all considered chain lengths as
packets traverse towards the destinations. For instance, the
label size decreases by 23% after traversing the first 10 hops
when the chain length is 4. In addition, although the used
routing policy [1] increases the number of hops to satisfy all
service chaining requirements, Yeti is able to encode these
large graphs in relatively small labels.
Processing Overhead. In Figure 10a, we plot the number
of copy operations per packet versus the receiver density for
multiple topology sizes to realize traffic engineering. The
results for other ISP topologies are plotted in Appendix §E.
The figure shows that the additional work per packet is small.
The number of copy operations increases as the receiver den-
sity increases because the multicast distribution graphs have

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1103

49 84 110 125 158 197 Avg.
Topology Size (# Routers)

0

2

4

6

8

10

#
 R

o
u

te
rs

FSP Savings

(a) FSP savings

0 10 20 30 40 50 60
Hops (from source)

0

15

30

45

60

75

90

L
ab

el
 S

iz
e

(b
y

te
s)

3 4 5

(b) Label size per hop

Figure 9: Analysis of FSP savings and label size of Yeti to
satisfy traffic engineering and service chaining requirements.

ISP Service Chain Length

Size 3 4 5

49 4.2±0.4 4.0±0.0 4.0±0.0
84 11.2±1.7 11.0±1.4 11.0±1.4
125 9.2±1.2 9.0±1.3 9.2±1.2
158 8.0±1.1 8.0±1.1 8.0±1.1
197 7.2±1.2 7.2±1.2 7.2±1.2

Avg. 6.4±2.2 6.3±2.2 6.4±2.2

Table 5: Number of traversed routers per FSP label to satisfy
service chaining.

more branches in this case. However, the processing overhead
increases slowly. For instance, in the 84-router topology, the
average number of copy operations increases from 0.4 to 0.62
per packet when the receiver density increases from 5% to
38%. This pattern applies for other topologies as well. That
is, Yeti routers scale in terms of processing as the network
load increases.

We next present the distribution of FSP, FTE, MCT and
CPY labels per router for the five topologies in Figure 10b.
The figure shows that the fraction of processed CPY labels
(the most expensive) per Yeti router across all sessions is
small compared to other label types. For example, only 17%
of the labels being processed at a Yeti router are CPY labels
for the largest topology of 197 routers.

For service chaining, Yeti incurs a similar distribution of op-
erations to Figure 10b. For instance, the fraction of processed
CPY labels is 18.7% for the topology of size 110 when the
chain length is 3. For a longer chain of length 5, the fraction
of CPY labels increases slightly to 21% to satisfy all ser-
vice chains. On average, the fractions of CPY labels per ISP
topology are 19.2%±2.8%, 19.6%±2.8%, and 19.6%±2.3%
for chain lengths of 3, 4 and 5, respectively. We present the
average number of copy operations and distribution of all
operations in Appendix §E, where the averages are taken over
chain lengths.
Running Time of Yeti Controller. We ran the proposed CRE-
ATELABELS algorithm on a workstation with four 3.3 GHz

0 5 10 15 20 25 30 35 40
Receiver Density (%)

0

0.2

0.4

0.6

0.8

1.0

#
 C

o
p

y
 O

p
er

at
io

n
s 84 110 125 158 197

(a) # copy operations

84 110 125 158 197
Topology Size (# Routers)

0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
O

p
er

at
io

n
s

FSP FTE MCT CPY

(b) Distribution of operations

Figure 10: Analysis of processing overheads of Yeti.

cores and 32 GB of memory, and we measured the running
time of creating labels per graph update at the controller. The
running time varied from 4 msec to 10 msec based on the
topology size. For the largest topology of size 197, the con-
troller spends only about 10 msec per graph update to create
the labels for the largest session. Thus, the proposed label
creation algorithm is practical, can run on commodity servers,
and it supports frequent graph updates and network dynamics.

In summary, Yeti imposes small label and processing over-
heads while satisfying service chaining and traffic engineering
requirements.

6 Conclusions

We proposed an efficient, stateless, multicast forwarding sys-
tem called Yeti that implements generalized multicast graphs
in ISP networks. Unlike current rule-based multicast systems,
Yeti does not require maintaining any state at routers. And
unlike other label-based multicast systems, Yeti can direct
traffic on arbitrary network paths to meet traffic engineer-
ing and service chaining requirements while reducing the
label size significantly. The novel aspects of Yeti include
(1) supporting general traffic forwarding requirements, (2)
guaranteeing correctness, (3) composing small labels, and
(4) processing labels efficiently at routers. We implemented
Yeti in a programmable router and evaluated its performance.
Our experiments show that Yeti can achieve line-rate perfor-
mance while using a small amount of hardware resources. In
addition, we conducted extensive simulations using real ISP
topologies, and compared it versus the state-of-art approaches.
Our results show that Yeti outperforms the other approaches
by wide margins for all considered metrics.

Acknowledgments

We thank our shepherd, Behnaz Arzani, and the anonymous
reviewers for their comments. This work was partially sup-
ported by the Natural Sciences and Engineering Research
Council of Canada (NSERC).

1104 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] K. Diab, C. Lee, and M. Hefeeda. Oktopus: Service
chaining for multicast traffic. In Proc. of IEEE ICNP’20,
pages 1–11, Madrid, Spain, October 2020.

[2] Anja Feldmann, Oliver Gasser, Franziska Lichtblau,
Enric Pujol, Ingmar Poese, Christoph Dietzel, Daniel
Wagner, Matthias Wichtlhuber, Juan Tapiador, Narseo
Vallina-Rodriguez, Oliver Hohlfeld, and Georgios
Smaragdakis. The lockdown effect: Implications of
the covid-19 pandemic on internet traffic. In Proc. of
ACM IMC’20, page 1–18, Virtual Event, October 2020.

[3] Toerless Eckert, Gregory Cauchie, and Michael Menth.
Tree Engineering for Bit Index Explicit Replication
(BIER-TE). Internet-Draft draft-ietf-bier-te-arch-08,
Internet Engineering Task Force, July 2020. Work in
Progress.

[4] Clarence Filsfils, Stefano Previdi, Les Ginsberg, Bruno
Decraene, Stephane Litkowski, and Rob Shakir. Seg-
ment Routing Architecture. RFC 8402.

[5] B. Ren, D. Guo, G. Tang, X. Lin, and Y. Qin. Opti-
mal service function tree embedding for nfv enabled
multicast. In Proc. of IEEE ICDCS’18, pages 132–142,
Vienna, Austria, July 2018.

[6] Jiaqi Zheng, Bo Li, Chen Tian, Klaus-Tycho Foerster,
Stefan Schmid, Guihai Chen, and Jie Wu. Scheduling
congestion-free updates of multiple flows with chronicle
in timed sdns. In Proc. of IEEE ICDCS’18, pages 12–21,
Vienna, Austria, July 2018.

[7] S. H. Chiang, J. J. Kuo, S. H. Shen, D. N. Yang, and W. T.
Chen. Online multicast traffic engineering for software-
defined networks. In Proc. of IEEE INFOCOM’18,
pages 414–422, Honolulu, HI, April 2018.

[8] Aravindh Raman, Gareth Tyson, and Nishanth Sastry.
Facebook (A)Live?: Are Live Social Broadcasts Really
Broadcasts? In Proc. of WWW’18, page 1491–1500,
Lyon, France, April 2018.

[9] Victor Heorhiadi, Sanjay Chandrasekaran, Michael K.
Reiter, and Vyas Sekar. Intent-driven composition of
resource-management sdn applications. In Proc. of ACM
CoNEXT’18, pages 86–97, Heraklion, Greece, 2018.

[10] IJsbrand Wijnands, Eric C. Rosen, Andrew Dolganow,
Tony Przygienda, and Sam Aldrin. Multicast Using Bit
Index Explicit Replication (BIER). RFC 8279.

[11] L. H. Huang, H. C. Hsu, S. H. Shen, D. N. Yang, and
W. T. Chen. Multicast traffic engineering for software-
defined networks. In Proc. of IEEE INFOCOM’16,
pages 1–9, San Francisco, CA, April 2016.

[12] M. Huang, W. Liang, Z. Xu, W. Xu, S. Guo, and Y. Xu.
Dynamic routing for network throughput maximization
in software-defined networks. In Proc. of IEEE INFO-
COM’16, pages 1–9, San Francisco, CA, April 2016.

[13] Bill Fenner, Mark J. Handley, Hugh Holbrook, Isidor
Kouvelas, Rishabh Parekh, Zhaohui (Jeffrey) Zhang, and
Lianshu Zheng. Protocol Independent Multicast - Sparse
Mode: Protocol Specification. RFC 7761.

[14] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer,
Florian Wohlfart, and Georg Carle. Moongen: A script-
able high-speed packet generator. In Proc. of ACM
IMC’15, pages 275–287, Tokyo, Japan, October 2015.

[15] Sangjin Han, Keon Jang, Aurojit Panda, Shoumik Palkar,
Dongsu Han, and Sylvia Ratnasamy. Softnic: A software
nic to augment hardware. Technical Report UCB/EECS-
2015-155, EECS Department, University of California,
Berkeley, May 2015.

[16] S. H. Shen, L. H. Huang, D. N. Yang, and W. T.
Chen. Reliable multicast routing for software-defined
networks. In Proc. of IEEE INFOCOM’15, pages 181–
189, Hong Kong, China, April 2015.

[17] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E.
Rothenberg, S. Azodolmolky, and S. Uhlig. Software-
defined networking: A comprehensive survey. Proc. of
the IEEE, 103(1):14–76, Jan 2015.

[18] Renaud Hartert, Stefano Vissicchio, Pierre Schaus,
Olivier Bonaventure, Clarence Filsfils, Thomas Telkamp,
and Pierre Francois. A declarative and expressive ap-
proach to control forwarding paths in carrier-grade net-
works. In Proc. of ACM SIGCOMM’15, pages 15–28,
London, United Kingdom, 2015.

[19] N. Zilberman, Y. Audzevich, G. A. Covington, and A. W.
Moore. Netfpga sume: Toward 100 gbps as research
commodity. IEEE Micro, 34(5):32–41, September 2014.

[20] Xin Jin, Hongqiang Harry Liu, Rohan Gandhi, Srikanth
Kandula, Ratul Mahajan, Ming Zhang, Jennifer Rexford,
and Roger Wattenhofer. Dynamic scheduling of network
updates. In Proc. of ACM SIGCOMM’14, pages 539–
550, Chicago, IL, August 2014.

[21] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick
McKeown, Jennifer Rexford, Cole Schlesinger, Dan
Talayco, Amin Vahdat, George Varghese, and David
Walker. P4: Programming protocol-independent packet
processors. ACM SIGCOMM Computer Communica-
tion Review, 44(3):87–95, July 2014.

[22] X. Chen, M. Chen, B. Li, Y. Zhao, Y. Wu, and J. Li.
Celerity: A low-delay multi-party conferencing solution.
IEEE Journal on Selected Areas in Communications,
31(9):155–164, September 2013.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1105

[23] Bob Thomas, IJsbrand Wijnands, Ina Minei, and Kireeti
Kompella. LDP Extensions for Point-to-Multipoint and
Multipoint-to-Multipoint Label Switched Paths. RFC
6388.

[24] Jay Kreps, Neha Narkhede, and Jun Rao. Kafka: a dis-
tributed messaging system for log processing. In Proc.
of ACM Workshop on Networking Meets Databases
(NetDB’11), Athens, Greece, June 2011.

[25] Petri Jokela, András Zahemszky, Christian Es-
teve Rothenberg, Somaya Arianfar, and Pekka Nikander.
Lipsin: Line speed publish/subscribe inter-networking.
In Proc. of ACM SIGCOMM’09, pages 195–206,
Barcelona, Spain, August 2009.

[26] T. W. Cho, M. Rabinovich, K. K. Ramakrishnan, D. Sri-
vastava, and Y. Zhang. Enabling content dissemination
using efficient and scalable multicast. In Proc. of IEEE
INFOCOM’09, pages 1980–1988, Rio de Janeiro, Brazil,
April 2009.

[27] V. Gopalakrishnan, B. Bhattacharjee, K. K. Ramakrish-
nan, R. Jana, and D. Srivastava. Cpm: Adaptive video-
on-demand with cooperative peer assists and multicast.
In Proc. of IEEE INFOCOM’09, pages 91–99, Rio de
Janeiro, Brazil, April 2009.

[28] Bradley Cain, Dr. Steve E. Deering, Bill Fenner, Isidor
Kouvelas, and Ajit Thyagarajan. Internet Group Man-
agement Protocol, Version 3. RFC 3376.

[29] C. Diot, B. N. Levine, B. Lyles, H. Kassem, and
D. Balensiefen. Deployment issues for the ip multicast
service and architecture. IEEE Network, 14(1):78–88,
January 2000.

[30] Wen-Tsuen Chen, Pi-Rong Sheu, and Yaw-Ren Chang.
Efficient multicast source routing scheme. Computer
Communications, 16(10):662–666, 1993.

[31] Stephen E. Deering and David R. Cheriton. Multicast
routing in datagram internetworks and extended lans.
ACM Transactions on Computer Systems, 8(2):85–110,
May 1990.

[32] AWS Announces Nine New Compute and Networking
Innovations for Amazon EC2. https://bloom.bg/
2t1N9py. [Online; accessed February 2022].

[33] Run IP Multicast Workloads in the Cloud Using AWS
Transit Gateway. https://go.aws/2RT6stz. [Online;
accessed February 2022].

[34] NetFPGA SUME Reference Learning Switch Lite.
https://bit.ly/2UrUFlx. [Online; accessed Febru-
ary 2022].

[35] The Internet Topology Zoo. http://www.
topology-zoo.org/dataset.html. [Online;
accessed February 2022].

[36] Apache ActiveMQ. http://activemq.apache.org.
[Online; accessed February 2022].

[37] Bt iptv (youview). https://bit.ly/3ssCvTz. [On-
line; accessed February 2022].

[38] Multicast Command Reference for Cisco ASR 9000
Series Routers. https://bit.ly/3AaVGDQ. [Online;
accessed February 2022].

[39] RabbitMQ. http://www.rabbitmq.com. [Online; ac-
cessed February 2022].

[40] U-verse tv. https://bit.ly/3HLhfyL. [Online; ac-
cessed February 2022].

[41] Zuckerberg really wants you to stream live video on
Facebook. https://bit.ly/2v6uHqF. [Online; ac-
cessed February 2022].

[42] Benoit Donnet, Korian Edeline, Iain R. Learmonth, and
Andra Lutu. Middlebox classification and initial model.
https://bit.ly/3dZelXV. [Online; accessed Febru-
ary 2022].

Appendix A Correctness of Yeti

Theorem 1 (Correctness). Yeti forwards packets on and only
on links that belong to the multicast graph.

Proof. Yeti guarantees correctness by creating an ordered set
of Yeti labels for the given graph at the controller using the
ENCODEGRAPH algorithm. Recall that the algorithm first
creates a tree to represent the services needed before reach-
ing the destinations. A node in that calculated tree consists
of router ID v and sub-sequence of services S. Every node
appears only once in the tree (by construction). This means
that the tree has no cycles.

The label creation algorithm traverses the tree to calculate
the final labels. Within every path with provided services S,
the order and type of created labels represent how packets
should be forwarded in the data plane. This is detailed as fol-
lows. FSP labels do not result in incorrect forwarding because:
(1) an FSP label with ID v is only added when a tree node
v is traversed by the CREATELABELS algorithm, (2) since
every node with router ID v and services S is traversed once
and only once by the algorithm, only a single FSP v can be
added to the labels representing that node with services S,
(3) in the data plane, the router with ID v removes the FSP
v label. Thus, no subsequent routers in along the path with
same services can process that label and transmit the packet
back to v, and (4) since the traversal starts from the source, if

1106 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://bloom.bg/2t1N9py
https://bloom.bg/2t1N9py
https://go.aws/2RT6stz
https://bit.ly/2UrUFlx
http://www.topology-zoo.org/dataset.html
http://www.topology-zoo.org/dataset.html
http://activemq.apache.org
https://bit.ly/3ssCvTz
https://bit.ly/3AaVGDQ
http://www.rabbitmq.com
https://bit.ly/3HLhfyL
https://bit.ly/2v6uHqF
https://bit.ly/3dZelXV

a node u precedes node v in the tree, the algorithm guarantees
that u is traversed before v. Thus, there is no label to forward
packets back to u.Similar properties are guaranteed for FTE
labels in terms of links. Moreover, attaching multiple FTE
labels does not result in incorrect forwarding. Otherwise, the
given tree has loops, or routers do not remove FTE labels.

For MCT and CPY labels, since the CREATELABELS algo-
rithm recursively creates the labels for each branch, the same
guarantees apply within a single branch for branching points.
In addition, routers in one branch do not forward packets to
routers in other branches. This is because (1) the given tree
is a proper one (i.e., has no cycles), and (2) every router in
a given branch processes the subset of labels duplicated for
that branch using the CPY labels.

Appendix B Practical Considerations of Yeti

Multicast across ISPs. The description of Yeti thus far has fo-
cused on offering a scalable multicast service within a single
ISP. Extending Yeti to multiple ISPs can be done in multiple
ways. For example, a content provider could have separate
agreements with different ISPs to serve clients within these
ISPs, where each ISP runs its multicast service independently
from the others. In this case, a separate feed of the multicast
session traffic is provided from the content provider to each
ISP. Agreements between major content providers, e.g., Face-
book and Netflix, and large ISPs are not uncommon. Another
way of extending Yeti to multiple ISPs is through tunneling,
where a tunnel is established between an egress router of an
ISP to an ingress router of another ISP. The ingress router of
the second ISP would attach labels created by the controller
of that ISP. While the tunneling approach does not reveal the
internal network details of ISPs to each other, which is impor-
tant in practice, it does require collaboration among ISPs to
establish tunnels among some routers.
Incremental Deployment. An ISP may have some legacy
routers that are not programmable and thus cannot run the
packet processing algorithm of Yeti. There are multiple op-
tions that Yeti can still function in this situation, albeit with
some workaround and minor overheads. First, Yeti is general
and can support arbitrary multicast graphs. Thus, a possi-
ble solution is to modify the multicast graphs to avoid going
through legacy routers. The multicast graphs is an input to our
label creation algorithm, and thus the computed labels will not
direct traffic through legacy routers. If a legacy router cannot
be avoided, a tunnel can be created between the router imme-
diately before the legacy router and each router following it
has multicast destinations.

Appendix C Illustrative Example

We present a simple example to illustrate all steps of the
proposed approach. Figure 11 shows the multicast tree of the

session in Figure 1, where solid arrows indicate the graph
links. The dotted line is the shortest path that the ISP avoids
because it is over-utilized. Router IDs and used interface
IDs are shown in the figure. The number of core routers and
maximum interface count are 12 and 5, respectively. Thus,
the label sizes (in bits) are 8, 8, 7 and 5 for MCT, CPY, FSP
and FTE, respectively (Table 1).

The controller generates the shown labels using the EN-
CODEGRAPH algorithm as follows. First, the algorithm cre-
ates three FSP labels to encode path segments to routers 2,
7 and 4. Notice that the most significant bit in each of these
labels is set to one as these nodes provide services a, b and c.

The algorithm then generates MCT 1-00110 to duplicate
packets on interfaces 2 and 3 at router 4. Since the children
3 and 7 have core children, the algorithm sets the most sig-
nificant bit in the MCT label to one, and creates two CPY
labels for branches A and B. In branch B, the recursive call
of Algorithm 1 creates labels for the path segment {3, 6, 5,
8} as follows. First, the algorithm appends routers 3, 6 and
5 to pth_seg because each has one core child (Line 13, Al-
gorithm 1). When the algorithm reaches 8 (which has two
core children), the algorithm appends it to pth_seg (Line 25,
Algorithm 1) and creates labels for the path segment and the
branching point at router 8. For the path segment, since link
(3, 6) is not on the shortest path from 3 to 8, the algorithm
creates FTE 011 to forward packet on interface 3 at router
3. In addition, the algorithm creates FSP 0-1000 to forward
packets from 6 to 8, because the links (6, 5) and (5, 8) are on
the shortest path between 3 and 8.

We describe the packet processing algorithm at represen-
tative routers. The dark labels in Figure 11 are the ones that
are processed at given routers. When router 2 receives FSP
1-0010, it decides that the packet needs to be processed by
service a. So, it removes the label and forwards the packet to
the corresponding datacenter. When the processing is done,
router 2 receives a packet which its first label is FSP 1-0111.
Thus, it forwards the packet on the shortest path to router 7.
Notice that router 4 does not remove FSP 1-0111 as it is not
destined for it. Then, routers 7 and 4 receives packets where
the contents of the FSP labels are their router IDs. After ser-
vice c processes the packet, router 4 processes MCT 1-00110
by duplicating the packet on interfaces 2 and 3, and copying
specific byte ranges using the CPY labels. Router 3 forwards
the packet on interface 3. Router 8 removes FSP and MCT
labels and duplicates the packet to routers 11 and 12. Since
the packet has no labels at router 11 and 12, they transmit it
to egress routers.

Appendix D Implementation of Yeti using P4

P4 is a data plane programming language that is getting popu-
lar due to its flexibility. Thus, we show that Yeti can be imple-
mented in P4 switches. We implemented Yeti using the Intel
P4 software development environment (SDE) version 9.5.0.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1107

Payload= =

Payload= =

Payload= =

Payload= =

Payload= =

Payload= =

Payload= =

FSP 1-0010

FSP 1-0100
MCT 1-00110

FSP 1-0111

FSP 0-1010
CPY 001110

FTE 011
FSP 0-1000

CPY 010100

MCT 0-00110

Payload= =

FSP 1-0100
MCT 1-00110

FSP 1-0111

FSP 0-1010
CPY 001110

FTE 011
FSP 0-1000

CPY 010100

MCT 0-00110

FTE 011
FSP 0-1000
MCT 0-00110

FSP 0-1000
MCT 0-00110

MCT 0-00110

FSP 0-1010

Payload= =

FSP 1-0100
MCT 1-00110

FSP 1-0111

FSP 0-1010
CPY 001110

FTE 011
FSP 0-1000

CPY 010100

MCT 0-00110

FSP 1-0010

Payload= =

FSP 1-0100
MCT 1-00110

FSP 1-0111

FSP 0-1010
CPY 001110

FTE 011
FSP 0-1000

CPY 010100

MCT 0-00110
Payload= =

MCT 1-00110

FSP 0-1010
CPY 001110

FTE 011
FSP 0-1000

CPY 010100

MCT 0-00110

FSP 1-0100

FSP 0-1010

FSP 0-1000

At 1

A

B

1 2 4 7

3

6

8

10

11 12

5

a b c

4

7

At 2
At 4

At 4

At 7

At 10
At 6

At 8

At 11 & 12

At 3

3
4

32

32

At 7

AB

Figure 11: Illustrative example of how labels in Yeti represent the multicast tree in Figure 1.

Link #i
Accept if:

Out Port == i &&
is_mct &&

CPY #i is valid

Else:
Drop #i = true

Link #i
Accept if:

Out Port == i &&
is_mct &&

CPY #i is valid

Else:
Drop #i = true

FSP_1 FTE MCT

Start

FSP_2 End

Ingress Parser

Node ID tbl

FSP label

Egress Parser

MCT label

Broadcast

Intf. ID tbl

FTE label

Ingress Pipeline

Set
Set

MCT

Start

CPY

End

CPY

CPY CPY

Metadata Bus

remove_fsp
is_mct

FSP or FTE

Out Port(s) Out Port

ID IDPort Port

remove_fsp is_mct
Out Port
is_mct

Egress Pipeline

Drop #i

Link I

Link 1

Link #i
If

Out Port == i &&
(is_mct &&

CPY #i is valid):

Else:
Drop #i = true

invalidate_others()

Control Plane

1 K

1 K

Figure 12: Design of Yeti in P4 switches.

1108 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

We used the provided tools such as the P4 compiler (called
bf-p4c) and switch model integrated with the SDE to realize
our ideas and validate our implementation. We note that P4
programs implemented in open-source software switches, e.g.,
bmv2, may not necessarily work on actual hardware switches,
because of the potential mismatch between the available phys-
ical resources in actual switches and the assumed resources
in software switches. This is not the case for the Intel SDE,
since its P4 compiler produces code for actual Tofino switches
(which are also manufactured by Intel).

There are two main challenges in implementing Yeti us-
ing P4. First, current Tofino switches do not provide pro-
grammable primitives to implement new multicast systems.
This is because the packet replication engine is implemented
as a fixed-function block. Second, the current bf-p4c com-
piler does not support variable-length fields (i.e., varbit)
needed to parse and process CPY labels. We made three de-
sign choices to address these challenges. We first divided the
packet processing between ingress and egress pipelines to re-
alize a programmable multicast primitive. Second, we relied
on the available resources and programmable capabilities of
the parsers to reduce the processing in ingress/egress stages.
Finally, we explicitly unrolled the parsing and processing of
a CPY label as an array of items.

Figure 12 illustrates the high-level design of our P4 imple-
mentation. Upon a packet arrival, the ingress parser processes
FSP, FTE and MCT labels as follows. For an FSP label, the
parser reads the included node ID, and parses the labels again
if the parsed node ID is the same as the router ID. In this case,
the parser sets a metadata field remove_fsp to be used by the
ingress pipeline. Recall that the Yeti controller never creates
two consecutive FSP labels (§3.4 and §3.6). Therefore, the
parser always terminates. In the case of FTE and MCT labels,
the parser reads their contents. In addition, it sets a metadata
field is_mct when it parses an MCT label.

The ingress pipeline contains two tables to maintain node
and interface IDs, and spans two stages. In the first stage,
the algorithm processes an FSP label by reading an entry
from the node ID table that matches the label content, and
setting the outgoing port accordingly. The algorithm also
removes the FSP label if the metadata field remove_fsp is
set. The algorithm processes MCT labels, in the same stage,

by duplicating the packet to all outgoing ports. The FTE label
processing is done in the second stage, and it is similar to that
of FSP. However, the algorithm always removes FTE labels.

The egress parser and pipeline are used only to handle MCT
and CPY labels. For each duplicated packet, the egress parser
extracts the contents of MCT label when the metadata field
is_mct is set. The parser then reads CPY labels sequentially
based on the content of MCT label and offsets in CPY labels.
Specifically, for each CPY label, the parser extracts its offset
and content. The content is read based on the offset value,
and represented as an array of up to K multiples of B bits to
emulate varbit<K×B>. When the parser is done, the egress
pipeline identifies which outgoing port should transmit what
CPY label based on the egress port number and validity of the
CPY label. The MCT and remaining CPY labels are removed.

We did not have a physical Tofino switch in our lab to con-
duct measurement experiments at the time of conducting this
research. We thus validated our implementation by writing
and running multiple test cases, and sending and receiving
packets to and from the Tofino switch model process. When
we run a test case, we insert the required entries into node and
link IDs tables. We send labeled packets using scapy, and
verify the reception of outgoing packets based on the attached
Yeti labels. A test case succeeds if all packets were received
on and only on expected ports with expected headers.

Appendix E Additional Simulation Results

This appendix includes more figures and results from our
simulation.

Figure 13 shows the state size for all 12 ISP topologies.
The figure indicates that Yeti provides a scalable multicast
service as it does not require any state at any router.

Figures 14–15 show the label size of Yeti versus BIER-TE.
Compared to BIER-TE, the figures show that Yeti reduces
the label size significantly across receiver densities and as
packets traverse the network.

Figures 16–19 indicate that Yeti impose small label and
processing overheads when supporting service chaining and
traffic engineering requirements.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1109

0 5 10 15 20 25 30 35 40
Receiver Density (%)

0

5

10

15

20

25

S
ta

te
 (

#
ro

u
te

rs
)

Yeti

Yeti RB-OF LIPSIN

(a) #Routers=36

0 5 10 15 20 25 30 35 40
Receiver Density (%)

0

5

10

15

20

25

30

S
ta

te
 (

#
ro

u
te

rs
)

Yeti

Yeti RB-OF LIPSIN

(b) #Routers=49

0 5 10 15 20 25 30 35 40
Receiver Density (%)

0

10

20

30

40

S
ta

te
 (

#
ro

u
te

rs
)

Yeti

Yeti RB-OF LIPSIN

(c) #Routers=53

0 5 10 15 20 25 30 35 40
Receiver Density (%)

0

10

20

30

40

S
ta

te
 (

#
ro

u
te

rs
)

Yeti

Yeti RB-OF LIPSIN

(d) #Routers=58

0 5 10 15 20 25 30 35 40
Receiver Density (%)

0

10

20

30

40

50

S
ta

te
 (

#
ro

u
te

rs
)

Yeti

Yeti RB-OF LIPSIN

(e) #Routers=69

0 5 10 15 20 25 30 35 40
Receiver Density (%)

0

15

30

45

60

75

S
ta

te
 (

#
ro

u
te

rs
)

Yeti

Yeti RB-OF LIPSIN

(f) #Routers=84

0 5 10 15 20 25 30 35 40
Receiver Density (%)

0

15

30

45

60

75

90

S
ta

te
 (

#
ro

u
te

rs
)

Yeti

Yeti RB-OF LIPSIN

(g) #Routers=113

0 5 10 15 20 25 30 35 40
Receiver Density (%)

0

20

40

60

80

100

S
ta

te
 (

#
ro

u
te

rs
)

Yeti

Yeti RB-OF LIPSIN

(h) #Routers=125

0 5 10 15 20 25 30 35 40
Receiver Density (%)

0

20

40

60

80

100

120

S
ta

te
 (

#
ro

u
te

rs
)

Yeti

Yeti RB-OF LIPSIN

(i) #Routers=145

0 5 10 15 20 25 30 35 40
Receiver Density (%)

0

20

40

60

80

100

120

S
ta

te
 (

#
ro

u
te

rs
)

Yeti

Yeti RB-OF LIPSIN

(j) #Routers=149

0 5 10 15 20 25 30 35 40
Receiver Density (%)

0

20

40

60

80

100

S
ta

te
 (

#
ro

u
te

rs
)

Yeti

Yeti RB-OF LIPSIN

(k) #Routers=153

0 5 10 15 20 25 30 35 40
Receiver Density (%)

0

20

40

60

80

100

120

S
ta

te
 (

#
ro

u
te

rs
)

Yeti

Yeti RB-OF LIPSIN

(l) #Routers=158

Figure 13: State size for the considered ISP topologies.

1110 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 10 20
Label Size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
P

ac
k

et
s

Yeti-10%

Yeti-20%

Yeti-30%

Yeti-40%

BIER-TE

(a) #Routers=36

0 20 40
Label Size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
P

ac
k

et
s

Yeti-10%

Yeti-20%

Yeti-30%

Yeti-40%

BIER-TE

(b) #Routers=49

0 20 40
Label Size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
P

ac
k

et
s

Yeti-10%

Yeti-20%

Yeti-30%

Yeti-40%

BIER-TE

(c) #Routers=53

0 20 40
Label Size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
P

ac
k

et
s

Yeti-10%

Yeti-20%

Yeti-30%

Yeti-40%

BIER-TE

(d) #Routers=58

0 20 40 60
Label Size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
P

ac
k

et
s

Yeti-10%

Yeti-20%

Yeti-30%

Yeti-40%

BIER-TE

(e) #Routers=69

0 20 40 60
Label Size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
P

ac
k

et
s

Yeti-10%

Yeti-20%

Yeti-30%

Yeti-40%

BIER-TE

(f) #Routers=84

0 25 50 75
Label Size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
P

ac
k

et
s

Yeti-10%

Yeti-20%

Yeti-30%

Yeti-40%

BIER-TE

(g) #Routers=113

0 50 100
Label Size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
P

ac
k

et
s

Yeti-10%

Yeti-20%

Yeti-30%

Yeti-40%

BIER-TE

(h) #Routers=125

0 50 100
Label Size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
P

ac
k

et
s

Yeti-10%

Yeti-20%

Yeti-30%

Yeti-40%

BIER-TE

(i) #Routers=145

0 50 100
Label Size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
P

ac
k

et
s

Yeti-10%

Yeti-20%

Yeti-30%

Yeti-40%

BIER-TE

(j) #Routers=149

0 50 100
Label Size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
P

ac
k

et
s

Yeti-10%

Yeti-20%

Yeti-30%

Yeti-40%

BIER-TE

(k) #Routers=153

0 50 100
Label Size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0
F

ra
ct

io
n

 o
f

P
ac

k
et

s

Yeti-10%

Yeti-20%

Yeti-30%

Yeti-40%

BIER-TE

(l) #Routers=158

Figure 14: Label size CDF for different ISP topologies.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1111

0 2 4 6 8 10
Hops (from source)

0

5

10

15

20

25

30

L
ab

el
 S

iz
e

(b
y

te
s)

Yeti BIER-TE

(a) #Routers=36

0 2 4 6 8 10
Hops (from source)

0

10

20

30

40

50

60

L
ab

el
 S

iz
e

(b
y

te
s)

Yeti BIER-TE

(b) #Routers=49

0 2 4 6 8 10
Hops (from source)

0

10

20

30

40

50

60

L
ab

el
 S

iz
e

(b
y

te
s)

Yeti BIER-TE

(c) #Routers=53

0 2 4 6 8 10
Hops (from source)

0

10

20

30

40

50

60

L
ab

el
 S

iz
e

(b
y

te
s)

Yeti BIER-TE

(d) #Routers=58

0 2 4 6 8 10
Hops (from source)

0

10

20

30

40

50

60

L
ab

el
 S

iz
e

(b
y

te
s)

Yeti BIER-TE

(e) #Routers=69

0 5 10 15 20 25 30
Hops (from source)

0

10

20

30

40

50

60

L
ab

el
 S

iz
e

(b
y

te
s)

Yeti BIER-TE

(f) #Routers=84

0 5 10 15 20 25
Hops (from source)

0

15

30

45

60

75

90

L
ab

el
 S

iz
e

(b
y

te
s)

Yeti BIER-TE

(g) #Routers=113

0 5 10 15 20 25
Hops (from source)

0

15

30

45

60

75

90

L
ab

el
 S

iz
e

(b
y

te
s)

Yeti BIER-TE

(h) #Routers=125

0 5 10 15 20 25 30
Hops (from source)

0

20

40

60

80

100

120

L
ab

el
 S

iz
e

(b
y

te
s)

Yeti BIER-TE

(i) #Routers=145

0 5 10 15 20 25
Hops (from source)

0

20

40

60

80

100

120

L
ab

el
 S

iz
e

(b
y

te
s)

Yeti BIER-TE

(j) #Routers=149

0 4 8 12 16 20
Hops (from source)

0

25

50

75

100

125

150

L
ab

el
 S

iz
e

(b
y

te
s)

Yeti BIER-TE

(k) #Routers=153

0 5 10 15 20 25 30
Hops (from source)

0

20

40

60

80

100

120

L
ab

el
 S

iz
e

(b
y

te
s)

Yeti BIER-TE

(l) #Routers=158

Figure 15: Label size of Yeti versus BIER-TE as packets traverse the network.

1112 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 5 10 15 20 25
Hops (from source)

0

5

10

15

20

25

30

L
ab

el
 S

iz
e

(b
y

te
s)

3 4 5

(a) #Routers=36

0 5 10 15 20 25
Hops (from source)

0

10

20

30

40

50

60

L
ab

el
 S

iz
e

(b
y

te
s)

3 4 5

(b) #Routers=49

0 10 20 30 40 50
Hops (from source)

0

10

20

30

40

50

60

L
ab

el
 S

iz
e

(b
y

te
s)

3 4 5

(c) #Routers=53

0 5 10 15 20 25 30
Hops (from source)

0

10

20

30

40

50

60

L
ab

el
 S

iz
e

(b
y

te
s)

3 4 5

(d) #Routers=58

0 10 20 30 40 50
Hops (from source)

0

10

20

30

40

50

60

L
ab

el
 S

iz
e

(b
y

te
s)

3 4 5

(e) #Routers=69

0 10 20 30 40 50 60
Hops (from source)

0

10

20

30

40

50

60

L
ab

el
 S

iz
e

(b
y

te
s)

3 4 5

(f) #Routers=84

0 10 20 30 40 50
Hops (from source)

0

15

30

45

60

75

90

L
ab

el
 S

iz
e

(b
y

te
s)

3 4 5

(g) #Routers=113

0 15 30 45 60 75
Hops (from source)

0

15

30

45

60

75

90

L
ab

el
 S

iz
e

(b
y

te
s)

3 4 5

(h) #Routers=125

0 15 30 45 60 75
Hops (from source)

0

15

30

45

60

75

90

L
ab

el
 S

iz
e

(b
y

te
s)

3 4 5

(i) #Routers=145

0 15 30 45 60 75
Hops (from source)

0

20

40

60

80

100

120

L
ab

el
 S

iz
e

(b
y

te
s)

3 4 5

(j) #Routers=149

0 10 20 30 40 50 60
Hops (from source)

0

25

50

75

100

125

150
L

ab
el

 S
iz

e
(b

y
te

s)
3 4 5

(k) #Routers=153

0 20 40 60 80
Hops (from source)

0

20

40

60

80

100

120

L
ab

el
 S

iz
e

(b
y

te
s)

3 4 5

(l) #Routers=158

0 15 30 45 60 75
Hops (from source)

0

25

50

75

100

125

150

L
ab

el
 S

iz
e

(b
y

te
s)

3 4 5

(m) #Routers=197

Figure 16: Analysis of label size of Yeti to satisfy service chaining requirements.

0 5 10 15 20 25 30 35 40
Receiver Density (%)

0

0.2

0.4

0.6

0.8

1.0

#
 C

o
p

y
 O

p
er

at
io

n
s 113 145 149 153

(a) # copy operations

0 5 10 15 20 25 30 35 40
Receiver Density (%)

0

0.2

0.4

0.6

0.8

1.0

1.2

#
 C

o
p

y
 O

p
er

at
io

n
s 36 49 53 58 69

(b) # copy operations

113 145 149 153
Topology Size (# Routers)

0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
O

p
er

at
io

n
s

FSP FTE MCT CPY

(c) Distribution of operations

36 49 53 58 69
Topology Size (# Routers)

0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
O

p
er

at
io

n
s

FSP FTE MCT CPY

(d) Distribution of operations

Figure 17: Analysis of processing overheads of Yeti for different ISP topologies.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1113

0 5 10 15 20 25 30 35 40
Receiver Density (%)

0

0.2

0.4

0.6

0.8

1.0

#
 C

o
p
y
 O

p
er

at
io

n
s 84 110 125 158 197

0 5 10 15 20 25 30 35 40
Receiver Density (%)

0

0.2

0.4

0.6

0.8

1.0

#
 C

o
p
y
 O

p
er

at
io

n
s 113 145 149 153

0 5 10 15 20 25 30 35 40
Receiver Density (%)

0

0.2

0.4

0.6

0.8

1.0

1.2

#
 C

o
p
y
 O

p
er

at
io

n
s 36 49 53 58 69

Figure 18: # copy operations for different ISP topologies to support service chaining.

84 110 125 158 197
Topology Size (# Routers)

0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
O

p
er

at
io

n
s

FSP FTE MCT CPY

113 145 149 153
Topology Size (# Routers)

0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
O

p
er

at
io

n
s

FSP FTE MCT CPY

36 49 53 58 69
Topology Size (# Routers)

0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
O

p
er

at
io

n
s

FSP FTE MCT CPY

Figure 19: Distribution of FSP, FTE, MCT and CPY operations to support service chaining.

1114 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

cISP: A Speed-of-Light Internet Service Provider

Debopam Bhattacherjee* 1, Waqar Aqeel* 2, Sangeetha Abdu Jyothi3,4, Ilker Nadi Bozkurt2†, William Sentosa5,
Muhammad Tirmazi6, Anthony Aguirre7, Balakrishnan Chandrasekaran8, P. Brighten Godfrey5,9,

Gregory Laughlin10, Bruce Maggs2,11, Ankit Singla1

1ETH Zürich, 2Duke University, 3UC Irvine, 4VMware Research, 5UIUC, 6Harvard University, 7UC Santa Cruz, 8VU Amsterdam, 9VMware,
10Yale University, 11Emerald Technologies

Abstract
Low latency is a requirement for a variety of interactive net-
work applications. The Internet, however, is not optimized for
latency. We thus explore the design of wide-area networks that
move data at nearly the speed of light in vacuum. Our cISP de-
sign augments the Internet’s fiber with free-space microwave
wireless connectivity over paths very close to great-circle
paths. cISP addresses the fundamental challenge of simul-
taneously providing ultra-low latency while accounting for
numerous practical factors ranging from transmission tower
availability to packet queuing. We show that instantiations of
cISP across the United States and Europe would achieve mean
latencies within 5% of that achievable using great-circle paths
at the speed of light, over medium and long distances. Further,
using experiments conducted on a nearly-speed-of-light algo-
rithmic trading network, together with an analysis of trading
data at its end points, we show that microwave networks are
reliably faster than fiber networks even in inclement weather.
Finally, we estimate that the economic value of such networks
would substantially exceed their expense.

1 INTRODUCTION
User experience in many interactive network applications de-
pends crucially on achieving low latency. Even seemingly
small increases in latency can negatively impact user ex-
perience, and, subsequently, revenue for service providers:
Google, for example, quantified the impact of an additional
400 ms of latency in search results as 0.7% fewer searches per
user [18]. Further, wide-area latency is often the bottleneck,
as Facebook’s analysis of over a million requests found [21].
Indeed, content delivery networks (CDNs) present latency
reduction and its associated increase in conversion rates as
one of the key value propositions of their services, citing, e.g.,
a 1% loss in sales per 100 ms of latency for Amazon [2]. In
spite of the significant impact of latency on performance and
user experience, the Internet is not designed to treat low la-
tency as a primary objective. This is the problem we address:
reducing latencies over the Internet to the lowest possible.

* Equal contribution. † Now at Google.

The best achievable latency between two points along
the surface of the Earth is determined by their geodesic dis-
tance divided by the speed of light, c. Latencies over the
Internet, however, are usually much larger than this minimal
“c-latency”: recent measurement work found that fetching
even small amounts of data over the Internet typically takes
37× longer than the c-latency, and often, more than 100×
longer [16]. This delay comes from the many round-trips be-
tween the communicating endpoints, due to inefficiencies in
the transport and application layer protocols, and from each
round-trip itself taking 3-4× longer than the c-latency [16].
Given the approximately multiplicative role of network round-
trip times (RTTs) when bandwidth is not the main bottleneck,
eliminating inflation in Internet RTTs can potentially translate
to up to 3-4× speedup, even without any protocol changes.
Further, as protocol stack improvements get closer to their
ideal efficiency of one RTT for small amounts of data, the
RTT becomes the singular network bottleneck. Similarly, for
well-designed applications dependent on persistent connec-
tivity between two fixed locations, such as gaming, nothing
other than resolving this 3-4× “infrastructural inefficiency”
can improve latency substantially.

Thus, beyond the networking research community’s focus
on protocol efficiency, reducing the Internet infrastructure’s
latency inflation is the next frontier in research on latency.
While academic research has typically treated infrastructural
latency inflation as an unresolvable given, we argue that this
is a high-value opportunity, and is much more tractable than
may be evident at first.

What are the root causes of the Internet’s infrastructural
inefficiency, and how do we ameliorate them? Large laten-
cies are partly explained by poor use of existing fiber infras-
tructure: two communicating sites often use a longer, indi-
rect route because their service providers do not peer over
the shortest fiber connectivity between their locations. We
find, nevertheless, that even latency-optimal use of all known
fiber conduits, computed via shortest paths in the InterTubes
dataset [34], would leave us 1.98× away from c-latency [17].
This gap stems from the speed of light in fiber being ∼ 2

3 c,

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1115

and the unavoidable circuitousness of fiber routes due to to-
pographic and economic constraints of buried conduits.

We thus explore the design of cISP, an Internet Service
Provider that provides nearly speed-of-light latency by ex-
ploiting wireless electromagnetic transmissions, which can be
realized with point-to-point microwave antennas mounted
on towers. This approach holds promise for overcoming
both the aforementioned shortcomings fundamental to to-
day’s fiber-based networks: the transmission speed in air is
essentially equal to c, and the richness of existing tower in-
frastructure makes more direct paths possible. Nevertheless,
it also presents several new challenges, including:

• overcoming numerous practical constraints, such as tower
availability, line-of-sight requirements, and the impact of
weather on performance;

• coping with limited wireless bandwidth;
• solving a large-scale cost-optimal network design problem,

which is NP-hard; and
• addressing switching and queuing delays, which are more

prominent with the smaller propagation delays.

To meet these challenges, we propose a hybrid design that aug-
ments the Internet’s fiber connectivity with nearly straight-line
wireless links. These low-latency links are used judiciously
where they provide the maximum latency benefit, and only
for the high-impact but small proportion, in terms of bytes, of
Internet traffic that is latency-sensitive. We design a simple
heuristic that achieves near-optimal results for the network
design problem. Our approach is flexible and enables network
design for a variety of deployment scenarios; in particular, we
show that cISP’s design for interconnecting large population
centers in the contiguous U.S. and Europe can achieve mean
latencies as low as 1.05× c-latency at a cost of under $1 per
gigabyte (GB). We show through simulation that such net-
works can be operated at high utilization without excessive
queuing.

To address the practical concerns, we use fine-grained geo-
graphic data and the relevant physical constraints to determine
where the needed wireless connectivity would be feasible to
deploy, and assess our design under a variety of scenarios with
respect to budget, tower height and availability, antenna range,
and traffic matrices. We also use a year’s worth of meteorolog-
ical data to assess the network’s performance during weather
disturbances, showing that most of cISP’s latency benefits
remain intact throughout the year. Our weather simulation
and an animation showing how the hybrid network evolves
from mostly-fiber to mostly-wireless with increasing budget
are available online; see [25] and [26].

But is it feasible to use microwave hardware for low latency
in practice? To answer this question, we rented virtual ma-
chines in the CME data center in Chicago and the Equinix data
center in New Jersey, and, on Saturdays, were given access at
these data centers to one of the fastest microwave networks
spanning the Chicago – New Jersey algorithmic trading corri-

dor. Experiments conducted on this network show that it suc-
cessfully operates at a speed extremely close to the speed of
light, and that losses can be effectively handled by extremely
lightweight forward error correction (FEC). We complement
these findings by analyzing real trading data, revealing the
minimum latency between the data centers and showing that
the network is available in varied weather conditions.

Finally, we explore the application-level benefits for Web
browsing and gaming, and present estimates showing that
the utility of cISP vastly exceeds its cost, even for web sites
already using CDNs to reduce latency.

2 TECHNOLOGY BACKGROUND
At the highest level, our approach involves using free-space
communication between transmitters mounted at a suitable
height, e.g., using dedicated towers or existing buildings, and
separated from each other by at most a certain limiting dis-
tance. Network links longer than this range require a series of
such transmitters. Typically, even after accounting for terrain,
such a network link can be built close to the shortest path on
the Earth’s surface between the two end points. Further, the
speed of light in air is essentially the same as that in vacuum, c.
These properties make our approach attractive for the design
of (nearly) c-latency networks.
Technology choices. Several physical layer technologies are
amenable for use in our design, including free-space optics
(FSO), microwave (MW), and millimeter wave (MMW). At
present, we believe MW provides the best combination of
range, resilience, throughput, and cost. Future advances in
any of these technologies, however, can be easily rolled into
our design, and can only improve our cost-benefit analysis.

While hollow fiber [31] could, in the future, also provide c-
latency, it would still suffer from the circuitousness of today’s
fiber conduits. Low Earth orbit satellite networks, as are being
currently deployed, could also help, although they currently
incur substantially higher latency than cISP (§9).
Switching latency. While long-haul MW networks have ex-
isted since the 1940s [10], their use in high-frequency trading
starting within the last 10 years [55] has driven innovation in
radios so that each MW retransmission only takes a few µs.
Thus, even wide-area links with many retransmissions incur
negligible switching latency. As an example, the HFT indus-
try operates a MW relay between Chicago and New Jersey
comprising ≈ 20 line-of-sight links that operates within 1%
of c-latency end-to-end at the application layer [58].
Packet loss. Loss occurs for several reasons, including
weather disruption and intermittent multi-path fading, espe-
cially over bodies of water. In §5.1, using a year’s worth of
weather data, we analyze the impact of diverting traffic to
alternate (fiber or MW) routes during inclement weather. Our
active experiments on a microwave network also show that
losses experienced could be handled with lightweight forward
error correction (FEC).
Spectrum and licensing. We propose the use of MW com-

1116 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

munication in the 6-18 GHz frequency range. These frequen-
cies are not very crowded, and licensing is generally not very
competitive, except at 6 GHz in cities, and along certain routes,
like the above mentioned HFT corridor. The licenses are
given on a first-come, first-served basis, recorded in a public
database, they protect against the deployment of other links
that would interfere with licensed links.
Line-of-sight & range. Successive MW towers need line-
of-sight visibility, accounting for the Earth’s curvature, terrain,
trees, buildings and other obstructions, and atmospheric re-
fraction. Attenuation also limits range. A maximum range
of around 100 km is practicable, but we show results with
maximum allowed range varying between 60-100 km (§5.2).
Bandwidth. Between any two towers, using very efficient
encoding (256 QAM or higher), wide frequency channels,
and radio multiplexing, a data rate of about 1 Gbps is achiev-
able [45]. This bandwidth is vastly smaller than for fiber, and
necessitates a hybrid design using fiber and MW.
Geographic coverage. Connecting individual homes di-
rectly to such a MW network would be cost-prohibitive. To
maximize cost-efficiency, we focus on long-haul connectivity,
with the last mile being traditional fiber. At short distances,
fiber’s circuitousness and refraction are small overheads.
Cost model. We rely on cost estimates in recent work [55]
and based on our conversations with industry participants
involved in equipment manufacturing and link provisioning.
The cost of installing a bidirectional MW link, on existing tow-
ers, is approximately $75K ($150K) for 500 Mbps (1 Gbps)
bandwidth. The average cost for building a new tower is
$100K, with wide variation by terrain and across cities and
rural areas. Any additional towers needed to augment band-
width for particular links incur this “new tower” cost. The
operational costs comprise several elements, including man-
agement and personnel, but the dominant operational expense,
by far, is tower rent: $25−50K per year per tower. We esti-
mate cost per GB by amortizing the sum of building costs and
operational costs over 5 years.

Note that the deployment and operational costs can vary
substantially based on the deployment model. For example,
imagine that a company like American Tower [7], which has
a substantial tower presence across the US (see Fig. 14 in
Appendix D), deploys cISP. In such a scenario, not only would
the cost of bandwidth augmentation be negligible, but also the
cost of maintaining the towers would be drastically reduced.
We consider both conservative and optimistic deployment
models and conduct an in-depth cost-analysis in this work.

3 CISP DESIGN
At an abstract level, given the tower and fiber infrastructure, a
set of n sites (e.g., cities, data centers) to interconnect, and a
traffic model between them, we want to select a set of tower-
level connections that minimizes network-wide latency while
adhering to a budget and the constraints outlined in §2. Our
approach comprises the following three broad steps.

1. Identifying a set of links that are likely to be useful by
determining, for each pair of sites (s, d), the best feasible
tower-level connectivity, if s and d were to be directly con-
nected by a series of towers.

2. Building all O(n2) direct links, connecting each site to ev-
ery other, would be prohibitively expensive. Thus, a subset
of site-to-site links, together with existing fiber conduits,
form our network. Choosing the appropriate subset is the
key algorithmic problem.

3. Provisioning capacity beyond 1 Gbps along any link in-
volves building additional tower-level links, e.g., by iden-
tifying and using links that are also nearly shortest paths,
but were omitted in step 1 above.

Step 1: feasible hops. We first use line-of-sight and range
constraints to decide which tower pairs can be connected.
Achievable tower-to-tower hop length is limited primarily by
the Earth’s curvature, which can be treated as a “bulge” of
height hEarth. MW hops must clear this curvature and any
obstructions in an ellipsoidal region between the sender and
the receiver antennae known as the Fresnel zone, which has
width hFres. At the midpoint of a hop of length D, using a MW
frequency f , we have the following.

hFres ' 8.7m
(

D
1km

)1/2(f
1GHz

)−1/2

(1)

hEarth '
1 m

50 K

(
D

1km

)2

(2)

In Eq. 2, K accounts for atmospheric refraction [62]. Tow-
ers should clear the sum of these heights and any other obstruc-
tions. In favorable weather, and with adequately large dish
antennae, ranges of up to D≈ 100 km are achievable with high
availability, provided such line-of-sight clearance [79]. As a
specific example, the FCC licensing database [28] indicates
that McKay Brothers, LLC (a financial industry provider) op-
erated a D = 96km hop from Chicago, IL (lat. 41.88◦, lon.
-87.62◦) to Galien, MI (lat. 41.81◦, lon. -86.47◦) as part of a
1183km MW relay. This example shows that multipath inter-
ference issues (associated in this case with a traversal over
Lake Michigan) are not an impediment to hop viability.

We assess hop feasibility between each pair of towers by us-
ing terrain data made available by NASA [66], which includes
buildings and ground clutter, and effectively incorporates the
height of the tree canopy.1 We also require a fully clear Fres-
nel zone, and adopt K = 1.3 and f = 11 GHz in the above
formulae. The hop engineering routines performing these cal-
culations have been tested in practice: specifically, we have
previously used them to design line-of-sight networks, at least
4 of which are now deployed, including ultra-low latency

1This NASA data set combines data from the Shuttle Radar Topography
Mission (SRTM) [66] and the National Elevation Database (NED) [88],
and typically yields acceptably small error (∼ 2 m) against reference, high-
accuracy LIDAR measurements.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1117

routes between data centers hosting financial market match-
ing engines. The methodology routinely provided correct
clearance assessments when the physical paths were flashed
(confirming line-of-sight with an on-site visit, e.g., [33]). It
is relatively rare that the hop feasibility assessment is inac-
curate; if a problem arises, it is most likely that the locations
themselves are not available to rent. For this reason, in §5.2,
we explore relaxations of our tower rental assumptions.

After identifying feasible tower-to-tower hops, for each pair
of sites, we find the shortest path through a graph containing
these hops, which we call a link. In line with observations
from the tower data around major population centers, we
assume each site itself hosts enough towers to use as the
starting point for connectivity from that site to many others.
Step 2: topology design. We need to select a subset of site-
to-site links to form a nationwide network that minimizes
latency, given a limited budget to spend on links. The Steiner-
tree problem [41] can be easily reduced to this problem,
thereby establishing hardness. Standard approximation al-
gorithms, like linear program relaxation and rounding, yield
sub-optimal solutions, which although provably within con-
stant factors of optimal, are insufficient in practice for this
setting. Unfortunately, as we show in Appendix A, solving
an Integer Linear program “unsplittable flow” formulation
is intractable at the scales of interest. We thus propose two
heuristics, the combination of which overcomes the scalability
challenge, without substantially deteriorating solution quality.

The first observation we make is that the ILP formulation
considers some flow variables that will never take non-zero
values, allowing us to eliminate them and any resulting null
constraints. For instance, if between two end points, a can-
didate microwave path is of higher latency than a fiber path
(which we can always use, at negligible-in-comparison ex-
pense), then it will never carry any flow between these two
end points. Similar observations apply to individual “distant,
off-path” fiber and MW links. This simple observation sub-
stantially reduces the problem size. Note that standard net-
work design problems do not typically have this structure
available. This is entirely due to the hybrid design using fiber,
which is assumed to be cheap, where available. We benefit, in
this case, from having an “oracle” that tells us a priori when
certain flow assignments are “obviously bad” and will not be
useful. Further, carefully defined, such constraints preserve
optimality; this part of our solution is not an approximation.

Second, we use a fast greedy heuristic to prune out MW
links that are unlikely to be chosen. The heuristic operates
using a larger budget (2× in our implementation) than we
are ultimately allowed. In each iteration, we add to the solu-
tion the MW site-to-site link that decreases average stretch
the most, continuing until the total cost reaches the inflated
budget; the chosen links are candidates given to the ILP. Intu-
itively, the other links are uninteresting – they are unlikely to
be picked in the final optimization even when a substantially
larger budget is available, and so are not presented as options

> 6o

Fig. 1: k2 bandwidth with O(k) new towers.

to the ILP. This approach does not provide any guarantees,
but we find that on small problem sizes, where the exact ILP
can also be evaluated, it obtains the optimal solution.
Step 3: capacity augmentation. In many scenarios, some
links require more capacity than a single MW connection. For
short distances, this is a non-issue: the MW link can simply
be replaced by fiber without a large impact on the network’s
latency. However, for longer distances, this is not acceptable.

One approach to resolving this problem is simply to build
multiple parallel MW links, over multiple series of towers.
While tower siting is often a challenging practical problem,
with individual sites valued by the HFT industry at as much
as $14 million [59], in the cISP context there is a much larger
“tolerance” than in HFT, where firms compete for fractions
of microseconds. For a 500 km long cISP link, the midpoint
diverging 10 km from the geodesic would increase latency
by a negligible 0.2%. Thus, the problem of tower siting is
substantially simpler. Also, in many cases, tower infrastruc-
ture is dense enough already to allow multiple parallel links.
For instance, the HFT industry operates nearly 20 parallel
networks in the New York-Chicago corridor [55].

We can also employ a simple trick to enhance the effective-
ness of parallel series of towers, as shown in Fig. 1. Instead of
k parallel series of towers providing merely a k× bandwidth
improvement, connecting multiple antennae on each tower
to other towers, we can obtain a k2× improvement. Using
antennae with overlapping frequencies requires an angular
separation of 6◦ [62], as shown in Fig. 1. Again, the stretch
caused by the resulting gap between parallel series of tow-
ers is small. For a tower-tower hop distance of 100 km, the
minimum distance between two parallel towers should be
100 · tan(6◦) = 10.6 km, which, as noted above, has a small
effect on end-to-end latency for long links.

This approach implies that for site-to-site bandwidths under
1 Gbps, we need just one series of towers; for bandwidths be-
tween 1-4 Gbps, we need 2 series; for 4-9 Gbps, 3; etc. While
tower siting circumstances are often unique, we are aided by
two observations: (a) there is substantial redundancy in exist-
ing tower infrastructure, and we can often find existing towers
for parallel connections (see Fig. 3b and the related text in §4);
and (b) when new towers are needed, there is substantial toler-
ance in where they are sited, as noted above. Bandwidth may
potentially be increased even further through spatial diversity
techniques, whereby multiple antennae are placed appropri-
ately on the same tower such that they can adaptively cancel

1118 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

interference by multiple transmission streams within the same
frequency channel [89].

4 A CISP FOR THE UNITED STATES
We now apply the framework above for a concrete instan-
tiation: designing a cISP for the U.S. mainland. To assess
line-of-sight connectivity between existing towers, we use
fine-grained data on tower infrastructure, buildings, terrain,
and tree canopy. The fiber conduit data is available from past
work [34].
Defining the sites and traffic model: To maximize utility
while keeping costs low, we connect only the 200 most pop-
ulous cities in the contiguous United States. In addition, we
coalesce suburbs and cities within 50 km of each other, ending
up with 120 population centers. (Henceforth, when we refer
to “cities”, we refer to these population centers.) Based on
population data for 2010 [20], we calculate that 85% of the
US population lives within 100 km of these 120 cities. For
the traffic matrix, we use demands between city pairs that are
proportional to their population product.
Step 1: Which city-city links are feasible? We use existing
towers listed in FCC’s Antenna Structure Registration [39]
and databases from American Tower, Crown Castle, and sev-
eral other tower companies for which we were able to down-
load data. We cull these rather large databases of MW tow-
ers to a subset of 12,080 towers as follows: Towers from
rental companies are typically suitable for use. From the FCC
database, we only use towers over 100 m height. When tower-
density exceeds 50 towers per 0.5° square grid cell, we ran-
domly sample towers. (Using all towers could only improve
our results, but increases compute time.)

Evaluating link feasibility across tower pairs within range
of each other using the aforementioned NASA data [66], we
find 261,019 tower-tower hops that satisfy line-of-sight con-
straints. We find that each city itself has large numbers of
suitable towers in its vicinity. We run a shortest path com-
putation on a graph comprising the cities and towers and
city-tower and tower-tower hops to find the shortest city-city
MW links. This yields both the cost (i.e., number of towers)
and latency (i.e., distance along the chosen series of towers)
for each city-city link.

For fiber distances, we compute the shortest paths over the
InterTubes [34] dataset on US fiber conduits.
Step 2: What subset of links should we build? We use the
Gurobi solver [42] to solve our topology design problem. As
detailed in Appendix A: (a) both the exact ILP and an LP
relaxation approach are too computationally inefficient, while
our cISP design heuristic is able to solve the problem at the
full scale; and (b) at small scales, where we can also run the
exact ILP, our heuristic yields the optimal result.

Fig. 2 shows an example network. Designed with a budget
of 3,000 towers and maximum hop length of 100 Km, its aver-
age latency is 1.05× c-latency. Fig. 3a shows the reduction of
the network’s stretch with increases in budget for maximum

Fig. 2: A 100 Gbps, 1.05× stretch network across 120 cities
in the US. Blue links (thin) need no additional towers. Green
(thicker) and red links (thickest) need 1 and 2 series of addi-
tional towers respectively. Black dashed links are fiber.

hop lengths of 70 and 100 Km. Given the similarities with
70 and 100 Km, hereon, we only present results for the latter.
An animation, showing how the network structure evolves
from mostly-fiber to mostly-MW as the budget increases, is
available online [26].
Step 3: Augmenting capacity. We produce a target aggre-
gate demand (i.e., the sum of all site-site traffic demands)
by scaling our traffic matrix. Then, each tower-tower MW
hop that would be over-utilized (given shortest-path routing
and the 1 Gbps capacity from §2) is augmented with addi-
tional towers at each end, as described in §3. Fig. 2’s topology,
when provisioned for an aggregate throughput of 100 Gbps,
has 1,660 tower-tower hops that use only already-built towers
seen in tower databases, while 552 hops need one additional
new tower at each end, and 86 hops need 2 additional towers
at each end. Using the cost model described in §2, we find that
the cost per GB for this topology, with latency within 1.05×
and 100 Gbps throughput, is $0.81. For some context, this is
∼ 10× the cost per GB for content delivery networks [64].

Provisioning even more bandwidth would require more new
towers. For 1 Tbps, some tower-tower hops would need as
many as 8 additional towers at each end. This is not infeasible
— latency would not be inflated excessively, and towers could
be found or built. In fact, for the long red link in the map
in Fig. 2, which spans 2,700 km from Illinois to California,
we find that the longest of these 8 additional series of towers
would be only 5% longer than the shortest MW path, incurring
a stretch of 1.07, instead of 1.02.

We can extend this argument even further: for the same
Illinois to California link, we compute tower-disjoint short-
est paths, i.e., after finding the shortest path, we remove all
towers used by it, find the next-shortest tower-path, etc. In
this process, we use only existing towers from our databases,
and adhere to the same link feasibility constraints. Fig. 3b
shows that stretch increases gradually as we keep eliminat-
ing towers; nevertheless, even after 20 such iterations, stretch
is much smaller (1.15) than with the existing fiber conduit

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1119

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 2000 4000 6000 8000

M
e
a
n

 S
tr
e
tc
h

Budget (No. of towers)

100Km hops
70Km hops

(a)

 1

 1.04

 1.08

 1.12

 1.16

 1.2

 0 4 8 12 16 20

S
tr
e
tc
h

 o
v
e
r
g
e
o
d
e
s
ic

 d
is
t

Number of iterations

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 400 700 1000

C
o
s
t
(d
o
lla
r/
G
B
)

Aggregate bandwidth (Gbps)

Baseline
Reduced maintenance

No maintenance
No maintenance or new tower cost

(c)
Fig. 3: (a) Network stretch reduces as we add more MW towers. (b) Stretch for 20 shortest tower-disjoint purely MW paths along
the long red IL-CA link in Fig. 2. (c) Cost per GB for the city-city traffic model decreases with increasing aggregate throughput.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

C
D
F

Stretch over geodesic distance

Best
99th percentile
Worst
Fiber

Fig. 4: Stretch across all city-pairs over a year of weather.
The 99th-percentile stretch is comparable to the best stretch.

(1.75). Note that this route runs through the Rocky mountains
and other areas of low tower density. Thus, in accounting for
the cost of bandwidth augmentation entirely using the (higher)
cost estimates for building new towers, we are substantially
overestimating the expense.

There is also another reason our costs are over-estimates:
at sufficiently high bandwidth, there is a better option than
building many parallel long-distance MW links: one could
use the same number of towers to construct a single line of
towers with shorter tower-tower distances. This can make
shorter-range, but higher-bandwidth technologies like MMW
or free-space optics, more cost-effective.

Despite the above two factors, we use parallel MW towers,
with all the required additional towers accounted for as new
towers, to provide conservative cost-estimates as aggregate
bandwidth increases in Fig. 3c.

Routing, queuing, and traffic models. We show in Ap-
pendix B that: (a) routing that incurs small (under 10%) la-
tency inflation compared to shortest paths can drive the net-
work at virtually zero loss and minimal queuing delay even at
high utilization; and (b) packet pacing addresses the problem
of edge links having higher line rates than cISP links. We also
discuss evidence for per-MW-hop latency overheads being
small enough to ignore. Further, in Appendix C, we show
that besides the population-product model, cISP can also be
tailored for inter data center traffic, data center to edge traffic,
and various combinations of these.

Alternative deployment models. The deployment model
and analysis have been conservative in assuming high main-
tenance and tower installation costs for the provider. What
if an incumbent tower company like American Tower [7] de-
ployed cISP? (Fig. 14 in the Appendix shows that American

Tower’s existing deployment broadly covers areas where our
network design of Fig. 2 requires towers.) Besides reduced
tower installation costs, maintenance would also be signifi-
cantly reduced due to the obligation to maintain towers for
customers anyway. We evaluated several scenarios of this
type, as shown in Fig. 3c. While the solid line represents the
baseline deployment model discussed in §2, the dashed lines
represent models with reduced maintenance cost ($10K per
tower per year), no maintenance cost, and no maintenance or
new tower cost (only antenna cost). A network with 3,000
towers offering 100 Gbps bandwidth and 1.05 stretch, built
by a company like American Tower, could cost as little as
$0.42/GB, thus reducing the baseline cost by almost 50%.

Finally, we note that cISP could be deployed in other ge-
ographies besides the US. As discussed in Appendix C.3, we
could design a cISP for Europe offering a stretch of 1.04 (vs.
1.05 for the U.S.) with a budget of ∼3k towers.

5 PRACTICAL CHALLENGES
Deploying cISP would involve several practical challenges
beyond network design and routing, which we now address.

5.1 Impairments due to weather
We use standard equations from MW engineering [48] to
calculate signal attenuation due to precipitation. We assume
hardware characteristics of a standard low-latency MW radio:
an 8-foot dish with a gain of 46.5 dBi at 11 GHz [29, 74, 75].
While antenna gain is determined by the hardware, transmit
power and receive power thresholds also depend on the mod-
ulation scheme (256 QAM). Following ITU models [48], at
∼11 GHz, precipitation is likely to be the dominant source of
attenuation. While the physical layer could trade link band-
width for higher resilience to weather, we treat the impact
of precipitation in a binary manner: if attenuation exceeds a
threshold that would degrade bandwidth, we conservatively
consider a link to have failed.

We assume that when a link fails, traffic is shifted to the
shortest available route, which may use any combination of
MW and fiber. The high precipitation that causes failures is
easy to predict, especially on the timescale of minutes. Thus,
even slow, centralized management would suffice to anticipate
failures and reroute accordingly.

We use NASA’s precipitation data [65] to determine which
links are down when, and what the impact of such failures

1120 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 2

 4

 6

 8

 10

 12

10
0,

 1.
0

10
0,

 0.
85

80
, 1
.0

10
0,

 0.
65

70
, 1
.0

10
0,

 0.
45

70
, 0
.4
5

60
, 1
.0

60
, 0
.6
5

60
, 0
.4
5

In
c
re
a
s
e

 (
%
)

Range (Km), Usable height (fraction)

Cost
Stretch

Fig. 5: As constraints on tower space and range become
tighter, the network becomes more expensive, and stretch in-
creases.

is on the network’s latency. For each day over a period of a
year (July 2015 - June 2016), we select a 30-minute interval
uniformly at random, and identify the links that would fail
during it. We then evaluate the latency for each pair of cities
end-to-end for each interval. Fig. 4 shows that 99th-percentile
latencies are nearly the same as the best fair-weather laten-
cies. In terms of the median across city-pairs, even the worst
latencies over the year are 1.7 times lower than those over
fiber. Large increases in latency due to weather typically occur
only between nearby city-pairs, the fiber route to which runs
through a farther-away city, e.g., in Texas, Austin and Killeen
fall back to a fiber route through Fort Worth. A more sophisti-
cated analysis allowing dynamic link bandwidth adjustment
rather than binary failures can only improve these numbers.
Thus, even under significantly adverse weather, most of the
latency advantage of cISP remains intact.

We have also created an animated visualization of the net-
work’s latency evolving over a year’s weather [25].

5.2 Tower height and availability
Our initial design assumed a MW hop to be feasible if it
spans a distance of 100 km or less, and satisfies line-of-sight
constraints using the tops of the towers. In practice, however,
a tower chosen for a route might not have a free spot for a
new antenna at the necessary height, especially at the top,
where structural concerns for large parabolic antennae are
greatest, and where access and maintenance can be problem-
atic. Further, for smaller antennas, insufficient gain margins
can decrease the 100 km maximum range. Hence, we evaluate
cost and latency of the network with hop-level restrictions
modeling these effects.

We test the impact of restricting usable height on towers
to three levels, as a fraction of tower height: 0.85, 0.65, and
0.45. Testing for line-of-sight visibility with these restrictions
eliminates more towers than using tower tops. We also vary
the maximum range, which can necessitate the use of a larger
number of towers, thus increasing the cost and potentially
making some city-pairs infeasible to connect using MW.

We assess the percentage increase in cost and stretch values
compared to the baseline values with 100 km range and using
the tower tops, i.e., height fraction = 1. Fig. 5 shows the
results for different combinations of the range and antenna-
height constraints, sorted by lowest to highest stretch. The

maximum increase in cost is 11% (with the absolute cost per
GB under these constraints being $0.90), while the maximum
increase in stretch is 10% (with the absolute stretch compared
to the geodesic being 1.16). Thus, even substantial potential
problems with mounting antennas do not change our overall
conclusions about the viability of cISP.

In our experience designing MW routes, assessments like
the ones in this work have yielded accurate estimates of the la-
tency and the number of tower-tower hops that will ultimately
be used to connect two sites. The precise set of towers of-
ten differs based on real-world constraints, particularly tower
unavailability for structural and rental-related reasons. Thus,
while accurate in terms of cost and latency, this work does not
provide fully engineered routes. In practice, to improve ac-
curacy in preparation for building a MW route, we assign an
acquisition probability to each tower in a swath connecting the
sites, which depends on a number of factors (e.g., tower type,
ownership, and location). Further, for towers that can be ac-
quired, we use a uniform distribution to model height at which
space for antennas is available. With this probabilistic model,
we compute thousands of candidate MW paths between site
pairs, with refinements as acquisitions and height availabili-
ties are confirmed. We make available in video form [24] an
example of such refinement.

5.3 Integration into the Internet
We next discuss potential problems cISP may face in terms
of integration into the present Internet ecosystem.
Low-hanging fruit: The easiest deployment scenarios in-
volve one entity operating a significant network backbone:
• A CDN could use cISP to carry “back-office” traffic be-

tween its locations and content origins, which often sup-
ports latency-sensitive user-facing interactions [73]. While
the strategies of moving content closer to end users and
speeding up the network are orthogonal, on cache misses
and when serving uncacheable content, only speeding up
the network improves performance.

• Content-providers like Google and Facebook can use cISP
to carry lateny-sensitive traffic – such WAN designs al-
ready accommodate distinctions between such traffic and
background traffic [47, 50].

• Purpose-built networks such as for gaming [40] can easily
use cISP between their edge locations and servers.

All of these are interesting and economically viable use cases
with minimal deployment barriers, and each alone may justify
a design like cISP. For instance, while it is tempting to dismiss
gaming as a niche, it is a large and growing market: the Steam
gaming platform claims 20+ million players worldwide [85].
At a 10 Kbps rate per player [27], this aggregates to 27 Gbps
– enough to make cISP viable in this setting. (We present
cost-benefit estimates, including for gaming, in §8.)
User-facing deployment: Access ISPs may use cISP as an
additional provider, and incorporate a low-latency service

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1121

into their broadband plans.2 Utilizing cISP in this manner
can help ISPs to provide and meet the requirements of de-
manding Service Level Agreements, the case for which was
made in recent work [14]. ISPs may use heuristics to classify
latency-sensitive traffic and transit it using cISP. Alternatively,
software at the user-side may make more informed decisions
about which traffic should use the fast-path exposed by the
ISP. While this would require significant user-side changes,
note that many of today’s applications already manage multi-
modal WiFi and cellular connectivity.

6 EMPIRICAL RESULTS
To evaluate the characteristics of long-haul microwave links,
we have conducted experiments over one of the most pop-
ular nearly-speed-of-light networks deployed in the high-
frequency trading corridor between Chicago and New Jersey.
We describe these experiments and their results below. The
HFT niche is partially characterized by a “winner-takes-all”
dynamic which requires these networks to operate at the bleed-
ing edge of low latency. Hence, it is important to quantify
the usefulness of these networks in serving more generic low-
latency applications on the Internet, which have less-strict
latency requirements than HFT, but higher availability and
lower packet loss demands.

6.1 Active measurements
We conducted active measurements over the microwave link
between the Chicago Mercantile Exchange (CME) data center
and the Equinix data center in Secaucus, New Jersey, operated
by one of the fastest MW networks in the corridor. On week-
days, when the Chicago and New York markets are open, the
link carries financial information critical to high-frequency
trading that triggers trades worth billions of dollars. The net-
works are optimized for low latency, with microseconds of
advantage [13] providing a significant edge to customers.

We ran experiments for ∼7 hours every Saturday for 11
weeks between Nov. 2019, and Oct. 2020 from one host each
located in the CME and Equinix data centers. The microwave
link was provided to us without any Forward Error Correction
(FEC), thus being exposed to all errors and bit flips expected
in radio transmission. We observe that the link behavior tends
to be in one of two states: losses are either very low (nor-
mal) or very high (degraded). Out of a total of 72 hours of
measurements, there are 12 hours during which the link is
degraded due to weather, and 4 hours during which it is down
due to maintenance or other issues. Note that because there
is no FEC at all, very small bit error rates (BER) degrade
the link. Also, in our trading data analysis (§6.2), we see that
microwave networks stay up in worse weather conditions than
these 12 hours. FEC is needed in packet headers to correct
for bit errors, which we could not implement as we did not
have access to routers on the network.

2While large last-mile latencies can overshadow cISP’s low latency, this
is an entirely orthogonal problem, on which significant progress is being
made – 5G prototypes are already showing off sub-millisecond latencies [46].

6.1.1 RTT and bandwidth
The geodesic distance between the CME and Equinix data
centers is 1139.5km. The c-latency for a round-trip, then, is
7.6ms. In our experiments over 11 weeks, we always observe
a round-trip time of 7.7 ms for 32-byte packets, i.e., within
1.5% of c-latency. The RTT goes up to 7.9 ms for 1,499-byte
packets because of the limited bandwidth available on the link
(or more specifically, the slice of it provided to us).

The 0.1ms increase in transmission delay as packet size
increases by 1,467 bytes gives a bandwidth estimate of
120 Mbps. Our UDP measurements and TCP measurements,
in the best case, also give us a bandwidth of 120 Mbps. It is
hard for TCP to sustain throughput at this rate in the absence
of any FEC because of transmission losses. While the opera-
tor did not divulge the exact link capacity, it is likely that our
network access was capacity-capped. Hence, these measure-
ments only provide a lower bound on the link bandwidth.

6.1.2 Loss and FEC
In plain TCP (iperf) and ICMP (ping) probes, we observe high
loss rates: typically around 3% to 5% for 32-byte packets. The
packet loss rate increases sharply as packet size increases be-
cause more bits can potentially be corrupted in transmission.
Without FEC, a link with loss rate this high is clearly unsuit-
able for web traffic [91]. Whether FEC can bring the loss rate
down to an acceptable level (say, 0.1%) at reasonable latency
and bandwidth overhead depends on two factors: 1. the Bit
Error Rate (BER), and 2. the typical length of error bursts,
i.e., how many consecutive bits are corrupted in an error burst.
We elaborate on these factors below.

First, we derive the underlying BER from observed ping
packet loss. For a ping packet of s bytes, a successful response
is observed when both the echo request and reply packets
are delivered to the respective hosts without any errors. To
estimate the BER berr, we first assume that bit errors are
uniform and random. Then, for packet loss rate ploss, we get:

berr = 1− (1− ploss)
1/(2×8×s)

For initial validation of this model, with the possibly unjus-
tified assumption of random and uniform errors, we calculate
berr from observed ploss for s = 1,499 for the 7 hours of mea-
surements on Feb. 15th, 2020. Then, we use the calculated berr
to predict ploss for s = 396 on the same day. We compare the
predicted and observed values in Fig. 6a. While the observed
and predicted loss rates for s = 396 largely agree, there are
some disagreements, e.g., at 12:30, which can be explained
by the fact that the observations for s = 1,499 and s = 396 are
separated in time by 60 seconds. The underlying BER might
change during this interval. For Feb. 15th, the median, 95th

percentile, and maximum BER we calculate are 3.6×10−5,
8.2×10−5, and 3.6×10−4 respectively.

For a target packet loss rate of 0.1% for packets of size
1,500 bytes, the BER needs to be 4.17×10−8 or lower. Ex-
tremely lightweight FEC codes, such as Reed-Solomon (255,

1122 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 25

 50

 75

10:00 12:00 14:00 16:00

L
o
s
s

(%
)

Time (hr)

1499 obs
396 obs

396 pred

(a)
d
a
y

delay (ms)

 0

 5

 10

 15

 3 4 5 6 7

 0 5 10 15 20

Orders / µs

fi
b

e
r

la
te

n
cy

main responseinitial response

c
-l
a
te

n
cy

(b)

d
a
y

wind + rain (m/s + mm/hr)

delay - 4000 (µs)

delay
 0

 5

 10

 15

 0 5 10 15 20

 0 10 20 30 40 50

(c)
Fig. 6: (a) Predicting loss rate of 396 byte packets from observed loss rates of 1,499 byte packets on Feb 15th, 2020. Analyzing
trading data: (b) Heat map of order book events at delay between Chicago and New Jersey. Response delay never exceeds 4.3ms;
(c) A coarse weather signal (max wind speed + max rainfall) is correlated with the observed transmission delay.

239) can correct from BER of 10−4 to 10−12 with a bit rate
overhead of only 7% [76]. If performed over 255 byte blocks,
a 1,500 byte packet can be encoded in 7 blocks with a total
redundancy overhead of 112 bytes. At 120 Mbps bandwidth,
this incurs a latency penalty of only 7.5µs. This FEC scheme
would break down, however, if errors occurred in bursts of
around 8 bytes or more. Now we discuss the earlier assump-
tion of error bursts being short and uniformly distributed.

To analyze bit errors, we sent two sets of UDP probes over
the link: the first set consists of 60 byte packets sent at 35
packets per second (slow), and the second consists of 60 byte
packets sent at 200,000 packets per second (fast). The slow
set characterizes link behavior with no congestion/bandwidth
related losses, whereas the fast set provides statistical signifi-
cance to rare bit flip events. In contrast to ping losses, losses
in this experiment are observed through packet captures rather
than at the application layer, so a corruption of, e.g., the UDP
destination port would not register a loss. For the slow set, we
observe a packet loss rate of 0.8%, whereas for the fast set
we observe a loss rate of 2.04%.

In the UDP fast set a packet has 4 bytes of payload, 8 bytes
of UDP header, 20 bytes of IP header, 14 bytes of Ethernet
header, and 14 bytes of padding. A total of 1.6 billion packets
were sent, out of which 2.66 million were received on the
other end with at least one of the following fields corrupted:
source port, destination port, UDP header length field, and
payload. We calculate the Hamming distance between the
received value and the expected value of the corrupted fields.
As Table. 7a shows, there appears to be a linear relationship
between field size and number of corruptions, and over 99%
of all corruptions consist of 2 bit flips or less. Also, if we
extrapolate the errors we observe in these 4 fields to the rest
of the 60 byte packet, the expected loss rate due to corruptions
in the Ethernet and IP headers and padding matches that
observed in the UDP slow set. The other 1.24% packets lost
can thus be explained by congestion/bandwidth issues.

6.2 Trading data analysis
To characterize the latency and up-time of the full range of
microwave links deployed in the Chicago-New Jersey cor-
ridor, we analyze trading data from the Chicago Mercantile
Exchange (CME) in Chicago, Illinois, and the CBOE Options
Exchange in Secaucus, New Jersey. Information about trades
happening at the CME travels over microwave paths and trig-
gers activity at the CBOE [13]. The time difference between
stimulus events at the CME and the response at the CBOE
represents the network latency between the two exchanges.
Laughlin et al. have also used this methodology to estimate
latency between financial markets [55].

We obtained tick data from CME and CBOE for three
weeks of Mar. 2019. The tick data consists of microsecond
precision timestamps for events at both ends. Both markets
are open simultaneously for 6.5 hours every weekday, which
means that we have 97.5 hours of relevant tick data. For
each trade executed at the CME at timestamp t, we count
the number of order book events at the CBOE at timestamps
t + i where i ∈ [3000,7000]µs. Fig. 6b plots a heat map of the
number of orders per µs for each 10µs bin in the tick data.
The y-axis time is in intervals of 15 minutes. Analysis of the
data shows that the main response delay, which reflects the
network latency between CME and CBOE, does not exceed
4.3ms for any 15-minute interval. The lowest fiber latency
between the two exchanges is 6.65ms [60]. This shows that
some microwave networks were up through every 15-minute
interval over the 3-week period.

In addition to the main response at 4.2ms, Fig. 6b has a
smaller initial response at 4.0ms. The CME tick data reveals
that internal trading algorithms and strategies produce a sec-
ond stimulus at CME 200µs after the initial stimulus. The
main response in Fig. 6b is triggered by that second stimulus.

We consider the delay between the second stimulus at CME
and the main response at CBOE as transmission delay. We
calculate the transmission delay for every 1-hour interval

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1123

Field #corruptions #bits 1 bit flip 2 bit flips

src port 873,165 16 84% 15%
dst port 864,955 16 82% 17%
length 914,528 16 85% 14%
payload 1,734,539 32 84% 15%

(a)

 0

 100

 200

 300

 400

 500

 600

 0 50 100 150 200 250 300

Fr
am

e
tim

e
(m

s)

Conventional connectivity latency (ms)

With low-latency augmentation
Conventional connectivity only

(b)

 800

 1000

 1200

 1400

 1600

 0 20 40 60 80 100

M
ea

n
P

LT
 (m

s)

Traffic sent to cISP (%)

internal-pages
landing-pages
baseline
uplink-cISP
packet-cISP
backhaul-cISP
all-cISP

(c)
Fig. 7: (a) Corruptions observed in the UDP fast set. (b) A substantial reduction in frame time can be obtained by the use of a
parallel low-latency augmentation to the present Internet. (c) Mean web page load time (PLT) improvement for each heuristic
and its portion of traffic delivered on cISP. PLT can improve substantially by only offloading a small portion of traffic to cISP.

in the tick data. Fig. 6c plots the moving average of trans-
mission delay over 2 hours. We use the hourly wind speed
estimate [30] and rainfall data [22] in the regions through
which the MW corridor passes as a coarse weather signal.
For each hour, we pick the maximum wind speed and maxi-
mum rainfall observed at a granularity of ∼ 10km along the
geodesic between the end points. Fig. 6c plots wind speed
+ rainfall /2, and shows that there is some correlation. The
Pearson correlation coefficient between wind and delay is
0.24, while that between rain and delay is 0.16. Sources of
noise in this correlation include the noise inherent in the trad-
ing data itself, and issues that may affect transmission delay,
such as infrastructure damage or operational downtime. Note
that days 3 and 14 have more severe rain and wind than the
12 hours during which the link was degraded in our active
measurements (§6.1).

Conclusions: From the active measurements, we conclude
that for our MW path, (1) round-trip latency is less than 1.5%
inflated over c-latency, (2) bandwidth is at least 120 Mbps,
(3) error bursts are very short and roughly uniformly dis-
tributed under normal link conditions, and (4) errors can be
brought down to acceptable levels with extremely lightweight
FEC incurring minimal latency and bandwidth overhead.

From the trading data analysis, we conclude that (1) for the
97.5-hour period, some MW networks, spanning more than
1,000 km, were always up without any significant degradation
in latency, and (2) weather events such as high wind speeds
and rainfall are correlated with increases in transmission de-
lay by tens of microseconds. This increase may stem from
one or more of the following: (a) longer end-to-end paths be-
ing picked, (b) shorter tower-to-tower hops leading to higher
switching delay, and (c) the network responding to weather
changes by ramping up FEC.

7 A FEW POTENTIAL APPLICATIONS
Several applications require low latency over the wide area-
network. Applications focused on user interactivity, such as
augmented and virtual reality, tele-presence and tele-surgery,
musical collaboration over long-distances, etc., can all bene-
fit from low-latency connectivity. Likewise, less user-centric
applications, such as real-time bidding for Web page adver-

tisements [8] and block propagation in blockchains, would
also benefit. While it is beyond the scope of this paper to
analyze this in detail, we assess, in simplified environments,
the improvements cISP could achieve for two applications.

7.1 Online gaming
We discuss cISP’s benefits for both models of online gam-
ing: thin-client (where a client essentially streams everything
in real-time from a server) and fat-client (where the client
has the game installed, performs computations, etc., and only
relies on the server for updates on the global game state).

Fat-clients are dominant today, and are easy to tackle: com-
munication is almost entirely composed of latency-sensitive
player actions and game-state changes, and is low-volume,
typically a few Kbps per client for popular games [27]. It
can all be transferred over the low-latency network, reducing
latency by 3-4× compared to today’s Internet.

Thin-client gaming is still in its infancy, as it depends heav-
ily on the network, with data rates in Mbps. We explore the
potential of a speculative approach: the server speculates on
the game state and sends data for multiple scenarios in ad-
vance over fiber, then on the low-latency network, issues mes-
sages indicating which scenario occurred. Such speculation
has already shown success for rich games like “Doom 3” [56].

We use a toy thin-client for a multi-player Pacman variant to
explore the latency benefit. Our rudimentary implementation
speculates on all 4 movement directions possible as user input.
In line with the online-gaming literature, we measure “frame-
time,” which “corresponds to the delay between a user’s input
and the observed output” [56]. We evaluate frame-time as
latency over conventional connectivity increases (emulated
by adding latency in software), and for a low-latency network
always incurring 1/3 of the latency of the corresponding
conventional network.

As Fig. 7b shows, the speculative approach enabled by the
low-latency network augmentation reduces frame-time. This
comparison would improve further if non-network overheads
from processing and rendering in our naive implementation
were smaller. We do not use any heavy graphics on which to
evaluate the additional bandwidth overhead on fiber, but even
in the sophisticated scenarios examined by prior work [56],
this bandwidth overhead can be contained to 2-4.5×.

1124 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

7.2 Web Browsing
We evaluate the potential impact of cISP’s latency improve-
ment on Web page load times (PLTs) (based on the onLoad
event [71]) using Mahimahi [68] with the addition of content
delivery network (CDN) caching. Our emulation supports two
levels of the CDN cache hierarchy. The client’s request first
reaches the edge server. If it is a cache miss, the request will
be forwarded to the parent server. In case there is another
miss, it will be forwarded to the origin server. This setup thus
allows variable request latency, where certain requests can
experience more latency.

To realistically recreate the caching behavior, our experi-
ments leverage the Akamai pragma header [3] which is typ-
ically used for debugging purposes. We select web pages
where at least 75% of the HTTP requests3, performed when
loading a page, are served by Akamai. Overall, we found 27
landing pages and 140 associated internal pages from the His-
par list [9] match this criterion. We record each page’s content
and the network latency for each (edge) server that a client
contacted when loading a page. This recording process is con-
ducted from three different vantage points at three different
times. For the CDN server-to-server latency, we estimate the
latency by geolocating the IP addresses of the CDNs and ori-
gin servers provided by the pragma header4. We then replay
each page with unmodified network latencies (as a baseline)
and with latencies reduced to 0.33× of their original values
(as a cISP). No bandwidth limitations are imposed.

Fig. 7c shows the results. Compared to the baseline, a 66%
reduction in latencies (all-cISP) results in a mean 42% PLT
decrease for both landing and internal pages (an absolute
decrease of 600 ms and 651 ms). This PLT reduction is less
than the 66% reduction in RTT because loading a Web page
also involves significant non-network activity.

If cISP is used only to deliver the CDN’s server-to-server
(i.e., back-office) traffic, our experiment (backhaul-cISP) sug-
gests that PLT can be improved by 23.7% and 28.5% (331 ms
and 447 ms) on landing and internal pages by only sending
13.4% and 22.3% of the overall web-browsing traffic on cISP.
Internal pages get better improvement and send a higher pro-
portion of traffic because they experience more cache misses
(31.9%) compared to landing pages (13.3%).

While Web-browsing traffic comprises only a small frac-
tion of total Internet traffic5, we can further reduce the load
by carrying only latency-sensitive traffic on cISP. Hence, we
extend Mahimahi to enable selective manipulation of RTTs
in the replay, such that some traffic sees lower RTTs than
other traffic. We test two heuristics under this setup. First,
we try a simple heuristic that only sends uplink traffic to
cISP (uplink-cISP). This approach yields a mean PLT im-

3We assume requests not served by Akamai are served by the edge server.
4We geolocate each server, and compute server-to-server c-latency from

distance. Then, we estimate baseline latency as 3× c-latency.
5Cisco’s 2018 estimate puts “Web/Data traffic” at 13% [23] including

non-latency sensitive traffic like software updates and some file transfers.

provement of 21.5% (319 ms) by sending only 9.7% of the
web-browsing traffic over cISP. Second, we adopt a more ad-
vanced PKT-State heuristic [77] (packet-cISP) to distinguish
the latency-sensitive traffic (e.g., TCP SYN/ACK packets and
small data packets) from the bandwidth-intensive traffic (e.g.,
data packets). By offloading the latency-sensitive traffic to
cISP, we can get a mean PLT improvement of 28.2% (417
ms) by only offloading 10.2% of the traffic.

8 COST-BENEFIT AND MARKET ANALYSIS
Does cISP’s value justify its cost? For three important use
cases, we present quantitative lower-bound estimates of cISP’s
value per GB. cISP would also need enough aggregate demand
across one or more use cases to support its total deployment
cost, so we estimate market size of each use case.
Web search. Value per GB: Putting together Google’s quan-
tification of the impact of latency in search [18], their esti-
mated search revenue restricted to the US [63], their search
volume [84], estimated data transferred per search6, and es-
timated cost per search [53], we estimate that speeding up
page load times for 12 Gbps of their US search traffic by only
200 ms (400 ms) would yield an additional yearly profit of
$87 ($177) million. This translates to an added value of $1.84
($3.74) per GB. Market size: At 12 Gbps of traffic, Google’s
search traffic is a nontrivial fraction (> 10%) of a cISP pro-
visioned to provide ∼100 Gbps, but to make cISP viable, it
would have to be augmented with other use cases.
E-commerce. Value per GB: Using Amazon.com’s esti-
mates of number of visits, pages fetched per visit, fraction
of US traffic [80], and page size, we arrive at an estimated
480 PB of US traffic per year. Using their US sales [32] and
profit margin of 5.5% [61] gives an estimated $16.3 billion in
profits per year. Estimates for the effect of PLT on conversion
rate vary from 1% [57] to 2.4% (on desktop) and 7% (on
mobile) per 100 ms of additional latency [5]. Thus, saving
200 ms by sending only 10% of the data over cISP (§7.2),
translates to a value of $6.8-$47.5 per GB, which is much
higher than the $0.81 per GB cost of cISP traffic. Market size:
10% of 480 PB of Amazon e-commerce annual US traffic
translates to 12 Gbps of cISP traffic. But the current (2020)
e-Commerce market size of $861 billion [32] (compared to
Amazon’s ∼$296 billion) proportionately translates to a cISP
traffic demand of 35 Gbps. Given the high value per GB, this
use case alone could make a 100 Gbps cISP profitable.
Gaming. Value per GB: Online gamers often pay for “ac-
celerated VPNs”, which promise to lower network latency.
Such services cost $4-$10 per client per month [1, 11, 72].
Full-time gaming at 8 hours a day at a 10 Kbps rate (as in
§5.3) translates to 1.08 GB / month. Thus, if cISP were priced
like a cheap accelerated VPN service at $4 / mo, this would
translate to a value of at least $3.7 / GB. A less aggressive
model than “full-time gaming” would only improve cISP’s
value. Another indicator of latency’s value in gaming is the

6From Firefox desktop’s network tools; mobile responses may be smaller.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1125

market for gaming monitors with high screen-refresh rates:
the 6-10 ms of latency advantage is valued at over $50 by
many gamers, estimated from the pricing of monitors which
are exactly the same except in terms of refresh rate [6]. Mar-
ket size: There are more than 350 million [83] Fortnite gamers
worldwide. Assuming 20% of the gamers are in the US, each
with a demand of 10 Kbps, translates to 700+ Gbps of cISP
demand. Even for games with smaller user bases like PUBG
(70 million) and Call of Duty Warzone (100 million), cISP
demands are high enough to sustain a nationwide network.
Summary. The value per GB obtained from cISP’s latency
reduction in the above cases – $1.84-$3.74, $6.52-$45.63,
and over $3.70 – exceeds its cost estimate of≤ $0.81 per GB,
and even leaves room for substantial over-provisioning. Total
addressable market demand could greatly exceed a 100 Gbps
cISP for the case of gaming, and for web-based use cases
could be sufficient to support the infrastructure.

This simplified analysis omits many factors. Not all users
would be paying for the infrastructure on day 1, so an in-
cremental roll-out for a smaller set of customers would be
important. Also, there are many other applications that can
benefit from cISP. CDNs routinely use overlay routing to cut
latency for dynamic, non-cacheable content, for which edge
replication is difficult or ineffective [4]. Upcoming applica-
tion areas like virtual and augmented reality can only make
the case stronger for cISP. We expect cISP’s most valuable
impact to be in breaking new ground on user interactivity, as
explored in some depth in prior work [16].

9 RELATED WORK
Networking research has made significant progress in measur-
ing latency, as well as improving it through transport, routing,
and application-layer changes. However, the underlying in-
frastructural latency has received little attention and has been
assumed to be a given. This work proposes a speed-of-light
ISP, demonstrating that improvements are indeed possible.

There are several ongoing Internet infrastructure efforts,
including X moonshot factory’s project Taara [90], Face-
book connectivity’s Magma [36], Rural Access [37], Terra-
graph [38], and the satellite Internet push by Starlink [81],
Kuiper [54], Telesat [86], and others. Project Taara consists
of networks under deployment in India and Africa, based on
free-space optics, and described as “Expanding global ac-
cess to fast, affordable internet with beams of light”. While
Facebook’s Magma and Rural Access aim to extend connec-
tivity to rural areas by offering a software, hardware, business
model, and policy framework, Terragraph aims to extend last-
mile connectivity to poorly connected urban and suburbans
areas by leveraging short millimeter-wave hops. Free-space
networks of this type will likely become more commonplace
in the future, and these works are further evidence that many
of the concerns with line-of-sight networking can indeed be
addressed with careful planning. Further, cISP’s design ap-
proach is flexible enough to incorporate a variety of media

(fiber, MW, MMW, free-space optics, etc.) as the technology
landscape changes.
“New Space” satellite networks: While low-Earth orbit
(LEO) satellite networks can reduce long-distance latency [12,
44, 52], current deployments are more targeted at last-mile
connectivity than long haul [15]. Starlink recently claimed
to offer last-mile round-trip latency of 31 ms [82], more than
3.8× the latency estimated in prior simulations [12], showing
that the service is not yet latency optimized.

Despite the apparent differences in objectives — long haul
latency for cISP and last-mile connectivity for LEO networks
— it is useful to coarsely assess how the costs may com-
pare. Starlink, for example, offers uncapped connectivity at
$99/month [78]. At an average household consumption of
273.5 GB [35], this translates to $0.36/GB7. For cISP, if an
incumbent like American Tower were to deploy it, the cost
could be as low as $0.33/GB, as shown in Fig. 3c. Thus, a net-
work with costs comparable to cISP (in a per-bit sense; cISP
is more than an order of magnitude cheaper in absolute cost,
and has commensurately lower bandwidth) is concurrently
being deployed, albeit with different goals.

To the best of our knowledge, the only efforts primarily
focused on wide-area latency reduction through infrastruc-
tural improvements are in niches, such as the point-to-point
links for financial markets [55], and isolated submarine cable
projects aimed at shortening specific Internet routes [67, 69].

10 CONCLUSION
A speed-of-light Internet not only promises significant ben-
efits for present-day applications, but also opens the door to
new possibilities, such as eliminating the perception of wait
time in our interactions over the Internet [16]. We thus present
a design approach for building wide-area networks that oper-
ate nearly at c-latency. Our solution integrates line-of-sight
wireless networking with the Internet’s fiber infrastructure to
achieve both low latency and high bandwidth.

A speed-of-light Internet has not always been clearly vi-
able. The enabling technology of low-latency multi-hop mi-
crowave networks was spurred on by HFT only within the
last 10 years, and even then it has not been a priori obvious
that the challenges of relatively high loss and low bandwidth
could be overcome to leverage such links for an Internet back-
bone. More importantly, the Internet has become increasingly
latency-limited due to increasing bandwidths and greater use
of interactive applications. Thus, we believe we have reached
an exciting point in time when greatly reducing the Internet’s
infrastructural latency is not only tractable, but surprisingly
cost-effective and impactful for applications.

ACKNOWLEDGEMENTS
This work was supported by National Science Foundation
Awards CNS-1763492, CNS-1763742, and CNS-1763841.

7Starlink is currently in beta testing, and profit margins are unclear. It is
difficult to do a tighter cost analysis for Starlink without more information.

1126 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

REFERENCES
[1] AAA Internet Publishing, Inc. WTFast. https://www.

wtfast.com/en/. [Online; accessed 11-March-2021].

[2] Akamai. Akamai “10for10”. https://www.akamai.
com/us/en/multimedia/documents/brochure/akamai-
10for10-brochure.pdf, July 2015. [Online; accessed
11-March-2021].

[3] Akamai. Using Akamai Pragma headers to Inves-
tigate or Troubleshoot Akamai Content Delivery.
https://community.akamai.com/customers/s/article/
Using-Akamai-Pragma-headers-to-investigate-or-
troubleshoot-Akamai-content-delivery?language=
en_US, 2015. [Online; accessed 11-March-2021].

[4] Akamai. SureRoute. https://developer.akamai.com/
learn/Optimization/SureRoute.html, 2017. [Online; ac-
cessed 11-March-2021].

[5] Akamai. The State of Online Retail Perfor-
mance. https://www.akamai.com/uk/en/multimedia/
documents/report/akamai-state-of-online-retail-
performance-spring-2017.pdf, 2017. [Online; accessed
11-March-2021].

[6] amazon.com. ASUS VG248QE Gaming Monitor. https:
//goo.gl/gnFnPv, 2018. [Online; accessed 11-March-
2021].

[7] American Tower Global Wireless Solutions. https://
www.americantower.com/us/, 2004. [Online; accessed
11-March-2021].

[8] Waqar Aqeel, Debopam Bhattacherjee, Balakrishnan
Chandrasekaran, P. Brighten Godfrey, Gregory Laughlin,
Bruce Maggs, and Ankit Singla. Untangling header
bidding lore: Some myths, some truths, and some hope.
In Passive and Active Measurement, 2020.

[9] Waqar Aqeel, Balakrishnan Chandrasekaran, Bruce
Maggs, and Anja Feldmann. On landing and internal
pages: The strange case of Jekyll and Hyde in Internet
measurement. In ACM IMC, 2020.

[10] AT&T Corporation. AT&T Long Lines Routes
March 1960. http://long-lines.net/places-routes/maps/
MW6003.html, 2003. [Online; accessed 11-March-
2021].

[11] Battleping. Info on our lower ping service. http://www.
battleping.com/info.php, 2010. [Online; accessed 11-
March-2021].

[12] Debopam Bhattacherjee, Waqar Aqeel, Ilker Nadi
Bozkurt, Anthony Aguirre, Balakrishnan Chan-
drasekaran, P Godfrey, Gregory Laughlin, Bruce Maggs,
and Ankit Singla. Gearing up for the 21st century space
race. In ACM HotNets, 2018.

[13] Debopam Bhattacherjee, Waqar Aqeel, Gregory Laugh-
lin, Bruce M. Maggs, and Ankit Singla. A bird’s eye
view of the world’s fastest networks. In ACM IMC,
2020.

[14] Zachary S. Bischof, Fabián E. Bustamante, and Rade
Stanojevic. The Utility Argument - Making a Case for
Broadband SLAs. In PAM, 2017.

[15] Bloomberg. Musk targets telecom for next disruption
with Starlink Internet. https://tinyurl.com/wejrv37c,
2021. [Online; accessed 11-March-2021].

[16] Ilker Nadi Bozkurt, Anthony Aguirre, Balakrishnan
Chandrasekaran, Brighten Godfrey, Gregory Laughlin,
Bruce M. Maggs, and Ankit Singla. Why Is the Internet
so Slow?! In PAM, 2017.

[17] Ilker Nadi Bozkurt, Waqar Aqeel, Debopam Bhattacher-
jee, Balakrishnan Chandrasekaran, Philip Brighten God-
frey, Gregory Laughlin, Bruce M. Maggs, and Ankit
Singla. Dissecting latency in the Internet’s fiber infras-
tructure, 2018. arXiv:1811.10737.

[18] Jake Brutlag. Speed Matters for Google Web Search.
http://goo.gl/vJq1lx, 2009. [Online; accessed 11-March-
2021].

[19] Gustavo Carneiro, Pedro Fortuna, and Manuel Ricardo.
FlowMonitor: A Network Monitoring Framework for
the Network Simulator 3 (NS-3). In Proceedings of the
Fourth International ICST Conference on Performance
Evaluation Methodologies and Tools, VALUETOOLS
’09, 2009.

[20] Center for International Earth Science Information Net-
work (CIESIN), Columbia University; United Nations
Food and Agriculture Programme (FAO); and Centro
Internacional de Agricultura Tropical (CIAT). Gridded
Population of the World: Future Estimates (GPWFE).
http://sedac.ciesin.columbia.edu/gpw, 2005. [Online;
accessed 11-March-2021].

[21] Michael Chow, David Meisner, Jason Flinn, Daniel Peek,
and Thomas F. Wenisch. The mystery machine: End-to-
end performance analysis of large-scale internet services.
In USENIX OSDI, 2014.

[22] CHRS at UC Irvine. PERSIANN-CCS. https://chrsdata.
eng.uci.edu/, 2017. [Online; accessed 11-March-2021].

[23] Cisco. Cisco Visual Networking Index: Forecast and
Methodology. https://www.reinvention.be/webhdfs/
v1/docs/complete-white-paper-c11-481360.pdf, 2017.
[Online; accessed 11-March-2021].

[24] cISP authors. MW path refining. https://goo.gl/
LwYB5Z. [Online; accessed 11-March-2021].

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1127

https://www.wtfast.com/en/
https://www.wtfast.com/en/
https://www.akamai.com/us/en/multimedia/documents/brochure/akamai-10for10-brochure.pdf
https://www.akamai.com/us/en/multimedia/documents/brochure/akamai-10for10-brochure.pdf
https://www.akamai.com/us/en/multimedia/documents/brochure/akamai-10for10-brochure.pdf
https://community.akamai.com/customers/s/article/Using-Akamai-Pragma-headers-to-investigate-or-troubleshoot-Akamai-content-delivery?language=en_US
https://community.akamai.com/customers/s/article/Using-Akamai-Pragma-headers-to-investigate-or-troubleshoot-Akamai-content-delivery?language=en_US
https://community.akamai.com/customers/s/article/Using-Akamai-Pragma-headers-to-investigate-or-troubleshoot-Akamai-content-delivery?language=en_US
https://community.akamai.com/customers/s/article/Using-Akamai-Pragma-headers-to-investigate-or-troubleshoot-Akamai-content-delivery?language=en_US
https://developer.akamai.com/learn/Optimization/SureRoute.html
https://developer.akamai.com/learn/Optimization/SureRoute.html
https://www.akamai.com/uk/en/multimedia/documents/report/akamai-state-of-online-retail-performance-spring-2017.pdf
https://www.akamai.com/uk/en/multimedia/documents/report/akamai-state-of-online-retail-performance-spring-2017.pdf
https://www.akamai.com/uk/en/multimedia/documents/report/akamai-state-of-online-retail-performance-spring-2017.pdf
https://goo.gl/gnFnPv
https://goo.gl/gnFnPv
https://www.americantower.com/us/
https://www.americantower.com/us/
http://long-lines.net/places-routes/maps/MW6003.html
http://long-lines.net/places-routes/maps/MW6003.html
http://www.battleping.com/info.php
http://www.battleping.com/info.php
https://tinyurl.com/wejrv37c
http://goo.gl/vJq1lx
http://sedac.ciesin.columbia.edu/gpw
https://chrsdata.eng.uci.edu/
https://chrsdata.eng.uci.edu/
https://www.reinvention.be/webhdfs/v1/docs/complete-white-paper-c11-481360.pdf
https://www.reinvention.be/webhdfs/v1/docs/complete-white-paper-c11-481360.pdf
https://goo.gl/LwYB5Z
https://goo.gl/LwYB5Z

[25] cISP authors. Impact of rainfall on cISP for a period
of 1 year. https://tinyurl.com/a8szcukz, 2021. [Online;
accessed 11-March-2021].

[26] cISP authors. The MW+fiber hybrid network evolves
with budget. https://tinyurl.com/3vakxccm, 2021. [On-
line; accessed 11-March-2021].

[27] Mark Claypool, David LaPoint, and Josh Winslow. Net-
work analysis of Counter-Strike and Starcraft. In IEEE
Performance, Computing, and Communications Confer-
ence, 2003.

[28] Federal Communications Commission. Universal
Licensing System. http://wireless2.fcc.gov/UlsApp/
UlsSearch/searchLicense.jsp. [Online; accessed 11-
March-2021].

[29] CommScope. HSX8-107-D3A. https://objects.eanixter.
com/PD354739.PDF, 2012. [Online; accessed 28-July-
2021].

[30] Copernicus by ECMWF. ERA5 hourly
data on single levels from 1979 to present.
https://cds.climate.copernicus.eu/cdsapp#!/dataset/
reanalysis-era5-single-levels?tab=overview, 2018.
[Online; accessed 11-March-2021].

[31] DARPA. Novel Hollow-Core Optical Fiber to Enable
High-Power Military Sensors. http://www.darpa.mil/
news-events/2013-07-17, 2013. [Online; accessed 11-
March-2021].

[32] Digital Commerce 360. US ecommerce grows 44.0%
in 2020. https://www.digitalcommerce360.com/article/
us-ecommerce-sales/, 2021. [Online; accessed 28-July-
2021].

[33] DragonWave-X. Services & Support / Pre Deployment /
Line of Sight. https://www.dragonwavex.com/services/
pre-deployment/line-sight, 2021. [Online; accessed 11-
March-2021].

[34] Ramakrishnan Durairajan, Paul Barford, Joel Sommers,
and Walter Willinger. InterTubes: A study of the US
long-haul fiber-optic infrastructure. In ACM SIGCOMM,
2015.

[35] Joan Engebretson. Broadband Data Usage Report:
Internet-only Homes Use Almost Twice as Much Data
as Bundled Homes. https://www.telecompetitor.com/
broadband-data-usage-report-internet-only-homes-
use-almost-twice-as-much-data-as-bundled-homes/,
2019. [Online; accessed 11-March-2021].

[36] Facebook connectivity. Magma. https://connectivity.fb.
com/magma/, 2021. [Online; accessed 11-March-2021].

[37] Facebook connectivity. Rural Access. https://
connectivity.fb.com/rural-access/, 2021. [Online; ac-
cessed 11-March-2021].

[38] Facebook connectivity. Terragraph. https://connectivity.
fb.com/terragraph/, 2021. [Online; accessed 11-March-
2021].

[39] Federal Communications Commission. Antenna Struc-
ture Registration Database. https://www.fcc.gov/
antenna-structure-registration, 2018. [Online; accessed
11-March-2021].

[40] Riot Games. Fixing the Internet for real-time applica-
tions. https://goo.gl/SEoxW2, 2016. [Online; accessed
11-March-2021].

[41] M. R. Garey and D. S. Johnson. The rectilinear Steiner
tree problem is NP-complete. SIAM Journal on Applied
Mathematics, 32(4):826–834, 1977.

[42] Inc. Gurobi Optimization. Gurobi optimizer reference
manual, 2016.

[43] Nikola Gvozdiev, Stefano Vissicchio, Brad Karp, and
Mark Handley. Low-latency routing on mesh-like back-
bones. ACM HotNets, 2017.

[44] Mark Handley. Delay is not an option: Low latency
routing in space. In ACM HotNets, 2018.

[45] Jonas Hansryd and Jonas Edstam. Microwave capacity
evolution. Ericsson review, 1:22–27, 2011.

[46] Devindra Hardawar. Samsung proves why 5G is nec-
essary with a robot arm. https://goo.gl/3gZTn8, 2016.
[Online; accessed 11-March-2021].

[47] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming
Zhang, Vijay Gill, Mohan Nanduri, and Roger Watten-
hofer. Achieving high utilization with software-driven
WAN. In ACM SIGCOMM, 2013.

[48] ITU. Specific attenuation model for rain for use in
prediction methods. http://www.itu.int/dms_pubrec/itu-
r/rec/p/R-REC-P.838-3-200503-I!!PDF-E.pdf, 2005.
[Online; accessed 11-March-2021].

[49] Ixia. Measuring Latency in Equity Transac-
tions. http://ixia.cabanday.com/products/_content/wp-
measuring-latency.pdf, 2012. [Online; accessed 11-
March-2021].

[50] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon
Ong, Leon Poutievski, Arjun Singh, Subbaiah Venkata,
Jim Wanderer, Junlan Zhou, Min Zhu, Jon Zolla, Urs
Hölzle, Stephen Stuart, and Amin Vahdat. B4: experi-
ence with a globally-deployed software defined wan. In
ACM SIGCOMM, 2013.

1128 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://tinyurl.com/a8szcukz
https://tinyurl.com/3vakxccm
http://wireless2.fcc.gov/UlsApp/UlsSearch/searchLicense.jsp
http://wireless2.fcc.gov/UlsApp/UlsSearch/searchLicense.jsp
https://objects.eanixter.com/PD354739.PDF
https://objects.eanixter.com/PD354739.PDF
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
http://www.darpa.mil/news-events/2013-07-17
http://www.darpa.mil/news-events/2013-07-17
https://www.digitalcommerce360.com/article/us-ecommerce-sales/
https://www.digitalcommerce360.com/article/us-ecommerce-sales/
https://www.dragonwavex.com/services/pre-deployment/line-sight
https://www.dragonwavex.com/services/pre-deployment/line-sight
https://www.telecompetitor.com/broadband-data-usage-report-internet-only-homes-use-almost-twice-as-much-data-as-bundled-homes/
https://www.telecompetitor.com/broadband-data-usage-report-internet-only-homes-use-almost-twice-as-much-data-as-bundled-homes/
https://www.telecompetitor.com/broadband-data-usage-report-internet-only-homes-use-almost-twice-as-much-data-as-bundled-homes/
https://connectivity.fb.com/magma/
https://connectivity.fb.com/magma/
https://connectivity.fb.com/rural-access/
https://connectivity.fb.com/rural-access/
https://connectivity.fb.com/terragraph/
https://connectivity.fb.com/terragraph/
https://www.fcc.gov/antenna-structure-registration
https://www.fcc.gov/antenna-structure-registration
https://goo.gl/SEoxW2
https://goo.gl/3gZTn8
http://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.838-3-200503-I!!PDF-E.pdf
http://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.838-3-200503-I!!PDF-E.pdf
http://ixia.cabanday.com/products/_content/wp-measuring-latency.pdf
http://ixia.cabanday.com/products/_content/wp-measuring-latency.pdf

[51] Srikanth Kandula, Dina Katabi, Bruce Davie, and Anna
Charny. Walking the tightrope: Responsive yet stable
traffic engineering. In ACM SIGCOMM, 2005.

[52] Simon Kassing, Debopam Bhattacherjee, André Bap-
tista Águas, Jens Eirik Saethre, and Ankit Singla. Ex-
ploring the “Internet from space” with Hypatia. In ACM
IMC, 2020.

[53] Kevin Kelly. How much does one search cost? http://
kk.org/thetechnium/how-much-does-o/, 2007. [Online;
accessed 11-March-2021].

[54] Kuiper Systems LLC. Application of Kuiper Sys-
tems LLC for Authority to Launch and Operate a Non-
Geostationary Satellite Orbit System in Ka-band Fre-
quencies. https://licensing.fcc.gov/myibfs/download.
do?attachment_key=1773885, 2019.

[55] Gregory Laughlin, Anthony Aguirre, and Joseph Grund-
fest. Information transmission between financial mar-
kets in Chicago and New York. Financial Review, 2014.

[56] Kyungmin Lee, David Chu, Eduardo Cuervo, Johannes
Kopf, Yury Degtyarev, Sergey Grizan, Alec Wolman,
and Jason Flinn. Outatime: Using speculation to en-
able low-latency continuous interaction for mobile cloud
gaming. In ACM MobiSys, 2015.

[57] Greg Linden. Make Data Useful. https://slideplayer.
com/slide/4203392/, 2006. [Online; accessed 11-March-
2021].

[58] McKay Brothers LLC. Quincy Extreme Data La-
tencies. http://www.quincy-data.com/product-page/
#latencies, 2017. [Online; accessed 11-March-2021].

[59] Brian Louis. Trading Fortunes Depend on a Mysterious
Antenna in an Empty Field. https://goo.gl/82kzXd, 2017.
[Online; accessed 11-March-2021].

[60] Donald MacKenzie. Trading at the Speed of Light: How
Ultrafast Algorithms Are Transforming Financial Mar-
kets. Princeton University Press, 2021.

[61] Macrotrends LLC. Amazon Net Profit Margin
2006-2021. https://www.macrotrends.net/stocks/charts/
AMZN/amazon/net-profit-margin, 2021. [Online; ac-
cessed 28-July-2021].

[62] Trevor Manning. Microwave Radio Transmission De-
sign Guide. Artech House, 2009.

[63] Ginny Marvin. Report: Google earns 78% of $36.7B
US search ad revenues, soon to be 80%. https://goo.gl/
kp4L5X, 2017. [Online; accessed 11-March-2021].

[64] Microsoft Azure. Content Delivery Network pric-
ing. https://azure.microsoft.com/en-us/pricing/details/
cdn/, 2018. [Online; accessed 11-March-2021].

[65] NASA. Precipitation Processing System Data Ordering
Interface for TRMM and GPM (STORM). https://storm.
pps.eosdis.nasa.gov/storm/, 2015. [Online; accessed
11-March-2021].

[66] NASA Jet Propulsion Laboratory. U.S. Releases En-
hanced Shuttle Land Elevation Data. https://www2.
jpl.nasa.gov/srtm/, 2015. [Online; accessed 11-March-
2021].

[67] NEC. SEA-US: Global Consortium to Build Cable
System Connecting Indonesia, the Philippines, and the
United States. https://tinyurl.com/ybj9nhp3, August
2014. [Online; accessed 11-March-2021].

[68] Ravi Netravali, Anirudh Sivaraman, Somak Das,
Ameesh Goyal, Keith Winstein, James Mickens, and
Hari Balakrishnan. Mahimahi: Accurate record-and-
replay for http. In USENIX ATC, 2015.

[69] A. Nordrum. Fiber optics for the far north [news]. IEEE
Spectrum, 52(1):11–13, January 2015.

[70] ns-3 community. Network simulator ns-3. https://www.
nsnam.org, 2011. [Online; accessed 11-March-2021].

[71] Jan Odvarko. Har 1.2 spec. http://www.softwareishard.
com/blog/har-12-spec, 2007. [Online; accessed 11-
March-2021].

[72] Pingzapper. Pingzapper Pricing. https://pingzapper.
com/plans, 2018. [Online; accessed 11-March-2021].

[73] Enric Pujol, Philipp Richter, Balakrishnan Chan-
drasekaran, Georgios Smaragdakis, Anja Feldmann,
Bruce M. Maggs, and Keung-Chi Ng. Back-office web
traffic on the Internet. In ACM IMC, 2014.

[74] radiowaves. SHPD8-1011. https://www.
radiowaves.com/getmedia/b1a7277f-fde0-4c05-
a5fc-7c22c29c5b3a/HPD8-1011.aspx, 2018. [Online;
accessed 28-July-2021].

[75] radiowaves. SPD8-11. https://www.radiowaves.com/
getmedia/f942ec58-9999-4607-a165-fd4db4deef60/
SPD8-11.aspx, 2018. [Online; accessed 28-July-2021].

[76] Eduard Sackinger. Analysis and Design of Tran-
simpedance Amplifiers for Optical Receivers. John Wi-
ley & Sons, 2017.

[77] William Sentosa, Balakrishnan Chandrasekaran,
P. Brighten Godfrey, Haitham Hassanieh, Bruce Maggs,
and Ankit Singla. Accelerating mobile applications
with parallel high-bandwidth and low-latency channels.
In ACM HotMobile, 2021.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1129

http://kk.org/thetechnium/how-much-does-o/
http://kk.org/thetechnium/how-much-does-o/
https://licensing.fcc.gov/myibfs/download.do?attachment_key=1773885
https://licensing.fcc.gov/myibfs/download.do?attachment_key=1773885
https://slideplayer.com/slide/4203392/
https://slideplayer.com/slide/4203392/
http://www.quincy-data.com/product-page/#latencies
http://www.quincy-data.com/product-page/#latencies
https://goo.gl/82kzXd
https://www.macrotrends.net/stocks/charts/AMZN/amazon/net-profit-margin
https://www.macrotrends.net/stocks/charts/AMZN/amazon/net-profit-margin
https://goo.gl/kp4L5X
https://goo.gl/kp4L5X
https://azure.microsoft.com/en-us/pricing/details/cdn/
https://azure.microsoft.com/en-us/pricing/details/cdn/
https://storm.pps.eosdis.nasa.gov/storm/
https://storm.pps.eosdis.nasa.gov/storm/
https://www2.jpl.nasa.gov/srtm/
https://www2.jpl.nasa.gov/srtm/
https://tinyurl.com/ybj9nhp3
https://www.nsnam.org
https://www.nsnam.org
http://www.softwareishard.com/blog/har-12-spec
http://www.softwareishard.com/blog/har-12-spec
https://pingzapper.com/plans
https://pingzapper.com/plans
https://www.radiowaves.com/getmedia/b1a7277f-fde0-4c05-a5fc-7c22c29c5b3a/HPD8-1011.aspx
https://www.radiowaves.com/getmedia/b1a7277f-fde0-4c05-a5fc-7c22c29c5b3a/HPD8-1011.aspx
https://www.radiowaves.com/getmedia/b1a7277f-fde0-4c05-a5fc-7c22c29c5b3a/HPD8-1011.aspx
https://www.radiowaves.com/getmedia/f942ec58-9999-4607-a165-fd4db4deef60/SPD8-11.aspx
https://www.radiowaves.com/getmedia/f942ec58-9999-4607-a165-fd4db4deef60/SPD8-11.aspx
https://www.radiowaves.com/getmedia/f942ec58-9999-4607-a165-fd4db4deef60/SPD8-11.aspx

[78] Michael Sheetz. SpaceX prices Starlink satellite internet
service at $99 per month, according to e-mail. https:
//www.cnbc.com/2020/10/27/spacex-starlink-service-
priced-at-99-a-month-public-beta-test-begins.html,
2020. [Online; accessed 11-March-2021].

[79] Shkilko, A. and Sokolov, K. Every Cloud Has a Sil-
ver Lining: Fast Trading, Microwave Connectivity and
Trading Costs. https://ssrn.com/abstract=2848562, 2016.
[Online; accessed 11-March-2021].

[80] SimilarWeb. Overview: amazon.com. https://www.
similarweb.com/website/amazon.com/#overview, 2021.
[Online; accessed 28-July-2021].

[81] SpaceX Starlink. https://www.spacex.com/webcast,
2017. [Online; accessed 11-March-2021].

[82] Starlink Services. Petition of Starlink Services, LLC
for designation as an eligible telecommunications
carrier. https://ecfsapi.fcc.gov/file/1020316268311/
Starlink%20Services%20LLC%20Application%
20for%20ETC%20Designation.pdf, 2021. [Online;
accessed 11-March-2021].

[83] statista. Online gaming - statistics & facts. https://www.
statista.com/topics/1551/online-gaming/, 2021. [Online;
accessed 28-July-2021].

[84] Internet Live Stats. Google Search Statistics. https:
//www.internetlivestats.com/google-search-statistics/.
[Online; accessed 11-March-2021].

[85] Steam. Steam & game stats, 2017. http://store.
steampowered.com/stats/ [Online; accessed 11-March-
2021].

[86] Telesat. Telesat: Global Satellite Operators. https://
www.telesat.com/, 2020. [Online; accessed 11-March-
2021].

[87] Unwired Labs. OpenCelliD Tower Database. https:
//opencellid.org/, 2018. [Online; accessed 11-March-
2021].

[88] USGS. National Elevation Dataset (NED).
https://www.usgs.gov/core-science-systems/national-
geospatial-program/national-map. [Online; accessed
11-March-2021].

[89] J. H. Winters, J. Salz, and R. D. Gitlin. The impact of
antenna diversity on the capacity of wireless communi-
cation systems. IEEE Transactions on Communications,
42(2/3/4):1740–1751, Feb/Mar/Apr 1994.

[90] X, the moonshot factory. Taara – Expanding global
access to fast, affordable internet with beams of light.
https://x.company/projects/taara/, 2018. [Online; ac-
cessed 11-March-2021].

[91] Xiufeng Xie, Xinyu Zhang, and Shilin Zhu. Accelerat-
ing mobile web loading using cellular link information.
In ACM MobiSys, 2017.

A TOPOLOGY DESIGN
Picking a subset of site-to-site links to connect a set of cities in-
volves solving a typical network design problem. The Steiner-
tree problem [41] can be easily reduced to this problem,
thereby establishing hardness. Standard approximation al-
gorithms, like linear program relaxation and rounding, yield
sub-optimal solutions, which although provably within con-
stant factors of optimal, are insufficient in practice. We de-
velop a simple heuristic, which, by exploiting features specific
to our problem setting, obtains nearly optimal solutions.
Inputs: Our network design algorithm requires:

• A set of sites to be interconnected, v1,v2, . . . ,vn.
• A traffic matrix H specifying the relative traffic volume

hi j ∈ [0,1] between each pair vi and v j.
• The geodesic distance di j between each vi and v j.
• The distance along the shortest, direct MW path between

each pair, mi j, as well as its cost, ci j. This is part of the
output of step 1.

• The optical fiber distance between each pair, oi j, which
we multiply by 1.5 to account for fiber’s higher latency.

• A total budget B limiting the maximum number of bidi-
rectional MW links that can be built.

Expected output: The algorithm must decide which direct
MW links to pick, i.e., assign values to the corresponding
binary decision variables, xi j, such that the total cost of the
picked links fits the budget, i.e., ∑i j xi jci j ≤ B. Our objective
is to minimize, per unit traffic, the mean stretch, i.e., the ratio
of latency to c-latency, where c-latency is the speed-of-light
travel time between the source and destination of the traffic.
Problem formulation: Expressing such problems in an op-
timization framework is non-trivial: we need to express our
objective in terms of shortest paths in a graph that will itself
be the result. We use a formulation based on network flows.

Each pair of sites (vs, vt) exchanges hst units of flow. To
represent flow routing, for each potential link `, we introduce
a binary variable fsti j,m which is 1 iff the vs→vt flow is carried
over the microwave link vi→v j, and a binary variable fsti j,o
which is 1 iff the same flow is carried over the optical link8

vi→v j. The objective function is:

min∑
s,t

hst

dst
∑
i, j
(oi, j fsti j,o +mi, j fsti j,m) (3)

The hst term achieves our goal of optimizing per unit traffic.
The 1

dst
term achieves our goal of optimizing the stretch.

8A “link” between sites can use multiple physical layer hops, both for MW
and fiber. The underlying multi-physical-hop distances are already captured
by the inputs oi j and mi j so the optimization views it as a single link.

1130 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.cnbc.com/2020/10/27/spacex-starlink-service-priced-at-99-a-month-public-beta-test-begins.html
https://www.cnbc.com/2020/10/27/spacex-starlink-service-priced-at-99-a-month-public-beta-test-begins.html
https://www.cnbc.com/2020/10/27/spacex-starlink-service-priced-at-99-a-month-public-beta-test-begins.html
https://ssrn.com/abstract=2848562
https://www.similarweb.com/website/amazon.com/#overview
https://www.similarweb.com/website/amazon.com/#overview
https://www.spacex.com/webcast
https://ecfsapi.fcc.gov/file/1020316268311/Starlink%20Services%20LLC%20Application%20for%20ETC%20Designation.pdf
https://ecfsapi.fcc.gov/file/1020316268311/Starlink%20Services%20LLC%20Application%20for%20ETC%20Designation.pdf
https://ecfsapi.fcc.gov/file/1020316268311/Starlink%20Services%20LLC%20Application%20for%20ETC%20Designation.pdf
https://www.statista.com/topics/1551/online-gaming/
https://www.statista.com/topics/1551/online-gaming/
https://www.internetlivestats.com/google-search-statistics/
https://www.internetlivestats.com/google-search-statistics/
http://store.steampowered.com/stats/
http://store.steampowered.com/stats/
https://www.telesat.com/
https://www.telesat.com/
https://opencellid.org/
https://opencellid.org/
https://www.usgs.gov/core-science-systems/national-geospatial-program/national-map
https://www.usgs.gov/core-science-systems/national-geospatial-program/national-map
https://x.company/projects/taara/

For brevity, we omit the constraints, which include: flow
input and output at sources and sinks; flow conservation; total
budget; and the requirement that only links that are built
(xi j = 1) may carry flow. All variables are binary, so flows
are “unsplittable” (carried along a single path) and the overall
problem is an integer linear program (ILP).

Note that we have decomposed the problem so that link
capacity is not a constraint in this formulation: MW links
will be built with sufficient capacity in step 3; fiber links are
assumed to have plentiful bandwidth at negligible cost relative
to MW costs. As a result, the objective function will guide
the optimizer to direct each vi→ v j flow along the shortest
path of built links, which is the direct MW link vi→ v j if it
happens to be built, or otherwise, a path across some mix of
one or more fiber and MW links.
ILP’s limited scalability: The exact ILP is not scalable,
which is the reason we use multiple heuristics, as discussed
in §3. As we show in Fig. 8a, the exact ILP, without using our
observations on the problem structure, is too computationally
inefficient to scale to this scenario. We use subsets of all 120
cities to assess scalability, with the budget proportional to the
number of cities in each test, with a budget of 6,000 towers
at the largest scale. Even after 2 days of compute, the exact
ILP was unable to obtain a result for sets of cities larger than
50. In contrast, our cISP design heuristic is able to solve the
problem at the full scale. Second, as Fig. 8b shows, at small
scales, where we can also run the exact ILP, our heuristic
yields the optimal result. We also tested a linear program
rounding approach, but even the naive LP relaxation followed
by rounding did not scale beyond 60 cities, and gave results
worse than optimal.

B ROUTING & QUEUING
The HFT industry’s point-to-point MW deployments demon-
strate end-to-end application layer latencies within 1% of
c-latency, after accounting for all delays in microwave ra-
dios, interfacing with switching equipment and servers, and
application stacks. Such low latencies across point-to-point
long-distance links place sharp focus on any latencies intro-
duced at routers for switching, queuing, and transmission.

Internet routers can forward packets in a few tens of mi-
croseconds, and specialized hardware can hit 100× smaller
latencies [49]. Transmitting 1500 B frames at 1 Gbps takes
12 µs. Thus forwarding and transmission even across many
long-distance links incur negligible latency. Longer routes
and queuing delays, however, can have substantial impact.

To assess the impact of routing and queuing in cISP, we use
ns-3 [70]. We use UDP traffic with a uniform packet size of
500 bytes. We use the built-in FlowMonitor [19] to measure
delay and loss rate, and add a new monitoring module to track
link-level utilization. All experiments simulate 100 Gbps of
network traffic for one second of simulated time. An experi-
ment takes approximately 10 hours to complete on a single
core of a 3.1 GHz processor. Even achieving this running time

requires some compromises: we aggregate the bandwidth of
parallel links and remove the individual tower hops to focus
on network links between the routing sites.
Routing schemes: Besides ns-3’s default shortest path rout-
ing, we implement two other schemes – throughput optimal
routing, and routing that minimizes the maximum link utiliza-
tion, a scheme commonly employed by ISPs [51].
Results: When the traffic and routing match the design tar-
get, i.e., the population-product traffic routed over shortest
paths, we find that the network can be driven to high utiliza-
tion (95%) with near-zero queuing and loss. Non-shortest-
path routing schemes needlessly compromise on latency in
such scenarios. (Plots for this easy scenario are omitted.)

We also test the network’s behavior under deviations from
the designed-for traffic model. We emulate scenarios where
a city produces more or less traffic than expected by allow-
ing, for each city, a “population perturbation” — each city’s
population is re-weighted by a factor drawn from the uniform
distribution U [1− γ,1+ γ] for a chosen γ ∈ [0,1].

Fig. 9a and Fig. 9b show the results for γ ∈ {0.1,0.3,0.5}.
Even for large perturbations, the mean delay does not in-
crease by more than 0.1 ms and the loss rate is zero up to an
aggregate load of 70% of the capacity designed for, even with
just shortest path routing. Other routing schemes are indeed
more resilient to higher load, achieving virtually zero loss
and queuing delay even at high utilization, but at the cost of
latency. For the tested topology, both the alternative routing
schemes incur 10% higher latency on average (not shown in
the plots). These results indicate there would be significant
value in work that reduces the amount of over-provisioning
required by making modest compromises on latency on some
routes, e.g., as in [43].
Speed mismatch: The bandwidth disparity between the net-
work core and edge for cISP may seem atypical, in the sense
that in most settings, the core has higher bandwidth links com-
pared to the edge, while in cISP, edge links (such as those at
large data center end points) may often have much higher line
rates when they feed their outgoing traffic into cISP. Thus,
we also evaluate if this “speed mismatch” causes persistent
congestion at cISP’s ingresses.

We run ns-3 simulations with several sources (Si) con-
nected to a sink (D) through the same intermediate node (M).
The M-D link rate is fixed at 100 Mbps. We then evaluate set-
tings with every Si-M link being either 100 Mbps or 10 Gbps.
The former is the control, and the latter is the setting with a
speed mismatch. M has an unbounded queue. Ten sources
send 100 KB TCP flows (small, as is expected in cISP) to the
sink, D. The arrival of these TCP flows follows a Poisson pro-
cess, consuming on average 70% of the I-D link’s bandwidth.
Each simulation run lasts 10 s and we conduct 100 such runs.
We test TCP both with and without pacing.

Fig. 10a shows that the median queue occupancy at M
is higher without pacing, especially at the 95th percentile.
However with pacing, queueing behavior is nearly the same.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1131

.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 20 40 60 80 100 120

T
im
e

 i
n

 h
o
u
rs

Number of cities

cISP
ILP

(a)

 1

 1.01

 1.02

 1.03

 1.04

 1.05

 5 10 15 20 25 30 35 40 45 50

M
e
a
n

 s
tr
e
tc
h

Number of cities

cISP
ILP

(b)
Fig. 8: cISP’s design method is fast-enough and near-optimal: (a) cISP generates an optimized topology within hours for 120
cities while the ILP does not yield a result even after 2 days for more than 50 cities. For the ILP, runtimes for 50+ cities are
extrapolated by curve fitting. (b) The stretch achieved by cISP matches that of the ILP to two decimal places for instances that
can be optimized by the ILP.

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 0 10 20 30 40 50 60 70 80 90 100

D
e
la
y
 (
m
s
)

Aggregate input rate (%)

Matching TM
γ = 0.1
γ = 0.3
γ = 0.5

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50 60 70 80 90 100
L
o
s
s
 (
%
)

Aggregate input rate (%)

Matching TM
γ = 0.1
γ = 0.3
γ = 0.5

(b)
Fig. 9: (a) Average delay and (b) loss rate remain consistent across perturbations of the city-city traffic model, except under
heavy load.

 0

 5

 10

 15

 20

 25

 30

100
M

10G
 no pac

ing

10G
 pac

ing

Q
u
e
u
e

 s
iz
e

 (
p
a
c
k
e
ts
)

95th-ptile
Median

(a)

 0

 20

 40

 60

 80

 100

 120

 140

100
M

10G
 no pac

ing

10G
 pac

ing

F
lo
w

 c
o
m
p
le
tio
n

 t
im
e

 (
m
s
)

95th-ptile
Median

(b)
Fig. 10: TCP pacing addresses the problem of capacity mis-
match (a) by reducing persistent queuing (b) without affecting
flow completion times.
The median flow completion times (Fig. 10b) are unaffected
both with and without pacing.

C FURTHER DESIGN CONSIDERATIONS
C.1 Is the city-city traffic model special?
Ideally, we would be able to use wide-area traffic matrices
from some ISP or content provider for modeling. In the ab-
sence of such data, we focus on showing that cISP can be
tailored to vastly different deployment scenarios and their cor-

responding traffic models. Apart from the city-city population
product model, we use (a) traffic between a provider’s data
centers; and (b) traffic between the cities and data centers.

An inter data center cISP: We use Google data centers as
an example, considering all 6 publicly available US locations
- Berkeley, SC; Council Bluffs, IA; Douglas County, GA;
Lenoir, NC; Mayes County, OK; and The Dalles, OR. In the
absence of known inter-data center traffic characteristics, we
provision equal capacity between each DC-pair.

Data centers to the edge: We also model a scenario where
data centers are to be connected to edge locations in cities.
Each of the 120 cities connects to its closest Google data
center, with traffic proportional to its population.

We show in Fig. 11 that using the same design approach
as in §3, both of the above scenarios result in networks with
lower cost than the city-city model. Thus, cISP can be tailored
to a variety of use cases and traffic models.

 0

 0.5

 1

 1.5

 2

 2.5

 0 40 80 120 160 200

C
o
s
t
p
e
r
G
B

 (
$
)

Aggregate throughput (Gbps)

City-City
DC-DC
City-DC

Fig. 11: Cost per GB for different traffic models: the City-City
model, discussed in the most detail, is the most expensive.

1132 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 6.05

 6.2

 6.35

 6.5

 0 10 20 30 40 50 60 70 80 90 100

D
e
la
y
 (
m
s
)

Aggregate input rate (%)

City-City : City-DC : DC-DC
4:3:3
4:4:3
5:3:3
4:3:4

(a)

 0

 0.15

 0.3

 0.45

 0 10 20 30 40 50 60 70 80 90 100

L
o
s
s
 (
%
)

Aggregate input rate (%)

City-City : City-DC : DC-DC
4:3:3
4:4:3
5:3:3
4:3:4

(b)
Fig. 12: (a) Average delay and (b) loss rate remain consistent
across deviations from the designed-for traffic mix, except
under heavy load.

C.2 Traffic model mismatches
A cISP may carry a mix of city-city, inter-DC, and DC-edge
traffic. How does its performance degrade as the proportion
of these traffic types departs from the design assumptions?

We design a cISP to carry an aggregate of 100 Gbps with
a city-city : DC-edge : inter-DC traffic proportion of 4:3:3.
Using ns-3 simulations similar to those in §B, we then test
this network under several traffic mixes different from this
designed-for mix — 5:3:3, 4:3:4, and 4:4:3.

Fig. 12a and Fig. 12b show that there is a difference of less
than 0.05ms in mean delay across different combinations of
traffic matrices up to an aggregate load of 70% of the design
capacity. Similarly, loss remains nearly 0 until this load. The
decrease in delay at high load (4:4:3 for x > 90 in Fig. 12b) is
due to losses, which are likelier on longer, higher-delay paths.

Mean delay depends more on city-city traffic, as expected:
city-city traffic requires a wider infrastructure footprint, and
deviations from its design parameters have greater impact.

Thus, as discussed in §B, significant traffic model devia-
tions can be absorbed using some over-provisioning, in line
with current ISP practices.

C.3 Is the US geography special?
It is reasonable to ask: are the population distribution and ge-
ography of the U.S. especially amenable to this approach, or
is it applicable more broadly? The availability of high-quality
tower data and geographical information systems data for the
U.S. enables a thorough analysis. While similar data is, un-
fortunately, not available to us for other geographies, we can
approximately assess the design of a cISP in Europe using
public, crowd-sourced data on cellular towers [87]. Lacking
fiber conduit data, we assume that fiber distances between

Fig. 13: A 100 Gbps 1.04× stretch cISP across Europe. This
network uses several fiber connections (dashed, black lines).

cities are inflated over geodesic distance in the same way as
in the US (∼1.9×). Using our methodology in §3, we design
a European cISP of similar geographical scale across cities
with population more than 300k, targeting the same aggre-
gate capacity and mean latency (1.04× here vs. 1.05× for
cISP-US). The cost of this design, shown in Fig. 13, is similar
as well, with ∼3k towers. Note that the impact of Europe’s
higher population density is not seen here, because we ex-
plicitly design for the same aggregate throughput. One could,
alternatively, normalize throughput per capita, and compare
cost per capita, to obtain similar results.

Admittedly, there is not yet a known approach to bridg-
ing large transoceanic distances using MW, limiting our ap-
proach to large contiguous land masses that need to be inter-
connected with fiber. In the distant future, LEO satellite links,
hollow-core fiber, or even towers on floating platforms may
be of use for such connectivity.

D AMERICAN TOWER DEPLOYMENT

Fig. 14: American tower deployment as per 5th March, 2021.

American Tower [7] claims to have a presence at more
than 42,000 tower sites across the US, as of 5th March 2021.
Fig. 14 shows their current deployment. We could not access
their database due to legal bindings.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1133

Configanator: A Data-driven Approach to Improving CDN Performance.

Usama Naseer
Brown University

Theophilus A. Benson
Brown University

Abstract
The web serving protocol stack is constantly evolving to

tackle the technological shifts in networking infrastructure and
website complexity. As a result of this evolution, web servers
can use a plethora of protocols and configuration parameters
to address a variety of realistic network conditions. Yet, today,
despite the significant diversity in end-user networks and
devices, most content providers have adopted a “one-size-
fits-all” approach to configuring the networking stack of their
user-facing web servers (or at best employ moderate tuning).

In this paper, we demonstrate that the status quo results in
sub-optimal performance and argue for a novel framework
that extends existing CDN architectures to provide program-
matic control over a web server’s configuration parameters.
We designed a data-driven framework, Configanator, that
leverages data across connections to identify their network
and device characteristics, and learn the optimal configuration
parameters to improve end-user performance. We evaluate
Configanator on five traces, including one from a global
content provider, and evaluate the performance improvements
for real users through two live deployments. Our results show
that Configanator improves tail (p95) web performance by
32-67% across diverse websites and networks.

1 Introduction
Web page performance significantly impacts the revenue of
content distribution networks (CDNs) (e.g., Facebook, Aka-
mai, or Google), with studies showing that a 100ms decrease
in page load times (PLT) can lead to 8% better conversion
rate for retail sites [14, 30]. Yet, uniformly improving web
performance is becoming increasingly challenging due to the
growing disparity in the network conditions (e.g. bandwidth,
RTT) [3, 36, 120, 135] and end-user devices [93, 94, 108, 134].
To address this disparity and improve the quality of experience
(QoE), the networking community is constantly developing
new protocols and configuration parameters for web servers
(AKA, edge servers), e.g., PCC [31], BBR [23], QUIC [51], etc.

The optimal choice of configurations is contingent on

−20 0 20 40 60 80
PLT impr vement ver Default [%]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F
ac
ro
ss
 p
ag

el
oa

ds

Oracle
Offline
BO
HandPicked
Conn. Reuse

Figure 1: Comparison of various tuning techniques.

the network infrastructure [3, 36, 77, 98, 120, 135, 142],
website complexity [20, 21, 95, 134, 136], and end-user
devices [1, 94, 108]. Furthermore, innovations along any one
of these dimensions will lead to changes to default parameters
and new protocols. Although different regions and ISPs have
radically different networking infrastructure and mobile
devices [1, 93], a majority of CDNs continue to employ a
“one-size-fits-all” [49] approach to configuring their edge
servers, which results in sub-optimal performance [3, 36, 135]
and high tail-latency in certain regions [142].

1.1 Configuration Tuning Status-Quo
Most attempts to tackle this growing diversity involve manu-
ally analyzing the performance of configuration options across
different regions [49], devices [1], or websites [110, 135].
While several CDNs expose configuration knobs to their
customers [40, 45], it is challenging to take the full advantage
of the knobs due to the required manual efforts and the lack
of automated learning techniques for effective tuning.

This paper focuses on tuning a broad set of configuration
knobs across the transport (e.g., congestion control algorithm)
and application layers (e.g., HTTP version) as highlighted
in Table 1. Next, we illustrate the challenges and benefits of
dynamically tuning network configurations.

Challenges in tuning stack: In Figure 1, we illustrate the
difficulty of tuning configurations by comparing page load
time (PLT) of popular websites, when configured using pop-
ular tuning techniques (setup explained in § 2.2). Specifically,
Bayesian Optimization [104] (e.g., CherryPick [4]) a statistical

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1135

technique used for tuning systems configurations [4, 32, 75,
131], operator hand-tuned configurations (discussed in § 2),
TCP connection reuse a traditional optimization (discussed
in § 6.5), and a closed-loop offline-learning technique. We
compare their performance against two baselines: optimal con-
figuration discovered through an exhaustive brute-force search,
and default configurations for Linux and Apache (Table 1).

Hand-tuned configurations are manually selected and are
thus, coarse-grained. While they out-perform the default
at median, they fail to provide optimal performance across
varying network conditions and may even lead to performance
degradation for some networks. TCP connection reuse only
optimizes a subset of knobs (e.g., initial congestion window)
and is unable to take full advantage of the diverse network
stack knobs. Bayesian optimization aims to quickly discover
“good” configuration. While fine-grained, this approach is
relatively static and does not re-evaluate old choices, and is
thus unable to adapt to network dynamics [78]. We observe
the effects of this rigid behavior with wildly varying tail
performance. Lastly, we explore an offline model which learns
on traces from prior days and applies the learned model on
connections for the next day. Offline modeling is fine-grained
but with limited dynamicity: the trained model is unable
to react to real-time issues. Unfortunately, due to the high
dimensionality of the Internet’s dynamics, these real-time
issues are the norm, not the exception [67, 69, 78]. We observe
in Figure 1 that offline performs closest to the optimal but still
falls short because of its inability to react in real-time.

Our brief analysis of tuning approaches highlights the need
for a dynamic, fine-grained approach to tuning configurations.

1.2 Configanator

In this paper, we eschew the notion of a homogeneous ap-
proach to tuning web server configurations and instead argue
for a “curated” approach for configuring on a per-connection
basis. In particular, we argue that edge servers should be
configured to serve each of the incoming connections with the
optimal protocols and configuration parameters, e.g., a web
server may employ Cubic in favor of BBR when serving a low
bottleneck buffer connection [111, 114]. To this end, we argue
for a simple but robust server architecture that introduces
flexibility into the network stack, enables reconfiguration,
and systematically controls configuration heterogeneity. We
also introduce a contextual multi-armed bandit based learning
algorithm, an embodiment of domain-specific insights, which
tunes configuration in a principled manner to find optimal
configurations in minimal time. Taken together the design and
the learning algorithm, our system, Configanator, enables a
CDN to systematically explore heterogeneity in a dynamic and
fine-grained manner while improving end-user performance.
The design of Configanator faces several practical challenges:

• Network dynamics: network may change every few
minutes [67, 83, 146] and thus requires continuous learning.

Layer Protocol Options Default Example parameter

Transport

congestion_control (CC) Cubic BBR, Cubic, Reno
initial congestion window 10 MSS Integer (1, 4, 30)
slow_start_after_idle 1 boolean {true, false}
low_latency 0 boolean {true, false}
autocorking 1 boolean {true, false}
initRTO 1s decimal (0.3,1)s [59]
pacing (fair-queue) 0 boolean {true, false}
timestamps 1 boolean {true, false}
wmem {4096}B {163840}B

Web App

HTTP Protocol 1.1 1.1, 2
H2 push On On, Off
H2 max header list size 16384B Integer values
H2 header table size 4096B Integer values
H2 max concurrent streams 100 Integer values
H2 initial window size 65535B Integer values < 231

H2 max frame size 16384B Integer values < 224

Table 1: Web stack configuration parameters.

• Non-Gaussian noise: CDNs focus on improving tail
latency [27, 53, 145] which is often caused by non-Gaussian
processes (e.g., last-mile contention [125], mobile device
limitations) and are difficult to model.
• High-Dimensionality: Content personalization, diverse de-
vices [94,134], and last-mile connections [125] introduce high
dimensionality that limits the efficacy of offline closed-loop
approaches [67, 68].
• High data cost: Generating data for learning requires testing
configurations and may disrupt user’s performance. Hence,
the negative impact on users must be minimized.
• Limited flexibility: Linux kernel and modern web servers
lack the flexibility to tune configurations on a per-connection
basis, thus requires enhancing the traditional networking stack.

The key insight of Configanator is to simultaneously operate
in two modes depending on the “quality” of the performance
model. Essentially, Configanator intelligently selects samples
that speed up model convergence, then at steady-state it
transitions into a greedy-mode that stochastically samples
points to iteratively improve performance. Configanator
further clusters similar connections together and samples
across clusters to amortize the cost of exploration.

Configanator uses a contextual multi-armed bandit [133]
designed explicitly to continuously converge to an optimal
(or near-optimal) configuration within a minimal number of
exploration steps. Our ensemble fuses the stateful exploration
of Gaussian-bandit with the non-determinism of Epsilon-
bandit, enabling informed exploration of the configuration
space while randomly re-sampling old configurations. The
re-evaluation of data samples enables Configanator to directly
tackle non-Gaussian noise within the domain. The data
collected by the ensemble is encoded in a decision tree – which
enables quick and easy classification but is also amenable to
automatic generation of rules for a CDN’s web server.

To demonstrate the benefits, we conducted large-scale
simulations and live deployments. We used datasets from a
GlobalCDN and public datasets from CAIDA [22], MAWI [8],
Pantheon [142] and FCC [41]. Our simulation results show that
Configanator provides 32-67% (up to 1500ms) improvement
in the PLT at tail (p95) across the different traces. Given the

1136 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Layer Option Top configs. in N.A. (cross-CDN) % of CDNs configuring Example of observed
differently across regions cross-regional difference

Web App

HTTP version H1.1(44.3%), H2(55.7%) 4.7% N.A. H2 -> Asia H1.1
Max header list size 16384 (100%) 0% None

Header table size 4096 (100%) 0% None
Max concurrent streams 100 (44%), 128 (56%) 1% N.A. 100 -> EU 128

Initial window size 65536 (71%), 65535 (15%), >1M (14%) 1.9% N.A. 1048576B -> Asia 65535B
Max frame size 16,777,215 (81%), 16384 (19%) 0% None

Transport
ICW {10 (62%), 4(20.5%), 24(5.3%)} MSS 6.9% N.A. 24 MSS -> Asia 10 MSS

initRTO {0.3(9.2%), 1(82.6%), 3(8.2%)} sec 2.3% N.A. 3s -> EU 1s
RWIN {29200(57.4%), 14600(8.2%), 42780(6.8%)} bytes 3.6% N.A. 29200B -> Asia 12960B

Table 2: Heterogeneity in configs. across 5 regions

recent arms race by CDNs to improve web performance, we
believe that Configanator’s modest improvements will result
in significant revenue savings [14, 19, 30, 103]. Please refer
to the project website 1 for the related resources.

2 Empirical Study
Next, we analyze CDNs to determine the current extent of con-
figuration tuning (§ 2.1) and quantify its implications (§ 2.2).

2.1 Fingerprinting web configurations

We aim to understand if modern CDNs employ homogeneous
configurations, as suggested by anecdotal evidence, or
heterogeneous configurations to tackle diversity in the
Internet’s ecosystem. To this end, we developed a tool to infer
and fingerprint a web server’s [49,92] application/L7 and trans-
port/L4 layers configuration parameters by actively probing
the servers and inspecting the packet headers and their reaction
to emulated network events (e.g., packet loss). Please refer to
Appendix A for more details about the tool. Using the tool, we
fingerprinted the configurations for the Alexa top 1k websites
from five different regions (North America (N.A), South
America, Asia, Europe, and Australia), and present the results
in Table 2. We use N.A configurations as the reference point
and compare the observed configurations along two axes:

Observation 1: Heterogeneity across CDNs: In Column
3 (cross-CDN), we observe that different CDNs use different
configurations in N.A. While some of the heterogeneity can
be attributed to differences in the default values for different
OSes, we observe that CDNs do use non-default values, e.g.,
amazon.com uses an ICW of 24 MSS in N.A.

Observation 2: Homogeneity within a CDN: In Column
4 (cross-region), we observe that only a small number of CDNs
tune their network stack to account for regional differences,
i.e., use different configurations in N.A. than the other regions.
The highest amount of tuning occurs at L4, with 6.9% of the
CDNs tuning the ICW differently in N.A. than in other regions,
e.g., 24 MSS in N.A. but 10 MSS in Asia for amazon.de.

Takeaway: Taken together, these observations indicate that
while individual CDNs perform modest tuning, most do not
tune finely enough to account for regional diversity. In fact,
only a small set of CDNs configure differently across regions.

1https://systems.cs.brown.edu/projects/configtron/

2.2 Implications of Configuration Tuning
Next, we quantify the benefits of dynamically tuning a web
server’s networking stack by conducting a large scale study
in our local testbed. We emulate a wide range of representative
networks (extracted from real-world traces [8, 22, 41, 142])
and perform an exhaustive, brute-force search of configuration
space (detailed description of the traces is provided in § 6.1).
Table 1 lists the set of configurations, with default settings for
TCP and HTTP taken from the Linux transport stack (kernel
4.20) and Apache (v2.4.18), respectively. In each trial, the
server iteratively selects a configuration from the possible
configuration space, a representative network is emulated
using NetEM [54], and the PLT of a randomly selected website
from Alexa Top-100 (locally cloned on the server) is measured
five times. The optimal configuration is defined as the one that
results in the lowest PLT for a specific network and website.

Figure 1 explores the implications of using sub-optimal
configurations, by comparing optimal and default configura-
tions for pageloads across diverse networks and websites. We
observe that there is∼18% PLT improvement at the median
(over 70% at tail) when optimal configurations are used over
the default. While the number may appear small, they can
result in tremendous revenue improvements [14, 30], and
more in the developing regions where CSPs are investing
heavily to improve network [37, 80]. We observe the highest
reconfiguration benefits for low bandwidth, high RTT/loss
regions, representative of developing region networks.

Next, we analyze congestion control measurements across
different regions from Pantheon [142]. We observe that emerg-
ing protocols, e.g., BBR, PCC, or Remy, which use probing or
ML to improve performance,do not provide uniformly superior
performance. In particular, we observed that in many situations
BBR is suboptimal, performing 3X to 10X worse than the op-
timal congestion control. Moreover, no congestion control is
optimal for more than 25% of the networks tested, and the me-
dian congestion control is optimal for only 6% of the networks.

3 Configanator’s Algorithm
Tuning network configurations to maximize the web perfor-
mance for diverse networks and end-users presents a complex
learning problem. Next, we formulate the problem and present
a domain-specific ensemble to address the challenges.

Problem Formulation: Given a set of networking
configurations (C={c1, c2...cn}), network conditions (N

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1137

= {n1, n2...nn}), devices (D = {d1, d2...dn}), websites (W
= {w1, w2...wn}) and a function, f(), that maps a website,
network condition, device, and configuration to a metric of
web page performance (e.g., PLT or SpeedIndex). Note that,
f (ci,ni,di,wi) returns the web page performance metric value
for applying configuration ci to a user device di loading website
wi in network ni. In this paper, we use PLT as the metric for
web page performance and can be easily replaced with other
metrics. Our goal is to solve Eq. 1 and find a configuration (c∗)
that minimizes f() for a given combination of ni, di and wi.

argmin
c∗

f (c∗,ni,di,wi)={ f (ci,ni,di,wi)|∀ci∈C} (1)

Solving the black-box function f() requires exploring
sample space. Two possible exploration algorithms are:
• Brute force [2] which tests each possible configuration one
by one until the entire space is explored.

• Bayesian optimization (BO) [16, 104] is a principled global
optimization strategy that uses a prior probability function to
capture the relationship between the objective function (Eq 1)
and the observed data samples. BO models f(c,n,d,w) as a
Gaussian process (GP) [16]. GP is a distribution of candidate
objective functions and is used to select the next promising
point (c*) which is then evaluated on a connection. GP then
updates its posterior belief by adding the new observation
f(c*,n,d,w) to the set of seen observations. With every new
observation, the space of possible candidate functions gets
smaller and the prior gets consolidated with the new evidence.

Challenges: Both approaches are sub-optimal for our use-
case due to several reasons: (1) non-stationary network condi-
tions [10, 67, 69, 146] (network conditions change every few
minutes), (2) BO assumes that data is noise-free or only has
Gaussian noise [118], and non-Gaussian noise (tail latency can
not be modeled by a Gaussian process [78]) disrupts the estima-
tion of next candidate sample and is observed to impact BO’s
hyper-parameters (e.g., threshold on expected improvement
for next sample to stop the exploration), (3) costly data collec-
tion (collecting data requires testing on end-users which can
impacts PLT and revenue), (4) data scarcity (testing on individ-
ual users requires each user to generate a tremendous number
of connections but a user may only visit the site a few times).

Intuition: The intuition behind Configanator’s algorithm is
to decompose the model building into two phases: (i) an initial
phase during which the search should be directed to speed up
the process and build a good (not perfect) model, and (ii) a
steady-state during which the search should be more stochastic
to iteratively improve the model and tackle non-Gaussian noise.
Building on these insights, Configanator leverages a combina-
tion of clustering, an ensemble of bandit-techniques, and ML to
address the aforementioned challenges. Specifically, clustering
is used to group connections based on their network and device
similarity (called Network Class) and aggregate observations
across similar connections to address data scarcity. The use of
a contextual multi-armed bandit [133] enables Configanator to

explore configurations and continuously collect data samples
to learn and tackle dynamic client-side conditions in a balanced
and online manner. To generalize observations across the con-
nections, a Decision Tree is trained for efficient inference.

3.1 Domain-Specific Multi-Armed Bandit
Configanator’s learning algorithm consists of a contextual
multi-armed bandit [76, 84, 133] with three arms:
• Exploration Arm-1 (Gaussian process [104, 112]): The
Gaussian process (GP) bandit [4, 73] uses an acquisition
function to perform a directed search to quickly discover a
“good” (might not be optimal) solution when no information
exists for a Network Class (NC). There are multiple acquisition
functions available [16] and we use Expected Improvement
(EI) [112] because of its well-documented success [4, 32, 47].
This search process includes two terminating conditions: a
threshold on EI and minimum of number of data points to
explore. For non-continuous configurations (e.g., HTTP ver-
sion), we encode them into a number to discretize the space2.
To account for performance differences between websites and
NCs, the GP-arm is composed of a collection of GP models,one
for each unique website and NC combination (Appendix D).

• Exploration Arm-2 (Epsilon-bandit [128]): The Epsilon-
bandit randomly re-samples the data points to overcome issues
endemic with the Gaussian process (and Bayesian Optimiza-
tion in general), e.g., non-stationarity of mean performance.
The network operator bounds the random exploration by
defining a parameter, ε, that controls the trade-off between
speed of exploration and the impact on end-user QoE. A high
ε improves exploration but results in a negative impact on
clients’ QoE due to constantly changing configurations.

• Exploitation Arm (Decision Trees [107]): The exploita-
tion arm uses ML-powered prediction to model the data col-
lected through the exploration arms. We evaluated several tech-
niques including Support Vector Machines, Decision Trees (D-
Trees), and Random Forests. We found that the D-Tree hits the
sweet spot, providing comparable accuracy to the other models
while being efficient enough to build and update at scale. The
D-Tree encompasses all websites and NCs to learn across web-
sites and networks. Leveraging the config-performance curves
collected by underlying exploitation arms, a single D-Tree
model is trained for the “good” configuration found so far for
each website/NC pair, and the D-Tree maps {website, device,
network/AS characteristics} to their optimal configuration.

Context-based arm switching: Configanator constantly
switches between the arms based on the NC’s “context”
which is defined as the quality of the GP-model for the
website/NC. It operates in two modes: (i) Bootstrap, when no
information exists for a website or NC, the context is empty
and the GP-arm is used to explore the configuration space in a
principled manner until the acquisition function (EI) indicates

2GPyOpt [101] supports mixed (continuous/discrete) domain space [102].

1138 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

TC
P

H
an

ds
ha

ke

TL
S

H
an

ds
ha

ke

H
TT

P
G

ET
 fo

o

"G
ET

 fo
o"

do
ne

IP, RTT Goodput,
Loss-rate

Client Hello Server Hello Key Exchange Finished

Fingerprint, SNI

NO

YES

HTTP/2?

SETTINGS
Frame

Figure 2: Connection features.

NC init?No

N
C

 c
la

ss
ifi

ca
tio

n

Unseen
IP-prefix?

C
on

fig
.

 First conn. (C1)Default config.

Yes

 C2 to Cinit_sampleBootstrap
No

 Cinit_sample to CNYes

Gaussian proc.

DTree

Epsilon

Contextual
Bandits

Configuration Manager

3

4

2

5

6
7

1

U
se

r c
on

ne
ct

io
n

Figure 3: Learning framework workflow.

Slow path
Fast path
Get conn. features
Set configuration

AP
I

AP
I

Clients

Web server
Config.
Agent 2

1
2

Kernel module

1

Configuration
Manager

Figure 4: System architecture.

that a good configuration is found, (ii) steady-state, when
information from the GP-arm indicates “good” configurations,
Configanator uses either the epsilon-bandit to further explore
the configuration space, or the exploitation arm (i.e., D-Tree)
to leverage best configurations. Note that, random exploration
through epsilon-bandit continues after EI threshold is met.

3.2 Discovering Network Classes
Configanator extends on observations from prior stud-
ies [67, 89] and classifies homogeneous connections into
Network Classes (NC) with the intuition that similar connec-
tion characteristics lead to identical optimal configurations.

Design Goals and NC Features: The ideal NC-clustering
should (i) create a small number of clusters, each with a large
number of connections to amortize the cost of explorations, and
(ii) all members of a cluster should have near-identical profiles.
The two goals inherently contradict: the greater the number
of entities in an NCs, the higher the probability that the NC
contains entities with diverging performance. The second goal
is further complicated by the sensitivity of a configuration’s
performance (e.g., PLT) to a myriad of factors in the end-to-end
connection. To this end, we use network characteristics (band-
width, latency, loss rate), AS information (ASN, geo-location),
and device type as the basis for measuring similarity.

Capturing NC Features: To enable Configanator to
effectively tune both the transport and HTTP layers, we must
identify all features during the TCP handshake before the
HTTP version is negotiated through ALPN [60]. If we identify
features after HTTP negotiations, then tuning the HTTP layer
would require renegotiation and hence incurs latency penalty.
In Figure 2, we highlight the features collected during specific
phases of the connection: (1) During the TCP handshake,
we capture RTT, IP-prefix, and ASN/geo-location3. (2)
During the TLS handshake, we apply TLS fingerprinting
techniques [5, 18, 70, 127] on the TLS Client Hello to perform
device identification and capture device features (accuracy
evaluated in Appendix B). Note that, most operators already
employ TLS fingerprinting for security purposes [6, 61, 126]
and is also supported by major web servers [29]. We use the
Server Name Indication (SNI) in the Client Hello to determine
the website hostname which is one of the input features for the

3Captured using end-user’s IP and publicly available data (RouteViews
for AS [17], MaxMind for geo-location [62])

learning framework. (3) For goodput and loss rates, features
that cannot be captured during handshake, we build and use
a historical archive of these network characteristics.

Network Classification: Clustering can be done using con-
ventional techniques, e.g., K-means, hierarchical, or domain-
specific techniques [17,38,105], e.g., Hobbit [74] or, CFA [67],
or using CDN state of the art [26,87,119,139,140], e.g., latency-
based groups [26, 119, 139]. Although Configanator can in-
corporate any of the aforementioned techniques, our prototype
uses “K-means” clustering because of its simplicity. Confi-
ganator empirically selects the smallest K (i.e., the number of
classes) that bounds the spread of performance within each NC
by a predefined limit4(evaluated in § 6.2 and Appendix D).

3.3 Configanator Workflow
Figure 3 presents the end-to-end workflow. Default config-
uration is initially used for a newly-seen IP-prefix (1©, 2©) due
to the lack of information about its goodput and loss-rates. For
any subsequent connection from the IP-prefix, the recorded,
as well as the actively collected features, are used for NC
classification (3©). If the network, AS and device character-
istics do not fit into an existing NC, a new NC is created (4©)
and the next init_samples connections for the respective NC
are used for bootstrapping (5©) its empty context. When the
respective NC is bootstrapped, the multi-armed bandit uses
the actively and passively collected features, as well as the
requested website, for determining the context and alternates
between the arms (6©). The connections are correspondingly
tuned (7©) and the resulting performance metrics are fed
back into the models to help refine their classifications and
improve accuracy. Due to the computationally intensive nature,
Configanator builds/updates NC clusters in the background
and uses the already-built clusters for real-time classification.

4 Architecture

Our re-architected web server consists of four components
(Figure 4): The HTTP server application [39, 97, 121, 132] op-
erates as it does today: serves content and collects performance
metrics for each connection. The Configuration Manager runs
the learning algorithm on the telemetry collected from the
web servers. The Configanator-API abstracts vendor-specific

4Controlled by NCSpread knob in simulator (Table 4 in Appendix).

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1139

configuration details and provides a uniform interface
for configuring web server’s network stack parameters. A
Configuration Agent runs on each web server and uses the
information received from the Configuration Manager to
configure the connections through the Configanator-API.

Adopting this architecture in an incrementally deploy-
able manner is practically challenging. The configuration
parameters are exposed in an ad-hoc manner, e.g., tuning
transport configuration requires IOCTL and setsockopt,
while tuning HTTP requires changes to application code and
enhancements to the ALPN protocol. Additionally, most
CDNs use well-established code bases and exposing the
configuration interfaces required by Configanator should
incrementally build on the existing code.

4.1 Configanator-API
The Configanator-API presents a uniform interface over the
web server’s serving stack thus abstracting away OS and web
server specific details. This simplified interface enables the
Configuration Agent to easily tune the network stack, without
having to understand vendor-specific details or implications.

Transport tuning: Unfortunately, the traditional kernels
only expose and provide flexible reconfiguration for a subset of
TCP’s parameters. In particular, some parameters (e.g., ICW)
can be configured on the connection level, while others can
only be configured on a global scale (e.g., tcp_low_latency).
Using Configanator at a coarser granularity, either limits the
type of supported connections on a machine or limits the
configuration space. There are several options to address this
issue ranging from user-space TCP/IP stacks [35, 65, 106],
kernel modules, eBPF programs, to leveraging virtualization.
We opt for a kernel module-based design over virtualization
approaches because hosting a single configuration per VM
introduces significant overheads.

HTTP tuning: HTTP version and H2 settings are de-
termined through Application Layer Protocol Negotiation
(ALPN) [60] in TLS handshake and H2 SETTINGS [12]
frame, respectively. Given the requirement for per-connection
tuning, we augment the ALPN and the H2 SETTINGS frame
code to enable fine-grained control over these configurations.
In particular, Configanator configures these settings by
restricting the options presented in the server advertisement
to the configuration setting being tuned, e.g., to set the HTTP
protocol to H2, we limit the “ALPN next protocol” field in
TLS Server_Hello to just H2. Similarly, we restrict the options
in the SETTINGS frame to configure HTTP/2 settings.

Tuning Workflow: Configanator-API tunes both the TCP
and HTTP version during the TLS handshake: after receiving
the Client Hello from the end-user and prior to sending the
Server Hello. This is the perfect location to tune because (1)
the complete feature set required to determine a connection’s
NC and configuration can be captured at this point, and (2)
the server is yet to finalize the HTTP protocol, which the
ALPN selects in Server Hello, thus enabling us to configure

the HTTP version. We note that at this phase of the connection,
the TCP state machine is in its infancy because the sender has
not sent any data, and thus virtually no significant state is lost
when we change the congestion control algorithm or settings.

4.2 Configuration Agent
The Configuration Agent is the glue logic between the Con-
figuration Manager and Configanator-API — it collects the
connection features, uses rules provided by the Configuration
Manager to make configuration decisions, and configures them
using the Configanator-API. We select a proactive approach,
where the Configuration Manager constantly pushes NC
and configuration mappings to the Configuration Agent
which caches them locally. Further for an unseen IP-prefix,
Configuration Agent uses the default configuration, until the
Configuration Manager finds a better mapping.

4.3 Configuration Manager
The manager runs in a centralized location, e.g., a data center
or locally in a Point of Presence (PoP), with the implications
later explored in Appendix F.9. It is charged with running
the learning algorithms (§ 3), network classification models
(§ 3.2), and disseminating the configuration maps to the
Configuration Agents’ cache. The Configuration Manager
disseminates and collects data from the Configuration Agents
using distributed asynchronous communication. For the NC
and configuration maps, Configuration Manager broadcasts to
all Configuration Agents, whereas for reporting performance
data and for making one-off-request for configuration maps,
the Configuration Agents use unicast.

5 Prototype

The implementation highlights of the prototype are as follows:
Configanator-API: partly resides within the kernel (as a
module) and partially resides in user-space in the form of
additions to the web server code (in our case Apache). The
components within the kernel allow us to tune the transport,
while the user-space allows us to tune the HTTP layer.

The kernel module reuses functions provided by ker-
nel’s congestion controls through the tcp_congestion_ops
interface and tunes fields in appropriate structs (e.g.,
inet_connection_sock). For tuning globally-defined knobs at a
per-connection level (e.g., tcp_low_latency), we leveraged ker-
nel patches [34,55] to define and reference them from tcp_sock
struct. The user-space component within Apache code tunes
HTTP version in Apache and its design is generalizable to other
servers that use OpenSSL. OpenSSL library is used by most
web server implementations and allows web servers to register
a SSL_CTX_set_alpn_select_cb [44] callback to modify ALPN
decisions. To tune HTTP version, we register a call back which
looks up the HTTP version to use for a connection and restricts
the ALPN options advertised to the one specified by the Con-
figuration Agent. For H2 settings, we modify the Apache H2

1140 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

module to dynamically select the configurations while sending
the SETTINGS frame. The user-space agent also generates the
TLS fingerprint for device identification. We use JA3 [70] for
TLS fingerprinting. In both our testbed experiments and in the
live deployments, we use the ALPN-centric approach which
modifies protocol options presented in the advertisements.
Configuration Agent: is user-space code and is implemented
in 492 LoC of C++ code. The agent updates TCP and HTTP
settings via the Configanator-API. This component also parses
Apache’s logs for measuring network characteristics. For
measuring the PLT, the web server injects a simple JavaScript
into the webpage to measure the navigation timings.
Configuration Manager: is developed in 1435 LoC (Python).
It uses SciLearn [116] for D-Tree and GPyOpt [101] for the
Gaussian Process. For communication with the Configuration
Agents, we use ZeroMQ [144]. For D-Tree, we use SciLearn’s
CART algorithm with the following configuration: (i)
entropy for the information gain, (ii) set the minimum
number of leaf nodes to 80, (iii) set the minimum number
of samples needed for the split to 2, and (iv) do not limit the
depth of tree. For Gaussian process, we use init_sample=4,
min_sample_tested=7 and EI=8% thresholds. We tested a
range of these hyper-parameters settings 5 and selected the
ones resulting in the highest accuracy. Following [4], we tested
EI threshold in 3-15% range and selected 8% for its best trade-
off between accuracy and search cost. For controlling the “K’
for NCs, we use a NCSpread threshold of 5% (Appendix D).

6 Evaluation
We evaluated Configanator through a large-scale, trace-driven
simulator using real-world traces, and live-deployments (§ 7).
The simulation enables us to understand the system behavior
under dynamic conditions, as well as analyze the implications
of individual design choices.

6.1 Large Scale Trace Driven Simulations

Datasets: To simulate client activity, we use data from five
sources: (i) GlobalCDN comprises 8.2M requests sampled
from web and video services from 3 GlobalCDN PoPs (two
in N. America, one in Europe) for a duration of 6 hours. Each
request is a client fetching an object (e.g., web object, video
chunk, etc.) and contains user information (IP prefix, ASN,
etc.), observed server metrics (goodput, RTTs, loss rates etc.),
CDN logs (e.g., user to edge PoP mapping [26, 119]) and
performance metrics (time-to-last-byte). (ii) CAIDA [22],
packet traces from the Equinix data-center in Chicago (in
2016). (iii) MAWI [8], packet traces from the WIDE backbone
in Japan (in 2017). (iv) FCC [41], a U.S. nation-wide home
broadband dataset. (v) Pantheon [141, 142], a data set of client
sessions across different regions.

5(e.g., entropy vs Gini impurity for information gain, number of leaf nodes
ranging from 50 to 500, ID3, C4.5, and CART for D-Tree)

Generating client sessions: We use our traces to charac-
terize the network conditions of real-world users. CAIDA
and MAWI traces are captured at a vantage point between the
client and server and we measure the goodput, RTT and loss
rate by sequence-matching the data packets with their ACKs
6. GlobalCDN7, FCC and Pantheon datasets include the end-
to-end network characteristics between a client and server. We
model a client session as a time series of bandwidth (goodput),
latency and loss rate measured between a pair of end-points.

Configuration Rewards: To avoid the pitfalls of trace-
driven simulations [11], we decouple the modeling of
configuration rewards (i.e., PLT calculation) from the process
of generating client sessions. Our testbed comprises a cluster
of 16 Linux servers (kernel 4.20), divided evenly to act as
server (Apache) and clients (Chromium [50]). Our control over
the machines and network enable us to set arbitrary server-side
configurations (from Table 1) and emulate the bottleneck link
to match the measured goodput, latency and loss rates from
the datasets (using NetEm, TC [54]), with buffer-size set to
Bandwidth Delay Product (BDP). To isolate the impact of
network and configuration on PLT, caching (server or browser)
is disabled and each server serves a single client (no resource
contention). Using this testbed, we exhaustively measure
the PLT for all combinations of configurations (Table 1). For
each {network condition, configuration} pair, each website is
loaded multiple times with the browser8. The final results are
stored in a large tensor that maps {network condition (goodput,
RTT, loss-rate), configuration, website} to PLT – called the
PLT-Tensor comprising data from the pageloads in the testbed.

Simulator (Virtual Browser): Leveraging the client
sessions and the PLT-Tensor, the simulator simulates the
client’s browsing behavior and interaction with Configanator
as follows (visualized in Appendix F.1): (i) website9, user
information (e.g., IP) and session characteristics are taken as
inputs, (ii) the learning framework determines the appropriate
configuration for a connection, and (iii) pageload is simulated
by using the PLT-Tensor to determine PLT for the client given
the selected configuration. The simulator feeds the PLT back
to the learning framework to complete the feedback loop.

PLT is sensitive to a myriad of features, ranging from
dynamic network conditions at different time-of-the-day [67],
user devices, to inherent variability. The session time-series
captures the network dynamics and the testbed isolates the
impact of network conditions on configurations. Table 4 lists
the set of knobs we leveraged to test various realistic design
choices, e.g., NCSpread to test various “K” sizes, PerfMemory
to test the impact of PLT variability, etc. To account for the
other factors like user devices, we conducted a scaled-down

6Over a 5-second window (tunable through ChunkSize parameter in
the simulator), e.g., data ACKed in 5s is used to measure goodput between
vantage point/user. Further, we ignore duplicate ACKs while measuring RTTs.

7Measurements are on a per-request granularity. For multiple readings
within the 5s window, we aggregate and use the median value.

8We repeated each measurement 5 times, similar to [135].
9We iteratively load every website from our corpus for a given session.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1141

-40

-30

-20

-10

 0

 10

 20

 30

 40

Random
Brute BO

Brute+NC
BO+NC

CP+NC

MAB+NC

Configanator

Optim
al

%
 i
m

p
ro

v
e

m
e

n
t

o
v
e

r
d

e
fa

u
lt

Learning algorithms

(a) MAWI traces

-80

-60

-40

-20

 0

 20

 40

 60

 80

Random
Brute BO

Brute+NC
BO+NC

CP+NC

MAB+NC

Configanator

Optim
al

%
 i
m

p
ro

v
e

m
e

n
t

o
v
e

r
d

e
fa

u
lt

Learning algorithms

(b) GlobalCDN traces
(c) Heatmap of median PLT improvement

in different networks (GlobalCDN)
Figure 5: Benefits of Configanator (box whiskers show 5th and 95th percentiles).

experiment on a CDN and tested different configurations for
the real-world, diverse user devices (results in § 7.1).

Alternate algorithms: We evaluate against 8 algorithms:
(i, ii) Brute-force (Brute, Brute+NC): explores individual
configurations, in an online manner, until all are explored and
uses the best one (i.e., lowest PLT) for subsequent connections.
Brute learns at the granularity of individual clients (i.e., unique
IP) while Brute+NC clusters clients into Network Class (NC),
and thus learning is spread across each NC.
(iii, iv, v) Bayesian Optimization (BO, BO+NC, Cher-
ryPick+NC): Bayesian Optimization is used to explore
the configuration space and the best-explored option is
exploited once BO-specific thresholds are met (§ 5). BO
learns per client and BO+NC learns on a user group (NC)
granularity. CherryPick+NC is similar to BO+NC but with
hyper-parameters specified in [4].
(vi) Multi-armed Bandit (MAB+NC): uses traditional MAB
with a weighted epsilon-greedy agent [133]. Each arm of the
bandit is a different configuration, tested on NC granularity.
(vii) Random: Randomly selects a configuration in each trial.
(viii) Optimal: An oracle suggests the optimal parameters for
a session by offline brute-force , i.e., PLT is calculated for the
entire configuration space for each session offline and the con-
figuration with the lowest PLT is used. This process is repeated
for every session and puts an upper bound on improvement.

6.2 Effectiveness of Configanator

Figures 5a, 5b present the improvement in PLTs over default
configurations for the different algorithms. The box plots
compile data across the website pageloads for the client
sessions in the respective trace. Configanator outperforms
all alternatives at median and tail, improving p95 PLTs by
67% for GlobalCDN (1500ms), 36% (1100ms) for MAWI,
32% (610ms) for FCC, 48% (640ms) for CAIDA and 57%
for Pantheon (850ms). Unlike Default, while Brute and BO
apply different configurations to users, they assume that the
network remains static and are unable to adapt to fluctuations.
Moreover, due to its inability to adjust to fluctuations, BO
often explores over 90% of the space without achieving the
target EI, behaving similarly to Brute. Brute+NC, BO+NC
and CherryPick+NC improve over the prior by amortizing the
costs of learning but fail to adjust to non-Gaussian variations.

Although MAB+NC is able to handle non-Gaussian noise, it
explores/exploits on a per-NC basis and, due to the lack of a
cross-NC exploitation arm (Configanator’s DT), MAB+NC
falls short in its ability to apply patterns learnt across NCs.

As Configanator continuously learns and tests new
configurations in an online fashion, a ‘bad’ configuration
may be tested during the exploration phase and may lead to
performance degradation. This behavior contributes to the
worse PLT than Default for the p5 pageload in Figures 5a, 5b.
A breakdown of the performance degradation and its causes
are presented in Appendix F.8.

Dissecting Performance Improvements: Next, in Fig-
ure 5c, we analyze performance breakdown for a subset of
websites according to the networking conditions used in prior
work [135]). We make two observations: (i) Improvements
tend to be higher in low bandwidth, low to high RTT/loss
networks (typical for developing regions) with a median value
of 14-67% compared to 10-25% for high bandwidth. We
postulate that this trend is an outcome of the higher focus on
developed region networks (typically high bandwidth, low
RTT/loss) for the default configuration selection [33]. We ob-
serve a similar trend across our traces: GlobalCDN, MAWI and
Pantheon traces (p95 RTT in 100-180ms) tend to show higher
improvements than FCC and CAIDA (US-based,∼60ms p95
RTT). (ii) the websites with highest benefits tend to be content-
rich, e.g., 9gag.com and cnn.com observe >45% and >60%
improvement, respectively, for all low bandwidth networks.

6.3 Benefits of Learning Ensemble

Next,we analyze the convergence for the top-3 algorithms from
§ 6.2 to focus on the aspects of Configanator that lead to better
performance. We further split Configanator into two versions
to analyze the benefits of its bandits: “NoGP” lacks GP and
guided exploration, while “NoDT” lacks the decision tree.

Figures 6 plots the median distance from optimal across
all NC and websites, for the first 500 update iterations. The ob-
servations are: (i) As data is gathered, Configanator performs
better than others because of its ability to blend the benefits of
both GP and DT – essentially efficient exploration and effective
exploitation (iterations 3-10). Brute+NC exhaustively explores
the complete space before converging to a choice, while
MAB+NC exploration lacks the guided nature of acquisition

1142 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 5

 10

 15

 20

 25

 30

 1 10 100

%
 d

is
ta

n
c
e

 t
o

 o
p

ti
m

a
l

Number of iterations per NC

MAB+NC
Brute+NC

ConfiganatorNoGP
ConfiganatorNoDT

Configanator

Figure 6: Cold-start conver-
gence to optimal across NCs.

0.88 0.90 0.92 0.94 0.96 0.98 1.00
PLT ratio [Configanator / others]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F a

cr
os

s p
ag

elo
ad

s Solid line = MAB+NC
Dot line = Brute+NC

k=3X
k=2X
k=1.5X

Figure 7: Impact of number
of NCs (K) on performance.

function. (ii) Eventually, with sufficient data Configanator-
NoGP is able to use the decision tree’s predictive power to
achieve near ideal performance (iterations 100+). Although
MAB+NC gets within 2-3% of optimal for these iterations,
it still needs more iterations to reach the optimal. (iii) While
NoGP perform comparably for median at 200+ iterations,
performance at the tail is still different (Appendix F.4).

6.4 Impact of Network Classes
Impact of Number of NCs: Next, we evaluate the impact of
our clustering configuration (i.e., NCSpread) and analyze how
the cluster size impacts performance. Intuitively, NCSpread
bounds the performance variance within a cluster and has
a direct impact on the number of clusters, or ‘K’. Given a
NCSpread value, the simulator performs a brute-force search
to determine the smallest K that yields the threshold. We tested
three scenarios with K inflated to {1.5, 2, 3} times the baseline
value (Figure 5 experiments). The inversion from NCSpread
to K and its implications on modeling accuracy are further
discussed in Appendix D.

Figure 7 plots the ratio of Configanator and {MAB+NC,
Brute+NC} PLT across the pageloads in GlobalCDN trace (<1
when Configanator outperforms). We observe the performance
gap between Configanator and others increases with the K
size. Although the large K results in a higher number of
tighter NCs with lower performance spread within their
constituents, it leads to an overall increase in exploration steps
for MAB+NC and Brute+NC, as these algorithms explore
the individual NCs independently. Further, the individual
NC’s best-found configuration is exploited for a narrower
set of connections due to a lower number of connections in
each cluster as compared to the case when K is small. On
the other hand, the DT-arm in Configanator builds on the
data collected for all NCs (§ 3.1). As soon as Configanator
switches to DT-arm fairly early (Appendix F.3), it is able to
exploit the best-found configuration for a wider audience,
irrespective of the NC boundaries. The higher degree of
exploration required by MAB+NC and Brute+NC makes their
performance sub-optimal for the NCs with a smaller number
of connections. Moreover, this can also lead to performance
problems for tail connections, who are often in smaller NC
due to their divergent network and device characteristics.

Impact of Size of NC (# of connections): Configanator
aggregates network measurement across similar connections

and assumes homogeneity within an NC. Though an NC with
a small number of users may lead to a smaller number of con-
nections to learn from, it also favors the system as connections
in the respective NC are strictly homogeneous. Next, we ex-
plore the impact of this bias on our results. We divide the NCs
based on their unique number of IP prefixes and compare the
PLTs observed for the individual prefixes with the NC’s global
PLT, i.e, median across all the prefixes in the NC. For two of
such divisions, Table 3 presents the PLT comparison across the
prefixes in NC groups. Compared to the <=5 group, i.e., NCs
with a small number of distinct prefixes, where performance
for most prefixes matches the global one; >=30 group shows
more varying performance (e.g., lower than global PLT for the
p25 prefix). However, we observe that the presence of larger
NCs does not drastically impact Configanator as performance
for most of the prefixes is still on par with the global one. For
the tail prefixes that performs poorly as compared to the global
PLT for the >=30 group, Configanator overfits the best-found
configuration for the NC majority to the tail prefixes, and is ob-
served to still outperform the Default (row 4 and 6 in Table 3).

6.5 TCP Connection Reuse (ConnReuse)
CDNs typically employ ConnReuse, allowing a new request to
reuse older TCP connection. The key advantage of this feature
is that the new request inherits matured congestion window
(cwnd) and does not restart the connection from scratch, i.e.
ICW. To analyze connection reuse, we analyzed the trace
(GlobalCDN) to identify if and when requests reused existing
connections and modified our setup to employ the reused
connection’s cwnd as the ICW for the page load10.

Figure 8 plots Configanator improvement over ConnReuse.
We observe that Configanator gains are reduced from 18%
over Default (Figure 5b) to 14% at the median. The benefits
at the tail are still substantial, with 56% p95 improvement.
There are several reasons for this behavior: First, connection
reuse only impacts the slow-start phase (e.g., ICW) and does
not tune the CCA and HTTP, the top two critical knobs (Fig-
ure 13). Second, even with reuse, a connection is not always
guaranteed to reuse the old cwnd, since other TCP settings like
slow_start_after_idle may reset to default ICW — forcing a
reused connection to again go through slow start phase. In fact,
the old cwnd is reused with a probability of 0.27 in our trace,
i.e., only a small subset of requests exploit the benefits of
reuse. Third, unlike Configanator’s exploitation of good con-
figurations for similar connections, the scope of ConnReuse if
limited to a single connection — a new connection from even
the same user will go through the default slow start phase. Con-
sequently, while connection reuse outperforms the Default by
only 4.65% and 19.6% at median and tail respectively, a variant

10We infer ConnReuse if the first cwnd for a request is greater than
connection’s ICW. Our GlobalCDN trace directly captures these fields for
each request. Note that, the reused connection may also inherit the MTU and
SRTT values, but we limit our focus to the key component that limit data
transfer, i.e., cwnd.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1143

NC PLT ratio Prefix distribution
group p5 p25 p50 p75 95

<=5 Global / Configanator 0.92 1.0 1.0 1.0 1.08
Default/Configanator 1.05 1.07 1.14 1.27 2.34

>=30 Global / Configanator 0.89 0.96 1.0 1.0 1.06
Default/Configanator 1.04 1.09 1.17 1.21 2.67

Table 3: Impact of NC size on performance.

0 20 40 60
Improvement over conn. reuse

0.0

0.2

0.4

0.6

0.8

1.0

CD
F
ac

ro
ss
 p
ag

el
oa

ds

Figure 8: Impact
vs TCP connection reuse.

0.2 0.4 0.6 0.8
Jain's Fairness Index

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

ac
ro

ss
 n

et
wo

rk
s Configanator

all-configs,75%
Configanator
all-configs,50%
Configanator
noBBR,75%
Configanator
noBBR,50%

Figure 9:
Impact on fairness.

0.80 0.85 0.90 0.95 1.00
Normalized PLT

0.0

0.2

0.4

0.6

0.8

1.0

CD
F
ac
ro
ss
 p
ag

el
oa

ds NoBBR
NoHighICW
NoBBR
NoHighICW
Default

Figure 10:
Only fair configurations.

of Configanator that only tunes ICW still performs ConnReuse
with 8.7% and 23.4% improvements at median and tail.

These results suggest that ConnReuse alone is not the silver
bullet, also portrayed by other ICW tuning system [42], and
Configanator is expected to bring substantial improvements
even when traditional optimizations are considered.

6.6 System Benchmarks
Next, we evaluate the latency, CPU and memory overheads.
The experiments are performed in a testbed by emulating
network conditions from our traces for 10 randomly selected
websites. We repeat each test 1000 times.

Latency Overheads: For latency overheads, we focus on
the modifications to ALPN to enable HTTP level tuning. We
compare Configanator against a version that does not modify
ALPN and tunes HTTP level by renegotiates which incurs at
least 1-RTT overhead. Figure 11 plots the PLT for the two vari-
ants, normalized by Default (vanilla Apache). Given that Con-
figanator simply edits the “ALPN next protocol” field in TLS
Server_Hello without requiring any extra communication, we
observe no latency overheads and a similar performance to the
Default. For Renegotiation, we observe a slight PLT inflation
(∼3% at the median) which is due to the TLS renegotiation re-
quired to switch the HTTP version. We note that this approach
still has a minor overhead (4% higher PLT at median) because a
page load requires many RTTs and this overhead get amortized.

CPU and Memory Overheads To measure the CPU and
memory overheads, we leveraged the Apache Benchmark
tool to setup 100, 250 and 500 concurrent connections. We
observe slight CPU overhead (<5%) as compared to Default.
Although reconfiguring the connections do not require
any additional memory, keeping the IP prefixes and their
NC/configuration rules in the KV-store contributed to an
increased memory usage.

6.7 Fairness Implications
Next, we explore the fairness implications. Within the testbed,
we explore the situation where 30 concurrent flows share a
representative bottleneck link, i.e., the access links for 3G,
4G, etc (number of flows from [115] Appendix F.10), under
shallow buffers ({0.5 and 1} BDP). We use Jain’s Fairness
Index [63] to quantify fairness. We split the connections into
two groups – one using Configanator and another using the
default configuration (e.g., Cubic with 10MSS ICW). We then

vary the percentage of connections in each group.
Quantifying Unfairness: Figure 9(a) present Jain’s index

when 75% and 50% of the flows are tuned. We observe that fair-
ness decreases as the percentage of Configanator-tuned flows
increases. Unsurprisingly, unfairness arises for two reasons:
(1) when a flow is configured to use BBR [24,57,111,129,137],
and (2) when a flow is configured to use high ICW values
(even if BBR is not used) [52, 72, 88].

Configanator without unfair configurations: Next, we
excluded the unfair configurations from the configuration
space and tested 3 scenarios: (i) prevent BBR usage, (ii)
prevent high ICW usage, (iii) prevent both. Figure 10 plots the
ratio of PLT seen for vanilla Configanator (all configuration) to
the variants, for GlobalCDN traces. We observe that NoBBR
and NoHighICW perform similar to vanilla system for a
significant fraction of the trace (63% and 35% respectively)
and within 6% for worst case: this is because BBR is not
always the optimal choice and application layer tuning (HTTP
version) helps account for the lack of BBR or HighICW.

The results show that Configanator can provide an alternate
war-chest to CDNs to improve web performance, even without
using the unfair configurations.

6.8 Critical Knobs

We analyze the relative importance of reconfiguring different
configuration parameters (Table 1). Our goal is to understand
the minimal (or critical) parameters that must be tuned to
significantly improve performance. In Figure 13, we plot the
performance benefits of using distinct subset of configuration
parameters, leveraging the brute-force exploration data from
PLT-Tensor. We observe that the top 3 crucial parameters are
HTTP version, congestion control algorithm (TCP-CC) and
ICW. Moreover, when performing a layer to layer comparison,
we observe that the Transport layer parameters combined
(Tran. layer) have a higher impact on performance than the
Application layer knobs combined(App layer). To explain
this discrepancy, we analyze the different knobs in each layer
and we observed that while certain transport knobs, e.g.,
Auto Corking, have little benefit in the median scenario, they
are influential at the tails. Unlike the transport layer, in the
Application layer most of the parameters (e.g., HTTP2 settings
like header table size etc.) do not show significant benefit in
median or tail conditions.

1144 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Renegotiation Configanator
Scheme for setting config.

0.9

1.0

1.1

1.2

PL
T
ra
tio

 [S
ch

em
e
/ D

ef
au

lt]

Figure 11:
Latency overheads.

0 10 20 30 40 50 60
% improvement in TTLB

0.0

0.2

0.4

0.6

0.8

1.0

CD
F
ac
ro
ss
 re

qu
es
ts

Figure 12: Reconfiguration
benefits for CDN traffic

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

Tran.
layer

App
layer

HTTP TCP
CC

ICW Auto
cork

Low
latency

Pacing Time
stamps

init
RTO

wmem

%
 i
m

p
ro

v
e

m
e

n
t

in
 P

L
T

Configuration knobs

Figure 13: Critical configuration parameters

0 10 20 30 40
PLT [s]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F
ac

ro
ss
 p
ag

el
oa

ds

Default
Configanator

Pageload PLT diff. (ms) % imp.
p25 671 13.7
p50 767 14.6
p75 1219 21.5
p95 3797 26.3

Figure 14: Live deployment PLTs and improvements.

7 Live Deployment
In this section, we present the results for dynamically tuning
the configurations at scale through a controlled experiment
at GlobalCDN and a live prototype deployment on Google
Cloud with 3161 end-users.

7.1 Validation at GlobalCDN
Next, we validate our approach when applied to data with more
realistic and diverse client settings. We conducted measure-
ments at GlobalCDN to collect data regarding performance of
different configurations for the diverse networks and end-user
devices. Specifically, we used the default configuration for
80% of the connections and explored random configurations
for the rest to generate the data needed to emulate the contextual
multi-armed bandit based exploration. Due to operational con-
straints, we analyzed a subset of configuration knobs: different
congestion control algorithms and ICW. The experiments were
conducted by randomly selecting 1% of the users from 3 of the
CDN PoPs, for a duration of 6 hours. Note, these PoPs have
the same workloads as the GlobalCDN trace described earlier.

We replayed the captured traces in our simulator, with two
key distinctions: (i) the testbed-based PLT-Tensor was replaced
by TTLB measurements collected from production users, since
these TTLB measurements encompass the performance across
real-world users, (ii) This experiment covers diverse user de-
vices in-the-wild. Figure 12 presents the TTLB improvements
for Configanator (versus default configuration) with upto 37%
improvement at the tail (p95). Although this simulation covers
a smaller configuration space, the improvements affirm the
efficacy of tuning at scale, working with the diverse set of NC
features (user device, network, geo-location, AS).

7.2 Google Cloud Deployment
We deployed Configanator on several Google Cloud servers,
each with 8 CPU cores and 32 GB of RAM. We evenly divide

the servers into two groups: one half with the Configanator-
enhanced servers, while the other half with traditional Apache
server. We cloned a variety of real-world websites from Alexa
top-100 and hosted them on servers without sharding. We
hosted the Configuration Manager on a dedicated instance.

For clients, we used SpeedChecker [81, 82], a platform for
global Internet measurements with vantage points deployed
across the globe. We had 3161 clients in total, spread across
4 of the continents. The clients periodically conducted
pageloads from both the Configanator and the traditional web
servers at the same frequency, resulting in∼150K pageloads
in 21 days. Further details about SpeedChecker are provided
in Appendix F.1.

Figure 14 plots the raw PLTs observed for the two systems,
with the accompanying table summarizing the PLT difference
and improvements. Due to the online nature of the exploration
and learning, we observe PLT degradation for a small subset of
pageloads: 4.3% of the pageloads faced upto -13% degradation.
For the rest, Configanator resulted in significant improvements,
with upto 3.8s improved PLT at the tail (upto 767ms for
the median). Dissecting the improvements across networks
and websites, we observe a trend similar to Figure 5c: low
bandwidth, high RTT/loss networks and content-rich websites
get the most benefits. For the top configurations, we observe
no clear winner: top 5 covered 3 CCs (BRR, Cubic and Vegas),
both HTTP versions, and ICW randing from 16 to 40. We
observe a stark difference in the ICW values used by clients
in developed regions (Europe, N.America), with higher ICW
(30-50 MSS), compared to developing regions (16-24 MSS).

Most of the clients (∼75%) are from N.America/Europe
and the rest are geographically distributed which results in un-
balanced Network Classes (NCs), leading to a higher share of
traffic for the probes in N.America/Europe. Interestingly, NCs
with the most number of pageloads, although showing good
improvements (11-13% at median), are not the ones where we
observe the highest benefits, owing to their good bandwidth,
low RTT connections. We observe that the less-dense NCs
still outperform Default (by more than 8% at median), since
Configanator’s exploitation arm is able to generalize to a
modest extent by using data collected across all NCs.

8 Discussion and Limitations
Security and Equilibrium: Potential implications of
self-learning systems include adversarial attacks [123] or
oscillations. We are working to formulate the interactions

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1145

between different instances of Configanator (i.e., deployments
by different CDNs) as a game-theoretic problem to understand
our system at equilibrium.
Management Overheads: Dynamically reconfiguring the
CDN’s protocol stack complicates performance diagnosis. We
plan to investigate methods for reducing this complexity, e.g.,
minimizing the number of active configuration combinations.
Further, different configurations may vary in their resource-
consumption at the CDN edge and we plan to investigate the
configuration associated resource-overheads in the future.
Data Bias: Configanator’s data-driven workflow can be im-
pacted by the inherent biases of trace-driven systems [11], e.g.,
choice of configuration can have an impact on the feedback
loop’s decision features. We leave a more comprehensive
analysis of biasness to future work.
Testbed Limitations: Owing the lack of cellular connections
and devices in the testbed, our simulator is unable to emulate
different end-user devices and cellular last-miles. Although the
dataset from GlobalCDN covers diverse last-mile connections
and devices, we plan to explore systematic approaches to
incorporate this diversity in the testbed.

Trace Limitations: While several of our traces capture
end-to-end behavior (GlobalCDN, Pantheon, FCC), two of
our traces do not. Specifically, CAIDA and MAWI traces
are from core router and we recreate end-to-end behavior by
matching data with ACKs: this recreation can introduce some
imprecision into our latency, loss and BW calculations.

NC Size Bias: As demonstrated in the evaluation, connection
homogeneity within an NC (due to small NC size) favors Con-
figanator. This bias is prevalent in two of our traces, FCC and
Pantheon (comprising synthetically generated flows). How-
ever, this does not hold for the realistic traces (e.g.,GlobalCDN)
which are mainly focused in the evaluation when discussing
the size bias, and still shows improvements over the Default.

9 Related Work
Web Performance Many measurement stud-
ies [3, 33, 36, 48, 135] have explored the performance of differ-
ent networking protocol settings and the impact of tuning on
web performance. Our system builds on the observations from
these studies: namely that different configurations are required
for different network conditions and websites. Web improve-
ment by cross-layer tuning was earlier motivated in [91]
(Configanator’s workshop paper) and the present paper builds
a practical algorithm and system for tuning the configurations.
It further evaluates idea in a wide range of realistic scenarios.

Self-Tuning Systems: Self-tuning systems have
been explored within the context of transport proto-
cols [31, 64, 77, 98–100, 113, 138], video [2, 68, 85, 124],
databases [32, 56, 131], and cloud systems [4, 13, 78, 147].
While our work shares a similar ideology of exploiting hetero-
geneity, we differ in our methods for learning optimal config-
uration and in the domain specific solution for implementing

reconfiguration. While [68, 85] employ similar multi-armed
bandits, our bandit generalizes across clusters and includes
a Gaussian process to speed up learning. Additionally, while
some model relatively static or offline workloads [2,4,32,131],
Configanator takes an online approach to tackle network and
workload dynamics. Unlike [138] which rely on priori as-
sumptions of the network, Configanator builds a performance
model-based on live feedback which allows it to adapt to net-
work dynamics. In contrast with [31, 64, 77, 79, 98–100, 113]
which focus on tuning specific aspects of stack, Configanator
tunes across a broader set of layers and parameters. Similarly,
while these techniques use features from only network, Con-
figanator also incorporates application features (e.g., website).

While Configanator focuses on control over server config-
urations, others [48, 109] require control over both the servers
and the network switches to perform appropriate learning
and tuning — applicable to data centers. Others [7, 90]
move CCA outside data-path, enabling fast development and
portability. Such innovative techniques simplify the design
of Configanator by externalizing and simplifying tuning.

CrossLayer Optimizations. We differ from existing
cross-layer optimizations [3, 9, 15, 25] which introduce APIs
to enable the different layers to communicate and react
accordingly the network events. Instead, we externalize
the optimization logic and present an interface across the
different layers to enable an external entity to configure the
different layers which requires a learning algorithm agnostic
of applications – a key contribution of Configanator.

10 Conclusion
In this paper, we argue that “one-size-fits-all” approach to con-
figuring web server’s network stack results in sub-par perfor-
mance for end-users, especially those in emerging regions. Due
to the ever-expanding nature of Internet, all end-users do not
face similar network conditions. This argument stands in stark
contrast to the traditional setup of today’s web serving stacks
where a single configuration is used for a divergent set of users.

This paper takes the first step towards realizing hetero-
geneity and fine-grained reconfiguration in a principled and
systematic manner: our system, Configanator, introduces a
principled framework for learning better configurations, than
the default, for a connection by systematically exploring the
performance of different configurations across a set of similar
connections. We demonstrate the benefits of Configanator
using both a live deployment and a large scale simulation.

11 Acknowledgments
We thank the anonymous reviewers, Michael Schapira (our
shepherd), Zachary Bischof, Luca Niccolini, Ranjeeth Dasi-
neni, Huapeng Zhou and Ali Razeen for their invaluable feed-
back on earlier drafts of this paper. We also thank Janusz Jezow-
icz from SpeedChecker for granting us access to their platform.
This work is supported by NSF grants CNS-1819109, CNS-
1814285 and Richard B. Salomon Faculty Research Award.

1146 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] AHMAD, S., HAAMID, A. L., QAZI, Z. A., ZHOU, Z.,
BENSON, T., AND QAZI, I. A. A view from the other
side: Understanding mobile phone characteristics in the
developing world. In Proceedings of the 2016 ACM
on Internet Measurement Conference (2016), ACM,
pp. 319–325.

[2] AKHTAR, Z., NAM, Y. S., GOVINDAN, R., RAO, S.,
CHEN, J., KATZ-BASSETT, E., RIBEIRO, B., ZHAN,
J., AND ZHANG, H. Oboe: auto-tuning video abr al-
gorithms to network conditions. In Proceedings of the
2018 Conference of the ACM Special Interest Group on
Data Communication (2018), ACM, pp. 44–58.

[3] AL-FARES, M., ELMELEEGY, K., REED, B., AND
GASHINSKY, I. Overclocking the yahoo!: Cdn for
faster web page loads. In Proceedings of the 2011 ACM
SIGCOMM conference on Internet measurement con-
ference (2011), ACM, pp. 569–584.

[4] ALIPOURFARD, O., LIU, H. H., CHEN, J.,
VENKATARAMAN, S., YU, M., AND ZHANG,
M. Cherrypick: Adaptively unearthing the best cloud
configurations for big data analytics. In NSDI (2017),
pp. 469–482.

[5] ALTHOUSE, J. Tls fingerprinting with ja3 and ja3s.
https://sforce.co/3kUXKv8.

[6] ANDERSON, B. Tls fingerprinting in the real world.
https://bit.ly/3l3Jnoe.

[7] ARASHLOO, M. T., GHOBADI, M., REXFORD, J., AND
WALKER, D. Hotcocoa: Hardware congestion control
abstractions. In Proceedings of the 16th ACM Workshop
on Hot Topics in Networks (2017), ACM, pp. 108–114.

[8] ARCHIVE, M. W. G. T. Packet traces from wide back-
bone 12/1/17 to 12/7/17. http://mawi.wide.ad.jp/
mawi/.

[9] BALAKRISHNAN, H., RAHUL, H. S., AND SESHAN,
S. An integrated congestion management architecture
for internet hosts. ACM SIGCOMM Computer Commu-
nication Review 29, 4 (1999), 175–187.

[10] BALAKRISHNAN, H., STEMM, M., SESHAN, S., AND
KATZ, R. H. Analyzing stability in wide-area network
performance. ACM SIGMETRICS Performance Evalu-
ation Review 25, 1 (1997), 2–12.

[11] BARTULOVIC, M., JIANG, J., BALAKRISHNAN, S.,
SEKAR, V., AND SINOPOLI, B. Biases in data-driven
networking, and what to do about them. In Proceedings
of the 16th ACM Workshop on Hot Topics in Networks
(2017), ACM, pp. 192–198.

[12] BELSHE, M., PEON, R., AND THOMSON, M. Hy-
pertext transfer protocol version 2 (http/2). https:
//http2.github.io/http2-spec/.

[13] BILAL, M., AND CANINI, M. Towards automatic pa-
rameter tuning of stream processing systems. In Pro-
ceedings of the 2017 Symposium on Cloud Computing
(New York, NY, USA, 2017), SoCC ’17, ACM, pp. 189–
200.

[14] BOJAN PAVIC, CHRIS ANSTEY, J. W. Why does speed
matter? https://web.dev/why-speed-matters/.

[15] BRIDGES, P. G., WONG, G. T., HILTUNEN, M.,
SCHLICHTING, R. D., AND BARRICK, M. J. A con-
figurable and extensible transport protocol. IEEE/ACM
Transactions on Networking 15, 6 (2007), 1254–1265.

[16] BROCHU, E., CORA, V. M., AND DE FREITAS, N.
A tutorial on bayesian optimization of expensive cost
functions, with application to active user modeling and
hierarchical reinforcement learning. arXiv preprint
arXiv:1012.2599 (2010).

[17] BROIDO, A., AND CLAFFY, K. Analysis of Route-
Views BGP data: policy atoms. In Network Resource
Data Management Workshop (Santa Barbara, CA, May
2001).

[18] BROTHERSTON, L. Fingerprintls. https://bit.ly/
3BJfFuK.

[19] BRUTLAG, J. Speed matters for google web search,
2009.

[20] BUTKIEWICZ, M., MADHYASTHA, H. V., AND
SEKAR, V. Understanding website complexity: mea-
surements, metrics, and implications. In Proceedings
of the 2011 ACM SIGCOMM conference on Internet
measurement conference (2011), ACM, pp. 313–328.

[21] BUTKIEWICZ, M., WANG, D., WU, Z., MAD-
HYASTHA, H. V., AND SEKAR, V. Klotski:
Reprioritizing web content to improve user experience
on mobile devices. In NSDI (2015), vol. 1, pp. 2–3.

[22] CAIDA. The caida ucsd anonymized internet traces
2016 dataset. https://bit.ly/3l1AVG6.

[23] CARDWELL, N., CHENG, Y., GUNN, C. S., YEGANEH,
S. H., ET AL. Bbr: congestion-based congestion control.
Communications of the ACM 60, 2 (2017), 58–66.

[24] CARDWELL, N., CHENG, Y., YEGANEH, S. H.,
SWETT, I., VASILIEV, V., JHA, P., SEUNG, Y.,
MATHIS, M., AND JACOBSON, V. Bbr v2 a model-
based congestion control. https://bit.ly/3x4bQwx.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1147

https://sforce.co/3kUXKv8
https://bit.ly/3l3Jnoe
http://mawi.wide.ad.jp/mawi/
http://mawi.wide.ad.jp/mawi/
https://http2.github.io/http2-spec/
https://http2.github.io/http2-spec/
https://web.dev/why-speed-matters/
https://bit.ly/3BJfFuK
https://bit.ly/3BJfFuK
https://bit.ly/3l1AVG6
https://bit.ly/3x4bQwx

[25] CHEN, A., SRIRAMAN, A., VAIDYA, T., ZHANG, Y.,
HAEBERLEN, A., LOO, B. T., PHAN, L. T. X., SHERR,
M., SHIELDS, C., AND ZHOU, W. Dispersing asym-
metric ddos attacks with splitstack. In HotNets (2016),
pp. 197–203.

[26] CHEN, F., SITARAMAN, R. K., AND TORRES, M. End-
user mapping: Next generation request routing for con-
tent delivery. ACM SIGCOMM Computer Communica-
tion Review 45, 4 (2015), 167–181.

[27] CUI, Y., DAI, N., LAI, Z., LI, M., LI, Z., HU, Y., REN,
K., AND CHEN, Y. Tailcutter: Wisely cutting tail la-
tency in cloud cdns under cost constraints. IEEE/ACM
Transactions on Networking 27, 4 (2019), 1612–1628.

[28] DEAN, J., AND BARROSO, L. A. The tail at scale.
Communications of the ACM 56 (2013), 74–80.

[29] DEV@TRAFFICSERVER.APACHE.ORG. Ja3 fingerprint
plugin. https://bit.ly/3iTg70U.

[30] DIGITAL, D. Milliseconds make millions: A study on
how improvements in mobile site speed positively affect
a brand’s bottom line. https://bit.ly/3rpm8WP.

[31] DONG, M., LI, Q., ZARCHY, D., GODFREY, P. B.,
AND SCHAPIRA, M. Pcc: Re-architecting conges-
tion control for consistent high performance. In NSDI
(2015), vol. 1, p. 2.

[32] DUAN, S., THUMMALA, V., AND BABU, S. Tuning
database configuration parameters with ituned. Pro-
ceedings of the VLDB Endowment 2, 1 (2009), 1246–
1257.

[33] DUKKIPATI, N., REFICE, T., CHENG, Y., CHU, J.,
HERBERT, T., AGARWAL, A., JAIN, A., AND SUTIN,
N. An argument for increasing tcp’s initial conges-
tion window. Computer Communication Review 40, 3
(2010), 26–33.

[34] DUMAZET, E. tcp: provide syn headers for passive con-
nections. https://lwn.net/Articles/645128/.

[35] DUNKELS, A., ET AL. The lwip tcp/ip stack. lwIP–A
LightWeight TCP/IP Stack (2004).

[36] ERMAN, J., GOPALAKRISHNAN, V., JANA, R., AND
RAMAKRISHNAN, K. K. Towards a spdyier mobile
web? IEEE/ACM Transactions on Networking 23, 6
(2015), 2010–2023.

[37] FACEBOOK. Aquila (internet deployment by drone).
https://bit.ly/2V92Adk.

[38] FACEBOOK. Network connection
class. https://github.com/facebook/
network-connection-class.

[39] FACEBOOK. Proxygen: Facebook’s c++ http libraries.
https://github.com/facebook/proxygen.

[40] FASTLY. Advanced tcp optimizations. https://bit.
ly/3f2SstA.

[41] FCC. Measuring fixed broadband report - 2016. https:
//bit.ly/2TAxef8.

[42] FLORES, M., KHAKPOUR, A. R., AND BEDI, H. Rip-
tide: Jump-starting back-office connections in cloud
systems. In 2016 IEEE 36th International Conference
on Distributed Computing Systems (ICDCS) (2016),
IEEE, pp. 78–87.

[43] FOUNDATION, L. Open vSwitch.

[44] FOUNDATION, O. S. Openssl alpn callback. https:
//bit.ly/3rG5rXh.

[45] FOWLER, D. Cdn tuning for ott - why doesn’t it already
do that? https://bit.ly/3i4z7Kr.

[46] GANJAM, A., SIDDIQUI, F., ZHAN, J., LIU, X., STO-
ICA, I., JIANG, J., SEKAR, V., AND ZHANG, H. C3:
Internet-scale control plane for video quality optimiza-
tion. In 12th {USENIX} Symposium on Networked Sys-
tems Design and Implementation ({NSDI} 15) (2015),
pp. 131–144.

[47] GARDNER, J. R., KUSNER, M. J., XU, Z. E., WEIN-
BERGER, K. Q., AND CUNNINGHAM, J. P. Bayesian
optimization with inequality constraints. In ICML
(2014), pp. 937–945.

[48] GHOBADI, M., YEGANEH, S. H., AND GANJALI, Y.
Rethinking end-to-end congestion control in software-
defined networks. In Proceedings of the 11th ACM
Workshop on Hot Topics in networks (2012), ACM,
pp. 61–66.

[49] GONG, S., NASEER, U., AND BENSON, T. Inspector
gadget: A framework for inferring tcp congestion con-
trol algorithms and protocol configurations. In Network
Traffic Measurement and Analysis Conference (TMA)
(2020).

[50] GOOGLE. The chromium projects. https://www.
chromium.org/.

[51] GOOGLE. Quic, a multiplexed stream transport over
udp. https://www.chromium.org/quic.

[52] GRIECO, L. A., AND MASCOLO, S. Performance eval-
uation and comparison of westwood+, new reno, and
vegas tcp congestion control. ACM SIGCOMM Com-
puter Communication Review 34, 2 (2004), 25–38.

1148 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://bit.ly/3iTg70U
https://bit.ly/3rpm8WP
https://lwn.net/Articles/645128/
https://bit.ly/2V92Adk
https://github.com/facebook/network-connection-class
https://github.com/facebook/network-connection-class
https://github.com/facebook/proxygen
https://bit.ly/3f2SstA
https://bit.ly/3f2SstA
https://bit.ly/2TAxef8
https://bit.ly/2TAxef8
https://bit.ly/3rG5rXh
https://bit.ly/3rG5rXh
https://bit.ly/3i4z7Kr
https://www.chromium.org/
https://www.chromium.org/
https://www.chromium.org/quic

[53] HELT, J., FENG, G., SESHAN, S., AND SEKAR, V.
Sandpaper: mitigating performance interference in cdn
edge proxies. In Proceedings of the 4th ACM/IEEE
Symposium on Edge Computing (2019), pp. 30–46.

[54] HEMMINGER, S. Netem - network emulator. https:
//bit.ly/36ZXT8k.

[55] HERBERT, T. tcp: Socket option to set congestion win-
dow. https://bit.ly/3zDnH6r.

[56] HERODOTOU, H., LIM, H., LUO, G., BORISOV, N.,
DONG, L., CETIN, F. B., AND BABU, S. Starfish: A
self-tuning system for big data analytics. In Cidr (2011),
vol. 11, pp. 261–272.

[57] HOCK, M., BLESS, R., AND ZITTERBART, M. Experi-
mental evaluation of bbr congestion control. In Network
Protocols (ICNP), 2017 IEEE 25th International Con-
ference on (2017), IEEE, pp. 1–10.

[58] HOFF, T. Latency is everywhere and it costs you sales -
how to crush it. https://bit.ly/3x5u3Kb.

[59] IETF. Rfc 6298. https://tools.ietf.org/html/
rfc6298.

[60] IETF. Rfc 7301 transport layer security (tls)
application-layer protocol negotiation extension.
https://tools.ietf.org/rfc/rfc7301.txt.

[61] INC., C. Malcolm measuring active listeners, con-
nection observers, and legitimate monitors. https:
//malcolm.cloudflare.com/.

[62] INC., M. Geoip2 city database. https://www.
maxmind.com/en/geoip2-city.

[63] JAIN, R., DURRESI, A., AND BABIC, G. Throughput
fairness index: An explanation. In ATM Forum contri-
bution (1999), vol. 99.

[64] JAY, N., ROTMAN, N. H., GODFREY, P., SCHAPIRA,
M., AND TAMAR, A. Internet congestion control
via deep reinforcement learning. arXiv preprint
arXiv:1810.03259 (2018).

[65] JEONG, E., WOO, S., JAMSHED, M. A., JEONG, H.,
IHM, S., HAN, D., AND PARK, K. mtcp: a highly
scalable user-level tcp stack for multicore systems. In
NSDI (2014), pp. 489–502.

[66] JIANG, J., DAS, R., ANANTHANARAYANAN, G.,
CHOU, P. A., PADMANABHAN, V., SEKAR, V., DO-
MINIQUE, E., GOLISZEWSKI, M., KUKOLECA, D.,
VAFIN, R., ET AL. Via: Improving internet telephony
call quality using predictive relay selection. In Proceed-
ings of the 2016 ACM SIGCOMM Conference (2016),
ACM, pp. 286–299.

[67] JIANG, J., SEKAR, V., MILNER, H., SHEPHERD, D.,
STOICA, I., AND ZHANG, H. Cfa: A practical predic-
tion system for video qoe optimization. In NSDI (2016),
pp. 137–150.

[68] JIANG, J., SUN, S., SEKAR, V., AND ZHANG, H. Pyth-
eas: Enabling data-driven quality of experience opti-
mization using group-based exploration-exploitation.
In 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17) (Boston, MA,
2017), USENIX Association, pp. 393–406.

[69] JIN, Y., RENGANATHAN, S., ANANTHANARAYANAN,
G., JIANG, J., PADMANABHAN, V. N., SCHRODER,
M., CALDER, M., AND KRISHNAMURTHY, A. Zoom-
ing in on wide-area latencies to a global cloud provider.
In Proceedings of the ACM Special Interest Group on
Data Communication (2019), ACM, pp. 104–116.

[70] JOHN B. ALTHOUSE, JEFF ATKINSON, J. A. Ja3 - a
method for profiling ssl/tls clients. https://github.
com/salesforce/ja3.

[71] KAYSER, B. What is the expected distribution of web-
site response times?

[72] KOZU, T., AKIYAMA, Y., AND YAMAGUCHI, S. Im-
proving rtt fairness on cubic tcp. In 2013 First Inter-
national Symposium on Computing and Networking
(2013), IEEE, pp. 162–167.

[73] KRAUSE, A., AND ONG, C. S. Contextual gaussian
process bandit optimization. In Advances in neural
information processing systems (2011), pp. 2447–2455.

[74] LEE, Y., AND SPRING, N. Identifying and aggregating
homogeneous ipv4 /24 blocks with hobbit. In Pro-
ceedings of the 2016 Internet Measurement Conference
(New York, NY, USA, 2016), IMC ’16, ACM, pp. 151–
165.

[75] LETHAM, B., KARRER, B., OTTONI, G., AND BAK-
SHY, E. Efficient tuning of online systems using
Bayesian optimization. https://bit.ly/3rBMHIm.

[76] LI, L., CHU, W., LANGFORD, J., AND SCHAPIRE,
R. E. A contextual-bandit approach to personalized
news article recommendation. In Proceedings of
the 19th international conference on World wide web
(2010), ACM, pp. 661–670.

[77] LI, W., ZHOU, F., CHOWDHURY, K. R., AND MELEIS,
W. M. Qtcp: Adaptive congestion control with rein-
forcement learning. IEEE Transactions on Network
Science and Engineering (2018).

[78] LI, Z. L., LIANG, M. C.-J., HE, W., ZHU, L., DAI, W.,
JIANG, J., AND SUN, G. Metis: Robustly tuning tail

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1149

https://bit.ly/36ZXT8k
https://bit.ly/36ZXT8k
https://bit.ly/3zDnH6r
https://bit.ly/3x5u3Kb
https://tools.ietf.org/html/rfc6298
https://tools.ietf.org/html/rfc6298
https://tools.ietf.org/rfc/rfc7301.txt
https://malcolm.cloudflare.com/
https://malcolm.cloudflare.com/
https://www.maxmind.com/en/geoip2-city
https://www.maxmind.com/en/geoip2-city
https://github.com/salesforce/ja3
https://github.com/salesforce/ja3
https://bit.ly/3rBMHIm

latencies of cloud systems. In ATC (USENIX Annual
Technical Conference) (July 2018), USENIX.

[79] LIU, H. H., VISWANATHAN, R., CALDER, M.,
AKELLA, A., MAHAJAN, R., PADHYE, J., AND
ZHANG, M. Efficiently delivering online services over
integrated infrastructure. In NSDI (2016), vol. 1, p. 1.

[80] LOON, P. Balloon powered internet. https://x.
company/loon/.

[81] LTD., S. Speedchecker. https://probeapi.
speedchecker.com/.

[82] LTD., S. Speedchecker - probe api documentation.
https://bit.ly/2TGwdCu.

[83] LU, D., QIAO, Y., DINDA, P. A., AND BUSTAMANTE,
F. E. Characterizing and predicting tcp throughput on
the wide area network. In Distributed Computing Sys-
tems, 2005. ICDCS 2005. Proceedings. 25th IEEE In-
ternational Conference on (2005), IEEE, pp. 414–424.

[84] LU, T., PÁL, D., AND PÁL, M. Contextual multi-
armed bandits. In Proceedings of the Thirteenth in-
ternational conference on Artificial Intelligence and
Statistics (2010), pp. 485–492.

[85] MAO, H., NETRAVALI, R., AND ALIZADEH, M. Neu-
ral adaptive video streaming with pensieve. In Pro-
ceedings of the Conference of the ACM Special Interest
Group on Data Communication (2017), ACM, pp. 197–
210.

[86] MCKAY, M. D., BECKMAN, R. J., AND CONOVER,
W. J. Comparison of three methods for selecting val-
ues of input variables in the analysis of output from a
computer code. Technometrics 21, 2 (1979), 239–245.

[87] MCQUISTIN, S., UPPU, S. P., AND FLORES, M. Tam-
ing anycast in the wild internet. In Proceedings of the
Internet Measurement Conference (2019), pp. 165–178.

[88] MO, J., LA, R. J., ANANTHARAM, V., AND WAL-
RAND, J. Analysis and comparison of tcp reno and
vegas. In IEEE INFOCOM’99. Conference on Com-
puter Communications. Proceedings. Eighteenth An-
nual Joint Conference of the IEEE Computer and Com-
munications Societies. The Future is Now (Cat. No.
99CH36320) (1999), vol. 3, IEEE, pp. 1556–1563.

[89] MUKERJEE, M. K., NAYLOR, D., JIANG, J., HAN,
D., SESHAN, S., AND ZHANG, H. Practical, real-time
centralized control for cdn-based live video delivery.
ACM SIGCOMM Computer Communication Review 45,
4 (2015), 311–324.

[90] NARAYAN, A., CANGIALOSI, F., RAGHAVAN, D.,
GOYAL, P., NARAYANA, S., MITTAL, R., ALIZADEH,
M., AND BALAKRISHNAN, H. Restructuring endpoint
congestion control. In Proceedings of the 2018 Con-
ference of the ACM Special Interest Group on Data
Communication (2018), ACM, pp. 30–43.

[91] NASEER, U., AND BENSON, T. Configtron: Tackling
network diversity with heterogeneous configurations.
In 9th USENIX Workshop on Hot Topics in Cloud Com-
puting (HotCloud 17) (Santa Clara, CA, July 2017),
USENIX Association.

[92] NASEER, U., AND BENSON, T. Inspectorgadget: In-
ferring network protocol configuration for web ser-
vices. In 2018 IEEE 38th International Conference on
Distributed Computing Systems (ICDCS) (July 2018),
pp. 1624–1629.

[93] NASEER, U., BENSON, T. A., AND NETRAVALI, R.
Webmedic: Disentangling the memory-functionality
tension for the next billion mobile web users. In Pro-
ceedings of the 22nd International Workshop on Mobile
Computing Systems and Applications (2021), pp. 71–
77.

[94] NEJATI, J., AND BALASUBRAMANIAN, A. An in-
depth study of mobile browser performance. In Pro-
ceedings of the 25th International Conference on World
Wide Web (2016), International World Wide Web Con-
ferences Steering Committee, pp. 1305–1315.

[95] NETRAVALI, R., GOYAL, A., MICKENS, J., AND BAL-
AKRISHNAN, H. Polaris: Faster page loads using fine-
grained dependency tracking. In 13th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 16) (2016), USENIX Association.

[96] NETRAVALI, R., SIVARAMAN, A., DAS, S., GOYAL,
A., WINSTEIN, K., MICKENS, J., AND BALAKRISH-
NAN, H. Mahimahi: Accurate record-and-replay for
http. In USENIX Annual Technical Conference (2015),
pp. 417–429.

[97] NGINX. Nginx reverse proxy. https://bit.ly/
3yapgbH.

[98] NIE, X., ZHAO, Y., CHEN, G., SUI, K., CHEN, Y., PEI,
D., ZHANG, M., AND ZHANG, J. Tcp wise: One initial
congestion window is not enough. In Performance
Computing and Communications Conference (IPCCC),
2017 IEEE 36th International (2017), IEEE, pp. 1–8.

[99] NIE, X., ZHAO, Y., LI, Z., CHEN, G., SUI, K., ZHANG,
J., YE, Z., AND PEI, D. Dynamic tcp initial windows
and congestion control schemes through reinforcement
learning. IEEE Journal on Selected Areas in Communi-
cations 37, 6 (2019), 1231–1247.

1150 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://x.company/loon/
https://x.company/loon/
https://probeapi.speedchecker.com/
https://probeapi.speedchecker.com/
https://bit.ly/2TGwdCu
https://bit.ly/3yapgbH
https://bit.ly/3yapgbH

[100] NIE, X., ZHAO, Y., PEI, D., CHEN, G., SUI, K., AND
ZHANG, J. Reducing web latency through dynamically
setting tcp initial window with reinforcement learning.

[101] OF SHEFFIELD, M. L. G. U. Gpyopt. https://
github.com/SheffieldML/GPyOpt.

[102] OF SHEFFIELD, M. L. G. U. Gpyopt.core.task.space
module. https://bit.ly/3iVDuHf.

[103] OREILLY.COM. Bing and google agree: Slow pages lose
users. https://bit.ly/374YGVI.

[104] PELIKAN, M., GOLDBERG, D. E., AND CANTÚ-PAZ,
E. Boa: The bayesian optimization algorithm. In Pro-
ceedings of the 1st Annual Conference on Genetic and
Evolutionary Computation-Volume 1 (1999), Morgan
Kaufmann Publishers Inc., pp. 525–532.

[105] PI, Y., JAMIN, S., DANZIG, P., AND SHAHA, J. Ap-
atoms: A high-accuracy data-driven client aggregation
for global load balancing. IEEE/ACM Transactions on
Networking 26, 6 (2018), 2748–2761.

[106] PICOTCP. picotcp. http://www.picotcp.com/.

[107] QUINLAN, J. R. Induction of decision trees. Machine
learning 1, 1 (1986), 81–106.

[108] RUAMVIBOONSUK, V., NETRAVALI, R., ULUYOL,
M., AND MADHYASTHA, H. V. Vroom: Accelerating
the mobile web with server-aided dependency resolu-
tion. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication (2017),
ACM, pp. 390–403.

[109] RUFFY, F., PRZYSTUPA, M., AND BESCHASTNIKH,
I. Iroko: A framework to prototype reinforcement
learning for data center traffic control. arXiv preprint
arXiv:1812.09975 (2018).

[110] RÜTH, J., BORMANN, C., AND HOHLFELD, O. Large-
scale scanning of tcp’s initial window. In Proceedings
of the 2017 Internet Measurement Conference (2017),
ACM, pp. 304–310.

[111] RÜTH, J., KUNZE, I., AND HOHLFELD, O. An empir-
ical view on content provider fairness. arXiv preprint
arXiv:1905.07152 (2019).

[112] RYZHOV, I. O. On the convergence rates of expected im-
provement methods. Operations Research 64, 6 (2016),
1515–1528.

[113] SCHAPIRA, M., AND WINSTEIN, K. Congestion-
control throwdown. In Proceedings of the 16th ACM
Workshop on Hot Topics in Networks (2017), ACM,
pp. 122–128.

[114] SCHOLZ, D., JAEGER, B., SCHWAIGHOFER, L.,
RAUMER, D., GEYER, F., AND CARLE, G. Towards a
deeper understanding of tcp bbr congestion control. In
2018 IFIP Networking Conference (IFIP Networking)
and Workshops (2018), IEEE, pp. 1–9.

[115] SCHULMAN, A., LEVIN, D., AND SPRING, N. CRAW-
DAD dataset umd/sigcomm2008 (v. 2009-03-02).
Downloaded from https://crawdad.org/umd/
sigcomm2008/20090302/pcap, Mar. 2009. traceset:
pcap.

[116] SCIKIT LEARN.ORG. Decision Trees.

[117] SERVER, A. T. Tcpinfo plugin. https://bit.ly/
3x8CyEr.

[118] SHAHRIARI, B., SWERSKY, K., WANG, Z., ADAMS,
R. P., AND DE FREITAS, N. Taking the human out of the
loop: A review of bayesian optimization. Proceedings
of the IEEE 104, 1 (2015), 148–175.

[119] SHUFF, P. Building a billion user load balancer.
USENIX Association.

[120] SINGH, S., MADHYASTHA, H. V., KRISHNAMURTHY,
S. V., AND GOVINDAN, R. Flexiweb: Network-aware
compaction for accelerating mobile web transfers. In
Proceedings of the 21st Annual International Confer-
ence on Mobile Computing and Networking (2015),
ACM, pp. 604–616.

[121] SOFTWARE, V. Varnish http cache. https://
varnish-cache.org/.

[122] STEIN, M. Large sample properties of simulations
using latin hypercube sampling. Technometrics 29, 2
(1987), 143–151.

[123] SUN, Y., EDMUNDSON, A., VANBEVER, L., LI, O.,
REXFORD, J., CHIANG, M., AND MITTAL, P. Raptor:
Routing attacks on privacy in tor.

[124] SUN, Y., YIN, X., JIANG, J., SEKAR, V., LIN, F.,
WANG, N., LIU, T., AND SINOPOLI, B. Cs2p: Im-
proving video bitrate selection and adaptation with
data-driven throughput prediction. In Proceedings of
the 2016 ACM SIGCOMM Conference (2016), ACM,
pp. 272–285.

[125] SUNDARESAN, S., FEAMSTER, N., AND TEIXEIRA,
R. Home network or access link? locating last-mile
downstream throughput bottlenecks. In International
Conference on Passive and Active Network Measure-
ment (2016), Springer, pp. 111–123.

[126] TEAM, A. T. R. Bots tampering with tls to avoid detec-
tion. https://bit.ly/3f2cJjb.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1151

https://github.com/SheffieldML/GPyOpt
https://github.com/SheffieldML/GPyOpt
https://bit.ly/3iVDuHf
https://bit.ly/374YGVI
http://www.picotcp.com/
https://crawdad.org/umd/sigcomm2008/20090302/pcap
https://crawdad.org/umd/sigcomm2008/20090302/pcap
https://bit.ly/3x8CyEr
https://bit.ly/3x8CyEr
https://varnish-cache.org/
https://varnish-cache.org/
https://bit.ly/3f2cJjb

[127] TLSFINGERPRINT.IO. Tls fingerprint. https://
tlsfingerprint.io/.

[128] TRAN-THANH, L., CHAPMAN, A., DE COTE, E. M.,
ROGERS, A., AND JENNINGS, N. R. Epsilon–first
policies for budget–limited multi-armed bandits. In
Twenty-Fourth AAAI Conference on Artificial Intelli-
gence (2010).

[129] TURKOVIC, B., KUIPERS, F. A., AND UHLIG, S. Inter-
actions between congestion control algorithms. network
3, 17.

[130] URVOY-KELLER, G. On the stationarity of tcp bulk data
transfers. In International Workshop on Passive and
Active Network Measurement (2005), Springer, pp. 27–
40.

[131] VAN AKEN, D., PAVLO, A., GORDON, G. J., AND
ZHANG, B. Automatic database management system
tuning through large-scale machine learning. In Pro-
ceedings of the 2017 ACM International Conference on
Management of Data (2017), ACM, pp. 1009–1024.

[132] VDMS. Our software - cdn. https://bit.ly/
3iOMNbT.

[133] VERMOREL, J., AND MOHRI, M. Multi-armed bandit
algorithms and empirical evaluation. In European con-
ference on machine learning (2005), Springer, pp. 437–
448.

[134] WANG, X. S., BALASUBRAMANIAN, A., KRISHNA-
MURTHY, A., AND WETHERALL, D. Demystifying
page load performance with wprof. In NSDI (2013),
pp. 473–485.

[135] WANG, X. S., BALASUBRAMANIAN, A., KRISHNA-
MURTHY, A., AND WETHERALL, D. How speedy is
spdy? In NSDI (2014), pp. 387–399.

[136] WANG, X. S., KRISHNAMURTHY, A., AND WETHER-
ALL, D. Speeding up web page loads with shandian. In
NSDI (2016), pp. 109–122.

[137] WARE, R., MUKERJEE, M. K., SESHAN, S., AND
SHERRY, J. Beyond jain’s fairness index: Setting the bar
for the deployment of congestion control algorithms. In
Proceedings of the 18th ACM Workshop on Hot Topics
in Networks (2019), pp. 17–24.

[138] WINSTEIN, K., AND BALAKRISHNAN, H. Tcp ex
machina: computer-generated congestion control. In
ACM SIGCOMM Computer Communication Review
(2013), vol. 43, ACM, pp. 123–134.

[139] WOHLFART, F., CHATZIS, N., DABANOGLU, C.,
CARLE, G., AND WILLINGER, W. Leveraging inter-
connections for performance: The serving infrastructure

of a large cdn. In Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communi-
cation (2018), pp. 206–220.

[140] WONDRA, N. Magic transit: Network functions at
cloudflare scale.

[141] YAN, F. Y., MA, J., HILL, G. D., RAGHAVAN, D.,
WAHBY, R. S., LEVIS, P., AND WINSTEIN, K. Pan-
theon datasets. https://pantheon.stanford.edu/
measurements/node/.

[142] YAN, F. Y., MA, J., HILL, G. D., RAGHAVAN, D.,
WAHBY, R. S., LEVIS, P., AND WINSTEIN, K. Pan-
theon: the training ground for internet congestion-
control research. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18) (Boston, MA, 2018),
USENIX Association, pp. 731–743.

[143] YANG, P., SHAO, J., LUO, W., XU, L., DEOGUN, J.,
AND LU, Y. Tcp congestion avoidance algorithm iden-
tification. IEEE/ACM Transactions on Networking
(TON) 22, 4 (2014), 1311–1324.

[144] ZEROMQ. Zeromq. http://zeromq.org/.

[145] ZHANG, X., SEN, S., KURNIAWAN, D., GUNAWI, H.,
AND JIANG, J. E2e: embracing user heterogeneity
to improve quality of experience on the web. In Pro-
ceedings of the ACM Special Interest Group on Data
Communication. 2019, pp. 289–302.

[146] ZHANG, Y., AND DUFFIELD, N. On the constancy of
internet path properties. In Proceedings of the 1st ACM
SIGCOMM Workshop on Internet Measurement (2001),
ACM, pp. 197–211.

[147] ZHU, Y., LIU, J., GUO, M., BAO, Y., MA, W., LIU,
Z., SONG, K., AND YANG, Y. Bestconfig: tapping the
performance potential of systems via automatic config-
uration tuning. In Proceedings of the 2017 Symposium
on Cloud Computing (2017), ACM, pp. 338–350.

1152 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://tlsfingerprint.io/
https://tlsfingerprint.io/
https://bit.ly/3iOMNbT
https://bit.ly/3iOMNbT
https://pantheon.stanford.edu/measurements/node/
https://pantheon.stanford.edu/measurements/node/
http://zeromq.org/

Knob Function
TargetAlgo Sets corresponding tuning algorithm.
TargetNC Controls the clustering strategy for NCs.
init_samples Number of samples to initialize an NC.
NCSpread Controls the performance spread that bounds a NC, and hence the

number of cluster (K discussed in § 3.2).
AllowedConfig Limits the space to disallow certain configurations.
PerfMemory Length of history for configuration’s performance over time.
UpdateLatency Set latency b/w central Config. Manager and servers.
UpdateFreq Controls the time after which a model is updated.
ChunkSize Controls the time window for goodput, RTT and loss-rate

measurements from packet traces.

Table 4: Simulator knobs

A Fingerprinting Configurations

Our fingerprinting techniques are inspired from recent
works [49, 92, 110, 143]. Our tool inter-operates with TLS
and infers configurations in the following ways: (i) HTTP
configurations are visible to client during the connection
setup and are fingerprinted from the server response, (ii) TCP
configurations like RWIN are scraped from the packet headers,
(iii) TCP initRTO is measured by emulating a loss during TCP
handshake (i.e., by not acknowledging SYN packet back to the
server), and measuring the time it takes the server to retransmit
the SYN/ACKs, (iv) For TCP ICW, a big enough object URL
is scraped from a website, the corresponding object is fetched
and the number of packets sent by the server in first RTT is
measured. Further, we use MSS=64B to trigger higher number
of packets from server. We used AWS in respective regions
as the vantage points for fingerprinting the configurations.

100 101 102 103 104

of distinct UA
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

TLSFingerprint
IP/24+TLSFingerprint

Figure 15:
Relationship between TLS
fingerprint and User-Agent.

0.90 0.92 0.94 0.96 0.98 1.00 1.02
Normalized Euclidian distance
[User-Agent / TLSfingerprint]

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac
tio

n
of
 p
ag
el
oa
ds

Figure 16:
Comparison of device

identifier’s impact on NCs.

B TLS Fingerprinting for Device Identifica-
tion

Recall that instead of the traditional User-Agent string,
Configanator uses TLS fingerprinting for device identification
as it allows device inference in early stages of the connection
(prior to the HTTP version negotiation through ALPN). To
evaluate its efficacy, we leverage a dataset from GlobalCDN,
comprising 3.6M requests. The dataset consists of server logs
and captures User-Agent strings from HTTP GET requests
and the TLS fingerprint of the respective connections. The

dataset includes 14.5K unique User-Agent strings and 3.2K
unique TLS fingerprints.

Figure 15 plots the number of unique User-Agents (UA) that
map to a TLS fingerprint. Ideally, a single UA should map to
a fingerprint, thereby accurately identifying the corresponding
device. However in practice, we observe that the one-to-one
mapping is limited only to 34% of the fingerprints, with the
rest mapping to atleast 2 UA. We observe that complementing
the TLS fingerprint with the end-user IP-prefix helps in
improving the accuracy, with 78% of the IP/24 and TLS
fingerprint mapping to a single UA and 96% mapping to
at-most 8 unique UA. We observe that for the cases where a
single fingerprint maps to multiple UA strings, there are only
minor differences, e.g., different browser versions, difference
in OS’s minor version (Android 6.0 vs 6.1.1).

In Figure 16, we further compare the two device identifi-
cation techniques for clustering similar connections together.
Using a dataset of 89K PLT measurements from GlobalCDN,
we run our Network Class clustering using either User-Agent
or TLS fingerprint as the basis for device identification. We
compute the Euclidean distance of each connection PLT from
its cluster’s center and the figure plots the ratio of the distance.
We observe that the ratio is between 0.98 and 1.00 for the
overwhelming majority of the pageloads, indicating that the
two technique perform fairly similar. Hence, device identi-
fication through TLS fingerprinting provides nearly similar
accuracy to the User-Agent strings, with the added benefit that
the device is identified prior to negotiating the HTTP version,
whereas User-Agent string can only be inferred through HTTP
requests headers (received after HTTP version negotiation).

C Passively Recording Network Conditions

Configanator passively collects goodput and packet loss rates
for the IP-prefix (/24) and builds a historical archive (§ 3.2).
When an IP connects, Configanator uses the handshake RTT
and looks-up the goodput and packet loss rates from the recent
session for the IP-prefix (/24) to aid in classifying the user into
her Network Class. Configanator prototype uses Apache logs
to collect information about user IP, the requested content,
content size and download time. Additionally, per-connection
TCP statistics are captured through Apache TCP Info
plugin [117]. Using this information, Configanator calculates
bandwidth (goodput) and packet loss rates on a per IP-prefix
(/24) basis. Although we use heuristics for stable goodput
and loss calculations, e.g., ignoring small objects, the goodput
estimate may still under-estimate actual network bottleneck
due to TCP mechanics (e.g., slow start phase). Consequently,
the use of such measurements in the testbed (§ 6.1) may
emulate lower bandwidths and higher loss rates (emulated loss
plus induced buffer overflows) than the actual bottleneck links.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1153

0 2 4 6 8
Configuration

4

5

6

7

P
LT

 (s
)

amazon
youtube

(a) Low spread (high K)

0 2 4 6 8
Configuration

3

4

5

6

7

P
LT

 (s
)

amazon
youtube

(b) High spread (low K)

Figure 17: GP config-performance curve.

D Gaussian Process and Network Class
Discussion

Bootstrapping GP: The first step of learning is to acquire data
to bootstrap the Gaussian process. The bootstrap methodol-
ogy is crucial for ensuring that the Gaussian-Bandit quickly
finds good direction to explore. Recent works [4, 13, 32] have
demonstrated the applicability of three distinct bootstrapping
approaches: (i) random, in which the initial configurations are
randomly selected; (ii) domain-specific, in which prior domain
knowledge,captured through operator interviews or offline sim-
ulations, are used to rank configurations to sample; (iii) Latin
Hypercube Sampling (LHS) which divides the input space into
partitions and selects a sample from each partition to spread the
samples evenly across space [122]. In this work, we use LHS to
bootstrap the learning process. LHS has been found to aid boot-
strapping Bayesian optimization by reaching an optimal deci-
sion quicker [86]. We observed LHS to speed up exploration in
comparison with others by reducing the number of optimiza-
tion steps by 2-3X, as the bootstrapping samples are spread
evenly across space. A perfect rankings of configurations can-
not be known prior to actually testing configurations, leading
to ranking-based bootstrapping being sub-optimal to LHS.

Individual GP models for each website/Network Class:
Bayesian Optimization is traditionally used for mapping
configurations to their performance per workload (e.g., cloud
configuration to cost [4]). Due to network dynamics and
their implications on web performance [67, 135], a separate
BO/GP model is required to map configuration performance
for each workload (network condition and website), leading to
individual exploration for each workload. The lack of cross net-
work/website exploitation (due to separate BO models) makes
a solely BO-based technique unfit for Configanator. Intuitively,
the system should be able to generalize across networks and
can use the already learnt pattern from other networks to a new
network, e.g., HTTP/1.1 is optimal at high RTT, high loss for
a complex website, no matter the bandwidth [135].

Figure 17 presents the GP model for two websites for the
same set of configurations (x-axis) and the same Network
Class (NC). In Figure 17a, while GP has estimated the curve
for youtube with high confidence, amazon requires more data
samples (wide confidence interval for configuration 7, 8 and

9). The different configuration-performance curves require a
separate GP model for each website/NC for correct modeling
of a configuration’s performance and effective exploration,
as the configuration-performance curve is distinct for every
website and Network Class.

0 1 2 3 4
Configuration

0

1

2

3

4

5

GP
 e

rro
r a

cr
os

s
we

bs
ite

s/
NC

 [s
]

1%
2.5%
5%
10%

Figure 18: GP modeling error for different NC spread
thresholds.

Impact of performance spread within NC: Next, in
Figure 18, we leverage the NCSpread knob in simulator
(Table 4) to test different bounds for Network Classes (NC)
clustering. Recall that NCSpread controls the “K” for Kmeans
clustering by selecting the lowest K that bounds the standard
deviation of PLTs for a cluster’s constituents within a specified
threshold ({1, 2.5, 5, 10}% in the Figure 18). Determining the
right K involves iterating through K values and is a three step
process: (i) NC features – network characteristics (bandwidth,
latency, loss rate), AS information (ASN, geo-location), and
device type – from past connections are clustered using a
given K, (ii) For each cluster, the list of PLTs observed for its
members connections is generated and is normalized by the
median PLT of the list11, (iii) The standard deviation for each
list is computed and, based on how far is it from the median
and the NCSpread limit, the decision to converge on the given
K or test a different K is made.

Figure 18 uses the testbed generated data from § 6 and
plots the error in GP’s estimate for five randomly selected
configurations. The error is calculated as the absolute
difference of GP’s PLT estimate for a configuration and the
actual PLT, and the boxes plot the error distribution observed
for the various clusters (corresponding to the NCSpread value)
and the websites. Note that, a small error is always expected
due to the inherent variability with PLT measurements. The
5% limit NCSpread performs fairly close to the lower bounds,
while also requiring a lower K: 7% lower K value than the 1%
NCSpread threshold. This analysis serves as the motivation
for using 5% value in the simulator.

Figures 17a and 17b further visualizes the confidence
intervals for the GP models for 2 websites. For the high spread
case (10% NCSpread), connections from slightly different

11As there might be multiple websites, there is one list per website. Further
only PLTs for default configuration are used.

1154 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

networks are mapped to the name GP, resulting in wider
confidence intervals, and leads to inefficiency with acquisition
function’s next configuration suggestion.

E Deployment Considerations

Data-driven systems [2, 46, 66–68] traditionally use a
split-plane architecture where a modeling layer (responsible
for ingesting huge amounts of data and updating models) runs
at a slower granularity than the decision layer (responsible for
applying modeled decisions for users at real-time). Configana-
tor’s architecture uses a split-plane model which leverages
the different computational requirements of Configanator’s
workflow: As demonstrated in Figure 4, in the slow path,
the Configuration Manager collects telemetry from the web
servers, uses this telemetry to update the learning model,
and installs the configuration rules created by the model into
the web servers. In the foreground, each web server uses the
pre-installed rules to apply configuration to each connection
and periodically collects telemetry from each connection.

The first phase, the background process, is time-consuming
because of the process of updating the learning algorithms and
Network Classes. The second phase, a fast, real-time process
that applies the configuration rules to each inbound user
connection, is run at the edge on each web server and provides
low-latency, dynamic tuning. We note that although this
decoupling results in the fast-path using stale information, we
observe that this stale information still provides near-optimal
performance [46].

F Supplementary Evaluation Material

BW

RTT

Loss
Client session

Configuration
(HTTP=2.0, CC=Cubic, ICW=10 etc.)

Website to load

Simulator

Performance of given website
and configuration for the client

PLTa PLTb PLTc PLTd

Client info (IP, ASN)

Figure 19: Simulating pageload for a client

F.1 Evaluation Setup
Simulation workflow: Figure 19 presents the workflow
for simulating pageload performance. The client sessions
are extracted from the real-world datasets and are modeled
as time-series. Since we use 5s for measuring the network
characteristics from the trace (a tunable knob as discussed in
§ 6.1), each linear state for BW, RTT, Loss in Figure 19 is at

least 5s long. We extract an IP distribution from the trace to
model the temporal aspects of client’s connections (time at
which a client connection (or IP) is seen in trace), i.e., the user
sessions are fed to the simulator in the order they are observed
in the real-world trace.

The simulator takes the goodput, RTT, loss rates at a certain
time from the session time-series, client info (IP, ASN) and the
target website to load as input. Using these features, it consults
the configuration to test from the learning framework. Once
the target configuration is known, it leverages the PLT-Tensor
to map the network characteristics {goodput, RTT, loss-rate},
website and configuration to the eventual PLT. Note that, we
assume that the network characteristics stay stable throughout
the lifetime on a single pageload, supported by recent studies
that TCP connection is piece-wise stationary and each segment
stays stable in the order of tens of seconds to minutes [10].

Table 4 further summarizes a number of simulator knobs
that allow us to emulate and test a variety of scenarios.

Dataset description and breakdown: While the Global-
CDN, MAWI and CAIDA datasets are adequately described
in § 6.1, here we provide details for the other two datasets.

The Pantheon dataset [141, 142] comprises of synthetically
generated TCP flows across the different parts of the world.
We collected three month’s worth of data (May to July 2018)
from Pantheon’s website [141]. For the generated flows, the
dataset logs the flow IDs, packet ingress/egress timestamps,
packet sizes and one-way delay. Using these fields, we
calculate the goodput, RTT and loss rates between each pair
of end-point and, similar to the case for GlobalCDN, MAWI
and CAIDA datasets, generate the time-series for the network
characteristics. These end-points (vantage points) range from
AWS deployments to university networks and cover multiple
last-mile connection types. The FCC dataset is collected by
the Measuring Broadband America program [41] and consists
of a nation-wide study of end-user’s broadband performance
and an accompanying dataset. This dataset provides coarse
granularity measurements in form of bandwidth, latency and
loss rates distributions measured for real-world users. We use
these distributions to generate synthetic traces, similar to [2].

The breakdown of ∼21.4M sessions is as follows: 8.2M
from GlobalCDN, 2.7M from MAWI, 8.1M from CAIDA,
1.6M from FCC, 800K from Pantheon. The cross-regional
nature of our datasets provide coverage over a wide range
of representative network conditions, e.g., while FCC and
CAIDA cover connections in U.S., MAWI dataset is from East
Asia. Further, GlobalCDN and Pantheon [142] are even more
diverse with connections from countries across the globe.

SpeedChecker and vantage points: SpeedChecker [81]
is a platform for global Internet measurements, with vantage
points deployed in over 170 countries and thousands of
ISPs. SpeedChecker provides an API to conduct automated
measurements ranging from ping, DNS, web pageloads to
video tests. We leveraged vantage points (windows machines)
on this platform for conducting the pageloads. The API call

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1155

100 101 102

Network Conditions

0.0

0.2

0.4

0.6

0.8

1.0

CD
F
ac
ro
ss
 p
ag

el
oa

ds

BW [Mbps]
RTT [ms]
Loss [%]

(a) Network at vantage points

101 102 103

pageloads

0.0

0.2

0.4

0.6

0.8

1.0

CD
F
ac

ro
ss
 p
re
fix

pageloads
per prefix

(b) # of pageloads per prefix

Figure 20: Live-deployment vantage points

requires CountryCode and Destinations (a list of URLs to
load). Vantage points (probes) from the specified country are
selected internally by their platform and pageloads are con-
ducted (upto 100 pageload every hour, per city in the country).
Figures 20 presents various distributions about our vantage
points. 20a compiles the distribution of network conditions
observed for each pageload. The vantage points vary across the
three dimensions and have mostly RTTs greater than 100ms.
20b presents the number of pageloads per prefix. We observe a
heavy tail distribution, where certain vantage points conducted
more pageloads than others, e.g., Europe, N.America had
4X more pageloads than Asia and Africa due to the higher
number of the SpeedChecker clients in the developed regions.
Africa had the smallest number of vantage points among all
continents and the hourly limits were frequently reached,
resulting in a lower number of total pageloads. Note that,
diverse network conditions were still observed for the vantage
points (Figure 20a) in spite of this skew in vantage point
location. We further observe that 90% of the vantage points
have unique IP-prefix (/24), showing that they are distributed
and are not placed in a single facility, in the same subnet.

-20
-10

 0
 10
 20
 30
 40
 50
 60
 70
 80

CAIDA FCC Pantheon

%
 i
m

p
ro

v
e

m
e

n
t

o
v
e

r
d

e
fa

u
lt

Learning algorithms

Configanator

Optimal

Figure 21: Configanator
performance for CAIDA, FCC and Pantheon traces

F.2 Configanator Performance for CAIDA,
FCC and Pantheon Traces

Figure 21 presents the distributions for Configanator’s PLT
improvement for the CAIDA, FCC and Pantheon traces. These
figures complement the results in § 6.2 where we could not add

the results for all the traces due to space limitations. CAIDA
and FCC traces are collected from U.S.A and mostly cover high
bandwidth, low RTT/loss connections, e.g., p95 RTT is 60ms.
Following the trend observed in Figure 5c, we observe their
PLT improvements over default to be lower as compared to
other traces. Especially FCC dataset covers broadband connec-
tions and we observe the lowest p95 PLT improvement for FCC
among all the datasets. Nevertheless, the improvements are still
substantial with 610-640ms decrease in p95 PLT. On the other
hand, Pantheon traces cover wider range of networks, often
across continents, and result in upto 850ms improvement at tail.

 0

 20

 40

 60

 80

 100

 1 10 100

%
 b

a
n
d
it
 c

o
n
tr

ib
u
ti
o
n

Number of iterations per NC

GP bandit
DT bandit

Figure 22:
Bandits contribution

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

%
 d

is
ta

n
c
e
 t
o
 o

p
ti
m

a
l

Learning algorithms

ConfiganatorNoDT
ConfiganatorNoGP

Configanator

Figure 23: Tail
performance

F.3 Bandit Contribution
Figure 22 uses the same convergence analysis as Figure 6 and
plots the percentage of connections that uses a certain bandit.
Initially GP bandit is largely used for a guided exploration.
However, as more data is collected, DT bandit starts to
overshadow the GP bandit, highlighting that a per-NC guided
exploration is over-shadowed by cross-NC exploitation, when
large data is available.

F.4 Bandit Performance at Tail
Figure 23 focuses on tail by dividing the entire trace into one
minute segments and plotting the distance to optimal for the
worst-case tail of each minute. Configanator’s use of bandits
enables it to perform better than individual bandits, being
closer to optimal by more than 7%.

101 102 103 104

of connection in NC

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

ac
ro

ss
 N

C

Conn. # after which
config stays stable

Figure 24: Time of last config. change in NC

1156 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

F.5 Configuration Stability
Figure 24 plots the number of connections across NCs after
which the DT-bandit’s decision stays stable, i.e., configuration
decision for the NC does not change. While for the median NC,
the configuration choice becomes stable at∼400th connection;
we observe that it can take as much as 10K connections to
reach the final configuration for some NCs. We observe the DT-
bandit to stuck on a near-optimal configuration for these NCs.
Down the line, the epsilon-bandit, randomly exploring, finds
the optimal configuration and updates the NC. We note that
Configanator switches to DT-bandit in the first 10-15 iterations
for these NC, highlighting that the GP model’s EI threshold was
reached very early, and the initial exploration through GP was
not very beneficial in uncovering the optimal configuration.

F.6 Design Choices for Network Classes
We use GlobalCDN dataset to evaluate design choices
for classifying similar users together. We compare Confi-
ganator’s clustering with: (i) IP-Prefix clusters /24 users
together, (ii) Hobbit [74] improves /24 groups by merging
dis-contiguous /24s based on co-location in Internet topology
and homogeneous performance, (iii) Latency Driven inspired
from AP-Atoms [105] where users with similar latency are
grouped together, (iv) since CDNs group users based on their
performance similarity [26, 119], CDN Aggregation use the
natural CDN grouping and assigns all users mapped to a
PoP to the same NC. We extract these mappings from the
GlobalCDN dataset and, as these mappings can vary over time,
build a time-series of user to CDN PoP mapping.

IP-Prefix Hobbit Config
anator

Latency
Driven

CDN
Aggr.

NC Clustering Strategy

0.0

0.2

0.4

0.6

0.8

1.0

of
 N
Cs
 (n

or
m
al
ize

d)

Figure 25: Impact
of clustering on # of NC

0 1000 2000 3000 4000
TTLB StdDev (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

IP-Prefix
Hobbit
Configanator
LatencyDriven
CDN Aggr.

Figure 26: Spread of
TTLBs within NC

Figure 25 and 26 plots the number of NCs and the spread
of TTLBs within an NC for the different strategies. Ideally,
Configanator favors small number of NCs and aims for small
to negligible variations within NC performance metric, as the
goal is to cluster similarly performing users together (§ 3.2).
We observe Hobbit subnets /24 groups to have a poor coverage
over the trace (Hobbit only covers 12% of prefixes in Global-
CDN dataset), with non-Hobbit /24s being treated as individ-
ual groups, leading to similar results as IP-Prefix (figure 25).
Although NCs built by Hobbit and IP-Prefix have lowest per-
formance divergence, (low std. dev. in figure 26); Configanator
NCs are almost similarly compact, while using less than half

0 2 4 6 8 10
Mode PLT multiple

0.000

0.005

0.010

0.015

0.020

0.025

0.030

PD
F

(a) Observed PLT variations.

0.6 0.7 0.8 0.9 1.0
Proximity to Configanator-NoVari

0.0

0.2

0.4

0.6

0.8

1.0

CD
F
ac
ro
ss
 p
ag
el
oa
ds ShortMemory

[1 minute]
LongMemory
[10 minutes]
Default

(b) Impact of PLT variability.

Figure 27: PLT variability

number of NCs. Although Latency Driven uses least number of
NCs, the lack of device, bandwidth, loss etc. information leads
to diverse users being grouped together (high TTLB std. dev.).
Similarly, since CDNs maps user based on latency to their
closest PoPs, network and device heterogeneity still exist (e.g.,
the closest PoP to a user can be 10ms-600ms [26]), leading to
highest performance variation within an NC for CDN Aggr.

We further modified the simulator to explore Configanator
performance when different NC techniques are used. We
observe that Configanator out-performs the rest for the
majority of the pageloads. The prefix and CDN based
approaches either do not account for network dynamics
or overfit to specific regions respectively. Latency driven
performs slightly better but ignoring the important metrics,
like packet loss and bandwidth, degrades its effectiveness.

F.7 PLT Variability

PLT measurements are inherently noisy [96] and the variability
in PLT can disrupt the learning algorithm’s model, e.g., GP
is sensitive to noise [78]. Using data from a web performance
observability company (NewRelic [71]), we modeled PLT
variability distribution and used it to introduce variability in
testbed-generated PLT-Tensor. Figure 27a plots a PDF of the
variations with x-axis as the mode PLT multiple (x-axis is
PLT normalized by mode PLT). We fit an Erlang curve to
the observed PDF, owing to its right-skewed, long-tail nature.
Using PLT from PLT-Tensor as the mode PLT (since mode
PLT is the most stable PLT measurement), the PDF is used
to calculate the noisy PLT observed by a real-world user.

Figure 27b plots the extent to which Configanator decisions
(in face of PLT noise) are optimal, compared to the case when
there is no noise (Configanator-NoVari). A proximity score of
1 indicates that Configanator decisions stay exactly the same
for both (noise, no-noise) cases. Leveraging the PerfMemory
knob, we test 2 scenarios with different length of historical
memory. Configanator uses this historical memory to amortize
the impact of any sudden change in performance metrics. We
observe Configanator’s decisions to slightly deteriorate in face
of noise. However the extent is mild at worst — with the system
still assigning the optimal decisions more than 95% at median.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1157

GlobalCDN MAWI
Datasets

0.0

2.5

5.0

7.5

10.0

12.5

15.0

%
 se

ss
io

ns
 o

f t
ra

ce Correct NC,
Exploitation
Stale NC
Exploration

Figure 28: % sessions with PLT degradation.

F.8 Dissecting PLT Degradation
As shown in Figure 5, all algorithms result in some PLT degra-
dation. Figure 28 plots the percentage of sessions that faced
PLT degradation and further divide them into the root-causes.
Our observations are as follows: (i) During exploration, mul-
tiple configurations are tested and may result in degradation.
Around 5-6.2% of the sessions in two of the datasets are such
exploration steps. (ii) As network conditions change over time,
Configanator’s estimate of historical network characteristics
for an IP-prefix may diverge from the actual network. The
stale information is used for classifying the connection into an
NC and predicting the optimal configuration. Due to the global
nature of GlobalCDN dataset, we observe a higher network
churn, with 6.6% of total sessions resulting in PLT degradation
due to stale NC. Only a small proportion of sessions in MAWI
dataset (∼0.1%) resulted in PLT degradation with correct NC
view, indicating that the exploitation arm momentary got stuck
at a sub-optimal configuration.

F.9 CM Design Choices
Configuration Manager Design: CM can run locally in a
PoP or centrally within a data-center [46], trading-off between
data-size to learn and the speed to react to changes. We evalu-
ate both scenarios in our simulator: In the local design, there’s
a separate CM for each trace, while for the global case there’s a
single CM for all traces. To simulate each scenario, we vary the
latencies between CM and the web servers. We observe that
while the global CM is able to make slightly better predictions
at the tail (2% better than local), the difference at median is

12 It takes∼2 minutes to update the models for 10K sessions.

Figure 29: Number of flows through access link

negligible. Despite the larger data set, global CM is not signifi-
cantly better due to distinctly diverse network conditions across
regions (only 17% NCs are common in U.S and Japan traces).

Frequency of model updates: Next, we analyze the
impact of updating our performance model less frequently: we
explore a range of values from every 2 minutes 12 up to every
day. We observed performance to stay relatively stable at the
median, whereas hourly or lower update intervals result in
∼8% better improvement at tail, than a per-day granularity.
F.10 Flows Through Access Link

We use packet trace from [115] to measure the typical number
of TCP flows through an access link. Figure 29 presents the
number of TCP flows with at least 10Kb data transferred, in a
60s time interval. On the median 60s time interval, we observe
around 25-30 flows competing through the access link.

F.11 Additional Micro-benchmarks

In addition to the system benchmarks in § F.9, we also evalu-
ated two alternate design choices: VMs and LD_Preload. For
VMs, we used one VM for each configuration and used Open
vSwitch (OVS) [43] for routing flows to the appropriately con-
figured VM. We explored the use of LD_Preload to intercept
system call and tuned socket using setsockopt(). In comparing
both choices with Configanator, we observed that the VM-
based approach introduced a 20% increase in latency where
as the LD_Preload introduced a much smaller latency of 2.2%.
We also observed overheads for CPU and Memory utilization:
the VM-based approach introduced 30% (memory taken by
the guest OS) while LD_Preload introduced a 5% increase.

1158 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

C2DN: How to Harness Erasure Codes at the Edge for Efficient Content Delivery

Juncheng Yang1, Anirudh Sabnis2, Daniel S. Berger3, K. V. Rashmi1, Ramesh K. Sitaraman2,4

1Carnegie Mellon University
2University of Massachusetts, Amherst

3Microsoft Research and University of Washington
4Akamai Technologies

Abstract
Content Delivery Networks (CDNs) deliver much of the

world’s web and video content to users from thousands of
clusters deployed at the “edges” of the Internet. Maintain-
ing consistent performance in this large distributed system
is challenging. Through analysis of month-long logs from
over 2000 clusters of a large CDN, we study the patterns of
server unavailability. For a CDN with no redundancy, each
server unavailability causes a sudden loss in performance as
the objects previously cached on that server are not accessible,
which leads to a miss ratio spike. The state-of-the-art miti-
gation technique used by large CDNs is to replicate objects
across multiple servers within a cluster. We find that although
replication reduces miss ratio spikes, spikes remain a perfor-
mance challenge. We present C2DN, the first CDN design
that achieves a lower miss ratio, higher availability, higher
resource efficiency, and close-to-perfect write load balancing.
The core of our design is to introduce erasure coding into
the CDN architecture and use the parity chunks to re-balance
the write load across servers. We implement C2DN on top of
open-source production software and demonstrate that com-
pared to replication-based CDNs, C2DN obtains 11% lower
byte miss ratio, eliminates unavailability-induced miss ratio
spikes, and reduces write load imbalance by 99%.

1 Introduction

Content Delivery Networks (CDNs) [20] carry more than
70% of Internet traffic and continue to grow [19]. Large
CDNs achieve this by operating thousands of clusters de-
ployed worldwide so that users can download content with
low network latency. When a user requests an object, the
CDN routes the request to a server proximal to the user [15].
If the server contains the requested object in its cache, the user
experiences a fast response (cache hit). If no server within
the cluster has the object in cache (cache miss), the object is
fetched from a remote cluster which could be another CDN
cluster or the origin (i.e., the content provider).
Detrimental effects of cache misses. Cache misses have
three detrimental effects. First, they degrade performance

by increasing the content download times experienced by the
user, as each object incurring a cache miss would have to be
downloaded over the WAN from a remote server. Second,
cache miss can result in additional traffic between the CDN
cluster and the origin, which is a significant bandwidth cost for
CDN operators. Third, if more cache misses are served from
the origin, content providers need to provision more servers
with higher network bandwidth. Consequently, a CDN’s goal
is to minimize the miss ratio and maintain a low miss ratio
over time for all content providers.
Why tail performance matters. The design goal of a CDN
is to consistently improve download performance for all ob-
jects on a content provider’s site, in every time window, and
for each client location. The performance improvement is
viewed as a “speedup” that the CDN provides over the con-
tent provider’s origin, i.e., it can be quantified as the ratio of
the time to download an object directly from origin (with-
out the CDN) to the time to download the same object from
the CDN. A CDN’s goal is to provide a significant average
speedup in every time window (say, 5-minute window) and
at each client location. A spike in the miss ratio in a single
cluster could violate these performance goals, even if that
spike is short-lived and impacts only a subset of the objects.
That is because the CDN likely offers no speedup over origin
for any client download that is a cache miss, and indeed a
short-lived spike in miss ratio could drastically decrease the
average speedup provided by the CDN during a 5-minute
period.
The challenge of frequent server unavailabilities. Due to
stringent performance goals, servers are continuously mon-
itored by the cluster’s load balancer. A server is declared to
be “unavailable” and (temporarily) taken out of service if it is
deemed incapable of serving content to users within specified
performance bounds. By analyzing a month long logs from
the load balancers in over 2000 clusters of a large CDN, we
find that server unavailability is very common in CDN edge
clusters. When a server is unavailable, the objects stored in its
cache are not available to serve user requests. Unless the re-
quested objects can be retrieved from other servers within the

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1159

cluster, these objects need to be fetched from a remote server,
resulting in a spike in the miss ratio, potentially causing a
violation of performance guarantees.
Limitations of the state-of-the-art approaches. To tolerate
server unavailabilities, the state-of-the-art approach adopted
by large CDNs is to replicate objects across two servers within
a cluster. We found that this approach has three significant
limitations. First, we find that object replication does not
eliminate the miss ratio spike following a server unavailabil-
ity event. The reason is that the replica of the object (within
the cluster) may no longer be present due to eviction from
its cache. Second, replicating objects is space-inefficient as
the CDN effectively has to provision twice the cache ca-
pacity, which is challenging due to the accelerating growth
in CDN traffic. Third, we observe a significant write imbal-
ance between servers due to DNS based load balancing. This
imbalance increases SSD read latency and reduces SSD life-
time [22, 61].
Bringing together efficiency and high availability. In this
paper, we present C2DN1, a CDN design that achieves both
high availability and high resource efficiency. To achieve high
resource efficiency, we apply erasure coding to large cached
objects. This requires overcoming multiple CDN-specific
challenges such as eviction of object chunks due to write
rate imbalances. In fact, we show that a naive application of
erasure coding fails to achieve the goal. The core of our design
is a new technique that enables CDNs to balance eviction rates
and write loads across servers in each cluster. We exploit the
fact that erasure coding enables more flexibility in assigning
chunks to multiple servers. Our key insight here is that the
chunk assignment can be reduced to a known mathematical
optimization problem, called Max Flow Problem.

The core contributions of C2DN are a novel chunk place-
ment scheme for consistent-hashing-based load balancing
in CDN clusters and a low-overhead implementation of era-
sure coding for CDNs that can serve the different traffic re-
quirements of production systems. Specifically, by solving an
instance of the Max Flow problem, we assign objects with
near-optimal balance in eviction and write rates for CDN
servers and their SSDs. As a consequence, C2DN can reduce
storage overheads and bandwidth costs. Finally, equal write
rates across servers essentially function as a cluster-wide
distributed wear-leveling for the servers’ SSDs, significantly
extending lifetimes.
Our contributions. We make the following contributions.
1. We show that server unavailability is common in CDN

clusters by analyzing a month-long trace from over 2000
load balancers of a large CDN. We show that the state-of-
the-art approach of replicating objects within a cluster does
not eliminate miss ratio spikes after a server unavailability
events.

2. We design C2DN with a hybrid redundancy scheme us-

1C2DN stands for Coded Content Delivery Network.

ing replication and erasure coding, along with a novel
approach for parity placement. C2DN reduces the storage
overhead of providing fault tolerance, and hence lowers
the miss ratio. Moreover, by leveraging the parity assign-
ment, C2DN balances the write loads and eviction rates
across cache servers.

3. We implement C2DN on top of the Apache Traffic Server
(ATS) [7] and evaluate it using production traces. We show
that C2DN provides 11% miss ratio reduction compared
to the state-of-the-art, and C2DN eliminates the miss ratio
spikes caused by server unavailabilities. Further, C2DN
decreases write load imbalance between servers by 99%.

2 Background

We describe CDN architecture, performance, and cost factors.
CDN Architecture. A CDN is a large distributed system
with hundreds of thousands of servers deployed around the
world [20, 50]. The servers are grouped into clusters, where
each cluster is deployed within a data center on the edge of
the Internet. The CDN cluster caches content and serves it on
behalf of content providers, such as e-commerce sites, enter-
tainment portals, social networks, news sites, media providers,
etc. By caching content in server clusters proximal to the end
users, a CDN improves performance by providing faster down-
load times for clients. Unlike storage systems, CDN servers
do not store the original content copies. When the requested
content is not available in the cluster (cache miss), the con-
tent is retrieved from other CDN cluster or the origin servers
operated by the content provider.
Bucket-based request routing. When a user requests an ob-
ject, such as a web page or video, the global load balancer
of the CDN routes the request to a cluster that is proximal to
the user [15]. Next, the local load balancer within the cluster
routes the request to one or more servers within the chosen
cluster that can serve the requested object. As an example, in
Akamai’s CDN, these routing steps are performed as DNS
lookups. A content provider CNAMEs its domain name (e.g.,
for all of its media objects) to a sub-domain whose author-
itative DNS server is the CDN’s global load balancer. At
the global load balancer, this sub-domain is CNAME’d to a
cluster-local load balancer that assigns the sub-domain to a
cluster server using consistent hashing [43].

CDN request routing stands in contrast to sharding in key-
value caches, such as Memcached and Redis, where consistent
hashing is often applied at a per-object granularity [49, 81–
83]. In CDNs, load balancing decisions are taken on the
granularity of groups of objects called buckets. Each bucket,
in a DNS-based load balancer, correspond to a domain name
that is resolved to obtain one or more server IPs that host
objects in that bucket. This resolution is computed using
consistent hashing. Since the number of buckets is limited in
the range of 100s, the computation is performed and cached
when a cluster server becomes available or unavailable.

1160 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

16B 1KB 1MB 1GB
Object size

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 to

ta
l b

yt
e video

web

(a) Object sizes

16B 1KB 1MB 1GB
Request size

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 re

qu
es

ts video
web

(b) Request sizes

101 102 103 104 105

Unavailability Duration (min)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(c) Unavailability durations

0 250 500 750 1000
Time (min)

0.0

0.1

0.2

0.3

0.4

Re
la

tiv
e

ob
je

ct
 m

iss
 ra

tio
 in

cr
ea

se

2.2x

no replication replication (CDN)

(d) Unavailability impact

Figure 1: a) Size distributions show that large objects contribute to most of the unique bytes and b) most requests are for small objects. c)
Server unavailabilities are mostly transient. d) Object miss ratios spike after server unavailability both with and without the state-of-the-art
replication.

CDN Performance Requirements. A CDN aims to serve
content faster than a customer’s origin by a specified speedup
factor. This factor is commonly part of a service level agree-
ment (SLA) between the CDN and the content provider. The
SLA is monitored by recording download times from a glob-
ally distributed set of locations for the same content using both
CDN and origin servers. Hence, the goal is to ensure good
“tail” performance in every time interval for every content
provider from every cluster.
Operating Costs of a CDN. CDNs seek to minimize the op-
erating cost, which consists of the following main categories.
(i) Bandwidth : A major component of the operating cost of a
CDN is bandwidth, accounting for roughly 25% of operating
costs. The bandwidth cost can be further broken down, the
bandwidth cost caused by cache miss traffic called midgress
[69] that accounts for roughly 20%, while the rest is the cost of
egress i.e., the traffic from the CDN servers to clients. CDNs
have a great cost incentive to reduce the byte miss ratio and the
midgress traffic since a CDN gets paid by content providers
for the traffic to end users. The midgress traffic between CDN
clusters and the origin is purely a cost overhead for the CDN.
Even modest reductions in midgress translate into large cost
savings since the bandwidth costs tens of millions of dollars
per year for a large CDN [69].
(ii) SSD wearout: A second major cost component is server
deprecation which accounts for about 25% of the operating
cost of a large CDN. Hardware replacements are particularly
expensive for small edge clusters due to the large geographic
footprints of CDNs. SSDs are a key component due to the
high IOPS requirements of CDN caching. Unfortunately, us-
ing SSDs in caching applications is challenging due to their
limited write endurance [9, 22, 42, 67, 70]. With deployments
of TLC and QLC SSDs, reducing SSD write rates has become
even more critical. Besides reducing the average write rate
within a cluster, CDNs also seek to reduce the variance of
write rates of different servers and their SSDs. Large variance
leads to some SSDs not achieving their intended lifetime (e.g.,
3 years) as well as high tail latency (see §3.4). Consequently,
CDNs seek to reduce the peak write rate, ideally balancing
write rates across all SSDs in a cluster.

Per server load (TB) Max Min Mean Max/min

Weekly read 225.2 167.9 191.2 1.3
Weekly write 16.54 6.69 12.57 2.5

Table 1: Read and write load for a 10-server production cluster.

3 Production CDN Trace Analysis

This section motivates the design of C2DN by analyzing three
sets of traces from production Akamai clusters.

We collected request traces from two typical Akamai 10-
server-clusters (cluster cache size 40 TB), one mainly serving
web traffic and the other mainly serving video traffic. These
traces comprise anonymized loglines for every request from
every server over a period of 7 and 18 days, respectively. The
web trace totals 6 billion requests (1.7 PB) for 273 million
unique objects (79.8 TB). The video trace totals 600 million
requests (2.1 PB) for 130 million unique objects (224 TB).

Additionally, we collected availability traces from 2190
Akamai clusters over 31 days. The trace consists of snapshots
taken every 5 minutes from each cluster’s local load balancer.
Each snapshot contains the number of available servers as
determined by the load balancer. The smallest cluster has
two servers, the largest cluster has over 500 servers, and the
median cluster size is 17 servers. We observe that cluster size
has a wide range, and around 40% of clusters have fewer than
or equal to 10 servers. We plot the distribution of cluster size
in Fig. 10 in Appendix 10.1.

3.1 Diversity in workloads and object sizes
CDNs mix different types of traffic in clusters in order to fully
use their resources. For example, different “classes” of traffic
with small and large object sizes, such as web assets and video-
on-demand, are mixed to balance the utilization of the clus-
ter’s CPUs as well as network and disk bandwidth [68]. Con-
sequently, object sizes vary widely [10]. Figures 1a and 1b
show the size distribution for our production traces, weighted
by unique objects and by request count, respectively. As ex-
pected, object sizes vary from a few bytes to a few GBs. Fig 1a
shows that the majority of traffic and cache space is used by
large objects. Furthermore, objects smaller than 1 MB make

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1161

up less than 15% and 12% of the total working set in web
and video, respectively. Fig 1b shows that the majority of the
requests are for small objects with 95% of requests in web-
dominant workload smaller than 1 MB, and 50% of requests
in video-dominant workload smaller than 1 MB.

3.2 Unavailability is common and transient
Unavailability is common. Across all clusters, server un-
availabilities occur in 45.2% of the 5-minute snapshots. For
clusters with only ten servers (same size as the cluster we
collect request traces from), we observe that 30.5% of 5-min
time snapshots show server unavailability. Moreover, we ob-
serve that unavailability affects only a small number of servers
at any given time: 85% of unavailabilities affect less than 10%
of servers in large clusters, and 84% of unavailabilities affect
no more than a single server in a ten-server cluster.

These unavailability rates can appear high compared to
published failure rates in large data centers [25, 46, 54, 56, 59]
and HPC-systems [65]. However, environmental conditions
can be more challenging in small edge clusters. For example,
edge locations often have less efficient cooling systems than
highly optimized hyperscale data centers; edge clusters also
have less power redundancy, such as redundant battery and
generator backups [50]. Moreover, CDN clusters employ a
rigorous definition of server unavailability. When a server
does not meet the performance requirement, it is deemed
as unavailable by the load balancer. These types of unavail-
ability are rarely reported by data centers and HPC systems.
Unfortunately, the unavailability logs do not provide a causal
breakdown of failure events.
Unavailability is mostly transient. Fig. 1c shows a CDF
of the durations of unavailabilities. We observe that unavail-
abilities can last between 20 minutes and 24 hours with a
median duration of 200 minutes. These short unavailabili-
ties are mostly caused by performance degradation, such as
unexpected server overload and software issues (e.g., applica-
tion/kernel bugs or upgrades). Besides, we observe a long tail
of unavailability durations, with around 16% exceeding 24
hours and 2% exceeding an entire week. These cases may be
related to hardware issues. Qualitatively, our observations are
similar to storage systems in the sense that unavailabilities
are common and most unavailabilities are not permanent.

3.3 Mitigating unavailability is challenging
Upon detecting an unavailability, the load balancer removes
the corresponding server from the consistent hash ring and
reassigns their buckets to other servers [43]. We evaluate
how a bucket’s object miss ratio is affected by unavailability
using the video trace. Fig. 1d shows that the object miss
ratio in a CDN cluster without any redundancy increases by
more than 2× relative to no unavailability over the same time
period. This spike disproportionally affects a small group
of content providers because of bucket-based routing (§3.1).

The high latency resulting from cache misses can lead to SLA
violations.

The state-of-the-art mitigation technique for server un-
availability at large CDNs is replicating buckets across two
servers2. When one server becomes unavailable, requests are
routed to the other server, likely to hold the object. Fig. 1d
shows that replication reduces the intensity of the miss ratio
spike. However, we find that replication does not remove the
miss ratio spike. In contrast to storage systems, where replica-
tion guarantees durability, in CDN clusters, servers perform
cache evictions independently. Objects that are admitted to
two caches at the same time may be evicted at different times.
This is particularly common if the two caches evict objects at
very different rates, making replication ineffective. We next
discuss why this case is more common than one might expect.

3.4 The need for write load balancing
We measure the read and write load balance across servers
in a CDN cluster. To make the analysis independent from
eviction decisions, we present the read and write rates based
on compulsory misses from the web trace 3. Table. 1 shows
that the server with the highest read load serves 1.3× more
traffic than the server with the lowest read load. The server
with the highest write load writes around 2.5× more bytes
than the server with the lowest write load.

Write load imbalance causes three problems. First, imbal-
ance reduces the effectiveness of replication. A server with
a 2.5× higher write rate also has a 2.5× higher eviction rate.
So, a newly admitted object will traverse the cache with the
highest write load 2.5× faster than the one with the least write
load. Consequently, buckets mapped to these servers will have
many objects for which only a single copy is cached in the
cluster. We find that for 25% of objects, only a single copy ex-
ists in the cluster, which leads to the miss ratio spike observed
during unavailabilities (Fig. 1d). Second, SSD write load
imbalance often causes high tail latency. Specifically, high
write rates frequently trigger garbage collection, which can
delay subsequent reads by tens of milliseconds [11,77,78,80].
These delays are significant enough to have been recognized
as a problem by multiple CDN operators [61]. Third, the
imbalance can lead to short SSD lifetimes due to concen-
trated writes on some SSDs, and thus higher replacement
rates [9, 22], which increases CDN cost (§2).

4 C2DN System Design

C2DN’s design goals are to: (1) eliminate miss ratio spikes
2For operational flexibility, CDNs do not replicate servers as prima-

ry/backup. CDNs implement replication using additional virtual nodes for a
bucket on the consistent hash ring [36, 47].

3Compulsory misses are cache admissions forced by objects not pre-
viously seen in the trace (underestimating the real miss and write rate).
However, more compulsory misses only lead to more writes and evictions.
Therefore, write rates are often proportional to compulsory misses.

1162 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

caused by server unavailability, and (2) balance write loads
across servers in the cluster. Erasure coding is a promising
tool to improve availability under server unavailability. We
first describe a naive implementation, called C2DN-NoRebal,
based on a straightforward application of erasure coding
(§4.1). C2DN-NoRebal fails to achieve the targeted goals,
and we identify write and eviction imbalance as the key chal-
lenge. We then describe a new technique to overcome this
challenge (§4.2) that exploits the unique aspects of the use of
erasure coding in the context of CDNs.

4.1 Erasure coding and C2DN-NoRebal
Erasure coding is widely used in production storage sys-
tems for providing high availability with low resource over-
head [32, 35, 48, 48, 54, 56]. Conceptually, erasure coding an
object involves dividing the object into K data chunks and
creating P parity chunks, which are mathematical functions
of the data chunks. Such a scheme, called a (K,P) coding
scheme, enables the system to decode the full object from any
K out of the K+P chunks. Thus, caching K+P chunks on dif-
ferent servers provides tolerance to P server unavailabilities.
As individual chunks are only a fraction 1/K of the original
object’s size, coding reduces space overhead compared to
replicating full objects4.

As CDNs use bucket-based routing (§2), coding needs to
be applied at the level of buckets rather than objects. Specif-
ically, the K data chunks of all the objects belonging to a
bucket are grouped into K distinct data buckets respectively.
Similarly, the corresponding P parity chunks are grouped into
P distinct parity buckets. These buckets (data and parity) are
each assigned to a distinct server in the cluster. Note that
while the routing happens at the level of buckets, requests are
still served at the level of objects. Hence we will use the term
buckets in the context of assignment and chunks in the context
of serving specific objects.

The application of erasure coding to CDNs is shown in Fig.
2a. To serve a user request, a server reads one chunk from
the local cache and at least K−1 chunks from other servers
to reconstruct the requested object. To find the location of
data and parity chunks, C2DN-NoRebal relies on a simple
extension of bucket-based consistent hashing. The location of
the first chunk is the server the bucket containing the object
hashes to. Then, subsequent K +P−1 chunks are read from
the subsequent K +P−1 servers on the consistent hash ring.

Owing to the reduced storage overhead, C2DN-NoRebal
provides cost benefits by reducing the average byte miss ratio
when compared to replication (as seen in our experiments in
§6). However, C2DN-NoRebal fails to eliminate the object
miss ratio spike during unavailability (§6). Specifically, we
find that coded caches are even more sensitive to write load im-
balance than replication. For replication, eviction rate imbal-

4The space overhead of an (K,P) coding scheme is K+P
K . For example, for

K = 3, P = 1, space overhead is 1.33× as opposed to 2× in two-replication.

ance may cause the second (backup) copy to be evicted, which
is required when a server becomes unavailable. Whereas for a
coded cache, eviction rate imbalance could lead to any of the
individual chunks being evicted, which leads to an effect we
call partial hits: less than K chunks of the object are cached
in the cluster, and this prohibits the reconstruction of the ob-
ject. A partial hit only requires fetching the missing chunks,
but incurs the same round-trip-time latency as a miss and
thus does not provide a speedup. Further, partial hits become
even more frequent during server unavailability, thus deeming
C2DN-NoRebal less effective.

4.2 Parity rebalance and C2DN
Having identified write imbalance as a key challenge for
erasure coding in CDNs, we next show how we exploit parities
in overcoming these imbalances. Our main idea is to assign
parity buckets to servers in a way that mitigates the write load
imbalance caused by data bucket assignment.

Like the state-of-the-art in CDNs and C2DN-NoRebal,
C2DN applies consistent hashing to assign the data buck-
ets (Fig. 2b). We define a server’s data write load as the
number of bytes written (i.e., admitted) to cache, counting
only data buckets. We also define a bucket’s parity write
load as the bytes written counting only parity buckets. Every
server records data write load and each bucket’s parity write
load since the cluster’s last unavailability event. After an un-
availability event, parity buckets are reassigned by the load
balancer using this information. The load balancer calculates
an assignment of parity buckets to servers to balance write
load. This assignment is a non-trivial calculation as not every
assignment is feasible: parity chunks cannot be assigned to
a server that holds a data chunk of the same object. In gen-
eral, C2DN’s parity bucket assignment problem is NP-hard
by reduction from the Generalized Assignment Problem [14].
C2DN’s parity bucket assignment algorithm. We obtain
an approximate solution in polynomial time using a MaxFlow
formulation (Fig. 2c). The solution provides us with feasible
server assignments for each parity bucket. We empirically
observe that by assigning the parity bucket to the least loaded
server among the feasible servers, the write load on each
server is well balanced. The inputs to the algorithm are:
1. parity write load of bucket n (sn),
2. data write load on server i (li),
3. total write load on the cluster (W),
4. current assignment of data buckets to servers,
5. available servers in the cluster (A).

The flow graph (Fig. 2c) is constructed using a source-
node (S), parity-nodes corresponding to each parity bucket,
server-nodes corresponding to each server in the cluster, and
a sink-node (T). We add an edge from the source-node (S) to
each parity-node n with a capacity equal to the bucket’s parity
write load (sn). We add edges from parity-nodes to the server-
nodes if the corresponding parity bucket can be placed on that

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1163

2. 3.

DonXW ClXsWer

1.

1. Read local cache.
2. Read oWher daWa chXnks.
3. Read pariW\ if needed.

HTTP

DNS

FronWend

Cache

WAN
Origin
SerYer

C2DN Cluster

(a)

S4

Object hash
location

S1 S2
S3

write
load

S1
assigned
less load

Data
bucket
D1

Data
bucket D1

Imbalanced server load after assigning
data buckets using consistent hashing

(b)

S T

Parit\ buckets Assign S1
more parit\

Balance load b\ assigning parit\ buckets
using Ma[Flow MinCut formulation

S1

S2

S3

S4

Source

Parity nodes

Sink

Server nodes

(c)

Figure 2: a) Architecture of C2DN; b) C2DN bucket assignment C2DN assigns data buckets using consistent hashing, which guarantees a
consistent mapping across unavailabilities, but causes load imbalance; c) Parity rebalance. Write load imbalance is mitigated by assigning
parity buckets to balance the load using a MaxFlow formulation.

server, i.e., the data chunks of the bucket are not assigned to
the server. The capacity of these edges is again the bucket’s
parity write load (sn). Finally, we add edges from server-nodes
to the sink-node (T) with a capacity equal to the server’s
remaining write load budget, which is max(

⌈
W
|A |

⌉
− li,0).

After solving MaxFlow(S,T), C2DN iterates over parity
buckets. Each parity bucket is assigned to the least loaded
server with a positive flow from the parity-node to the server-
nodes. This leads to a well-balanced assignment. The assign-
ment is also feasible as no positive flow exists between a parity
bucket and the servers holding this bucket’s data chunks.

The parity rebalance algorithm is described in more detail
via a pseudo-code in Appendix 10.3.
Extension to heterogeneous servers. We incorporate het-
erogeneous servers by setting the capacity of the edge in the
graph between server-nodes to sink-node (T) proportional to
the size of the server.

4.3 C2DN resolves partial hits
Having shown how to balance write loads across servers
within the cluster, we show that this is sufficient to solve the
issue of partial hits. Specifically, we find that the probability
of a partial hit diminishes for large caches.

We formulate our proof under the simplifying assumptions
of the independent reference model (IRM5), which is used
widely in caching analysis [5, 10, 23]. While our proof can
be extended to a range of eviction policies [44], we assume
the Least-Recently-Used (LRU) policy for simplicity. We
empirically observe that FIFO, which is used in open-source
caches such as Apache Trafficserver [7] and our empirical
evaluation in §6, behaves similarly to LRU.

We remark that we do not require explicit coordination of
individual eviction decisions among the caches. Our theorem
states that under IRM, in C2DN, if one chunk of an object is
present in a cache, then the other chunks are almost surely

5In the IRM, an object i’s requests arrive according to a Poisson pro-
cess with a rate λi, independent of the other objects’ requests. With recent
theoretical advances [34], our proof can be extended to not assume the IRM.

1 KB 32 KB 1 MB
Block Size

0

100

200

300

Pe
r c

or
e

th
ro

ug
hp

ut
 (G

bp
s)

K=3, P=1
K=7, P=1

K=3, P=2
K=7, P=2

(a) Decoding throughput

1 2 4 8 16 32 64 128 256 512
IO size (KiB)

500

1000

1500

2000

2500

Th
ro

ug
hp

ut
 (M

iB
/s

)

Bandwidth

(b) SSD throughput

Figure 3: Microbenchmarks. a) With vector instruction in modern
CPU, decoding is very efficient with high throughput, the sub-chunk
size to achieve maximum throughput across configurations is around
32-64 KB. b) Modern SSD achieves maximum throughput with I/O
size larger than 32 KB.

present in the other caches.
Theorem 1. Under IRM and LRU, in C2DN, for an object
with chunks x1, . . . ,xn, for any 1≤ i, j ≤ n., and as the cache
size grows large

P[chunk xi is in cache | chunk x j is in cache]→ 1 (1)

Our proof uses the fact that balanced write loads lead to equal
characteristic times [10, 23, 26, 60], which is the time it takes
for a newly requested chunk to get evicted from each server’s
LRU list. Since data and parity chunks of an object are re-
quested simultaneously and the characteristic time is the same,
the chunks are also evicted simultaneously, and partial hits
become rare. Details can be found in Appendix 10.2.

5 C2DN Implementation

In addition to design goals (1) and (2), C2DN’s implementa-
tion seeks to (3) minimize storage/ latency/ CPU overheads
and (4) remain compatible with existing systems to facilitate
deployment. This entails subtle implementation challenges.
Enabling transparent coding. A key architectural question
is which system component encodes and decodes objects
into/from data and parity chunks. A natural choice might be to
encode objects at origin servers. However, this would require
changes to thousands of heterogeneous origin software stacks
— a barrier to deployment. Additionally, encoding at the origin

1164 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

would increase origin traffic as each cache miss needs to
fetch both data and parity chunks, e.g., with K = 3, P = 1 the
origin traffic would increase by 33%. Thus, C2DN fetches
uncoded objects from origins and encodes chunks within the
CDN cluster. Additionally, any decoding operation is also
performed within the cluster for transparency on the client
side.
Selective erasure coding. While encoding and decoding are
fast due to broad CPU support for vector operations, the over-
head of fetching becomes significant for small objects. As
the majority of requests are for small objects (§3.1), we can
reduce processing overheads by using replication for small
objects. C2DN applies coding to large objects, which account
for most of the production cluster’s cache space (§3.1). Of
course, with selective coding, we now need to count uncoded
objects as part of the data write load in §4.2.

To decide the size threshold of coding, we perform two mi-
crobenchmarks studying how coding block size affects coding
throughput and SSD bandwidth. Fig. 3a shows that even on a
five-year-old Skylake Xeon, decoding is very efficient with
per-core throughput over 200 Gbps (data fits in CPU cache)
at a block size of 32 KB. This benchmark result suggests that
decoding will not be a bottleneck at a reasonable block size
(e.g., 32 KB) compared to NIC bandwidth. Fig. 3b shows the
relationship between SSD bandwidth and I/O size (setup as in
§6). We again find that a block size of 32-64 KB achieves the
peak SSD bandwidth. Based on these results, C2DN codes
object larger than 128KB so that each chunk is at least 42KB
for a (3, 1) coding scheme.

This hybrid approach enables load balancing and space
efficiency with no overhead for most requests. One might ask
why C2DN relies on replication for small objects after §2
showed that replication continues to suffer from miss ratio
spikes. We find that erasure coding large objects is sufficient
to balance eviction rates (using C2DN’s parity rebalance),
making replication effective for small objects.
Parity rebalance and parity look up. As described in § 4.2,
C2DN formulates the parity bucket assignment problem as
a Max Flow problem. We solve the problem using Google-
OR [53], which implements the push-relabel algorithm [18].
The time complexity of this algorithm is O(n2

node ∗
√nedge).

where nnode is the number of nodes (#buckets + #servers)
and nedge is the number of edges (≈#buckets × #servers).
In production systems, #buckets is in the range of 100s for
a 10-server cluster. Thus, the time complexity simplifies to
O(#buckets3). Empirically, we observe low run times as well,
for e.g., for 100 buckets and 10 servers, C2DN’s parity bucket
assignment runs within 50 µs. Also, note that the parity bucket
mapping is calculated in the background (off the critical path)
and only when there is an unavailability event. From our
analysis, we observe around 5.6 unavailability events on an
average day.
Support for large file serving, HTTP streaming, and byte-
range requests. To minimize latency, CDNs stream large ob-

a1 a2 a3
b1 b2 b3
c1 c2 c3

Split & Encode

Original Object

Sub-
chunksa1

b1

c1

a2

b2

c2

a3

b3

c3

p1

p2

p3

Data chunks Parity chunks

Figure 4: Support for HTTP streaming. C2DN efficiently supports
HTTP streaming and byte-range requests by splitting large files into
sub-chunks and performs coding on sub-chunks level.

System Replication(CDN) C2DN C2DN reduction

Object miss ratio 0.242 0.227 6.4%
Byte miss ratio 0.118 0.105 11%

Table 2: Object and byte miss ratio from prototype

jects to clients. We achieve compatibility with streaming by
subdividing data and parity chunks (for very large objects)
into smaller parts which we call sub-chunks. C2DN’s encod-
ing and decoding work on the sub-chunk level as shown in
Fig. 4. We implement streaming by serving sub-chunks as
they become available. For byte-range requests, C2DN fetches
the sub-chunks overlapping with the requested byte-range.
Delayed fetch of parity sub-chunks. C2DN can serve a re-
quest with any K sub-chunks (out of K +P). Because serv-
ing with data sub-chunks requires no decoding, C2DN first
fetches all K data sub-chunks. C2DN only fetches parity sub-
chunks after a heuristic wait period to overcome stragglers.
We record the time until the first data sub-chunk is returned.
If, after an additional 20% wait time, fewer than K data sub-
chunks have arrived, C2DN fetches parity sub-chunks.
Hot object cache (HOC). To facilitate serving hot objects,
C2DN caches decoded sub-chunks in DRAM so that if an
object is popular, it will be served directly and efficiently from
DRAM, thus avoiding fetching and possible decoding.
Metadata lookups. In the case of a HOC miss, C2DN needs
to know if the object was encoded or replicated. Storage
systems can rely on external metadata for this case, which
is not available in CDNs. Thus, C2DN stores metadata with
each cached object, indicating whether the object is coded
or not. On a HOC miss, C2DN first looks up the object in
its local SSD cache. If the metadata indicates a coded object,
C2DN fetches chunks from other caching servers within the
cluster. In the case of a local cache miss, C2DN retrieves the
object from other CDN clusters or the origin servers, then
C2DN serves the object to the end-user, stores it locally, and
encodes or replicates based on the object size.

6 Evaluation

We build C2DN on top of Apache Trafficserver and evaluate
it via a series of experiments on Amazon EC2. To study a
more comprehensive parameter range, we use simulations.
The source code of our prototype and simulator is released at
https://github.com/Thesys-lab/C2DN.

The highlights of our evaluation are: (1) C2DN eliminates
miss ratio spikes after unavailabilities. Additionally, C2DN re-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1165

https://github.com/Thesys-lab/C2DN

duces byte miss ratio by 11%, enabling significant bandwidth
cost savings at scale. (2) C2DN reduces write load imbalance
by 99%. (3) C2DN achieves the same latency, lower average
SSD write rates with only a 14% increase in CPU utilization.

6.1 Experimental methodology and setup
Traces. We evaluate C2DN using the two production traces
described in §3. In the following sections, we focus on the
video trace and present results for the web trace in §6.7.
Prototype evaluation setup. We emulate a CDN’s geo-
graphic distribution by placing sets of clients, a 10-server
CDN cluster, and an origin data center in different AWS
regions. CDN servers use i3en.6xlarge VMs with 80 GB
in-memory cache and 10 TB disk cache. To reduce WAN
monetary bandwidth costs of the experiments, we measure
latency via spatial sampling [72, 73] for 2% of requests. The
remaining requests are generated in the same region.

Unless specified otherwise, we use Reed-Solomon codes
(K = 3,P = 1). We only code objects larger than 128 KB
(§4). The prototype experiments use four days of requests
to warm up caches. Measurements are then taken for three
days of requests. This corresponds to replaying 1.18 PB of
traffic in total from local and remote clients in each prototype
experiment.
Simulation setup. We implement a request-level cluster sim-
ulator. While the simulator does not capture system overheads,
it is useful in comparing various schemes for the full dura-
tion of the trace and for various cache sizes (which are pro-
hibitively expensive to perform using prototype experiments.)
Simulations use 18-day long traces (compared to 7 days with
the prototype). Unless otherwise stated, the simulator uses
the same configuration as the prototype.
Baselines. We compare C2DN to three baselines. (1) No-
replication does not provide fault tolerance and incurs no
space overhead. (2) Replication (CDN) replicates each ob-
ject with two replicas. We use the (CDN) suffix as this is most
similar to the approach deployed today. (3) C2DN-NoRebal
a C2DN variant based on consistent hashing without par-
ity rebalance. In addition to C2DN, which uses one parity
chunk and tolerates one unavailability, we have also evalu-
ated C2DN-n5k3 and C2DN-n6k3, which uses two and three
parity chunks, and can tolerate two and three unavailabilities,
respectively.

6.2 Miss ratio without unavailability
We evaluate miss ratios of the competing systems under nor-
mal operation, i.e., without unavailability. Table. 2 shows the
object miss ratio and byte miss ratio of Replication (CDN)
and C2DN obtained from the prototype experiments. We ob-
serve that C2DN reduces object miss ratio by 6.4% and byte
miss ratio by 11.0%. These improvements are direct results
of the reduced storage overhead in C2DN. At a large scale,
these improvements lead to significant bandwidth savings.

10 20 50 100 200 300 400
Cluster cache size (TB)

0.0

0.2

0.4

By
te

 m
is

s
ra

tio

no replication
replication (CDN)
C2DN-NoRebal
C2DN

Figure 5: Byte miss ratio of the four systems.

To understand the sensitivity of byte miss ratio improve-
ments to cache size, we show simulation results in Fig. 5. For
smaller cache sizes, C2DN improves byte miss ratios by up
to 20%. Benefits diminish for cache sizes above 200 TB (5×
production cache size). For object miss ratios, the effect is
qualitatively similar (Fig. 12 in the appendix). Overall, the
reduction in miss ratio bridges the efficiency gap between No-
replication and Replication (CDN) and reduces the overhead
of providing redundancy in CDN edge clusters.

We also observe that C2DN improves miss ratios compared
to C2DN-NoRebal because C2DN balances the write loads
(eviction rates) across servers and reduces the probability of
partial hits. However, this effect is small, suggesting that most
of C2DN’s miss ratio reduction comes from reduced storage
overhead. The advantage of C2DN over C2DN-NoRebal will
become clear in the following section, where we find that
C2DN-NoRebal does not provide effective fault tolerance.

6.3 Miss ratio under unavailability
We now consider unavailabilities and evaluate the object miss
ratio as the primary performance metric affecting latency and
speedup. A first experiment introduces single unavailability
after warming up the cache. We then measure the relative
object miss ratio change: mr(un)−mr(av)

mr(av) for each 5 minute time
interval, where mr(un) and mr(av) stand for miss ratio with
unavailability and without unavailability, respectively. A sec-
ond experiment considers two simultaneous unavailabilities.

Fig. 6a show the relative object miss ratio increase where
the single unavailability event occurs 100 minutes after
warmup. As expected, No-replication does not provide fault
tolerance, leading to a large (2.2× as seen in 1d) miss ratio
spike. Replication (CDN) and C2DN-NoRebal have similar
performance with 25% miss ratio spikes.

The miss ratio of C2DN is not affected for several hours
after the unavailability event. This is because C2DN with
one parity chunk can tolerate one unavailability effectively.
In the long term, miss ratios for all systems increase as the
cluster’s total capacity is reduced. For C2DN, the increase in
the miss ratio becomes visible only after around 300 minutes
past unavailability. During unavailability, data that should
be written to the unavailable servers are written to the other
available servers. The extra writes take a long time to impact
the miss ratio of clusters with a large cache size. We remark
that the exact length of such no performance degradation is
not fixed and is dependent on the trace.

The reason for the miss ratio spike in Replication (CDN)

1166 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 250 500 750 1000
Time (min)

0.0

0.1

0.2

0.3

Re
la

tiv
e

ob
je

ct
 m

is
s

ra
tio

 in
cr

ea
se no replication

replication (CDN)
C2DN-NoRebal
C2DN

(a)

10 20 50 100 200 300 400
Cache size (TB)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 o

bj
ec

ts Unprotected object
Protected object

(b)

10 20 50 100 200 300 400
Cache size (TB)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 o

bj
ec

ts left: C2DN-NoRebal
right: C2DN

1 chunks
2 chunks
3 chunks
4 chunks

(c)

C2DN
C2DN

C2
DN

C2
DN

(d)
Figure 6: a) Replicated CDN mitigates unavailability, but still has a spike after unavailability. C2DN mitigates the unavailability spike. b)
Servers in the Replicated CDN evict objects independently, and due to write imbalance this leads to unprotected objects. c) Naive coding has
similar problems as replication; C2DN solves this problem by parity rebalance. d) Write load imbalance for different systems across various
cache sizes.

0 250 500 750 1000
Time (min)

0.0

0.2

0.4

0.6

0.8

Re
la

tiv
e

ob
je

ct
 m

is
s

ra
tio

 in
cr

ea
se replication (CDN)

three-replication
C2DN-n5k3
C2DN-n6k3

(a) Affected server 1

0 250 500 750 1000
Time (min)

0.0

0.1

0.2

0.3

0.4

Re
la

tiv
e

ob
je

ct
 m

is
s

ra
tio

 in
cr

ea
se replication (CDN)

three-replication
C2DN-n5k3
C2DN-n6k3

(b) Affected server 2
Figure 7: With two simultaneous unavailabilities, two replication
(CDN) shows a big spike when the unavailability happens. Three
replication and C2DN-n5k3 still show a small spike due to evicted
replica/chunk. C2DN-n6k3 completely eliminates the spike.

and C2DN-NoRebal— despite using redundancy — is the
severe write and eviction rate imbalance in these systems
(§3.3 and 3.4). This imbalance leads to unprotected objects:
an object is unprotected if only a single copy is cached in the
cluster. For C2DN-NoRebal, unprotected objects are objects
with fewer than K +1 chunks cached in the cluster.

Fig. 6b shows the fraction of (un)protected objects in Repli-
cation (CDN). We observe that more than 25% of objects can
be unprotected. The fraction of unprotected objects initially
increases with cache size and then decreases. This pattern
is because only highly popular objects are cached when the
cache size is small, and hence the chance of having both repli-
cas is higher. On the other hand, replicas are less likely to be
evicted when the cache size is very large. Fig. 6c shows the
fraction of unprotected objects in C2DN-NoRebal and C2DN.
Since K =3 and P =1, objects with fewer than 4 chunks are un-
protected. For caches smaller than 300 TB, up to 24% of the
objects in C2DN-NoRebal are unprotected. In contrast, C2DN
protects nearly 100% of cached objects across all cache sizes
and effectively eliminates miss ratio spikes.

So far, we have only focused on one unavailability. When a
CDN operator seeks to tolerate more than one unavailability,
C2DN’s advantage over replication increases as the space
requirements for erasure coding scale significantly better. As
an empirical data point, we consider two unavailabilities and
compare two-replication and three-replication with C2DN-
n5k3 and C2DN-n6k3. C2DN-n5k3 (C2DN-n6k3) uses two

System/server load Max Min Mean Max/min

CDN write (TB) 16.83 9.26 13.48 1.82
C2DN write (TB) 8.44 8.40 8.42 1.00

Table 3: Write load on servers in Replication (CDN) and C2DN.

(three) parity chunks with 66% (100%) storage overhead
and can tolerate two (three) unavailabilities. In contrast, two-
replication and three-replication tolerate one and two unavail-
abilities with 100% and 200% storage overhead, respectively.

Fig. 7 shows that compared to two-replication, C2DN-n5k3
and three-replication significantly reduce the miss ratio spike
from over 80% to less than 20%. Furthermore, the miss ratio
spike disappears entirely with C2DN-n6k3, which has the
same storage overhead as two-replication.

6.4 Write (Read) load balancing
We quantify how well systems balance write load across
servers. Balancing writes is the key to mitigating miss ra-
tio spikes and helps control SSD tail latency and endurance.

Table. 3 shows bytes written per server in our prototype
experiments. The busiest server in Replication (CDN) writes
16.8 TB compared to 8.4 TB for the busiest server in C2DN.
With half the write rate, C2DN may double SSD lifetime
and reduce tail latency by up to an order of magnitude [80].
The write imbalance in Replication (CDN) between peak and
minimum write rate is 1.82×. In contrast, the write imbalance
in C2DN is less than 1.005×. We also observe that C2DN
reduces read imbalance from 1.69× for Replication (CDN)
to 1.34×. The read imbalance in C2DN remains as parity
rebalancing (§4.2) focuses exclusively on write rate.

We further explore the effects of load balancing across var-
ious cache sizes using simulations. If M is the write (read)
load on the server with maximum write (read) load and m is
the minimum write (read) load across the servers, then write
(read) load imbalance = M−m

m . Fig. 6d shows that C2DN
eliminates write imbalance for all cache sizes. When aver-
aged across cache sizes, C2DN reduces the write load im-
balance by 99.9% compared to No-replication, 99.8% com-
pared to Replication (CDN), and 99.5% compared to C2DN-
NoRebal. C2DN also reduces the read load imbalance: by

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1167

20 50 100 500
Latency (ms)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

(C
D

F)

CDN
C2DN

(a) First byte small objects

20 50 100 500
Latency (ms)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

(C
D

F)

CDN
C2DN

(b) First byte large objects

20 50 100 500
Latency (ms)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

(C
D

F)

CDN
C2DN

(c) Full response small objects

20 50 100 500
Latency (ms)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

(C
D

F)

CDN
C2DN

(d) Full response large objects
Figure 8: First-byte and full response latency of serving small and large objects in CDN and C2DN.

93.9% compared to No-replication, 78.9% compared to Repli-
cation (CDN), and 70.5% compared to C2DN-NoRebal on an
average across the different cache sizes.

6.5 Latency
We quantify potential latency overheads by measuring the
time-to-first-byte (TTFB) and content download time (CDT)
of our prototype implementations of C2DN and Replication
(CDN). In each case, we separately measure the latency distri-
bution for objects below the 128KB coding threshold (“small”
objects) and for objects above the threshold (“large” objects).
Fig. 8a and Fig. 8b show the cumulative distributions of TTFB
for small and large objects, respectively. For small objects,
we find that the TTFB distributions for C2DN and Replica-
tion (CDN) are similar, as expected: C2DN does not code
these objects. C2DN slightly improves the TTFB distribution
(shifting to the left) due to its lower object miss ratio. For
large objects, we find about a 1 ms overhead in TTFB at low
percentiles (25th-60th percentile). The slight increase is for
cache hits due to fetching the first sub-chunk from K servers
before serving the object.

We now consider CDT. In practice, this metric is more
relevant for large objects than the TTFB. Fig. 8c and Fig. 8d
show a cumulative distribution of the content download time
for small and large objects, respectively. Again we find that
small objects behave similarly in Replication (CDN) and
C2DN, with slightly better latency for C2DN due to lower
object miss ratio. For large objects, C2DN and Replication
(CDN) have a similar CDT. The overheads of fetching chunks
are hidden by our streaming implementation based on sub-
chunks (§5).

We remark that C2DN improves the tail latency in all cases
(barely visible in the CDFs). For example, C2DN reduces
the P90 TTFB by up to 3× compared to Replication (CDN).
We attribute this to a lower miss ratio and the mitigation of
stragglers using parity chunks to serve requests. This is as
expected based on prior work on using coding to reduce tail
latency [55].

6.6 Overhead assessment
We quantify the resource overheads of our C2DN prototype.
CPU usage. Fig. 9a measures CPU utilization in fractional
CPU cores for userspace and kernel tasks, respectively. C2DN
generally leads to higher CPU usage. The userspace CPU us-
age is higher due to the encoding and decoding of objects, and

CDN C2DN CDN C2DN0

1

2

3

CP
U

 u
sa

ge
 (#

 c
or

es
)

kernel user

(a) CPU usage

CDN C2DN CDN C2DN0

2

4

6

IO
PS

 (K
)

read write

(b) Disk IOPS
Figure 9: Resource usage. C2DN uses slightly more CPU resources
and slightly more read disk IOPS than CDN, however, C2DN reduces
write disk IOPS, especially at peak.

the kernel CPU usage is higher due to additional network and
disk I/Os. Overall, CPU usage increases by 14% on average
with a similar increase in kernel and userspace CPU usage.

The increase in the CPU overhead is small as C2DN per-
forms the encoding and decoding operation only on a fraction
of requests. For the current coding size threshold of 128 KB,
the number of requests served with coded objects is around
50%, while the number of bytes served using coded objects is
close to 90%. Also, recall that most requests for coded objects
do not need to be decoded as the object is recreated by con-
catenating data chunks in the output buffer. Decoding only
happens in the case of stragglers and partial hits. In fact, only
6% of requests require decoding in our experiments. These
cases happen primarily due to the straggler problem (individ-
ual slow servers); actual data chunk misses (partial hits) occur
for less than 0.6% of requests. A future version of C2DN
may further reduce CPU overheads by using kernel-bypass
networking or increasing the object size threshold for coding.
Increasing the threshold can happen with minimal side effects,
as we show in the next section.
Disk usage. Fig. 9b compares disk IOPS of Replication
(CDN) and C2DN for reads and writes. For reads, we ob-
serve that C2DN uses 23% more IOPS in the mean and less
at the tail. Read-IOPS increase by 2% at the P99 and decrease
by 11% at the P99.9 (we calculate this percentile across time
and servers). For writes, C2DN uses 24% fewer writes IOPS
in the mean. The tail write IOPS decreases by 46% at the
P99 and 50% at the P99.9. The read IOPS increases because
C2DN fetches at least K = 3 chunks to serve an object if
coded. However, due to 1) most of the requests being for
small uncoded objects, 2) the presence of DRAM hot object
cache, the increase in reading IOPS is much smaller than 3×.
While mean read IOPS increase, the peak read IOPS is similar
or lower in C2DN. We attribute this to better load balancing

1168 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

in C2DN. Write IOPS in C2DN is significantly reduced when
compared to Replication (CDN). C2DN has a lower storage
overhead than Replication (CDN) and thus writes less to disk.
In addition, the improvement in the miss ratio that C2DN pro-
vides further reduces the number of write operations. Besides,
C2DN also improves the tail write IOPS, which is due to a
better load balancing strategy of erasure coding and parity
rebalance.
Intra-cluster network usage. C2DN uses network band-
width within the cluster, about 0.9 Gbps in the mean and
2.3 Gbps at the P95. In conversations with CDN operators,
this internal bandwidth usage is feasible for production clus-
ters, as these links generally show little usage. For example,
production CDN clusters use dedicated 10-Gbps-NICs for
communication within the cluster.

6.7 Sensitivity analysis
We discuss the sensitivity of C2DN to its parameters.
Coding size threshold. The size threshold for coding im-
pacts the performance in multiple ways. By reducing the
size threshold, C2DN encodes more objects, improving cache
space usage and load balance across cluster servers. At the
same time, it leads to more CPU and I/Os (due to coding and
fetching) and increases the latency for small objects. The size
distribution in Fig. 1a shows that small objects contribute a
small fraction of cache space usage. Thus, the potential bene-
fit of coding diminishes as we decrease the size threshold for
coding. At the same time, C2DN would use more cluster re-
sources. We observe that reducing the size threshold to below
128 KB does not significantly benefit the object and byte miss
ratio. Increasing the size threshold to over 8 MB increases
the byte miss ratio by 2.79% and the write load imbalance
by 258%. We believe that 128 KB is a good tradeoff for our
production traces. Fig. 13 in the appendix shows our results.
Coding parameter K. Most of this section assumed C2DN
configured with K = 3. We explore the impact of parameter
K and P on miss ratio and write load balancing. We find that
increasing K and keeping P constant reduces miss ratios for
C2DN but increases miss ratios for C2DN-NoRebal. When
adding chunks, the probability of getting partial hits increases
for C2DN-NoRebal due to unbalanced eviction rates between
servers. Because C2DN uses parity rebalance to achieve sim-
ilar eviction rates between servers, the miss ratio decreases
with increasing K due to lower storage overhead. While the
impact of coding parameters has different impacts on miss
ratios for C2DN-NoRebal and C2DN, the impact on load bal-
ancing is similar, as K increases, because an object is broken
into more (and smaller) chunks, both the read and write load
imbalance in C2DN-NoRebal and C2DN reduce. Fig. 14 in
the appendix shows our results.
Different workloads. Throughout this section, we have used
the video trace. We repeated our evaluation for the week-long
web trace (§3). Compared to the video trace, the web trace
has a significantly smaller working set. The video trace has a

compulsory byte miss ratio of 0.1 and a compulsory object
miss ratio of 0.21. In the web trace, the compulsory miss
ratio is 0.06 for both byte and object miss ratios. In addition,
compared to the video trace, the web trace has a more diverse
object size range, as shown in Fig. 1a. Less than 10% of large
objects (possibly large software) contribute to more than 90%
of the cache space usage. Therefore, the fraction of requests
that require coding is significantly smaller.

In prototype experiments with the web trace, only 3% of all
requests are served coded. However, these 3% of requests ac-
count for 80% of served traffic. As a comparison, in the video
trace, the prototype serves about 50% of requests from coded
objects (with only 6% requiring decoding). Consequently,
coding overheads on the web trace are negligible. In terms
of the miss ratio, we observe a 10% reduction in object miss
ratio and a 6% reduction in byte miss ratio. The write imbal-
ance for Replication (CDN) is 1.72×, which is reduced to
1.03× in C2DN. The read imbalance for Replication (CDN)
is 4.8×, which is reduced to 2.5× in C2DN.
Different eviction algorithms. Throughout this section, we
have used FIFO as the eviction algorithm for the cache. FIFO
provides stable performance on SSDs and extends the lifetime
of an SSD by minimizing device write amplification [9,22,70].
Many open source caches such as Apache Trafficserver [7]
and Varnish [71] use FIFO. To understand the impact of the
eviction algorithm, we evaluate the Least-recently-used algo-
rithm (LRU) using simulation. We observe a slight reduction
in both object and byte miss ratios for all systems. All other
results are qualitatively and quantitatively the same. Appendix
10.4, Fig. 16 and Fig. 17 show these results.
Variants of replication. Besides two-replication for all ob-
jects, CDNs have explored systems that replicate based on
popularity. Specifically, only popular objects are replicated on
two servers to reduce space overheads. As might be expected
from our findings that write imbalance matters, popularity-
based replication does not provide good fault tolerance. In
simulation experiments, we observe object miss ratio spikes
by 82%. Interestingly, we also observe that popularity-based
replication leads to an even worse load imbalance than Repli-
cation (CDN), which explains the high miss ratio spike.

7 Discussion

DNS vs anycast-based CDN request routing. Different
CDNs use different global load balancing architectures [33].
Akamai is well known for its DNS architecture [64]. Lime-
light [33], Wikipedia [58], and Cloudflare rely on anycast.
While these designs have different performance implications,
both rely on algorithms like consistent hashing. In DNS-based
systems, consistent hashing is applied by the cluster-local
load balancer to return the IP of the server responsible for
the shard. Anycast-based systems typically route requests to
any server in a cluster, and the server uses consistent hashing
to identify another server that likely stores the object. Server

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1169

unavailability, storage overheads of redundancy, and write
imbalance are important problems in all CDN designs. While
the cluster-local load balancer in our prototype relies on DNS,
the principle design components of C2DN can be equally ap-
plied in anycast systems. We also expect that C2DN’s benefits
will transfer with similar quantitative improvements.
Larger clusters and multiple unavailabilities. In clusters
of large size, multiple concurrent unavailabilities are not un-
common. As evaluated in §6, we find that C2DN is more
effective in this setting as erasure coding is more efficient at
tolerating multiple unavailabilities than replication. For large
clusters, server unavailabilities become more common. We
thus recommend either using a coding scheme with more par-
ity chunks or handling the cluster as multiple smaller clusters.

8 Related work
While there is extensive work on caching, coding, load bal-
ancing, and flash caching, our work is uniquely positioned at
the intersection of these areas. We discuss work by area.
Erasure coding in storage systems. Prior work has charac-
terized the cost advantage offered by coding over replication
in achieving data durability in distributed storage systems [75,
85]. Erasure codes are deployed in RAID [52], network-
attached-storage [4], peer-to-peer storage systems [37, 40, 57,
79], in-memory key-value store [16, 17, 84], and distributed
storage systems [32, 48, 56, 76]. Coding for CDNs differs
due to the unique interplay of coding and caching and the
two-sided transparency requirement (§4). Additionally, CDNs
employ coding for different reasons (performance) than stor-
age systems (durability), which magnifies overhead concerns.
Caching for coded file systems. Several recent works have
explored augmenting erasure-coded storage systems with a
cache to reduce latency [3,29,41,55]. Aggarwal et al. [3] pro-
posed augmenting erasure-coded disk-based storage systems
with an in-memory cache at the proxy or the client-side that
cache encoded chunks. Halalai et al. [29] propose augment-
ing geo-distributed erasure-coded storage systems by caching
a fraction of the coded chunks in different geo-locations to
alleviate the latency impact of fetching chunks from remote
geo-locations. EC-Cache [55] employs erasure coding in the
in-memory layer of a tiered distributed file system such as
Alluxio (formerly [39]). Although EC-Cache is technically
a cache, there is no interaction between coding and caching
in EC-Cache since it operates in scenarios where the entire
working set fits in memory, i.e., no evictions are considered.
In contrast, C2DN focuses on CDN clusters with working
sets in the hundreds of TB and starkly different tradeoffs,
workload characteristics, and challenges as compared to file
systems. In the area of cooperative caching [6, 30, 62], nodes
synchronize caching decision via explicit communication. In
contrast, C2DN proves that explicit communication is not
required to synchronize the eviction of the K chunks, which
significantly decreases overheads.
Chunking and caching. Prior work has explored the chal-

lenge of serving large files over HTTP, e.g., CoDeeN [74].
Similar to C2DN, CoDeeN breaks a large file into smaller
chunks. A chunk cache miss does not require transferring the
whole large file from the origin. In contrast to CodeeN, C2DN
addresses unavailability tolerance, which is not provided by
chunking alone.
Load balancing. Load balancing and sharding are well-
studied topics [1, 2, 12, 13, 21, 27, 28]. To reduce the load
imbalance, John et al. study the power of two choices that
reduces the imbalance [12]. In addition, to serve skewed work-
loads, Fan et al. [24] study the effect of using a small and fast
popularity-based cache to reduce load imbalance between
different caches in a large backend pool.Yu-ju et al. [31] de-
signed SPORE to use a self-adapting, popularity-based repli-
cation to mitigate load imbalance. Rashmi et al. [55]used
erasure coding to reduce read load imbalance for large object
in-memory cache. In summary, prior work on load balancing
focuses on read load balancing, with little attention paid to
write load balancing.

Load imbalance in consistent hashing can be solved with
additional lookups via probing [47]. Unfortunately, these
lookups are costly in CDNs (particularly for DNS-based
systems). Additionally, this approach cannot be applied for
erasure-coded caches due to the constraint that parity chunks
should not be colocated with data chunks. In contrast to using
load balancing to achieve a similar SSD replacement time,
Mahesh et al. [8] used parity placement to achieve differential
SSD ages so that SSDs of a disk array fail at different times.
Flash cache endurance. Flash caching is an active and chal-
lenging research area. A line of work [38,45,51,63,66,67,70]
shows how eviction policies can be efficiently implemented
on flash. Flashield [22] proposes to extend SSD lifetime via
smart admission policies. All these systems focus on a single
SSD. Our work focuses on wear-leveling across servers in a
cluster, which significantly extends the lifetime of a cluster.

9 Conclusion
We re-architected the cluster of a CDN by introducing a hy-
brid redundancy scheme using erasure codes and replication,
along with a novel approach for parity placement. We showed
that our approach reduces the miss ratio and eliminates the
miss ratio spikes caused by server unavailability. Further, our
approach is more space-efficient than replication and is more
attractive as CDN traffic and content footprint scale rapidly
with Internet usage. Finally, our approach also reduces the
write load imbalance by optimally placing the parities to re-
duce the lifetime of SSDs. We believe that C2DN is attractive
for deployment in a production CDN since it integrates well
with production CDN components.
Acknowledgements We thank our shepherd Angela Demke
Brown and the anonymous reviewers for their valuable feed-
back. This work was supported in part by Facebook Fel-
lowship, NSF grants CNS 1901410, CNS 1956271, CNS
1763617, and a AWS grant.

1170 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] A. Adya, J. Dunagan, and A. Wolman. Centrifuge: In-
tegrated lease management and partitioning for cloud
services. In 7th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 10), San Jose,
CA, Apr. 2010. USENIX Association.

[2] A. Adya, D. Myers, J. Howell, J. Elson, C. Meek, V. Khe-
mani, S. Fulger, P. Gu, L. Bhuvanagiri, J. Hunter, et al.
Slicer: Auto-sharding for datacenter applications. In
12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16), pages 739–753, 2016.

[3] V. Aggarwal, Y.-F. R. Chen, T. Lan, and Y. Xiang.
Sprout: A functional caching approach to minimize ser-
vice latency in erasure-coded storage. In ICDCS, 2016.

[4] M. Aguilera, R. Janakiraman, and L. Xu. Using erasure
codes efficiently for storage in a distributed system. In
DSN, 2005.

[5] A. V. Aho, P. J. Denning, and J. D. Ullman. Principles of
optimal page replacement. Journal of the ACM (JACM),
18(1):80–93, 1971.

[6] S. Annapureddy, M. J. Freedman, and D. Mazieres.
Shark: Scaling file servers via cooperative caching. In
Proceedings of the 2nd conference on Symposium on
Networked Systems Design & Implementation-Volume
2, pages 129–142. USENIX Association, 2005.

[7] Apache. Traffic Server, 2019. Available at https:
//trafficserver.apache.org/, accessed 09/18/19.

[8] M. Balakrishnan, A. Kadav, V. Prabhakaran, and
D. Malkhi. Differential raid: Rethinking raid for ssd reli-
ability. ACM Transactions on Storage (TOS), 6(2):1–22,
2010.

[9] B. Berg, D. S. Berger, S. McAllister, I. Grosof, S. Gu-
nasekar, J. Lu, M. Uhlar, J. Carrig, N. Beckmann,
M. Harchol-Balter, et al. The cachelib caching engine:
Design and experiences at scale. In USENIX OSDI,
pages 753–768, 2020.

[10] D. S. Berger, R. Sitaraman, and M. Harchol-Balter.
Adaptsize: Orchestrating the hot object memory cache
in a cdn. In USENIX NSDI, pages 483–498, March
2017.

[11] M. Bjørling, J. Gonzalez, and P. Bonnet. Lightnvm: The
linux open-channel SSD subsystem. In 15th USENIX
Conference on File and Storage Technologies (FAST 17),
pages 359–374, Santa Clara, CA, Feb. 2017. USENIX
Association.

[12] J. Byers, J. Considine, and M. Mitzenmacher. Simple
load balancing for distributed hash tables. In Interna-
tional Workshop on Peer-to-Peer Systems, pages 80–87.
Springer, 2003.

[13] S. Bykov, A. Geller, G. Kliot, J. R. Larus, R. Pandya,
and J. Thelin. Orleans: Cloud computing for everyone.
In Proceedings of the 2nd ACM Symposium on Cloud
Computing, SOCC ’11, New York, NY, USA, 2011. As-
sociation for Computing Machinery.

[14] D. G. Cattrysse and L. N. Van Wassenhove. A survey
of algorithms for the generalized assignment problem.
European journal of operational research, 60(3):260–
272, 1992.

[15] F. Chen, R. K. Sitaraman, and M. Torres. End-user
mapping: Next generation request routing for content
delivery. In ACM SIGCOMM Computer Communication
Review, volume 45, pages 167–181. ACM, 2015.

[16] H. Chen, H. Zhang, M. Dong, Z. Wang, Y. Xia, H. Guan,
and B. Zang. Efficient and available in-memory kv-
store with hybrid erasure coding and replication. ACM
Transactions on Storage (TOS), 13(3):1–30, 2017.

[17] L. Cheng, Y. Hu, and P. P. C. Lee. Coupling decen-
tralized key-value stores with erasure coding. In Pro-
ceedings of the ACM Symposium on Cloud Computing,
SoCC ’19, page 377–389, New York, NY, USA, 2019.
Association for Computing Machinery.

[18] B. V. Cherkassky and A. V. Goldberg. On implement-
ing the push—relabel method for the maximum flow
problem. Algorithmica, 19(4):390–410, 1997.

[19] CISCO. Global IP traffic forecast: The zettabyte
era—trends and analysis, June 2017. Available at
https://www.cisco.com/c/en/us/solutions/
collateral/service-provider/visual-network
ing-index-vni/vni-hyperconnectivity-wp.pdf,
accessed 24/09/17.

[20] J. Dilley, B. M. Maggs, J. Parikh, H. Prokop, R. K. Sitara-
man, and W. E. Weihl. Globally distributed content
delivery. IEEE Internet Computing, 6(5):50–58, 2002.

[21] D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith,
R. Kononov, E. Mann-Hielscher, A. Cilingiroglu,
B. Cheyney, W. Shang, and J. D. Hosein. Maglev: A
fast and reliable software network load balancer. In 13th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 16), pages 523–535, 2016.

[22] A. Eisenman, A. Cidon, E. Pergament, O. Haimovich,
R. Stutsman, M. Alizadeh, and S. Katti. Flashield: a
hybrid key-value cache that controls flash write ampli-
fication. In 16th USENIX Symposium on Networked

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1171

https://trafficserver.apache.org/
https://trafficserver.apache.org/
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.pdf
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.pdf
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.pdf

Systems Design and Implementation (NSDI 19), pages
65–78, Boston, MA, Feb. 2019. USENIX Association.

[23] R. Fagin. Asymptotic miss ratios over independent
references. Journal of Computer and System Sciences,
14(2):222–250, 1977.

[24] B. Fan, H. Lim, D. G. Andersen, and M. Kaminsky.
Small cache, big effect: Provable load balancing for
randomly partitioned cluster services. In Proceedings of
the 2nd ACM Symposium on Cloud Computing, pages
1–12, 2011.

[25] D. Ford, F. Labelle, F. Popovici, M. Stokely, V. Truong,
L. Barroso, C. Grimes, and S. Quinlan. Availability in
globally distributed storage systems. In USENIX Sympo-
sium on Operating Systems Design and Implementation,
2010.

[26] C. Fricker, P. Robert, and J. Roberts. A versatile and
accurate approximation for LRU cache performance. In
ITC, page 8, 2012.

[27] R. Gandhi, H. H. Liu, Y. C. Hu, G. Lu, J. Padhye,
L. Yuan, and M. Zhang. Duet: Cloud scale load bal-
ancing with hardware and software. ACM SIGCOMM
Computer Communication Review, 44(4):27–38, 2014.

[28] A. Gulati, C. Kumar, I. Ahmad, and K. Kumar. Basil:
Automated io load balancing across storage devices. In
Fast, volume 10, pages 13–13, 2010.

[29] R. Halalai, P. Felber, A.-M. Kermarrec, and F. Taïani.
Agar: A caching system for erasure-coded data. In 2017
IEEE 37th International Conference on Distributed
Computing Systems (ICDCS), pages 23–33. IEEE, 2017.

[30] V. Holmedahl, B. Smith, and T. Yang. Cooperative
caching of dynamic content on a distributed web server.
In Proceedings. The Seventh International Symposium
on High Performance Distributed Computing (Cat. No.
98TB100244), pages 243–250. IEEE, 1998.

[31] Y.-J. Hong and M. Thottethodi. Understanding and
mitigating the impact of load imbalance in the memory
caching tier. In Proceedings of the 4th annual Sympo-
sium on Cloud Computing, pages 1–17, 2013.

[32] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder,
P. Gopalan, J. Li, and S. Yekhanin. Erasure coding
in Windows Azure Storage. In USENIX ATC, 2012.

[33] C. Huang, A. Wang, J. Li, and K. W. Ross. Measuring
and evaluating large-scale cdns. In ACM IMC, volume 8,
pages 15–29, 2008.

[34] B. Jiang, P. Nain, and D. Towsley. On the convergence
of the ttl approximation for an lru cache under indepen-
dent stationary request processes. ACM Trans. Model.
Perform. Eval. Comput. Syst., 3(4), Sept. 2018.

[35] S. Kadekodi, F. Maturana, S. J. Subramanya, J. Yang,
K. Rashmi, and G. R. Ganger. {PACEMAKER}: Avoid-
ing heart attacks in storage clusters with disk-adaptive
redundancy. In 14th {USENIX} Symposium on Operat-
ing Systems Design and Implementation ({OSDI} 20),
pages 369–385, 2020.

[36] D. Karger, E. Lehman, T. Leighton, R. Panigrahy,
M. Levine, and D. Lewin. Consistent hashing and ran-
dom trees: Distributed caching protocols for relieving
hot spots on the world wide web. In ACM Symposium
on Theory of Computing, pages 654–663, 1997.

[37] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski,
P. Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weath-
erspoon, W. Weimer, et al. Oceanstore: An architecture
for global-scale persistent storage. ACM Sigplan No-
tices, 35(11):190–201, 2000.

[38] C. Li, P. Shilane, F. Douglis, and G. Wallace. Pannier:
Design and analysis of a container-based flash cache
for compound objects. ACM Transactions on Storage
(TOS), 13(3):1–34, 2017.

[39] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica.
Tachyon: Reliable, memory speed storage for cluster
computing frameworks. In SoCC, 2014.

[40] J. Li and C. Zhang. Distributed hosting of web content
with erasure coding and unequal weight assignment. In
2004 IEEE International Conference on Multimedia
and Expo (ICME) (IEEE Cat. No.04TH8763), volume 3,
pages 2087–2090 Vol.3, 2004.

[41] K. Liu, J. Peng, J. Wang, and J. Pan. Optimal caching for
low latency in distributed coded storage systems. arXiv
preprint arXiv:2012.03005, 2020.

[42] R. S. Liu, C. L. Yang, C. H. Li, and G. Y. Chen. Du-
racache: A durable ssd cache using mlc nand flash. In
Proceedings of the 50th Annual Design Automation Con-
ference, pages 1–6, 2013.

[43] B. M. Maggs and R. K. Sitaraman. Algorithmic nuggets
in content delivery. SIGCOMM Comput. Commun. Rev.,
45(3):52–66, July 2015.

[44] V. Martina, M. Garetto, and E. Leonardi. A unified ap-
proach to the performance analysis of caching systems.
In IEEE INFOCOM, 2014.

[45] S. McAllister, B. Berg, J. Tutuncu-Macias, J. Yang,
S. Gunasekar, J. Lu, D. S. Berger, N. Beckmann, and
G. R. Ganger. Kangaroo: Caching billions of tiny ob-
jects on flash. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles, SOSP ’21,
page 243–262, New York, NY, USA, 2021. Association
for Computing Machinery.

1172 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[46] J. Meza, T. Xu, K. Veeraraghavan, and O. Mutlu. A
large scale study of data center network reliability. In
Proceedings of the Internet Measurement Conference
2018, pages 393–407, 2018.

[47] V. Mirrokni, M. Thorup, and M. Zadimoghaddam. Con-
sistent hashing with bounded loads. In Proceedings
of the Twenty-Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 587–604, 2018.

[48] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin, W. Liu,
S. Pan, S. Shankar, V. Sivakumar, L. Tang, et al. f4:
Facebook’s warm BLOB storage system. In USENIX
OSDI, pages 383–398, 2014.

[49] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski,
H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek,
P. Saab, et al. Scaling memcache at Facebook. In
USENIX NSDI, pages 385–398, 2013.

[50] E. Nygren, R. K. Sitaraman, and J. Sun. The Akamai
Network: A platform for high-performance Internet ap-
plications. ACM SIGOPS Operating Systems Review,
44(3):2–19, 2010.

[51] Y. Oh, J. Choi, D. Lee, and S. H. Noh. Caching less
for better performance: balancing cache size and update
cost of flash memory cache in hybrid storage systems.
In FAST, volume 12, 2012.

[52] D. A. Patterson, G. Gibson, and R. H. Katz. A case
for redundant arrays of inexpensive disks (RAID). In
SIGMOD, 1988.

[53] L. Perron and V. Furnon. OR-tools. https://develo
pers.google.com/optimization/.

[54] K. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur,
and K. Ramchandran. A hitchhiker’s guide to fast and ef-
ficient data reconstruction in erasure-coded data centers.
In SIGCOMM, 2015.

[55] K. V. Rashmi, M. Chowdhury, J. Kosaian, I. Stoica, and
K. Ramchandran. Ec-cache: Load-balanced, low-latency
cluster caching with online erasure coding. In USENIX
OSDI, pages 401–417, 2016.

[56] K. V. Rashmi, N. B. Shah, D. Gu, H. Kuang,
D. Borthakur, and K. Ramchandran. A solution to the
network challenges of data recovery in erasure-coded
distributed storage systems: A study on the facebook
warehouse cluster. In Presented as part of the 5th
USENIX Workshop on Hot Topics in Storage and File
Systems, 2013.

[57] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao,
and J. Kubiatowicz. Pond: The OceanStore prototype.
In FAST, 2003.

[58] E. Rocca. Running Wikipedia.org, June 2016. available
https://www.mediawiki.org/wiki/File:WMF_Tra
ffic_Varnishcon_2016.pdf accessed 09/12/16.

[59] R. K. Sahoo, M. S. Squillante, A. Sivasubramaniam,
and Y. Zhang. Failure data analysis of a large-scale
heterogeneous server environment. In International
Conference on Dependable Systems and Networks, 2004,
pages 772–781, 2004.

[60] L. Saino, I. Psaras, and G. Pavlou. Understanding
sharded caching systems. In IEEE INFOCOM, pages
1–9, 2016.

[61] Sanjay Sane. Latency and wear-out in facebook’s cdn
due to ssd write pressure. Private conversation„ 7 2019.

[62] P. Sarkar and J. H. Hartman. Hint-based cooperative
caching. ACM Transactions on Computer Systems
(TOCS), 18(4):387–419, 2000.

[63] M. Saxena, M. M. Swift, and Y. Zhang. Flashtier: A
lightweight, consistent and durable storage cache. In
Proceedings of the 7th ACM European Conference on
Computer Systems, EuroSys ’12, page 267–280, New
York, NY, USA, 2012. Association for Computing Ma-
chinery.

[64] K. Schomp, O. Bhardwaj, E. Kurdoglu, M. Muhaimen,
and R. K. Sitaraman. Akamai DNS: Providing authorita-
tive answers to the world’s queries. In ACM SIGCOMM,
pages 465–478, 2020.

[65] B. Schroeder and G. Gibson. A large-scale study of fail-
ures in high-performance computing systems. IEEE
transactions on Dependable and Secure Computing,
7(4):337–350, 2009.

[66] Z. Shen, F. Chen, Y. Jia, and Z. Shao. Optimizing flash-
based key-value cache systems. In 8th USENIX Work-
shop on Hot Topics in Storage and File Systems (Hot-
Storage 16), Denver, CO, June 2016. USENIX Associa-
tion.

[67] Z. Shen, F. Chen, Y. Jia, and Z. Shao. Didacache: an
integration of device and application for flash-based key-
value caching. ACM Transactions on Storage (TOS),
14(3):1–32, 2018.

[68] A. Sundarrajan, M. Feng, M. Kasbekar, and R. K. Sitara-
man. Footprint descriptors: Theory and practice of cache
provisioning in a global cdn. In ACM CoNEXT, pages
55–67, 2017.

[69] A. Sundarrajan, M. Kasbekar, R. K. Sitaraman, and
S. Shukla. Midgress-aware traffic provisioning for con-
tent delivery. In 2020 USENIX Annual Technical Con-
ference (USENIX ATC 20), pages 543–557, 2020.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1173

https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://www.mediawiki.org/wiki/File:WMF_Traffic_Varnishcon_2016.pdf
https://www.mediawiki.org/wiki/File:WMF_Traffic_Varnishcon_2016.pdf

[70] L. Tang, Q. Huang, W. Lloyd, S. Kumar, and K. Li. Ripq:
Advanced photo caching on flash for facebook. In 13th
USENIX Conference on File and Storage Technologies
(FAST 15), pages 373–386, 2015.

[71] F. Velázquez, K. Lyngstøl, T. Fog Heen, and J. Renard.
The Varnish Book for Varnish 4.0. Varnish Software AS,
March 2016.

[72] C. Waldspurger, T. Saemundsson, I. Ahmad, and N. Park.
Cache modeling and optimization using miniature simu-
lations. In 2017 USENIX Annual Technical Conference
(USENIX ATC 17), pages 487–498, 2017.

[73] C. A. Waldspurger, N. Park, A. Garthwaite, and I. Ah-
mad. Efficient mrc construction with shards. In 13th
USENIX Conference on File and Storage Technologies
(FAST 15), pages 95–110, 2015.

[74] L. Wang, K. Park, R. Pang, V. S. Pai, and L. L. Peterson.
Reliability and security in the codeen content distribu-
tion network. In USENIX ATC, pages 171–184, 2004.

[75] H. Weatherspoon and J. D. Kubiatowicz. Erasure coding
vs. replication: A quantitative comparison. In IPTPS,
2002.

[76] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and
C. Maltzahn. Ceph: A scalable, high-performance dis-
tributed file system. In OSDI, 2006.

[77] G. Wu and X. He. Reducing ssd read latency via nand
flash program and erase suspension. In FAST, volume 12,
pages 10–10, 2012.

[78] K. Wu, A. Arpaci-Dusseau, and R. Arpaci-Dusseau. To-
wards an unwritten contract of intel optane SSD. In
11th USENIX Workshop on Hot Topics in Storage and
File Systems (HotStorage 19), Renton, WA, July 2019.
USENIX Association.

[79] F. Xu, Y. Wang, and X. Ma. Online encoding for erasure-
coded distributed storage systems. In 2017 IEEE 37th
International Conference on Distributed Computing Sys-
tems Workshops (ICDCSW), pages 338–342, 2017.

[80] S. Yan, H. Li, M. Hao, M. H. Tong, S. Sundararaman,
A. A. Chien, and H. S. Gunawi. Tiny-tail flash: Near-
perfect elimination of garbage collection tail latencies
in nand ssds. ACM Trans. Storage, 13(3), Oct. 2017.

[81] J. Yang, Y. Yue, and K. V. Rashmi. A large scale analy-
sis of hundreds of in-memory cache clusters at twitter.
In 14th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 20), pages 191–208.
USENIX Association, Nov. 2020.

[82] J. Yang, Y. Yue, and K. V. Rashmi. A large-scale analysis
of hundreds of in-memory key-value cache clusters at
twitter. ACM Trans. Storage, 17(3), aug 2021.

[83] J. Yang, Y. Yue, and R. Vinayak. Segcache: a memory-
efficient and scalable in-memory key-value cache for
small objects. In 18th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 21),
pages 503–518. USENIX Association, Apr. 2021.

[84] M. M. T. Yiu, H. H. W. Chan, and P. P. C. Lee. Erasure
coding for small objects in in-memory kv storage. In
Proceedings of the 10th ACM International Systems and
Storage Conference, SYSTOR ’17, New York, NY, USA,
2017. Association for Computing Machinery.

[85] Z. Zhang, A. Deshpande, X. Ma, E. Thereska, and
D. Narayanan. Does erasure coding have a role to play
in my data center? Technical Report Microsoft Research
MSR-TR-2010, 2010.

1174 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

10 Supplemental information

10.1 Cluster size distribution

100 101 102
Cluster size (# server)

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 c

lu
st

er
 (C

DF
)

10 server

(a) Cluster size

Figure 10: Cluster size ranges from 1 to over 500 servers.

10.2 Proof details
Proof of Theorem 1.
Let T i

c denote the characteristic time [23, 26] of the cache
at server i, given capacity C, where the characteristic time
of an LRU cache measures how long it takes for a newly
requested chunk to get evicted. We first prove that for any
two servers i and j, T i

c and T j
c are nearly the same. More

precisely, we show that for any i 6= j, Prob(|T i
c −T j

c | ≥ ε) is
at most O(W/(ε2C)), using a mathematical argument similar
to [60]. Where C denotes the cache size of each server and W
is the variance of the write load imbalance across the servers
in the cluster. Due to parity rebalancing in C2DN, W → 0.
So, this probability O(W/(ε2C)) vanishes as the cache size
grows large.

In C2DN, when an object is requested, its chunks x1, . . . ,xn
are requested at the same time from the individual servers.
Since the characteristic time of the servers that these chunks
reside in are (nearly) the same as shown above, it follows
that these chunks are evicted from these caches at (nearly)
the same time. Thus, the chunks x1, . . . ,xn of an object enter
and exit their individual caches in a synchronized way, even
though there is no explicit coordination among the caches.

10.3 Additional details on parity rebalance
Here, we give more details about the bucket assignment al-
gorithm discussed in §4 under the three scenarios (1) Initial
bucket assignment, (2) Server failure, (3) Server addition. We
first consider the case where the servers are homogeneous
and later extend the algorithm to the heterogeneous case.
Initial bucket assignment. The algorithm runs in two phases.
In the first phase, the data buckets are assigned to the
servers using the consistent hashing algorithm. The algorithm
chooses K consecutive servers on the consistent hash ring

from the bucket’s hash location in a clockwise direction to
assign the K data chunk buckets. In the second phase, the
parity chunks are assigned to the servers such that the load
is evenly balanced across the servers. The second phase is
described in Algorithm 1.

Algorithm 1 Phase 2. Parity rebalance
1: Input : Set of available servers A and the total write load on the

cluster W .
2: Set of N parity buckets. For n ∈ N , the sum of sizes of the

parity chunks in the bucket is sn.
3: A set L with li denoting the current write load (due to assignment

of data buckets and uncoded objects) on server i.
4: Output : A valid assignment of parity bucket to the servers.
5: Initialize : A set of vertices V ← φ, a set of edges E ← φ, an

empty graph G = (V,E).
6: Add source node S, terminal node T , nodes corresponding to

parity buckets and available servers to V .

7: for n ∈N do // Loop through parity buckets
8: e ← ((S,n),ns) // Create edge between nodes between

source-node S and bucket-node n with weight equal to size
of the bucket ns

9: V ← n, E← e
10: for a ∈ A do
11: if data chunk of bucket n is not assigned to a then
12: e← ((n,a),ns) // Create edge between parity bucket

node n and available server a with size of parity bucket ns.
13: end if
14: end for
15: end for

16: for a ∈ A do // Loop through available servers
17: ca← max(d W

|A |e− li,0) // Available budget on each server
18: e← ((a,T),ca) // Create edge between server nodes a and

sink-node T with weight ca
19: V ← v, E← e
20: end for

21: Run MaxFlow(S, T) between the source-node S and terminal
node T .

22: for Each parity bucket n ∈N do
23: Assign the parity bucket to the least loaded server that has a

positive assigned flow from the bucket.
24: end for

Post running the Phase 1 of the algorithm, the available
write budget on each server a (ca) in line 17 of Algorithm 1,
is obtained as follows. If the total unique bytes requested to
the cluster is W , then each server should host traffic not more
than

⌈
W
|A |

⌉
bytes. After phase 1 of the algorithm, if li is the

traffic assigned to server i, then the available budget on server
i i.e., ci is obtained as max(

⌈
W
|A |

⌉
− li,0). An empty graph

is initialized in line 5 and the source and terminal nodes are
added in line 6. In line 8, for each bucket n we add an edge
from the source node S to the bucket-node with a capacity

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1175

that equals the size of the parity bucket. Through lines 10-
14, for each bucket n add a directed edge from the node that
corresponds to the parity bucket to a server-node that is not
assigned a data chunk of bucket n. These edges capture if
the parity bucket can be assigned to a server. Then we assign
these edges with a capacity that equals to the size of the parity
bucket. In lines 16-19 directed edges are added from server
nodes (a) to the sink node with a capacity ca i.e., the available
write budget on the server. Now run the max-flow algorithm
in the graph between the source-node S and the sink-node
T to find a valid assignment of parity buckets to the servers.
To assign a parity bucket to a server, we find edges from the
parity-node to the server-nodes that are assigned a positive
flow. The servers are potential candidates for assignment.
Empirically, we find that in most runs, the algorithm finds a
single candidate server, if not, we assign the parity bucket to
the least loaded server among the potential candidates.
Server failure. When a server fails the data buckets (D) and
parity buckets (P) belonging to the server need to be reas-
signed. As done previously, the data buckets are reassigned
using the consistent hash ring. Now, the new data bucket al-
location could invalidate some of the previous parity bucket
assignments (on the currently available servers) as the data
chunks and parity chunks cannot cohabit the same server. Let
the invalidated parity buckets be P′. The available budget ci
of each server i is recalculated using the total traffic W and
the number of available servers |A |. Now, the buckets P∪P′

(parity buckets of failed server and invalidated parity buckets)
are assigned to the servers using Algorithm 1 by reassigning
corresponding capacities in line 9. When a server fails we also
keep track of the parity buckets that were assigned to it be-
fore failure. Some of these buckets could be reassigned to the
server when it is available again depending on the available
write budget at each server.
Server addition. When a server is available again, it gets as-
signed the data buckets using the consistent hashing algorithm.
We recompute the capacity of each server as done previously.
Now, as we have kept track of the parity buckets the server
was assigned prior to failure, we try to re-assign as many of
those parity buckets as possible. If we get back all buckets
and we still have capacity for more buckets to be assigned, we
iteratively pick parity buckets from the most loaded server.
Algorithm complexity. In Algorithm 1 the cost of construct-
ing the graph can be computed using O(|T |× |N |) time com-
plexity where T is the number of servers. And the time com-
plexity is because we need to decide if we wish to add an
edge between the parity chunk and the server. Further, the
runtime complexity of the MaxFlow algorithm in line 21 is
computed as follows. The total available budget on the servers
is B = ∑i∈S

(⌈
W
|A |

⌉
− li
)

. Then, the runtime complexity is

B×|N |× |T |).
Heterogeneous servers. We extend consistent-hashing-based
bucket assignment to the case of heterogeneous servers. Each

X
Object Hash

 Location

D1

D2 D3

S1

S2
S2

S3

S4

Figure 11: Consistent Hashing for a cluster with heterogeneous
servers. The data buckets D1, D2 and D3 are hashed to unique
servers S1, S2 and S3.

server is represented by at least one virtual node on the con-
sistent hashing ring. The number of virtual nodes added is
proportional to the capacity of the server (e.g., if server A
is 2× larger than server B, then server A would have 2× as
many virtual nodes).

The data buckets are mapped to the consistent hashing
ring as follows. From the bucket’s hashed position on the
ring, we move along the ring in a clockwise direction and
assign — the K data buckets — iteratively to the virtual nodes
encountered. However, while assigning, we step over servers
that have been assigned any of the other K data buckets. This
ensures each of the K data buckets are assigned to different
servers. Figure 11 shows a placement example. The cluster
consists of 4 servers S1, S2, S3 and S4 of capacity C, 2C, C,
C respectively. Virtual nodes are indicated by the server name.
Note that, as S2 is twice the capacity of the servers, we create
two virtual nodes for S2. By chance, we assume that the two
virtual nodes hash to adjacent positions on the ring. Now, if
the bucket is hashed to a location X on the consistent hash
ring, then the data buckets D1, D2 and D3 are assigned to the
first three servers encountered by moving in the clockwise
direction from X. This is S1, S2 (S2 again and thus skipped),
and S3, which is the resulting bucket placement. After data
buckets are assigned, we use Algorithm 1 to assign parity
buckets.

10 20 50 100 200 300 400
Cluster cache size (TB)

0.0

0.2

0.4

O
bj

ec
t m

is
s

ra
tio

no replication
replication (CDN)
C2DN-NoRebal
C2DN

(a) Object miss ratio

Figure 12: Object miss ratio of different systems.

1176 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

10.4 Additional figures for sensitivity analysis

C2DN
C2DN

(a) Object miss ratio

C2DN
C2DN

(b) Byte miss ratio

C2DN C2DN

(c) Read load balancing

C2DNC2DN

0 0 0 0

(d) Write load balancing

Figure 13: Impact of coding size threshold on miss ratio and load
balancing.

C2DN
C2DN

(a) Impact on object miss ratio

C2DN
C2DN

(b) Impact on byte miss ratio

C2DN
C2DN

(c) Impact on read imbalance

C2DN
C2DN

0 00

(d) Impact on write imbalance

Figure 14: Impact of parameter K on miss ratio and load imbalance.

C2DN
C2DN

(a) Impact on byte miss ratio

C2DN
C2DN

(b) Impact on object miss ratio

C2DN
C2DN

(c) Impact on read imbalance

C2DN
C2DN

(d) Impact on write imbalance

Figure 15: Impact of number of servers on miss ratio and load
imbalance.

0 8 32 128 1024 8192
Object size threshold (KB)

0.0

0.1

0.2

0.3

0.4

0.5

Ob
je

ct
 m

iss
 ra

tio

no replication
replication (CDN)
C2DN-NoRebal
C2DN

(a) Object miss ratio

0 8 32 128 1024 8192
Object size threshold (KB)

0.0

0.1

0.2

0.3

0.4

0.5

By
te

 m
iss

 ra
tio

no replication
replication (CDN)
C2DN-NoRebal
C2DN

(b) Byte miss ratio

C2DN C2DN

(c) Read load balancing

C2DNC2DN

0 0 0 0

(d) Write load balancing

Figure 16: Impact of coding size threshold on miss ratio and load
balancing (LRU).

C2DN
C2DN

(a) Impact on object miss ratio

C2DN
C2DN

(b) Impact on byte miss ratio

C2DN
C2DN

(c) Impact on read imbalance

C2DN
C2DN

(d) Impact on write imbalance

Figure 17: Impact of parameter K on miss ratio and load imbalance
(LRU).

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1177

Optimizing Network Provisioning through Cooperation

Harsha Sharma∗, Parth Thakkar∗, Sagar Bharadwaj∗, Ranjita Bhagwan, Venkata N. Padmanabhan,
Yogesh Bansal, Vijay Kumar, Kathleen Voelbel

Microsoft

Abstract
The rise of cloud-scale services has fueled a huge growth
in inter-data center (DC) Wide-Area Network (WAN) traf-
fic. As a result, cloud providers provision large amounts of
WAN bandwidth at very high costs. However, the inter-DC
traffic is often dominated by first-party applications, i.e., ap-
plications that are owned and operated by the same entity
as the cloud provider. This creates a unique opportunity for
the applications and the network to cooperate to optimize
network provisioning (which we term as optimizing the “pro-
visioning plane”), since the demands placed by dominant
first-party applications often define the network. Such opti-
mization is distinct from and goes beyond past work focused
on the control and data planes (e.g., traffic engineering), in
that it helps optimize the provisioning of network capacity
and consequently helps reduce cost.

In this paper, we show how cooperation between appli-
cation and network can optimize network capacity based on
knowledge of the application’s deadline coupled with network
link failure statistics. Using data from a tier-1 cloud provider
and a large enterprise collaboration service, we show that our
techniques can potentially help provision significantly lower
network capacity, with savings ranging from 30% to 45%.

1 Introduction

The growth of cloud-scale mega services 1 has fueled a huge
increase in network traffic, not only within data centers (DCs)
and on the Internet but, importantly, also on the inter-DC
wide-area network (WAN). We observe that the inter-DC
WAN traffic for large public cloud providers is dominated
by first-party applications and services e.g., the e-commerce
service in the case of Amazon, Google search and Gmail in
the case of Google, and Bing search and Office 365 in the
case of Microsoft [8, 9]. This presents both a challenge and
an opportunity.

∗Equal contribution
1We use “services” and “applications” interchangeably.

The challenge is that, as application usage grows, so does
the inter-DC WAN traffic. This leads to increased provision-
ing of inter-DC WAN capacity, often with a multiplicative fac-
tor to provide redundancy. Note that large cloud providers typ-
ically build and operate their own inter-DC WAN with owned
and leased fiber, which is different from a small provider who
might use an ISP for such connectivity. The increased avail-
ability of bandwidth, and the fact that it is sunk cost (i.e.,
already paid for and so might as well be utilized), fuels the ap-
petite of existing and new applications. They consume more
bandwidth (though there might be back-pressure due to mech-
anisms such as traffic engineering [7, 8] or internal pricing),
causing the network to forecast higher usage for the future,
which in turn leads to increased network provisioning and so
forth. Such a vicious cycle is quite expensive since inter-DC
WAN bandwidth imposes an amortized annual cost of 100s
of millions of dollars on a large cloud provider [7].

This situation is quite different from the third-party applica-
tion setting, wherein market forces of cost and price operating
between the consumer of bandwidth (third-party application)
and the provider of bandwidth (cloud provider) would tend
to keep the process in check. If the provider has excess ca-
pacity, they could find new customers to sell it to rather than
encouraging existing customers to be profligate in their use
of bandwidth. There is an opportunity to do better in the
first-party case by leveraging cooperation across the network
and the applications. Specifically, rich information flow be-
tween the application and the network would enable informed
network provisioning. We term the task of provisioning net-
work capacity as optimizing the “provisioning plane”, to set
it apart from the well-established notions of the control and
data planes.

We leverage the knowledge of the application’s deadline to
optimize network provisioning. Such an application deadline
is quite distinct from the more common notion of delay tol-
erance, which centers on the latency that the application can
tolerate in network communication. Application deadline, on
the other hand, arises from the application’s ability to pause,
or defer, some or all of its activities and the associated com-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1179

munication for an extended period of time, for example, when
there is a loss of network capacity because of link failures. If
the network capacity is likely to be restored (e.g., by repairing
the failed link(s)) within the period of the application dead-
line, then we can dispense with the provisioning of redundant
network capacity for “deferrable” traffic.

If user impact is to be avoided, the deferrable application
activity, and the resulting traffic, should be in the background.
A good example is load balancing, which might be triggered
when a server is at the risk of running “hot” on one or more
resources such as CPU, IO (I/O operations) capacity, or stor-
age space, and therefore needs to shed load. Load balancing
would typically involve the transfer of a large volume of data
(e.g., user mailboxes in the context of an email application).
This activity could be paused for a length of time so long as
there is enough “headroom” in resources, i.e., none is on the
verge of being saturated. Based on past data, we can make
a conservative but specific choice of deadline to facilitate
network provisioning.

We develop a generic framework for applications to ex-
press their demands in a way that reflects the traffic volume,
deadlines, and desired probability of satisfaction (i.e., the like-
lihood that the demand will be met). We also develop a model
for link failures and repairs that is informed by historical data.
A key aspect of this model is the data-driven discovery of
links with correlated failures, say because they share one or
more components (e.g., fiber conduit, power supply, etc.) and
the recreation of such correlated failures to simulate scenar-
ios that are particularly challenging from the viewpoint of
capacity provisioning.

We evaluate the above using data from the WAN of a tier-1
cloud provider, Microsoft, and from a large enterprise collab-
oration service, M365 Substrate (which we shall hereafter
refer to as Substrate), which uses this WAN. We find that
application-informed provisioning reduces network capacity
by more than 30% in multiple regions.

Note: While we use data from commercial services — Mi-
crosoft and Substrate— to drive our analyses here, this data is
highly sensitive due to commercial reasons. Therefore, we are
not in a position to report metrics such as the traffic volume,
network capacity, failure characteristics, etc. in an absolute
sense and report relative numbers instead.

1.1 Comparison with Traffic Engineering

Before proceeding, it is useful to compare our work on coop-
erative provisioning with the well-established prior work on
traffic engineering.

Traffic engineering focuses on supporting a specified de-
mand (i.e., source-destination flows, quality of service re-
quirements) on a given network (i.e., the network topology,
including link capacities). Both the demand matrix and the
network topology are taken as input and traffic engineering
looks for ways of supporting the demand at run time through

techniques such as routing and path selection [8], smoothing
to shift traffic peaks into the valleys [7], and using store-and-
forward techniques to deal with temporal offsets between
traffic peaks in different parts of the network [13]. There is a
body of traffic engineering work that specifically considers the
problem of satisfying deadlines in the face of new demands,
link failures, etc., by employing admission control, online
scheduling, and fairness across demands when the deadlines
cannot be satisfied [11, 22].

In comparison, our work on cooperative provisioning fo-
cuses on the planning phase that precedes the creation of the
network or the augmentation of its capacity. This requires
modeling link failures upfront by simulating the failures of
(combinations of) links and making sure that sufficient capac-
ity is provisioned to accommodate the demands even in the
face of such failures. In contrast, traffic engineering deals with
link failures as these arise and does not entail provisioning
capacity. Furthermore, in optimizing the provisioning of net-
work capacity, the ability to defer traffic by pausing workload,
for days or weeks, provides us a qualitatively greater flexibility
for optimization than the QoS requirements that are typically
dealt with in traffic engineering [11, 22]. For instance, the for-
mer would allow tiding over link failures without redundant
provisioning, while the latter typically would not.

The opportunity to optimize provisioning by counting on
the ability to pause certain demands arises because of the first-
party setting, which enables cooperation between the network
and the applications. Therefore, cooperative provisioning is
limited to settings where such cooperation is feasible. Traffic
engineering, on the other hand, is applied more broadly (e.g.,
in ISP networks) and as such cannot assume such coopera-
tion.

2 Application Traffic Demands

The starting point for network capacity provisioning is the
demand placed by applications. Since building a network or
augmenting the capacity of an existing network would typ-
ically take time (several months to more than a year), there
is also the need to forecast future demand. Forecasting is
a well-studied problem and there exist many techniques for
it [15, 19]. Thus, in this paper, we do not focus on forecast-
ing and our analysis is based on taking a snapshot of the
present demand and using it to perform capacity planning,
with and without our optimizations. However we do show
in Section 4.3 that our findings carry over even if applied to
future demand obtained through forecasting.

2.1 Demand Specification
An application, i, specifies its demands as a set of discrete time
series, with the jth demand on behalf of i being specified as
Di j = (t,A,B,V,d, p), i.e., a demand for conveying a volume
V of traffic from location A to location B, expressed at time

1180 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

t and with a deadline of d (that is, the demand should be
satisfied during [t, t +d]), and with the desire that the demand
be satisfied with a probability of p, i.e., in the network failure
scenarios that cumulatively account for a fraction p of time.
(Each of these quantities is set by the application i and should
carry the subscript i j, but we drop it for the ease of exposition.)
We describe two types of application demands which are
relevant to this paper: immediate and deferrable.

Immediate: Such traffic tends to be in the critical path of user
latency, so there is little temporal flexibility. The deadline
for such a demand is “now”, so the demand can be expressed
as a data rate to be supported between a specified source and
destination. Hence we can simplify the formulation of the
demand as Di = (t,A,B,r, p), where we subsume V and d by
the rate r =V/d. Note that if the network were provisioned
to support the desired rate r for this demand continually, we
would be able to transfer volume V within a deadline d.

Deferrable: The traffic demand arising from asynchronous
activity tends to be temporally flexible, i.e., deferrable, with
a long deadline. A good example is traffic arising from dis-
tributed load balancing, wherein resources on a server (e.g.,
CPU, IO capacity, storage space) grow in terms of utilization
(i.e., start becoming “hot”), necessitating the rebalancing of
the workload and entailing the transfer of related data (e.g.,
a user’s mailbox in the context of an email service or folder
in the case of a storage service). The urgency of the load bal-
ancing activity and hence the deadline of the resulting traffic
demand would depend on how much headroom there is on
the server resources that are heating up.

Deferrable demand would be specified with a deadline d
that reflects the degree of temporal flexibility. For instance,
in the case of load balancing triggered workload, there might
be enough headroom in the server resources (i.e., none is
close to being saturated) to allow d to be set to days or even
weeks. Note that the demand can tolerate such latency (e.g.,
by slowing, pausing or turning off the application components
responsible for the demand); however, once the application
component is resumed and it actually starts its data transfers,
these would be completed in a much shorter and typical “net-
work timescale” (e.g., within seconds or minutes or hours,
depending on the size of the transfer). Also, just because a
demand can be temporarily paused, it does not mean that
it can be forgotten. So, the network would be provisioned
with sufficient capacity to allow “catch-up” on the deferred
demand once it is resumed. Processes that perform periodic
tasks on data such as garbage collection, compliance checks,
and workload analytics can also cause asynchronous traffic
demands.

3 Cooperative Provisioning

In this section, we describe how the network, with the applica-
tion’s cooperation, can provision the network efficiently. We

first provide some background on network provisioning and
how it is currently done. Next, we discuss two specific oppor-
tunities for cooperative provisioning: (a) deriving a smoothed
demand signal based on explicit application input, and (b) pro-
visioning network redundancy in a way that is cognizant of the
demand deadlines and the repair time of links. Finally, we de-
scribe a mathematical framework which, using constraint opti-
mization, ensures appropriate provisioning of network capac-
ity, including redundant capacity, to satisfy all demands. We
dub this framework Approv, short for “Application-informed
Provisioning”.

3.1 Background on Capacity Provisioning

We sketch how capacity provisioning is done by the cloud
provider, Microsoft. Although we do not have information
from other providers, we believe that the process outlined
here is general and not provider-specific.

Periodically, e.g., every few months, the cloud operator
forecasts demands between each datacenter (DC) pair and
subsequently provisions network capacity to satisfy all de-
mand forecasts. Since the demands arise from third-party
applications (which the operator has no real leverage over) as
well as first-party ones, the network typically works with just
the actual traffic originated by applications (i.e., an implicit
signal) rather than an explicit expression of application traffic
demand (e.g., as in Section 2.1). Such an implicit signal is de-
rived from application traffic categorized into tiers of service,
with each tier corresponding to a different priority level [7, 8].

Based on this implicit demand signal derived from actual
traffic, the operator derives the peak or 95%ile (P95) traffic
level and uses this to forecast the traffic level, say months
or even more than a year into the future. In the absence of
any additional context from the applications sourcing the
traffic, the operator has no choice but to work with the implicit
demand signal, no matter how spiky it is (i.e., how high the
peaks are).

With the demand so determined, the operator proceeds to
simulate the failure of various links and combinations of links.
A simulator is used to route each demand over possibly mul-
tiple paths chosen based on the latency and the available
bandwidth. If the demands cannot be satisfied using the avail-
able bandwidth, the operator would augment capacity in the
network (i.e., add redundant capacity) so that the demands
are satisfied even in the face of such failures. Specifically,
the capacity of a link is augmented if its utilization during
simulation rises above a high-water mark and it is reduced if
the utilization drops below a low-water mark. At the end of
this iterative process of simulation, the operator would arrive
at the network capacity build out plan, specifying the number
and capacities of the links needed.

There are a couple of details worth noting. First, in general,
the operator would start with an existing network and then
determine the capacity augmentation and link decommission-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1181

ing needed based on the demand forecast. However, to enable
fair comparisons in this paper, we provision the network from
scratch, i.e., starting with links of zero capacity, which helps
avoid the need to carry the baggage of past provisioning done
without the benefit of Approv. Second, for simplicity, we work
with the specified topology (where each link starts out with
zero capacity) and only compute the capacity needed on the
links that are part of the topology. While the Approv frame-
work is general enough to accommodate the creation of new
links, the ability to create a link between two locations would,
in general, be constrained by practical considerations that
would have to be provided as additional input.

3.2 Leveraging Application Cooperation
We can leverage the application’s cooperation — specifically
that of first-party applications that have nothing to hide from
the network — to improve the network capacity provisioning
process outlined above in two ways.

3.2.1 Explicit Demand Signal to Aid Smoothing

First, rather than just work with the implicit signal of actual
traffic sent, the operator can take advantage of application
demands expressed explicitly per the framework presented
in Section 2.1. Such explicit knowledge would enable the
operator to calculate the smoothed demand.

For example, even if the peak (or P95) rate of traffic sent
by an application was 1Gbps, knowledge of the explicit ap-
plication demand (including the deadline d from Section 2.1)
might allow the operator to determine that the application’s
traffic could have been smoothed down to a peak rate of 0.8
Gbps. Therefore, instead of basing its forecast, and conse-
quently the actual capacity provisioning computation, on the
1Gbps peak, the operator could work with the smoothed 0.8
Gbps peak, thereby “rightsizing” the capacity. In the case of
a deferrable demand, expressing the demand in terms of the
volume V and deadline d would enable further rightsizing
of capacity compared to just smoothing down the demand
expressed as a rate r. The reason is that much or all of a de-
mand in terms of V and d could be fit within the valleys and
headroom of the immediate demands (Figure 2), obviating
the need for any additional provisioning.

3.2.2 Rightsizing Redundancy for Deferrable Demands

Second, knowledge of the deadlines enables the operator to
“rightsize” the redundancy too. The intuition is that if an
application demand has a longer deadline than the time to
recover a failed link, then during capacity provisioning (and
during the subsequent operation of the provisioned network),
we can assume that part or all of such demands are simply
paused or deferred until the failed link has been repaired. This
would avoid the need for provisioning full redundancy for
such deferrable demands.

Figure 1: Rightsizing of redundancy provisioning: (a)
shows the default provisioning of redundancy with no
distinction between immediate and deferrable demands.
Upon failure of the primary link at the top, the backup
link at the bottom has the capacity to carry the full load
of traffic). (b) shows how the provisioning of redundancy
reduces by confining it to the immediate demand. The
thinner backup link is sized to carry just immediate de-
mand, although the overall provisioning would be sized
to accommodate the “catch-up” of the deferred demand
upon repair.

A simple example illustrates the savings made possible by
such informed redundancy provisioning. Consider a network
comprising just two nodes, A and B. Consider two cases:

Case I: The application’s implicit demand is 1 GB/day.
Case II: The application explicitly specifies a demand of

V = 30 GB with a deadline of d = 30 days, which also works
out to 1 GB/day.

Say the cloud operator knows that the A−B link could be
down for up to 10% of the time, i.e., for up to 3 days in the
month. Therefore, to support the implicit demand in Case I,
the operator would have to provision at least one additional
link of 1 GB/day capacity (and possibly more depending
on the likelihood of concurrent failures of multiple links).
Therefore, the operator would have to provision a total of at
least 1+1 = 2 GB/day capacity, and possibly more, on the
A−B path.

On the other hand, in Case II, explicit knowledge of the
deadline would enable the operator to determine that the de-
mand could be paused, or deferred, temporarily to “tide over”
the network link’s downtime. Of course, once the link has
been restored, there would be the need to “catch up” on the
deferred demand. Still, given the up to 10% downtime of
the link, the operator can get away with provisioning a sin-
gle A−B link of capacity 1.11 GB/day (computed as 1/(1-
0.1)), which would be significantly lower than the (at least)
2 GB/day in Case I above. (In this illustrative example, we
ignore the quantization of bandwidth, i.e., the minimum step
size for allocation.)

3.2.3 Summary

In general, we would have a mix of “immediate” user-facing
demand and “deferrable” background demand, and the former
cannot tolerate any delay. Therefore, we might still have to
include redundant links. However, by rightsizing the provi-
sioning of redundancy for the deferrable demand, we would

1182 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

be able to reduce the overall capacity provisioned, as illus-
trated in the simple example in Figure 1. Furthermore, as
explained above, specifying deferrable demand in terms of
volume and deadline would enable more effective provision-
ing (perhaps even fitting within the valleys and headroom of
the immediate demand) than working with a smoothed rate.

In the remainder of this section, we formalize our frame-
work for cooperative capacity provisioning and also present
our method for simulating network link failures and repairs
(including the concurrent failure of links that carry shared
risks), informed by the history of actual link failures and re-
pairs.

3.3 Framework for Capacity Provisioning
Our Approv framework models network provisioning as a
constraint optimization problem using a linear program (LP).
As with any network provisioning approach (Section 3.1 pro-
vided some background on this), the LP needs to simulate
all “likely” link failures, singly or in combination, and ensure
that the network has sufficient redundant capacity to fulfill all
demands despite such link failures.

A key challenge in our work arises from our richer demand
model compared to prior work. State-of-the-art approaches [1]
take demand data rates as input (e.g., 1 Gbps from A to B)
and then only simulate link failures as point-in-time events, to
verify the satisfaction of demand in the face of failures. Since
we support demands that specify deadlines (d) that could
stretch to days or even weeks, we incorporate a much richer
notion of failures, including the actual duration, i.e., the time
from the loss of capacity due to the onset of a failure episode
until the restoration of capacity upon repair. As we discuss,
this approach enables optimizations that are not possible with
point-in-time simulation of failures.

Given a time-window (ts, te), We define a failure scenario
as a set of per-link time-series { f1, f2, . . . , fn}, where n is the
number of links in the network. fl is a time series representing
the status of link l, i.e., whether it was up (working) or down
(failed), over time. fl is a time series, fl1, fl2, ..., flt over the
full duration of the simulation, where flt ∈ {0(down),1(up)}
and time is discretized (in steps of 1 hour in our work). To
synthesize realistic failure scenarios that extend over the full
duration of the simulation, we have built a novel history-based
failure model, described in Section 3.4.

The Approv capacity provisioning formulation assumes a
fixed network topology, where the nodes are either datacenters
in the cloud network or network points of presence. Given
such a topology and the application demands the Approv
provisioning framework allocates capacity to each link in
the topology so as to satisfy all demands, by simulating two
functions:

• Topology and Routing: Approv incorporates constraints aris-
ing from the network topology and the set of valid network-
level routes between any two datacenters (DCs). The routes

Figure 2: Illustration of the peaks and valleys in the time
series of the immediate demand, and of the headroom
above the peak, arising from the overall capacity provi-
sioned, inclusive of the redundancy. The valleys and the
headroom represent capacity that could be used to ac-
commodate background demand, subject to its deadline.

are derived from the large inter-DC WAN deployed by Mi-
crosoft.

• Link Failures: Approv also incorporates constraints to capture
the effect of each failure scenario that is simulated. This helps
ensure that the network is provisioned with enough capacity
to fulfill all demands even in the face of such failures.

For ease of exposition, we use a uniform p (i.e., probability
of satisfaction) for all demands. Later, in Section 3.3.2, we
relax this assumption to generalize the framework to incorpo-
rate a demand-specific p.

Given a set of failure scenarios F, we construct a “capacity
provisioning LP” with constraints corresponding to each com-
bination of demand and failure scenario. The LP generates a
capacity provisioning plan in two steps:

1. Provisioning of immediate demands: Such demands have an
immediate deadline, so we represent these in terms of the rate
r, as discussed in Section 2.1. The demanded rate needs to be
supported even in the face of the failure scenario considered.
To ensure this, we sweep across time, from the start to the end
of the simulation. We ensure that the network is sufficiently
provisioned to support the immediate demands at each point
in time, which corresponds to a specific combination of link
failures.

2. Provisioning of deferrable demands: Deferrable demands
are expressed in terms of the desired volume, V , of data to
be transferred and the corresponding deadline d. Our pro-
visioning framework first checks to see whether (and if so,
how much of) such demands could be accommodated in the
valleys and the headroom of the capacity provisioned above
for the immediate demands (see Figure 2). To the extent the
deferrable demand exceeds what can be so accommodated,
the framework augments the capacity on one or more links
to ensure that the deferrable demands are satisfied too (in
addition to the immediate demands). In doing so, we take ad-
vantage of the demand smoothing and redundancy rightsizing
techniques discussed in Section 3.2.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1183

At the end, we arrive at the network build plan, which gives
the capacity to be provisioned on each link in the network. We
present the LP formulation and an example in Appendix A.1
and A.2.

3.3.1 Accommodating Probability of Satisfaction (p)

To ensure that the capacity provisioned in the network build
plan satisfies the demand with the desired probability p, we
use the failure model (discussed next in Section 3.4) to gen-
erate a large number of failure scenarios. As discussed in
Section 3.4, the generation of failure scenarios is governed by
the failure and repair history of each link and group of links.
Consequently, the more likely link failure combinations will
appear more often in the failure scenarios, just as we would
desire. Since we would like the network to be provisioned so
as to satisfy the demand with probability p, or equivalently
in at least a fraction p of the failure scenarios considered,
we sort the |F| individual failure scenarios in increasing or-
der of the capacity of the build plan generated when each
such scenario alone is simulated. To enable the sorting, we
consider the impact of each failure scenario on the build plan
capacity in isolation instead of the collective impact of a set of
failure scenarios, as in the capacity provisioning LP discussed
in Section 3.3. We then consider just the first p fraction of
the failure scenarios (i.e., the p.|F| scenarios with the least
impact on capacity) and disregard (or cut off) the last 1− p
fraction of scenarios (i.e., the ones with the greatest impact
on capacity). This subset of failure scenarios is then provided
as input to the capacity provisioning LP to generate the build
plan.

3.3.2 Accommodating Demand-Specific p

In general, each demand Di could have its own pi, represent-
ing the desired probability of satisfaction for that demand. To
accommodate such demand-specific levels of p, we employ an
iterative process. We first sort the pi in increasing order, i.e.,
going from the least level of assurance sought by a demand to
the highest. For ease of exposition, we assume that the sorted
order is p1, p2, ..., pn. Then, we proceed as follows, where in
each subsequent step, the additional capacity provisioned, if
any, is over and above that which was already provisioned in
the preceding steps. In other words, the capacity provisioned
never decreases as we progress through the steps:

1. First, present all demands (D1,D2, ...,Dn) to Approv and sort
the failure scenarios in increasing order of their individual
impact on capacity (as outlined at the end of Section 3.3
above). Then, pick p1 as the cutoff in this sorted list of failure
scenarios (i.e., focus on just the first p1 fraction of the failure
scenarios) and run Approv on these, to arrive at the cumulative
capacity. This would ensure that the network is provisioned
to satisfy all demands with probability (at least) p1.

2. Then, exclude the first demand, D1, and present the rest
(D2, ...,Dn) to Approv and sort the remaining failure scenar-
ios (i.e., excluding the ones already satisfied in step 1 above)
in increasing order of capacity impact. Then, pick p2 as the
cutoff in this sorted list of failure scenarios, and proceed as in
step 1 above. This would ensure that demands (D2, ...,Dn) are
satisfied with probability (at least) p2. Note that the provision-
ing performed in step 1 has already ensured that all demands
(D1,D2, ...,Dn) are satisfied concurrently in the face of the
p1 fraction of failure scenarios. It is only for the additional p2
- p1 fraction of failure scenarios (during which D1 need not
be satisfied) that some of the capacity provisioned to satisfy
D1 in step 1 could potentially be used to satisfy (D2, ...,Dn).
Therefore, this subsequent step (step 2) does not impinge on
the provisioning done in the earlier step (step 1).

3. Proceed accordingly, progressively raising the bar on the prob-
ability of satisfaction while narrowing down the correspond-
ing set of demands considered at each step.

4. The process would conclude when, in the last step, we only
consider demand Dn and ensure its satisfaction with probabil-
ity pn.

This ensures that the provisioning at the end of the process
would satisfy all demands Di with the corresponding proba-
bility pi.

3.4 Failure Modeling

In this section, we describe our history-based failure model
that we use to generate realistic failure scenarios to drive the
provisioning framework described in Section 3.3. Using a
history of link failure characteristics, we build a generative
model of link failures that captures characteristics such as
the distribution of Time To Recovery (TTR) and the Time
Between Failures (TBF) for the individual links, and the cor-
relation of failure and recovery across links.

Dataset: The dataset we use to build the failure model
contains detailed link failure data at hourly granularity col-
lected over a period of 13 months for the over 500 links in
Microsoft inter-DC WAN. The WAN consists of 17 inter-
connected regions, such as Asia-Pacific (APAC) and North
America (NAM), with each region including multiple datacen-
ters. Each link l in the network is characterized by a discrete
link-status vector time-series fl , where flt is 1 if the link l
was up at time t and 0 if the link was in a failed state at time t.

We build a separate model for each region to keep the mod-
eling tractable, since there could be correlations — accidental
or otherwise — across arbitrary pairs of links. Accordingly,
our failure modeling uses two main steps, Link Clustering
and Characterization and Failure Scenario Generation. We
now describe each step.

1184 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Cluster no. Correlation % links Cluser no. Correlation % links
0 0.81 46.3 1 0.75 7.3
2 0.79 7.3 3 0.79 7.3
4 0.80 4.9 5 0.92 7.3
6 1.0 2.4 7 1.0 2.4
8 1.0 2.4 9 1.0 2.4

10 1.0 4.9 11 0.97 4.9

Table 1: Avg intracluster Pearson correlation coefficient

3.4.1 Link Clustering and Characterization

Link failures are often correlated since links could share
components such as a power source, a router, or a fiber ca-
ble [16, 20]. To capture such correlations, we cluster links
that display similar failure patterns in our data. We run the
Complete-linkage agglomerative clustering algorithm [3] us-
ing the 1-Pearson correlation coefficient between the link-
status vectors noted above as the distance metric between
two links to form such clusters of links. Links which fail at
the same time will have correlated failure patterns and hence
land in the same cluster (In Section 3.4.2, we explain how
we simulate failure of all links in a cluster simultaneously).
We evaluated the average of Pearson correlation coefficient
between links within each cluster, while sweeping over the
count of clusters, and determined that setting the number of
clusters to 12 yielded a satisfactory division of links, with the
average intra-cluster Pearson coefficient being 0.9.

Table 1 shows average intra-cluster Pearson correlation
coefficient for the Asia-Pacific (APAC) region. The high intra-
cluster Pearson correlation coefficient underscores the high
degree of correlation in the failure pattern of links within
the clusters. Note that cluster 0, containing over 46% of the
links, comprises links whose failure pattern does not correlate
with that of any other link; in fact, these links suffer few
failures and so their link status vectors are set to 1 at almost
all times. So, this is not considered as a failure cluster during
the generation phase (Section 3.4.2).

Since the clusters capture links with similar link-status
vectors, we assume that links belonging to a cluster have
the same distribution of Time To Repair (TTR) and Time
Between Failures (TBF). Accordingly, we estimate a single
distribution of TTR and TBF for the links in each cluster.
From the link-status vectors in a given cluster, we gather
all the link TTRs and estimate the Cumulative Distribution
Function (CDF) of TTR by using linear interpolation. We
do likewise to estimate the CDF of the TBF. We then use
these CDFs to generate plausible failure scenario, i.e., a set
of realistic link-status vectors for each link.

3.4.2 Failure Scenario Generation

Our failure scenario generation algorithm uses the estimated
CDFs to generate a common link-status vector for each link
cluster for a given time-window. This approach assumes that
links within a cluster are perfectly correlated: all links fail
and are restored at exactly the same time. While simplifying

Figure 3: Comparing distribution of total capacity be-
tween logged historic data and generated failure scenar-
ios.

the task of generating failure scenarios, this assumption of
perfect correlation also ensures that the network provisioned
in Section 3.3 is “stress-tested”, i.e., made tolerant to a worst-
case scenario where a chunk of capacity on correlated links
is lost in one fell swoop.

Algorithm 1 Algorithm to generate timeseries of failures.
u f ← uptime fraction
ttr_cd f ← CDF of TTRs from past data
tb f _cd f ← CDF of TBFs from past data
timesteps← no. of timesteps for which we generate timeseries

timeseries = /0

Add 1 or 0 to timeseries with probability u f or 1−u f respectively
t = 1
while t ≤ timesteps do

if last item in timeseries = 1 then
tb f = Sample a value from tb f _cd f
Add tb f 1s to timeseries followed by a 0

else
ttr = Sample a value from ttr_cd f
Add ttr 0s to timeseries followed by a 1

t =Length of timeseries
Output: First timesteps elements of timeseries

We use Algorithm 1 to generate a common link-status
vector per-cluster. A value of 1 at timeseries[t] denotes that
all the links in the cluster are up at timestep t. Similarly, a
value of 0 denotes that all the links in the cluster are in the
failed state at timestep t. If the latest state of the generated
timeseries is 1, we determine how much longer the links in
the cluster will stay up by sampling a value, tbf, from the TBF
distribution. Similarly, if the latest state is 0, we sample ttr
from the estimated TTR distribution and fail all links in the
cluster for the next ttr timesteps.

3.4.3 Properties of generated timeseries

We inspected some properties of the generated link failure
timeseries and compare it with those of the actual failures
recorded in the history.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1185

Total network capacity available in a region at a given
time is the sum of capacities of links that are up at that time.
Therefore the total network capacity varies with time. Fig-
ure 3 shows the CDF and Box plots of the distribution of
total network capacity in a region and compares the distribu-
tions that we see in the past data and the generated failure
scenarios. 10 failure scenarios each spanning a month were
generated from the past 13 months of logged data. The ca-
pacities are min-max normalized using the same minimum
and maximum normalization factors for both generated and
logged capacities. The generated timeseries has a distribution
of total capacity that is reasonably close to the distribution
we see in the past data, but does not exactly replicate it. In
particular, the minimum generated capacity is lower than the
minimum logged capacity. This is because, as noted above,
when failure scenarios are generated, all links in a cluster are
failed together, thereby generating worst case failure scenar-
ios that may not have occurred in the past. This ensures that
enough capacity is provisioned for scenarios not present in
our logs but are nevertheless possibilities because of failure
correlations and so would be prudent to be prepared for.

3.5 Provisioning and Control Interfaces

In this section, we describe the APIs required in the provi-
sioning and control plane between the applications and the
network to realize the gains from cooperative provisioning.

Every few months, each application component provides
its immediate and deferrable demands between every DC
pair as a time-series to the network. Figure 4 provides an
example of how applications specify their demands to the
network provisioning process. Immediate demands specify an
hourly rate r while deferrable demands specify a volume V
of traffic that is generated within each day. Additionally, for
each application, the deferrable demand includes a deadline
d and a probability of satisfaction p.

Figure 4: The specification of immediate demands using
rate and deferrable demands using volume.

Choosing deadlines: In some cases, component owners can
systematically calculate deadlines, while in others, it is left
to domain experts to use their judgement and specify the
deadline. Section 4.1 provides examples from the Substrate
service that fall into both categories. To gain more insight into
the choice of deadlines, we interviewed the service owners,

who are the domain experts. Since the service owners are
going from operating in a mode without any deferrable traffic
to one where they are willing to defer part of their traffic
to enable cost savings, it is understandable that they were
conservative in picking appropriate deadline values. Also, in
some cases, they prefer the component to have a minimum
amount of capacity available at all times. To support this, we
simply divide the component’s WAN traffic demands into
an immediate component and a deferrable component. For
instance, for the mailbox load balancing component described
in Section 4.1, the domain experts require 10% of traffic to
be flagged as immediate.

Forecasting: The network’s provisioning process takes these
inputs and forecasts future usage. To do this for immediate de-
mands, it first aggregates hourly usage across all applications,
and then computes the P95 usage over an extended period
such as a day. Using this number across multiple days, it then
determines a trend and forecasts future usage. For deferrable
demands, the network forecasts daily volume of traffic for
an extended period, say months, and inputs these to Approv.
Appendix A.1 explains how Approv uses this input.

Run-time Interface: Since cooperative provisioning is done
assuming that part of the demand is deferrable, cooperation of
both the network and the application at run-time becomes nec-
essary to live up to this assumption. Specifically, the applica-
tion and the network need to react quickly and appropriately
to link failure events. When a link fails, the network informs
deferrable application components to either slow their rate
of generating traffic or to pause such traffic altogether. We
achieve this through a combination of two techniques: one
enforced by the network and the other effected through appli-
cation cooperation.

When traffic generated by a deferrable component is
uniquely identifiable through network-visible identifiers, such
as IP addresses or five-tuples, the network uses a bandwidth
enforcer similar to previous work [12, 14] to apply back-
pressure on the application. When it detects a link failure, the
bandwidth enforcer reduces the allocation to the deferrable
component that needs to be slowed down. Substrate’s de-
ferrable components (such as load-balancing, database migra-
tion, and background cleanup processes) are designed to slow
down when the bandwidth enforcer reduces their allocation.
As a result the components either reduce the amount of work
they do or pause it altogether. When the failed link comes back
up, the bandwidth enforcer increases the allocated bandwidth
and sends an explicit signal to the application components to
resume normal activity.

Often, however, multiple application components use the
same network identifier to send traffic and consequently, net-
work bandwidth enforcement cannot isolate traffic from the in-
dividual application components to be slowed down or paused.
Fortunately, Substrate uses a job scheduler that controls the
progress of background and asynchronous tasks. Hence when

1186 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the network informs the application of a link failure, the ap-
plication’s job scheduler explicitly slows the appropriate de-
ferrable component(s), thereby keeping the application’s net-
work traffic in line with the reduced network capacity.

We are in the process of productizing WAN capacity pro-
visioning at Microsoft based on Approv. This work is in col-
laboration with both the WAN team and the owners of the
Substrate service. The implementation comprises Approv-
based optimization of the offline provisioning pipeline and
run-time adaptation . The latter comprises two parts. The first
is bandwidth throttling enforced by the network, when there
is loss of capacity due to link failure, to limit the traffic of ap-
plications that had marked part of their demand as deferrable
during the offline provisioning phase. This ensures the pro-
tection of the network from overload during such times of
capacity crunch, regardless of application actions. The second
is run-time adaptation of the Substrate service, to ensure that
the application throttles its activity, and hence traffic, in a
manner that avoids user impact, e.g., by pausing deferrable
components but not the user-facing ones. For this purpose,
we have implemented interface enhancements using approxi-
mately 2500 lines of C# code, and are running comprehensive
tests to verify that all Substrate’s deferrable components are
indeed able to pause or slow down when required.

4 Evaluation

In this section, we evaluate the benefits of cooperative provi-
sioning. Our evaluation uses Microsoft inter-DC WAN topol-
ogy and link failure characteristics, and applies Approv to
satisfy demands for Substrate, a large-scale service that sup-
ports several collaboration applications such as email, shared
file services, and enterprise analytics. Substrate accounts for
well over a third of the overall traffic on Microsoft WAN and
as such plays a significant role in defining the WAN capacity.
Therefore, we believe it is useful to analyze capacity even just
in the context of the Substrate service. We first describe our
methodology, and then turn to our results.

4.1 Application Demands
Substrate consists of various components which perform dif-
ferent logical functions. Many components are user-facing;
for instance, a component that responds to a user’s REST API
calls to read email. These components create immediate traf-
fic demands. Additionally, Substrate implements a number of
components that use the WAN extensively to ensure high data
availability, reliability, and performance. These mostly run
asynchronously and therefore their traffic demands are mostly
deferrable. By interviewing component owners, we have de-
termined the following four components whose application
demands can be deferred.
Mailbox Load Balancing (MLB): This component is spe-
cific to the email application built on Substrate. With time,

utilization on some servers (measured in terms of CPU us-
age, storage or IO capacity) can become disproportionately
high. To preempt this from impacting user latency, the load-
balancing component periodically schedules mailbox moves
from heavily loaded to lightly loaded servers. Such moves can
be deferred until a certain deadline. To determine the right
deadline, the load-balancing team continuously monitors the
free and available resources (i.e., the “headroom”) on each
server, e.g., the free storage available. Based on the rate at
which utilization grows on each server and the available head-
room on the various resources, the team calculates a deadline
by which the load balancing must complete while still keeping
the utilization under control and the user latency unaffected.
Currently, this deadline is conservatively calculated as 7 days,
which allows for occasional unexpected surges in load .
Periodic Tasks (PT): Substrate requires certain maintenance
and analytics tasks to run periodically at a daily, weekly, or
monthly cadence. These run in the background and perform
two main functions. First, they perform data clean-up. For
example, one task permanently deletes data items that are
marked as deleted. Another task ensures compliance by per-
forming time-driven deletions as mandated by legislation such
as GDPR [2]. Second, they perform analytics tasks that extract
useful enterprise-specific information from the data, such as
generating weekly reports on how an employee splits their
time between meetings and focus time. Based on conversa-
tions with owners of these tasks, we determined that these
demands are deferrable by up to 1 day.
Server Initialization (SI): Substrate is a rapidly growing
cloud service. To support this growth, it periodically adds
new servers to its datacenters. This growth happens in bursts
and is not gradual: a large number of new servers may become
available at a particular datacenter in a particular month, and
the next set of new servers may land only much later. The new
servers are initialized with data from existing servers that may
be in other datacenters, triggering large data transfers over the
WAN. This workload is deferrable since such initialization
does not have immediate, user-visible consequences. On the
flip side however, it has to complete within a reasonable time
so that the service can start utilizing the new servers, and
thereby support growing demand. Per the operations team, 7
days is a reasonable deadline for the demand arising from the
(new) server initialization. Although SI-based demands occur
only sporadically, the network provisioning has to explicitly
consider this demand since the traffic is bursty with a high
peak.
Database Geo-Replication (DG): Substrate uses database-
level geo-replication to ensure data availability. Changes to
any data item are written to a database, and the database
transaction log is replayed at three geo-replicated servers.
Hence all components that modify data items generate geo-
replication traffic. Replication traffic triggered by user-visible
updates such as the creation of a new email is treated as im-
mediate, while the rest is treated as deferrable, with a deadline

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1187

that is the same as for the component that generates it: 7 days
for MLB and SI, and 1 day for PT.

4.2 Evaluation Methodology
We first describe the inputs used to evaluate Approv. Then,
we outline the different provisioning approaches we compare
Approv with. Finally, we explain the network topology that
we provision for and the link failure characteristics Approv
uses to simulate failures.

4.2.1 Input Demands

Figure 5: Substrate’s network usage over a week in June
2020 on a link from Singapore to Hong Kong, separated
into immediate and deferrable (MLB, PT and SI).

We use one month of network usage data from June 2020
to evaluate Approv. The deferrable demand constitutes 59% of
total demand by volume, of which mailbox load balancing ac-
counts for about 36%, periodic tasks for about 3% and server
initialization for about 20% (see below for elaboration on SI
traffic). Figure 5 shows immediate and deferrable demands
(stacked over immediate) from a DC in Singapore (SIN) to a
DC in Hong Kong (HKG) over one week in June 2020. The
curve for each component includes both the traffic arising
from updates to the primary replica and the database geo-
replication triggered from updates to the secondary replicas.

We did not observe server initialization traffic in June 2020,
which is the month for which we have detailed traffic traces.
However, to determine the effect it would have on provision-
ing, we took an estimate of such sporadic traffic, obtained
from the concerned team, and overlaid it on top of the total
June 2020 traffic. The aggregate traffic traces so synthesized
are then provided as input to the provisioning algorithm.

All demands are specified as a time-series in the format
shown in Figure 4. Due to the commercial sensitivity of some
of this data, as was alluded to in Section 1, we do not spell
out the actual values here.

4.2.2 Provisioning Approaches

We quantify the benefits of Approv by comparing it with two
alternative approaches:

(a) CDF of link TTRs (b) CDF of link TBFs

Figure 6: WAN link reliability statistics.

1. Baseline (BL): This is the current state-of-the-art provi-
sioning approach mentioned in Section 3.1. There are several
similarities between this baseline approach and the capac-
ity planning scenario described in previous work [1, 21]. All
application demands are treated equally. The demands are
expressed as rates that need to be satisfied, and are derived
by observing the P95 value of rate over the entire dataset.
Failures are simulated as point-in-time events during which
the demands are to be satisfied, rather than as failure episodes
that the demand could tide over.
2. Smoothing-only (SO): This approach performs provisioning
with differentiated application demands, but only for smooth-
ing of the deferrable demand (expressed as a rate) to fit in
the valleys of the immediate demand (see Figure 2) . In this
approach , once the deferrable traffic is smoothed into the val-
leys, we determine the P95 rate over the dataset and perform
provisioning using point-in-time failure simulation. This ap-
proach allows us to evaluate how just smoothing traffic , which
is well studied in the context of traffic engineering [7,13], can
help improve capacity provisioning.

4.2.3 Network Topology and Link Characteristics

Each provisioning approach mentioned above includes failure
simulation. Our failure simulation method is driven by the
network topology and link failure data from Microsoft WAN.
We concentrate on two regions, Asia-Pacific (APAC) and
North America (NAM), since they represent two very diverse
network topologies. NAM is the largest region in Microsoft
WAN in terms of both the number of links and capacity (it
has tens of datacenters and hundreds of links), but consists
of mostly land-bound links. APAC, on the other hand, while
being smaller, includes an extremely diverse set of links, with
a combination of land-bound links and several under-sea ca-
bles, given the geography of the region. Figure 6 shows the
difference in link failure characteristics between APAC and
NAM. While the TTR is almost uniformly low for the links in
NAM, there is wide variation in the TTR for APAC, because
some links (e.g., those on undersea cables) take time to repair.
The TBFs are fairly similar across both regions.

We evaluate each provisioning approach with two failure
simulation methods:
1. Replay-based: We simulate failures by replaying the 16-
month link-status vector history from Microsoft available to
us, with each month treated as a separate failure scenario,

1188 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Failure
Region

SO (% savings) Approv (% savings)
Method MLB +PT +SI MLB +PT +SI

Replay
APAC 6.5 6.5 9.7 16.8 17.4 38.1
NAM 9.8 10.4 10.8 28.0 29.2 30.5

Generated
APAC 5.3 5.3 8.2 24.9 25.2 44.2
NAM 10.8 10.9 11.1 27.3 29.0 31.8

Table 2: Percentage capacity savings over Baseline for
SO and Approv, for both replay and failure generation.
We first show savings with only Mailbox Load Balancing
(MLB) considered deferrable, then we add on Periodic
Tasks (PT). Finally, we add Server Initialization (SI) traf-
fic as estimated by the SI team (shaded columns).

yielding a total of 16 scenarios for each of APAC and NAM.
2. Model-generated: We use the failure model described in
Section 3.4 to generate a synthetic but realistic set of link-
status vectors.

While the replay-based approach enables evaluation inde-
pendent of our failure generation model, the latter enables the
creation of an unbounded number of failure scenarios (we
create 10,000 for each of APAC and NAM), in turn allow-
ing us to evaluate the impact of varying the probability of
satisfaction, p (from 0.9 to 0.999).

4.3 Results
In this section, we first evaluate how Approv reduces the
provisioned network capacity while supporting Substrate’s
demand, and improves link utilization compared to the base-
line. Next, we perform a sensitivity analysis to evaluate how
Approv’s savings vary with d and p. Finally, we examine and
compare forecasting for the baseline and Approv.

Network Capacity Reduction2: We first evaluate the per-
centage reduction in network capacity provisioned using the
three approaches. We calculate the network capacity as the
sum of all link capacities in the network. Table 2 shows the
percentage network capacity reduction for the Asia-Pacific
and North America regions, for both methods of simulating
failures: replay-based and model-generated. As noted in Sec-
tion 4.2.1, since the Substrate components that write to data
items trigger database geo-replication (DG), we have included
the DG demands in those of the respective Substrate com-
ponents. Since the historical time-series contains 16 months
of data, for the generated method, we generate link-status
time-series of length 16 months too.

We concentrate on the last row of the table (NAM with
failure generation), though the same explanation applies to
the other rows as well. Approv, with MLB alone treated as
deferrable, reduces provisioned capacity by 27.3%. With the
deferrable set expanded to also include PT, which is a smaller
workload and with a tighter deadline of only 1 day, the gains

2In general, we would also want to consider link-cost-weighted capacity
savings, but we defer this to future work.

Figure 7: Incremental augments in network capacity for
the APAC region for Baseline and Approv.

increase to 29%. Though it is a small increase, there is still
value in considering demands like PT as deferrable, since
even a small improvement in percentage capacity provisioned
yields large absolute gains. Finally, the inclusion of SI as well
in the deferrable set adds to the gains, taking it up to 31.8%.
The benefits of Approv over SO are also apparent, since SO
gives gains of 11.1% whereas Approv’s total gains are much
higher at 31.8%. Note that both failure simulation methods
yield a significant reduction in the capacity to be provisioned,
underscoring that the gains are not just specific to our failure
model.

Including SI in the deferrable set provided significantly
higher gains in APAC than NAM (e.g., an increase of about
20% in capacity savings in APAC compared to just 1-3% in
NAM). This is because the number of servers added to APAC
and NAM datacenters, and hence the volume of initialization
data, was roughly the same in both regions. Since Substrate
service is much larger in NAM, the addition contributed less
WAN traffic relative to the total in NAM compared to APAC.

Link Utilization Improvement: We now discuss the rela-
tive improvement in link utilization due to Approv. We analyze
the utilization improvement in APAC network provisioned
with Approv using the replay failure scenarios. The relative
improvement is computed as 100*(Approv utilization - Base-
line utilization)/(Baseline utilization) for each link. Since
Approv reduces network capacity significantly, the link utiliza-
tion improve significantly as well, with an average relative
improvement of 42% (note that we compute the utilization
improvement on a per-link basis and report the arithmetic av-
erage whereas the capacity savings is reported in aggregate).

Sensitivity Analysis: Figure 7 shows 10000 generated failure
scenarios for the APAC region on the x-axis, sorted by the total
network capacity that is provisioned for each failure scenario
considered individually. We use all traffic (Immediate, MLB,
PT and SI) in this experiment. The graph shows that Approv
almost uniformly provisions about 30% less capacity than
Baseline. This shows that irrespective of the exact nature of
the failure scenarios, Approv consistently helps reduce the
network capacity to be provisioned.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1189

Experiment p=0.999 p=0.99 p=0.9
Baseline 1.00 0.90 0.75
d=12hrs 0.66 0.61 0.51
d=1day 0.62 0.56 0.47
d=2days 0.61 0.51 0.43
d=4days 0.60 0.51 0.42
d=7days 0.60 0.51 0.42

Table 3: The sensitivity of capacity provisioned to the
deadline d (varied across rows) and the probability of sat-
isfaction p (expressed in terms of 9s and varied across
columns). We normalize all values by the capacity provi-
sioned for the Baseline approach with p = 0.999.

Next, we evaluate how Approv’s provisioned network ca-
pacity varies as we sweep through a range of settings for the
deadline, d, and the probability of satisfaction, p. Table 3
shows the results in terms of the normalized capacity provi-
sioned for the baseline case (the first row) and for Approv (the
remaining rows).

We see that the capacity to be provisioned decreases as
the probability of satisfaction p decreases and also as the
deadline d increases. Both of these are as expected since the
less “demanding” a demand is, the greater the opportunity
Approv has to accommodate the demand without increasing
the capacity to be provisioned. However, we also see that the
capacity tends to flatten out as the deadline increases, with
a diminishing benefit to relaxing the deadline. The reason is
that Approv is able to effectively utilize the large amount of
headroom in the network arising from the redundant capacity
provisioned to support the immediate demand. Note that in
the absence of failures, this redundant capacity is not needed
for serving the immediate demand and so is available for
Approv to accommodate the deferrable demand, even with a
shorter deadline.

Table 3 also points to an interesting tradeoff between p and
d. For instance, the normalized capacity (0.61) with p = 0.99
and d = 12hrs is roughly the same as it is (0.6) when p is made
more demanding (p = 0.999) but d is relaxed to d = 7days.

Forecast: Finally, we evaluate the effect of forecasting error
on Approv. We used 3 months of traffic to forecast 10 days
of traffic using the Holt-Winter method of forecasting [6]
with a seasonality of 7 days. To ensure that the network is
able to accommodate sudden, unforeseen peaks in traffic, net-
work forecasts typically use a high confidence interval (CI)
envelope, hence, we use a confidence interval of 95% in our
experiment. First, we forecast overall traffic, without differen-
tiating immediate and deferrable traffic, as is the current state
of the art. Next, we forecast immediate and deferrable traffic
separately, as is required by Approv.

For overall demand, the forecast overestimation error for
the high end of the 95% CI is 12%. When we separately fore-
cast the deferrable demand, the forecast overestimation error
is 11%. In other words, the forecasting is about as accurate for
the deferrable part of the traffic as it is for the overall traffic.

Therefore, Approv could as well use the forecast demand as
input as it can the current snapshot of the demand (as we do in
this paper, using the June 2020 snapshot). Furthermore, given
the large amount of headroom that is created by provisioning
of immediate traffic (shown in Table 3), we believe Approv
has an overall low sensitivity to forecasting errors as well. For
these reasons, we believe Approv will remain effective even
when used with demand forecasts.

5 Discussion

In this paper, we have used the applications’ deadline and
desired probability of satisfaction information to provision
the network optimally. One challenge that arises from this
is incentivizing applications to specify these requirements,
which convey their flexibility, appropriately. If the applica-
tions are too conservative in specifying their requirements,
that would result in reduced capacity savings, whereas if the
applications specify their demands loosely, then that might
result in an incorrect forecast and hence inadequate network
provisioning. We believe that this opens up the possibility
of devising pricing mechanisms to encourage applications
to specify their demands appropriately, thereby facilitating
the cooperative provisioning of network capacity. Another
challenge is in extending cooperative provisioning to third-
party applications. Unlike with first-party applications, where
we assume an implicit trust between the applications and the
network that enables free sharing of information up and down
the stack, in the third-party setting, we would need to rethink
this approach and consider how cooperation can be effected
in the absence of such trust.

6 Related Work

In this section, we position our work in relation to previous
efforts in traffic engineering, network provisioning and failure
characterization.

Traffic Engineering: As discussed in Section 1.1, traffic
engineering employs routing and scheduling strategies to
satisfy the possibly differentiated demands of applications
on a given network. B4 [8] and SWAN [7] use routing al-
gorithms that allow flows to specify different priority lev-
els. Tempus [11] and Amoeba [22] allow applications to
set deadlines for traffic, the former uses constraint optimiza-
tion to satisfy deadlines while the latter uses a graph-based
algorithm. Failure-aware traffic engineering has also been
explored. FFC [18] splits traffic over multiple paths to be
resilient to failures. Song et al. [17] proposed an availability-
aware traffic engineering algorithm for optical networks that
we believe can be generalized to WANs. NetStitcher [13]
uses store-and-forward techniques to deal with temporal off-
sets between traffic peaks in different parts of the network.

1190 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Pretium [10] uses dynamic pricing to route third-party appli-
cation traffic while handling link failures.

It is important to recognize that traffic engineering and
network provisioning are fundamentally different problems.
Traffic engineering addresses the short-term, i.e., run-time,
problem of how networks route traffic while assuming given
link capacities provided as input. Provisioning, on the other
hand, addresses the longer-term problem of determining how
link capacities should be provisioned in the first place, possi-
bly several months or even over a year into the future, so as
to satisfy the communication requirements of applications. In
doing so, the provisioning framework (such as Approv in this
paper) would invoke traffic engineering techniques under the
hood and iteratively, to check if the demand can be satisfied
by the network as provisioned and in the face of one or more
failure scenarios. If traffic engineering is unable to route the
demand, the capacity provisioned would be augmented.
Network Provisioning: We now discuss previous work
that directly addresses the problem of network provisioning.
Robust network validation [1] proposes a generic optimiza-
tion framework to determine worst-case network performance
across multiple scenarios. They use this framework to model
the network provisioning problem which determines the right
augments to link capacity so as to handle multiple failures.
Liu et al. [21] propose an optimization framework that also
solves the network provisioning problem given a set of failure
scenarios. Both efforts address network provisioning, how-
ever, without using first-party context, and therefore consider
all application traffic to be equivalent. Moreover, since they
do not inherently consider deferrable demands, they use a
simple failure model that only simulates instantaneous, point-
in-time failures, with no notion of the temporal dynamics of
link failures, i.e., a link failing at a certain time but then being
restored at a later time. The baseline provisioning approach
we have used in Section 4 is derived from these techniques.
Failure Characterisation: Turner et al. explore and char-
acterize network failures in the CENIC network and provide
a methodology to reconstruct these failures [20]. This is simi-
lar to the replay-based model we use in Section 4. Shaikh et
al. [16] similarly measure link status over time using OSPF
link-state advertisements in a large enterprise network. Gill et
al. [5] characterize network failures within a datacenter, not
on the WAN. Unlike our failure modeling methodology, these
efforts analyze historical failures and do not propose genera-
tive failure models based on this history. Previous work [4]
analyzes optical layer outages in a large backbone and shows
that Q-drop events are predictive of upcoming failures. We
believe that augmenting our failure model with information
from the optical layer would be an interesting future direction.

7 Conclusion

We have described how cooperation, cutting across applica-
tions and the network, can significantly lower capacity pro-

visioned in inter-DC WANs in a first-party setting. Using
co-operative provisioning, we show how we can provision the
WAN more carefully while ensuring that application demands
are accommodated with the desired satisfaction probability.

Acknowledgements. We thank our shepherd, John Wilkes,
and the anonymous reviewers for their feedback. We are
particularly grateful to John for his meticulous shepherd-
ing of our paper. We also thank Neha Agrawal, Matt Calder,
Wengjie Chen, Christina Chou, Pavel Egorov, Luis Irun-Briz,
Jim Kleewein, Angus Leeming, Shijuan Lu, Otavio Pereira,
Saravanakumar Rajmohan, Nadia Razek, Xiaoshi Sha, Jianke
Tang, Jiaojian Wang, and Paul Wang for their help and input
during the course of this work.

References

[1] Y. Chang, S. Rao, and M. Tawarmalani. Robust valida-
tion of network designs under uncertain demands and
failures. In USENIX NSDI, pages 347–362, 2017.

[2] European Commission. 2018 reform of EU
data protection rules. https://ec.europa.eu/
commission/sites/beta-political/files/
data-protection-factsheet-changes_en.pdf.
Accessed Sep 12, 2021.

[3] B. S. Everitt, S. Landau, M. Leese, and D. Stahl. Cluster
analysis 5th Edition. John Wiley, 2011.

[4] M. Ghobadi and R. Mahajan. Optical layer failures in a
large backbone. In ACM IMC, page 461–467, 2016.

[5] P. Gill, N. Jain, and N. Nagappan. Understanding net-
work failures in data centers: Measurement, analysis,
and implications. In ACM SIGCOMM, 2011.

[6] C. C. Holt. Forecasting seasonals and trends by ex-
ponentially weighted moving averages. International
Journal of Forecasting, 20(1):5–10, 2004.

[7] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill,
M. Nanduri, and R. Wattenhofer. Achieving high utiliza-
tion with software-driven WAN. In ACM SIGCOMM,
page 15–26, 2013.

[8] C.-Y. Hong, S. Mandal, M. Al-Fares, M. Zhu, R. Al-
imi, K. N. B., C. Bhagat, S. Jain, J. Kaimal, S. Liang,
K. Mendelev, S. Padgett, F. Rabe, S. Ray, M. Tewari,
M. Tierney, M. Zahn, J. Zolla, J. Ong, and A. Vahdat. B4
and after: Managing hierarchy, partitioning, and asym-
metry for availability and scale in Google’s software-
defined WAN. In ACM SIGCOMM, page 74–87, 2018.

[9] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski,
A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu,

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1191

 https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf
 https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf
 https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf

J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat. B4: Expe-
rience with a globally-deployed software defined WAN.
In ACM SIGCOMM, page 3–14, 2013.

[10] V. Jalaparti, I. Bliznets, S. Kandula, B. Lucier, and
I. Menache. Dynamic pricing and traffic engineering for
timely inter-datacenter transfers. In ACM SIGCOMM,
pages 73–86, 2016.

[11] S. Kandula, I. Menache, R. Schwartz, and S. R. Bab-
bula. Calendaring for wide area networks. In ACM
SIGCOMM, pages 515–526, 2014.

[12] A. Kumar, S. Jain, U. Naik, A. Raghuraman, N. Kasi-
nadhuni, E. C. Zermeno, C. S. Gunn, J. Ai, B. Carlin,
M. Amarandei-Stavila, M. Robin, A. Siganporia, S. Stu-
art, and A. Vahdat. BwE: Flexible, hierarchical band-
width allocation for WAN distributed computing. In
ACM SIGCOMM, page 1–14, 2015.

[13] N. Laoutaris, M. Sirivianos, X. Yang, and P. Rodriguez.
Inter-datacenter bulk transfers with netstitcher. In ACM
SIGCOMM, page 74–85, 2011.

[14] K. Nagaraj, D. Bharadia, H. Mao, S. Chinchali, M. Al-
izadeh, and S. Katti. Numfabric: Fast and flexible band-
width allocation in datacenters. In ACM SIGCOMM,
page 188–201, 2016.

[15] D. Salinas, V. Flunkert, J. Gasthaus, and
T. Januschowski. Deepar: Probabilistic forecasting
with autoregressive recurrent networks. International
Journal of Forecasting, 36(3):1181–1191, 2020.

[16] A. Shaikh, C. Isett, A. Greenberg, M. Roughan, and
J. Gottlieb. A case study of OSPF behavior in a large
enterprise network. In ACM SIGCOMM Workshop on
Internet Measurment, page 217–230, 2002.

[17] L. Song, J. Zhang, and B. Mukherjee. Dynamic pro-
visioning with availability guarantee for differentiated
services in survivable mesh networks. IEEE Journal on
Selected Areas in Communications, 25(3):35–43, 2007.

[18] M. Suchara, D. Xu, R. Doverspike, D. Johnson, and
J. Rexford. Network architecture for joint failure re-
covery and traffic engineering. SIGMETRICS Perform.
Eval. Rev., 39(1):97–108, June 2011.

[19] S. Taylor and B. Letham. Forecast-
ing at scale. PeerJ Preprints 5:e3190v2
https://doi.org/10.7287/peerj.preprints.3190v2, 2020.
[Accessed March 10, 2021].

[20] D. Turner, K. Levchenko, A. C. Snoeren, and S. Savage.
California fault lines: Understanding the causes and
impact of network failures. In ACM SIGCOMM, 2010.

[21] Yu Liu, D. Tipper, and P. Siripongwutikorn. Approxi-
mating optimal spare capacity allocation by successive
survivable routing. In IEEE INFOCOM 2001, pages
699–708 vol.2, 2001.

[22] H. Zhang, K. Chen, W. Bai, D. Han, C. Tian, H. Wang,
H. Guan, and M. Zhang. Guaranteeing deadlines for
inter-data center transfers. IEEE/ACM Transactions on
Networking, 25(1):579–595, 2016.

1192 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 8: Toy Example

A Appendix

A.1 LP formulation
Objective Function: Minimize weighted sum of capacity
augments where weight could be link cost, latency, etc.

Minimize∑
l

wl ·Xl (1)

Subject to the constraints:
A. Demand constraints at sources and destinations:

∑
ti≤t≤ti+di

∑
l∈OLSi∩LRi

v f ,i
t,l =Vi ∀ f ∈ F, i ∈ D (2)

∑
ti≤t≤ti+di

∑
l∈ILTi∩LRi

v f ,i
t,l =Vi ∀ f ∈ F, i ∈ D (3)

Constraint (2) ensures that for any deferrable demand, i, the
total volume of traffic emerging from its source node, Si, over
all time steps within its deadline is equal to the actual demand
volume Vi. Constraint (3), on the other hand, ensures that the
total volume traffic arriving at the destination node over all
time steps within its deadline is also equal to actual demand
volume Vi. In computing the total volume in constraint (2),
we only consider the subset of links emanating from the
source, Si, that also lie on a valid path between Si and the
destination, Ti , and likewise in constraint (3).

B. Network flow constraint at each node, n:

∑
i∈D

∑
l∈ILn

v f ,i
t,l + ∑

∀i|Si=n
Vi = ∑

i∈D
∑

l∈OLn

v f ,i
t,l + ∑

∀i|Ti=n
Vi

∀ f ∈ F,n ∈ N, t ∈ T
(4)

This is a network flow constraint to ensure that, in each
time slice, the sum of the volume coming into the node and
volume generated at that node is equal to the sum of vol-
ume going out of that node and volume sinking into that node.

C. Capacity constraint at each link, l:

(El +Xl) ·ut,l ≥ I f
t,l + ∑

i∈D
v f ,i

t,l ∀l ∈ L, f ∈ F, t ∈ T (5)

This constraint ensures that the total volume of traffic that a
link is able to carry during a time step (computed as a product
of the total capacity provisioned on that link to accommodate
the immediate and deferrable demands and the uptime of the
link) should be greater than or equal to the sum of immediate
and deferrable demands volume routed via that link during
that time step.

Note that all of the above constraints apply during each
failure scenario, f , so there is a set of such constraints corre-
sponding to each such failure scenario.

A.2 Example of Cooperative Provisioning
We use a toy example network (Figure 8) with 3 datacenters
and 2 immediate and 2 deferrable demands to illustrate
steps 1 and 2 from Section 3.3. Table 4 shows the TTR and
TBF of each link. For fair comparison with the baseline, we
simulate 2-link simultaneous failures, in which links L1
and L3, and links L2 and L3 can fail together (the high
TTR of 15 days for link L3 makes it more likely that its
failures would overlap with those of the other links), along
with all single link failures. Table 5 shows the input in terms
of the immediate and deferrable traffic demands. Immediate
demands R1 and R2 require a peak rate of 3 GB/day but
sends 2 GB/day on average, hence sending total 60 GB in a
period of 30 days.

1. Baseline :
Table 6 shows point-in-time failure scenarios simulated as
part of the baseline provisioning described in the Section 4.
Consider the point-in-time failure scenario 2 in Table 6, where
links L1 and L3 fail together, hence the required rate between
A and B is 6 GB/day to satisfy demands R1 and R3 and re-
quired rate between A and C is 9 GB/day to satisfy demands
R2 and R4. And as L2 and L4 constitute the only available
path, we need to allocate at least 15 GB/day capacity on L2
and at least 9 GB/day capacity on L4, hence capacity aug-
ments of 9 GB/day and 6 GB/day are required on L2 and
L4, respectively. Provisioning for all such failure scenarios
results in a total augment of 30 GB/day. With all demands
expressed as peak rates that must be satisfied even when there
are failures, point-in-time failure scenarios are effectively
equivalent to a complete failure of a link over the entire
30-day period . Such a conservative approach is unnecessary
for deferrable demands provisioning, as discussed next.
2. Approv:
Step I : We do peak-rate based point-in-time failure scenario
provisioning for immediate demands which is similar to base-
line. Considering the same point-in-time failure scenarios as
in the baseline provisioning, we find that the topology in the

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1193

Failure Scenario X1 X2 X3 X4
No failure 0 0 3 0

L1 and L3 fails 0 9 0 6
L2 and L3 fails 9 0 0 6

L4 fails 0 0 3 0
Final Augments 9 9 6 6

Table 6: Baseline provisioning with point-in-time failure
scenarios

Failure Scenario X1 X2 X3 X4
No failure 0 0 3 2

L1: [15, 17], L3:[15, 30] 0 0 0 5
L2: [15, 20], L3:[15,30] 0 0 0 5

L4: [15, 20] 0 0 5 0
Final Augments 0 0 1.67 5

Table 7: Volume based LP provisioning with timeseries
failure scenarios

Link TTR TBF
L1 2 30
L2 5 60
L3 15 30
L4 5 60

Table 4: Link TTRs

Figure 8 is enough to satisfy the immediate demands, R1 and
R2.
Step II: In this step, we provision for deferrable demands
R3 and R4 on top of the Step 1 topology, while working
with time series failure scenarios, as discussed in Section 3.4.
Note that we have only shown a few failure scenarios (which
cause the highest augments) due to lack of space but the fi-
nal augments are based on simulating plenty of such failure
scenarios.

Consider the failure scenario 2 in which L1 fails at day
15 and comes back up at day 17 and L3 fails at day 15 and
comes back up at day 30. We don’t need to provision extra
capacity for demand R3 because if we send more volume of
R3 between day 0 and day 15, we would not need to send any
traffic between day 15 and day 17. On the other hand, since
the demand R4 starts at day 15 and we need to send 90 GB in
a period of 15 days, which coincides with the downtime of
link L3, we would need to provision capacity on an alternate
path to accommodate demand R4 in the face of such a link
failure. Specifically, if we consider link L4 on the alternative

path, 15 GB out of the total R4 demand of 90 GB could
be accommodated in the valleys of immediate demand R2.
That would leave 75 GB of R4 to be satisfied, necessitating
75/15 = 5 GB/day of extra capacity on link L4 to satisfy
deferrable demand R4, alongside immediate demand R2
flowing over the same link, L4. Note that since we solve one
LP optimally across all failure scenarios, the final capacity
augments yielded by our LP is not necessarily the same as
the maximum capacity augment required on each link across
the individual failure scenarios.

Request Type Peak Rate Start Time Deadline Volume
R1: A->B Immediate 3 GB/day - - 60 GB (30 days)
R2: A->C Immediate 3 GB/day - - 60 GB (30 days)
R3: A->B Deferrable - 0th day 30 days 90 GB
R4: A->C Deferrable - 15th day 15 days 90 GB

Table 5: Immediate and Deferrable demands

Some observations on Approv provisioning:

1. Baseline provisioning requires 30 GB/day total capacity
augments whereas Approv requires only 6.67 GB/day
total capacity augments.

2. For temporally overlapping demands, Approv will find
optimal allocation. For example, deferrable demand R3
will send more bytes in the first 15 days to utilize the
network well and will leave enough capacity on links L1
and L2 for sending R4 traffic between day 15 and day
30.

3. In our example, deferrable demands could be routed via
either link L3 or link L4, but Approv returns higher
augments on link L4 because it has lower TTR value.
In effect, Approv favors augmenting low TTR and high
TBF links, i.e., high-availability links.

4. As our objective function is to minimize total weighted
capacity augments, Approv favors augmenting shorter
paths.

5. With our volume-based LP formulation, we do not need
to explicitly smooth our input demands, since Approv
fills deferrable traffic in the immediate traffic valleys
implicitly as part of its optimization.

1194 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

OrbWeaver: Using IDLE Cycles in Programmable Networks
for Opportunistic Coordination

Liangcheng Yu
University of Pennsylvania
leoyu@seas.upenn.edu

John Sonchack
Princeton University

jsonch@princeton.edu

Vincent Liu
University of Pennsylvania
liuv@seas.upenn.edu

Abstract
Network architects are frequently presented with a tradeoff:

either (a) introduce a new or improved control-/management-
plane application that boosts overall performance, or (b) use
the bandwidth it would have occupied to deliver user traffic.

In this paper, we present OrbWeaver, a framework that can
exploit unused network bandwidth for in-network coordina-
tion. Using real hardware, we demonstrate that OrbWeaver
can harvest this bandwidth (1) with little-to-no impact on
the bandwidth/latency of user packets and (2) while provid-
ing guarantees on the interarrival time of the injected traffic.
Through an exploration of three example use cases, we show
that this opportunistic coordination abstraction is sufficient to
approximate recently proposed systems without any of their
associated bandwidth overheads.

1 Introduction

The purpose of a computer network is to transmit messages to
and from connected devices. The bulk of these messages are
sent between two or more end hosts and are intended for use
in applications therein (video streaming, web browsing, ssh
terminals, stock trackers, etc). It is important to note, however,
that networks are also frequently used for other purposes
that are not directly related to end-to-end application traffic.
These uses include but are not limited to control messages,
keepalives, and probes.

In some cases, this second category of messages is sent
over dedicated networks (e.g., an out-of-band control plane).
Nevertheless, a significant portion is not, and for good reason.
Multiplexing the traffic over a unified network results in more
efficient resource utilization and helpful fate-sharing proper-
ties. For many uses, it is also required for correctness. For
instance, active probing generally relies on the probe facing
the same network conditions as normal traffic.

For in-band coordination, there is often a choice between
fidelity and overhead. More so as many protocols use high-
priority messages that directly cut into network capacity. For
example, when deciding on an appropriate interval for send-
ing routing-protocol keepalive messages, sending keepalives
more frequently results in faster failure detection but at the
cost of many extra packets in the network. Similarly, while
techniques like congestion tagging [3, 22] and in-band net-
work telemetry [27] can provide timely information about the

recent state of network paths, they require either extra probe
packets or space in the headers of existing packets, both of
which occupy valuable bandwidth.

Given this tradeoff between fidelity and overhead, today’s
networks end up settling for a little bit of both. In some cases,
the sacrifices are modest; in others, network operators are
forced to limit the aggressiveness of their systems despite evi-
dence of the benefits of finer granularity [6, 49]. In this paper,
we argue that for a diverse set of protocols, the sacrifice is
entirely unnecessary—systems can coordinate at high-fidelity
with a near-zero cost to usable bandwidth and latency. In
short: we can have our cake and eat it too.

Our system, OrbWeaver, is a framework for the opportun-
istic transmission of data across today’s programmable net-
works. OrbWeaver takes advantage of gaps between user
traffic and ‘weaves’ (i.e., injects) into every such gap cus-
tomizable IDLE packets that convey information across de-
vices. For modern, high-speed networks, these opportunities
are plentiful. Crucially, OrbWeaver provides guarantees about
the ‘weaved’ stream—guarantees on the maximum time be-
tween any two packets and guarantees on the impact of the
injected packets on user traffic, switch resources, and power
draw. A consequence of this predictability is that, even when
there is no opportunity to send, the absence of IDLE packets
reveals concrete information about the state of the network.

We note that a similar abstraction already exists at the
data-link layer. In particular, in today’s full-duplex Ethernet
standards, the Physical Coding Sublayer (PCS) will fill any
gaps in transmission with IDLE symbols [32,41]. The contin-
uous stream of incoming signals allows receivers to—with no
impact to user traffic—test for corruption and link integrity at
a fine granularity, even when there is no traffic on the network.
Further, by continuing to transmit IDLE symbols after a link
integrity issue has been raised, switches can also determine
when the link becomes usable again.

OrbWeaver extends this technique to higher layers of the
network stack by exploiting the data plane programmability,
architecture, and packet generation capabilities of emerging
programmable switching platforms. The resulting stream of
packets can be used to generalize Ethernet’s robust failure
detection properties to a broader class of faults; however,
its benefits go far beyond L3 failure detection. Rather, we
demonstrate in this paper that with proper application, the
nearly free communication that IDLE packets provide can be
used to eliminate the fidelity-utilization tradeoff of solutions

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1195

to several classic problems in networking including clock
synchronization and load balancing.

Implementing OrbWeaver’s packet weaving presented sev-
eral technical challenges. First, while IDLE symbols are part
of the Ethernet standard and enjoy direct hardware/protocol
support, to utilize today’s devices and maintain their current
performance, OrbWeaver must provide similar behavior with-
out changes to switch architectures. Second, while many
systems can benefit directly from opportunistic data transmis-
sion, many must continue to operate during periods where
user traffic is already occupying all available bandwidth. To
address the first challenge, OrbWeaver introduces a co-design
of the selective data-plane filtering mechanisms and the rich
priority configurations found in modern switches to guaran-
tee minimal impact on user traffic. We verify the approach
through a detailed examination of the specifications of the
queuing subsystems on a Tofino switch along with experi-
ments that stress-test worst-case behavior. To address the
second, we introduce novel mechanisms that exploit IDLE
packets and the guarantees of weaved streams to eliminate
the bandwidth overheads of existing network protocols. We
demonstrate these mechanisms through three case studies.

Our implementation1 and evaluation demonstrate the effi-
ciency and efficacy of OrbWeaver using real hardware, optical
attenuators, and power meters. We find that, despite the in-
troduction of the IDLE stream, OrbWeaver incurs negligible
impact on user traffic, the computational/state resources of
participating switches, or their power draw. We further demon-
strate that this messaging substrate can be used to (re-)design
recently proposed systems to eliminate their bandwidth over-
heads while closely approximating their performance.

2 Motivating Weaved Streams

This section presents the definition of a ‘weaved’ stream, its
motive, and where data plane programmability can help.

Definition. A weaved stream is a union of user and IDLE
packets traversing a link between two arbitrary network de-
vices that provides two guarantees:
R1 That no link stays unutilized for too long. More precisely,

there is some period τ where the interval between any
two consecutive packets, d, satisfies d ≤ τ.

R2 That the injected packets do not decrease the effective
throughput of user traffic or increase their loss rate.

Why weaved streams? Network protocols are, fundamen-
tally, distributed computations that require coordination be-
tween different devices—sometimes adjacent devices, some-
times remote devices—for monitoring, control, and manage-
ment. A perennial problem is how much bandwidth to allocate
to these protocols, as each byte devoted to coordination is a
byte that could have been used for user traffic instead. This
tradeoff has tangible effects for many networking tasks:

1Code is available at https://github.com/eniac/OrbWeaver

• Failure handling: A common strategy for detecting the
failure of remote network devices is the use of continuous
keepalive messages. Here, each node periodically sends a
keepalive to each of its neighbors; if a neighbor ever stops
sending keepalives, nodes assume that they have failed.
Fundamentally, the period between keepalives bounds the
speed at which we can detect failures. Unfortunately, be-
cause keepalives are most accurate when sent over the same
or higher-priority channels as user traffic, their sending rate
is typically kept low (e.g., at a period of O(100 ms)) at the
cost of slower detection.

• Clock synchronization: Prior work has also noted the utility
of synchronizing network devices [29], e.g., for coordi-
nated network updates [36, 45] or real-time streams [13].
Clock synchronization protocols typically pass messages
that periodically compute the drift between the clocks of
participating machines. Constant changes to not only the
relative clocks but also the relative clock rates mean that
more frequent updates can provide more accurate synchro-
nization (at the cost of additional packets in the network,
typically configured at a high priority).

• Congestion notification: Finally, this tradeoff can be seen
in the detection/communication of congestion and current
load. ACKs (and their corresponding loss/RTTs) are a
particularly common method for inferring the presence of
congestion, e.g., in TCP NewReno. As others have noted [3,
26], however, there are also advantages to more explicit
signaling of the current congestion and queue statistics.
Unfortunately, while effective, these statistics typically
occupy packet header space or introduce additional packets
into the network.

Over the years, network architects have developed many
workarounds. These include hardware changes [29, 32], co-
opting unused fields in headers [3,50], carefully balancing the
tradeoff for a particular service-level expectation [7], or other-
wise coming to terms with the cost of coordination. Outside
factors can guide the above decisions, such as whether ACKs
are already necessary (e.g., for reliability) or if extraneous
fields can be eliminated. However, in this paper, we ask a
more fundamental question: are these tradeoffs necessary?

To that end, OrbWeaver is a framework for implement-
ing network coordination that does not interfere with user
traffic. OrbWeaver’s weaved streams are both opportunistic
and highly predictable—consuming every inter-packet gap of
sufficient size but no more. Not every protocol can be imple-
mented solely using weaved streams (though many can benefit
from it). Even so, we demonstrate that at least for the three
use cases above, weaved streams are sufficient to approximate
state-of-the-art systems while reducing their impact on user
traffic to virtually zero.

Why are there gaps? Usable gaps between packets can oc-
cur for many reasons, the most basic being application-level
patterns and TCP effects. Indeed, prior work [37, 49] and

1196 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

User packet

IDLE packet

100 Gbps 10 Gbps 10 Gbps

A B C

Figure 1: An example OrbWeaver-enabled network with four
switches and three end hosts (connected with 10 Gbps links).
A single two-sided connection A↔ B occupies the network,
but a significant portion remains unused. Gaps between pack-
ets can occur for many reasons, but OrbWeaver can weave
IDLE packets into all of those gaps.

our conversations with several large clouds/ISPs verify that
micro-/milli-second inter-packet gaps are ubiquitous, even in
networks that primarily handle large bulk-data transfers.

Gaps can also happen for structural reasons. For example,
consider Figure 1 (sans IDLE packets). In it, a single connec-
tion A↔ B occupies all usable end-to-end bandwidth. Even
if A and B pace packets perfectly, no host can send additional
packets without displacing the existing user traffic, despite
significant opportunities to do so (because of, e.g., congestion,
link speed changes, and asymmetric connections). These gaps
present a chance for opportunistic coordination.

Why now? OrbWeaver’s ability to weave IDLE packets into
gaps between user traffic is enabled by several features in
modern switches: programmable data plane behavior, the
capacity for local packet generation, and the ability to fully
configure the queuing/prioritization of different traffic classes.
We note that none of these are sufficient on their own.

For example, consider strict packet prioritization, which
has been used for opportunistic bandwidth allocation [21, 24].
In SWAN [21], for instance, end hosts send low-priority back-
ground traffic to capture any bandwidth remaining after han-
dling interactive and elastic services. A naïve application of
these techniques, however, is a poor fit for in-network coor-
dination, which occurs between devices in the network (as
opposed to end hosts) and typically involves small data sizes
that benefit from even short sending opportunities. Figure 1,
for example, would not benefit from end-host actions.

3 Generating a Weaved Stream

Before we delve into the potential uses of weaved streams in
Section 4, we first detail how to implement the abstraction in
today’s programmable switches.

Switch model. For simplicity, we primarily focus on the
popular Tofino family of programmable networking devices
(and discuss generalization to other types of devices in Ap-
pendix B). Figure 2 shows a conceptual diagram of the rel-
evant components of the switches we consider. At a high
level, when a packet enters from one of the Ethernet ports, its
header is extracted by the programmable parser responsible

In
g

. A
rb

ite
r

…

Parser

Parser

Parser

Ingress
Pipeline

2

Rx MAC

Packet
Generator

Egress
Pipeline

PRE

Queueing &

Scheduling

4

Tx MAC

1

Packet
Buffer

3

Figure 2: Conceptual diagram of the relevant components of
an RMT switch, derived from the switch specifications in [12].
Only a single ingress/egress pipeline are shown. Circled
numbers indicate steps and potential points of contention
with user traffic that are handled in Section 3.1.

for that port. An ingress pipeline arbiter is then responsible
for selecting one of the parsed packets and passing it through
the ingress match-action pipeline.

After ingress processing, the packet will be placed in a
shared packet buffer until it is ready to be sent out. Instead,
the switch uses a shorter ‘packet descriptor’ for the next steps:
optional replication by a Packet Replication Engine (PRE)
(e.g., for multicast) and placement onto a per-port egress
queue for eventual processing/deparsing. The data plane pro-
gram and the traffic manager configuration decide whether an
incoming packet should be buffered and whether a buffered
packet should be enqueued for transmission.

Goal. R1 of the weaved stream abstraction requires a constant
stream of packets on every link such that the union of user
and IDLE packets satisfies d ≤ τ. We note that the optimal
guarantee for τ is dependent on both the bandwidth, B, of
each link and the MTU of the network. To see why, consider
the extreme case where a user is occupying all of the band-
width of a port i with MTU-sized packets. The receiver on
the other side of the link will receive packets at a period of
τi =

MTU
Bi

, with OrbWeaver unable to inject any additional
packets without impacting user traffic. Therefore, unless oth-
erwise noted, OrbWeaver uses τi =

MTU
Bi

even if smaller IDLE
packets would allow for faster injection.

In the worst case when there were zero user packets and N
egress ports, the resulting target IDLE-injection rate is:

T =
N

∑
i=1

Bi

MTU

For reference, for a 32 port switch with B = 100 Gbps and
MTU = 1500 B, the per-port inter-packet gap, τi, is 120 ns,
which results in T = 266.7M packets/sec.

Constraints. Complicating the injection of IDLE packets into
the network are R2 and hardware constraints on the through-
put of each switch pipeline, defined in terms of both byte-level
bandwidth (N×B) and packet-level bandwidth (proportional
to the clock rate of the pipelines). For the latter, switches

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1197

typically provide guarantees up to a certain minimum packet
size, and best-effort behavior for very small packets.

3.1 Mechanism Overview
OrbWeaver’s IDLE-packet weaving leverages a combination
of features found on our target platform: data-plane packet
generation, data plane programmability, and fine-grained ar-
biter/scheduler configuration options. The switches’ onboard
per-pipeline packet generator modules, in particular, form a
convenient substrate for our techniques. Using these modules,
a network operator can create packets with predetermined
content at a predetermined rate.

In principle, one could configure the generators to cre-
ate packets at a rate T (thus providing OrbWeaver with its
consistent stream of packets to convert into IDLE packets).
Unfortunately, in practice, these generators do not have nearly
enough capacity to satisfy the requirements of OrbWeaver.
Moreover, blind injection of packets may interfere with the
throughput, latency, or loss of user traffic. Instead, OrbWeaver
uses the selective amplification method described below.

1 Packet generation. The IDLE stream generation of Orb-
Weaver begins with a low-rate but predictable stream of gen-
erated IDLE packets. The focus of this process is to provide
a ‘seed’ stream with an emphasis on regularity; amplification
up to T occurs later in the pipeline. More specifically, the
generator module is configured to send a packet every τmin

2
secs, where τmin is the minimum τi of any port on the pipeline.

There are two important aspects of this seed stream. The
first is that the rate is double that of τmin in order to provide a
degree of oversampling for the subsequent optimizations with-
out sacrificing guarantees on the eventual spacing of packets.
The second is that the IDLE packets are configured with a
strict high priority at the ingress arbiter so that the packet
will always be serviced as soon as it is generated. While this
implies that IDLE packets are preferred over user traffic in
the ingress pipeline, the low rate of this seed stream means
that OrbWeaver incurs <1.5% overhead even for the worst
case of minimum-sized packets sent at τ100 Gbps (denoting the
optimal τi for a 100 Gbps link). More typical packet sizes and
utilization eliminate the overhead.

2 Amplifying the stream on-demand. OrbWeaver takes the
low-rate seed stream above and amplifies it, potentially up
to the full rate T , by leveraging another hardware feature
found in modern switches: flexible multicast. In Figure 2,
this behavior is implemented in the PRE, which can replicate
a packet descriptor to the egress queues at line rate.

Unfortunately, the naïve approach of replicating a packet to
every egress queue every τmin seconds can crowd out normal
multicast packets and waste significant egress capacity. More
specifically, there are two instances where it is not necessary
to multicast a packet to a particular port i:

1. If the port is slower than the maximum speed, then send-
ing at τmin will be too fast by a factor of Bmax

Bi
.

2. If a user packet was already sent to the egress port re-
cently, sending an IDLE packet is unnecessary.

OrbWeaver addresses both cases by oversampling the send-
ing history of each port (at rate τmin

2) and then selectively
filtering/multicasting toward only the ports that need an IDLE
packet. When a port is has bandwidth Bi < Bmax, the switch
downsamples the IDLE packets by configuring two multicast
groups (one with port i and one without) and picking the one
with i every dBmax

Bi
e packets. Similarly, if a port has sent a

packet (user or IDLE) in the past τmin
2 seconds, we can select

a multicast group that does not contain the given port.
Concretely, this filtering step uses a single stateful register

entry with a bit width equal to the number of ports attached to
the pipeline. In essence, the register is a bitvector where each
bit represents whether we have sent a packet to the associated
port within the last τi

2 seconds. For every incoming seed
packet, if the associated bit is 1, we omit the port and flip
the bit to 0; if the bit is originally 0, include the port in the
multicast and flip the bit to 1. Specifically:

user packet: filter_reg |= 1 << egress_port
seed packet: filter_reg ^= speed_mask

When all ports are the same speed, speed_mask is always
2N − 1; for hybrid configurations, the ith bit is 1 for every
dBmax

Bi
e packets and 0 otherwise. After updating the register,

OrbWeaver multicasts the current seed packet to the multicast
group specified by filter_reg (in particular, its value before
the xor)—if and only if bit i in the multicast group ID is 0,
port i is included in the multicast.

In principle, a direct application of the above filtering step
guarantees that the PRE will have enough bandwidth for all
user multicasts, assuming that each user multicast results in at
most one packet on each egress port. Two aspects of modern
switch design potentially complicate this design.

The first is that today’s switches typically cannot support a
unique multicast group for each of the 2N possible combina-
tions of target ports. OrbWeaver addresses this by reducing
the number of groups by coalescing ports into groups of M
such that, if any port in the set has its bit in filter_reg set,
the entire set receives the multicasted packet. This approach
trades a factor of 2M reduction in the number of multicast
groups for a worst-case M−1

N -factor decrease in PRE band-
width. The second is that modern switches are often com-
posed of different pipelines, each supporting distinct packet
generators, sets of registers, and groups of ports. Lack of
visibility across pipelines means that filter_reg may only
track local sends, which can also lead to higher PRE usage.

We note, however, that in both of the above cases, Orb-
Weaver will only incur false negatives (and no false positives)
of user packet presence, thus satisfying R1. We also note that
very few modern networks are continuously multicasting to
all ports at near line-rate.

3 Weaving the IDLE stream between user packets. Af-
ter the stream is amplified, it reaches the egress queues and

1198 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

pipeline of the switch. To bound the impact of the stream on
user traffic, OrbWeaver configures its packets to have a strictly
lower priority than any other user traffic on the same port. If
there is user traffic to send, the IDLE packets will not impact
them; if there is no traffic to send, the IDLE packets will be
sent at a minimum rate of τi per port i. The only potential im-
pact to the latency/throughput of user traffic is when an IDLE
packet is scheduled just before a user packet arrives, in which
case the user packet will be delayed by at most pkt_size/Bi.
The delay is only incurred once per packet burst, which im-
plies a bound on OrbWeaver’s end-to-end impact on latency
and throughput.

Upon arriving at the ingress pipeline of the downstream
switch, the packets will be dropped. This also has near-zero
impact on user traffic as IDLE packets are only received when
the upstream switch has nothing to send.

4 Managing the packet buffer and egress queues. Finally,
through the above process, there are two primary places where
IDLE packets can compete with user packets for memory
in addition to bandwidth. The first is the per-egress output
queues that hold packet descriptors before they are serviced
by the egress pipeline. The second is the shared packet buffer
that stores packet contents until they are sent out on the wire.

To bound the impact of OrbWeaver on both resources, we
statically carve the buffer using egress and ingress buffer
accounting mechanisms, respectively. For the former, we note
that the queue for IDLE packets (the lowest priority queue for
the port) is distinct from those of user packets. This queue
only needs to be one cell deep as another IDLE packet is
guaranteed to arrive in a timely fashion, and thus, the impact
on aggregate memory capacity is negligible. For the latter,
we can likewise keep the required buffer shallow because of
the guarantees of the packet generation process. Specifically,
we can confine the IDLE packets to a fixed-size, non-shared
region of the packet buffer. The buffer only needs to have a
depth equal to the sum of the egress, per-port IDLE-packet
queues plus a small amount of headroom for any potential
cycle-level processing delays. This is < 0.01% of the total
buffer size of a typical modern switch.

3.2 Evaluating the Weaved Stream

In this section, we delve deeper into OrbWeaver’s potential
impacts on user traffic. We do this with the assistance of a pro-
totype implementation on a 2×Wedge 100BF-32X testbed.
Additional experiments can be found in Appendix F.

3.2.1 Can OrbWeaver Inject at Rate T ?
To demonstrate that our approach can achieve T on a fully
provisioned switch, we validate it empirically. Specifically,
we configure a switch with all 32 ports active and running at
a full 100 Gbps. We then configured the switch’s packet gen-
erator module to generate seed packets at a rate of 2/τ100 Gbps
and then multicast every other IDLE packet to all ports.

τ

 0 20000 40000 60000 80000 100000 120000

O
b

s
e

rv
e

d
 i
n

te
rv

a
l
[n

s
]

Packet

Target rate
Maximum

Figure 3: An empirical evaluation of the switch’s capacity to
generate IDLE packets. Packets were injected to all ports, but
the graph depicts the observed inter-packet gap at only one of
those ports. Results are shown for both the target rate (Bi =
100 Gbps, MTU = 1500 B) and the maximum achievable rate.
y-axis omitted to protect confidential information.

Figure 3 shows a time series of the interval between IDLE
packets, as observed by the egress pipeline of a single port. To
record the series, we maintained a ring buffer (implemented
via a data plane register) of the difference between the current
egress_global_tstamp and the previous. The observations
were maintained in the egress pipeline and for a single port
(other ports’ results are identical).

We find that, not only is the injected stream able to achieve
τ100 Gbps for every port simultaneously, the observed rate is sta-
ble across packets. Further, increasing the amplification factor
of the multicast configuration enables IDLE packet generation
more than an order of magnitude faster than the target interval,
τ100 Gbps. Among other implications, this means IDLE packet
injection is robust to higher bandwidth and lower MTUs, even
without improvements to packet replication capacity.

3.2.2 Can OrbWeaver Bound Packet Gaps?
In addition to being able to generate IDLE packets at rate T ,
R1 also requires regularity in the form of a bound on the gap
between packets. We note that Figure 3 already demonstrates
the regularity of this gap on a switch without traffic. We
also note that in the other extreme (when ports are always
congested), R1 is trivially satisfied.

In this section, we extend these results to a network with
burstiness and varying levels of traffic. Specifically, we use
a hardware testbed consisting of two OrbWeaver-enabled
switches (A and B) and a set of servers connected to A. User
traffic is passed hosts→A→B with amplification to fully uti-
lize the ports at B. For this experiment, we used tcpreplay

and pcap traces from an ISP backbone [9] and a cloud data
center [8]. We set up a register in the ingress pipeline of the
downstream switch B to record the distribution of the interval
between consecutive packets.

Figure 4 shows the results for a single 25/100 Gbps port.
Without OrbWeaver, very few intervals are under τ for the
target link speed, and the tail is very long. OrbWeaver, on
the other hand, is able to weave in IDLE packets to guarantee
an upper bound on the packet interval regardless of the origi-
nal traffic pattern. In particular, for a configured generation
interval of t ns, out of 2.14×109 interarrival periods, the max-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1199

0.0

0.2

0.4

0.6

0.8

1.0

10
2

10
3

10
4

τ=480

C
D

F

Packet interval [ns]

Original
OrbWeaver

(a) 25 Gbps ISP backbone

0.0

0.2

0.4

0.6

0.8

1.0

10
2

10
3

10
4

10
5

10
6

τ=480

C
D

F

Packet interval [ns]

Original
OrbWeaver

(b) 25 Gbps data center

0.0

0.2

0.4

0.6

0.8

1.0

10
1

10
2

10
3

10
4

τ=120

C
D

F

Packet interval [ns]

Original
OrbWeaver

(c) 100 Gbps ISP backbone

0.0

0.2

0.4

0.6

0.8

1.0

10
1

10
2

10
3

10
4

10
5

10
6

τ=120

C
D

F

Packet interval [ns]

Original
OrbWeaver

(d) 100 Gbps data center
Figure 4: Observed intervals between packets with/without
OrbWeaver’s weaved stream. The dotted line shows the ideal
period τ for each link speed. Without OrbWeaver, the maxi-
mum interval was >100s of ms but we truncate for readability.

imum observed interval was (t +3) ns (observed for only 32
intervals). The discrepancy is likely due to either clock drift
or the aforementioned cycle-level processing delays. Notably,
the presence or absence of cross traffic had negligible effect
on the frequency of these 3 ns outliers so in practice, we can
set t = τ−3 and achieve reliable results.

Explanation. The regularity of OrbWeaver’s weaved stream
derives from the architecture of the switch and the mecha-
nisms of OrbWeaver. From the components of Figure 2, the
parser used by the packet generator is separate from those of
the external traffic, the ingress pipeline grants strictly higher
priority to the generated packets over external traffic (user or
IDLE), and the packet buffer protects IDLE packets from in-
terference through static reservations for worst-case capacity.
When combined, a generated IDLE packet can only be de-
layed through HoL blocking when an external packet arrives
just before the generated packet. For unicast packets, this is
a 1-cycle delay; for full broadcasts, this is up to an N-cycle
delay (which is short for today’s high-speed networks).

At the egress pipeline, the priorities are reversed: IDLE
packets are set to a strictly lower priority than user traffic.
This change stems from a change in objective: in the egress
pipeline, it is no longer necessary for the IDLE packets to be
sent at a precise rate; instead, the goal is to send any packet at
above the minimum rate, τi. Choosing a user packet instead
of an IDLE one can only decrease the inter-packet gap.

Note that, in a Tofino, these priorities (unlike those at the
ingress) are only effective within their respective ports. Thus,
the switch will send a low-priority packet on port i even if
there is a higher-priority packet queued for a different port.
As long as the average packet size is above the minimum for
line-rate processing, ports can be considered in isolation.

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

 0 20 40 60 80 100

P
D

F

Packet interval [µs]

w/ IDLE stream
w/o IDLE stream

Figure 5: The impact of IDLE packets on user traffic at the
ingress pipeline with/without a generation rate of 2/τ100 Gbps.

3.2.3 Do IDLE Packets Affect External Traffic?
As important as the impact of cross traffic on generated IDLE
packets are the impacts of the generated packets on (1) user
traffic and (2) incoming IDLE packets. A significant impact
on (1) implies violations of R2; on (2), it implies inaccuracy in
inter-arrival times and potential violations of R1. We discuss
potential impacts in the two pipelines separately.

Ingress pipeline. While OrbWeaver’s packet prioritization
means that IDLE packets will be preferred over external traffic
in the ingress pipeline, its use of multicast amplification re-
duces their impact to 1.5% of maximum packet-level capacity,
with zero impact to byte-level capacity.

To evaluate the practical effects of this overhead, we re-
played a real-world packet trace over an ingress pipeline of
an OrbWeaver switch. The packet trace was generated using
tcpreplay and link-level packet traces captured from 10 Gbps
Internet routers [9]. To saturate the pipeline, we sped the
traces up to match our setup’s 100 Gbps per-link bandwidth
and replicated them to fill the switch.

We compare two cases. In the first, only the above external
traffic is present. In the second, we used the exact same
traces but, in parallel, we injected IDLE packets into the same
pipeline just as we did in the previous subsection. In both
cases, we measured the packet count and interarrival times of
user packets in the ingress pipeline with the help of stateful
registers that aggregate both statistics.

We find that, for the speeds and packet sizes in the evaluated
trace, the throughput and congestion loss of user traffic is
the same whether the generated IDLE stream is present or
not. The only metric that is impacted is latency, where a
slight delay can be introduced each time a generated packet is
processed one ‘clock cycle’ ahead of a user packet; however,
this is minor and mitigated by the low frequency of IDLE
packet injection. Figure 5 depicts the cumulative impact of
this delay using a histogram of the packet interarrival time of
the traces, with and without the IDLE stream—the majority of
the differences are due to randomness in tcpreplay between
executions, rather than OrbWeaver.

Egress pipeline. The benefits of the amplification strategy to
contention mitigation stop at the PRE, but two other factors
take its place in ensuring that user traffic is not impacted in
the egress pipeline. The first factor is the filtering step that
was introduced in Section 3.1, which prevents superfluous

1200 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0

100

200

300

400

500

600

700

800

20 40 60 80

Q
u

e
u

in
g

 t
im

e
 [

n
s
]

Utilization [%]

w/o IDLE stream
w/ IDLE stream
Maximum

Figure 6: The impact of IDLE packets on the latency of user
traffic at the egress pipeline. Results are shown for various
levels of average utilization. 0% and 100% are not shown as
OrbWeaver becomes trivially optimal. To provide an upper
bound on the impact, we disable adaptive ingress filtering and
populate the pipeline with only small (64 B) user packets. A
real OrbWeaver deployment would have much lower impact.

 1
 1.01
 1.02
 1.03
 1.04
 1.05
 1.06
 1.07
 1.08
 1.09

 5 10 15 20 25 30 35 40 45 50 55 60

W
a

tt
a

g
e

 [
n

o
rm

a
liz

e
d

]

Time [s]

Baseline
Only OrbWeaver

Maximum utilization

Figure 7: The power draw of a OrbWeaver switch compared
to that of an idle (baseline) and a maximally utilized switch. Y-
axis is normalized to the average power draw of the baseline.

usage of both the PRE and egress pipeline when the egress
ports are already occupied. For IDLE packets that are not
filtered in the ingress pipeline, the second factor is the strict
prioritization of user traffic over IDLE packets of the same
port, also introduced in Section 3.1. The second factor, in
particular, provides an upper bound on the impact of the
IDLE packets as long as the user traffic respects the minimum
average frame size requirements of the switch specification
(see Appendix D for a formal analysis).

To truly stress these mechanisms, we evaluate an extreme
scenario in which multiple hosts send minimum-size (64 B)
packets toward a single egress port and OrbWeaver’s filter-
ing mechanism is disabled. This situation is not possible in
OrbWeaver, but is helpful in demonstrating the efficacy of
egress prioritization for protecting user traffic. The results
verify the analysis above, even for high user-traffic utiliza-
tion. For comparison, we also show the impact of an IDLE
stream operating at the order-of-magnitude-higher maximum
rate of Figure 3 but still set to low-priority. Again, across all
experiments, throughput was unaffected.

3.2.4 Does Injection Affect Power Usage?
Finally, we investigate the impact of weaving on the power
consumption of today’s switches. A natural concern is that the
continuous stream of packets will increase consumption; how-
ever, we find the actual impact is minimal as the underlying
Ethernet MAC already continuously sends IDLE symbols.

To evaluate this, we used a P3 Kill-A-Watt Electricity Us-

Infer
Network

Conditions Consume
IDLE

Registers

Process
User

Produce
IDLE

Registers

Process
User

User packet IDLE packet
Prepare
IDLE Seed

IDLE seed packet

Traffic
Manager

EgressIngress

from packet
generator

Switch
CPU

Figure 8: Structure of a P4 program that processes a weaved
stream. The ingress pipeline extracts information from the
weaved stream, then processes user and IDLE packets sepa-
rately. The egress pipeline processes user packets and trans-
forms seed packets into IDLE packets. Pipelines can commu-
nicate using registers that are synchronized with either seed
packets or the switch CPU, as shown by the thick lines.

age Monitor (Model P4400) to measure the total power draw
of a Wedge100BF-32X programmable switch. The monitor
sits between the switch’s power plug and its power outlet
and can measure wattage to within 0.2–2.0%. To emulate
the switch’s deployment into a network of programmable
switches, we connect every port on the switch to a second
switch that logically functions as 32 neighboring switches.
We test three distinct configurations:

• Baseline: All ports on the switch are connected at 100 Gbps;
however, the switch is otherwise inactive, i.e., there is no
incoming traffic nor any IDLE packets.

• Only OrbWeaver: Same as above, but with OrbWeaver’s
IDLE stream generation enabled on all switches. The
switch is, thus, both sending and receiving packets at T .

• Maximum utilization: The worst case scenario, where the
switch is both sending and receiving user packets at the
maximum rate and generating IDLE packets (that are even-
tually dropped in the ingress pipeline).

Figure 7 shows the power draw of each configuration over
a 1 min period. OrbWeaver’s transmission of packets at rate
T increases the average power draw of the switch by <2%.

4 Use Cases

Figure 8 outlines the general structure of a P4 program that
uses OrbWeaver. Whereas a standard P4 program processes a
stream of user packets, an OrbWeaver P4 program processes
a weaved stream of user and IDLE packets. OrbWeaver pro-
grams can append/read information from the payloads of the
IDLE packets (which appear on the wire as a special Ether-
Type) or infer statistics from the timing of the weaved stream.
In either case, the content of IDLE packets can be manipulated
just like any other packet (metadata like the drop decision,
priority, or egress port should not be changed).

In typical usage, the receiving switch will process, record,
and drop incoming IDLE packets before the end of the ingress

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1201

pipeline. In most cases, the IDLE packets bypass the normal
pipeline logic and, thus, will not affect user byte/drop/error
counters. Separately, they use either (a) an agent on the
switch CPU [47] or (b) a locally generated IDLE seed packet
to transfer data from the ingress to the egress pipeline before
sending to the downstream switch. Together, they facilitate
multi-hop communication over IDLE packets.

In this section, we detail three example use cases of Orb-
Weaver (see Appendix A for others). For each example, we
consider a recently proposed network system, and we explore
how well OrbWeaver can approximate it without introducing
any additional impact on user traffic. We note that, in some
cases, this restriction can result in suboptimal designs (i.e.,
imposing on user traffic may result in better overall perfor-
mance, even if it incurs overhead). Rather, we ask: how far
can operators go before needing to ever consider the choice
between network throughput and features?

4.1 Use Case #1: Fast Failure Detection
Failures of network components are common in large net-
works where the number of devices involved ensures a con-
stant flow of incidents. Reasons for the failures include over-
heating components, power instability, bit flips in the sig-
nal, loose transceivers, bent fibers, or any number of other
causes [15, 44, 51, 52]. In the end, however, the symptom of
many of these failures is the same: lost packets in the network.

Thus, as the first steps toward mitigation, quickly de-
tecting and quantifying packet loss is critical to maintain-
ing high availability and stringent SLOs, particularly as net-
works improve in both bandwidth and reaction time such
that control-plane processing is no longer the sole bottle-
neck [11, 26, 30–32, 47]. Unfortunately, as mentioned in Sec-
tion 2, common detection approaches—periodic keepalives or
pings—force network architects to sacrifice detection latency
to constrain overheads. Moreso as pings are traditionally
prioritized over user packets to minimize false positives.

Even recent systems like NetSeer [50] that track user-
packet loss inband (without injecting additional packets) suf-
fer from this tradeoff. For example, NetSeer’s choice to not
inject additional packets means that the network is necessar-
ily slow to detect a black hole (differentiating from a lack
of demand requires CPU coordination to compare the flow
counters of adjacent switches). Likewise, their choice to tag
every packet with a sequence number incurs a bandwidth over-
head of 0.3%∼6.3% in return for higher detection granularity
(unless there are previously unused bits in the header and we
cannot change the data plane to remove them).

4.1.1 An OrbWeaver Redesign
Taking NetSeer as a base, we can replace its inter-switch com-
munication with an OrbWeaver-influenced design to eliminate
bandwidth overheads and significantly improve detection time.
We refer readers to the original paper [50] for full details of
the existing system but summarize the relevant components

as follows. NetSeer records the 5-tuple of each packet in the
egress pipeline using per-port ring buffers and tags it with
a 4-byte sequence number. The downstream switch stores
the last observed sequence number. Upon detecting a gap
(e.g., packet 14 after packet 12), it sends 3 duplicate and high-
priority drop notifications to the upstream switch for each
missing sequence number. If the upstream switch receives at
least one such notification, it will use the records in the ring
buffer to generate a flow event for the missing packet, which
will be compressed/summarized for the management plane.

In NetSeer-OW, switches maintain per-port hash tables that,
like NetSeer, record the 5-tuples and packet counts of passing
flows (using the 5-tuple hash as the index). The caches are
maintained in the egress pipeline of each upstream switch
as well as the ingress pipeline of each downstream switch.
As channels are FIFO and the tables use the same size and
deterministic hash function, their content should always be
identical. The only exceptions occur after a packet loss, at
which point either a counter or a 5-tuple will differ.

In this re-design, user packets are not tagged with any
additional data nor does it require triple-notifications. In-
stead, the upstream switch will opportunistically embed in
IDLE packets psuedo-randomly selected cache records2. If
the downstream switch finds that a record differs from its
local copy, it will generate an event for the contained 5-tuple.
It will also generate an event if packets stop arriving, which is
detected with locally generated IDLE seed packets that scan
per-port weaved-stream counters. After NetSeer-OW com-
presses/filters these events, the control plane sends the results
over a low-priority TCP connection to the central controller.

Note that, in addition to exploiting the IDLE stream to
carry flow information, (R1)’s guarantee of packet arrival
rates enables provably optimal detection speed of link fail-
ures. In principle, OrbWeaver can trigger an alert if the
ingress_mac_tstamp of any two consecutive packets is ≤ τ.
While that level of granularity may be too aggressive for many
networks, we note that recent proposals for data plane rerout-
ing have made detection speed a bottleneck [11, 26, 30, 32],
particularly if a goal is zero-loss failure recovery. In the end,
the point is that OrbWeaver can provide arbitrarily precise
failure detection/statistics for current and future networks.

Dealing with a lack of sending opportunities. While ex-
tended periods of maximum utilization are rare in most net-
works [9,38,49], NetSeer-OW can still provide useful proper-
ties during these extreme conditions. For example, for failure
detection, a downstream switch in a fully utilized network
can immediately detect a packet drop by examining the gaps
between adjacent packets (a drop occurred when the gap > τ).

Flow attribution is slightly more challenging, with the chief
concern that the switch evicts the flow before including it in
an IDLE packet. We can quantify the probability of this hap-

2To improve the update rate, we can pack up to three 5-tuple-counter
records (IPv4 and counters of 3 B) in each packet. To handle register access
limitations, we can pack the records or split the table across multiple arrays.

1202 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

NetSeer NetSeer-OW

Data structure size (per-port) 256 64 512 128

SRAM (KB) 384 192 896 320
Number of sALU/register arrays 6 6 7 7

Table 1: Data plane resource usage for typical NetSeer and
NetSeer-OW configurations on a 64×100 Gbps switch.

pening using the formalization in Appendix E. For reference,
using the assumptions of Appendix E, average utilization
of [9, 38], and flow cache performance of [39], ISP routers
with 128 cache entries per port would have a P(notified) ≈

0.72
0.72+0.28∗0.45/3 = 94.4%. A data center switch with 128 cache

entries would have P(notified)≈ 0.75
0.75+0.25∗0.16/3 = 98.2%, or

with 512 entries P(notified)≈ 0.75
0.75+0.25∗0.05/3 = 99.4%.

Benefits. Compared to the original NetSeer design, the pri-
mary benefit of the OrbWeaver augmentation is to completely
eliminate all sources of bandwidth overhead—in essence, we
can apply NetSeer for ‘free.’ In particular, it eliminates the
overhead of sequence number tagging (0.3%∼6.3%) of ca-
pacity; the replicated, high-priority failure notifications (up
to 100% of reverse link capacity); and the impact on user
traffic of the event reports. Beyond overhead, it also improves
the speed to detect inter-switch failures, particularly during
periods of low utilization.

Table 1 shows the data plane memory consumption of both
systems. Additional memory increases P(notified), however
the relationship is different for each system. As a concrete
data point, consider the coverage goal highlighted in the orig-
inal NetSeer evaluation [50]—to correlate 90% of packet loss
events with flows. For a 64×100 Gbps switch and a similar
estimation strategy as above, NetSeer-OW meets this goal
with 320 KB of SRAM (128 cache slots per port) in both
ISP and data center workloads. On the other hand, assuming
the network’s minimum packet size is 64 B, NetSeer requires
approximately 384 KB of SRAM to meet the 90% coverage
objective because it must allocate enough ring buffer slots per
port (256) to ensure that sequence numbers are not overwrit-
ten before switches have a chance to correlate their results.

4.1.2 Evaluation
Detecting failures more quickly. To quantify how quickly
NetSeer-OW can detect a failure, we deployed NetSeer-OW to
a hardware testbed and randomly disconnected a link between
the two switches A and B 100 times to emulate 100 fail-stop
link failure events. To test the limits of our approach, we
configured the probes to mark a τ-timeout failure as soon as
even a single packet loss is detected.

Figure 9a shows the detection time of trials for 10, 25,
and 100 Gbps links. NetSeer-OW achieved 100% precision
and recall. It also consistently detected the failure within
10s of nanoseconds of the optimal time. In contrast, typical
configurations for protocols like Bidirectional Forwarding

 0

 0.5

 1

 1.5

10G 25G 100G

D
e
te

c
ti
o
n
 t
im

e
 [

µ
s
]

BFD 10
5
 µs

(a) Link fail-stop detection

1

3

5

 0 1 2 3 4

< 1µs

#
 P

a
c
k
e
t
/

µ
s

Time [µs]

Original Dropped Reroute

(b) Link fail-stop recovery
Figure 9: (a) the min, Q1 (p25), median, Q3 (p75), and max of
OrbWeaver’s time to detection across 100 failure events. (b)
OrbWeaver’s time to recovery (<1µs) from a bidirectional
failure of a 25 Gbps link. A total of two packets are lost.

0.0

0.2

0.4

0.6

0.8

100MB 1GB

C
o

m
p

.
T

im
e

 [
s
e

c
] Original

OrbWeaver
BFD

(a) Completion time during failures (b) Optical attenuators
Figure 10: (a) shows the transfer completion time comparison
for original, NetSeer-OW, and BFD (100 ms) in a simple leaf
spine topology. With NetSeer-OW’s fast detection and data
plane reroutes, the impact is minimal.

Detection (BFD) are closer to 10s or 100s of milliseconds;
even recent data plane detection systems [20, 30] are several
orders of magnitude slower than NetSeer-OW can achieve.

Figure 9b shows the resulting seamless recovery when
NetSeer-OW is combined with a simple data plane rerouting
mechanism. In the experiment, we induce a bidirectional
failure in one link between A and B, and we configure B to
failover to a backup path as soon as it detects an error. On
top of this setup, we send a steady stream of packets on the
target link at a relatively high rate of 5M packets per second.
A total of two packets were lost—likely in-flight.

End-to-end impact. To evaluate the end-to-end impact, we
emulate a leaf-spine topology with 2 leaf switches L1, L2 and
2 spine switches S1, S2. All switches run OrbWeaver with
pre-computed data plane backup paths. Between L1 and L2,
we insert a variable fiber optic in-line attenuator capable of
0∼60 dB attenuation. On hosts connected to the leaf switches,
we run TCP transfers of varying sizes using iperf, during
which we increase attenuation from zero until failure and
examine the impact over the transfers experiencing the events.
As Figure 10a shows, with OrbWeaver, the impact of failure
is negligible with respect to completion time. In contrast,
with BFD, failures cause the 100MB transfers to take over
4× longer and the 1GB transfers to take over 30% longer.

4.2 Use Case #2: Time Synchronization
Time synchronization is another common task in modern net-
works. Like failure detection, time synchronization requires

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1203

INIT

Egress

Ingress

Switch A Switch B

Ingress

Egress

t1
t2

t3
t4

Transmit
t1

Transmit t3
o =

BEACON

t4- t3- d

Egress

Ingress

Switch A Switch B

Ingress

Egress

t1
t2

t3
t4

Transmit t1
Cache t1, t2

Transmit
t1, t2, t3

Cache t1, t2

o = ((t2+t3)-(t1+t4)) / 2
d = ((t4-t1)-(t3- t2)) / 2

Figure 11: Time sync in DPTP-OW, using IDLE packets.
When the difference between t2 and t3 is small, A treats the
message as part of an INIT phase and calculates o, the clock
offset, and d, the one way delay. When it is high, the BEACON
phase uses the most recent d to track clock frequency drift.

coordination between adjacent switches, and many other ap-
plications rely on its accuracy [13, 36, 45, 46].

Unfortunately, the most common methods for synchroniz-
ing time between adjacent machines involve the computation
of One-Way Delay (OWD) using periodic, high-priority echo
requests/replies [1, 14, 30]. Here too, architects are presented
with a tradeoff: clock frequency drifts imply that the faster we
send echoes, the more closely we can bound the clock offset
and the more accurate the synchronization. Protocols like
DTP [29] that integrate the protocol into the physical layer
can circumvent this overhead but require hardware changes.

4.2.1 An OrbWeaver Redesign
The state-of-the-art in time synchronization for programmable
switches is DPTP [25]. In it, two adjacent switches (a client,
A, and a server, B) compute the offset of their local clocks by
leveraging switches’ ability to embed timestamps into each
packet during different stages of packet processing. Host and
multi-hop synchronization are also possible using multiple
strata. The protocol calls for three messages in each round
of the protocol: (1) a DPTP request [A→ B], (2) a DPTP
response [B→ A], and (3) a DPTP follow-up [B→ A]. All
three messages are high-priority to eliminate queuing delay.

(1) is timestamped using the Tofino egress_deparser-

_tstamp and ingress_mac_tstamp of A (t1) and B (t2), respec-
tively. (2) is timestamped using the same counters in B (t3)
and A (t4), respectively. In a traditional clock synchroniza-
tion protocol, the offset would be computed as (t2+t3)−(t1+t4)

2 .
Unfortunately, we note a fundamental limitation of today’s
programmable switches—that the egress_deparser_tstamp

does not capture the actual point of packet serialization. Thus,
the computed offset is subject to variable delays as a result
of egress MAC contention. As a result, DPTP introduces the
third packet, the follow-up, which embeds a more accurate
egress serialization timestamp (obtained out-of-band). Again,
we refer interested readers to [25] for full details.

An OrbWeaver-inspired redesign can obviate the need for
the third, follow-up message by inferring the egress MAC
contention from the weaved stream (and only using results

with no contention). This allows us to use the traditional two-
way protocol of Figure 11. It can also eliminate the impact of
the remaining messages using opportunistic sends.

Opportunistic synchronization: Rather than relying on high-
priority echoes, a system can rely solely on OrbWeaver’s
IDLE packets to piggyback timestamps. In particular, when-
ever A has an opportunity, it sends a request to B on an IDLE
packet with a field for t1. Upon receiving the packet, B main-
tains a cache for the most recent values of t1 and t2. Separately,
whenever B has an opportunity, it sends the most recent values
of t1 and t2 along with the local egress_deparser_tstamp in
t3. In an empty network, A can calculate the clock skew as
(t2+t3)−(t1+t4)

2 just as DPTP but with much more frequent syn-
chronization (leading to lower jitter, i.e., nominal error [33]).

A challenge with the above approach occurs in networks
with high utilization. The traditional OWD estimation method
used above implicitly assumes that the clock drift is constant
for the duration of the protocol round; otherwise, the delays at
the time of the request and response may not be comparable
due to clock frequency drift. In OrbWeaver, this can happen
if there is congestion from B to A; the gap between t2 and t3
can be unbounded, leading to inaccurate results.

We address this challenge by borrowing an idea from a dif-
ferent protocol, DTP [29]: the decoupling of synchronization
into INIT and BEACON rounds. If the time between t2 and
t3 is sufficiently small, the round is treated as an INIT round
and A computes the offset as above. Otherwise, A treats the
message as part of a BEACON round where it takes d, the
OWD computed from the last INIT round (d = (t4−t1)−(t3−t2)

2),
and it computes a new offset: o′ = t ′4− t ′3−d.

Selective synchronization: Finally, to remove the need for
DPTP’s third ‘follow-up’ message, we can exploit the im-
plicit information contained in the woven stream’s timing.
The underlying intuition is simple: if the gap between an
IDLE packet and its preceding packet is less than τ, the IDLE
packet may have encountered contention at the egress MAC.
In this case, the packet’s timestamp may be unreliable. DPTP
corrects for this contention with the follow-up message; Orb-
Weaver simply ignores these protocol rounds. While this
filtering effectively requires that usable gaps be > τ ∼ 2τ,
it greatly improves the accuracy of the protocol while still
permitting frequent re-synchronization in modern networks.

Dealing with a lack of opportunity to send. The above pro-
tocol fully synchronizes switches when both links have con-
current IDLE gaps. The protocol also includes support for
correcting small drifts when only one direction has a gap (by
adjusting to the fastest clock in the network). We note that in
a network with multiple paths, we can configure synchroniza-
tion to propagate among any one of those paths. Thus, if we
view the network as a directed graph, the only time a switch
may lose synchronization is if sufficient links are maintaining
100% utilization that the links form a cut of the graph. In
the end, if operators need assurances, they may need to send

1204 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

10
0

10
1

10
2

10
3

10
4

10
5

DPTP-OW
DPTP

PTP(15ms)

PTP(750ms)

P
re

c
is

io
n

 [
n

s
]

(a) Clock precision

0.0

0.2

0.4

0.6

0.8

1.0

 1 10 100

C
D

F

Offset [ns]

Medium
Heavy

Medium (selective)
Heavy (selective)

(b) Clock jitter
Figure 12: (a) shows the precision for different synchroniza-
tion protocols and a heavy workload (∼80% CAIDA user traf-
fic). (b) shows the CDF of observed offsets (absolute value)
for DPTP-OW upon medium and heavy loads for 10 Gbps link
(τ = 1200 ns), w/ or w/o selective sync. OrbWeaver achieves
a precision of 11 ns even under heavy user traffic.

higher-priority messages if too much time elapses; however,
we can extend our techniques so that the messages only need
to be prioritized above the lowest-priority user traffic—high-
priority, interactive applications would be unaffected.

Benefits. As long as there is occasional usable bandwidth in
the network, OrbWeaver again eliminates all bandwidth over-
heads without sacrificing accuracy or nominal error. When the
network is underutilized, it actually provides similar re-sync
intervals as DTP but using commodity PISA switches.

4.2.2 Evaluation
Following prior work, we evaluate DPTP-OW’s precision [29,
43] (defined as the maximum clock skew in the network), as
well as its jitter [33] (defined as the distribution of measured
offsets or nominal error). Again to match prior work, we eval-
uate these in a two-switch testbed during a 20 min collection
for 10 Gbps link with a medium workload (a CAIDA trace
with 25% average utilization) and a heavy workload (the same
trace sped up to ∼80% average utilization). We compare to
both DPTP (with 2000 requests/sec) and PTP. For PTP, prior
work has suggested message frequencies ranging from 15 ms
to 2 s [1, 2, 29, 30]; we pick two points in this range: 15 ms as
a lower bound and 750 ms per the evaluation baseline [29].

We observe that, even at high loads, DPTP-OW can achieve
10 ns bounds in both precision (Figure 12a) and jitter (Fig-
ure 12b) without imposing on user traffic. These bounds are
similar to or better than DPTP, which incurs high-priority
bandwidth overhead. Preliminary tests on higher-link speeds
indicate that precision will only improve as τ decreases. In
Figure 12b, we further observe that selective synchronization
is an effective technique to reduce the message complexity of
the protocol while maintaining low jitter and good precision.

4.3 Use Case #3: Congestion Feedback

Finally, many modern networks rely on robust load balancing
algorithms to efficiently utilize their multiple paths. There
are numerous approaches to load balancing, but among them,

adaptive approaches [3, 26] are attractive as they can react to
current network conditions when making balancing decisions.

A state-of-the-art approach is taken by HULA [26], which
proposes a protocol for adaptive data center load balancing
using programmable switches. In HULA, every switch main-
tains two tables: a bestHop table that stores the best next-hop
to each destination ToR, and a pathUtil table that stores the
utilizations of those next-hops. Destination ToRs periodically
flood the network with high-priority probes that traverse all
paths (in the reverse direction, dst-to-src) and track the bot-
tleneck link utilization of the best such path—intermediate
switches update their bestHop/pathUtil tables accordingly.

As in the previous use cases, congestion feedback mecha-
nisms like the one in HULA force a tradeoff between overhead
and the availability/freshness of congestion data. HULA even-
tually sets the probing interval to 1-RTT and makes a case for
why that is a good tradeoff, but OrbWeaver can potentially
provide similar performance using only opportunistic sends.

4.3.1 An OrbWeaver Redesign
An OrbWeaver-inspired redesign replaces the high-priority
HULA probes with OrbWeaver’s opportunistic IDLE packets.
There are two new challenges. The first is building a ‘flood’
communication model on top of OrbWeaver’s opportunistic
sends. The second is dealing with congestion on the reverse
path and the resulting lack of new information.

Per-path propagation: For any path through the network,
there are two types of hops: ingress-to-egress hops (that
bridge the pipelines of a local switch) and egress-to-ingress
hops (that bridge adjacent switches).

For the former, HULA-OW leverages the switching ASIC’s
PCIe interface to asynchronously mirror the pathUtil table
between the ingress and egress pipelines of a single switch.
We use Mantis [47] to mirror the registers, which completes a
mirror operation every ∼20µs without impacting data plane
throughput. For the latter type of hop, the system simply
sends the contents of pathUtil using IDLE packets. To make
this process more efficient, we can stripe the pathUtil table
across m registers and pack m (dstToR, pathUtil) records
into each IDLE packet round-robin style. In an unloaded
network, the full table is transmitted in Rτ

m time, where R is
the number of ToRs in the data center. We note that even for
R = 1000 and m = 1 (i.e., an unoptimized update rate), this
is still more frequent than HULA.

Stale information: If there is persistent congestion on the
reverse path, utilization information may not be able to propa-
gate across the network; the switch adjacent to the congestion
will know the utilization of the adjacent link, but not down-
stream links. To handle this case, HULA-OW uses a simple
aging mechanism. Specifically, it will track the EWMA of all
observed pathUtil values for every destination ToR (in addi-
tion to the minimum). After each RTT with no information
from the best path, it will shift the best path’s pathUtil value
toward the average (with a lower bound of the adjacent link’s

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1205

0.0

0.2

0.4

0.6

0.8

1.0

 10 30 50 70 90

A
v
g
.
F

C
T

 [
N

o
rm

a
liz

e
d
]

Load [%]

ECMP
HULA

HULA-OW

(a) Web Search

0.0

0.2

0.4

0.6

0.8

1.0

 10 30 50 70 90

A
v
g
.
F

C
T

 [
N

o
rm

a
liz

e
d
]

Load [%]

ECMP
HULA

HULA-OW

(b) Data Mining
Figure 13: Avg. FCT (normalized to ECMP) for HULA and
HULA-OW upon different loads of DCTCP and VL2 traces.

utilization). If no information comes from any neighbor for
several RTT and the adjacent links are all equal, the switch
will fall back to random flowlet placement.

Dealing with a lack of opportunity to send. We note that
the effect of the above metric-aging strategy is that bestHop
will be quickly overwritten by the ‘next-best hop’ whose
reverse path has opportunities to send. Assuming that at least
some congestion information gets through, HULA-OW will
still provide substantial benefits due to properties like the
power of two choices [34]. In the worst case, it achieves
equivalent performance to flowlet ECMP.

Benefits. Across all regimes, HULA-OW eliminates the
probe overhead on network bandwidth. In networks with
low utilization or high burstiness, it provides more frequent
utilization updates than HULA in addition to increasing the
peak usable bandwidth (see below).

4.3.2 Evaluation

Performance. We evaluate HULA-OW in NS-2 using the
same FatTree topology as the original paper (Figure 4 of [26]).
Also like HULA, we leverage synthetic workloads based on
web-search [4] and data-mining [16]) and configure HULA
to probe at a 200µs interval. Figure 13 shows the avg. FCT
(normalized to ECMP) for HULA and HULA-OW.

Despite the frequent periods of full utilization in these
workloads (especially at high average load), we observe that
HULA-OW is able to find sufficient gaps between packets to
efficiently transfer utilization information. Overall, HULA-
OW is able to provide comparable or better performance than
HULA in all of the tested cases, even in the presence of very
high average utilization. The performance is also always
either equivalent or better than the ECMP baseline.

Overhead reduction. The bandwidth overhead of HULA
probes is given by probeSize×numToRs×100

probeFreq×linkBandwidth [26]. With 500
ToRs, probeFreq=200µs, probeSize=64 B, and 100 Gbps
links, HULA occupies 1.6% of the network’s bandwidth. In
contrast, HULA-OW occupies close to zero of the network’s
usable bandwidth and only 1.5% of the packet-level capacity
of the ingress pipeline (which HULA’s probes also consume).

5 Related Work

Leveraging unused resources. OrbWeaver is not the first
system to propose the opportunistic use of leftover resources.
Indeed, many applications of priorities are in a similar spirit.
Even in contexts outside of computer networking, others have
used low-priority background tasks and spot VMs to harvest
unused CPU cycles and memory [5].

In networking, close related work includes software WANs
like SWAN [21] and B4 [24], which divide traffic into classes
that range from interactive to background—interactive traf-
fic is given priority while background traffic soaks up any
remaining bandwidth. These systems successfully provide
opportunistic bandwidth utilization but focus on end-host
data. As explained in Section 2, these approaches can leave
parts of the network unutilized due to both application traffic
patterns and structural bottlenecks. OrbWeaver is, thus, com-
plementary to these approaches and can be used to reclaim
the remaining bandwidth for intra-network coordination.

Prior work has also applied similar techniques to lower
layers, for instance, in the case of Ethernet’s IDLE symbols
or F10’s rapid heartbeats [32]. F10, in particular, proposed a
failure detection mechanism that is close to OrbWeaver’s in
which devices continue to send traffic even when idle. In com-
parison, OrbWeaver’s contribution is make the idea practical
on high-speed programmable switches, to closely examine
the resulting impacts on switch configurations and user traffic,
and to show how to seamlessly integrate the weaved stream
into a spectrum of applications beyond the use case of F10.

Applications of OrbWeaver. OrbWeaver also builds explic-
itly on prior work that improves networks with coordination,
signaling, and probes. We refer readers to the relevant parts
of Section 4 for a discussion of the systems on which Orb-
Weaver builds, and to the original papers for a more complete
examination of related work for our applications.

In general, however, OrbWeaver improves on much of the
prior work by providing comparable or better performance
with near-zero overhead. Exceptions include systems like
F10 [32] and DTP [29], which use hardware support to elimi-
nate protocol overheads. As mentioned above, OrbWeaver’s
contribution is to generalize the concept and demonstrate a
practical framework for it on commodity network devices.

6 Conclusion

Must data plane applications always choose between coordi-
nation fidelity and bandwidth overhead? This paper demon-
strates that, somewhat surprisingly, they do not. To that end,
we introduce OrbWeaver, a framework for opportunistic co-
ordination in a manner that does not affect user traffic or
switch power consumption. Using three recently proposed
systems, we show how to leverage OrbWeaver to eliminate
their bandwidth overheads while maintaining their efficacy.

1206 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Acknowledgments

We gratefully acknowledge Vladimir Gurevich for his assis-
tance in understanding the Tofino switch architecture. We also
thank Vladimir, Gianni Antichi, our shepherd Aurojit Panda,
and the anonymous NSDI reviewers for all of their thoughtful
comments. This work was funded in part by Google, Face-
book, VMWare, and NSF grant CNS-1845749.

References

[1] Ieee standard 1588-2008. https://ieeexplore.ieee.org/
xpl/mostRecentIssue.jsp?punumber=4579757, 2008.

[2] Juniper precision time protocol overview. https://www.
juniper.net/documentation/us/en/software/junos/
time-mgmt/topics/concept/ptp-overview.html, 2020.

[3] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar,
Ramanan Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The
Lam, Francis Matus, Rong Pan, Navindra Yadav, et al. Conga:
Distributed congestion-aware load balancing for datacenters.
In Proceedings of the 2014 ACM conference on SIGCOMM,
pages 503–514, 2014.

[4] Mohammad Alizadeh, Albert Greenberg, David A Maltz, Jiten-
dra Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta,
and Murari Sridharan. Data center tcp (dctcp). In Proceedings
of the ACM SIGCOMM 2010 Conference, pages 63–74, 2010.

[5] Pradeep Ambati, Inigo Goiri, Felipe Frujeri, Alper Gun,
Ke Wang, Brian Dolan, Brian Corell, Sekhar Pasupuleti,
Thomas Moscibroda, Sameh Elnikety, Marcus Fontoura, and
Ricardo Bianchini. Providing slos for resource-harvesting vms
in cloud platforms. In 14th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 20), pages
735–751. USENIX Association, November 2020.

[6] Behnaz Arzani, Selim Ciraci, Luiz Chamon, Yibo Zhu,
Hongqiang (Harry) Liu, Jitu Padhye, Boon Thau Loo, and
Geoff Outhred. 007: Democratically finding the cause of
packet drops. In 15th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 18), pages 419–435,
Renton, WA, April 2018. USENIX Association.

[7] Ran Ben Basat, Sivaramakrishnan Ramanathan, Yuliang Li,
Gianni Antichi, Minian Yu, and Michael Mitzenmacher. Pint:
Probabilistic in-band network telemetry. SIGCOMM ’20,
page 662–680, New York, NY, USA, 2020. Association for
Computing Machinery.

[8] Theophilus Benson, Aditya Akella, and David A Maltz. Net-
work traffic characteristics of data centers in the wild. In
Proceedings of the 10th ACM SIGCOMM conference on Inter-
net measurement, pages 267–280, 2010.

[9] Caida. The caida ucsd statistical information for the caida
anonymized internet traces. https://www.caida.org/
data/passive/passive_trace_statistics.xml, 2019.

[10] M. Chiesa, R. Sedar, G. Antichi, M. Borokhovich,
A. Kamisiński, G. Nikolaidis, and S. Schmid. Fast reroute on
programmable switches. IEEE/ACM Transactions on Network-
ing, pages 1–14, 2021.

[11] Marco Chiesa, Roshan Sedar, Gianni Antichi, Michael
Borokhovich, Andrzej Kamisiński, Georgios Nikolaidis, and
Stefan Schmid. Purr: A primitive for reconfigurable fast
reroute: Hope for the best and program for the worst. In Pro-
ceedings of the 15th International Conference on Emerging
Networking Experiments And Technologies, pages 1–14, 2019.

[12] Intel Corporation. P4-16 intel tofino native architecture – pub-
lic version. Application Note 631348-0001, Intel Corporation,
March 2021.

[13] Thomas G. Edwards and Warren Belkin. Using sdn to fa-
cilitate precisely timed actions on real-time data streams. In
Proceedings of the Third Workshop on Hot Topics in Software
Defined Networking, HotSDN ’14, page 55–60, New York, NY,
USA, 2014. Association for Computing Machinery.

[14] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji Prabhakar,
Mendel Rosenblum, and Amin Vahdat. Exploiting a natural
network effect for scalable, fine-grained clock synchronization.
In 15th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 18), pages 81–94, 2018.

[15] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. Un-
derstanding network failures in data centers: measurement,
analysis, and implications. In Proceedings of the ACM SIG-
COMM 2011 conference, pages 350–361, 2011.

[16] Albert Greenberg, James R Hamilton, Navendu Jain, Srikanth
Kandula, Changhoon Kim, Parantap Lahiri, David A Maltz,
Parveen Patel, and Sudipta Sengupta. Vl2: A scalable and
flexible data center network. In Proceedings of the ACM
SIGCOMM 2009 conference on Data communication, pages
51–62, 2009.

[17] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang,
Ray Huang, Dave Maltz, Zhaoyi Liu, Vin Wang, Bin Pang, Hua
Chen, et al. Pingmesh: A large-scale system for data center
network latency measurement and analysis. In Proceedings of
the 2015 ACM Conference on Special Interest Group on Data
Communication, pages 139–152, 2015.

[18] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jen-
nifer Rexford, and Walter Willinger. Sonata: Query-driven
streaming network telemetry. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Com-
munication, SIGCOMM ’18, page 357–371, New York, NY,
USA, 2018. Association for Computing Machinery.

[19] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar,
David Mazières, and Nick McKeown. I know what your
packet did last hop: Using packet histories to troubleshoot net-
works. In 11th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 14), pages 71–85, 2014.

[20] Thomas Holterbach, Edgar Costa Molero, Maria Apostolaki,
Alberto Dainotti, Stefano Vissicchio, and Laurent Vanbever.
Blink: Fast connectivity recovery entirely in the data plane.
In 16th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 19), pages 161–176, 2019.

[21] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang,
Vijay Gill, Mohan Nanduri, and Roger Wattenhofer. Achiev-
ing high utilization with software-driven wan. In Proceed-
ings of the ACM SIGCOMM 2013 Conference on SIGCOMM,
SIGCOMM ’13, page 15–26, New York, NY, USA, 2013.
Association for Computing Machinery.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1207

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4579757
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4579757
https://www.juniper.net/documentation/us/en/software/junos/time-mgmt/topics/concept/ptp-overview.html
https://www.juniper.net/documentation/us/en/software/junos/time-mgmt/topics/concept/ptp-overview.html
https://www.juniper.net/documentation/us/en/software/junos/time-mgmt/topics/concept/ptp-overview.html
https://www.caida.org/data/passive/passive_trace_statistics.xml
https://www.caida.org/data/passive/passive_trace_statistics.xml

[22] Kuo-Feng Hsu, Ryan Beckett, Ang Chen, Jennifer Rexford,
and David Walker. Contra: A programmable system for
performance-aware routing. In 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 20),
pages 701–721, 2020.

[23] Van Jacobson. Compressing tcp/ip headers for low-speed
serial links. Technical report, RFC 1144, February, 1990.

[24] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon
Poutievski, Arjun Singh, Subbaiah Venkata, Jim Wanderer,
Junlan Zhou, Min Zhu, Jon Zolla, Urs Hölzle, Stephen Stuart,
and Amin Vahdat. B4: Experience with a globally-deployed
software defined wan. In Proceedings of the ACM SIGCOMM
2013 Conference on SIGCOMM, SIGCOMM ’13, page 3–14,
New York, NY, USA, 2013. Association for Computing Ma-
chinery.

[25] Pravein Govindan Kannan, Raj Joshi, and Mun Choon Chan.
Precise time-synchronization in the data-plane using pro-
grammable switching asics. In Proceedings of the 2019 ACM
Symposium on SDN Research, pages 8–20, 2019.

[26] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivara-
man, and Jennifer Rexford. Hula: Scalable load balancing
using programmable data planes. In Proceedings of the Sym-
posium on SDN Research, pages 1–12, 2016.

[27] Changhoon Kim, Anirudh Sivaraman, Naga Katta, Antonin
Bas, Advait Dixit, and Lawrence J Wobker. In-band network
telemetry via programmable dataplanes. In Demo paper at
SIGCOMM ’15, 2015.

[28] Daehyeok Kim, Jacob Nelson, Dan R. K. Ports, Vyas Sekar,
and Srinivasan Seshan. Redplane: Enabling fault-tolerant state-
ful in-switch applications. In Proceedings of the 2021 ACM
SIGCOMM 2021 Conference, SIGCOMM ’21, page 223–244,
New York, NY, USA, 2021. Association for Computing Ma-
chinery.

[29] Ki Suh Lee, Han Wang, Vishal Shrivastav, and Hakim Weather-
spoon. Globally synchronized time via datacenter networks. In
Proceedings of the 2016 ACM SIGCOMM Conference, pages
454–467, 2016.

[30] Yuliang Li, Gautam Kumar, Hema Hariharan, Hassan Wassel,
Peter H Hochschild, Dave Platt, Simon Sabato, Minlan Yu,
Nandita Dukkipati, Prashant Chandra, et al. Sundial: Fault-
tolerant clock synchronization for datacenters. 2020.

[31] Junda Liu, Aurojit Panda, Ankit Singla, Brighten Godfrey,
Michael Schapira, and Scott Shenker. Ensuring connectivity
via data plane mechanisms. In 10th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 13),
pages 113–126, 2013.

[32] Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, and
Thomas Anderson. F10: A fault-tolerant engineered net-
work. In Presented as part of the 10th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 13),
pages 399–412, 2013.

[33] Jim Martin, Jack Burbank, William Kasch, and Professor
David L. Mills. Network Time Protocol Version 4: Protocol
and Algorithms Specification. RFC 5905, June 2010.

[34] Michael Mitzenmacher. The power of two choices in ran-
domized load balancing. IEEE Transactions on Parallel and
Distributed Systems, 12(10):1094–1104, 2001.

[35] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Pra-
teesh Goyal, Venkat Arun, Mohammad Alizadeh, Vimalkumar
Jeyakumar, and Changhoon Kim. Language-directed hardware
design for network performance monitoring. In Proceedings
of the Conference of the ACM Special Interest Group on Data
Communication, pages 85–98, 2017.

[36] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat
Shah, and Hans Fugal. Fastpass: A centralized "zero-queue"
datacenter network. In Proceedings of the 2014 ACM Con-
ference on SIGCOMM, SIGCOMM ’14, page 307–318, New
York, NY, USA, 2014. Association for Computing Machinery.

[37] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and
Alex C Snoeren. Inside the social network’s (datacenter)
network. In Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication, pages 123–
137, 2015.

[38] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby
Armistead, Roy Bannon, Seb Boving, Gaurav Desai, Bob Fel-
derman, Paulie Germano, Anand Kanagala, Jeff Provost, Jason
Simmons, Eiichi Tanda, Jim Wanderer, Urs Hölzle, Stephen
Stuart, and Amin Vahdat. Jupiter rising: A decade of clos
topologies and centralized control in google’s datacenter net-
work. SIGCOMM Comput. Commun. Rev., 45(4):183–197,
August 2015.

[39] John Sonchack. Balancing Performance and Flexibility in
Hybrid Network Telemetry Systems. PhD thesis, University of
Pennsylvania, 2020.

[40] John Sonchack, Devon Loehr, Jennifer Rexford, and David
Walker. Lucid: A language for control in the data plane. In
Proceedings of the 2021 ACM SIGCOMM 2021 Conference,
SIGCOMM ’21, page 731–747, New York, NY, USA, 2021.
Association for Computing Machinery.

[41] Charles E. Spurgeon. Ethernet: The Definitive Guide.
O’Reilly & Associates, Inc., USA, 2000.

[42] Nik Sultana, John Sonchack, Hans Giesen, Isaac Pedisich,
Zhaoyang Han, Nishanth Shyamkumar, Shivani Burad, André
DeHon, and Boon Thau Loo. Flightplan: Dataplane disaggre-
gation and placement for p4 programs. In 18th {USENIX}
Symposium on Networked Systems Design and Implementation
({NSDI} 21), pages 571–592, 2021.

[43] Maarten Van Steen and Andrew S Tanenbaum. Distributed
systems. Maarten van Steen Leiden, The Netherlands, 2017.

[44] Xin Wu, Daniel Turner, Chao-Chih Chen, David A Maltz,
Xiaowei Yang, Lihua Yuan, and Ming Zhang. Netpilot: au-
tomating datacenter network failure mitigation. In Proceed-
ings of the ACM SIGCOMM 2012 conference on Applications,
technologies, architectures, and protocols for computer com-
munication, pages 419–430, 2012.

[45] Nofel Yaseen, John Sonchack, and Vincent Liu. Synchronized
network snapshots. In Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communication,
pages 402–416, 2018.

1208 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[46] Nofel Yaseen, John Sonchack, and Vincent Liu. tpprof: A
network traffic pattern profiler. In 17th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 20),
pages 1015–1030, Santa Clara, CA, February 2020. USENIX
Association.

[47] Liangcheng Yu, John Sonchack, and Vincent Liu. Mantis: Re-
active programmable switches. In Proceedings of the Annual
conference of the ACM Special Interest Group on Data Com-
munication on the applications, technologies, architectures,
and protocols for computer communication, pages 296–309,
2020.

[48] Lior Zeno, Dan RK Ports, Jacob Nelson, and Mark Silber-
stein. Swishmem: Distributed shared state abstractions for
programmable switches. In Proceedings of the 19th ACM
Workshop on Hot Topics in Networks, pages 160–167, 2020.

[49] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind Krish-
namurthy. High-resolution measurement of data center mi-
crobursts. In Proceedings of the 2017 Internet Measurement
Conference, pages 78–85, 2017.

[50] Yu Zhou, Chen Sun, Hongqiang Harry Liu, Rui Miao, Shi Bai,
Bo Li, Zhilong Zheng, Lingjun Zhu, Zhen Shen, Yongqing
Xi, et al. Flow event telemetry on programmable data plane.
In Proceedings of the Annual conference of the ACM Special
Interest Group on Data Communication on the applications,
technologies, architectures, and protocols for computer com-
munication, pages 76–89, 2020.

[51] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan
Lu, Ratul Mahajan, Dave Maltz, Lihua Yuan, Ming Zhang,
Ben Y Zhao, et al. Packet-level telemetry in large datacenter
networks. In Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication, pages 479–
491, 2015.

[52] Danyang Zhuo, Monia Ghobadi, Ratul Mahajan, Klaus-Tycho
Förster, Arvind Krishnamurthy, and Thomas Anderson. Un-
derstanding and mitigating packet corruption in data center
networks. In Proceedings of the Conference of the ACM Spe-
cial Interest Group on Data Communication, pages 362–375,
2017.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1209

Application Class System Weaved
Inference?

IDLE
Messaging? Description

Traffic
Engineering

Flowlet load balancing [3, 26] Section 4.3.

Performance-aware routing [22]
Propagate route updates in customizable distance-
vector routing algorithms using IDLE packets.

Micro-burst detection [49]
Detect micro-bursts from weaved stream, provide feed-
back to upstream switches with IDLE packets.

Fault
Tolerance

Fast failure recovery [50]
Detect failures (Section 4.1), alert upstream switches
with IDLE packets for fast data-plane mitigation [10].

Consistent replicas [28, 48]
Synchronize eventually-consistent distributed state,
e.g., for distributed firewalls, with IDLE packets.

Monitoring

Packet forensics [19]
Transfer packet postcards in IDLE packets to reduce
overhead of packet history tracking.

Network queries [18, 35] Support queries over both flow and weaved stream
statistics, export query results in IDLE packets.

Latency localization [17]
Measure latency in network core using weaved stream,
disseminate measurements with IDLE packets.

Network
Services

Clock synchronization [25] Section 4.2.

Header compression [23, 42]
Synchronize state of point-to-point packet header com-
pressors with IDLE packets.

Event-based network control [40] Carry network control events in IDLE packets.

Table 2: OrbWeaver use cases. A diverse range of data-plane applications can use OrbWeaver’s weaved stream to learn about
conditions in the network and/or communicate via IDLE packets that consume no data-packet bandwidth.

A Applications of OrbWeaver

Table 2 surveys 11 applications that can benefit from an Orb-
Weaver implementation, belonging to four distinct classes.
We describe several implementations in Section 4. All appli-
cations can be expressed as OrbWeaver P4 programs with the
basic architecture shown in Figure 8.

Across all applications, we find that there are two overar-
ching benefits to an OrbWeaver implementation:

1. OrbWeaver’s weaved stream allows data plane applica-
tions to infer information about network conditions, such
as the presence of congestion or failures in an upstream
path.

2. OrbWeaver’s IDLE packet abstraction lets data plane
applications disseminate information without consum-
ing user bandwidth. IDLE packets are useful for data
transfer between directly connected switches (e.g., to
synchronize the context tables of a switch-to-switch
packet-header compressor [42]) or across the wider net-
work (e.g., to disseminate information about network
faults [32], congestion [49], or even user query met-
rics [35]).

We note that our focus of these applications and this paper
is in-network communication. However, end hosts may also
be able to benefit from OrbWeaver, e.g., by examining the
output of the weaved stream coming from host-facing ports
of ToR switches. Efficient end-host generation of a weaved
stream may also be possible, but we leave a full exploration
to future work.

A.1 Balancing Multiple Applications
IDLE packets are generated and weaved entirely by the Orb-
Weaver framework. Applications only embed information
and extract it in the receiver. IDLE packets can carry the
information of multiple applications. For example, a time
synchronization application that needs 12B to carry 4 times-
tamps can co-exist with a failure detection protocol that needs
48B. In this paper, we assume minimum-sized packets but, in
principle, IDLE packets can be MTU-sized with the only ef-
fect being a proportionally increased worst-case packet delay.
Of course, there are fundamentally a limited number of bytes
in each IDLE packet; OrbWeaver leaves the decision on how
to allocate these bytes to network architects and operators.

A.2 Preventing Starvation
The primary goal of the paper is to explore the opportunistic
use of IDLE cycles for in-network coordination. Because of
our opportunistic approach, there may be cases where IDLE
packets get starved by user packets; however, as previously
noted, two factors mitigate the issue:

• The lack of IDLE packets itself reveals concrete informa-
tion of the network condition (per R1 guarantee of the
weaved stream predictability).

• Prior works observed that persistent user traffic is rare, in-
stead, IDLE cycles (every 10s or 100s of µs) are ubiquitous.

1210 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A wide range of applications can be implemented with only
opportunistic communication. Of course, some applications
may need additional guarantees, e.g., applications requiring
a strict, real-time guarantee w.r.t. minimum rate (i.e., maxi-
mum inter-IDLE-packet gap); or applications that need more
aggregate bandwidth than the weaved stream can guarantee
in a timely fashion.

In these cases, networks can apply a priority escalation
mechanism by adding a single register of N (number of ports)
slots and check the elapsed time since last seen IDLE packet.
Applications can seamlessly escalate the priority of IDLE
packets when too much time passes (per the applications’
guaranteed rate SLO). In these situations, OrbWeaver still
eliminates nearly all overhead in the presence of (micro)bursts,
but may impose a fixed overhead during extended periods of
congestion.

B Generalization to Other Platforms

Our focus in this paper was on the Tofino family of pro-
grammable switches. While a detailed taxonomy and analysis
of every programmable platform is out of the scope of this
paper, there is reason to believe that other programmable
platforms have similar features or can emulate the features
needed to implement OrbWeaver.

In particular, OrbWeaver leverages three hardware features
of Tofino switches: (1) packet generation, (2) multicast, and
(3) packet prioritization. Among these, support for the latter
two can be found in almost every modern forwarding device
that is designed to handle the Ethernet protocol. Support for
onboard packet generation is not as universal; however, one
potential solution is to connect a port on each switch to a sim-
ple device/CPU responsible for generating regular, periodic
packets. Of course, a CPU, even with real-time scheduling
optimizations, may not be as dependable as the Tofino packet
generator. This may necessitate additional tolerances.

Finally, our conversations with switch vendors indicate that
OrbWeaver’s mechanisms will scale to future switches with
both increased bandwidth and port counts. Part of this is
due to the fact that most of OrbWeaver’s components scale
with the clock rate of the switch and/or are independent to
each pipeline. The notable exception is packet generation;
however, we note that OrbWeaver currently has more than
an order of magnitude of headroom (Section 3.2.1). If MTU
transmission time does eventually outpace packet generation
latency, OrbWeaver’s properties will degrade gracefully.

C Energy-Efficient Ethernet (EEE)

The Ethernet standard contains an optional EEE mecha-
nism [41], which allows switches to transition links into a
Low-Power Idle (LPI) mode when there is no data to send.

OrbWeaver may be able provide compatibility by turning
off the IDLE stream on a per-port, per-direction basis if there
is no user traffic during the past S seconds. Each packet
flowing between two OrbWeaver switches would then need
a single bit reserved as an ‘LPI’ indicator. Upon receiving
an IDLE packet with the ‘LPI’ indicator set, a receiver will
change its expectation from requiring a packet every τi sec-
onds to requiring one every τ′i seconds (τ′i � τi). The very
first user packet after the low-power idle mode will be sent
with the ‘LPI’ indicator unset. Loss can be addressed by again
emulating EEE and sending several indicator packets in a row.

Enabling this feature may impact the responsiveness of
OrbWeaver applications, but we note that all of the use cases
studied can make do with less frequent but still regular coor-
dination. OrbWeaver may be able to synchronize these low-
power updates with existing synchronization-maintenance
events in the PHY.

D Proof of Priority-effect on User Traffic

Theorem. For an arbitrary user packet size distribution and
arrival process, with strict priority scheduling and a measure-
ment time window T � ∆t (∆t denotes transmission time of
a single IDLE packet), the throughput of the user traffic is
unaffected by the IDLE stream.

Proof. Consider a packet sequence p1, . . . , pn with size
∆t1, . . . ,∆tn and original schedule t1, . . . , tn, denote the new
schedule upon the coexistence of IDLE stream as t ′1, . . . , t

′
n.

We first prove ∀i ∈ [1,n−1], t ′i ≤ (ti+∆t)→ t ′i+1 ≤ (ti+1+
∆t). The case for preemptive scheduling is trivially true. We
focus on the case of non-preemptive scheduling.

Base case with p1: the worst case delay of the transmission
is when right at t1, an IDLE packet is scheduled to transmit
and with strict priority p1 is scheduled right next to it. Hence
t ′1 ≤ (t1 +∆t).

For the inductive step, given the new schedule of pi satis-
fying t ′i ≤ (ti +∆t), we need to show that t ′i+1 ≤ (ti+1 +∆t).
There are three cases for the next packet pi+1:

• ti+1 > (ti + ∆ti + ∆t): at ti+1, the previous packet has
finished transmission in the new schedule since ti+1 >
(ti +∆ti +∆t) ≥ t ′i +∆ti. The worst case delay is when
IDLE packet is scheduled right at ti+1 and the transmission
is delayed by ∆t, i.e., t ′i+1 ≤ (ti+1 +∆t) holds.

• t ′i +∆ti ≤ ti+1 ≤ (ti +∆ti +∆t): at ti+1, pi finishes trans-
mitting in the new schedule, similar to the previous case,
the worst case is ∆t when right at ti+1, IDLE packet gets
scheduled, hence t ′i+1 ≤ (ti+1 +∆t) holds.

• ti +∆ti ≤ ti+1 < t ′i +∆ti: pi+1 has been queued since pi is
still transmitting until t ′i +∆ti in the new schedule. With
strict priority, pi+1 will start transmission right at t ′i +∆ti
ignoring the IDLE packet. Hence, t ′i+1 = t ′i +∆ti ≤ ti+∆t+
∆ti ≤ (ti+1 +∆t).

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1211

Configuration SRAM TCAM Metadata Tbls Regs

16×100 Gbps 80 KB 1.28 KB 85 b 3 1
32×25 Gbps 80 KB 1.28 KB 53 b 3 1

Table 3: Additional data plane resources for OrbWeaver’s
weaved stream generation over an L2 forwarding switch.
Ports are binned into groups of 2 and 4, and only 256 multicast
groups reserved.

By induction, we have t ′n ≤ (tn+∆t), that is, the latency im-
pact is tightly bounded by ∆t for an arbitrary user packet
and won’t accumulate across packets. Given such fixed
workload, consider the impact of the IDLE stream over the
original transmission time T = tn +∆tn− t1. For the new
transmission time window [t ′1, t

′
n +∆tn], the duration T ′ =

t ′n +∆tn− t ′1 ≤ max(t ′n)+∆tn−min(t ′1) ≤ tn +∆t +∆tn− t1.
Hence, T ′− T ≤ ∆t. Since T � ∆t, the throughput of the
high priority user packet stream is not impacted.

E Probability of Notification in Use Case #1

We can formally express the probability that a notification is
sent before the flow is evicted. Consider the case where there
is a drop in flow f and user packets are all MTU-sized, i.e.,
there is one packet per period, τ. Assume that the flow cache
holds N records and 3 can be packed in each IDLE.

P(notified) =
P(IDLE contains f)

P(IDLE contains f)+P(new f ′ replaces f)

=
3
N P(IDLE)

3
N P(IDLE)+ 1

N (1−P(IDLE))P(new flow)

=
P(IDLE)

P(IDLE)+(1−P(IDLE))P(new flow)/3

where P(IDLE) is the probability that an IDLE packet was
sent during a given period τ, and P(new flow) is the proba-
bility that a user packet’s flow cannot be found in the cache.
Smaller packets multiply the second term in the denominator;
a larger N decreases it by improving cache hit rates. The
probability that a flow record is evicted before it is sent (i.e.,
that we miss the loss) is 1 less the above value.

F OrbWeaver Data Plane Resource Overhead

Section 3 details the overhead of OrbWeaver’s weaved stream
generation on user traffic and energy usage. We note that
OrbWeaver also uses data plane resources for IDLE seed
packet filtering and replication, as shown in Table 3. For each
category, OrbWeaver only occupies a small fraction of the
total switch resources (for instance < 1% of both SRAM and
TCAM).

1212 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

CloudCluster: Unearthing the Functional Structure of a Cloud Service

Weiwu Pang
University of Southern California

Sourav Panda
University of California, Riverside

Jehangir Amjad
Google Inc.

Christophe Diot
Google Inc.

Ramesh Govindan
University of Southern California

Abstract

In their quest to provide customers with good tools to manage
cloud services, cloud providers are hampered by having very
little visibility into cloud service functionality; a provider
often only knows where VMs of a service are placed, how the
virtual networks are configured, how VMs are provisioned,
and how VMs communicate with each other. In this paper,
we show that, using the VM-to-VM traffic matrix, we can
unearth the functional structure of a cloud service and use
it to aid cloud service management. Leveraging the observa-
tion that cloud services use well-known design patterns for
scaling (e.g., replication, communication locality), we show
that clustering the VM-to-VM traffic matrix yields the func-
tional structure of the cloud service. Our clustering algorithm,
CloudCluster, must overcome challenges imposed by scale
(cloud services contain tens of thousands of VMs) and must
be robust to orders-of-magnitude variability in traffic volume
and measurement noise. To do this, CloudCluster uses a novel
combination of feature scaling, dimensionality reduction, and
hierarchical clustering to achieve clustering with over 92% ho-
mogeneity and completeness. We show that CloudCluster can
be used to explore opportunities to reduce cost for customers,
identify anomalous traffic and potential misconfigurations.

1 Introduction
As more online services migrate to the cloud, and as the user
base of these services increases, the complexity and scale of
cloud deployments has increased significantly. Today, cloud
services routinely use tens of thousands of VMs, geographi-
cally dispersed for reliability and low-latency access to cus-
tomers. Monitoring and managing a cloud deployment can
be significantly challenging, since the performance, cost, and
reliability of the service can depend on a large number of
factors: how the cloud customer maps logical functionality to
VMs, how the VMs are provisioned, where they are located,
how well the paths between the VMs are provisioned, and so
on. More generally, how well a cloud service works depends
both on how well a customer designs the service, and how

well the provider provisions the underlying infrastructure.

Cloud service monitoring. Cloud providers struggle to pro-
vide customers with insights on the performance and reliabil-
ity of a cloud service. This is because, while a VM provides
a very convenient abstraction for computing and communi-
cation, the provider has (by design) very little visibility into
cloud service logic embedded in the VM. This lack of visi-
bility prevents providers from being able to relate problems
observed at the service level to issues in the underlying in-
frastructure. For a given service, a provider often only knows
where the VMs are, how much compute and storage each VM
is provisioned with, customer-supplied names for the VMs,
and how much traffic each VM exchanges with other VMs
in the service. Customers are often loath to reveal more, for
business and privacy reasons.1

Today, major cloud providers (such as Amazon Web Ser-
vices [12], Azure Cloud [2] and Google Cloud Platform [3])
provide customers with monitoring services. Their monitor-
ing services (AWS CloudWatch [12], Azure Monitor [2] and
Google Cloud Monitoring [3]) expose, using customizable
dashboards, metrics capturing the state and activity of the
cloud service’s VM instances (e.g., their CPU and disk utiliza-
tion, and the volume of network traffic to and from instances)
as visible to the cloud provider, as well as other measures
of the underlying networking infrastructure (e.g., loss rates
between instances). Some of these monitoring services also
provide custom alerting mechanisms. Customers can define
metrics that capture user-perceived performance, and config-
ure alerts when these metrics exceed service-level objectives
that cloud customers have with their customers.

Goal. Given that cloud service monitoring provides a com-
petitive advantage, cloud providers continuously seek to add

1Ethical considerations: For the 15 cloud projects we used in the evalu-
ations in the paper (§4), we obtained explicit consent. For each project, we
only used information available to the cloud provider: VM locations, VM
names, and the VM-to-VM traffic matrix. We used the VM-to-VM traffic
matrix to generate the clusters, and names and locations to evaluate the per-
formance of CloudCluster. After our evaluations, we shared the results with
each customer, and obtained feedback.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1213

innovative capabilities to their monitoring systems, despite
their limited visibility into cloud services. In this paper, we
describe a new capability not, to our knowledge, previously
considered in the literature: inferring the functional structure
of a cloud service, i.e., how a cloud service is modularized
across its many VMs. Our work is inspired by a body of prior
work on inferring structural relationships between compo-
nents in a distributed system (§6).

To explain what we mean by functional structure, con-
sider Figure 1(a) which shows the connectivity graph of VMs
(which VMs communicate with which other VMs) of a cloud
service. These VMs reside in different cloud regions (roughly,
parts of a continent, see §2); most communication is within a
region, but some communication exists across regions. With
just the information that the cloud provider has, it can only
obtain this kind of a view of the project. Now suppose that
this cloud service is, in fact, architected as in Figure 1(b): it
has a front-end load-balancer and a backend processing layer.
With the information she has, the cloud service operator’s con-
ceptual view of the structure of the service might be as shown
in Figure 1(c): its VM instances are spread across two regions,
with load balancer VMs (in red on the cluster on the left, and
green on the cluster on the right) communicating with the
processing-layer VMs (in magenta and cyan respectively) but
not with other load balancer VMs, and the processing-layer
VMs in each region communicating with each other as well.
In addition, one of the load-balancers communicates with
processing VMs in the other region (e.g., due to overload in
its own region).

The focus of our paper is to unearth the structure in Fig-
ure 1(c) only using information available to the provider.
Specifically, we aim to develop methods that can extract this
structure in which VMs are grouped into VM groupings by
function and location. Ultimately, this will enable the provider
to represent the service by a compact inter-grouping graph
abstraction (Figure 1(d)).

In deriving the representations shown in Figure 1(c-d),
CloudCluster can only determine that VMs in a cluster likely
perform the same function, but cannot tell which function they
perform (for example, whether the VMs run load-balancers,
or image transcoders). This mitigates any privacy concerns
cloud customers might have. Even so, we expect that in an
actual deployment, a cloud provider will obtain consent from
the customer before applying CloudCluster to the customer’s
service.
Approach. We hypothesize that we should be able to infer
VM groupings by clustering the VM-to-VM traffic matrix of
a cloud service. Clustering a traffic matrix implies grouping
together similar rows; two rows are similar if the traffic from
their corresponding VMs to all other VMs is similar. Intu-
itively, two functionally similar VMs are likely to satisfy this
property. For example, how two load-balancer VMs in a re-
gion are likely to communicate with all other processing layer
VMs in the same region is likely to be similar, so clustering

Figure 1: An example of different views of a cloud service: (a)
VM connectivity graph as visible to the cloud provider; (b) The
service architecture; (c) VM connectivity graph colored by func-
tion and location (the desired output of CloudCluster); (d) A
compact inter-grouping graph abstraction.

will group them together. Furthermore, we expect clusters to
be large because of the horizontal scaling employed by cloud
services, which replicate processing or storage at a given layer
using functionally identical VMs (e.g., databases, in-memory
stores, image transcoders etc.).
Challenge. Analyzing large VM-to-VM traffic matrices of
real-world cloud services presents two challenges: scale, and
robustness to variability and noise. At the scale of tens of
thousand of VMs, any analysis must overcome the curse of di-
mensionality [60]; the sparsity of the traffic matrices in these
higher-dimensions makes it difficult to derive insights from
the data. Moreover, cloud services often vary in VM-to-VM
traffic by several orders of magnitude, and methods of infer-
ring their properties must accommodate this variability and
be robust to noise introduced by the underlying measurement
methodology (e.g., by traffic sampling).
Contributions. This paper shows that clustering the VM-
to-VM traffic matrix of a cloud service provider can help
determine the functional organization of a cloud service, and
that these clusters can be a useful abstraction for providing
cloud customers with actionable insights into their service.
To this end, the paper makes three contributions.

First, we develop a clustering algorithm, CloudCluster, that
clusters VMs by similarity in their network communication
characteristics (§3.4). CloudCluster is a novel combination
of techniques, some known, and others new, to address the
scaling and robustness challenges mentioned above. At its
core, it uses a variant of hierarchical clustering, called ag-
glomerative clustering [48] to determine clusters. This ap-
proach clusters VMs by proximity in some high-dimensional
space. It requires a way to determine distance thresholds, and
CloudCluster determines these thresholds dynamically in a
data-driven manner. To scale better, it employs dimensionality
reduction, and to be robust to variability in traffic volumes it
scales traffic features (see §3 for more details).

Second, by evaluating the resulting clusters on 15 different

1214 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

cloud service projects2 (§4), we experimentally demonstrate
that the resulting clusters group together VMs by location
and function: i.e., all VMs in a cluster are geographically
co-located, and they perform the same function3. We ver-
ify this on cloud services that name VMs by function; for
these projects, CloudCluster has homogeneity and complete-
ness scores (metrics equivalent to precision and recall, respec-
tively) of over 0.92 and 0.94 respectively.

Third, we demonstrate ways in which CloudCluster can
be used to provide customers with actionable insights (§5).
CloudCluster can analyze the inter-cluster graph (Figure 1(d))
to identify opportunities for reconfiguring VM placements to
reduce cost: in one case, we found opportunities to reduce cost
by 41.2% by provisioning an additional cluster to minimize
inter-region traffic. It can also be used to detect anomalous
traffic between clusters, to identify traffic shifts within a cloud
project, or structural changes in the project across time. From
25 traffic anomalies reported either by an internal anomaly
detector or the customer, a CloudCluster-based anomaly de-
tector detected every anomaly, and identified the impacted
clusters. CloudCluster can be used to detect potentially mis-
labeled VM names (names that do not reflect function) or
mis-provisioned VMs. In some projects, up to 1% of VMs
appear to be mis-provisioned. In others, over 7% a project’s
VMs appear to be mis-labeled — their traffic patterns differ
from the majority of VMs that have the same labels.

2 Anatomy of a Cloud Service
In this section, we provide a brief background on the struc-
ture of cloud services. Our description focuses on Google’s
cloud services; different service offerings may differ from
this description in the details.

Google’s cloud resources are hosted in multiple locations
worldwide. The network is subdivided into regions which are
in turn divided into zones [9]. A region represents a part of
a continent, and zones represent disjoint geographical areas
within a region in which infrastructure resides. This partition-
ing permits cloud customers to coarsely control the place-
ment of VMs to, for example, ensure low-latency access to
customers, control cost and ensure high availability.

Customers can organize their cloud service into projects [4],
which are granular functional groupings that simplify man-
agement of a cloud service. For example, an ad-supported
social media service can have different projects for the user-
facing front-end, the ads subsystem, and an analytics backend.
Depending on the scale of the service, projects can be large,
spanning tens of thousands of VMs across multiple regions.
In this paper, we focus on the structure of projects.

VMs in a project are connected by one or more virtual

2As discussed in §2, a project is a granular functional grouping within a
cloud service.

3In this paper, we use the term function to denote a long-lived heavy-
weight service that forms part of a cloud service; we do not consider services
deployed using ephemeral cloud functions (e.g., lambdas).

networks [6] that provide isolation. Customers can organize
VMs into sub-networks [7]: VMs in one sub-network must all
be within the same region, and communicate over the same
virtual network. Sub-networks simplify VM management
tasks: e.g., IP address assignment.

Customers populate projects with VMs. To create a VM,
the customer: (a) selects a configuration for the VM (configu-
rations differ in compute and storage), (b) specifies the VM’s
name (the name is opaque to the provider, but customers may
embed hierarchical structure into a name; some customers
name VMs by function, a feature we leverage in evaluating
CloudCluster in §4), (c) identifies the sub-network and the
virtual network the VM uses, and (d) specifies the region and
zone the VM is located in. This is the only information a
cloud customer explicitly provides to Google. In addition, if
customers opt in to flow logging [10], the logging service
records VM-to-VM traffic for each enabled project.

3 CloudCluster Design
In this section, we describe CloudCluster, whose goal is to
discover the underlying structure of a cloud project. We dis-
cuss how it scales to large cloud projects, while being robust
to noise and variability.

3.1 Goals, Approach, and Overview

Notation. The input to CloudCluster is a VM-to-VM traffic
matrix for a cloud project, containing traffic volumes between
each VM over a fixed aggregation window.4 Traffic volumes
are obtained by sampling flows. In §4, we discuss the actual
values of the aggregation window and the sampling frequency.
Formally, we denote this traffic matrix by Y, with dimensions
n×m, where n is the number of source VMs (belonging to
this specific project under consideration) and m is the number
of destination VMs (which do not all have to belong to the
same project, since VMs in a project can communicate with
external clients or VMs in other projects).5 The i, j-th entry
yi j of Y represents the volume of traffic (in bytes) from VM i
to VM j, where i ∈ [n], j ∈ [m].

Challenge: Noise. Since Y is sampled, it is bound to be noisy.
Aside from the error induced by sampling, measurement er-
rors and randomness in traffic patterns can also induce noise.
To model this, we can write:

Y = M+E (1)

4CloudCluster uses minimum possible aggregated information, namely
the communication volume. Other metadata (e.g., port numbers, process
names) might be helpful in finding the functional structure. CloudCluster
does not use this information. With consent from the customer, it might
be possible to use this to improve our clustering, but we have left it to
future work, in part because it is not clear whether customers will consent to
revealing additional information.

5CloudCluster does not currently model traffic to cloud native services,
like traffic to Google Cloud Storage [5]). Identifying traffic volumes from
these services requires using other instrumentation services (e.g., storage
service logs), and we have left this to future work.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1215

where M is the unobserved noise-free, true traffic matrix and
E is a noise matrix. We assume ei j is independent of all other
entries andE[ei j] = 0 and Var[ei j]<∞,∀i∈ [n],∀ j∈ [m]. This
implies that M = E[Y].
Challenge: Scale. Y can be large, since projects can have
tens of thousands of VMs. We have observed, through manual
inspection of cloud projects, that to enable projects to scale,
designers often group VMs that perform similar functions. At
the front-end, load-balancers redirect requests to VMs that
scale with the request load; all these VMs perform the same
function (e.g., handle requests). In turn, at the back-end, these
VMs may invoke other services that may be replicated across
several identical VMs, or may send the request to a coordi-
nator VM that invokes an iterative distributed computation
spread across several identical VMs. Such structures result
in VM groupings. We hypothesize that VMs in a group have
similar traffic patterns (in terms of which VMs they commu-
nicate with, and the volume of traffic). If this hypothesis is
true, then M must be a low rank matrix.

We can formalize a VM grouping as:

Definition 1 VM Grouping. Let a VM Grouping be denoted
by Si. Let mu denote a row of matrix, M. mu belongs to Si, if

d(mu,mv)< min
r
{d(mu,mr)},∀v ∈ Si,∀r /∈ Si

∧d(mu,mv)< δ,∀v ∈ Si

d(·, ·) is some distance function and δ is a distance threshold.

Definition 1 implies that similar rows will be grouped to-
gether if they are most similar to each other and their similar-
ity, quantified via a distance function, d(·, ·), is less than the
distance threshold. In practice, this threshold can be different
for different cloud projects.
Goal and Approach. Our goal is to discover all VM Group-
ings present in a cloud project. To do this, CloudCluster (a)
estimates M and then (b) clusters VMs (rows of M with simi-
lar traffic patterns) to find the VM groupings.

To estimate M, we leverage prior work, such as [27] and
[21], which show that in a setting like ours, we can estimate
well and with consistency the low-rank and noise-free, but
unobserved, matrix, M, from a random observation of the
noisy matrix Y, where M = E[Y].
Clustering algorithm: Overview. Using the estimate M̂,
CloudCluster’s clustering algorithm6 seeks to extract VM
Groupings according to Definition 1, with M replaced by M̂.
It must also address the scalability and robustness challenges
identified above. To do this, CloudCluster’s algorithm has four
components (Algorithm 1): 1) Feature scaling to transform
the input traffic matrix. 2) Matrix estimation to estimate M.
3) Hierarchical clustering to group similar VMs. 4) Cluster
merging to fuse similar clusters. We describe each component
in the following subsections.

6This is orthogonal to prior work that has explored clustering to group
similar traffic matrices [59].

Algorithm 1: Steps in VM clustering
input : Y, threshold θ to merge similar clusters
output: Clusters merged_clusters

1 scaled_Y = feature_scaling(Y);
2 scaled_M̂ = TruncatedSVD(scaled_Y);
3 clusters = hierarchical_clustering(scaled_M̂);
4 merged_clusters = merging(clusters, scaled_M̂, θ);

3.2 Feature Scaling

What is a feature and why scaling is necessary. Each row
of Y can be treated as a (high-dimensional) feature. Then,
identifying similarity in this feature space is equivalent to
identifying VMs that have similar traffic patterns.

In practice, even within a single project, traffic volumes
between VMs can span several orders of magnitude. This can
make it difficult to discriminate between low and medium
volume traffic patterns. Clustering relies on a distance metric,
and many applicable distance metrics are disproportionately
sensitive to larger values.
Log Scaling. Feature scaling normalizes the range of each fea-
ture to enable clustering algorithms to be robust to highly vari-
able traffic volumes. Of the existing feature scaling method-
ologies, standardization and minmax scaling cannot handle
the range of traffic volumes we see in cloud projects. Standard-
ization replaces each feature’s value by how many standard
deviations it is above or below the mean [1]. Minmax scal-
ing transforms each individual feature value into the ratio
between that value’s distance from the minimum to the range
of values [1]. Traffic in cloud projects can span several orders
of magnitude (from 0 to 109) and have skewed distributions;
linear transformations like minmax scaling, or those that as-
sume Gaussianity, like standardization, do not work well. For
this reason, we choose log scaling, which uses the natural
logarithm of the traffic instead of the original values; this
handles volume variability much better (we demonstrate this
experimentally in §4.4).

3.3 Estimating M

Estimating singular values. Singular value thresholding can
produce a good estimate, M̂, of the low-rank M, using only ob-
servations from Y (see [27], [21], [20]). However, estimating
the number of singular values to keep cannot be determined
exactly. After performing Singular Value Decomposition of
the matrix, we choose the number of singular values to retain
based on an elbow finding heuristic such as one introduced
by [51]. The elbow suggests the approximate number of sin-
gular values to retain because most of the singular values
after the elbow contribute little to the spectrum of the matrix.
Figure 2 shows the spectrum of singular values for a traffic
matrix for a project with over 3000 VMs. The sharp decline
in the spectrum after about 50 singular values is indicative of
a low-rank structure. Singular values in the tail which don’t
quite decay to 0 indicate random noise (which tends to spread

1216 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 2: Singular Value spectrum of a traffic matrix with dimen-
sion (3742x3271)

across all orthogonal directions) with small finite variance
(indicated by the small magnitude).

Extracting an r-rank approximation of M. Once the num-
ber of singular values r is heuristically determined, perform-
ing an SVD produces the reduced rank estimate of the original
matrix. Specifically, given the n×m original traffic matrix Y,
SVD produces the reduced dimension matrix M̂, such that:

M̂ = UrΣΣΣrrrVT
r ,

where ΣΣΣrrr is an r× r diagonal matrix of the singular val-
ues of Y, Ur and Vr are orthonormal bases of dimensions
n× r and m× r, respectively. M̂ is a low-rank, i.e., rank =
r�min{n,m}, approximation to the original matrix. How-
ever, M̂ is of dimensions n×m. We need to project this ma-
trix to an n× r subspace which will allow us to retain all the
rows (associated individually to VMs), each of r-dimensional
feature (columns). We denote this desired matrix by M̂r, de-
termined by:

M̂r = UrΣΣΣrrr

Effectively, the retained r singular values of the original ma-
trix Y determine how to scale each of the r−dimensional
orthonormal vectors in Ur. M̂r remains a good approximation
of M (in a reduced dimensional subspace) because it is simply
a projection of each of the rows in M̂ (which is the best rank-r
approximation of M) on to a r-dimensional subspace. Both
M̂ and M̂r are of rank r, and have the same norm.

The key benefit of SVD. Traffic matrices obtained from large
cloud projects can have tens of thousand of rows and columns.
The distance functions (used to compute row-similarity) scale
exponentially in the number of features/columns. Moreover,
in high dimensional feature spaces and with noisy data, dis-
tance metrics are unreliable [60] (the curse of dimensionality).
Given this, a reduced-rank estimation of M, and projection on
to a feature-space of reduced dimensions allows our algorithm
to remain robust to scale while retaining much of its structure.

3.4 Hierarchical Clustering

Infeasible clustering methods. Given the original matrix
Y, or the rank-r estimate M̂r, we can use traditional clus-

tering techniques to find VM Groupings. For instance, prior
approaches like [28] have established links between dimen-
sionality reduction and K-Means clustering. However, for our
use-case we would like to use dimensionality reduction for
robustness to scale and noise but maintain fine control over
the number of clusters to produce. Therefore, given that we
do not know the number of clusters to produce, much of the
existing work around K-Means [41] does not suffice for our
needs. Density-based approaches such as DBSCAN [32] and
OPTICS [22] do not require the number of clusters as input.
However, they rely on other threshold parameters, estimating
which requires domain knowledge (e.g., information about a
project beyond the sampled traffic volumes we have available)
and maybe hard with high-dimensional data. MeanShift [29]
and Affinity Propagation [33] also don’t require the num-
ber of clusters, but their main drawback is time complexity,
which depends on the number of iterations until convergence.
We also show that MeanShift and Affinity Propagation don’t
perform well in the context of VM clustering in section 4.4.

Agglomerative clustering. Similar to density-based ap-
proaches, hierarchical clustering does not require the number
of clusters a priori. CloudCluster uses agglomerative cluster-
ing [48], a bottom-up hierarchical clustering approach: each
VM (row) starts in its own cluster, and clusters are recursively
merged together. It uses Ward linkage [56] to determine which
two clusters should be merged: at each iteration, this tech-
nique selects two clusters that minimize the increase in total
within-cluster sum of squared error [44]. In the context of
clustering VMs, doing this produces clusters of VMs with
homogeneous traffic patterns, and this variance-minimizing
property is similar to the K-Means objective function. The
output of agglomerative clustering is a dendrogram (tree) of
VMs (rows); the leaf nodes are the VMs (rows) and the non-
leaf nodes are the nested clusters. Each non-leaf node has a
value (“height”), which is the Ward distance [44] between the
two entities merging at that node.

From hierarchical to flat clustering. In a dendrogram, each
non-leaf node represents a potential cluster (containing all the
leaf nodes in its sub-tree). CloudCluster must extract disjoint
clusters from this dendrogram. To do this, it can use a static
height threshold: each non-leaf node higher than this threshold
is a distinct cluster. But, determining the threshold requires
domain knowledge for each project. Instead, CloudCluster
cuts the dendrogram based on cluster inconsistency [54]. For
a given non-leaf node in the dendrogram with height h, if
its sub-tree contains nodes with heights H = {h0,h1, ...}, and
mean of the heights is H, and the standard deviation is σ(H),
the inconsistency of the node is: inc = h−H

σ(H) .

When deciding whether to merge two sub-trees (or nested
clusters), the inconsistency metric quantifies how different the
new merged cluster would be compared to the nested clusters
within it. A low value means that the merged cluster would
be similar to the nested clusters under it. Conversely, a high

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1217

Figure 3: CDF of inconsistency value and the knee

inconsistency means that the merged cluster contains nested
clusters which are fairly different. Therefore, the algorithm
merges nested clusters when the inconsistency score is less
than a threshold, µ.
Estimating µ. Instead of manually selecting the threshold µ,
we use the following technique to estimate it. Closer to the
leaves of the dendrogram, inconsistency values will be small.
They will increase at non-leaf nodes higher in the dendrogram.
For many projects, the distribution of inconsistency values
is similar to Figure 3. This suggests that the knee of this
curve is a good choice for µ because it identifies a transition
between low and high inconsistency values. We use the knee
locator implemented by [51] to determine µ. Then, we cut
the dendrogram based on the threshold µ, resulting in a set of
clusters.

3.5 Cluster Merging
In practice, we have found that our approach produces, for
projects with thousands of VMs, tens or hundreds of clusters
with small internal variation in terms of VM traffic patterns.
However, it is too aggressive, and we find we can merge some
of these clusters in a fast post-processing step. For this, we
determine the centroid of each cluster produced by hierarchi-
cal clustering. Each centroid can be viewed as a feature of the
candidate clusters. We treat each of these centroids as a new
entity and cluster these entities. Inspired by MeanShift [29]
which fuses clusters that are close to each other by comparing
the distances to a threshold, we calculate the pairwise cosine
distances of the clusters centroids and recursively merge pairs
of clusters until no two clusters have a centroid distance less
than a fixed merging threshold θ.

4 CloudCluster Evaluation
The goal of the evaluation is to demonstrate that CloudCluster
produces clusters that are consistent with VMs grouped by
location and function. In other words, in each cluster, all VMs
are in the same zone, and perform the same function.

4.1 Methodology and Metrics

Dataset. We use anonymized, aggregated flow logs (specifi-
cally, Google VPC logs [10], please see footnote on page 1 for

a statement of the ethical use of customer data.) from cloud
customers to generate our evaluation dataset. Our dataset in-
cludes projects ranging from a few thousand VMs to those
with tens of thousands of VMs. We do not consider smaller
(10-20 VMs) projects in our analysis; at these scales, less so-
phisticated tools can provide actionable insights. The dataset
includes projects of VMs with various type of workloads (e.g.,
web servers, load balancers, image transcoders, key-value
stores etc.). It includes projects that are internal to Google
and those belonging to external customers. Each traffic matrix
in the dataset contains uniformly sampled VM-to-VM traf-
fic aggregated over a 1-hour window. We use sampled data;
sampling is necessary to scale measurement systems, and, as
long as the sampling mechanism is uniform, we expect our
clustering algorithm to work just as well as it would have
on un-sampled data given that uniform sampling ought to
preserve traffic volume relationships between VMs.

Implementation. Customer flow logs are stored in Google’s
Colossus file system [30]. CloudCluster loads the flow logs
into Dremel [43] and uses Dremel’s SQL-like queries to se-
lect data within the aggregation window, group by src-dst
VM pairs and aggregate by volume. CloudCluster runs on a
single VM with 128G memory, loads the aggregated result
from Dremel into a dataframe, extracts the VM-to-VM traffic
matrix, and then runs the algorithm described in §3. Traffic
matrices for the projects we evaluate fit comfortably into a
single VM.

Methodology. To demonstrate that CloudCluster produces
clusters consistent with VMs grouped by location and func-
tion, we conduct two experiments on disjoint sets of the fifteen
projects in our dataset:

i. Carefully-Named Group. The first experiment uses data
belonging to eight projects. These eight projects (called the
Carefully-Named Group) are different from the other seven
projects because we have information about the location and
function of each VM. For these projects, the customers have
carefully named each VM based on function, likely to sim-
plify manageability of the project. For example, VM naming
schemes contain strings identifying well-known services (e.g.
"redis" [25], "cassandra" [39], or "nginx" [53]). We call these
strings VM labels (in addition to labels, VM names may con-
tain, for example, instance identifiers). For projects in this
group, we show that CloudCluster’s clusters, when further
sub-grouped by the VM location (the VM’s zone, §2) match
well with VM groupings by location and VM labels, i.e., func-
tions.

ii. Coarsely-Named Group. The second experiment uses
data belonging to the remaining seven projects. For these, we
have location information for each VM, but the VM naming
scheme does not always indicate the function, or indicates
function coarsely (we explain later precisely what this means).
For this group of projects, we show that CloudCluster’s clus-
ters, when further sub-grouped by the VM location, do not

1218 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

match well with VM groupings by location (zone) and VM
labels.

We emphasize that the cloud provider will always know a
VM’s location, but cannot always know the VM’s function,
since function-based naming is not a requirement of any cloud-
service API that we are aware of.
Metrics. We use two standard measures of clustering good-
ness, homogeneity and completeness [49]. These are both
scalar real-valued metrics in the range [0,1]. In the context of
VM clustering, homogeneity is the fraction of VMs in a same
cluster that have the same location and VM label. Conversely,
completeness is the fraction of VMs that have the same loca-
tion and VM label that are in a single cluster. These are the
analogs of precision and recall used in classification.

4.2 The Carefully-Named Group
The Carefully-Named Group refers to the eight projects where
the VM’s are carefully named to reflect their function, in
addition to the location (zone) information.
High homogeneity and completeness. We cluster the VMs
in each of the eight projects in the Carefully-Named Group.
As noted earlier, we further sub-group the clusters produced
by location, i.e., zone. Table 1’s third and fourth columns
show the homogeneity and completeness for all the projects
in this group. Across these projects, CloudCluster has high ho-
mogeneity: all projects have a homogeneity of 0.92 or higher,
and for six of them the score is higher than 0.96. Complete-
ness scores are also high: all projects have a completeness of
0.94 or higher. High completeness and homogeneity scores
indicate good matching in the clustering results, and substan-
tiate our central assertion: that CloudCluster’s clusters, when
augmented with zone information, match VMs grouped by
location and function.

What values of homogeneity and completeness are accept-
able? Recall that these measures are the equivalent of preci-
sion and recall (respectively), for which acceptable thresholds
depend upon the specific use case. Similarly, acceptable val-
ues of homogeneity and completeness depend upon what
clustering is used for; we discuss this in §5.5. Also, as with
precision and recall, we can trade-off homogeneity for com-
pleteness and vice versa; see §4.4 for an example.

CloudCluster works well for projects at different scales.
Projects range in size from 500 VMs to over 10,000 VMs
(second column of Table 1). The number of clusters (third
column of Table 1) varies from a handful to around 200.
CloudCluster also discovers clusters at different scales. Within
project A, some clusters have more than 900 VMs, and some
clusters have dozens of VMs or sometimes one. Moreover,
CloudCluster can handle projects with varying functional and
geographical diversity. Projects A, B, E and F each run more
than 20 different kinds of software and span across a number
of zones across the globe. This also explains why they have
many clusters (recall that clusters are distinguished both by
function and location). Projects C and D are functionally

homogeneous and scoped to a single continent; and projects
G and H are moderately functionally diverse (5-6 different
types of functions) but scoped within North America. This
explains why C, D, G and H have only a handful of clusters.

Why location is important. Clustering groups VMs with
a similar traffic pattern. Our hypothesis was that VMs that
perform the same function will have similar traffic patterns.
However, consider two VMs that perform the same function,
but are located in zones on different continents. Although
their traffic distributions to other VMs will be similar, they
will likely send traffic to completely different sets of VMs
(e.g., load-balancers, other services) because they are located
in different zones. Thus, their rows in the traffic matrix will
be different, and CloudCluster will be unable to cluster them.

To illustrate the importance of location, for projects in the
Carefully-Named Group, we compare completeness and ho-
mogeneity scores without using location information. This
means that we no longer sub-group CloudCluster’s clusters
by location (zone) and we do not use the location informa-
tion when computing homogeneity and completeness scores.
Table 1’s 5th and 6th columns show that, in this case, while
homogeneity is reasonably high (all VMs in a cluster tend
to have the same label, i.e., function), completeness drops
significantly for about half of the projects (i.e., VMs with the
same label do not all fall into the same cluster).

Label and cluster conflicts. Prior work has also explored a
different way to characterize the quality of clustering [46].
Consider any pair of VMs. These VMs can either be in differ-
ent clusters, or they can be in the same cluster. If clustering is
perfect, then (a) if the VMs belong to different clusters, they
must have different labels,7 and (b) if they belong to the same
cluster, they must have the same labels. Conversely, clustering
can fail in two ways: (a) the VMs belong to different clusters,
but they have the same label (we call this a cluster conflict,
which results in a completeness score lower than 1.0) and (b)
the VMs belong to the same cluster, but have different labels
(we call this a label conflict, which results in a homogeneity
score less than 1.0).

To understand the magnitude of these conflicts, Table 1’s
7th and 8th column show the rate of cluster and label con-
flicts in each of our projects in the Carefully-Named Group.
Following [46], we compute the rate of cluster conflicts as
the fraction of all VM pairs in different clusters that have the
same label, and the rate of label conflicts as the fraction of
VM pairs in each cluster that have different labels. Table 1’s
7th and 8th column show that these numbers are negligibly
small (less than half a percent) across all projects, and rep-
resents another way of viewing the results in Table 1’s 3rd
and 4th column. For instance, for project D, label conflicts are
zero, so its homogeneity is 1. Similarly, project C has high
homogeneity because its label conflict rate is very small and

7More precisely, different labels or locations; we use labels to simplify
the explanation

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1219

CloudCluster w/ location info CloudCluster w/o location info Percentage of Conflict
Project #VM #Cluster Homogeneity Completeness Homogeneity Completeness Cluster conflict Label conflict

A 10000+ 72 0.984 0.966 0.942 0.312 0.020% 0.197%
B 5000+ 206 0.919 0.951 0.888 0.706 0.046% 0.532%
C 500+ 4 0.999 0.964 0.989 0.865 0.001% 0.614%
D 500+ 3 1.000 0.938 0.989 0.831 0.000% 0.427%
E 5000+ 60 0.966 0.940 0.929 0.901 0.212% 0.386%
F 5000+ 177 0.937 0.949 0.873 0.929 0.127% 0.188%
G 5000+ 8 0.996 0.971 0.992 0.971 0.001% 0.169%
H 1000+ 6 0.997 0.997 0.997 0.997 0.000% 0.028%

Table 1: Homogeneity and completeness score (with and without location information) and percentage of conflict for projects in the
Carefully-Named Group

project H has highest completeness and the lowest cluster con-
flict rate. (As an aside, these rates are defined on VM-pairs, so
the actual rates cannot directly be matched to imperfections
in homogeneity and completeness.).

Why CloudCluster is less than perfect. Given the diver-
sity of project in the Carefully-Named Group, CloudCluster’s
agreement with customer-provided functional groupings is
impressive. However, it is less than perfect for several reasons.

Feature scaling compresses the range of each feature, which
changes the relative feature distances of all VMs. Dimension-
ality reduction step removes information from all feature vec-
tors. TruncatedSVD [34] only keeps the information of the
specified number of dimensions. Merging might also induce
errors. We use an approach similar to MeanShift’s postpro-
cessing [29] in that we merge clusters that are similar to each
others by a specified distance. Even though we choose a rather
aggressive merging threshold, it is still possible to merge two
groups of VMs that have different traffic patterns. Similarly,
the merging threshold can also be so high that it breaks other
sub-clusters which should be merged.

Finally, some of these label and cluster conflicts can be
caused by inconsistently assigned VM labels. For instance, in
project F, which has high homogeneity and completeness, we
found some VMs labeled default or pool. Table 1 suggests
that mis-naming of VMs in our Carefully-Named Group is
small. As we discuss in §4.3, CloudCluster works less well
for our Coarsely-Named Group because VM naming does not
reflect function (i.e., from the perspective of this analysis, the
VMs are mis-labeled). Equally important, the non-zero rate of
label and cluster conflicts suggests that, even for well-named
projects, labels may be mis-configured; in §5.3 we discuss
techniques to detect such misconfigurations.

4.3 Coarsely-Named Group
In §4.2, we showed that (a) CloudCluster has high homo-
geneity and completeness for projects where labels reflect
functions, and VM location is taken into account, and (b)
it has high homogeneity and low completeness when VM
location is omitted. The Coarsely-Named Group contains
projects where VM labels do not reflect function well. We ex-

(a) Cluster by customer labels (b) Predicted clusters

Figure 4: Same set of VMs clustered by (a) the customer label
and (b) our algorithm. This figure shows VMs with generic labels
like "default", "pool" or "farm".

pect CloudCluster to perform poorly in this case; we use this
group of projects to rule out the possibility of other factors
contributing to high completeness and homogeneity for the
Carefully-Named Group.

As Table 2 shows, for projects I through O (which have
comparable functional, size and spatial diversity as projects
A-H), homogeneity is high, but completeness is low (for most
projects in the 0.6-0.8 range, but in one case as low as 0.25).
These results indicate that, in these projects VM labeling
has the following property: if two VMs are similar in traffic
characteristics, they are likely to have the same labels, but if
they are different by traffic characteristics (so are in different
clusters) they may still have the same labels. In other words,
labels in these projects lack functional specificity.
Labeling specificity. Table 2 suggests that, if VM grouping
by labels and location should match well with CloudCluster,
labels have to have functional specificity. Some projects have
less specific (or generic) functional labels, as we illustrate in
the following examples.

Project Homogeneity Completeness
I 0.988 0.825
J 0.988 0.740
K 0.952 0.782
L 0.936 0.786
M 0.978 0.250
N 0.983 0.758
O 0.993 0.603

Table 2: Homogeneity and completeness scores for projects in
the Coarsely-Named Group.

1220 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 4 shows a group of VMs where the VM labels are
generic (default, pool, or farm). In Figure 4(a), the dots
are colored by the VM group they belong to by customer
label. In this case, all VMs belong to the same group because
they are assigned a generic label, so in Figure 4(a) they all
have the same color (green). However, if we closely examine
the functional structure of this project, we see two distinct
groups densely connected internally, but sparsely connected
externally. Figure 4(b) shows that CloudCluster is able to
correctly distinguish between the two groups (yellow and
black).

Sometimes, making labels specific enough requires careful
thought. Figure 5 illustrates a case where sharding may re-
quire generic labels. In Figure 5(a), the customer has labeled
all nodes within the circled ellipses as “loadbalancer”. How-
ever, from Figure 5(b), we observe that there is an internal
structure to these load-balancers. They can be further sepa-
rated into three groups where each has a distinctive connection
pattern. The clustering algorithm captures this difference and
puts them into different clusters.

Customers are not required to provide specific functional
labels, but these examples give some insight into how Cloud-
Cluster’s clustering might differ from a customer’s notion of
functional labels. At the same time, many projects do label
VMs by function. For these, being able to identify generic
customer labeling (or, more generally, mis-labeling) can help
identify configuration errors (see §5).

4.4 Impact of Design Choices
We now quantify the importance of various design choices.
Dimensionality reduction. Dimensionality reduction re-
duces the runtime of the pipeline and improves the clustering
accuracy. In the absence of dimensionality reduction, the dis-
tance metric can be unreliable for data with high-dimensional
feature spaces [60]. Moreover, distance computation does not
scale well for projects with more than 10,000 VMs; on our
largest project, without dimensionality reduction, the pipeline
takes more than 40 minutes to finish. With dimensionality
reduction, CloudCluster’s pipeline completed in 150 seconds
for the same project. CloudCluster is not latency-sensitive,
but lower computational complexity is important for reducing
the overhead or cost of executing CloudCluster’s algorithms

(a) Cluster by customer labels (b) Predicted clusters

Figure 5: Same set of VMs clustered by (a) the customer and
(b) our algorithm. This figure shows that customer-defined VM
groups contains customer specific sharding.

on the cloud.

Feature scaling. Feature scaling approaches influence Cloud-
Cluster’s performance. If we disable feature scaling, Cloud-
Cluster produces lower homogeneity (0.812) and complete-
ness (0.822) scores for project A, our largest project. By con-
trast, log-scaling is able to achieve 0.984 homogeneity and
0.966 completeness. Using other forms of feature scaling re-
sult in slightly lower homogeneity and completeness scores.
Figure 3 shows that using standardized and minmax scaling
reduces both homogeneity and completeness.

Hierarchical clustering. To validate our choice of our clus-
tering algorithm, we compare with other plausible clustering
approaches. We used OPTICS [22], Affinity Propagation [33]
and MeanShift [29] to produce another set of clusters, and
compared the clusters with project A’s labels. To be fair to
these alternative clustering approaches, we performed the
same feature scaling and dimensionality reduction before
feeding the data into the algorithms. We used default parame-
ters for these other clustering algorithms. We show that OP-
TICS results in significantly lower homogeneity (0.471) and
completeness (0.163). Affinity Propagation produces slightly
better homogeneity (0.994) by producing more than 3000 clus-
ters in the project with 10,000+ VMs. This comes at the cost of
a significantly lower completeness (0.559). Conversely, Mean-
Shift achieves a higher completeness score (0.989) by having
giant, noisy clusters, but with lower homogeneity (0.701).

Merging. Without merging, we achieve a slightly better ho-
mogeneity score (0.996), but a much worse completeness
score (0.547). The high homogeneity is due to the fact that we
produce clusters with small internal variation in the process of
hierarchical clustering. The requirement of small internal vari-
ation divides VMs with similar traffic patterns into different
clusters and lowers the completeness score. Merging com-
bines similar clusters to significantly improve completeness
for project A (from 0.547 to 0.966) at the expense of a small
drop in homogeneity (from 0.996 to 0.984). This benefit of
merging is evident across all projects in the Carefully-Named
Group (Table 4). In some cases, the improvements in com-
pleteness are even more dramatic, increasing from 0.442 to
0.996 for project H.

Homog. Compl.
CloudCluster 0.984 0.966
Without feature scaling 0.812 0.822
Feature scaling: standardizer 0.939 0.953
Feature scaling: minmax scaler 0.974 0.948
Clustering: OPTICS [22] 0.471 0.163
Clustering: Affinity Prop [33] 0.994 0.559
Clustering: MeanShift [29] 0.701 0.989
Disable merging 0.996 0.547

Table 3: Compares the impact of different design choice on
project A’s result

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1221

Without Merging With Merging
Homog. Compl. Homog. Compl.

A 0.996 0.547 0.984 0.966
B 0.932 0.896 0.919 0.950
C 0.998 0.522 0.998 0.963
D 1.000 0.442 1.000 0.938
E 0.985 0.698 0.965 0.940
F 0.978 0.781 0.937 0.949
G 0.996 0.386 0.996 0.971
H 0.997 0.442 0.996 0.996

Table 4: Effect of merging on the Carefully-Named Group group

5 CloudCluster For Project Management
In this section, we describe several proof-of-concept ways in
which the output of CloudCluster can help cloud providers
provide their customers with actionable insights about the
configuration and management of their services.

5.1 Reconfiguration to Reduce Cost
Cloud providers often price traffic in multiple tiers: traffic
within the same cloud zone typically costs less than traffic
between VMs from different zones, regions or continents.
Customers engineer VM placements to reduce cost while
balancing availability and proximity to customers. Cloud-
Cluster can help identify opportunities for reconfiguring VM
placements to reduce costs. In this section, we discuss three
examples that illustrate these opportunities; future work can
develop systematic tools to discover such opportunities.

Figure 6 shows the distribution of traffic to other zones
from VMs of project A belonging to VM label L. CloudClus-
ter detects that VMs with this label belong to two different
clusters: one which sends traffic more-or-less uniformly to
VMs in 8 different zones (first cluster in Figure 6) and the
other which sends over 80% of its traffic to a single zone
(second cluster). A customer can potentially reconfigure the
placement of VMs of the latter cluster to avoid inter-zone
traffic. Although the traffic skew is visible across all VMs (so
the customer might have been able to detect it using the VM
label), CloudCluster is able to identify the precise set of VMs
to re-configure.

Using CloudCluster, the cloud provider can determine the
volume of intra-cluster and inter-cluster traffic, and determine
how much of this traffic crosses zone, region, or continent
boundaries. Using this, it can estimate cost savings resulting
from reconfigured VM placements. Figure 7 and Figure 8
illustrate cost savings from reconfiguration in two cases.

The first case is a cluster C from project A of VMs located in
different zones of a single cloud region. Almost 90% of traffic
in C is intra-zone, which is free or relatively cheap on most
cloud providers ([15], [8], [11]). However, the remaining
traffic traverses continental boundaries, and accounts for a
significant fraction of total cost charged to C. If the customer
were to provision a small cluster in the zone on the other
continent where the traffic comes from, it can reduce the cost
attributable to this cluster by 41.2% (Figure 7).

The second case is a cluster C′ of project A whose traffic is
largely inter-region (intra-zone traffic is < 0.1%). 92.3% of
egress traffic from C′ goes to zones in another region R, and
95.9% of its ingress traffic comes from VMs in a single zone
in R. Moving VMs in C′ to R (an egress-favored placement)
reduces cost by 21.1%, while moving these VMs to the zone
in R from which they receive most traffic (an ingress-favored
placement) reduces cost by 15.1% (Figure 8).

These are simplified examples; in practice, tools that sug-
gest re-configuration of VM placements will need to consider
other customer objectives such as availability and latency. We
have left development of such tools to future work, but Cloud-
Cluster’s clustering can be a valuable input to such tools.

5.2 Anomaly Detection
Large-scale cloud project outages are sometimes caused by
rapid increases in service workload, management operations
by the customer (incorrect service configuration), by the
provider (VM migration), or failures in the provider’s net-
work. These are often accompanied by sudden shifts in traffic
between VMs in the service or traffic to and from external en-
tities (e.g., customers of the cloud service). Such traffic shifts
may often be visible in the aggregate traffic between clusters.
Because our clusters correspond to functionally homogeneous
VMs, if one VM in cluster A starts communicating more with
a VM in cluster B, it is likely that all other VMs in A will also
start communicating more with VMs in B.

In this section, we present a preliminary evaluation of an
anomaly detector that tracks significant deviations in aggre-
gate inter-cluster traffic on each link in the inter-cluster graph
(Figure 1(e)). Such a detector can also help localize anomalies,
as we discuss below. In practice, we expect our anomaly detec-
tor to complement other approaches used by cloud providers.

The anomaly detector works as follows. For each edge in
the inter-cluster graph (an edge exists between two clusters if
their VMs communicate), it tracks at each aggregation win-
dow, the total volume in bytes, the total flow count, and the
number of communicating VM pairs between each pair of
clusters. When, for a given edge, any of these quantities de-
viates significantly from a windowed moving median [57],
we flag that deviation as an anomaly (we omit the details for
brevity). Because the inter-cluster graph is sparser than the
inter-VM graph (e.g., Figure 1(a)), we are able to scalably
identify correlated anomalies, where two or more commu-
nicating cluster pairs exhibit anomalous traffic at the same
time.
Trace Analysis and Results. To quantify the effectiveness of
this detector, we identified 25 time windows across different
projects where either (a) an internal anomaly detector that
uses a different methodology flagged anomalous traffic in the
project during the corresponding time window (17 instances)
or (b) the customer filed a trouble ticket (8 instances).

We then ran the CloudCluster-based anomaly detector on
these 25 time windows, and, in each case, were able to con-

1222 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 1 2 3 4 5 6 7
Remote Cloud Zone

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Tr
af

fic
 v

ol
um

e
to

 e
ac

h
zo

ne
 (%

) category
First Cluster of L
Second Cluster of L
All VMs with label L

Figure 6: CloudCluster finds VMs with
same label but different traffic patterns.

Original Reconfigured0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Co

st
Figure 7: Original vs. Reconfigured
placement cost

Original Egress
Favoured

Ingress
Favoured

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Co

st

Figure 8: Original vs. Egress-favored
vs. Ingress-favored placement cost

firm the existence of the anomaly8, and also to pinpoint which
cluster-pairs were responsible for the deviations. We have not
analyzed false positive rates; since we started with known
anomalies flagged by other systems. For the 8 customer-
reported incidents, our detector was able to correctly identify
the offending cluster-pairs (as determined in the post-mortem
reports). We identified two broad classes of anomalies: traf-
fic shifts and structural changes. In the first class, the inter-
cluster graph does not change, but traffic on some subset of
links changes significantly. In the second, new nodes and or
edges are added to the graph or nodes and edges are removed.
Of the 25, three were traffic shifts and the rest were structural
changes.9

Our detector is fast: the maximum processing latency to
compute the deviation scores, across all projects, was 92.3
milliseconds per time window.

The following paragraphs briefly describe some qualita-
tively different anomalies that we were able to detect; §A
contains a more detailed description.

Correlated traffic shift due to peering router failure. This
anomaly was reported by the network operator in reaction to a
peering router failure. Our detector observed that a cluster in
the region nearest the peering router saw a sudden reduction in
flow and byte counts. Concurrently, a cluster in another region,
(which, from label names, we determined was functionally
identical to the first cluster), saw an increase in traffic. We
suspect that the peering router failure diverted external traffic
to enter the cloud provider’s network at a different location,
but don’t have the instrumentation to confirm this.

Structural change due to VM migration. This anomaly
was reported by the internal anomaly detector. Our
CloudCluster-based anomaly detector identified a sequence
of structural changes across successive aggregation windows.
Recall that clusters are distinguished both by function and lo-

8A more detailed analysis of the detector performance, and comparisons
with other detection techniques, is beyond the scope of this paper.

9Some of these structural changes or traffic shifts might be intentional,
even though our approach flags them as (statistical) anomalies.

cation (§4.2). In this case, the structural changes were caused
by a migration of VMs from one server to another due to
scheduler-driven evictions. The migration was spread out
over multiple aggregation windows, so our detector noticed a
sequence of structural changes corresponding to progressive
migration of VMs from one server to another.

Structural change due to project reconfiguration. Our in-
ternal anomaly detector flagged anomalous traffic for a cloud
provider. The CloudCluster-based anomaly detector identified
a structural change: two clusters were removed from the graph
and one was added. The two initial clusters corresponded to
a singleton cluster containing a leader VM and another con-
taining 120 worker VMs. The new cluster contained the 121
VMs, encompassing both the leader and the workers. In this
case, it turns out that the customer had initiated the structural
change, decommissioning the older VMs in favor of another
set of VMs as part of an upgrade.

5.3 Potential Label Misconfiguration
As discussed in §4.2, several customers label VMs with pre-
cise function names and location information. We conjecture
that they use this to simplify project management. These VM
labels are often configured, either by hand or by a script. La-
bel misconfigurations can occur, and CloudCluster can be
used to detect the likely candidates. When a label misconfig-
uration occurs in a project whose VMs appear to be named
by function and location, i.e., when the project has a high
homogeneity and completeness, it manifests either as a label
conflict or a cluster conflict (§4.2).

Cluster Conflict. A cluster conflict occurs when VMs be-
long to different clusters, but have the same labels. Such a
conflict can either result from a misconfigured label, or from
a clustering error. To distinguish between those two cases, we
use a technique inspired by prior work in clustering on sil-
houette analysis [50], which attempts to measure the intrinsic
performance of clustering. This analysis assigns each item (or
VM, in our context) a score in the range [−1,1] that measures
how similar the VM is to its own cluster, compared to other

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1223

clusters.
We modified this idea to derive a metric that quantifies

whether a customer label is too generic (i.e., spans multiple
clusters) or too specific. Let Vl be the set of VMs that has a
customer-defined label l, but CloudCluster splits it up into n
clusters {C1,C2, ...Cn}. Let c̄l be the centroid, in feature space,
of the traffic features of all VMs in Vl . Let c̄i be the centroid
of the traffic features of all VMs in Ci (the Cis might contain
VMs not in Vl). For each cluster Ci, let ai be the average
distance of each VM in this cluster to c̄l and bi be the average
distance of each VM in this cluster to c̄i. Then, consider the
following metric: ms(i) = b(i)−a(i)

max(a(i),b(i)) .
Intuitively, if ms(i) < 0, each VM in the cluster is closer

to the cluster center than to the label’s center, so the labeling
is too generic. Conversely, if ms(i)> 0, then the label is too
specific. Either way, this indicates a mismatch between clus-
tering and customer-provided labeling, which can be used in
some cases to identify potential mis-labeled VMs.

To detect mis-labeling VMs using this technique, we apply
the following algorithm. Without loss of generality, assume
that C1 has the largest number of VMs with label l. For all
i > 1, if ms(i)< ψ (a conservative threshold < 0, we use -0.5),
we mark all VMs in Ci with label l as mis-named.

The output of this analysis is a list of potentially (we use
this term to indicate that, ultimately, any such mis-labeling
would have be be verified by a customer, since the customer
understands the intent behind the naming) mis-labeled VMs
that cause cluster conflicts.

Table 5 lists the fraction of potentially mis-labeled VMs
for four of our projects. These four projects belonged to a
customer who gave us feedback on our clustering results. The
fraction of mis-labeled VMs range from negligible amounts
(e.g., project H has 0.1% mis-named VMs) to a few percent
(for projects A, E and F). For these projects, we were able to
verify with the customer that our identification of mis-labeled
VMs was accurate. In these cases, the customer had changed
the functions in some VMs but forgot to update the VM labels.

Label conflicts. Mis-labeling can also cause label conflicts:
different labels within the same cluster. Table 5 also shows
the rate of occurrence of these. They happen less frequently,
and often fall into two categories. VMs labeled generically
such as “default” fall into the same cluster as VMs with more
specific labels (e.g., “app-server”). A second cause of mis-
labeling is inconsistent hyphenation (e.g., “appserver” vs.
“app-server”), or inconsistent abbreviations (e.g., using “es”
instead of “east”). We identified examples in the second cate-
gory using manual inspection; future work can automate the
detection of mis-labeling in this category using edit-distance
based string similarity analysis [55].

5.4 Potentially Mis-provisioned VMs
When configuring a VM, project owners can provision VM
resources by specifying the machine type for each VM. Ma-
chine types determine the capacity of the VM instances

Project Cluster Label Mis-provisioning
Conflict (%) Conflict (%) Rate (%)

A 4.62 0 1.59
E 5.75 3.15 0
F 7.26 0.10 0.80
H 0.09 0.04 0.38

Table 5: The percentage of VMs that are mis-labeled in each
project (§5.3), the rate of misprovisioning (§5.4).

in terms of CPU cores, memory and egress network band-
width [35]. Different machine types are priced differently,
so over-provisioning a VM can have cost implications. Mis-
provisioning can also impact performance: under-provisioned
VMs can result in stragglers, causing services to violate their
latency SLOs.

CloudCluster can identify mis-provisioned VMs by deter-
mining outlier machine types in a cluster. Since CloudClus-
ter’s clusters identify VMs performing a similar function, if
most VMs in a cluster are of machine type a, but a small
number are of machine type b, we can identify the latter set
as mis-labeled VMs. In determining the rate of mis-labeling,
we must filter out mis-labeled VMs. To be more robust to
clustering errors, we flag a VM as mis-labeled if it does not
lie at the edge of the cluster (as determined by distance from
the cluster centroid in feature space).

Table 5 shows the rate of mis-provisioning in 4 of the
projects in the Carefully-Named Group. A small number, 1%,
appear to be mis-provisioned. We say “appear to be” because
the operator cannot know the intent of the customer; they may
have deliberately provisioned these machines differently to
run additional tasks (e.g., compute bound jobs whose footprint
is not visible in the VM-to-VM traffic matrix). Any mis-
provisioning will ultimately have to be verified as such by
manual inspection by the customer.

5.5 Discussion
In §4.2, we said that acceptable values of homogeneity and
completeness depend upon what clustering is used for. We
conclude this section with a brief qualitative discussion of
this issue, leaving quantitative analysis to future work.

We have described two types of use cases in this section.
Reconfiguration and anomaly detection are based upon the
inter-cluster graph abstraction, and specifically upon inter-
cluster traffic volumes. For these cases, if most VMs (e.g.,
90%) in a cluster are functionally similar, the reconfiguration
decision, or the anomaly detection is likely to be correct.

Detecting mis-labeled or mis-provisioned VMs requires
comparing attributes of VMs within a cluster. This can be
more susceptible to false positives and false negatives, un-
less homogeneity and completeness are very high. Because
a cloud provider cannot always know the homogeneity and
completeness a priori, using clustering for these tasks requires
additional filtering steps to minimize false positives. For mis-
provisioned VMs, we filter candidates at the edge of the clus-
ter (§5.4). For mis-labeling, we use silhouette analysis (§5.3).

1224 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

6 Related Work
Inferring Structure from Traffic. Complementary to Cloud-
Cluster, others have explored inferring host behavior and dis-
tributed system properties from network traffic. The closest
prior work [58] groups Internet hosts within each IP prefix
by traffic similarity, and explores how this can be used to
detect malicious behavior. Other work has modeled host-to-
host communication as a graph to understand properties of
inter-host communication [13, 14, 36], to infer botnet struc-
ture [45], or the logical structure of enterprise networks [16].
The body of work on tracing in distributed systems seeks
to infer the causal structure as well as other properties of
distributed systems from RPC traces to aid performance de-
bugging (e.g., [19,47,52]). Other work has used traffic to infer
specific characteristics of VMs in cloud settings: strongly con-
nected groups of VMs as candidates for migration [26], or
compromised VMs [23]. Some of these use clustering [26,58],
but do not consider scale and robustness to range of traffic
volumes.
Data Clustering. Clustering is a mature area of research,
with many established techniques such as K-Means [41], DB-
SCAN [32], OPTICS [22], AffinityPropogations [33], Hier-
archical Clustering [48], etc. That clustering is susceptible
to the curse of dimensionality is well-known [60]. Cluster-
ing in high dimensions has been explored extensively either
by: (a) using heuristics to determine attributes of sub-spaces
(e.g., CLIQUE [18] or SUBCLU [37]) or (b) designing spe-
cial distance measures (e.g., projected clustering, as in Pre-
DeCon [24] or PROCLUS [17]). In contrast, CloudCluster
explicitly reduces the dimension of the VM-to-VM traffic
to the point where conventional clustering techniques and
similarity measures are applicable.
Cloud Monitoring and Workload Characterization. Tan-
gentially relevant prior work has used CPU and memory uti-
lization traces to infer properties of VMs [31, 38, 42].

7 Conclusion
CloudCluster performs clustering on the VM-to-VM traffic
of cloud projects and yields the functional structure of the
cloud service. It overcomes the challenges imposed by scale
(cloud services contain tens of thousands of VMs), by orders-
of-magnitude variability in traffic volume and measurement
noise, and by the lack of prior knowledge of the cloud projects
(for number of clusters). The output of CloudCluster can help
detect potentially mis-provisioned or mis-labeled VMs, iden-
tify opportunities to reduce cost, and detect anomalies.
Future work. Several directions of future work remain, in-
cluding: identifying the frequency at which to apply Cloud-
Cluster to projects; incrementally adjusting clusters when
VMs leave or join; supporting traffic to cloud native services
such as storage; exploring better methods for determining the
cluster merging threshold; more thoroughly evaluating the ac-
curacy of cost reconfiguration, anomaly detection, or miscon-

figuration determination, and comparing their performance
against other alternatives; determining whether additional in-
formation from customers, obtained with their consent, can
improve the quality of the resulting functional structure.

References
[1] 6.3. preprocessing data. https://scikit-learn.org/stable/

modules/preprocessing.html#preprocessing.

[2] Azure monitor overview - azure monitor. https://docs.
microsoft.com/en-us/azure/azure-monitor/overview.

[3] Cloud monitoring | google cloud. https://cloud.google.
com/monitoring.

[4] Creating and managing projects. https:
//cloud.google.com/resource-manager/docs/creating-
managing-projects.

[5] Google cloud storage. https://cloud.google.com/storage.

[6] Google vpc. https://cloud.google.com/vpc/docs.

[7] Network and subnetwork terminology. https://cloud.
google.com/vpc/docs/vpc#subnets_vs_subnetworks.

[8] Network pricing|compute engine documentation|google
cloud. https://cloud.google.com/compute/network-
pricing.

[9] Regions and zones | compute engine documentation |
google cloud. https://cloud.google.com/compute/docs/
regions-zones.

[10] Using vpc flow logs. https://cloud.google.com/vpc/docs/
using-flow-logs.

[11] Virtual network pricing: Microsoft azure. https://azure.
microsoft.com/en-us/pricing/details/virtual-network/.

[12] Clouds project cloudwatch. https://aws.amazon.com/
cloudwatch/, 2000.

[13] Blinc. ACM SIGCOMM Computer Communication Re-
view, 35(4):229–240, 2005.

[14] Network monitoring using traffic dispersion graphs
(TDGs). Proceedings of the ACM SIGCOMM Inter-
net Measurement Conference, IMC, (c):315–320, 2007.

[15] Aws site-to-site vpn and accelerated site-to-site vpn con-
nection pricing. https://aws.amazon.com/vpn/pricing/,
2020.

[16] Role classification of hosts within enterprise networks
based on connection patterns. Proceedings of the Gen-
eral Track: 2003 USENIX Annual Technical Conference,
pages 15–28, 2020.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1225

https://scikit-learn.org/stable/modules/preprocessing.html#preprocessing
https://scikit-learn.org/stable/modules/preprocessing.html#preprocessing
https://docs.microsoft.com/en-us/azure/azure-monitor/overview
https://docs.microsoft.com/en-us/azure/azure-monitor/overview
https://cloud.google.com/monitoring
https://cloud.google.com/monitoring
https://cloud.google.com/resource-manager/docs/creating-managing-projects
https://cloud.google.com/resource-manager/docs/creating-managing-projects
https://cloud.google.com/resource-manager/docs/creating-managing-projects
https://cloud.google.com/storage
https://cloud.google.com/vpc/docs
https://cloud.google.com/vpc/docs/vpc#subnets_vs_subnetworks
https://cloud.google.com/vpc/docs/vpc#subnets_vs_subnetworks
https://cloud.google.com/compute/network-pricing
https://cloud.google.com/compute/network-pricing
https://cloud.google.com/compute/docs/regions-zones
https://cloud.google.com/compute/docs/regions-zones
https://cloud.google.com/vpc/docs/using-flow-logs
https://cloud.google.com/vpc/docs/using-flow-logs
https://azure.microsoft.com/en-us/pricing/details/virtual-network/
https://azure.microsoft.com/en-us/pricing/details/virtual-network/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/vpn/pricing/

[17] Charu C Aggarwal, Joel L Wolf, Philip S Yu, Cecilia
Procopiuc, and Jong Soo Park. Fast algorithms for pro-
jected clustering. ACM SIGMoD Record, 28(2):61–72,
1999.

[18] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunop-
ulos, and Prabhakar Raghavan. Automatic subspace
clustering of high dimensional data. Data Mining and
Knowledge Discovery, 11(1):5–33, 2005.

[19] Marcos K. Aguilera, Jeffrey C. Mogul, Janet L. Wiener,
Patrick Reynolds, and Athicha Muthitacharoen. Perfor-
mance debugging for distributed systems of black boxes.
In Proceedings of the Nineteenth ACM Symposium on
Operating Systems Principles, SOSP ’03, page 74–89,
New York, NY, USA, 2003. Association for Computing
Machinery.

[20] Muhammad Amjad, Vishal Misra, Devavrat Shah, and
Dennis Shen. Mrsc: Multi-dimensional robust synthetic
control. Proc. ACM Meas. Anal. Comput. Syst., 3(2),
June 2019.

[21] Muhammad Amjad, Devavrat Shah, and Dennis Shen.
Robust synthetic control. Journal of Machine Learning
Research, 19(22):1–51, 2018.

[22] Mihael Ankerst, Markus M Breunig, Hans-Peter Kriegel,
and Jörg Sander. Optics: ordering points to identify the
clustering structure. In ACM Sigmod record, volume 28,
pages 49–60. ACM, 1999.

[23] Behnaz Arzani, Selim Ciraci, Stefan Saroiu, Alec Wol-
man, Jack Stokes, Geoff Outhred, and Lechao Diwu. Pri-
vateeye: Scalable and privacy-preserving compromise
detection in the cloud. In 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
20), pages 797–815, Santa Clara, CA, February 2020.
USENIX Association.

[24] Christian Bohm, K Railing, H-P Kriegel, and Peer
Kroger. Density connected clustering with local sub-
space preferences. In Fourth IEEE International Confer-
ence on Data Mining (ICDM’04), pages 27–34. IEEE,
2004.

[25] Josiah L. Carlson. Redis in Action. Manning Publica-
tions Co., USA, 2013.

[26] Marco Cello, Kang Xi, Jonathan H Chao, and Mario
Marchese. Traffic-aware clustering and vm migration in
distributed data center. In Proceedings of the 2014 ACM
SIGCOMM workshop on Distributed cloud computing,
pages 41–42, 2014.

[27] Sourav Chatterjee. Matrix estimation by universal
singular value thresholding. The Annals of Statistics,
43(1):177–214, Feb 2015.

[28] Michael B. Cohen, Sam Elder, Cameron Musco, Christo-
pher Musco, and Madalina Persu. Dimensionality re-
duction for k-means clustering and low rank approxima-
tion. In Proceedings of the Forty-Seventh Annual ACM
Symposium on Theory of Computing, STOC ’15, page
163–172, New York, NY, USA, 2015. Association for
Computing Machinery.

[29] D. Comaniciu and P. Meer. Mean shift: a robust ap-
proach toward feature space analysis. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
24(5):603–619, May 2002.

[30] James C. Corbett, Jeffrey Dean, Michael Epstein,
Andrew Fikes, Christopher Frost, JJ Furman, Sanjay
Ghemawat, Andrey Gubarev, Christopher Heiser, Peter
Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene
Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik,
David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao,
Lindsay Rolig, Dale Woodford, Yasushi Saito, Christo-
pher Taylor, Michal Szymaniak, and Ruth Wang. Span-
ner: Google’s globally-distributed database. In OSDI,
2012.

[31] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark
Russinovich, Marcus Fontoura, and Ricardo Bianchini.
Resource central: Understanding and predicting work-
loads for improved resource management in large cloud
platforms. In Proceedings of the 26th Symposium on
Operating Systems Principles, SOSP ’17, page 153–167,
New York, NY, USA, 2017. Association for Computing
Machinery.

[32] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xi-
aowei Xu. A density-based algorithm for discovering
clusters in large spatial databases with noise. In Pro-
ceedings of the Second International Conference on
Knowledge Discovery and Data Mining, KDD’96, page
226–231. AAAI Press, 1996.

[33] Brendan J. Frey and Delbert Dueck. Clustering
by passing messages between data points. Science,
315(5814):972–976, 2007.

[34] Nathan Halko, Per-Gunnar Martinsson, and Joel A.
Tropp. Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decom-
positions, 2009.

[35] Google Inc. Machine types | compute engine documenta-
tion | google cloud. https://cloud.google.com/compute/
docs/machine-types.

[36] Yu Jin, Esam Sharafuddin, and Zhi-Li Zhang. Unveil-
ing core network-wide communication patterns through
application traffic activity graph decomposition. SIG-
METRICS Perform. Eval. Rev., 37(1):49–60, June 2009.

1226 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://cloud.google.com/compute/docs/machine-types
https://cloud.google.com/compute/docs/machine-types

[37] Karin Kailing, Hans-Peter Kriegel, and Peer Kröger.
Density-connected subspace clustering for high-
dimensional data. In Proceedings of the 2004 SIAM
international conference on data mining, pages
246–256. SIAM, 2004.

[38] Arijit Khan, Xifeng Yan, Shu Tao, and Nikos Anerousis.
Workload characterization and prediction in the cloud:
A multiple time series approach. In 2012 IEEE Network
Operations and Management Symposium, pages 1287–
1294. IEEE, 2012.

[39] Avinash Lakshman and Prashant Malik. Cassandra: A
decentralized structured storage system. SIGOPS Oper.
Syst. Rev., 44(2):35–40, April 2010.

[40] Christophe Leys, Christophe Ley, Olivier Klein, Philippe
Bernard, and Laurent Licata. Detecting outliers: Do not
use standard deviation around the mean, use absolute
deviation around the median. Journal of Experimental
Social Psychology, 49(4):764–766, 2013.

[41] James MacQueen et al. Some methods for classifica-
tion and analysis of multivariate observations. In Pro-
ceedings of the fifth Berkeley symposium on mathemati-
cal statistics and probability, volume 1, pages 281–297.
Oakland, CA, USA, 1967.

[42] Shruti Mahambre, Purushottam Kulkarni, Umesh Bel-
lur, Girish Chafle, and Deepak Deshpande. Workload
characterization for capacity planning and performance
management in iaas cloud. In 2012 IEEE International
Conference on Cloud Computing in Emerging Markets
(CCEM), pages 1–7. IEEE, 2012.

[43] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geof-
frey Romer, Shiva Shivakumar, Matt Tolton, and Theo
Vassilakis. Dremel: Interactive analysis of web-scale
datasets. Proc. VLDB Endow., 3(1–2):330–339, Septem-
ber 2010.

[44] Fionn Murtagh and Pierre Legendre. Ward’s hierarchical
clustering method: clustering criterion and agglomera-
tive algorithm. arXiv preprint arXiv:1111.6285, 2011.

[45] Shishir Nagaraja, Prateek Mittal, Chi-Yao Hong,
Matthew Caesar, and Nikita Borisov. Botgrep: Finding
p2p bots with structured graph analysis. In Proceedings
of the 19th USENIX Conference on Security, USENIX
Security’10, page 7, USA, 2010. USENIX Association.

[46] William M. Rand. Objective criteria for the evaluation of
clustering methods. Journal of the American Statistical
Association, 66(336):846–850, 1971.

[47] Patrick Reynolds, Janet L. Wiener, Jeffrey C. Mogul,
Marcos K. Aguilera, and Amin Vahdat. WAP5: Black-
box performance debugging for wide-area systems. Pro-
ceedings of the 15th International Conference on World
Wide Web, pages 347–356, 2006.

[48] Lior Rokach and Oded Maimon. Clustering Methods,
pages 321–352. Springer US, Boston, MA, 2005.

[49] Andrew Rosenberg and Julia Hirschberg. V-measure:
A conditional entropy-based external cluster evaluation
measure. In Proceedings of the 2007 joint conference
on empirical methods in natural language processing
and computational natural language learning (EMNLP-
CoNLL), pages 410–420, 2007.

[50] Peter J. Rousseeuw. Silhouettes: A graphical aid to the
interpretation and validation of cluster analysis. Journal
of Computational and Applied Mathematics, 20:53 – 65,
1987.

[51] Ville Satopaa, Jeannie Albrecht, David Irwin, and Barath
Raghavan. Finding a" kneedle" in a haystack: Detecting
knee points in system behavior. In 2011 31st inter-
national conference on distributed computing systems
workshops, pages 166–171. IEEE, 2011.

[52] Benjamin H. Sigelman, Luiz André Barroso, Mike Bur-
rows, Pat Stephenson, Manoj Plakal, Donald Beaver,
Saul Jaspan, and Chandan Shanbhag. Dapper, a large-
scale distributed systems tracing infrastructure. Techni-
cal report, Google, Inc., 2010.

[53] Igor Sysoev et al. Nginx. Inc.,“nginx,” https://www.
nginx. com, 2004.

[54] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Evgeni
Burovski, Pearu Peterson, Warren Weckesser, Jonathan
Bright, Stéfan J. van der Walt, Matthew Brett, Joshua
Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew
R. J. Nelson, Eric Jones, Robert Kern, Eric Larson,
CJ Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake
Vand erPlas, Denis Laxalde, Josef Perktold, Robert Cim-
rman, Ian Henriksen, E. A. Quintero, Charles R Har-
ris, Anne M. Archibald, Antônio H. Ribeiro, Fabian
Pedregosa, Paul van Mulbregt, and SciPy 1. 0 Con-
tributors. SciPy 1.0–Fundamental Algorithms for Sci-
entific Computing in Python. arXiv e-prints, page
arXiv:1907.10121, Jul 2019.

[55] Robert A Wagner and Michael J Fischer. The string-to-
string correction problem. Journal of the ACM (JACM),
21(1):168–173, 1974.

[56] Joe H. Ward. Hierarchical grouping to optimize an
objective function. Journal of the American Statistical
Association, 58(301):236–244, 1963.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1227

[57] Eric W Weisstein. Moving median. https://mathworld.
wolfram.com/MovingMedian.html.

[58] Kuai Xu, Feng Wang, and Lin Gu. Network-aware be-
havior clustering of internet end hosts. In 2011 Pro-
ceedings IEEE INFOCOM, pages 2078–2086. IEEE,
2011.

[59] Y. Zhang and Z. Ge. Finding critical traffic matrices. In
2005 International Conference on Dependable Systems
and Networks (DSN’05), pages 188–197, 2005.

[60] Arthur Zimek, Erich Schubert, and Hans-Peter Kriegel.
A survey on unsupervised outlier detection in high-
dimensional numerical data. Statistical Analysis and
Data Mining: The ASA Data Science Journal, 5(5):363–
387, 2012.

1228 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://mathworld.wolfram.com/MovingMedian.html
https://mathworld.wolfram.com/MovingMedian.html

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Cluster Pair Leg 1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
22
23
25
26
27
28
29
30
31
32
33
34

Cl
us

te
r P

ai
r L

eg
 2

Flow Count

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Figure 9: Cluster to Cluster flow count deviation scores

Appendix

A Detailed Explanation of Anomalies

Correlated traffic shift due to peering router failure. This
anomaly was reported by the network operator in reaction to a
peering router failure. Our detector observed that a cluster in
the region nearest the peering router saw a sudden reduction
in flow and byte counts. Concurrently, a cluster in another
region, (which, from label names, we determined was func-
tionally identical to the first cluster), saw an increase in traffic.
We suspect that the peering router failure diverted external
traffic to enter the cloud provider’s network at a different loca-
tion, but don’t have the instrumentation to confirm this. Figure
9 depicts the cluster to cluster deviations scores expressed
in terms of median absolute deviations (MAD) [40] with the
sign indicating whether the upper (e.g. positive) or lower (e.g.
negative) anomaly detection boundary was crossed. The x-
axis and y-axis represent either the source or destination of
the cluster pairs whose interactions are studied. The values
of the heat map show the MAD deviations observed between
the interacting cluster pair and is assigned a color based on
the color map where the color black indicates no deviation
and warmer (calmer) colors represent anomalous traffic char-
acteristic deviating above (below) the median traffic volume.
In the observed traffic shift, we were quickly able to identify
the cluster pairs impacted by the anomaly (e.g. |dev|> 5 in
Figure 9) that appear as the red, orange, and blue cells in the
heatmap, filter away clusters not impacted by the anomaly
that appear as black cells in the heatmap, and provide a project
wide summary of the anomaly.

Structural change due to VM migrations. This anomaly
was reported by the internal anomaly detector. Our
CloudCluster-based anomaly detector identified a sequence
of structural changes across successive aggregation window.
Recall that clusters are distinguished both by function and lo-
cation (§4.2). In this case, the structural changes were caused
by a migration of VMs from one server to another due to
scheduler-driven evictions. The migration was spread out

Region A
Region B
Region C
Region D

In
te

ra
ct

io
n

B
as

ed
 R

eg
io

na
l S

co
re

Figure 10: Regional anomaly scores during VM evic-
tion/migration

over multiple aggregation window, so our detector noticed
a sequence of structural changes corresponding to progres-
sive migration of VMs from one server to another. Figure
10, shows the regional-score, an average of all the cluster
to cluster deviation scores weighted by the number of VM
communication pairs, computed for every region. The recur-
ring structural changes manifest as plateaus and valleys in
the regional score observed. The valleys represent the time
windows where the new cluster behaviour is learnt and clus-
ters behave as normal, while the plateau’s illustrate the time
windows where there is a migration storm (e.g. significant
number of VM migrations).

Load increase. A customer reported, to the cloud provider, a
trouble ticket asking to root cause a missed service-level agree-
ment. The CloudCluster-based anomaly detector identified a
sudden increase of external traffic to clusters with memcached
servers in one of the customer’s projects. (CloudCluster mod-
els external traffic as a single node in the inter-cluster graph).
This was also concluded in the manual postmortem of the
event. Similar to Figure 9 where we characterize the devi-
ation in cluster pair interactions, here we observed a drift
in interactions against logical clusters (e.g. may not contain
VMs such as client IP) representing connections external to
the project. Using this, we identified the culprit traffic flows
through heavy hitter analysis and their origin, which happens
to be a project that auto scaled to keep up with traffic de-
mand and subsequently flooded the memcached projects with
requests.

Structural change due to project reconfiguration. Our in-
ternal anomaly detector flagged anomalous traffic for a cloud
provider. The CloudCluster-based anomaly detector identified
a structural change: two clusters were removed from the graph
and one was added. The two initial clusters corresponded to
a singleton cluster containing a master VM and another con-
taining 120 worker VMs. The new cluster contained the 121
VMs, encompassing both the master and the workers. In this
case, it turns out that the customer had initiated the structural

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1229

0

1
2

Figure 11: VMxVM Communication Graph (grouped by cluster
assignment)

change, decommissioning the older VMs in favor of another
set of VMs as part of an upgrade. Figure 11 shows the project
communication structure using a VMxVM matrix where the
values of the heatmap show the number of bytes sent between
VMs log scaled (e.g. white represents no communication and
warmer colors depict higher bandwidth consumption). The
VMs in the rows and columns are sorted by their cluster as-
signments wherein they are grouped and identified by the
color strip (e.g. cluster id) that appear on the top and left side
of the heatmap (e.g. blue, yellow and green). On visualizing
the project structure using this heatmap, the aforementioned
project re-instantiation evolves in the following manner: a)
Initially the top-left sub-structure (e.g. one master, 120 work-
ers) operated devoid of the bottom-right substructure. b) After
a downtime where the cluster-to-cluster deviation scores ex-
ceed a predefined threshold, we observed the bottom-right
structure, which had displaced the other sub-structure. There-
fore, by analyzing the traffic patterns, the network-engineer
can identify changes to the project structure.

1230 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Zeta: A Scalable and Robust East-West Communication Framework in
Large-Scale Clouds

Qianyu Zhang1, Gongming Zhao1∗, Hongli Xu1∗ , Zhuolong Yu2, Liguang Xie3

Yangming Zhao1, Chunming Qiao4, Ying Xiong3, Liusheng Huang1

1University of Science and Technology of China,
2Johns Hopkins University, 3Futurewei Technologies, 4SUNY at Buffalo

Abstract
With the broad deployment of distributed applications on
clouds, the dominant volume of traffic in cloud networks
traverses in an east-west direction, flowing from server to
server within a data center. Existing communication solutions
are tightly coupled with either the control plane (e.g., pre-
programmed model) or the location of compute nodes (e.g.,
conventional gateway model). The tight coupling makes it
challenging to adapt to rapid network expansion, respond to
network anomalies (e.g., burst traffic and device failures), and
maintain low latency for east-west traffic.

To address this issue, we design Zeta, a scalable and robust
east-west communication framework with gateway clusters in
large-scale clouds. Zeta abstracts the traffic forwarding capa-
bility as a Gateway Cluster Layer, decoupled from the logic
of control plane and the location of compute nodes. Specif-
ically, Zeta adopts gateway clusters to support large-scale
networks and cope with burst traffic. Moreover, a transpar-
ent Multi IPs Migration is proposed to quickly recover the
system/devices from unpredictable failures. We implement
Zeta based on eXpress Data Path (XDP) and evaluate its scal-
ability and robustness through comprehensive experiments
with up to 100k container instances. Our evaluation shows
that Zeta reduces the 99% RTT by 5.1××× in burst video traffic,
and speeds up the gateway recovery by 10.8××× compared with
the state-of-the-art solutions.

1 Introduction

With an increasing number of distributed applications (e.g.,
MapReduce [82] and Elasticsearch [32]) on the clouds, east-
west communication between instances has become the ma-
jority load (even up to 75% [17]) in cloud networks [65]. In
addition, cloud providers usually offer isolation for tenants
through Virtual Private Cloud (VPC) [77]. Therefore, it is
essential for cloud networks to support high-speed and reli-
able intra-VPC communication [83]. However, two factors
∗Gongming Zhao and Hongli Xu are the co-corresponding authors.

bring much pressure on cloud networks. On one hand, a large-
scale cloud can accommodate over 100k servers and millions
of instances with Pbps bandwidth [7], bringing congestion
risks to the network. According to the monitoring log of a
cloud with 1,500 servers, we can observe congestions that
last over 1s for more than 12,500 times in one day [38]. On
the other hand, containerization leads to centralized startup
and short life cycles of instances, which bring great dynamics
to the network. For example, Google launches several billion
containers per week into Google Cloud [31, 50].

As a result, the east-west communication between instances
faces several challenges in large-scale and highly dynamic
cloud networks. (1) Scalability. The expansion of the in-
stances scale in cloud networks leads to a rapid increase in
forwarding rules consumption. For example, the control plane
will install 487M rules for a preprogrammed network with
40k instances [22], which brings high latency on the rules
lookup and traffic forwarding. Therefore, installment of nu-
merous rules will limit the size of a single VPC and the whole
network. (2) Robustness. Although the failure probability of
a specific equipment is usually low, network abnormal events
in large-scale clouds are frequent and inevitable, including
device failures [18, 59] and burst traffic [68, 81]. They pose
severe network congestion/interruption and degrade the ten-
ants’ experience. (3) Latency. The latency of configuring
forwarding rules and establishing/resuming communication
is a crucial metric. When instances launch/migrate, some pre-
vious solutions require the control plane to inform all relevant
hosts and install/update rules, which especially affects short-
lived tasks. For example, a function task (e.g., MilliSort and
MilliQuery [47]) usually completes in milliseconds, while
it may take a few seconds to launch a function instance and
establish connection for it.

The existing east-west communication solutions in cloud
networks are usually divided into two main categories. One
is the hardware solutions, such as AWS Nitro System [6, 67],
Azure FPGA-based SmartNIC [28, 46, 61] and AliCloud P4-
based Gateway [57]. The other is the software solutions,
including the preprogrammed model (e.g., VMware NSX

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1231

Network Node

VM1
Host

VM2
Host

B- Traffic through DVR

A- Unicast

A- Multicast

B- Add
Routing Rules

A: Layer-2
B: Layer-3

qrouter qrouterOVS OVS

(a) Neutron Model

Control Plane

Host

VM2

OVS

VM1

Host

VM4VM3

 Direct Path

 Pre-install Rules

OVS

(b) Preprogrammed Model

Sender
Host

Gateway

 Header Packets

 Report
Elephant

Flows

VM
Controller

 Offload
 Rules

VM1 VM2

 Direct Path

VM3 VM4
Receiver

Host

OVS OVSFlow
Detector

Flow
Detector

(c) Gateway Model

Figure 1: Three Typical East-West Communication Models. (a) Neutron model realizes layer-2 communication by learning MAC
address and utilizes DVR (qrouters) for layer-3 communication. (b) Preprogrammed model pre-installs all potential rules when
launching VMs. (c) Gateway model pre-installs default rules pointing to the gateway on the host. The gateway forwards the
header packets, and the direct path rules of elephant flows will be offloaded to the source hosts.

[39, 56]) and the gateway model (e.g., Google Cloud Hov-
erboard [22]). Considering the high cost and long develop-
ment cycles of hardware, software solutions have become
the preferred choice for many medium-sized cloud providers.
However, the existing software solutions also face several
critical disadvantages (see §2.1 for details). First, the prepro-
grammed model pre-installs numerous rules for VMs and is
coupled with the control plane. The conventional gateway
model depends on fixed gateways allocated for host zones
and is coupled with the location of compute nodes. Hence,
they lack the scalability or robustness to adapt to large-scale
networks. Second, the existing control loops are complex,
which aggravates the recovery delay in network abnormal
events, including device failure/overload and VM migration.

To overcome the above challenges, we propose a scalable
and robust east-west communication framework in large-scale
clouds, called Zeta. Zeta abstracts the traffic forwarding capa-
bility as a gateway cluster layer, decoupled from the location
and logic of other modules. Specifically, Zeta mainly proposes
the following innovative designs. (1) Zeta utilizes gateway
clusters to improve the fault tolerance of a single gateway
and leverages eXpress Data Path (XDP) [36] to accelerate
gateway forwarding, thereby enhancing the network scalabil-
ity and robustness. (2) Zeta adopts the flow table and group
table [84] to realize the intra-cluster gateway load balancing.
(3) Zeta proposes Multi IPs Migration to achieve gateway
fast recovery, which implements failover by migrating the
vIPs of the failed gateways. This scheme avoids updating the
on-host default rules pointing to the gateways, making failure
recovery transparent to hosts/tenants.

The main contributions of this paper are as follows:
• We analyze the pros and cons of existing typical east-

west communication models in large-scale clouds and
present the design principles for our framework.

• We design a prototype framework, called Zeta, to achieve
scalable and robust east-west communication in large-
scale clouds. Zeta is publicly available at https://
github.com/futurewei-cloud/zeta/.

• We evaluate the robustness and scalability of Zeta
through comprehensive experiments. Evaluation results
show that Zeta reduces the 99% RTT by 5.1××× in burst
video traffic, and speeds up the gateway recovery by
10.8××× compared with the state-of-the-art solutions.

2 Background and Motivation

We will analyze the limitations of three typical east-west
communication models in large-scale clouds and motivate our
work in this section.

2.1 Limitations of Prior Works

As an open source cloud computing architecture, OpenStack
helps quickly deploy small-scale clouds [63]. As shown in
Figure 1(a), OpenStack Neutron provides the networking ca-
pability for the clouds. Specifically, Neutron provides layer-2
networking communication by learning MAC address [55].
When two VMs in the same layer-2 domain communicate
for the first time, the source VM will broadcast ARP packets
to obtain the MAC address of the destination VM. However,
when encountering burst traffic in large-scale networks, it may
cause unnecessary layer-2 broadcasts and unicast flooding,
leading to poor robustness and scalability [71]. For layer-3
networking, all the traffic will be routed by specific network
node(s) in the initial OpenStack releases. It may suffer the
risk of network node(s) failure and high forwarding delay in
large-scale networks. To this end, OpenStack has released
the Distributed Virtual Router (DVR) since Juno version [13],
which can significantly mitigate the robustness and latency
issues. However, DVR suffers the oversize routing tables and
frequent synchronization problems, which also decrease the
network scalability [64]. In general, OpenStack gradually im-
proves forwarding performance through evolutions. But due
to the lack of targeted designs for large-scale clouds, it still
faces robustness and scalability issues.

1232 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/futurewei-cloud/zeta/
https://github.com/futurewei-cloud/zeta/

Table 1: Comparison of the advantages and disadvantages of existing models

Models Robustness Scalability Latency

Gateway Failure Burst Traffic VPC Size Global Scale Forwarding VM Launching VM Migration

Neutron [13, 55] # # # # # ! #

Preprogrammed [39] ! # # ! # #

Gateway [22] # # ! ! ! ! !

Ours: Zeta ! ! ! ! ! ! !

To reduce the forwarding latency between VMs, the prepro-
grammed model was adopted by many early platforms, such
as VMware NSX [39, 56]. As shown in Figure 1(b), the con-
trol plane pre-installs all potential rules when launching VMs,
as it cannot exactly predict which pairs of VMs will commu-
nicate. The traffic between VMs will be forwarded directly
with low delays. However, the preprogrammed model brings
some nonnegligible system overhead. First, it will pre-install
a quadratic number of rules on hosts, which limits the network
scalability. Specifically, in a cloud network with h hosts and
n VMs, 2n rules should be pre-installed before launching a
new VM in the worst case, and there will be O(n×h) rules in
the system. A massive number of pre-installed rules will slow
down the rules lookup and traffic forwarding, thus limiting
the network scale. Second, numerous preprogrammed rules
seriously delay the VMs deployment/migration. The control
plane needs to pre-install/update all potential rules on hosts,
which will cause a significant delay in communication estab-
lishment/recovery. For example, the preprogrammed model
takes 74 seconds to install 487M rules for a large network
with 10k hosts and 40k VMs [22,39]. Above system overhead
leads to poor scalability and flexibility of the preprogrammed
model, especially in large-scale cloud networks.

To overcome the disadvantages of the former two models,
the gateway model on-demand installs rules, and has been
widely adopted by cloud providers, such as Google Cloud
Hoverboard [22]. As shown in Figure 1(c), the gateway model
organizes all servers into host zones. Host zone/cluster is a
collection of colocated machines with uniform network con-
nectivity, each of which is equipped with a master gateway
and several backups. This model only pre-installs default
rules pointing to the gateway on the host’s vSwitch. When a
new flow arrives, the vSwitch sends the header packets to the
gateway according to the default rules. Then, the gateway for-
wards these packets and offloads direct path rules for elephant
flows [22], so that the subsequent packets of those elephant
flows will be forwarded to the destination directly.

The gateway model improves the network scalability
through on-demand rules offloading. However, it allocates
a fixed number of gateway(s) to each host zone and may en-
counter the robustness issues. 1) Gateway failure. Although
the master-backup gateway model provides disaster tolerance,
it will take a long time to migrate all the traffic from the mas-

ter gateway to the backup ones, and cannot effectively cope
with gateway failures. For example, it takes 260-310ms [72]
to inform 14 affected hosts and update the default entries on
each OVS. The recovery delay far exceeds the carrier-grade
requirements of 50ms [52, 72, 78]. The network interruption
caused by the excessive recovery delay will seriously decrease
the QoS. 2) Burst traffic. The gateway model only assigns a
master gateway to each host zone. When a host zone encoun-
ters burst traffic, the corresponding master gateway will be
easily overloaded (especially when the control plane cannot
detect and offload high bandwidth flows immediately).

2.2 Our Intuitions
As summarized in Table 1, the gateway model combines the
advantages of both Neutron and Preprogrammed model in
terms of scalability and latency. However, the existing gate-
way model usually assigns fixed gateway(s) to each host zone.
Its gateways incur a high risk of overload/failure under ab-
normal events, including burst traffic and gateway failures.
A natural solution is to deploy multiple master gateways in
a host zone to alleviate the impact of burst traffic or abnor-
mal events. However, the gateways need to be provisioned
for peak bandwidth usage, making it difficult to efficiently
schedule gateway resources.

Another intuitive solution is to organize all gateways into a
large virtual cluster to improve disaster tolerance. The new ar-
rival flows will be forwarded to gateways through ECMP [69].
However, once VMs launching/migration occurs, the control
plane should notify all gateways to update the forwarding
rules, which brings high synchronization overhead on both
the gateways and the control plane [60]. For example, as-
suming that a large datacenter contains 500 gateways and
launches 3k containers per second [31, 50]. The controller
needs to send 1.5M update messages in one second, which
poses a severe risk of control plane overload. Obviously, this
solution is not feasible for large-scale clouds.

In order to integrate the pros, but mitigate the cons of mod-
els discussed above, we divide all gateways into multiple clus-
ters. A gateway cluster can effectively improve fault tolerance
while reducing the synchronization overhead, as the controller
only needs to push latest forwarding rules to the gateways of
one cluster every time. Moreover, we abstract the gateways’

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1233

forwarding capability as Gateway Cluster Layer, which is de-
coupled from the location and logic of other planes/modules.
On the one hand, we utilize gateway clusters independent of
the compute nodes to enhance robustness and achieve high
performance. We adopt the Multi IPs scheme, which is trans-
parent to hosts/tenants to achieve gateway fast recovery. The
independence of gateway cluster gives us flexibility in build-
ing high-performance data plane. We choose XDP as the data
plane of Zeta, because of its integration with Linux kernel
and similar speed as DPDK [24]. On the other hand, the new
framework allows easy integration with existing cloud plat-
forms. Thus, we can make full advantage of existing designs,
such as Open vSwitch (OVS) [58] group table. According to
the above ideas, we design a scalable and robust east-west
communication framework in large-scale clouds to support
high-performance traffic forwarding.

3 System Design

3.1 Design Goals
Zeta is an east-west communication framework with gateway
clusters in large-scale clouds. Our design goals are as follows:

• Robustness: High reliability is the core requirement of
east-west communication, especially for cloud providers.
In particular, Zeta focuses on effectively dealing
with burst traffic and abnormal events (e.g., gateway
failure/overload/expansion), to avoid network conges-
tion/interruption degrading the tenants’ experience.

• Low Latency: Since east-west traffic is very sensitive
to latency. Zeta aims to reduce the latency of the traf-
fic forwarding through the high-performance in-kernel
fast-path. In addition, the lightweight control loop helps
reduce the delay of VMs launching/migration.

• Scalability: With the rapid growth of cloud scale, Zeta
should better support large-scale virtual networks up to
100k instances.

• Compatibility: Zeta is open source and can also serve
as a common hosting platform to integrate customization
network functions into the overall virtual networking.

3.2 System Overview
As shown in Figure 2, to realize the above design goals, we
propose an efficient east-west communication framework,
called Zeta, which consists of three core modules: Gateway
Cluster, On-host Forwarding and Framework Management.

Gateway Cluster Layer establishes a forwarding network
based on VXLAN tunnel [48]. It leverages XDP to pro-
vide high-performance traffic forwarding and on-demand
rules offloading for tenant instances (§4.2). The application

Zeta
Agent

Host1

OVS

Host2

Node1

Gateway Cluster 1

Node2

Gateway Cluster N

Node2 Node3

Framework Management Layer

VM VM VM

On-host
Forwarding Layer Header Packets

 OAM Packet

 Direct Path Zeta
Agent

OVS

VM

Controller
(K8S)

Gateway Cluster Layer

Node1

VM VM

Figure 2: Zeta Framework Overview. Gateway Cluster pro-
vides high-performance traffic forwarding and on-demand
rules offloading for tenant instances. On-host Forwarding
transmits traffic according to default/direct rules and achieves
the intra-cluster gateway load balancing through group tables.
Framework Management manages the whole network and
further improves the system robustness through scheduling.

of gateway cluster ensures better scalability and robustness.
Gateways detect the elephant flows and sends OAM (Opera-
tions, Administration and Maintenance) packets to the source
hosts, which contain direct path rules (§4.3). In addition, Zeta
adopts Multi IPs Migration to achieve fast recovery from gate-
way failure/overload/expansion, which makes failure recovery
transparent to hosts/tenants (§4.4).

On-host Forwarding Layer transmits traffic according to
the rules on OVS. Before deploying a new VPC, a default rule
will be pre-installed on the host, which consists of a flow entry
and a group entry to achieve the intra-cluster gateway load bal-
ancing (§5.1). When two VMs communicate for the first time,
the header packets will be sent to a specific gateway according
to the default rule. Each host deploys a Zeta Agent, which is
responsible for parsing OAM packets and installing the direct
path rules on the on-host OVS. In addition, the lightweight
control loop based on Zeta Agent can make a quick response
to network adjustments, such as passive instance migration
(§5.2).

Framework Management Layer manages the whole net-
work and further enhances the robustness of gateway clus-
ters. When Zeta is initialized, the management layer will
determine the VPC-cluster mapping for inter-cluster load bal-
ancing (§6.1). To deal with the abnormal events and traffic
dynamics, the Multi IPs Scheduler will dynamically adjust
the configurations (e.g., multi IPs allocation and cluster parti-
tion), thereby avoiding overload of partial clusters for better
robustness (§6.2).

1234 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

4 Gateway Cluster Design

4.1 Gateway Cluster Overview

Zeta Gateway Cluster establishes a VXLAN-based forward-
ing network. Specifically, it provides high-performance traf-
fic forwarding and on-demand rules offloading for tenant in-
stances with scalability and robustness guarantee. As shown
in the left plot of Figure 3, Gateway Cluster Layer consists of
a cluster controller and several gateway clusters.

Cluster Controller contains management and scheduling
logic for gateway clusters. On the one hand, it facilitates the in-
teraction with the Framework Management Layer through its
Northbound RESTful API, such as receiving forwarding rules.
On the other hand, it manages the gateway clusters and main-
tains the gateways load balancing through its Southbound API
based on gRPC [66]. Cluster Controller is deployed within its
own Kubernetes cluster hosted on Zeta control node(s).

Gateway Clusters constitute the data plane of the forward-
ing network. We divide all gateways into several clusters to
achieve the robust gateway forwarding. In practice, each clus-
ter consists of several isomorphic gateways, which store the
same forwarding rules to collectively provide traffic forward-
ing and rules offloading services for tenant instances. Each
gateway contains the Forwarding Module (FWD) and the
Distributed Flow Table Module (DFT). Specifically, FWD
forwards the packets to the destination hosts and offloads
direct forwarding rules to the source hosts for those elephant
flows. DFT is a lightweight key-value store, which maintains
a consistent forwarding table on each gateway of a cluster.
When the forwarding table changes (e.g., instances launch-
ing/migration), the cluster controller will push the latest rules
to each gateway of the corresponding cluster. In addition,
there is no state synchronization among gateways (in §4.3).

4.2 XDP-based Traffic Forwarding

The forwarding module of a Zeta gateway is implemented
based on XDP [36] to improve the forwarding perfor-
mance and reduce the transmission latency. XDP is a high-
performance and programmable network data path, which can
directly process layer-2 frames at the NIC driver and hence
bypass the kernel network stack [12, 36, 79]. As illustrated in
the right plot of Figure 3, we converge the forwarding, com-
puting and storage functions together, which eliminates the
overhead of network stack processing [14, 49].

Forwarding Module works at the NIC driver and can di-
rectly operate on raw Ethernet frames. The workflows of
XDP-based forwarding program are as follows: (i) Receiving
header packets of the source instance from the NIC RX buffer.
(ii) Obtaining the forwarding rule of the target instance by
querying the storage module, that is, determining the desti-
nation host of the traffic. (iii) Parsing the protocol field of
VXLAN inner packets. ARP messages will be directly re-

Node1

Zeta Gateway Cluster

Cloud Management Plane

DFT

FWD

DFT

FWD

Node2

Zeta Manager

RESTful API

gRPC

Node 1

Zeta Gateway Cluster

Cloud Management Plane

DFT

FWD

DFT

FWD

Node 2

Zeta Manager (K8S)

gRPC

DFT

FWD

Node N

·······

Zeta Manager (K8S)

User Space

Kernel Space

NIC

DFT

FWD (XDP)
NIC Driver

eBPF
maps

Network
Stack

Flow Table
RESTful API

Node 1

Gateway Cluster N

Framework Management Layer

DFT DFT

Node 2

Cluter Controller (K8S)

gRPC

DFT

Node N

·······

User

Kernel

NIC

DFT

FWD (XDP)NIC Driver

eBPF
maps

Network
Stack

Rules
RESTful API

Gateway Node

Forwarding
Module

Storage
Module

FWD FWD FWD

Figure 3: Illustration of Gateway Cluster Design. The left plot
is the overview of gateway cluster and the right plot is the
implementation details of XDP-based gateway.

sponded to the source instance, while other types of packets
will be forwarded to the destination. (iv) Sending OAM (Oper-
ations, Administration and Maintenance) packets containing
direct rules to the source hosts for the elephant flows.

Storage Module consists of several eBPF maps [2, 19].
These maps are key-value stores [29] that serve as the data
channel between DFT and FWD. The forwarding module will
also cache the real-time information of flows in eBPF maps.
For example, FWD will count the OAM packets generated
for each flow to avoid repeatedly offloading one flow.

4.3 Gateway Flow Detection

In order to further reduce the rules stored on the hosts, so as
to conserve memory and reduce the forwarding delay caused
by rules lookup. Zeta adopts XDP’s high-performance packet
processing features to detect elephant and mice flows on the
gateway, which can improve the efficiency of the detection
program and the system’s robustness. When encountering
burst traffic generated by a simultaneous batch of workloads
(e.g., MapReduce [82]), the on-host flow detection program of
existing gateway model may be overloaded, as its host agent
is usually equipped with limited resources, e.g., 1 CPU core
and 1.5GB memory [22]. In contrast, the additional overhead
of detecting elephant flows is almost negligible for the XDP-
based gateways of Zeta while forwarding traffic.

When traffic arrives at the XDP forwarding module, it will
accumulate the total size of each flow in a certain period
and store the records in an eBPF LRU Hash map [44, 79].
If the cumulative size of a flow exceeds the threshold (e.g.,
20kbps [22]) before the next period, it will be identified as an
elephant flow and offloaded to the source hosts. Each flow is
only sent to a specific gateway according to the 5-tuple hash
(in §5.1), which avoids synchronization of flow size statistics
among gateways. In addition, Zeta will monitor the gateway
load. When a gateway’s CPU or memory utilization reaches
the threshold (e.g., 80%), the gateway will pause the elephant
flows detection and offload direct rules for all flows.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1235

4.4 Dealing with Failures through Multi IPs

The number of gateways in a cluster will change dynamically
due to gateway failures and scaling requirements, and the
hash modulo of the default rule will change accordingly (i.e.,
group entry buckets in §5.1). Therefore, we have to modify
all the installed default rules associated with the updated clus-
ter. To this end, massive affected hosts need to be informed,
which leads to heavy notification overhead and unacceptable
delay [54]. To address this issue, we design the Multi IPs
Migration. Briefly, each gateway node is logically assigned
multiple virtual IPs (vIPs), and the vIPs can be reallocated
among nodes. Tenant traffic is bound to vIPs and decoupled
from gateways.

The feature of XDP working in the layer-2 networking in-
spires a solution of gateway failure recovery. We propose the
Multi IPs scheme to achieve fast failure recovery. Specifically,
the cluster controller maintains a Multi IPs Mapping Table.
When a gateway cluster is initialized, each gateway node in
the cluster will be allocated several logical virtual IP-MAC
pairs, and send RARP packets [27] to add MAC table entries
on the connected ToR switch(es). It should be noted that these
vIPs and vMACs are not actually configured in the gateways’
NIC, as XDP program can directly operate on the raw Ether-
net frames. When a gateway fails, the cluster controller will
reassign the logical vIP-vMAC pairs of the failed gateway to
other healthy gateways in the cluster. Since the forwarding
rules maintained by each gateway in a cluster are consistent,
there is no synchronization overhead/delay among gateways
during failure recovery. Next, the healthy gateways that have
obtained migrated vIP-vMAC pairs will utilize RARP to in-
form the connected switch(es) to update MAC address table.
Then, the packets from instances can be correctly forwarded
to healthy gateways.

Figure 4 illustrates an example of fast recovery through
Multi IPs Migration. Initially, Gateway Cluster 1 contains
three gateway nodes, each of which is assigned with two vIP-
vMAC pairs, as shown in the Multi IPs Mapping Table. When
Node2 fails, the cluster controller will update the mapping
table, ip3-mac3 and ip4-mac4 originally assigned to the Node2
are reassigned to Node1 and Node3 respectively. Next, Node1
and Node3 utilize the RARP protocol to update the MAC
address table of the connected ToR switch, so that the packets
toward the failed Node2 will be immediately diverted to the
healthy nodes. As a result, the failure recovery is transparent
to hosts/tenants without modifying any default OVS entry
or on-host ARP cache that involves the failed gateway(s).
According to the experiments in §8.3.2, Zeta reduces the
average gateway recovery latency from 62ms to 5.5ms.

In conclusion, the Multi IPs Migration scheme only needs
to update the IPs mapping table and send the RARP packets
to ToR switches. The recovery process does not require the
participation of control plane or hosts. Therefore, the failure
recovery delay and the notification overhead can be almost

Gateway Cluster 1

Node2 Node3Node1
Node vIP vMAC

ip1
Node1

Node2

Node3

ip2

ip3

ip4

ip5

ip6

Node vMACvIP

Node1

Node3

ip1

ip2

ip3

ip4

ip5

ip6
1 2 3

×

 Node 1&3 Send RARP Packets

 Update Multi IPs Mapping Table:

OVS Default Rules (unchanged)

PortMAC

port2mac3

Table Match Actions
Flow Table

Group Table

VXLAN_VNI = 1 Group_id = 1

Group_id = 1

Output: ip1

Output: ip2
Output: ip3

Output: ip4

 Update ToR Switch MAC Table:

mac1

mac4

mac2

mac3

mac5

mac6

mac1

mac4

mac2

mac3

mac5

mac6

Output: ip5
Output: ip6

mac4 port2

PortMAC

port1mac3

mac4 port3

ToR Switch

Host1

OVS1

VM1

OVS2

VM2

Host2

Default Rules
Unchanged

VPC1

4 5

ip2ip1 ip3 ip4 ip5 ip6

Figure 4: Dealing with Gateway Failures through Multi IPs.
When Node2 fails, the cluster controller first updates the map-
ping table to reassign the vIP-vMAC pairs to healthy gateways
(i.e. Node 1&3). Then Node 1&3 send RARP packets to up-
date the MAC entries on the connected switch. The recovery
scheme avoids modifying the default OVS rules on hosts.

negligible. It significantly enhances the robustness of gateway
clusters. In addition, the Multi IPs Migration can also be
applied in (1) Intra-cluster load adjustment and (2) Rapid
cluster scaling (covered in §6.2).

5 On-host Forwarding Design

5.1 Load Balancing through Group Tables
This section elaborates on the designs of default entries to
achieve intra-cluster gateway load balancing. In order to real-
ize the decoupling of gateway cluster and location (i.e., host
or host zone), we construct default rules in VPC granularity.
Thus, when launching a new VPC on a compute node, the
default rule of this VPC will be pre-installed by Zeta Agent
on the on-host OVS.

To achieve the gateway load balancing within a cluster,
we utilize the flow table and group table of on-host OVS to
orchestrate the gateway clusters. Specifically, each entry of
the group table points to a cluster, and the buckets in each
group entry specify the gateway nodes in this cluster. When
the header packet of a flow reaches OVS, it first matches
the flow entry and jumps to a group entry according to the
VPC identifier (VPC_id) so that the target cluster for this flow
is determined. The VPC-cluster mapping algorithm will be
elaborated in §6.1. Then, the packet will be hashed to a bucket
in the group entry, which determines the target gateway for
this flow. The group entry selects the target gateway based on
the 5-tuple hash of a flow. Finally, the load balancing within
a gateway cluster can be guaranteed.

We give an example in Figure 5 to illustrate the intra-cluster
gateway load balancing with the flow table and group table.
Assuming that VM1 belonging to VPC1 communicates with
VM3 for the first time. When the header packet arrives at

1236 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Gateway Cluster 1

 Header Pkts. to ip3

VPC1

VPC2

Node2Node1

Host1

OVS1

VM1 VM2

OVS2

VM3 VM4

Host2

Gateway Cluster 2

Node4Node3

ToR Switch

1 2 3 4

5 6

ip4

Node vMACvIP

Node1 ip1

Multi IPs Mapping of Cluster 1

mac1

Match Actions

 -i OVS1 Flow Table

VXLAN_VNI = 1

VXLAN_VNI = 2

Group : 1

Group : 2

Node1 ip2 mac2

Group Identifier Action Buckets

Group_id = 1

Group_id = 2

Bucket 1 = Output:ip1

Bucket 2 = Output:ip2

Bucket 3 = Output:ip3

Bucket 4 = Output:ip4

 -ii OVS1 Group Table
Jump

Node2

Node2

ip3 mac3

ip4 mac4

ip3ip2ip1

Figure 5: Illustration of Interaction between Flow Table and
Group Table. When VM1 belonging to VPC1 communicates
with VM3 for the first time, Host1 lookups the OVS1’s default
tables, and the default gateway IP of VM1’s flow is ip2. Then,
Host1 sends the header packets of VM1 to Node2.

the OVS of Host1, the OVS first matches the flow entry with
VXLAN VNI=1 and jumps to the group entry with Group_id=1.
Each bucket in a group entry corresponds to the IP address of
a gateway node in the cluster, and the packet will be hashed to
a bucket according to its 5-tuple information. In our example,
the packet is hashed to bucket3, that is, the destination address
of the packet is ip3. Then, Host1 sends the header packets of
VM1 to Node2, and the gateway will forward these packets
and offload a direct rule to the source Host1.

5.2 Lightweight Control Agent
The lightweight control loop based on Zeta Agent can ef-
fectively reduce the recovery latency of the passive instance
migration, such as Kubernetes Pod Eviction [42]. In a Kuber-
netes cluster, when a compute node is out of resources, the
Kubernetes scheduler [43] will migrate the relevant pod(s)
to other host(s). Conventionally, Kubernetes does not inform
its networking plugin (e.g., Flannel [4] and Calico [1]) of
pod(s) migration actively. The networking plugin needs to
poll Kubernetes database (e.g., Etcd [3]) to obtain the latest
pod information. Therefore, the hosts cannot update the in-
stalled direct rules immediately. The traffic is still forwarded
to the former destination hosts, which results in a network
interruption between the affected pods.

Three steps are required in Zeta to restore communica-
tion: (i) Obtaining the latest forwarding rules. (ii) Redirecting
the packets toward the migrated pods to the correct destina-
tion. (iii) Updating the direct rules on the source hosts. We
hope Zeta Agent remains lightweight to occupy fewer host
resources. Meanwhile, Zeta gateways support the above opera-
tions. Thus, instead of directly implement above three steps on
agent, the traffic towards the migrated pods will be redirected
to the gateways and forwarded to the correct destinations.

Host1

Zeta
agent

Gateway

DFT

Host2

Zeta
agent

Host3

Zeta
agent

migrate

 Update Direct Path

 Redirect

 Direct Forwarding

 Forward Correctly

Etcd

 Lookup Etcd

Pod1 Pod2 Pod2

FWD

OVS1 OVS2 OVS3

Figure 6: Lightweight Control Agent on compute nodes.
When Pod2 is migrated, the flows sent to Pod2 will be redi-
rected to gateway. The gateway forwards the flows and queries
the database, then updates the direct path on the source host.

As illustrated in Figure 6, when Pod2 is migrated, the Zeta
Agent on Node2 will install an entry on OVS2 to redirect
all packets toward the Pod2 to the gateway. FWD on Zeta
gateway recognizes the redirected packets and reports their
destinations to DFT. DFT queries the latest location informa-
tion of Pod2 from Kubernetes database and updates the rules
cache of FWD. Then, FWD will forward the redirected pack-
ets to the correct destination Node3, and send OAM packets
to the source Node1. Finally, the Zeta Agent on Node1 will
update the direct forwarding rule to Pod2.

6 Framework Management Design

6.1 Gateway Cluster Mapping

When Zeta is initialized, the management layer will determine
the VPC-cluster mapping for inter-cluster load balancing.

Gateway Cluster Model. In the Zeta framework, we use
C = {c1,c2, ...,cn} to denote the gateway clusters, where
n = |C| is the number of clusters. For each gateway clus-
ter c, its forwarding capacity is denoted as B(c). We denote
V = {v1,v2, ...,vm} as the VPC set, where m = |V | is the
number of VPCs in the cloud. Let T = {t1, t2, ..., t|T |} denote
the tenants set and each tenant t ∈ T consists of a VPC set
Vt = {vt

1,v
t
2, ...,v

t
|Vt |}. Obviously, V =V1∪V2...∪V|T |. More-

over, the traffic demand of each VPC is denoted as f (v).
Problem Formalization. We define the gateway clusters

mapping (GCM) problem in the Zeta framework. To enhance
the system robustness and improve the QoS, we need to con-
sider the following two constraints. (1) VPC Constraint. A
VPC will be mapped to one and only one gateway cluster, as
all the vIPs of a group entry belong to the same cluster (§5.1).
(2) Tenant Constraint. We limit the number of gateway clus-
ters that each tenant can be mapped to. For security reasons,

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1237

we do not expect that burst/malicious traffic from a single
tenant will affect all gateway clusters.

Moreover, we use binary xc
v ∈ {0,1} to denote whether a

VPC v ∈V is mapped to a gateway cluster c ∈C or not. Let
binary yc

t ∈ {0,1} represent whether the gateway cluster c∈C
is assigned the VPCs belonging to tenant t ∈ T or not. The
objective of GCM is to achieve the load-balancing among all
gateway clusters. We formulate GCM as follows:

min λ

S.t.

∑
c∈C

xc
v = 1, ∀v ∈V

∑
v∈V

xc
v · f (v)≤ λB(c), ∀c ∈C

xc
v ≤ yc

t , ∀v ∈Vt,c ∈C, t ∈ T

∑
c∈C

yc
t ≤ k, ∀t ∈ T

xc
v ∈ {0,1}, ∀v ∈V,c ∈C

yc
t ∈ {0,1}, ∀t ∈ T,c ∈C

(1)

The first set of equations means that all traffic of a VPC will
be forwarded to one gateway cluster by default. The second
set of inequalities describes the traffic load on each gateway
cluster, where λ ∈ [0,1] represents the load balancing fac-
tor. The third set of inequalities indicates that the tenant t
is mapped to gateway cluster c only if VPC(s) of tenant t is
processed by cluster c. The fourth set of inequalities repre-
sents the Tenant Constraint, that is, the VPCs of a tenant will
be mapped to at most k gateway clusters. Our objective is to
achieve the load balancing among all gateway clusters, i.e.,
minimizing the load balancing factor λ.

We give an empirical formula to set the tenant constraint
k in §A.1, and propose a rounding-based algorithm for the
VPC-cluster mapping in §A.2.

6.2 Multi IPs Scheduler
The Multi IPs Scheduler executes the IPs migration scheme
proposed in §4.4. It dynamically updates the IPs allocations
to eliminate the overload of gateway clusters caused by the
burst traffic and abnormal events. In practice, when a gateway
exceeds the load threshold (e.g., 80%), it will immediately
report such overload to the control plane. Then the Multi IPs
Scheduler starts to perform the following two steps:

Step 1: Intra-Cluster Load Adjustment. The scheduler
first sorts all gateways of a cluster in the descending order
of their load. Next, the scheduler attempts to migrate a vIP-
vMAC pair from the overloaded gateway to the gateway with
the lightest load, and re-sorts gateways’ load. Then, the sched-
uler will repeat above IPs migration and gateway sorting pro-
cedure until none of the gateways in the cluster is overloaded.
If we cannot eliminate the overloaded gateways with step 1,
the scheduler will go to step 2.

Step 2: Cluster Scaling. If a cluster cannot eliminate over-
load through internal load adjustment, e.g., a legitimate VPC

has burst traffic. The scheduler will migrate gateways from
other clusters to this cluster or expand new gateways for this
cluster. The scheduler first sorts all the clusters by their aver-
age load in the descending order and attempts to reassign a
gateway from the least loaded cluster to the overloaded cluster.
We can utilize Multi IPs Migration to achieve rapid gateway
migration among clusters. However, if the gateway migration
causes overload risk to the source cluster, the scheduler will
directly expand the overloaded cluster with a new gateway.

7 Implementation

We implement Zeta based on Linux 5.4 kernel. The Cluster
Controller includes 3k lines of Python code, the XDP-based
gateway forwarding function includes 4.5k lines of C code,
and the Zeta Agent includes 2k lines of C++ code.

Zeta provides two deployment methods. One is based on
physical machines, and we give a best practice in §B.2. The
other is based on Kernel-based VMs (KVMs), which can
quickly deploy dozens of KVM-based gateways on several
physical machines (see §B.3 for more details).

8 Evaluation

We first conduct an ablation analysis to measure the perfor-
mance of Zeta gateway. We then test the robustness of Zeta
under burst traffic and abnormal events. Finally, we evaluate
the scalability of Zeta in public and private cloud scenarios.

8.1 Experimental Setting

Testbed Setups. We use 23 servers to build the testbed, all
running Ubuntu 18.04 with Linux kernel 5.4. Considering our
limited number of servers, we deploy KVM-based gateways
on several physical machines to simulate gateway clusters. In
addition, we launch a large number of container instances on
each compute node to evaluate scalability, because of limited
number of compute nodes. The scalability in this paper mainly
refers to the instance scale, instead of the host scale, as the
forwarding rules stored in the gateways and the tenant traffic
depend on the instance scale.

Specifically, 20 servers are compute nodes, each equipped
with dual 22-core Intel Xeon 6161 CPUs, 640GB memory
and an Intel XL710 40GbE NIC. The other 3 servers are used
to deploy gateway clusters, each equipped with dual 16-core
Intel Xeon E5-2697A CPUs, 256GB memory and an Intel
XL710 40GbE NIC. We deploy a total of 45 KVM-based
gateways on the 3 physical gateway machines. Each KVM-
based gateway is equipped with 4 vCPUs and 16GB memory.
For Zeta, we divide the 45 gateways into 10 clusters.

Moreover, according to the empirical data in [22], we set
the rules offloading threshold to 20kbps on the gateway.

1238 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Benchmarks. We compare the robustness and scalability
of Zeta with other three typical frameworks. The first frame-
work is the conventional gateway model [22], called GWZone,
and its gateway is modified based on the implementations of
Zeta’s gateway. It allocates a master gateway for each host
zone and equips backups to deal with gateway failure. Un-
like Zeta, GWZone detects elephant flows on compute nodes.
When GWzone faces gateway failure, it will update the de-
fault entries on affected hosts and migrate traffic to the backup
gateways. We equip GWZone with 9 additional backup KVM-
based gateways. As the backup gateways only consume ∼0.1
vCPU and ∼2GB memery in standby, they will not affect the
performance of the master gateways. The second one is the
OpenStack Neutron [55], which provides layer-2 network-
ing communication by learning MAC address. The third one
is the Preprogrammed model, which is a simplified imple-
mentation of VMWare NSX [39, 56] as it is not open source.
The Preprogrammed model will pre-install all potential rules
before launching VMs.

2k 10k 100k
No. of eBPF Map Entries

0

1

2

3

Pa
ck
et
Ra

te
(M

pp
s) Forward Only

Forward + Offload
Forward + Detect
Forward + Offload + Detect

Figure 7: Packet Rate of a
Physical Core vs. Entries

100 200 300 400 500
No. of Flows

0

25

50

75

100

99
%

O
ffl
oa
d
La

te
nc
y
(m

s)

Flow Detection on Gateway
Flow Detection on Host

Figure 8: 99% Offloading La-
tency vs. No. of Flows

8.2 Microbenchmark
We first evaluate the impact of flow detection and rules of-
floading on forwarding performance with a physical core. We
use iPerf [37] to generate UDP traffic, and the inner packet
size is 64 bytes. In addition, the number of entries stored in
eBPF map ranges from 2k to 100k. As shown in Figure 7,
a single physical core can forward 1.86M packets per sec-
ond under 2k entries. When the rule offloading or flow de-
tection is supplied, the forwarding rate reduces by 8.1% to
1.71Mpps, as these two functions introduce additional eBPF
map read/writes for flow statistics. After adding both flow
detection and offloading functions on the gateway, the perfor-
mance decreases slightly. For example, the forwarding rate
only reduces by 1.2% from 1.71Mpps to 1.69Mpps under 2k
entries. This is because the map read/writes are the majority
overhead for forwarding, while the detection and offloading
functions require the same number of map read/writes. When
the number of entries scales to 100k, the forwarding rate with
rule offloading and flow detection drops by 14% to 1.45Mpps,
as the timeout mechanism of maps for flow statistics leads to
throughput degradation with the number of entries increasing.
We will optimize the timeout mechanism in future work.

We then measure the rules offloading latency with flow
detection on gateway and host. The gateway still performs
traffic forwarding and rules offloading with a physical core.
We use iPerf to generate UDP flows on a host, each of which
is 10Mbps. Figure 8 shows that flow detection on gateway can
reduce the 99th percentile of offloading latency by 22% under
500 flows compared with that on host, as the performance of
on-host detection is worse than XDP on gateways.

In general, flow detection on gateway can reduce the rules
offloading latency (e.g., reduce 22% as shown in Figure 8)
and has little impact on the forwarding performance (e.g.,
decrease 1.2% from 1.71Mpps to 1.69Mpps as shown in
Figure 7). Thus, Zeta detects elephant flow on gateways for
faster rules offloading with little detection overhead.

We also evaluate the linear scaling throughput of Zeta gate-
ways (§C.2).

8.3 Robustness Evaluation

In this section, we evaluate the performance of Zeta under
various burst traffic workloads and different abnormal events.
Based on the further transformation (§C.1) of Google cluster-
data [30], we deploy 100 VPCs with 2,000 VMs on the 20
compute nodes. Each VPC contains 10-90 VMs, and each
VM is equipped with 1 vCPU and 6GB memory.

8.3.1 Robustness under Burst Traffic

We compare the robustness of the Zeta gateway cluster with
GWZone under burst traffic of different applications. We
choose three typical traffic workloads according to the traffic
characteristics in cloud networks [8, 45], including MapRe-
duce, video and audio. Specifically, we deploy a MapReduce
cluster in each VPC and execute the word-counting applica-
tion on each MapReduce cluster simultaneously with input
size of 10GB, which mainly generates TCP elephant flows.
We also deploy video and audio applications in each VPC.
The video traffic contains UDP elephant flows with bandwidth
ranging from 2.4Mbps (720P video) to 100Mbps (8K video)
[10, 15]. The audio traffic consists of UDP mice flows whose
transmission rate ranges from 12.2kbps to 23.85kbps [41].

Figures 9-12 illustrate the performance metrics of Zeta
gateways under different burst traffic scenarios. Zeta assigns a
gateway cluster to each VPC, while GWZone assigns a master
gateway to each host zone. Thus, Zeta can achieve better load
balance to deal with various burst traffic. For example, Fig-
ure 9 shows that Zeta can reduce the maximum gateway load
by 18.5%, 33.9% and 25.2% compared with GWZone in the
three applications, respectively. In addition, it is noteworthy
that the acknowledgment and retransmission mechanism of
MapReduce’s TCP flows further increase the gateway load,
which leads to the highest gateway load compared with video
and audio streams. Moreover, Figure 11 shows the 99th per-
centile of normalized FCT, which is normalized to the FCT

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1239

MapReduce Video Audio
Workload Types

0

20

40

60

80

100

M
ax
.C

PU
U
til
.(
%
) Zeta

GWZone

Figure 9: Max. Gateway CPU
Utilization vs. Workload Types

MapReduce Video Audio
Workload Types

0

5

10

15

99
%
RT

T
(m

s)

Zeta
GWZone

Figure 10: 99% RTT vs. Work-
load Types

MapReduce Video Audio
Workload Types

1.0

1.2

1.4

1.6

1.8

2.0

99
%
N
or
m
al
iz
ed

FC
T Zeta

GWZone

Figure 11: 99% Normalized
FCT vs. Workload Types

MapReduce Video Audio
Workload Types

0

1

2

3

99
%
Pa
ck
et
Lo

ss
Ra

te
(%

)

Zeta
GWZone

Figure 12: 99% Packet Loss
Rate vs. Workload Types

0 5 10 15 20 25 30
Time (second)

0

20

40

60

80

100

M
ax
.C

PU
U
til
.(
%
) Zeta

GWZone

Figure 13: Max. Gateway
CPU Utilization over Time

0 25 50 75 100
Gateway CPU Load (%)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Zeta
GWZone

Figure 14: CDF of Gateway
CPU Utilization

2 4 6 8 10
No. of Burst Flows (×103)

0

20

40

60

80

100

G
at
ew

ay
sC

PU
U
til
.(
%
)

Zeta
GWZone

Figure 15: Gateway CPU Uti-
lization vs. No. of Burst Flows

0 5 10 15 20 25 30
Time (second)

0

2k

4k

6k

8k

10k

N
o.

of
D
ire

ct
Ru

le
s

Preprogrammed
Zeta
Neutron
GWZone

Figure 16: No. of Offloaded
Direct Rules over Time

without burst traffic. The 99% normalized FCT achieved by
Zeta is 21.3%, 14.8% and 26.8% lower than that of GWZone
under three scenarios, respectively. Although the gateway load
of audio traffic is low, it mainly consists of mice flows, which
will be forwarded by gateways without offloading direct path
rules. Thus, the cumulative delay of the audio flows caused
by gateway forwarding will be the largest among the three ap-
plications, which results in the maximum FCT of audio flows.
Besides, we observe from Figure 12 that the 99th percentile
of packet loss rate of Zeta under the three scenarios reduces
by 53.8%, 58.2% and 63.3% compared with GWZone. The
above results prove that Zeta can effectively conquer different
burst traffic and avoid gateways overhead.

Furthermore, we evaluate several performance metrics of
Zeta in burst video traffic compared with other frameworks,
as shown in Figures 13-18. During an interval of 0.5s, we
record the CPU utilization of gateways, number of offloaded
rules, rule offloading latency and FCT. Specifically, Figure 13
shows the maximum gateway load of Zeta and GWZone in
10k burst video flows. According to the experimental settings,
burst traffic are generated randomly in 5-15s, so the gateway
load increases sharply at the 5th second. Next, Zeta detects
elephant flows faster on the gateways, so it quickly achieves
the balance between offloading and newly coming elephant
flows. However, the mice flows continue to increase, so the
load of Zeta between 7-15s increases slightly on the basis of
stability. Meanwhile, the on-host flow detection of GWZone
suffers from high latency, and the elephant flows can not be
offloaded in time. Thus, the loads of GWZone’s gateways
increase sharply from 5s to 13s.

To further study how the workload of gateways distributes,
we show the gateways’ CPU utilization at the 12th second,
when Zeta and GWZone both suffer high gateway workload,
in Figure 15. Zeta achieves lower average load with more con-
centrated load distribution than GWZone, which means better
load balancing. Figure 14 shows the load CDF of gateways
in 10k burst video flows. GWZone’s backup gateways are
lightly loaded, while 25% master gateways are overloaded
(i.e., the CPU load exceeds 80%). The above results show the
superiority of Zeta gateway cluster in load balancing.

Figure 16 shows the number of offloaded direct forwarding
rules in 10k burst video flows. Due to the latency of the on-
host flow detection program, the number of offloaded rules
for GWZone increases slowly. The number of Zeta offloading
rules is increasing rapidly. Preprogrammed is constant at a
high point as its preprogrammed model. The trend of Neutron
is similar to Zeta. Figure 18 shows CDF of Normalized FCT
in 10k burst video flows. The results are similar to Figure 16.
The preprogrammed model performs the best, followed by
Zeta and Neutron, while GWZone is the worst.

8.3.2 Fast Recovery from Abnormal Events

We measure the recovery latency of Zeta under abnormal
events. Zeta adopts Multi IPs Migration for fast recovery,
while GWZone updates the default OVS entries on hosts.

Considering that anomaly detection is usually performed
by polling, we hope that the delay measurement of failure re-
covery can avoid the error caused by polling interval. Specifi-
cally, we first sequentially send Ping probe every 0.5ms. We

1240 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 2 3 4 5 6 7 8 9 10
No. of Burst Flows (×103)

0

100

200

300

400

99
%

O
ffl
oa
d
La
te
nc
y
(m

s)

Zeta
GWZone
Preprogrammed
Neutron

Figure 17: 99% Offload La-
tency vs. No. of Burst Flows

0.8 1.0 1.2 1.4 1.6
Normalized FCT

0.00

0.25

0.50

0.75

1.00

CD
F Zeta

GWZone
Preprogrammed
Neutron

Figure 18: CDF of Normal-
ized FCT

Overload Failure Expansion
Abnormal Event Types of Gateways
0

20

40

60

80

Re
co
ve
ry

La
te
nc
y
(m

s) Zeta
GWZone

Figure 19: Recovery Latency
vs. Abnormal Events

0 50 100 150 200 250
Time (ms)

0

20

40

60

80

100

G
at
ew

ay
CP

U
Lo

ad
(%

)

Recovery
Delay

Node1
Node2
Node3
Node4

Figure 20: CPU Load of Gate-
ways in a Cluster over Time

10 20 30 40 50 60 70 80 90 100
No. of Containers (×103)

0

1000

2000

3000

4000

La
un
ch
in
g
Ti
m
e
(s
ec
on
d) Preprogrammed

Zeta
GWZone
Neutron

(a) The public cloud

1 2 3 4 5 6 7 8 9 10
No. of Containers (×103)

0

50

100

150

200

La
un
ch
in
g
Ti
m
e
(s
ec
on
d) Preprogrammed

Zeta
GWZone
Neutron

(b) The private cloud

Figure 21: Launching Time vs. No. of Containers

20 40 60 80 100
No. of Containers (×103)

0

20

40

60

80

100

G
at
ew

ay
sC

PU
U
til
.(
%
)

Zeta
GWZone

(a) The public cloud

2 4 6 8 10
No. of Containers (×103)

0

20

40

60

G
at
ew

ay
sC

PU
U
til
.(
%
)

Zeta
GWZone

(b) The private cloud

Figure 22: Gateway CPU Utilization vs. No. of Containers

make an artificial abnormal event and notify the controller
immediately. Then, the controller performs the IPs Migration.
By counting the number of lost packets during the failure
recovery, we derive the recovery delay.

From the results in Figure 19, we observe that Zeta can
greatly reduce the recovery latency of the three abnormal
events compared with GWZone. For example, the gateway
failure recovery delay of Zeta is 5.5ms, which is ∼10.8×××
faster than that of GWZone, because GWZone needs to inform
each host and update ∼100 default entries on each OVS.

Figure 20 illustrates the load status of each gateway in a
cluster of Zeta during the overload event. Specifically, the
burst flows with default destination of Node1 arrive in 35ms,
and the CPU load of Node1 increases rapidly. When the gate-
way’s CPU utilization reaches the 90% threshold, the Multi
IPs Migration is triggered in 120ms, and three vIPs on Node1
are reassigned to the other three nodes with lighter load. Then,
the load of Node1 quickly decreases to a normal level within
19.5ms. It is intuitive that Multi IPs can effectively conquer
the overload of a single gateway and rapidly adjust the load
imbalance of intra-cluster.

8.4 Scalability Evaluation
In this section, we evaluate the scalability of Zeta in both
public and private cloud scenarios. We first measure the la-
tency of launching up to 100k container instances. Then, we
evaluate the performance metrics of Zeta and GWZone under
the large-scale cloud network.

The public cloud scenario contains a large number of in-
stances/VPCs. Based on the transformation (§C.1) of Google

cluster-data [30], we deploy 568 tenants and 1885 VPCs with
up to 100k containers on the 20 compute nodes. Each VPC
contains 2-364 containers. The private cloud scenarios have
a small number of VPCs/tenants, but a VPC may contain a
large number of instances. We deploy 52 tenants and 90 VPCs
with up to 10k containers on the 20 compute nodes, and each
VPC has a number of instances ranging from 2 to 2765.

According to the bandwidth distribution of flows in [22],
we let 16% of container pairs communicate, and the traffic
intensity of each flow ranges from 10kbps to 1Gbps.

8.4.1 Large-Scale Instances Launching

Figure 21 shows that the on-demand rules offloading model
has a lower instance deployment latency compared with the
preprogrammed model when spawning a large number of in-
stances in a large-scale cloud network. For example, when
launching 100k containers in the public cloud environment,
Zeta spends 3178 seconds and installs 12k default forwarding
rules, while Preprogrammed spends 4097 seconds and pro-
grams a total of 3.4M rules. That is, Zeta reduces the launch-
ing time by 24% and the number of rules by 278××× compared
with Preprogrammed. The reason for the above results is that
the on-demand rules offloading can avoid pre-installing nu-
merous entries for instances that never communicate with
each other, thus it reduces the latency of instances launching.

8.4.2 Large-Scale Instances Communication

Figures 22-24 show the advantages of Zeta gateway cluster un-
der large-scale networks. As shown in Figure 22, the average

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1241

10 20 30 40 50 60 70 80 90 100
No. of Containers (×103)

1.0

1.2

1.4

1.6

99
%

N
or
m
al
iz
ed

FC
T GWZone_mice

Zeta_mice
GWZone_elephant
Zeta_elephant

(a) The public cloud

1 2 3 4 5 6 7 8 9 10
No. of Containers (×103)

1.00

1.05

1.10

1.15

99
%

N
or
m
al
iz
ed

FC
T GWZone_mice

Zeta_mice
GWZone_elephant
Zeta_elephant

(b) The private cloud

Figure 23: 99% Normalized FCT vs. No. of Containers

10 20 30 40 50 60 70 80 90 100
No. of Containers (×103)

0.000

0.005

0.010

0.015

0.020

Pa
ck
et
Lo

ss
Ra

te
(%

) GWZone_mice
Zeta_mice
GWZone_elephant
Zeta_elephant

(a) The public cloud

1 2 3 4 5 6 7 8 9 10
No. of Containers (×103)

0.000

0.002

0.004

Pa
ck
et
Lo

ss
Ra

te
(%

) GWZone_elephant
Zeta_elephant
GWZone_mice
Zeta_mice

(b) The private cloud

Figure 24: Packet Loss Rate vs. No. of Containers

load of Zeta gateways is close to that of GWZone. However,
Zeta gateways achieve more concentrated load distribution
than GWZone and there is a big gap between maximum and
minimum load of GWZone gateways, which means the supe-
riority of Zeta gateway cluster in load balancing.

Next, we evaluate the impact of Zeta and GWZone gate-
ways on FCT. The Normalized FCT of elephant flows and
mice flows are calculated respectively. Figure 23 shows that
though Zeta and GWZone have the similar normalized FCT,
Zeta still outperforms GWZone by 7% in public cloud sce-
nario, as there is no flow detection load on hosts. In addition,
the FCT of elephant flows are both smaller than that of mice
flows, because the elephant flows will be forwarded directly.

Finally, we evaluate the packet loss rate of Zeta and GW-
Zone with offloaded elephant flows and non offloaded mice
flows to prove the scalability of Zeta. Figure 24 shows that the
packet loss rate of Zeta is lower than that of GWZone because
of the better load balancing effect of Zeta gateway cluster.
For example, in public cloud with the network scale of 100k
containers, the packet loss rate of elephant flows and mice
flows of Zeta is 24% and 37% lower than that of GWZone,
respectively. In addition, the packet loss rate of elephant flows
is higher than that of mice flows. The reason is that these
elephant flows will be forwarded by the gateways at the be-
ginning, and burst traffic will cause the gateways overload,
resulting in a higher packet loss rate. Therefore, the packet
loss of elephant flows is mainly concentrated in the initial
gateway forwarding period, and the packet loss of direct path
forwarding after offloading will be significantly reduced.

9 Related Work

Cloud and datacenter virtual networks. There are a multi-
tude of researches on the cloud/datacenter virtual networks,
including control plane [21, 26, 35, 40, 73] and data plane
[22, 39, 55, 61]. As a crucial solution, overlay network adopts
tunnel encapsulation protocols (e.g., VXLAN [48], NVGRE
[70], Geneve [33], etc) to build the scalable and flexible vir-
tual networks. Virtual network devices (e.g., vSwitch [58,76],
vRouter [69] and gateway [22, 57]) are essential in the cloud
networks, as they are dedicated to provide efficient, secure
and stable connections for tenants in clouds. In this paper, we

focus on improving the robustness of east-west forwarding
with the designs of gateway cluster and multi IPs migration.

High performance and programmable data plane. Data
plane is the most performance-critical part of the cloud net-
works, which is usually accelerated with specialized hardware
components and sophisticated software methods [9]. In hard-
ware, ASIC [57, 75], FPGA [16, 28, 46, 61] and network pro-
cessor [51, 53] can provide high-throughput and low-latency
packet processing. In contrast, software methods have the
advantage of fast and flexible iteration, including DPDK [24],
XDP [36], Netmap [62], etc. Though XDP is not the first
mover in this area, we choose XDP as the data plane of Zeta,
because of its integration with Linux kernel, interaction with
other kernel components and similar speed as DPDK.

eBPF and its applications. eBPF is an instruction set and
an execution environment inside the Linux kernel [79]. It
enables injecting custom code into the kernel through the
hooks. eBPF is extensively used in security [25], tracing [11]
and networking [20]. XDP is one of the most widely used
eBPF hooks for high-performance packet processing that can
bypass the kernel network stack [36].

10 Conclusion and Future Work

In this paper, we propose a scalable and robust east-west
communication framework in large-scale clouds, called Zeta.
Comprehensive experiment results show high robustness and
scalability of Zeta. For example, Zeta speeds up the gateway
failure recovery by 10.8××× compared with the existing solu-
tions. In future, we will optimize the timeout mechanism of
eBPF map to reduce the impact on forwarding performance.

Acknowledgments

We thank our shepherd Minlan Yu and anonymous reviewers
for their insightful comments. We also thank the open-source
community of Zeta project founded by Futurewei Technolo-
gies in 2019 and paper benefits from the original design and
implementation of Zeta project. The authors from USTC are
supported in part by the National Science Foundation of China
under Grant 62102392 and the National Science Foundation
of Jiangsu Province under Grant BK20210121.

1242 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Calico Project, 2022. https://www.tigera.io/
project-calico/.

[2] eBPF Maps, 2022. https://ebpf.io/
what-is-ebpf/#maps.

[3] Etcd: A distributed, reliable key-value store, 2022.
https://etcd.io/.

[4] Flannel Project, 2022. https://github.com/
flannel-io/flannel.

[5] David Ahern. XDP and the cloud: Us-
ing XDP on hosts and VMs, 2020. https:
//legacy.netdevconf.info/0x14/pub/slides/
24/netdev-0x14-XDP-and-the-cloud.pdf.

[6] Amazon AWS. AWS Nitro System, 2022. https://
aws.amazon.com/ec2/nitro/.

[7] Victor Bahl. Emergence of micro datacenter
(cloudlets/edges) for mobile computing. Microsoft De-
vices & Networking Summit 2015, 5, 2015.

[8] Theophilus Benson, Aditya Akella, and David A Maltz.
Network traffic characteristics of data centers in the wild.
In Proceedings of the 10th ACM SIGCOMM conference
on Internet measurement, pages 267–280, 2010.

[9] Roberto Bifulco and Gábor Rétvári. A survey on the pro-
grammable data plane: Abstractions, architectures, and
open problems. In 2018 IEEE 19th International Con-
ference on High Performance Switching and Routing
(HPSR), pages 1–7. IEEE, 2018.

[10] Kashif Bilal and Aiman Erbad. Impact of multiple video
representations in live streaming: A cost, bandwidth,
and QoE analysis. In 2017 IEEE International Confer-
ence on Cloud Engineering (IC2E), pages 88–94. IEEE,
2017.

[11] bpftrace. High-level tracing language for Linux systems,
2022. https://bpftrace.org/.

[12] Marco Spaziani Brunella, Giacomo Belocchi, Marco
Bonola, Salvatore Pontarelli, Giuseppe Siracusano,
Giuseppe Bianchi, Aniello Cammarano, Alessandro
Palumbo, Luca Petrucci, and Roberto Bifulco. hXDP:
Efficient Software Packet Processing on FPGA NICs. In
14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20), pages 973–990, 2020.

[13] Tuan Anh Bui and Marco Canini. Cloud network perfor-
mance analysis: an OpenStack case study. PhD thesis,
Master’s thesis, Université Catholique de Louvain, 2016.

[14] Qizhe Cai, Shubham Chaudhary, Midhul Vuppalapati,
Jaehyun Hwang, and Rachit Agarwal. Understanding
host network stack overheads. In Proceedings of the
2021 ACM SIGCOMM 2021 Conference, pages 65–77,
2021.

[15] Christopher Canel, Thomas Kim, Giulio Zhou, Cong-
long Li, Hyeontaek Lim, David G Andersen, Michael
Kaminsky, and Subramanya R Dulloor. Scaling video
analytics on constrained edge nodes. arXiv preprint
arXiv:1905.13536, 2019.

[16] Adrian M Caulfield, Eric S Chung, Andrew Putnam,
Hari Angepat, Jeremy Fowers, Michael Haselman,
Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-Young
Kim, et al. A cloud-scale acceleration architecture.
In 2016 49th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO), pages 1–13. IEEE,
2016.

[17] Qixiang Cheng, Meisam Bahadori, Madeleine Glick,
Sébastien Rumley, and Keren Bergman. Recent ad-
vances in optical technologies for data centers: a review.
Optica, 5(11):1354–1370, 2018.

[18] Sean Choi, Boris Burkov, Alex Eckert, Tian Fang,
Saman Kazemkhani, Rob Sherwood, Ying Zhang, and
Hongyi Zeng. Fboss: building switch software at scale.
In Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, pages
342–356, 2018.

[19] Cilium. BPF and XDP Reference Guide, 2022. https:
//docs.cilium.io/en/latest/bpf/.

[20] Cilium. eBPF-based Networking, Security, and Observ-
ability, 2022. https://cilium.io/.

[21] Andrew R Curtis, Jeffrey C Mogul, Jean Tourrilhes,
Praveen Yalagandula, Puneet Sharma, and Sujata Baner-
jee. Devoflow: Scaling flow management for high-
performance networks. In Proceedings of the ACM
SIGCOMM 2011 Conference, pages 254–265, 2011.

[22] Michael Dalton, David Schultz, Jacob Adriaens, Ahsan
Arefin, Anshuman Gupta, Brian Fahs, Dima Rubinstein,
Enrique Cauich Zermeno, Erik Rubow, James Alexander
Docauer, et al. Andromeda: Performance, isolation, and
velocity at scale in cloud network virtualization. In 15th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18), pages 373–387, 2018.

[23] Yaozu Dong, Xiaowei Yang, Jianhui Li, Guangdeng
Liao, Kun Tian, and Haibing Guan. High performance
network virtualization with SR-IOV. Journal of Parallel
and Distributed Computing, 72(11):1471–1480, 2012.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1243

https://www.tigera.io/project-calico/
https://www.tigera.io/project-calico/
https://ebpf.io/what-is-ebpf/#maps
https://ebpf.io/what-is-ebpf/#maps
https://etcd.io/
https://github.com/flannel-io/flannel
https://github.com/flannel-io/flannel
https://legacy.netdevconf.info/0x14/pub/slides/24/netdev-0x14-XDP-and-the-cloud.pdf
https://legacy.netdevconf.info/0x14/pub/slides/24/netdev-0x14-XDP-and-the-cloud.pdf
https://legacy.netdevconf.info/0x14/pub/slides/24/netdev-0x14-XDP-and-the-cloud.pdf
https://aws.amazon.com/ec2/nitro/
https://aws.amazon.com/ec2/nitro/
https://bpftrace.org/
https://docs.cilium.io/en/latest/bpf/
https://docs.cilium.io/en/latest/bpf/
https://cilium.io/

[24] DPDK. Data Plane Development Kit, 2022. https:
//www.dpdk.org/.

[25] Falco. Cloud Native Runtime Security, 2022. https:
//falco.org/.

[26] Andrew D Ferguson, Steve Gribble, Chi-Yao Hong,
Charles Edwin Killian, Waqar Mohsin, Henrik Muehe,
Joon Ong, Leon Poutievski, Arjun Singh, Lorenzo Vi-
cisano, et al. Orion: Google’s software-defined network-
ing control plane. In NSDI, pages 83–98, 2021.

[27] Ross Finlayson, Timothy Mann, JC Mogul, and Mar-
vin Theimer. RFC0903: Reverse Address Resolution
Protocol, 1984.

[28] Daniel Firestone, Andrew Putnam, Sambhrama Mund-
kur, Derek Chiou, Alireza Dabagh, Mike Andrewartha,
Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, et al. Azure accelerated networking: Smart-
nics in the public cloud. In 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
18), pages 51–66, 2018.

[29] Yoann Ghigoff, Julien Sopena, Kahina Lazri, Antoine
Blin, and Gilles Muller. BMC: Accelerating Mem-
cached using Safe In-kernel Caching and Pre-stack Pro-
cessing. In NSDI, pages 487–501, 2021.

[30] Google. Google cluster-data, 2020. https://github.
com/google/cluster-data.

[31] Google Cloud. Containers at Google, 2022. https:
//cloud.google.com/containers.

[32] Clinton Gormley and Zachary Tong. Elasticsearch: the
definitive guide: a distributed real-time search and ana-
lytics engine. " O’Reilly Media, Inc.", 2015.

[33] Jesse Gross, T Sridhar, P Garg, C Wright, I Ganga,
P Agarwal, K Duda, D Dutt, and J Hudson. Geneve:
Generic network virtualization encapsulation. IETF
draft, 2014.

[34] Gurobi. The Fastest Solver, 2022. https://www.
gurobi.com/.

[35] Soheil Hassas Yeganeh and Yashar Ganjali. Kandoo: a
framework for efficient and scalable offloading of con-
trol applications. In Proceedings of the first workshop
on Hot topics in software defined networks, pages 19–24,
2012.

[36] Toke Høiland-Jørgensen, Jesper Dangaard Brouer,
Daniel Borkmann, John Fastabend, Tom Herbert, David
Ahern, and David Miller. The express data path: Fast
programmable packet processing in the operating sys-
tem kernel. In Proceedings of the 14th international

conference on emerging networking experiments and
technologies, pages 54–66, 2018.

[37] iPerf. The TCP, UDP and SCTP network bandwidth
measurement tool, 2022. https://iperf.fr/.

[38] Srikanth Kandula, Sudipta Sengupta, Albert Greenberg,
Parveen Patel, and Ronnie Chaiken. The nature of data
center traffic: measurements & analysis. In Proceed-
ings of the 9th ACM SIGCOMM conference on Internet
measurement, pages 202–208, 2009.

[39] Teemu Koponen, Keith Amidon, Peter Balland, Martín
Casado, Anupam Chanda, Bryan Fulton, Igor Ganichev,
Jesse Gross, Paul Ingram, Ethan Jackson, et al. Net-
work virtualization in multi-tenant datacenters. In 11th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 14), pages 203–216, 2014.

[40] Teemu Koponen, Martin Casado, Natasha Gude, Jeremy
Stribling, Leon Poutievski, Min Zhu, Rajiv Ramanathan,
Yuichiro Iwata, Hiroaki Inoue, Takayuki Hama, et al.
Onix: A distributed control platform for large-scale pro-
duction networks. In OSDI, volume 10, pages 1–6, 2010.

[41] Linda Kozma-Spytek, Paula Tucker, and Christian
Vogler. Voice telephony for individuals with hearing
loss: The effects of audio bandwidth, bit rate and packet
loss. In The 21st International ACM SIGACCESS Con-
ference on Computers and Accessibility, pages 3–15,
2019.

[42] kubernetes Project. kubernetes Eviction Policy,
2022. https://kubernetes.io/docs/concepts/
scheduling-eviction/eviction-policy/.

[43] kubernetes Project. Kubernetes Scheduler, 2022.
https://kubernetes.io/docs/concepts/
scheduling-eviction/kube-scheduler/.

[44] Martin KaFai Lau. bpf: Improve LRU map lookup
performance, 2017. https://patchwork.ozlabs.
org/project/netdev/cover/20170901062713.
1842249-1-kafai@fb.com/.

[45] Jeongkeun Lee, Yoshio Turner, Myungjin Lee, Lucian
Popa, Sujata Banerjee, Joon-Myung Kang, and Puneet
Sharma. Application-driven bandwidth guarantees in
datacenters. In Proceedings of the 2014 ACM conference
on SIGCOMM, pages 467–478, 2014.

[46] Bojie Li, Kun Tan, Layong Luo, Yanqing Peng, Ren-
qian Luo, Ningyi Xu, Yongqiang Xiong, Peng Cheng,
and Enhong Chen. Clicknp: Highly flexible and high
performance network processing with reconfigurable
hardware. In Proceedings of the 2016 ACM SIGCOMM
Conference, pages 1–14, 2016.

1244 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.dpdk.org/
https://www.dpdk.org/
https://falco.org/
https://falco.org/
https://github.com/google/cluster-data
https://github.com/google/cluster-data
https://cloud.google.com/containers
https://cloud.google.com/containers
https://www.gurobi.com/
https://www.gurobi.com/
https://iperf.fr/
https://kubernetes.io/docs/concepts/scheduling-eviction/eviction-policy/
https://kubernetes.io/docs/concepts/scheduling-eviction/eviction-policy/
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
https://patchwork.ozlabs.org/project/netdev/cover/20170901062713.1842249-1-kafai@fb.com/
https://patchwork.ozlabs.org/project/netdev/cover/20170901062713.1842249-1-kafai@fb.com/
https://patchwork.ozlabs.org/project/netdev/cover/20170901062713.1842249-1-kafai@fb.com/

[47] Yilong Li, Seo Jin Park, and John K Ousterhout. Mil-
lisort and milliquery: Large-scale data-intensive com-
puting in milliseconds. In NSDI, pages 593–611, 2021.

[48] Mallik Mahalingam, Dinesh G Dutt, Kenneth Duda,
Puneet Agarwal, Lawrence Kreeger, T Sridhar, Mike
Bursell, and Chris Wright. Virtual extensible local area
network (vxlan): A framework for overlaying virtualized
layer 2 networks over layer 3 networks. RFC, 7348:1–
22, 2014.

[49] Ilias Marinos, Robert NM Watson, and Mark Hand-
ley. Network stack specialization for performance.
ACM SIGCOMM Computer Communication Review,
44(4):175–186, 2014.

[50] Jaehyun Nam, Seungsoo Lee, Hyunmin Seo, Phil Porras,
Vinod Yegneswaran, and Seungwon Shin. Bastion: A
security enforcement network stack for container net-
works. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20), pages 81–95, 2020.

[51] Netronome. Agilio CX SmartNICs, 2022. https://
www.netronome.com/products/agilio-cx/.

[52] B Niven-Jenkins, D Brungard, M Betts, N Sprecher, and
S Ueno. Requirements of an MPLS transport profile,
2009.

[53] Nvidia/Mellanox. Nvidia BlueField Data Process-
ing Units, 2022. https://www.nvidia.com/en-us/
networking/products/data-processing-unit/.

[54] Vladimir Olteanu, Alexandru Agache, Andrei Voinescu,
and Costin Raiciu. Stateless datacenter load-balancing
with beamer. In 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18), pages
125–139, 2018.

[55] OpenStack Project. OpenStack Basic Networking,
2022. https://docs.openstack.org/neutron/
latest/admin/intro-basic-networking.html.

[56] Marcus Oppitz and Peter Tomsu. Software defined vir-
tual networks. In Inventing the Cloud Century, pages
149–200. Springer, 2018.

[57] Tian Pan, Nianbing Yu, Chenhao Jia, Jianwen Pi, Liang
Xu, Yisong Qiao, Zhiguo Li, Kun Liu, Jie Lu, Jianyuan
Lu, et al. Sailfish: accelerating cloud-scale multi-tenant
multi-service gateways with programmable switches. In
Proceedings of the 2021 ACM SIGCOMM 2021 Confer-
ence, pages 194–206, 2021.

[58] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jack-
son, Andy Zhou, Jarno Rajahalme, Jesse Gross, Alex
Wang, Joe Stringer, Pravin Shelar, et al. The design
and implementation of open vswitch. In 12th USENIX

Symposium on Networked Systems Design and Imple-
mentation (NSDI 15), pages 117–130, 2015.

[59] Rahul Potharaju and Navendu Jain. Demystifying the
dark side of the middle: A field study of middlebox fail-
ures in datacenters. In Proceedings of the 2013 confer-
ence on Internet measurement conference, pages 9–22,
2013.

[60] Konstantinos Poularakis, Qiaofeng Qin, Liang Ma, Sas-
try Kompella, Kin K Leung, and Leandros Tassiulas.
Learning the optimal synchronization rates in distributed
SDN control architectures. In IEEE INFOCOM 2019-
IEEE Conference on Computer Communications, pages
1099–1107. IEEE, 2019.

[61] Andrew Putnam, Adrian M Caulfield, Eric S Chung,
Derek Chiou, Kypros Constantinides, John Demme,
Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth
Gopal, Jan Gray, et al. A reconfigurable fabric for
accelerating large-scale datacenter services. In 2014
ACM/IEEE 41st International Symposium on Computer
Architecture (ISCA), pages 13–24. IEEE, 2014.

[62] Luigi Rizzo. Netmap: A novel framework for fast packet
I/O. In 21st USENIX Security Symposium (USENIX
Security 12), pages 101–112, 2012.

[63] Tiago Rosado and Jorge Bernardino. An overview of
openstack architecture. In Proceedings of the 18th In-
ternational Database Engineering & Applications Sym-
posium, pages 366–367, 2014.

[64] Arsalan Saghir and Tahir Masood. Performance eval-
uation of openstack networking technologies. In 2019
International Conference on Engineering and Emerging
Technologies (ICEET), pages 1–6. IEEE, 2019.

[65] Ken-ichi Sato, Hiroshi Hasegawa, Tomonobu Niwa, and
Toshio Watanabe. A large-scale wavelength routing
optical switch for data center networks. IEEE Commu-
nications Magazine, 51(9):46–52, 2013.

[66] Keith Seymour, Hidemoto Nakada, Satoshi Matsuoka,
Jack Dongarra, Craig Lee, and Henri Casanova.
Overview of GridRPC: A remote procedure call API
for grid computing. In International Workshop on Grid
Computing, pages 274–278. Springer, 2002.

[67] Leah Shalev, Hani Ayoub, Nafea Bshara, and Erez Sab-
bag. A cloud-optimized transport protocol for elastic
and scalable hpc. IEEE Micro, 40(6):67–73, 2020.

[68] Danfeng Shan, Fengyuan Ren, Peng Cheng, Ran Shu,
and Chuanxiong Guo. Observing and mitigating micro-
burst traffic in data center networks. IEEE/ACM Trans-
actions on Networking, 28(1):98–111, 2019.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1245

https://www.netronome.com/products/agilio-cx/
https://www.netronome.com/products/agilio-cx/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://docs.openstack.org/neutron/latest/admin/intro-basic-networking.html
https://docs.openstack.org/neutron/latest/admin/intro-basic-networking.html

[69] Hua Shao, Xiaoliang Wang, Yuanwei Lu, Yanbo Yu,
Shengli Zheng, and Youjian Zhao. Accessing cloud
with disaggregated software-defined router. In NSDI,
pages 1–14, 2021.

[70] Murari Sridharan. Nvgre: Network virtualization us-
ing generic routing encapsulation. draft-sridharan-
virtualization-nvgre-00. txt, 2011.

[71] Piyush Raman Srivastava and Saket Saurav. Networking
agent for overlay L2 routing and overlay to underlay
external networks L3 routing using OpenFlow and Open
vSwitch. In 2015 17th Asia-Pacific Network Operations
and Management Symposium (APNOMS), pages 291–
296. IEEE, 2015.

[72] Dimitri Staessens, Sachin Sharma, Didier Colle, Mario
Pickavet, and Piet Demeester. Software defined network-
ing: Meeting carrier grade requirements. In 2011 18th
IEEE workshop on local & metropolitan area networks
(LANMAN), pages 1–6. IEEE, 2011.

[73] Yu-Wei Eric Sung, Xiaozheng Tie, Starsky HY Wong,
and Hongyi Zeng. Robotron: Top-down network man-
agement at facebook scale. In Proceedings of the 2016
ACM SIGCOMM Conference, pages 426–439, 2016.

[74] The kernel development community. Linux TUN/TAP
Device, 2022. https://www.kernel.org/doc/html/
latest/networking/tuntap.html.

[75] Barefoot Tofino. World’s fastest P4-programmable Eth-
ernet switch ASICs, 2018.

[76] William Tu, Yi-Hung Wei, Gianni Antichi, and Ben
Pfaff. Revisiting the Open vSwitch dataplane ten years
later. In Proceedings of the 2021 ACM SIGCOMM 2021
Conference, pages 245–257, 2021.

[77] Venkatanathan Varadarajan, Yinqian Zhang, Thomas
Ristenpart, and Michael Swift. A placement vulnerabil-
ity study in multi-tenant public clouds. In 24th USENIX
Security Symposium (USENIX Security 15), pages 913–
928, 2015.

[78] Luis Velasco. Recovery mechanisms in ASON/GMPLS
networks. Universitat Politècnica de Catalunya (UPC),
Barcelona, Spain, 2009.

[79] Marcos AM Vieira, Matheus S Castanho, Racyus DG
Pacífico, Elerson RS Santos, Eduardo PM Câmara
Júnior, and Luiz FM Vieira. Fast packet processing with
ebpf and xdp: Concepts, code, challenges, and applica-
tions. ACM Computing Surveys (CSUR), 53(1):1–36,
2020.

[80] Jason Wang. Accelerating VM network-
ing through XDP, 2017. https://events19.

linuxfoundation.cn/wp-content/uploads/2017/
11/Accelerating-VM-Networking-through-XDP_
Jason-Wang.pdf.

[81] Jingzhou Wang, Gongming Zhao, Hongli Xu, Yutong
Zhai, Qianyu Zhang, He Huang, and Yongqiang Yang. A
robust service mapping scheme for multi-tenant clouds.
IEEE/ACM Transactions on Networking, 2021.

[82] Weina Wang, Kai Zhu, Lei Ying, Jian Tan, and Li Zhang.
Maptask scheduling in mapreduce with data locality:
Throughput and heavy-traffic optimality. IEEE/ACM
Transactions On Networking, 24(1):190–203, 2014.

[83] Lizhao You, Hao Tang, Jiahua Zhang, and Xiao Li. Fast
configuration change impact analysis for network over-
lay data center networks. In 4th Asia-Pacific Workshop
on Networking, pages 8–15, 2020.

[84] Gongming Zhao, Hongli Xu, Shigang Chen, Liusheng
Huang, and Pengzhan Wang. Joint optimization of
flow table and group table for default paths in sdns.
IEEE/ACM Transactions on Networking, 26(4):1837–
1850, 2018.

A Additional Details of Cluster Mapping

A.1 Empirical Formula for Tenant Constraint
We use C = {c1,c2, ...,cn} to denote the gateway clusters,
where n = |C| is the number of clusters. In addition, let It
denote the number of instance owned by tenant t ∈ T . Then,
we use the following empirical formula to set the tenant con-
straint k:

k = dmaxt∈T{It}
∑t∈T It

×ne+1 (2)

For example, when our testbed in §8.4 contains 100k con-
tainer instances, the largest tenant has 27652 instances. We
set the tenant constraint k = 4, which means the VPCs of a
tenant will be mapped to at most 4 gateway clusters.

A.2 Rounding-Based Algorithm
To solve the problem in Eq. (1), we propose a rounding-based
gateway cluster mapping (RGCM) algorithm for the GCM
problem. The RGCM algorithm includes two steps. The first
step is to construct a relaxed version of GCM, named LP-
GCM, by relaxing the variable binary constraints. Specifically,
LP-GCM assumes that each flow can be splitable and for-
warded to multiple gateway clusters. Since LP-GCM is a lin-
ear programming, we can derive the fractional solutions {x̃c

v}
and {ỹc

t } with an optimization solver, such as Gurobi [34].
The optimal fractional result is denoted as λ̃.

The second step is to derive the integer solutions with
rounding scheme. The integer solutions are denoted as {x̂c

v}

1246 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.kernel.org/doc/html/latest/networking/tuntap.html
https://www.kernel.org/doc/html/latest/networking/tuntap.html
https://events19.linuxfoundation.cn/wp-content/uploads/2017/11/Accelerating-VM-Networking-through-XDP_Jason-Wang.pdf
https://events19.linuxfoundation.cn/wp-content/uploads/2017/11/Accelerating-VM-Networking-through-XDP_Jason-Wang.pdf
https://events19.linuxfoundation.cn/wp-content/uploads/2017/11/Accelerating-VM-Networking-through-XDP_Jason-Wang.pdf
https://events19.linuxfoundation.cn/wp-content/uploads/2017/11/Accelerating-VM-Networking-through-XDP_Jason-Wang.pdf

Compute
Node

Compute
Node

Gateway
Node

Control
Node &

K8S
Cluster

Device Management Network

Zeta API Network

Tenant Network (VXLAN)

eth1 eth1 eth1 eth1 eth1eth2 eth2 eth2 eth2 eth2

eth0 eth0 eth0eth0

Gateway
Node

Figure 25: Best Practice for Zeta Physical Deployment.

and {ŷc
t }. For each tenant t ∈ T , RGCM first sorts each gate-

way cluster c ∈C by the value of ỹc
t in the descending order.

Then RGCM sets the top k maximum ŷc
t to 1, which means

that the traffic of tenant t can be processed by these k gateway
clusters. The set of clusters that are available to the tenant t
is denoted as Ct , i.e., Ct = {c|ŷc

t = 1,c ∈C}, where |Ct |= k.
When variables {ŷc

t } have been determined, RGCM will as-
sign a gateway cluster to each VPC v ∈ V , i.e., determine
variables {x̂c

v}. For each VPC v ∈V , the algorithm selects a
cluster c ∈Ct with the least burden and sets variable x̂c

v to 1.
While solving a linear programming might take a long time

for a large network, we note that tenants/VPCs/instances are
deployed incrementally, and the number of VPCs/tenants is
usually much smaller than that of instances. For example, if
hundreds of thousands of instances boot up at the same time,
the corresponding VPCs are thousands and the corresponding
tenants are hundreds. We utilize Gurobi solver [34] to run the
RGCM algorithm on a server equipped with a 10-core Intel i9-
10900 CPU. The solution time is 1.15s for the network with 10
gateway clusters, 568 tenants and 1885 VPCs in §8.4, which is
acceptable compared to the VPC/instance deployment time.

B Additional Implementation Details

B.1 eBPF Map Size

In the current Linux kernel implementation, the memory us-
age of an eBPF hash map grows with its entry number. How-
ever, the maximum entry size is bounded by the max_entries
defined by XDP/eBPF program during map initialization. The
user space function bpf_map__resize() can resize an eBPF
map only before it is initialized in the kernel. Unfortunately,
we cannot resize an eBPF map after it is created. We have to
deploy a new XDP/eBPF program to reinitialize the map size.

Thus, the number of instances that a gateway cluster can
serve is limited by the max_entries of the eBPF maps. For
example, the endpoint hash map in Zeta stores instance
forwarding rules and its max_entries is set to 128*1024
(∼131k). To avoid the above limitation, we can set a larger
entry number for the endpoint hash map, such as 1024*1024
(∼1M). In addition, the key size and value size of one

ens0

KVM-based
Gateway

vnet0

eth0

XDP

XDP1

XDP2

Host

Figure 26: Early Version of KVM-based Gateway.

endpoint entry is 8 bytes and 16 bytes, respectively. The
total memory size of 1M entries is only 24MB.

B.2 Best Practice for Physical Deployment
Zeta is usually deployed as two self-contained parts: (i) One
Kubernetes micro-service hosting Cluster Controller services;
(ii) One Gateway Cluster for Zeta data plane, which is based
on physical machines in production environment.

Figure 25 illustrates the best practice of Zeta deployment,
which includes a control node, several gateway nodes and
compute nodes. The leftmost control node deploys the man-
agement service of the cloud platform and Kubernetes cluster
hosting Zeta Controller. The middle ones are gateway nodes,
each of which deploys DFT and FWD modules. The eth1 in-
terfaces of all nodes access the Device Management Network.
In addition, we use separate interfaces for the Zeta API Net-
work and Tenant Network, which prevents massive tenants’
traffic from blocking the control messages. The Zeta API
Network is responsible for sending the operation instructions
and reporting status information, including OAM packets, IPs
allocation/migration policies and gateways’ load information.
The Tenant Network transmits the east-west traffic through
the VXLAN tunnel [48] for tenant instances.

B.3 Additional Details of Virtual Deployment
In the early development of Zeta, we use TUN/TAP device
[74] as the NICs of KVM-based gateways. In addition to de-
ploying XDP in the KVM-based gateways, we also deploy
additional XDP programs on the physical machines to accel-
erate the host-VM datapath [5,80]. As shown in Figure 26, we
attach XDP1 to the NIC (i.e., eth0) of the physical machine
to accelerate the host-VM ingress traffic. We attach XDP2
to the TAP device (i.e., vnet0) on the physical machine to
accelerate the VM-host egress traffic.

However, Zeta suffers from the poor forwarding perfor-
mance. For example, the packet forwarding rate of a KVM-
based gateway equipped with 4 vCPUs is only 1.36Mpps. The
reason is that attaching XDP program to VM’s NIC will affect
the function of TAP device in host and lead to a significant
hit on VM RX performance [5].

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1247

Finally, Zeta adopts SR-IOV [23] for KVM-based gateways.
Although the driver of Intel XL710 VF (i.e., iavf) does not
support XDP Native mode, and Zeta adopts XDP Generic
mode with reduced performance in KVM-based gateways
[19, 36]. We obtain an acceptable forwarding performance.
For example, the pure forwarding rate of one virtual core is
0.86Mpps under 2k entries, which drops 54% compared with
one physical core with XDP Native mode.

C Additional Evaluation Details

C.1 Transformation of Google cluster-data
We query the a.CollectionEvents table of Google cluster
trace and obtain the mapping of <user,machine,job> [30].
The machine number is 10001 and the user number is 1952.
Considering that we only have 20 compute nodes, while there
are 10001 machines in the table. Thus, we merge the jobs of
every 500 machines to one compute nodes.

C.2 Linear Scaling Throughput of Gateways

1 2 3 4 5 6 7 8 9
No. of Physical Cores

0

10

20

30

40

Th
ro
ug

hp
ut

(G
bp

s)

2k Entries
10k Entries
100k Entries

Figure 27: Throughput vs.
No. of Physical Cores

1 2 3 4 5 6 7 8 9 10 11 12
No. of KVMbased Gateways

0
20
40
60
80

100
120

Th
ro
ug

hp
ut

(G
bp

s)

2k Entries
10k Entries
100k Entries

Figure 28: Throughput vs.
No. of KVM-based Gateways

Linear Scaling Throughput. Figures 27-28 show that the
total throughput will scale linearly with the increasing num-
ber of physical cores and KVM-based gateways. Specifically,
when the inner packet size is 512 bytes and the number of
entries in eBPF maps is 2k, the throughput of a physical core
is 5.4Gbps, and 8 physical cores will hit the NIC’s bandwidth
limit of the physical machine at 40Gbps. The throughput
of a KVM-based gateway with 4 vCPU is 12.7Gbps, and 9
KVM-based gateways will nearly reach the NICs’ total band-
width limit of the 3 physical gateway machines at 120Gbps.
In addition, the timeout mechanism of maps for flow statistics
leads to throughput degradation with the number of entries in-
creases. We will try to optimize this issue in future work. The
linear scaling throughput of Zeta gateways greatly enhances
the scalability of Zeta gateway clusters.

1248 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Aquila: A unified, low-latency fabric for datacenter networks

Dan Gibson, Hema Hariharan, Eric Lance, Moray McLaren, Behnam Montazeri, Arjun Singh,
Stephen Wang, Hassan M. G. Wassel, Zhehua Wu, Sunghwan Yoo, Raghuraman Balasubramanian,

Prashant Chandra, Michael Cutforth, Peter Cuy, David Decotigny, Rakesh Gautam,
Alex Iriza, Milo M. K. Martin, Rick Roy, Zuowei Shen, Ming Tan, Ye Tang, Monica Wong-Chan,

Joe Zbiciak, Amin Vahdat
Google Inc.

aquila-nsdi2022@google.com

Abstract

Datacenter workloads have evolved from the data intensive,
loosely-coupled workloads of the past decade to more tightly
coupled ones, wherein ultra-low latency communication is
essential for resource disaggregation over the network and to
enable emerging programming models.

We introduce Aquila, an experimental datacenter network
fabric built with ultra-low latency support as a first-class de-
sign goal, while also supporting traditional datacenter traffic.
Aquila uses a new Layer 2 cell-based protocol, GNet, an inte-
grated switch, and a custom ASIC with low-latency Remote
Memory Access (RMA) capabilities co-designed with GNet.
We demonstrate that Aquila is able to achieve under 40 µs tail
fabric Round Trip Time (RTT) for IP traffic and sub-10 µs
RMA execution time across hundreds of host machines, even
in the presence of background throughput-oriented IP traffic.
This translates to more than 5x reduction in tail latency for
a production quality key-value store running on a prototype
Aquila network.

1 INTRODUCTION
There has been tremendous progress in datacenter networking
over the past decade, with fundamental advances in the control
plane [18,27,44,49], the rise of commodity silicon arranged in
non-blocking topologies [4, 23, 36, 49], network management
and verification [7, 8, 29, 41], and highly available network
design techniques [21]. Taken together, the community is now
in a place where cost-effective, easy-to-manage, and scalable
network designs and deployments are becoming common in
industry. Plentiful network bandwidth at the scale of clusters
of tens of thousands servers [49] can be leveraged for large-
scale hyperscalers and the services they host.

However, all of these advances come while assuming TCP-
based congestion control and Ethernet Layer 2 protocols.
This Layer 2-4 stack has been incredibly robust and resilient
through many decades of deployment and incremental evo-
lution. However, we are seeing a new impasse in the dat-
acenter [12] where advances in distributed computing are

increasingly limited by the lack of performance predictabil-
ity and isolation in multi-tenant datacenter networks. Two
to three orders of magnitude performance difference [15] in
what network fabric designers aim for and what applications
can expect and program to is not uncommon, severely limiting
the pace of innovation in higher-level cluster-based distributed
systems.

Such concerns are amplified when considering the state
of supercomputing/HPC clusters [17] and emerging machine
learning pods [22, 28] where individual applications benefit
from low-latency RDMA [16, 51], collective operations [46],
and tightly integrated compute and communication capabil-
ities. The key differences in these more specialized settings
relative to production datacenter environments include: i) the
ability to assume single tenant deployments or at least space
sharing rather than time sharing; ii) reduced concerns around
failure handling; and iii) a willingness to take on backward
incompatible network technologies including wire formats.

Recent research efforts into disaggregated rack-scale archi-
tectures [13, 34] further highlight some of these challenges:
can the same NICs and switches supporting host-to-host com-
munication across the wide area support, for example, SSD
and GPU devices at a much smaller radius? Is the disaggrega-
tion network necessarily a separate dedicated fabric or can it
be multiplexed with TCP/IP traffic destined to remote hosts
potentially 100ms or more away? While there is some appeal
to running a second (or third) network dedicated for an individ-
ual use case, the control and, as importantly, the management
overhead of each network introduces a cyclic dependency
where the second network is not worthwhile relative to the
status quo until the underlying technology is proven/mature.
However, there is no opportunity to iterate on the alternate
technology because doing so is cost and complexity negative
for a number of generations into the future because applica-
tions would have to evolve substantially before demonstrating
end-to-end wins on the new hardware.

The need for backward compatibility combined with chal-
lenges in deploying niche "bag on the side" networks threat-
ens a new ossification in datacenter networking and dis-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1249

tributed systems where we are left with programming to the
lowest common denominator of TCP transports and commod-
ity Ethernet switches with associated latency, CPU efficiency,
and isolation limitations.

In this paper, we present a first exploration of an alterna-
tive tightly-coupled (or Clique-based) datacenter architecture,
Aquila, a hardware implementation supporting predictable,
high-bandwidth, and ultra-low latency communication. In our
approach, datacenter networks consist of dozens of Cliques,
each hosting approximately 1-2k network ports. Cliques in-
teroperate with one another at the datacenter interface (e.g.,
the spine layer of existing Clos-based datacenter networks)
through standard Ethernet and IP. However, within a Clique,
any transport and Layer 2 network protocol may be deployed.
Applications that fit within the boundaries of an individ-
ual Clique can assume Clique-local capability, including ro-
bust RDMA, predictable low-latency communication, device
disaggregation, support for ML aggregation primitives, etc.
We assume IP-based transport for communication between
Cliques, which means that any intra-Clique communication
primitives and innovations must live alongside standard trans-
ports. Cliques then become the unit of deployment, innova-
tion, and homogeneity, allowing for incremental, backward-
compatible deployment into existing datacenters. A Clique is
also sufficiently large to host all but the largest of individual
distributed systems, especially as we move to hundreds of
compute cores per server.

Aquila, our first Clique implementation based around a
custom in-house ASIC and communication software, consists
of a cell-switched non-Ethernet substrate, GNet.
• Aquila networks are built from individual silicon compo-

nents that serve as both NIC and a portion of the traditional
Top of Rack (ToR) switch; each ToR-in-NIC (TiN) chip
attaches to hosts and directly to other TiN chips to realize
a cost-effective network built from a single, replicated sili-
con component, rather than distinct NIC and switch silicon
components from separate vendors.

• GNet provides the illusion of Ethernet to hosts within
Aquila, as well as to non-Aquila networking components
outside the scope of the Aquila Clique, by terminating
Ethernet at the Aquila network boundary and tunneling
traffic across a fully-custom, self-defending, near-lossless
L2 substrate.

• Aquila further reduces cost by realizing a direct-network
rather than an indirect (Clos) topology. To fully unlock
the capabilities of its Dragonfly topology [30], and freed
from the de facto constraints imposed by Ethernet, Aquila
leverages adaptive routing to deliver full point-to-point
bandwidth between host-pairs by leveraging multiple non-
minimal paths.

• Aquila delivers data in small chunks called cells, rather
than packets, thereby optimizing for latency of small ex-
changes like those used by distributed systems built on
RDMA and similar technologies [51]. Its extremely tight

integration between NIC and network allows for ultra-low
RMA-read capability (4us median) between the memory
systems of up to 1152 hosts.
Aquila’s design departs from traditional Ethernet fabrics in

several ways: i) links use credit-based flow-control; ii) switch
buffering is shallow; and iii) solicitation bounds end-to-end
admission. Any one of these tenets in Ethernet would be
problematic, but taken together, they form a cohesive design.
For instance, flow-controlled near-lossless links can give rise
to tree saturation, especially with shallow buffering, but end-
to-end admission control bounds the size and spread of such
trees, and ensures they are transient. Similarly, admission
control breaks down when drops are likely, but link-level flow
control makes drops very rare, and in turn enables the use of
shallow buffering in switching elements, since overrun is not
possible.

We present the detailed design, implementation, and evalu-
ation of Aquila. Aquila is not the final word in Clique design;
in fact, our first experience with the Aquila system suggests a
number of areas for improvement in future generations. We
hope, however, that the approach of bringing vertical integra-
tion including the host software stack, the NIC, and the switch
along with a Clique-based datacenter architecture will enable
new models of datacenter innovation along with new capa-
bilities to distributed systems that can assume cutting edge
rather than lowest common denominator communication and
disaggregation capability within the boundary of thousands
of servers and hundreds of thousands of cores.

2 OBJECTIVES AND OUR APPROACH
Aquila’s design departures from Ethernet are grounded in a
set of common objectives, described below. Taken individu-
ally, these design choices–e.g., flow control, custom Layer
2–would be hard to apply to an existing network incremen-
tally. But in concert, Aquila’s features realize a complete,
performant design point.

Sustainable hardware development. To sustain the hard-
ware development effort with a modest sized team, we chose
to build a single chip with both NIC and switch functional-
ity in the same silicon. Our fundamental insight and starting
point was that a medium-radix switch could be incorporated
into existing NIC silicon at modest additional cost and that
a number of these resulting NIC/switch combinations called
ToR-in-NIC (TiN) chips could be wired together via a copper
backplane in a pod, an enclosure the size of a traditional Top
of Rack (ToR) switch. Servers could then connect to the pod
via PCIe for their NIC functionality. The TiN switch would
provide connectivity to other servers in the same Clique via
an optimized Layer 2 protocol, GNet, and to other servers
in other Cliques via standard Ethernet. The inset in Figure 1
summarizes the major components of TiN.

Cost effective, non-blocking topology. For efficiency and
low latency, we selected a direct connect topology, Dragon-
fly, a well-studied topology that minimizes the number of

1250 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 1: Aquila Clique dataplane and control plane overview. The ToR-in-NIC (TiN) chip is expanded in the top right inset. TiN chips are arranged in a
cell-switched Dragonfly network, connecting via Ethernet to the rest of the datacenter network’s (DCN) spine switches and to host machines via PCIe.
Conventional Ethernet/IP packets are split into cells at ingress after a round of solicitation per packet and reassembled and re-ordered at the fabric’s egress.
The co-designed 1RMA protocol injects cells directly into the cell network, extending memory accesses across the Clique. The Aquila SDN controller
configures and manages TiN switches inband, via the DCN.

long optical links in the network while still providing non-
blocking bandwidth for uniform random traffic patterns, with
2:1 over-subscription for worst-case adversarial traffic. Fig-
ure 1 illustrates a simplified Dragonfly topology where TiNs
within a pod are fully connected in a mesh, and multiple pods
are likewise connected all-to-all to form a tightly-coupled
Clique network. The largest Aquila network supports 12 TiNs
in a pod with 48 pods, serving up to 1152 host machines.

Combining NIC and ToR into the single TiN chip was a
less costly path to innovation than separate NIC and switch
ASIC programs, and a design realized from a common single
component was intended to streamline inventory management
for Aquila. Further, we implemented an optional capability to
allow pairs of host machines to share a single TiN, halving the
normalized cost of ownership for networking per host, trading
off reduced sustained bandwidth provisioning per machine.

Ultra low-latency network. To optimize for ultra-low la-
tency, under load and in the tail, Aquila implements cell-based
communication with shallow buffering for cells within the
network, flow controlled links for near lossless cell delivery,
and hardware adaptive routing to react in nanoseconds to link

failures and to keep the network load balanced even at high
loads. To ensure recipients are not overwhelmed, Aquila im-
plements end-to-end solicitation for each packet at ingress,
which guarantees that resources are available at the destination
TiN before the packet can be split into cells and transmitted
from the source TiN. We built these latency-guarding features
into Aquila’s Layer 2 protocol, GNet. As depicted in Fig-
ure 1, while the Aquila network fabric presents an Ethernet
packet interface at its boundary, Aquila tunnels conventional
Ethernet/IP packets over GNet, disassembled at ingress and
reassembled and re-ordered at the egress of the Clique.

Unified fabric for legacy traffic and RMA/memory
disaggregation. Aquila unifies low-latency communication
primitives (RMA) alongside commodity primitives (IP) in
a common fabric, to address the growing diversity of data-
center workloads [5, 42, 45]. A fabric delivering both high-
performance and legacy connectivity avoids the pitfalls of
a bag-on-the-side network and secondary NICs, reducing
the cost of ownership and the toil related to the life cycle
management of two separate networks. Managing a single
network for availability, security, monitoring and upgrades

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1251

is challenging enough–managing separate networks for indi-
vidual use cases introduces an extraordinarily high bar in any
cost/benefit analysis. For efficient remote memory access and
memory disaggregation alongside traditional protocols, we
co-designed a Remote Memory Access protocol, 1RMA [51],
to extend memory access across the Aquila Clique directly
on GNet, instead of layering on top of IP.

Co-existing within the larger Clos-based software-
defined datacenter network ecosystem. Typical datacenter
networks [49] are based on a scalable Clos topology where
aggregation blocks are connected via a spine switching layer;
Aquila is designed to integrate into such a network via its Eth-
ernet ports. A hierarchical Software Defined Network (SDN)
control plane with a modular, micro-service architecture [18]
manages and controls the various networking blocks within
the datacenter.

Figure 2 describes the integration of Aquila in the broader
datacenter network’s dataplane and control plane ecosystem.
The Aquila network block connects to the datacenter’s spine
switching layer via Ethernet links, akin to other aggregation
blocks. The modular architecture of the datacenter network
realizes a hybrid topology, i.e., a Dragonfly network integrated
as a block within a larger Clos topology, a first of its kind to
the best of our knowledge.

For the control plane, we adapted an SDN controller to con-
figure, manage and program TiNs inband via a thin on-box
firmware running on the TiN CPU (Figure 1). The Aquila
SDN controller, similar to the SDN controllers of other aggre-
gation blocks, interacts with each of four central Inter-Block
Routing Controllers (IBR-C) (Figure 2) to enable communi-
cation with other aggregation blocks as well as with networks
external to the datacenter.

Cliques as the basis for hosting tightly-coupled appli-
cations. To exploit the tightly coupled, low latency commu-
nication enabled by the Aquila Clique, we adapted the job
scheduler [53] to be aware of Clique locality. High bandwidth
or latency sensitive jobs could optionally be scheduled on
host machines within a Clique, while other jobs could still be
bin-packed across blocks, regardless of locality.

3 HARDWARE DESIGN
In this section we relate how the key design goals drove the
hardware design. In summary:
• Low latency objectives drove the selection of a shallow-

buffered cell-switched GNet fabric. §3.1 details the design
of the GNet switch and link-level protocol.

• Cost-effectiveness goals led to the choice of an integrated
switch and NIC chip, TiN, as well as a direct topology such
as the Dragonfly. §3.2 outlines the rationale for selecting
the Dragonfly and the impact of this choice on the design.

• Shared fabric for both IP traffic and low-latency RMA.
§3.3 describes how IP packets traverse the GNet fabric, and
§3.4 details the co-design aspects of the 1RMA protocol
with the GNet fabric.

Figure 2: Aquila Clique integrated into the broader datacenter network
and SDN ecosystem co-existing with other Ethernet aggregation blocks.
Topologically, the Aquila block connects to the Clos-based datacenter
spines akin to the Ethernet based blocks. In the control plane, the Aquila
SDN controller, similar to controllers of other blocks, interacts with
each of the four sharded Inter Block Routing controllers (IBR-C) to
enable cross-block routing.

3.1 GNet Switch and Links
The cell switch. The switching capability of the TiN chip is
provided by a 50-port cell switch optimized for low latency.
The maximum cell size of 160 bytes was chosen to keep the
serialization latency on 25G links small (~50ns). 32 ports are
external-facing GNet ports (of which 24 are pod-local and 8
are inter-pod ports). The remaining 18 ports are intra-chip,
for cells transmitted and received by the various traffic end-
points (e.g., IP and 1RMA). The fall through latency of the
core cell switch is 20ns and the total per hop latency without
Forward Error Correction (FEC) is 40ns. GNet links sup-
port 32 Virtual Channels (VCs [14]) - FIFO queues used for
deadlock-avoidance and QoS. VCs are used for deadlock-free
routing, for differentiation between classes of service, and to
separate solicited and unsolicited traffic. A centralized arbiter
implements a variant of the iSLIP arbitration protocol [38],
supporting one arbitration request per VC per port, ensuring
that no VC or port is starved of throughput. To support vari-
able cell sizes, we modified iSLIP such that the ingress and
egress ports communicate a "busy" signal to the crossbar ar-
biter. A "busy" indicates that the ports are transferring a cell
across the crossbar. The arbiter takes this into account when
it evaluates pending requests for the next request-grant-accept
cycle. Quality of Service (QoS) between VCs is implemented
in the output buffer and supports both weighted round robin
and strict priority. Each VC has its own input FIFO space
protected by a reliable credit mechanism, similar to that used
in PCI Express. A shared buffer, shared credit scheme was
considered to save memory, but for the relatively short links
required for Aquila the simplicity and complete QoS isolation
of independent FIFOs was preferred.

GNet link level protocol. GNet links support cells be-
tween 16 bytes and 160 bytes in size, with frequent reverse
flow control traffic. The use of variable length cells gives very
high protocol efficiency (e.g., 1RMA requests are small) on
the wire even after the additional control traffic for admission
control. Every GNet cell has a common routing header of 8
bytes that contains the 16 bit source and destination GNet ad-

1252 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

dresses, the cell length and type, the VC, a decrementing hop
count, an 8 bit header CRC and a Trace Enable bit. To enable
efficient transmission of GNet cells, a custom 66/64 bit Physi-
cal Coding Sublayer (PCS) was developed that minimizes the
cell delineation overhead and allows the reverse flow control
traffic to be sent as very compact ordered sets. Control or-
dered sets are used for: (1) Start of cell delineation, (2) Flow
control, (3) TimeSync (§B), (4) Management ordered sets
(MOS), and (5) Phy up/down control and fault detection.

3.2 The Dragonfly cell fabric
We selected the Dragonfly topology to manage the cost of
optical links, shown in Figure 1. The Dragonfly cell fabric is
implemented using two types of GNet links: 24 local links per
TiN that fully connect TiNs within the pod, and 8 global links
per TiN that connect between pods, up to 100m apart on the
datacenter floor. The local links are implemented as single-
lane, 28 Gbps copper backplane connections. The global links
are optical and use specially developed low cost GNet opti-
cal modules. Noise on global links is mitigated with FEC,
incurring a 30ns per-hop latency penalty, and a 6% bandwidth
overhead. Local links operate without FEC for the lowest
latency at acceptable margins. Both local and global links
ultimately implement the same link level protocol. Due to
the hierarchical nature of the Dragonfly topology, GNet ad-
dresses have three components: pod id, TiN id and endpoint id.
Endpoints represent protocol engines (IP, 1RMA, and CPU)
detailed later.

Deadlock avoidance. We implement deadlock avoidance
in our Dragonfly topology using a combination of turn rules
and VCs. With our budget of 32 VCs, it is desirable to mini-
mize the number of VCs used for deadlock avoidance. In the
implemented routing scheme, we employ turn rules similar
to the parity-sign approach in [20] within a pod for deadlock-
free intra-pod routing. The VC is incremented when moving
from a global link to a local link [30], requiring a total of
3 VCs used for deadlock avoidance in the worst fault-free
route, that of a non-minimal route via an intermediate pod.
Accounting for 10 traffic classes, each with 3 routing VCs,
a further two VCs are available as escape VCs in certain
dynamic failure avoidance scenarios.

Adaptive routing. The majority of traffic routes adaptively
to achieve both high throughput and the lowest latency on
Aquila’s Dragonfly network. TiN implements locally adaptive
routing [30, 48], a scheme that makes adaptive routing deci-
sions based on available information at a GNet switch, in par-
ticular, the per-VC output queue lengths at each port. These
queue depths reflect nearby congestion because of GNet’s
link-level flow control and shallow buffering. Link failures
manifest similarly, which also allows the adaptive routing
algorithm to route around failed links until the SDN routing
engine removes the entries for links which have lost connec-
tivity.

The adaptive routing implementation selects two minimal
routes at random from eight supplied by the routing tables, and

also considers three non-minimal routes from 24 non-minimal
route candidates. The five candidate routes are evaluated us-
ing a weighted comparison that favors the minimal routes.
Random choices (rather than 24-way comparison) allow us to
avoid flocking, having coordinated adaptive routing decisions,
and moving congestion from one place to another [40]. Other
routing modes are enabled by constraining the routing to min-
imal routes only, or by forcing deterministic choice of route
using a hash of the source and destination addresses. These
constraints yield Aquila’s four principal routing modes: Fully
Adaptive, Minimal Adaptive, Deterministic and Minimal De-
terministic. The deterministic routing modes are used for cell
types requiring ordering. The cell switch uses table-based
routing because of the need to handle failures and upgrades
using SDN routing described in §4.2, as well as flexibility for
other topologies.

3.3 IP Traffic

Host IP traffic is sent and received by a conventional 100 Gbps
NIC capable of supporting multi-host operation for up to two
independent hosts. The option of multi-host capability was
considered important in order to give a degree of flexibility
in bandwidth per machine allocation. There are two other
sources of IP traffic on the TiN chip: the 100 Gbps exter-
nal Ethernet port for connectivity outside the Aquila fabric,
and a low bandwidth port to the embedded management pro-
cessor. Traffic from all IP sources is handled in the same
way: the packet processing pipeline performs IP routing and
cellification, i.e., splitting the IP packet into GNet cells and
traversing them to the final destination, using Aquila’s IP over
GNet protocol.

Packet processing logic. Each IP packet passing over the
GNet fabric goes through the input packet processing and
output packet processing blocks once only. Effectively, the
entire GNet Clique acts as a single stage IP packet switch.
The input packet processing pipeline handles:
• L3 to GNet L2 address translation (either one-to-one or

WCMP [55]);
• Selectively punting some packets to the embedded control

processor;
• Input buffer QoS.

L2 Ethernet MAC addresses are stripped from inbound
packets after processing; packet transfer over the GNet cell
network is for IPv4/IPv6 only. Non-IP packets such as ARP
may be either encapsulated or punted to the embedded con-
trol processor, consistent with the requirements of our SDN
control plane (§4).

IP over GNet protocol. IP traffic traverses Aquila by
means of the GNet upper layer protocol, shown in Figure 3.
Each IP packet sent over the cell fabric issues a Request To
Send (RTS), and awaits a Clear to Send (CTS) handshake
before any data is transmitted. These are sent as 16 byte
GNet cells to minimize the bandwidth overhead. The hand-
shake protocol performs three functions:

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1253

Figure 3: Cellification: IP Packets are split into multiple GNet data
cells that are only admitted into the GNet fabric when the ingress TiN
receives a CTS. In the egress packet handler, cells are reassembled into
packets, respecting their original transmission order, and sent to the NIC
(all within the TiN chip).

• It implements solicitation for IP packets by only allowing
data cells onto the GNet network when the destination end
point has signalled it has sufficient input bandwidth and
buffer space to receive them.

• It allocates hardware resources at the destination, e.g., cell
to packet reassembly buffers, before any data cells are
transmitted so that there is always a guaranteed reassembly
space.

• RTS arrival defines inter-packet order. While data cells
route adaptively and potentially arrive out of order at their
destination, RTS ordering ensures that original transmis-
sion order can be reconstructed at the receiving side.
Packets which have passed through the packet processing

pipeline and have a valid GNet L2 address are stored in the
packet ingress buffers. An RTS is generated immediately;
in fact, for long packets the RTS can be issued before the
whole packet is received. The RTS itself consists of 8 bytes of
routing header and a further 8 bytes of payload that includes
the IP packet length, Class of Service (CoS), the packet’s
location in the ingress buffer, and an indicator of ingress
buffer usage. Compactness is important because RTS cells are
unsolicited and can still lead to incast. However, considering
that an average packet is >1Kbytes, an incast of RTS cells
represents a reduction of incast volume in the network by a
factor of 64.

RTS cells are carried on their own VCs, allowing them to
be sent at high priority and also maintain isolation between
solicited and unsolicited cells. RTS VCs are routed determinis-
tically over the GNet fabric, using a path selected by a hash of
the flow-invariant fields of the cell, ensuring that the RTS cells
for a given IP flow are received in the order they were sent.
The RTS cells are received into FIFO queues at the packet
egress. Packet data transfer is initiated by the egress-side by
sending a CTS back to the appropriate ingress port. Along
with the 8-byte routing header, the CTS carries a pointer to
the packet in the ingress buffer (copied from the RTS) and a
pointer to the allocated location in the egress cell-to-packet

reassembly buffer. CTS cells are issued by the CTS scheduler,
which tracks the availability of egress reassembly buffer ca-
pacity, only issuing a CTS when there is space available to
reassemble cells into packets.

When a CTS is received back at the packet source, the
packet in question is pulled from the ingress buffer as a se-
ries of data-only cells, which are then transmitted across the
fabric. Data cells can take many different routes (adaptively)
through the fabric, and data cells may arrive in any order at
the final destination. Cells are reassembled into packets in
the egress buffer at the destination. The sizing of the egress
buffer is determined by the bandwidth delay product of the
output port bandwidth and the cell fabric round trip delay,
plus an allowance for packet reordering delays. Packets do
not experience significant queuing in the egress buffers, which
are primarily for reassembly, so the egress buffers are signifi-
cantly smaller than the ingress buffers.

In order to maintain packet order within flows, when a CTS
is issued by the scheduler, the packet descriptor is registered
with packet reordering logic respecting RTS arrival order. A
packet is transmittable at egress after receipt of all its data
cells, but transmittable packets are held until all packets in
the same flow that were ahead of it in CTS issue order have
been successfully forwarded to the NIC.

A significant benefit of the RTS/CTS scheme is that the
RTS queues have a local view of all the requested packet
demand for that destination port from the entire GNet fabric,
while the packet data remains queued in the ingress buffers.
In the presence of severe incast, packets can be discarded
while conserving fabric bandwidth, i.e., without packet data
traversing the cell fabric. The egress side can choose to drop
a packet by issuing a variant of CTS (a Clear To Drop, CTD),
which pulls the packet from the ingress buffer and discards
it. A CTD is sent when an RTS is received at an RTS queue
whose depth exceeds a given threshold. The RTS queue’s
depth also provides the signal for Explicit Congestion Notifi-
cation (ECN) marking; if the RTS queue exceeds the marking
threshold when the packet has been reassembled and is ready
to send, ECN is applied.

QoS Support for IP. There are separate RTS queues for
each independent port and class of service, with a total of
32 RTS queues supporting eight CoS on four independent
ports - one port for the external Ethernet MAC, two for the
dual-host NIC, and one for the control processor. CTS cells
are issued by the CTS scheduler at the packet’s destination
which allocates bandwidth between the 32 RTS queues, im-
plementing per-IP-packet QoS between the respective queues.
The CTS scheduler may throttle traffic into the egress buffers
by limiting CTS issues according to a window of outstanding
packet fetches, which can be adjusted to minimize the queu-
ing of data cells within the cell fabric. The scheduler does
not attempt to implement bandwidth fairness between sources
since all the sources to a given destination port share the same
RTS queue.

1254 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

3.4 1RMA
To deliver the low-latency capabilities of the Aquila Clique
directly to distributed systems programmers, we built an im-
plementation of 1RMA [51] into the TiN chip. 1RMA is an
RMA protocol that offers unordered, segmented, solicited
remote memory access primitives (read, write, and atomics)
to on-host software—tenets that match precisely those of
GNet packet transfer governed by RTS/CTS.

Such alignment is not merely coincidental; we co-designed
Aquila and 1RMA’s GNet-based protocol. Rather than sim-
ply layering the 1RMA protocol messages above the packet
layer, we instead express 1RMA protocol exchanges as first
class cell types in GNet—alongside RTS and CTS, rather
than atop—and ensure that they obey similar end-to-end so-
licitation rules as they share the Aquila fabric. The advantage
of co-design is significant latency savings: while a UDP/IP
or TCP/IP round-trip on Aquila incurs six GNet half-round-
trips on its critical path (RTS, CTS, data, in each direction),
a 1RMA read operation incurs only two, shaving precious
microseconds from user-facing latency.

We realized protocol co-design by encoding 1RMA read re-
quests entirely within GNet framing. Fundamentally, read re-
quests initiate data transfer from receivers to senders, i.e., such
requests intrinsically already are solicitations, expressed at
the transport layer. GNet also builds on solicitation, but at the
L2 layer. The key insight is to express both the GNet (L2) and
1RMA (L4) solicitation behaviors in a single cell type, Req.
Since Req cells solicit data movement in the reverse direction,
GNet handles Req similarly to CTS; the main differences
arise from cell size, as Req fully encodes a read request (host
address, memory identifiers, HMAC, etc.), yielding a cell 3x
larger than CTS at 48B. Req is otherwise behaviorally similar
to CTS, in that it can be freely reordered without violating
assumptions of the protocol layer above. Because 1RMA is
highly tolerant of out-of-order delivery, Req is intrinsically
compatible with Aquila’s adaptive routing.

We also leverage 1RMA’s close coupling to host-facing
PCIe to encode response cells, Resp. 1RMA NICs send each
individual PCIe read completion payload as a distinct proto-
col response, a hardware simplification that avoids response
coalescing logic, buffering, and overheads in the NIC. To fa-
cilitate this behavior in GNet, Resp cells are sized to handle
the most common PCIe completion sizes we observe from the
host root complexes. Like Req, Resp can be freely reordered
and routed adaptively, and the initiating 1RMA NIC lands the
individual response segments in arrival order in destination
host memory, since there is no need to restore overall inter-
or intra-request response ordering.

Lastly, to isolate latency-critical 1RMA traffic from less
sensitive IP flows, we map roughly half of GNet’s virtual
channels to carry low-latency protocol messages, which
1RMA shares with low-latency IP traffic flows. Because IP
traffic is cellified, 1RMA responses do not queue behind bulk
transfers from competing flows. In all, 1RMA on Aquila de-

livers near-flat lookup latency—even under load from conven-
tional traffic—to approximately 864TB of DRAM inside of
4us end-to-end. Aquila traversal accounts for a mere 2.5-3us;
the remaining time is attributable to PCIe latency contribu-
tions.

3.5 Embedded control processor
The TiN chip has an embedded control processor (ECP) to
handle all switch side control and monitoring actions. Cost of
silicon exerts pressure to make the ECP as simple as possible,
as it is replicated in each TiN chip. Where a typical control
processor for a ToR might be a multicore, 64-bit processor
with 8-16 GB of memory, TiN’s ECP is a 32-bit ARM Cortex
M7 processor with a mere 2 MB of SRAM.

In order to bootstrap the embedded control processor before
the GNet logic has been fully initialized (§4.4), a low band-
width but reliable in-band control path is implemented over
the GNet fabric using the management ordered set (MOS).
Each MOS 64 bit word allows 6 bytes of data to be trans-
ferred between directly connected TiN chips, irrespective of
whether the GNet link layer is up. We layer a robust packet
implementation, PMOS, above the MOS primitive to carry
debug and bootstrap traffic.

3.6 Putting it all together
Figure 4 plots the overall structure of the TiN chip:
• The cell switch (the building block for the cell fabric);
• A conventional IP host interface (NIC);
• An external-facing Ethernet MAC for connectivity to out-

side networks;
• A 1RMA host interface that supports direct protocols

across the cell fabric;
• IP packet-to-cell (ingress) and cell-to-IP packet (egress)

logic;
• The embedded control processor, acting as the local agent

for the SDN control software.
The device has the following interfaces:

• Two x16 PCIe gen 3 interfaces giving 256 Gbps connec-
tivity to one host or 128 Gbps to each of two hosts;

• Thirty-two 28 Gbps, single-lane GNet links used to con-
struct the low latency cell fabric;

• A single 100 Gbps Ethernet interface which connects to
the wider datacenter network (DCN).
Approximately 50% of the TiN silicon area is used to imple-

ment host interface or NIC functions, and 50% for switching
functions.

4 SOFTWARE-DEFINED NETWORK
As alluded to in §3, the integration of switch and NIC in a
single chip leads to substantial replication of the management
subsystem across all TiNs in an Aquila Clique. To keep the
Aquila Clique cost-effective, the management subsystem for
a TiN ASIC was kept simple – a 32-bit ARM Cortex M7
processor with a modest 2MB of SRAM and no dedicated
management Ethernet port. Consequently, much of the routing

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1255

Figure 4: Aquila Chip Architecture showing GNet, IP, Embedded Con-
trol Processor (ECP), 1RMA and PCIe components.

Figure 5: Overview of Aquila’s SDN and firmware architecture.

computation and state needed to be offloaded from the switch
to a logically centralized distributed controller which had
to orchestrate the bootstrap, management and control of the
fabric in-band. In this section, we describe how Aquila’s
software-defined network (SDN) control plane, along with
its simplified firmware, was able to address the challenges of
controlling and managing an Aquila Clique, specifically:
• Explosion of flow state in the SDN (§4.2).
• Switch firmware with constrained CPU/memory (§4.3).
• In-band bootstrap of the whole network (§4.4).

4.1 Control Architecture Overview
The Aquila controller is built on top of an SDN controller
platform [18], a modular SDN control plane comprised of
micro-services, and a central publisher/subscriber database
called the Network Information Base (NIB). Multiple appli-
cations form an Aquila SDN constellation with redundant
instances of each application deployed on separate control
servers. The top half of Figure 5 details the Aquila SDN
controller applications.

The routing application for the controller, Routing Engine
(RE), computes the routing solution for the Aquila network

block in reaction to changes of topology states and external
reachability. RE writes the solution in the form of flows and
groups similar to OpenFlow [39] to the NIB in sequenced
batches for hit-less routing state transition. Separately, the
Inter-Block Routing controller (IBR), an application in a data
center-wide SDN control domain, computes the routing solu-
tion for traffic between various network blocks and provides
Aquila’s RE with the egress paths to reach destinations exter-
nal to the Aquila Clique.

On receiving routing updates from the NIB, Flow Manager
(FM) sorts the flow and group programming operations. For
instance, a flow is installed only after its referenced group
is installed for hit-less transition, before sending them to the
Switch Front-End application (SFE) via RPC. SFE programs
the flows and groups to TiN switches converting between
flows/groups and hardware register values and completes the
RPC with the programming results. Then FM writes the re-
sults back to the NIB for RE to consume.

4.2 Handling routing state

The large number of GNet endpoints in the fabric and the per-
port GNet routing table in the TiN switch result in much larger
routing state than non-Aquila blocks, which increases both
CPU and memory demand in the SDN system. Aquila routing
introduced scaling challenges for both IP and GNet flows.

IP flows. A network comprised of 1152 hosts and 576
management CPUs, addressable via both IPv4 and IPv6, calls
for approximately 1.9 million flows, each with a single output
port. Leveraging the observation that all of these flows are
from a small number of subnets, we introduced a new indexed
group representation, where the index of a port in the group
corresponds to the same index in the subnet, which in turn
reduces the number of flows by a factor of 576 (the number
of TiNs in a fabric).

GNet flows. As seen in §3, flow controlled GNet requires
per-input port, per-virtual channel flows which leads to an
explosion in state for a switch with 50 ports. A naive imple-
mentation leads to almost 5 million flows. To accommodate
such a large scale, we exploited the significant similarity in
the routes. For example, all terminal ports described in §3.1
use the same route, and are represented only once in the NIB.
Similarly, the deadlock avoidance turn rules define a similar
role for each intra-pod port in the TiN chip. Further, all inter-
pod ports behave the same. We introduced six port classes –
denoting equivalence classes of ports with respect to routing
rules – reducing the number of flows to approximately 700k.
GNet flows use port-classes as both matching fields and out-
put actions. On receiving a GNet flow using a port-class, SFE
expands it to flows targeting each member port’s GNet flow ta-
ble, and then prunes improper member ports from the output,
e.g., to avoid sending traffic back to the source. The resulting
flows are then programmed in the switch.

Even with these optimizations in place, the rest of the SDN
system needed more modifications:

1256 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

• Despite the port-class optimization, the number of flows in
the NIB was still about 10x more than non-Aquila network
blocks. To compensate for the memory increase, the NIB’s
pub-sub interface was changed to keep state in compressed
format and decompressed only when necessary.

• The SRAM available in the TiN switch is not large enough
to hold a snapshot of all routing state. SFE has the capa-
bility to rate limit the hardware programming operations
to avoid the memory on the switch from overflowing. The
RPC interface between SFE and switches is designed in
such a way that the largest RPC can fit in memory and only
one outstanding RPC is allowed at a time.

4.3 Switch Firmware with limited state

The switch firmware (see lower half of Figure 5) runs on an
ARM Cortex M7 CPU integrated into the TiN switch chip.
Due to physical size and cost limitations, the firmware has
only 2MB of on chip SRAM available. Therefore, it is built
on the FreeRTOS [1] and lwIP [2] open source libraries to fit
within the space constraints. The firmware is implemented in
approximately 100k lines of C and C++.

We explicitly decided that the firmware is not responsible
for fully configuring the TiN chip. At power on, the firmware
brings up the GNet and Ethernet links and attempts DHCP
over Ethernet. This enables the controller to connect early
during initialization and finish the necessary configuration
to allow the TiN chip to start passing traffic (for details see
§4.4).

The programming API exposed by the firmware is low-
level and allows the SDN controller to directly access hard-
ware registers. The API is generated from the hardware reg-
ister description and permits the SDN controller code to use
symbolic names of the chip registers for convenience. Statis-
tics and counters from the TiN chip can also be reported using
the low level API. The SDN controller is able to configure
a set of registers that should be periodically reported by the
firmware. One of the programming API sets up ARP/NDv6
responses in reaction to requests from the attached machines
so that the IP-to-MAC resolution could function properly even
if the firmware loses connection to the SDN controller.

The firmware supports Non-Stop Forwarding (NSF) re-
boots to minimize disruption caused by upgrades and unex-
pected software errors. During reboot the firmware avoids
changing any configuration that might impact traffic. Since
the inband connectivity is not disrupted, the controller is able
to quickly reconnect after a reboot without going through the
bootstrap process. The implementation of NSF reboot was
simplified due to the register level API since there is no need
to save and restore state information, because the TiN chip
maintains all the controller visible state during reboot.

While the firmware itself is stateless, the TiN chip and SDN
controller are not. After any loss of connection between the
firmware and SDN controller a process of reconciliation has
to be initiated to resolve any differences between the hardware

registers and the SDN controller intent. These differences can
occur if any commands were lost when the connection failed.

4.4 In-band Control and Bootstrap
A key challenge in Aquila’s SDN control was that the control
channel from the SDN controller to the Aquila switches is
in-band. This means that the controller needs to communicate
with the management CPU of a TiN before it can program
the routing tables of the TiN. During bootstrap, the controller
sets up TCP connections in-band over the datacenter network
to all TiNs in the Clique in iterative “waves”, configuring and
programming routing tables as it gains control of TiNs in each
subsequent wave.

Figure 6 shows k Aquila pods connected via intra-pod
copper GNet links as well as inter-pod optical GNet links.
Some TiNs (e.g., TiN 1, TiN 3 in Pod 1 and Pod k) are also
connected to the spine layer of the datacenter via Ethernet
datacenter network (DCN) links. We refer to these TiNs as
DCN-connected. The Aquila SDN controller—running on
external control servers—is initially reachable only over the
DCN links. The TiN firmware sends DHCP discover mes-
sages over the DCN links if available. These DHCP messages
are relayed by the spine switches to the DHCP server, which
then assigns an IP address to the TiN management CPU based
on the TiN MAC address.

The Aquila controller has records of the IP addresses in-
tended for each TiN’s CPU from its own configuration. The
controller continually attempts to connect to each TiN CPU
via TCP session using its assigned IP address and a well
known L4 port number. Once the IP address is known to
a TiN’s firmware, a controller message destined to that IP
is trapped by an ACL rule installed by the firmware and
reaches the firmware. The response Ack is sent out the same
interface the packet came in from thus enabling a TCP con-
nection between the controller and the switch CPU of the
DCN-connected TiNs. The controller can then configure the
DCN-connected TiN and program its routing tables.

Once the controller establishes a TCP session with a DCN-
connected TiN, it uses that TiN as a proxy TiN (e.g., Pod 1,
TiN 3) to bootstrap a directly connected target TiN (e.g., Pod
1, TiN 2) using the point-to-point low bandwidth Packet Man-
agement Ordered Sets (PMOS) protocol (§3.5) between TiN
CPUs. A target TiN—not yet configured with its IP address—
also sends DHCP discovery messages over MOS over all
GNet links, which are trapped by the proxy TiN and sent over
its own session to the controller. The controller in turn relays
the discover message to the DHCP server, and likewise relays
the DHCP response, so that a target TiN learns of its assigned
IP address indirectly. The controller proceeds to configure
and program the routing tables in the target TiN via the proxy
TiN over PMoS. After enough routing state is programmed,
the controller can establish a TCP connection to the target
TiN via the GNet routing pipeline and the proxy TiN (Pod 1,
TiN 3) can then be used in turn to bootstrap yet another target
TiN (e.g., Pod 1, TiN 4). Once a TCP session is established

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1257

Figure 6: Inband bootstrap. The Aquila SDN controller bootstraps the
TiNs inband in "waves" originating from the TiNs that are directly
connected to the DCN.

with this new target TiN, it too can be used as a proxy to
bootstrap a directly connected TiN (e.g., Pod 1, TiN 5), and
so on.

DCN-connected TiNs typically bootstrap faster than the
target TiNs, which are configured over the slower PMOS pro-
tocol leading to a distribution of bootstrap times ranging from
3 minutes to 48 minutes. Several of the waves of bootstrap
occur simultaneously, resulting in a bring-up time of approxi-
mately 2.5 hours for a full-sized Clique.

5 EXPERIMENTAL RESULTS
We present a set of results examining key aspects of the Aquila
network, including its data plane performance as well as its
impact on application metrics.

5.1 Data Plane Performance
Aquila’s data plane performance was evaluated in a prototype
Aquila testbed comprised of 576 TiNs. We used 500 host
machines. Two hosts share a NIC unless otherwise specified.
We used two workloads, both of which run with delay-based
congestion control [33]:
1. UR: An IP traffic generator based on a user space micro-

kernel, Pony Express [37], that generates a Uniform Ran-
dom traffic pattern with Poisson arrival.

2. CliqueMap: A key-value store [50] that uses Remote
Memory Accesses (RMA) via either Pony Express or
1RMA.

For our evaluation, we used three metrics:
1. IP Fabric RTT (µs): We used NIC hardware timestamps

to measure Aquila fabric RTT, excluding processing and
ack-coalescing delays on the remote host. This is a true
measure of the transmission and queuing delay inside the
Aquila fabric, both for GNet and IP components.

2. 1RMA Total Execution Latency (µs): the time from when
the RMA command is submitted to the hardware until
the hardware issues the completion for that command.

This metric measures more than queuing and transmission
delay in the fabric, as it includes the PCIe transaction
delay on the remote side.

3. Achieved throughput of the network in Gbps (averaged
over 30 seconds).

Latency Under Load. We examine the latency of both IP
and 1RMA traffic under load. We used a CliqueMap client
benchmark that issues lookups of 4 KB-sized values using
RMA. By varying the QPS of the CliqueMap client on the
500 hosts, we changed the offered load per machine in a
traffic pattern akin to Uniform Random. Figure 7 plots fabric
RTT against offered load. It shows that the fabric latency
remains under 40 µs, even when the network is close to the
per machine NIC line rate of 50Gbps and it is sub-20 µs at
70% load.

1RMA is co-designed with GNet (§3.4) and Figure 8 shows
that this co-design paid off with total execution time below
10 µs even under high load for 4 KB RMA reads that are
generated using 500 CliqueMap clients to read from 500
CliqueMap backends.

1RMA Latency Isolation. Aquila is a unified network
shared by low latency 1RMA traffic and regular IP traffic
which may be latency insensitive. In our next evaluation, we
show that Aquila delivers latency sensitive traffic with low
tail latency despite sharing the network with IP traffic. To
this end, we compare the latency of latency-sensitive traffic
with and without background IP traffic in both Aquila and a
conventional Ethernet network.

For the Ethernet network, we employ standard QoS tech-
niques to isolate low-latency (or important) traffic from
bulk throughput oriented traffic. We run 200 instances of
CliqueMap lookups of 4 KB values at 10,000 QPS on a higher
priority QoS class (H) and a UR traffic pattern with 64 KB
messages with average load of 10 Gbps on a lower priority
class (L). The relative egress scheduling priority between H
and L classes is 8:1. The orange and cyan bars in Figure 9
show that such QoS-based schemes provide reasonable isola-
tion for the CliqueMap traffic from the bulk IP traffic, leading
to a modest increase in queuing in the fabric RTT for HiPri
CliqueMap traffic, albeit with a high baseline latency.

Repeating the same experiment using 1RMA as a transport,
we can see that 1RMA on Aquila offers a much lower baseline
(less than 5 µs median and tail latency) despite sharing the
same GNet fabric with IP traffic. High priority 1RMA traffic
uses different virtual channels than low-priority Pony Express
IP traffic and thus is nearly unaffected by adding the bulk traf-
fic (blue and red bars). Even when low priority 1RMA traffic
shares the virtual channels with the bulk IP traffic (yellow and
green bars), the overall latency is slightly higher than 10 µs
but still lower than Pony Express traffic on Ethernet networks
(orange and cyan bars).

Effect of Burst Size. One of the lessons we learned in
Aquila is the phenomenon of self-congestion. The IP network
in Aquila has an injection rate of 100 Gbps per TiN while

1258 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 7: IP Latency vs. Load: Fabric
queuing remains low under load.

Figure 8: RMA read latency under varied
1RMA Load.

Figure 9: 1RMA Isolation: Aquila provides low latency for
1RMA traffic, even when sharing the network with IP (H = High
Priority, L = Low Priority, CM = CliqueMap, PX = Pony Express)

Figure 10: Effect of burstiness on queuing in a full sized Aquila (left) and a half sized Aquila (right).
By keeping the injection rate constant and varying message size, we can see the effect of burstiness
on queuing latency.

Figure 11: Effect of a cell-based RMA protocol
on end-to-end CliqueMap lookup latency.

the aggregate bandwidth along the minimal paths between
two pods in the full scale Aquila topology is limited to 50
Gbps. This leads to cells taking non-minimal routes even if
the overall injection rate is well bellow the link rate due to
bursts. We show this effect by keeping the injection rate of
a point-to-point traffic at 0.6 Gbps but varying the message
size of the RPC using Pony Express. Varying the message
size only affects the burstiness of the injection. Figure 10
shows that as we increase message size, the tail fabric latency
increases past 40 µs. However, repeating the same experiment
in a half-scale version of Aquila where we have matching
inter-pod bandwidth to the IP injection rate from each TiN,
we see no effect of message size on queuing in the fabric.
Provisioning higher minimal path bandwidth trades off better
performance under bursty traffic conditions in exchange for a
smaller maximum scale of the topology.
5.2 Application Impact
In order to see application impact, we compare CliqueMap
lookup (of objects with 4 KB size) latency using 1RMA and
Pony Express as a transport for RMAs on the Aquila network.
We use O(100) backends and clients and vary queries per-
second from each client. Figure 11 shows how 1RMA on
Aquila cuts the median and tail latency by 50% at low QPS
and by more than 300% at high QPS. As with prior work [51],
higher load levels with 1RMA deliver lower latencies, as
individual servers may dwell in low-power states at low load.

6 DISCUSSION
While our approach to Aquila’s design enabled us to develop
a unified low latency network fabric for datacenter networks,
there were a number of challenges that we had to overcome.
We highlight some of the key challenges next.

Single chip part and direct connect topology. While the
single chip design delivered a sustainable development model

with a modest sized team and cost efficiency for the Aquila
network, the approach had a couple of key implications on the
architecture and deployment. First, the single part implied that
we had to deploy Aquila as a direct connect network topology
because an indirect topology (such as a Clos network) was
infeasible with TiN chips. While not a drawback by itself,
a direct connect topology is not conducive to incremental
deployment. Secondly, the evolution of the NIC and the switch
architectures were coupled together from a multi-generational
roadmap standpoint.

For simplicity, we designed the Aquila Clique as a homoge-
neous unit of deployment without an intent to mix hardware
from different generations. Moreover, the networking foot-
print for the entire Clique (up to 24 racks housing all TiN cards
as well as the networking fiber) was designed to be deployed
up front and host machines could be incrementally populated
on demand. With an indirect topology, a small number of net-
work racks (e.g., 4) could be pre-deployed with server racks
deployed incrementally. With a direct topology, all server
racks (potentially without servers) had to be pre-deployed.
Further, for a given optical technology, an indirect topology
supports more deployment flexibility: all server racks need
only be within a (say) 100m radius of the network racks. With
our direct topology, care had to be taken to lay out the rack
footprint such that the GNet fiber length between all rack pairs
was within the budget of (say) 100m.

Self congestion due to thin minimal path links. The
scale of a Dragonfly topology can be increased until we have
only a single global link between each pair of pods. How-
ever, a mismatch between the injection bandwidth from a
TiN and the pod-to-pod bandwidth leads to self-congestion
where, even at low loads and especially for large MTU pack-
ets, some cells may be routed minimally while others may
traverse non-minimal paths. As a result, there is some vari-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1259

ance in latency introduced due to cell and packet reassembly
even for point-to-point flows at low average loads.

For our initial Aquila prototype, we chose a Clique size
of 576 TiNs where the pod-to-pod bandwidth was 2x25Gbps
which was 1/4 the maximum injection bandwidth of 200Gbps
for each TiN, a balance between Clique scale and self-
congestion in the Dragonfly configuration. Further, we tuned
adaptive routing to switch from minimal to non-minimal paths
to reduce the variance due to self-congestion.

Overhead of cell switching and solicitation. Cell switch-
ing and solicitation are key features in Aquila for achiev-
ing predictable, low network latency. Switching GNet cells
comes with an overhead of approximately 5% due to an 8
byte GNet header for each 160 byte GNet cell. The RTS/CTS
solicitation for each IP packet incurs a latency overhead of
an extra round trip through the network though the RTS/CTS
cells get high priority through the GNet network and the over-
head is further mitigated for packets with large MTU. We
considered both these overheads acceptable in exchange for
low tail latency even at high injected loads. Considering a
larger GNet cell size as well as the ability to not incur solicita-
tion overhead at low loads are techniques we are investigating
to further mitigate these overheads.

Debugging a cell switched network. Since the Aquila
Clique is not an IP routed fabric internally, standard debug
tools such as traceroute only show 1 hop through the entire
Aquila fabric. To debug data blackholes in Aquila, we imple-
mented a cell tracing capability in TiN. Cells that are marked
with a bit are sampled by each TiN in the cell’s path and sent
to a central collector over UDP. The collector can then stitch
the path of the constituent cells of a packet and triangulate
any mis-configured or faulty hardware.

Limited RAM on TiN and low level firmware API. To
save cost and board space, we provisioned just 2MB of RAM
for the firmware running on the TiN chip, which led us to
a custom firmware implementation. Firmware development
added significantly to the development effort, since many
basic facilities had to be customized or re-implemented (e.g.,
logging, memory allocation, and flash storage).

The decision to expose a register level API to the SDN con-
troller for programming the TiN chip had the benefit of shift-
ing complexity away from the resource constrained firmware
as well as simplifying the capability to upgrade firmware
with Non-Stop Forwarding (NSF). It also meant that new
features could be implemented without needing to roll out a
new firmware version since all features of the hardware were
exposed. A challenge with this approach was maintaining
this interface across multiple hardware generations, since the
SDN controller would need to be aware of the register level
details of each chip.

For future designs, we are investigating adding more com-
pute to the NIC so that it can be Linux based. Adding Rasp-
berryPi equivalent compute to each NIC is likely to minimally
increase the per unit cost relative to the expected gains in de-

velopment velocity. Additionally, more compute will unblock
the use of an API with a higher level of abstraction, such as
P4 Runtime [24].

Legacy Applications Performance. While Aquila deliv-
ered significant application performance improvements (§5)
for the co-designed case, such as CliqueMap with 1RMA, it
did not have a significant positive impact on legacy applica-
tions. We observed that legacy application’s tail latency is
dominated by the host software stack, including thread wake
up latency. Moreover, with IP software stacks, RTS queue
length is governed by the host congestion control algorithms
rather than the GNet fabric cell latency. Looking forward, we
are shifting transport and network protocols to natively take
advantage of future-looking hardware improvements, creating
an interesting tension where the substantial software invest-
ment would likely not be a net positive until newly designed
hardware is deployed across the majority of the fleet.

7 RELATED WORK
Topology and Cell-switching. Aquila uses a direct-connect
topology, Dragonfly [30]. The Cray Cascade system [17]
utilizes a Dragonfly topology as the basis for an HPC fab-
ric. This design uses a high radix switch with 4 integrated
host interfaces, using a proprietary packet format and virtual
cut-through. The gateway to Ethernet networking requires
processing nodes connected to both types of network. Aquila
differs from this system (and from work on Flattened Butter-
flies [31] and HyperX [3]) by using the topology as a cell fab-
ric, as opposed to a packet network with virtual cut-through.
JellyFish [52] is a random-graph topology with its own chal-
lenges of deployment. Sirius [6] is a flat-topology with sim-
ilar goals to Aquila but it utilizes optical circuit switching
rather than cell or packet switching. Early ATM networks
provided Ethernet-on-ATM [26]. More recently, Stardust [56]
employed the idea of cells to give a higher effective switch
radix by using single lane channels in the fabric.

Low latency networking protocols. Infiniband [10] im-
plements an alternative networking stack to Ethernet/IP op-
timized for lower latency. This provides a flow controlled,
lossless packet level protocol, a reliable transport implementa-
tion, and a complete set of messaging and RDMA operations.
Although inter-operation with Ethernet networks for IP traf-
fic can be implemented by gateway functions, Infiniband is
commonly used as a dedicated HPC network. SRD [47] (Scal-
able Reliable Datagram) is an alternate transport protocol
layered over IP datagrams that is used in conjunction with
EFA (Elastic Fabric Adapter) by a Cloud computing provider
to provide lower latency communications services for HPC
applications. This has the advantage of being able to use stan-
dard Ethernet switches at some cost in minimum achievable
latency. While Aquila uses cell-based adaptive routing, SRD
uses source-based adaptive multi-pathing.

Congestion control. Solicitation is one of the key elements
of GNet for controlling congestion in the GNet fabric. A

1260 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

few recent congestion control schemes such as Homa [42],
NDP [25], ExpressPass [11], pHost [19] and Stardust [56] use
a receiver-driven solicitation scheme, similar to that of GNet,
to avoid incast congestion and achieve low latency. Aquila’s
solicitation controls the transfer of IP packets from buffers at
the GNet fabric edge and does not directly control the IP NIC.
This means it can handle both gateway and host interface IP
traffic, but it requires host-based congestion control [33] to
cause the traffic sources to back off in the event of congestion.

Control-plane. Aquila’s control plane was designed with
a distributed software defined control-plane. Most of the pre-
vious SDN controllers, Onix [32], ONOS [9], Flowlog [43],
Ravel [54] assume routing of IP traffic and rely on Open-
Flow to program switches. Aquila’s control plane introduces
a lower-level communication protocol from a Switch Front-
end module to control light embedded switch controllers. The
table-based design in [18, 43, 54] allowed for extending rout-
ing and sequencing to support GNet flows in addition to IP
flows.

8 CONCLUSION
In this paper we present Aquila, our first foray into tightly-
coupled networks (Cliques) integrated within the datacenter
networking ecosystem realizing Clique-scale resource disag-
gregation and predictable, low-latency communication. Our
primary goal is to advocate for a new design architecture for
datacenter networking around Cliques and to encourage new
research and development in tightly-coupled networking in
support of high-performance computing, ML training, and
network disaggregation while simultaneously interoperating
with traditional TCP/IP/Ethernet traffic at datacenter scale.
We believe our experience, both positve and negative, with
the Aquila prototype will set the foundation for future explo-
ration in this space.

Acknowledgments We would like to thank David Culler,
John Wilkes, David Wetherall, the anonymous NSDI review-
ers and our shepherd, Brent Stephens, for providing valu-
able feedback. Aquila was a multi-year effort at Google
that benefited from an ecosystem of support and inno-
vation. Many contributed to the work, including but not
limited to Adam Jesionowski, Alan Lam, Alex Smirnov,
Amir Salek, Brandon Ripley, Chip Killian, Daniel Nelson,
David Wickeraad, Deepak Arulkannan, Deepak Lall, Dun-
can Tate, Jakov Seizovic, Jeffery Seibert, Jennie Hughes, Joe
Love, Kamran Torabi, Luiz Mendes, Matt Maxwell, Matthew
Beaumont-Gay, Philippe Selo, Phillip La, Ranjan Bonthala,
Robin Zhang, Scott Berkman, Sean Clark, Shaun Tran, Si-
mon Sabato, Steven Knight, Trevor Switkowski, Tri Nguyen,
Warren James, Wilson Lee, Yousuf Haider, and Zhenchuan
Pang.

REFERENCES
[1] Freertos: Real-time operating system for microcon-

trollers. https://www.freertos.org/. Accessed:

2022-02-28.

[2] Lwip: A lightweight tcp/ip stack. https://
savannah.nongnu.org/projects/lwip/. Accessed:
2022-02-28.

[3] Jung Ho Ahn, Nathan Binkert, Al Davis, Moray
McLaren, and Robert S Schreiber. Hyperx: topology,
routing, and packaging of efficient large-scale networks.
In 2009 SC Conference on High Performance Com-
puting Networking, Storage and Analysis, pages 1–11.
IEEE Computer Society, 2009.

[4] Mohammad Al-Fares, Alexander Loukissas, and Amin
Vahdat. A scalable, commodity data center network
architecture. SIGCOMM Comput. Commun. Rev.,
38(4):63–74, August 2008.

[5] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload Analysis of a
Large-scale Key-value Store. In Proceedings of the
12th ACM SIGMETRICS/PERFORMANCE Joint Inter-
national Conference on Measurement and Modeling of
Computer Systems, SIGMETRICS ’12, pages 53–64,
New York, NY, USA, 2012. ACM.

[6] Hitesh Ballani, Paolo Costa, Raphael Behrendt, Daniel
Cletheroe, Istvan Haller, Krzysztof Jozwik, Fotini Kari-
nou, Sophie Lange, Kai Shi, Benn Thomsen, and Hugh
Williams. Sirius: A flat datacenter network with nanosec-
ond optical switching. In Proceedings of the Annual
Conference of the ACM Special Interest Group on Data
Communication on the Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communica-
tion, SIGCOMM ’20, page 782–797, New York, NY,
USA, 2020. Association for Computing Machinery.

[7] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David
Walker. A general approach to network configuration
verification. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication,
pages 155–168, 2017.

[8] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra
Padhye, and David Walker. Don’t mind the gap: Bridg-
ing network-wide objectives and device-level configu-
rations. In Proceedings of the 2016 ACM SIGCOMM
Conference, pages 328–341, 2016.

[9] Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta
Higuchi, Masayoshi Kobayashi, Toshio Koide, Bob
Lantz, Brian O’Connor, Pavlin Radoslavov, William
Snow, et al. Onos: towards an open, distributed sdn
os. In Proceedings of the third workshop on Hot topics
in software defined networking, pages 1–6, 2014.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1261

https://www.freertos.org/
https://savannah.nongnu.org/projects/lwip/
https://savannah.nongnu.org/projects/lwip/

[10] Rajkumar Buyya, Toni Cortes, and Hai Jin. An Intro-
duction to the InfiniBand Architecture, pages 616–632.
2002.

[11] Inho Cho, Keon Jang, and Dongsu Han. Credit-
Scheduled Delay-Bounded Congestion Control for Dat-
acenters. In Proceedings of the ACM SIGCOMM 2017
Conference, SIGCOMM ’17, pages 239–252, New York,
NY, USA, 2017. ACM.

[12] David D. Clark, John Wroclawski, Karen R. Sollins, and
Robert Braden. Tussle in cyberspace: Defining tomor-
row’s internet. IEEE/ACM Trans. Netw., 13(3):462–475,
June 2005.

[13] Paolo Costa, Hitesh Ballani, Kaveh Razavi, and Ian
Kash. R2c2: A network stack for rack-scale computers.
In Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication, pages 551–564,
2015.

[14] William J Dally. Virtual-channel flow control. ACM
SIGARCH Computer Architecture News, 18(2SI):60–68,
1990.

[15] Jeffrey Dean and Luiz André Barroso. The tail at scale.
Commun. ACM, 56(2):74–80, February 2013.

[16] Aleksandar Dragojević, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. FaRM: Fast Remote Mem-
ory. In 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14), pages 401–414,
Seattle, WA, April 2014. USENIX Association.

[17] G. Faanes, A. Bataineh, D. Roweth, T. Court, E. Froese,
B. Alverson, T. Johnson, J. Kopnick, M. Higgins, and
J. Reinhard. Cray cascade: A scalable hpc system based
on a dragonfly network. In SC ’12: Proceedings of the
International Conference on High Performance Com-
puting, Networking, Storage and Analysis, pages 1–9,
2012.

[18] Andrew Ferguson, Steve Gribble, Chi-Yao Hong,
Charles Killian, Waqar Mohsin, Henrik Muehe, Joon
Ong, Leon Poutievski, Arjun Singh, Lorenzo Vicisano,
Richard Alimi, Shawn Shuoshuo Chen, Mike Conley,
Subhasree Mandal, Karthik Nagaraj, Kondapa Naidu
Bollineni, Amr Sabaa, Shidong Zhang, Min Zhu, and
Amin Vahdat. Orion: Google’s software-defined net-
working control plane. In 18th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
21), 2021.

[19] Peter X. Gao, Akshay Narayan, Gautam Kumar, Rachit
Agarwal, Sylvia Ratnasamy, and Scott Shenker. pHost:
Distributed Near-optimal Datacenter Transport over
Commodity Network Fabric. In Proceedings of the 11th
ACM Conference on Emerging Networking Experiments

and Technologies, CoNEXT ’15, pages 1:1–1:12, New
York, NY, USA, 2015. ACM.

[20] Marina García, Enrique Vallejo, Ramón Beivide, Miguel
Odriozola, and Mateo Valero. Efficient routing mech-
anisms for dragonfly networks. In 2013 42nd Interna-
tional Conference on Parallel Processing, pages 582–
592. IEEE, 2013.

[21] Ramesh Govindan, Ina Minei, Mahesh Kallahalla,
Bikash Koley, and Amin Vahdat. Evolve or die: High-
availability design principles drawn from googles net-
work infrastructure. In Proceedings of the 2016 ACM
SIGCOMM Conference, SIGCOMM ’16, page 58–72,
New York, NY, USA, 2016. Association for Computing
Machinery.

[22] R. L. Graham, D. Bureddy, P. Lui, H. Rosenstock,
G. Shainer, G. Bloch, D. Goldenerg, M. Dubman,
S. Kotchubievsky, V. Koushnir, L. Levi, A. Margolin,
T. Ronen, A. Shpiner, O. Wertheim, and E. Zahavi. Scal-
able hierarchical aggregation protocol (sharp): A hard-
ware architecture for efficient data reduction. In 2016
First International Workshop on Communication Opti-
mizations in HPC (COMHPC), pages 1–10, 2016.

[23] Albert Greenberg, James R. Hamilton, Navendu Jain,
Srikanth Kandula, Changhoon Kim, Parantap Lahiri,
David A. Maltz, Parveen Patel, and Sudipta Sengupta.
Vl2: A scalable and flexible data center network. In
Proceedings of the ACM SIGCOMM 2009 Conference
on Data Communication, SIGCOMM ’09, page 51–62,
New York, NY, USA, 2009. Association for Computing
Machinery.

[24] The P4.org API Working Group. P4 Runtime Speci-
fication. https://p4.org/p4runtime/spec/v1.2.0/
P4Runtime-Spec.html, 2020.

[25] Mark Handley, Costin Raiciu, Alexandru Agache, An-
drei Voinescu, Andrew W. Moore, Gianni Antichik, and
Marcin Mojcik. Re-architecting Datacenter Networks
and Stacks for Low Latency and High Performance. In
Proceedings of the ACM SIGCOMM 2017 Conference,
SIGCOMM ’17, pages 29–42, New York, NY, USA,
2017. ACM.

[26] Hong Linh Truong, W. W. Ellington, J. Y. Le Boudec,
A. X. Meier, and J. W. Pace. Lan emulation on an atm
network. IEEE Communications Magazine, 33(5):70–
85, 1995.

[27] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon
Ong, Leon Poutievski, Arjun Singh, Subbaiah Venkata,
Jim Wanderer, Junlan Zhou, Min Zhu, Jon Zolla, Urs
Hölzle, Stephen Stuart, and Amin Vahdat. B4: Experi-
ence with a globally-deployed software defined wan. In

1262 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://p4.org/p4runtime/spec/v1.2.0/P4Runtime-Spec.html
https://p4.org/p4runtime/spec/v1.2.0/P4Runtime-Spec.html

Proceedings of the ACM SIGCOMM 2013 Conference
on SIGCOMM, SIGCOMM ’13, page 3–14, New York,
NY, USA, 2013. Association for Computing Machinery.

[28] Norman P. Jouppi, Cliff Young, Nishant Patil, David
Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah
Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick
Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark,
Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean,
Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Got-
tipati, William Gulland, Robert Hagmann, C. Richard
Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt,
Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander
Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch,
Naveen Kumar, Steve Lacy, James Laudon, James Law,
Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke,
Alan Lundin, Gordon MacKean, Adriana Maggiore,
Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi
Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,
Mark Omernick, Narayana Penukonda, Andy Phelps,
Jonathan Ross, Matt Ross, Amir Salek, Emad Samadiani,
Chris Severn, Gregory Sizikov, Matthew Snelham, Jed
Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gre-
gory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay
Vasudevan, Richard Walter, Walter Wang, Eric Wilcox,
and Doe Hyun Yoon. In-datacenter performance anal-
ysis of a tensor processing unit. In Proceedings of the
44th Annual International Symposium on Computer Ar-
chitecture, ISCA ’17, page 1–12, New York, NY, USA,
2017. Association for Computing Machinery.

[29] Peyman Kazemian, George Varghese, and Nick McK-
eown. Header space analysis: Static checking for net-
works. In 9th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 12), pages 113–
126, San Jose, CA, April 2012. USENIX Association.

[30] John Kim, Wiliam J Dally, Steve Scott, and Dennis Abts.
Technology-driven, highly-scalable dragonfly topology.
In 2008 International Symposium on Computer Archi-
tecture, pages 77–88. IEEE, 2008.

[31] John Kim, William J Dally, and Dennis Abts. Flattened
butterfly: a cost-efficient topology for high-radix net-
works. In Proceedings of the 34th annual international
symposium on Computer architecture, pages 126–137,
2007.

[32] Teemu Koponen, Martin Casado, Natasha Gude, Jeremy
Stribling, Leon Poutievski, Min Zhu, Rajiv Ramanathan,
Yuichiro Iwata, Hiroaki Inoue, Takayuki Hama, et al.
Onix: A distributed control platform for large-scale pro-
duction networks. In OSDI, volume 10, pages 1–6, 2010.

[33] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan
M. G. Wassel, Xian Wu, Behnam Montazeri, Yaogong

Wang, Kevin Springborn, Christopher Alfeld, Michael
Ryan, David Wetherall, and Amin Vahdat. Swift: Delay
is simple and effective for congestion control in the dat-
acenter. In Proceedings of the Annual Conference of the
ACM Special Interest Group on Data Communication on
the Applications, Technologies, Architectures, and Pro-
tocols for Computer Communication, SIGCOMM ’20,
page 514–528, New York, NY, USA, 2020. Association
for Computing Machinery.

[34] Sergey Legtchenko, Nicholas Chen, Daniel Cletheroe,
Antony Rowstron, Hugh Williams, and Xiaohan Zhao.
Xfabric: A reconfigurable in-rack network for rack-scale
computers. In 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16), pages
15–29, 2016.

[35] Yuliang Li, Gautam Kumar, Hema Hariharan, Hassan
Wassel, Peter Hochschild, Dave Platt, Simon Sabato,
Minlan Yu, Nandita Dukkipati, Prashant Chandra, and
Amin Vahdat. Sundial: Fault-tolerant clock synchroniza-
tion for datacenters. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
20), pages 1171–1186, 2020.

[36] Vincent Liu, Daniel Halperin, Arvind Krishnamurthy,
and Thomas Anderson. F10: A fault-tolerant engineered
network. In 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 13), pages
399–412, Lombard, IL, April 2013. USENIX Associa-
tion.

[37] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christo-
pher Alfeld, Sean Bauer, Carlo Contavalli, Michael Dal-
ton, Nandita Dukkipati, William C. Evans, Steve Grib-
ble, and et al. Snap: A microkernel approach to host
networking. In Proceedings of the 27th ACM Sympo-
sium on Operating Systems Principles, SOSP ’19, page
399–413, New York, NY, USA, 2019. Association for
Computing Machinery.

[38] Nick McKeown. The islip scheduling algorithm for
input-queued switches. IEEE/ACM transactions on net-
working, 7(2):188–201, 1999.

[39] Nick McKeown, Tom Anderson, Hari Balakrishnan,
Guru Parulkar, Larry Peterson, Jennifer Rexford, Scott
Shenker, and Jonathan Turner. OpenFlow: Enabling
Innovation in Campus Networks. 38:69–74, 2008.

[40] Michael Mitzenmacher, Andréa W. Richa, and Ramesh
Sitaraman. The power of two random choices: A survey
of techniques and results. In Handbook of Randomized
Computing, pages 255–312. Kluwer, 2000.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1263

[41] Jeffrey C Mogul, Drago Goricanec, Martin Pool, Anees
Shaikh, Douglas Turk, Bikash Koley, and Xiaoxue Zhao.
Experiences with modeling network topologies at multi-
ple levels of abstraction. In 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
20), pages 403–418, 2020.

[42] Behnam Montazeri, Yilong Li, Mohammad Alizadeh,
and John Ousterhout. Homa: A receiver-driven low-
latency transport protocol using network priorities. In
Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM
’18, pages 221–235, New York, NY, USA, 2018. ACM.

[43] Tim Nelson, Andrew D Ferguson, Michael JG Scheer,
and Shriram Krishnamurthi. Tierless programming
and reasoning for software-defined networks. In 11th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 14), pages 519–531, 2014.

[44] Open Networking Foundation. Mission of open net-
working foundation. https://opennetworking.org/
mission/, 2021. Accessed: 2021-03-08.

[45] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter,
and Alex C. Snoeren. Inside the Social Network’s (Dat-
acenter) Network. In Proceedings of the ACM SIG-
COMM 2015 Conference, SIGCOMM ’15, pages 123–
137, New York, NY, USA, 2015. ACM.

[46] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nel-
son, Panos Kalnis, Changhoon Kim, Arvind Krishna-
murthy, Masoud Moshref, Dan RK Ports, and Peter
Richtárik. Scaling distributed machine learning with
in-network aggregation. April 2021.

[47] Leah Shalev, Hani Ayoub, Nafea Bshara, and Erez Sab-
bag. A cloud-optimized transport protocol for elastic
and scalable hpc. IEEE Micro, 40(6):67–73, 2020.

[48] Arjun Singh. Load-balanced routing in interconnection
networks. PhD thesis, Stanford University, 2005.

[49] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson,
Ashby Armistead, Roy Bannon, Seb Boving, Gaurav
Desai, Bob Felderman, Paulie Germano, Anand Kana-
gala, Hanying Liu, Jeff Provost, Jason Simmons, Eiichi
Tanda, Jim Wanderer, Urs Hölzle, Stephen Stuart, and
Amin Vahdat. Jupiter Rising: A Decade of Clos Topolo-
gies and Centralized Control in Google’s Datacenter
Network. In SIGCOMM ’15, 2015.

[50] Arjun Singhvi, Aditya Akella, Maggie Anderson, Rob
Cauble, Harshad Deshmukh, Dan Gibson, Milo MK
Martin, Amanda Strominger, Thomas F Wenisch, and
Amin Vahdat. Cliquemap: productionizing an rma-
based distributed caching system. In Proceedings of

the 2021 ACM SIGCOMM 2021 Conference, pages 93–
105, 2021.

[51] Arjun Singhvi, Aditya Akella, Dan Gibson, Thomas F
Wenisch, Monica Wong-Chan, Sean Clark, Milo MK
Martin, Moray McLaren, Prashant Chandra, Rob Cauble,
et al. 1rma: Re-envisioning remote memory access for
multi-tenant datacenters. In Proceedings of the Annual
conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, ar-
chitectures, and protocols for computer communication,
pages 708–721, 2020.

[52] Ankit Singla, Chi-Yao Hong, Lucian Popa, and
P Brighten Godfrey. Jellyfish: Networking data centers
randomly. In 9th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 12), pages
225–238, 2012.

[53] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu,
David Oppenheimer, Eric Tune, and John Wilkes. Large-
scale cluster management at Google with Borg. In Pro-
ceedings of the European Conference on Computer Sys-
tems (EuroSys), Bordeaux, France, 2015.

[54] Anduo Wang, Xueyuan Mei, Jason Croft, Matthew Cae-
sar, and Brighten Godfrey. Ravel: A database-defined
network. In Proceedings of the Symposium on SDN
Research, pages 1–7, 2016.

[55] Junlan Zhou, Malveeka Tewari, Min Zhu, Abdul Kab-
bani, Leon Poutievski, Arjun Singh, and Amin Vahdat.
WCMP: Weighted Cost Multipathing for Improved Fair-
ness in Data Centers. In Proceedings of the Ninth Eu-
ropean Conference on Computer Systems, page Article
No. 5, 2014.

[56] Noa Zilberman, Gabi Bracha, and Golan Schzukin. Star-
dust: Divide and conquer in the data center network. In
16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19), pages 141–160, 2019.

A HARDWARE PACKAGING DETAILS
Incremental deployment is a much more significant consider-
ation for datacenter systems than for supercomputers which
are typically installed as a single system, or in a number of
predefined phases. Incremental network deployment is chal-
lenging for the Dragonfly topology, where growing the size
of the fabric requires the topology to be reconfigured to fully
exploit the available chip bandwidth. To avoid recabling for
expansion, which is hard to reconcile with the availability
requirements of a datacenter, we developed a packaging strat-
egy that allows all the networking infrastructure to be landed
as one initial deployment, with the servers being populated
incrementally as required.

1264 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://opennetworking.org/mission/
https://opennetworking.org/mission/

Figure 12: Aquila Clique with 1152 servers, in 24 racks.

A second key consideration was whether to use a blade
based system, with a combined server and networking pack-
aging solution, or to work with our existing servers designed
around conventional NICs. The latter approach was chosen
to avoid having to support two packaging variants of each
different server type. These two decisions broadly determined
our packaging design.

The physical design (Figure 12) supports up to 48 ma-
chines per rack, organized as two pods of 24 servers. The
Aquila networking for each pod is provided by a switch chas-
sis containing 12 TiN ASICs, on 6 line cards. The first level
interconnect of the Dragonfly is implemented in copper on
the switch chassis backplane. Servers are connected to the
switch chassis using a cabled x16 Gen 3 PCIe bus. Sideband
signals on the cable carry the independent machine manage-
ment interface from the TiN chip that connects to the server’s
NC-SI port.

The overall Aquila Clique consists of 24 racks. The con-
nectivity between the racks is optical using custom low cost
VCSEL based 4 channel GNet optical modules, 4 per line
card. This gives a total of 96 optical GNet connections for the
global interconnect level of the Dragonfly from each pod. As
there are a total of 48 pods in a clique there are two optical
GNet global links between any pod pair. If we connected
these directly with two channel fiber ribbons this would re-

quire 47x48/2 = 1128 unique interpod cables to be connected.
To simplify the rack to rack cabling we use fiber shuffles
within groups of 4 pods to consolidate into wider fiber rib-
bons allowing the use of 8 GNet link, MPO16 fiber cables.
This reduces the rack to rack cabling to 66 4-cable bundles
running between 12 pairs of racks greatly simplifying the
fiber deployment.

The total number of available 100g Ethernet ports available
for connection to the data center spine network from the TiN
ASICs is 576. 24 of these are used for rack management.
Either 256 or 512 ports are connected to the higher level
Ethernet fabric with the remaining 40 ports unused.

A.1 Failure Domains
A key consideration of the Aquila architecture was to reduce
the blast radius of any networking component failure. In a con-
ventional network the loss of a TOR impacts all the attached
servers; this could be as many as 48 machines for a high
radix switch device. In contrast, with the Aquila architecture,
loss of a TiN ASIC impacts a maximum of two servers. In
practice because the physical packaging solution uses a pair
of TiN ASICs on a single line card, the effective blast radius
for a repair operation can be up to four servers if 2 servers
share a TiN. A switch chassis failure impacts a maximum
of 24 servers, however the only chassis components with a
significant failure rate are the fans, and N+2 fan redundancy

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1265

Figure 13: Aquila Clock Sync.

is implemented to minimize the possibility of a chassis level
failure.

B CLOCK SYNCHRONIZATION
B.1 Overview
The timesync protocol on Aquila was designed with the aim
of keeping the software overhead for timesync low while
also providing a tight bound on the notion of current time
across the TiNs in the clique. This protocol maintains a single
primary clock in the clique against which clients are syn-
chronized purely in hardware (Figure 13). Synchronization is
carried out over the GNet links on the switch side of the TiN
by transmitting information as lightweight, 8-Byte “ordered
sets” between cells, a class of which (TimeSync) are defined
for Clique time synchronization. Clients in the host, expect-
ing an IEEE 1588-like protocol to maintain time in the NIC,
are able to query the value of this clock. The hardware also
corrects for link delays between neighboring TiNs and for
time spent within the chip while waiting for a gap between
cells to get on the link.

B.2 Implementation
The Timesync hardware on TiN maintains the current time
by counting cycles of the core clock along with status bits
which tracks several parameters that indicate the accuracy of

the clock. The value of time is also updated by the reception
of timesync messages from the neighboring TiN if the current
TiN has been configured to be a client node in the time distri-
bution network. The protocol relies on software to set up this
time distribution tree [35].

Once the time distribution tree is configured, the TiN trans-
mits TimeSync ordered sets on a configured number of output
GNet links at a fixed interval (typically, about 100us). On a
client node, an incoming TimeSync message also causes an
update to be sent downstream even if the configured interval
between messages has not expired. This is to ensure that even
the farthest nodes in the time distribution tree do not drift
much from the primary node.

The TimeSync message cannot interrupt a cell on the wire,
so the ordered set can wait up to 128ns to get onto the wire.
Regardless of the delay, the ordered set indicates the actual
time of transmission (+/- 2.5ns) by incrementing the value of
current time in the TimeSync message for each cycle that it
waits to get onto the wire, including flight time across the chip
from the hardware clock, arbitration time to get onto the wire,
etc. Each receiving TiN is configured to receive TimeSync
messages only on a single port and it adjusts for any on-chip
delays to get the TimeSync message to the hardware clock
along with the delay through the GNet channel.

The delay through the GNet channel is configured on the
receiver by running round trip delay measurement at the time
of setting up of the time distribution tree. This is done by the
GNet ports by putting them in a “latency measurement” mode
where the neighbors exchange special ordered sets and reflect
the delay through the channel to software as a status.

On reception of a Timesync message, the client node,
checks the validity of the message through comparison of
status bits transmitted with the message and the difference
between the incoming time and the current time against a
configurable threshold. The update to current time is only
applied when valid Timesync messages are received and if
enough invalid messages are seen, the client node signals that
a failure is detected. The protocol relies on software to take
action once failure is detected

1266 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

RDC: Energy-Efficient Data Center Network Congestion Relief
with Topological Reconfigurability at the Edge

Weitao Wang†, Dingming Wu*, Sushovan Das†, Afsaneh Rahbar†, Ang Chen†, and T. S. Eugene Ng†

†Rice University, *Bytedance Inc.

Abstract
The rackless data center (RDC) is a novel network architec-
ture that logically removes the rack boundary of traditional
data centers and the inefficiencies that come with it. As mod-
ern applications generate more and more inter-rack traffic, the
traditional architecture suffers from contention at the core,
imbalanced bandwidth utilization across racks, and longer
network paths. RDC addresses these limitations by enabling
servers to logically move across the rack boundary at run-
time. Our design achieves this by inserting circuit switches at
the network edge between the ToR switches and the servers,
and by reconfiguring the circuits to regroup servers across
racks based on the traffic patterns. We have performed ex-
tensive evaluations of RDC both in a hardware testbed and
packet-level simulations and show that RDC can speed up
a 4:1 oversubscribed network by 1.78×∼ 3.9× for realistic
applications and more than 10× in large-scale simulation;
furthermore, RDC is up to 2.4× better in performance per
watt than a conventional non-blocking network.

1 Introduction
The importance of the data center network (DCN) has led to a
series of DCN architecture proposals [26,43,44,53,59,62,66,
74,80,82,84–86,96,110,118] over the past decade. Although
these proposals have competing designs for the network core,
the designs for the network edge are similar: servers organized
in racks. The network core connects multiple racks, and each
rack hosts tens of servers that are connected via a Top-of-Rack
(ToR) switch. Standardized racks enable unified power supply
and cooling, as well as significant space and cable savings.
This rack-based topology and connectivity pattern is deeply
ingrained in the design of existing DCN architectures.

While traffic within a rack experiences no congestion,
traffic across racks often has to contend for bandwidth
due to oversubscription in the network core1. At the same
time, traffic across racks is increasing in data center work-
loads [36, 37, 40, 99]. Firstly, more and more DCN traffic
is escaping the rack boundary due to resource fragmenta-
tion [61], large-scale jobs [24], specific application placement
constraints for fault tolerance [13], and service-based rack
organization for operational convenience [99]—e.g., one rack
may host storage servers, and another rack may host cache

1The literature suggests that there exists a wide-range of common over-
subscription ratios between 4:1 to 20:1 [43, 62, 99, 105].

servers. Secondly, there is also an increasing amount of traffic
that leaves the pod. For instance, a web-frontend cluster may
need to retrieve data from a database cluster or submit jobs to
a Hadoop cluster [99].

Thus, the need for efficient handling of cross-rack traf-
fic has motivated numerous approaches; but they have one
thing in common – they view the rack design (i.e., a ToR
switch connecting tens of servers) as a given. Firstly, the non-
blocking network and its alternatives [26, 62, 64, 65, 82, 109]
aim to enlarge the capacity of the network core. However,
due to the scaling limit of CMOS-based electrical packet
switches [6, 33, 34, 49, 50, 57, 91, 104, 105], building such
a network while staying within the datacenter power bud-
get is challenging [107]. Secondly, rack-level reconfigurable
networks [53, 74, 80, 110, 118] add additional bandwidth be-
tween the most intensively communicating racks with extra
cables, lasers, or antennas to relieve the bottleneck at the
core. However, the performance improvement is constrained
by the fact that the number of additional paths is usually
limited. Thirdly, smarter job placement and execution strate-
gies [39,40,45,46,71,72,87,108,116,120] can also reduce the
inter-rack traffic by arranging the jobs based on their traffic
pattern. However, these placement solutions cannot perform
well if traffic patterns fluctuate at runtime or if the application
dictates placement and forces the traffic to be cross-rack.

This paper studies a complementary and little-explored
point in the design space, which we call the rackless data
center (RDC) architecture. It logically removes the fixed,
topological rack boundaries while preserving the benefits of
rack-based designs, e.g., organized power supply and cool-
ing, and space efficiency. In RDC, servers are still mounted
on physical racks, but they are not bound statically to any
ToR switch. Rather, they can move logically from one ToR
to another. Under the hood, this is achieved by the use of
the circuit switches (CS), which can be dynamically reconfig-
ured to form different connectivity patterns. In other words,
servers remain immobile, but circuit changes may shift them
to different topological locations. Therefore, this new archi-
tecture is not committed to any static configuration, so servers
that heavily communicate with each other can be grouped on
demand, and they can be regrouped as soon as the pattern
changes again. Such dynamic server regrouping enabled by
RDC leads to performance benefits in many common, real-
world scenarios (details in §2).

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1267

We make the following contributions: 1) a novel architec-
ture called RDC, which can be reconfigured to connect servers
under different racks in the same logical locality group despite
physical rack boundaries; 2) a low-latency RDC control plane
and algorithms, which continuously optimize the RDC topol-
ogy based on the traffic patterns; 3) a prototype of RDC in
both testbed and simulation settings, demonstrating that RDC
boosts the performance of a 4:1 oversubscribed network by
1.78×∼ 3.9× for realistic applications and more than 10× in
large-scale simulation; furthermore, RDC is up to 2.4× better
in performance per watt than a conventional non-blocking
network.

2 Motivation
RDC is motivated by inefficiencies that stem from the inher-
ent rack boundaries in today’s data centers. RDC enables dy-
namic topological reconfiguration to regroup servers, leading
to improved performance for modern workloads. We propose
to realize RDC using circuit switching technologies.

2.1 Rack sizes are inherently limited

Today’s DCNs are organized in physical racks as the basic
unit. Communication within a rack is through a ToR switch
and enjoys lower latency and higher throughput than that
across racks. This rack boundary is stressed by a combi-
nation of two trends. First, applications are becoming data-
intensive. DNN training, iterative machine learning, HPC, big
data frameworks (MapReduce, Spark, HDFS) and many other
workloads require extensive data communication. Second, the
advent of domain-specific accelerators (GPUs, TPUs) and
non-volatile memories (NVM) is further shifting the major
bottleneck from computation to network IO. The convergence
of these trends leads to the need to maximize rack-level perfor-
mance as much as possible. Broadcom’s Tomahawk-4 64x400
Gbps—the fastest Ethernet switch ASIC commercially avail-
able on the market today [7]—only supports a rack boundary
of tens of servers while maintaining maximum rack-level per-
formance. A few years ago, the End-of-Row architecture was
proposed as an alternative, where multiple racks of low port
speed servers were connected to a high-radix edge switch to
form a larger logical rack [1]. However, high-radix switch-
ing is not feasible at high port speeds: 400 Gbps ports are
common today, and Ethernet standards are growing to terabit
level. Therefore, in the foreseeable future, the physical rack
boundaries of tens of servers are here to stay. New solutions
are necessary to mitigate inter-rack-level bottlenecks.

2.2 Rack boundaries introduce bottlenecks

1. Jobs fragmented across racks. A job may spread across
racks if rack resources are fragmented. This is partly be-
cause cluster schedulers assign resources to their own jobs
locally [5, 11, 12]; also, dynamic job churns ensure that rack
resources aren’t always neatly packed [60, 95]. Such resource
fragmentation leads to heavy inter-rack traffic which contends

for bandwidth due to oversubscription.
2. Workloads with dynamic traffic patterns. Many data-
intensive applications (e.g., DNN training, HPC) consist of
multiple stages, and each stage has a different yet predictable
traffic pattern. For example, Distributed Matrix Multiplication
(DMM) has broadcast (one-to-many) and shift (one-to-one)
traffic patterns among different subsets of servers in every
iteration (Fig. 8(e)). When these jobs coexist in a cluster, the
overall combined traffic pattern will change dynamically and
predictably. For such workloads, no static job allocation is
sufficient to localize all the traffic patterns simultaneously.
3. Applications with placement constraints. Applications
may intentionally spread their instances across racks to bal-
ance load [55] to reduce synchronized power consumption
spikes [70], or to achieve fault tolerance [13]. For instance,
to increase resilience, some distributed storage systems, like
HDFS, require at least one replica to be placed on a different
rack. These requirements result in placement constraints that
are by design crossing rack boundaries.
4. Imbalanced out-of-pod traffic. In large datacenters, traf-
fic patterns across racks are often skewed, and out-of-pod
traffic demand for each rack is different. For example, only
7.3% of the traffic from the frontend servers is inter-pod, com-
paring to 40.7% for the cache servers [41, 99]. Operationally,
data centers tend to group servers based on their types [99].
So, the above heterogeneity of the out-of-pod traffic demand
will make some racks’ uplinks highly congested (e.g., cache)
while other racks still have unused bandwidth (e.g., frontend).

2.3 Facebook trace analysis: A case study

Methodology. We used a public dataset released by Face-
book, which contains packet-level traces collected from their
production data centers in a one-day period. The traces were
collected from the “frontend”, “database”, and “Hadoop” clus-
ters, sampled at a rate of 1:30 k, and each packet contains
information about the source and destination servers [4]. To
understand the benefits of removing rack boundaries, we simu-
late a rackless design by regrouping servers of different racks
into “logical” racks using the algorithms presented in §3. We
have two major findings.
Observation #1: Intensive inter-rack traffic. The first ob-
servation from the traces is that most of the traffic crosses
rack boundaries in a pod. Fig. 1(a) shows the heatmap of
traffic pattern inside a frontend pod with 74 racks, collected
during a 2-minute interval. If a server in rack i sends more
traffic to another server in rack j, then the pixel (i, j) in the
heatmap will become darker. Intra-rack traffic appears on the
diagonal (i.e., i = j). The scattered dots show that the traffic
does not exhibit rack locality—in fact, 96.26% of the traffic
in this heatmap is inter-rack but intra-pod. A similar trend
exists for the database trace: 92.89% of traffic is inter-rack
but intra-pod. Hadoop trace has more intra-rack traffic but
still has 52.49% of traffic being inter-rack but intra-pod.
Implication #1: Regrouping servers improves locality. Fig.

1268 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 1: Traffic patterns from the Facebook traces. (a) is the rack-level traffic heatmap of a representative frontend pod. (b) shows
the heatmap after regrouping servers in (a). (c) and (d) plot the sorted load of inter-pod traffic across racks in a representative
database pod, before and after server regrouping, respectively.

1(b) shows the heatmap if servers are regrouped under differ-
ent racks based on their communication intensity, simulating
the desired effect of RDC. Here, most of the traffic is on
the diagonal, and inter-rack traffic is reduced significantly to
38.4%. Assuming a 4:1 oversubscribed network, what used to
be inter-rack traffic now enjoys 2.82x higher bandwidth. For
the database and Hadoop traces, the inter-rack traffic ratios
after regrouping are 28.4% and 41.6%, respectively.
Observation #2: Out-of-pod traffic imbalance. Another
notable trend is the heavy imbalance of out-of-pod traffic. Fig.
1(c) sorts the racks based on the amount of out-of-pod traffic
they sent (traffic trace: database) in a 20-min interval, where
the X-axis is the rack ID, and the Y-axis is the (normalized)
out-of-pod traffic volume. As we can see, the top 11 racks ac-
count for nearly 50% of the out-of-pod traffic, and almost half
of the racks never sent traffic across pods. Therefore, some
uplinks of ToR switches are heavily utilized, whereas other
links are almost always idle. The load imbalance, defined as
max(Li)/avg(Li), where Li is the amount of out-of-pod traffic
from rack i, is as much as 4.17. We found qualitatively similar
results on other traces.
Implication #2: Grouping servers mitigates load imbal-
ance. Fig. 1(d) shows the results if servers can be regrouped.
In the simulated RDC network, the inter-pod traffic is much
more evenly load-balanced across racks, achieving a load
imbalance of 1.14. Moreover, the aggregated bandwidth for
the out-of-pod traffic increases to 1.79x of the previous band-
width. This would make better use of the ToR uplinks and
avoid congesting any particular link due to imbalance.

2.4 The Power of RDC

Driven by the application-level demand and trace-based anal-
ysis, we propose the concept of rackless data center (RDC),
which logically removes the physical rack boundaries while
maintaining the high-speed rack-level performance. In RDC,
servers are mounted on the same “physical rack” sharing the
power supply and cooling system but can be logically moved
across the ToR switches. We call the new groups of servers
served by the same ToR a “logical rack”. Fig. 2 illustrates the
benefits of RDC due to server regrouping.
1. Mitigate the effect of resource fragmentation. RDC can

Inter-rack flows: 2 -> 0

(b)(a) (c)

Server re
-gro

u
p

in
g

Inter-rack flows: 3 -> 1 Inter-rack flows: n -> 0 Imbalance Ratio: 1.5 -> 1

…

…

… …

…

…

…

…

(d)

Logical rack 1

Logical rack 2

Physical rack 1 & servers

Physical rack 2 & servers Directional traffic

Bidirectional traffic

Traffic pattern changes

Figure 2: Comparisons between before and after server re-
grouping for (a) placement optimization, (b) dynamic opti-
mization for evolving patterns, (c) application constraints
accommodation, and (d) out-of-pod load balancing.

reduce the effect of resource fragmentation by relocating the
heavily communicating server groups under the same logical
rack, thus reducing inter-rack traffic. RDC can completely
localize smaller jobs that are possible to be packed within
one logical rack, like the job on the left-hand side of Fig. 2(a).
Even for bigger jobs that cannot be packed within one logical
rack, RDC benefits them by (1) localizing as many traffic
flows as possible to logical racks, like the job on the right-
hand side of Fig. 2(a); and (2) minimizing overall inter-rack
traffic from all jobs, leaving the core bandwidth to be shared
by much fewer flows that must cross the rack boundaries.
2. Optimize for dynamic traffic patterns. The ability of
dynamic server regrouping enabled by RDC can potentially
optimize the applications with variable yet predictable traf-
fic patterns. With such changing patterns as shown in Fig.
2(b), RDC is able to dynamically change the topology and
minimize the inter-rack traffic for all patterns.
3. Accommodate application placement constraints. As
shown in Fig. 2(c), application-level constraints can be ac-
commodated by RDC while localizing traffic. For example,
HDFS always requires at least one data block replica to be
placed on a different rack. By regrouping the servers from
different racks into one logical rack, RDC can place the repli-
cas to a different physical rack but within the same “logical”
rack, which provides higher bandwidth and also satisfies the
replica placement policy of HDFS.
4. Balance out-of-pod traffic. RDC is able to regroup the
servers according to their out-of-pod traffic demands and
balance link utilization, hence relieving the bottleneck. In

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1269

…

ToR

Circuit switch

Servers

….

ToR ToR

Agg. Agg.

ToR

Circuit

Servers

……

ToR ToR

Agg. Agg.

ToR

Circ

Servers

……

ToR ToR

Agg. Agg.

Core Core Core Core

RDC pod RDC pod RDC pod

Circuit Circ Circ Circ

(a) (b)
ToR 0 ToR 1 ToR 2

Rack 0 Rack 1 Rack 2

ToR 0 ToR 1 ToR 2

Rack A

Rack B
Rack C

Original Topology Reconfigured Topology

2-circuit RDC pod 2-circuit RDC pod

Figure 3: RDC architecture overview. (a) is an example of the RDC network topology. Different numbers of circuit switches
can be inserted at the edge between servers and ToR switches. Connectivities for aggregation switches (agg.) and core switches
remain the same as in traditional Clos networks. (b) shows the original topology and an example reconfigured topology for a
2-CS RDC pod with 3 racks and 4 servers under each rack.

Fig. 2(d), the imbalance ratio has been decreased to 1 from
1.5 after the grouping is changed according to the out-of-pod
traffic demand.

2.5 Realizing RDC

Circuit switches (CS) are widely used to provide reconfig-
urable connections among end points, which is a great fit for
the server regrouping functionality of RDC that we discussed
above. One realization of RDC is to connect all the servers
and all the ToR switches within a pod with a single CS. Alter-
natively, RDC can also use multiple smaller port count CSes
to form a distributed reconfigurable server-to-ToR fabric.

RDC can potentially leverage any kind of CS technologies,
including optical and electrical circuit switches alike [104].
However, at high data rates, optical transceivers are the stan-
dard interfaces. Therefore, to make the realization long-term
sustainable, we consider various optical circuit switching
(OCS) technologies. Several OCS technologies are avail-
able today such as 3D/2D MEMS, AWGR, etc. Fundamen-
tally, OCS does not perform packet-level processing and for-
wards the photon beams using mirror rotation, diffraction,
etc., which leads to some inherent advantages such as a)
agnostic to data-rate (or modulation format), b) negligible
power consumption, c) negligible forwarding latency due to
no buffering, and d) no need of transceivers at the OCS ports.
Additionally, different OCS technologies can provide very
fast switching. For example, 2D-MEMS-based OCSes pro-
vide microsecond switching [96]), AWGR switches with the
latest tunable transceivers can provide nanosecond switch-
ing [33, 35, 48, 49, 58, 77]. Moreover, OCS are highly re-
liable [101] and, due to their simplicity, mostly free from
firmware bugs and software misconfigurations.

3 The RDC Architecture
3.1 Connectivity structure

RDC changes the traditional multi-layer Clos topology [26,
62] by inserting one or more circuit switches (CS) at the edge
layer between the servers and ToR switches, so that the server
can be connected to different ToR switches through circuit
reconfiguration. The aggregation and core layers of the net-

work remain the same. Each circuit switch has some ports
connected to every ToR switch within the pod to guarantee
that the servers could be connected to any ToR switch. For
the 1-CS RDC pod, the servers can be grouped without con-
straints, as long as the number of servers under each ToR
switch is the same. If multiple circuit switches are used in
one pod, the additional connectivity constraint is that not all
the servers under one circuit switch can be connected to the
same ToR. With such design, RDC maximizes the flexibility
to permute the server-ToR connectivities, allowing the most
intensively communicating servers to be localized under the
same ToR and enjoy the line rate throughput.

Fig. 3(a) shows an example of the RDC pods. For a pod
with m racks and n servers per rack, 2mn ports should be
provided by all the circuit switches in total to link both servers
and ToR switches. For instance, a 16-rack pod with 32 servers
can be built with either 1 circuit switch with 1024 ports or
k switches with 1024

k ports each. Fig. 3(b) gives a detailed
example of inserting multiple circuit switches and how to
reconfigure for regrouping servers. For a pod with k circuit
switches, n

k servers under each ToR are connected to one
circuit switch, so that the original topology can keep every
server under its own physical ToR switch.

Intuitively, if we increase the number of CSes, the design
becomes more distributed which decouples it from a particu-
lar CS technology’s port count availability; while at the same
time, the flexibility of moving servers across the ToRs is
slightly reduced. To shed light on this trade-off, we perform
trace-based analysis with varying numbers of CSes between
the servers and ToR switches. To find a valid server regroup-
ing, we formulate an Integer Linear Programming (ILP) which
maximizes the traffic localization given the constraints arising
from multiple CSes (more details in §4.3). For the analysis,
we consider an RDC pod with 16 ToRs and 32 servers per
ToR, having 4 : 1 oversubscription above the ToR level. We
vary the number of CS from 1 to 8 and compare the perfor-
mance with a static 4 : 1 oversubscribed network. Fig. 4 shows
a boxplot of the flow completion times (FCT) of these archi-
tectures for flow-level Cache traffic trace generated from [99].
We observe that the potential benefit of RDC remains high

1270 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 4: The potential improvement for FCT remains high
across a wide range of multi-CS configurations in RDC

across a wide range of CS configurations, which validates the
efficacy of our distributed design.

3.2 The RDC Controller

Today’s data centers are constructed from modular pods [3,
14, 19, 22], where a pod typically hosts one type of service.
RDC similarly views pods as basic units and uses a per-pod
network controller that manages both packet switches and
circuit switches within the pod. The controller reconfigures
the network at timescales of seconds or longer depending on
the traffic pattern. It has two operation modes: it can receive
the traffic demands or commands from the applications di-
rectly in the proactive mode, or passively monitor the traffic
statistics from packet switches in the reactive mode.

We illustrate the workflow for both modes in Fig. 5. The
controller 1) first collects the traffic statistics by querying the
flow counters on the ToRs, or passively receives the infor-
mation from the applications; 2) determines the optimized
topology with certain optimization goals (§4); 3) generates a
set of new routes and pre-installs them on the packet switches;
and 4) finally sends the circuit reconfiguration request to the
circuit switch and simultaneously activates the new routing
rules on packet switches. The first two steps serve as the RDC
control plane (discussed later in §4), while the last two steps
configure the data plane (discussed in §3.3). Note that only
the final step would cause a small amount of disturbance due
to the circuit reconfiguration delay.

3.3 Routing

In traditional DCNs, forwarding rules are aggregated based
on IP prefixes. In RDC, such aggregation does not work as
servers have no fixed locations. Instead, RDC uses per-pod
flat IP addressing and exact matching rules on packet switches.
Topology changes are captured by updating the routing rules.
These rule updates are for intra-pod routing only, as routing
mechanisms across pods remain unchanged.

In an RDC pod, each ToR has a flow table entry for every
server IP in its rack, and a single default entry for other ad-
dresses outside the rack. Each ToR splits traffic to other racks
equally across its uplinks using ECMP [69]. All agg. switches
have the same forwarding table: one entry per destination IP.
The flow entries on ToRs and agg. switches both need to be
updated when topology changes. For ToRs, only the rules for
downward traffic need to change; the default ECMP entry for
upward traffic remains the same. Therefore, for an RDC pod

ToR switches

Controller

② topology
optimization

Agg. switches Circuit switch

Applications

Figure 5: Workflow overview of RDC.

with m racks and n servers per rack, a topology change could
result in n rule updates on ToRs and m× n updates on agg.
switches, which is on the order of hundreds to a thousand. Up-
dating this number of rules on an OpenFlow switch could take
100ms to over 1s [68, 76]. Previous works have developed
the two-phase commit method to reduce disruption during
updates [81, 98], which first populate the switches with new
routing rules and then flip the packet version at the ingress
switches. However, such an approach cannot avoid packet
loss in the transient state, like changing the packet version
rule [81]. This is because updating the packet version rule
at the ingress switch requires two rule changes—removing
the old rule and installing the new rule—and therefore is not
atomic. Our measurement on a Quanta T3048-LY2R Open-
Flow switch shows the transient period could last for 0.5ms.

Instead of changing the packet version, in RDC a switch
performs binary changes from VLAN tagging packets to not
tagging them, and vice versa. The VLAN-tagged packets will
match a group of rules with the VLAN tag as a match field,
whereas the packets without VLAN tags will match a more
general group of rules without VLAN IDs. In this way, adding
and removing a single VLAN tag rule achieves the same goal
as changing the packet version, but the operation is atomic
and avoids packet loss (more details in §A.1.) We apply this
update approach to both ToR and agg. switches but only tag
or not tag packets on ToR switches. Tag flipping actions are
only performed when the new forwarding rules have been
populated network-wide. The VLAN tag flipping actions need
to be executed at the same time across multiple ToRs; such
network-wide changes can be performed using well-known
SDN time synchronization [90] and consistent update [42,
73, 100] techniques, so that changes can be synchronized and
take effect atomically.

3.4 Discussions

Reducing the path length: Besides the throughput benefits
mentioned in §2, localizing the hosts under the same log-
ical rack would effectively reduce the average path length
(evaluated in §5.2), and thus reduce the network latency.
Therefore, low-latency applications and disaggregated sys-
tems [56, 63, 92, 94, 103] may benefit from RDC’s design as
well.

ToR failure handling: In a traditional data center, a ToR
failure disconnects all servers in the rack. ToR failures are
handled either by multi-homing servers to several other ToRs

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1271

[79, 83] or by replicating applications under multiple ToRs
[113, 119]. But in RDC, servers are not tied to any particular
ToR, servers under a failed ToR can be migrated to a healthy
ToR. To host the relocated servers, we can reserve some “free”
ports on each ToR for recovery or install a set of backup ToRs
[112, 114]. Specifically, for an RDC pod with m racks and
n servers per rack, we only need n

m free ports per ToR (or n
ports overall) to recover from any single ToR failure, which
incurs a low additional cost and complexity.

CS failure handling: In general, circuit switches are ex-
tremely reliable [102]. Commercial OCS products have more
than 28.5 years of mean-time-between-failure (MTBF) and
come with redundant control processors [2]. However, if a
CS failure happens, only a small fraction of servers will be
disconnected uniformly under each ToR of RDC, due to its
connectivity structure. The most common failure mode for
the CS is the power outage. To mitigate this, multiple redun-
dant power supplies can be used for the CS [2]. For further
protection, battery backups can be used—since the CS draws
only tens of Watts, a battery backup already goes a long way.

4 RDC Control Algorithms
RDC has a general framework to support various topology
optimization algorithms, working in two modes to collect the
traffic demand matrix and compute the reconfiguration plan.

4.1 Proactive-mode RDC

The proactive mode of RDC allows applications to explicitly
call the RDC controller via RPC with two APIs: 1) Traffic
demand matrix can be reported by the applications to re-
quest reconfigurations. Along with the demand matrix, RDC
controller will request the application to specify one topol-
ogy optimization algorithm from the algorithms described in
§4.3 as well. After receiving the request, the RDC controller
will calculate an optimal topology with a specified algorithm
and conduct the reconfiguration accordingly. 2) Raw con-
figuration commands can also be given directly from the
applications. For this method, formatted data to describe the
new circuit connections will be sent to the controller, so that
the controller could bypass the calculation of the optimal
topology and directly used the received configuration to initi-
ate the reconfiguration. An additional benefit for applications
to send raw configuration plans is that it enables network-
aware job placement and scheduling since the applications
know the future network requirements in advance.

There are several scenarios where applications can benefit
from telegraphing their intent to the RDC controller: 1) In a
case where applications intentionally spread their deployment
across racks—e.g., for fault tolerance [40] or for reducing syn-
chronized power consumption spikes [70]—inter-rack traffic
patterns are unavoidable in traditional architectures. In RDC,
however, such applications can request relevant servers to be
grouped together logically. 2) The cluster applications may
be allocated with resources from multiple racks due to frag-

mentation. By aggregating those fragmented resources to the
same logical rack, RDC improves the bandwidth and reduces
the average latency. 3) When applications have changing traf-
fic patterns (e.g., distributed matrix multiplication (DMM)
algorithms proceed in iterations with shifting traffic patterns),
they can request reconfigurations before the next phase starts
to ensure locality throughout the job. 4) Last but not least,
RDC could rely on the out-of-pod traffic demands reported by
applications to balance the load across different ToR uplinks.

We evaluate three different applications in §5.1 to show
the performance of proactive-mode RDC, including HDFS,
Memcached, and DMM.

4.2 Reactive-mode RDC

The reactive mode of RDC does not require to modify applica-
tion; it collects traffic statistics from the network in one epoch,
and reconfigures the network with an optimized topology for
the next, based on the statistics and one of the optimization
algorithms from §4.3, specified by the network operators.
Traffic statistics. The RDC controller pulls flow counters
from ToRs periodically. A flow counter associates the 5-tuple
(13 bytes) of a flow to an 8-byte counter value and thus has
21 bytes in total. Switch memory constraint is traditionally
the main concern of maintaining per-flow counters, but this
constraint is loosening over the years as the switch SRAM
size has been continuously growing. The most recent switch
ASICs have 50-100MB of SRAM and can store millions of
flow states [18,88]. As recent DCN measurement works show
that the number of concurrent flows per server is on the order
of hundreds to a thousand [28, 99], each ToR in RDC would
then need tens of thousands of flow counters assuming tens of
servers per rack. For instance, assuming an RDC pod with 16
racks and 32 servers per rack, and a counter pulling period of
10s, the control channel bandwidth usage is roughly 8.6Mbps,
which is low enough to be feasible.
Demand estimation algorithm. Previous works have shown
that data center workloads demonstrate certain degrees of
stability [38, 99], and RDC similarly relies on this stability
to estimate the traffic demand based on historical data. But
the observed traffic volumes on ToR switches are biased by
the current topology, so it is important to estimate the true
traffic demand, i.e., the traffic demand when flows are not
bottlenecked by the network core. Mitigating such observation
bias has been studied in previous work, Hedera [27], and we
adopt a similar heuristic.

A flow could be bottlenecked either by the network or by
the application itself. We call the first class of flows elastic
and the second non-elastic, and RDC only considers elastic
flows. The heuristic is to remove flows from the observed
traffic matrix whose sizes are smaller than their fair share.
The remaining flows are treated as elastic, and RDC cali-
brates for potential bias in the counters by computing their
idealized bandwidth share (i.e., their bandwidth share if they
are only bottlenecked by the host NICs’ capacity) as the es-

1272 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Source-side fair share

0 1 2 3

0 ? ? ?

1 - ? ?

2 ? ? -

3 ? ? -

0 1 2 3

0 1/3 1/3 1/3

1 - 1/2 1/2

2 1/2 1/2 -

3 1/2 1/2 -

0 1 2 3

0 1/3 1/3 1/3

1 - 1/2 1/2

2 1/2 1/3 -

3 1/2 1/3 -

src
dst

src
dst

src
dst

Destination-side check

Figure 6: Hedera demand estimation example. Each "?" repre-
sents one flow from source host to destination, "-" represents
no flow between that source-destination pair, and number
"1/2" represents 50% of host bandwidth. This example ends
in one iteration, but it takes more iterations for a more com-
plicated traffic matrix.

timated demand [27]. Hedera is an algorithm to calculate
the max-min fair share rate of each flow within a network. It
performs multiple iterations to firstly increase the flow capac-
ities at the source (no greater than the source host capacity)
and then decrease the exceeding capacities (sum of enlarged
flow capacities subtracting the actual NIC capacity) on each
destination host until the flows’ capacities converge. A simple
demand estimation example that ends with only one iteration
is shown in Fig. 6 (More details in §A.3). After convergence,
the estimated flow demands are aggregated into a server-to-
server traffic matrix for reconfiguration. The effectiveness of
this demand estimation algorithm is evaluated in §5.4.

4.3 Topology optimization algorithms

RDC enables a range of topology optimization and reconfigu-
ration algorithms.
1. Traffic localization algorithm reconfigures the network
to localize inter-rack traffic, after obtaining the flow demands
proactively or reactively. The objective of the localization al-
gorithm is to minimize the traffic demands across the logical
racks of the new topology. With this objective, the localization
algorithm can be formulated as an Integer Linear Program-
ming (ILP) problem as described in §A.4. However, finding
the optimal solution is NP-hard, so we provide heuristic alter-
natives with balanced graph partition [75] for 1-CS RDC and
a simplified algorithm for multi-CS RDC discussed in §A.4.
The heuristic algorithms can find a high-quality regrouping
plan within tens of milliseconds as shown in Table 2.
2. Uplink load-balancing algorithm spreads out-of-pod traf-
fic across ToR switches for load balancing, relieving the poten-
tial congestion on the over-subscribed uplinks. The objective
for uplink load balancing (ULB) is to minimize the maxi-
mum out-of-pod traffic from one rack. We provide a formal
problem formulation and faster heuristic algorithms in §A.2.
3. Mixed optimizations can be developed in RDC to localize
the inter-rack traffic and balance the out-of-pod traffic at the
same time, e.g., for a mix of workloads or applications. To
satisfy this goal, the objective of this problem will be minimiz-
ing αT +βR, where T is the total inter-rack traffic demands
within a pod, R is the maximum volume of out-of-pod traffic
across ToRs, and α and β are the respective weights [40].

(a) Servers (b) OCS (c) OpenFlow packet switches

Figure 7: RDC prototype with 4 racks and 16 servers.

4. Scenario-specific optimizations allow applications or net-
work operators to define their own optimization algorithms
for regrouping the servers into logical racks. The applications
are able to define their own objective function and add more
application-specific constraints.

5 Implementation and Evaluation
We conduct comprehensive evaluations using testbed experi-
ments and packet-level simulations. Our experiments focus
on several dimensions: a) real-world applications of RDC to
HDFS [10], Memcached [23], and MPI-based distributed ma-
trix multiplication (DMM) [54] as use cases, b) packet-level
simulations on the latency and throughput improvements at
scale, c) packaging, power, and capital cost analysis, and d)
microbenchmarks on RDC, including non-disruptive control
loop latency.
Testbed. Our RDC prototype consists of 16 servers and 4
ToR switches in 4 logical racks, one agg. switch and one cir-
cuit switch; Fig. 7 illustrates our hardware testbed. The ToR
switches are emulated on two 48-port Quanta T3048-LY2R
switches. Each ToR switch has four downlinks connected to
the servers, and one uplink to the agg. switch, forming an over-
subscription ratio of 4:1. We can tune this ratio to emulate a
non-blocking network by increasing the number of uplinks to
4. The agg. switch is a separate OpenFlow switch. The OCS is
a 192-port Glimmerglass 3D-MEMS switch with a switching
delay of 8.5 ms. This can also be replaced with other types
of OCS. Each server has six 3.5 GHz dual-hyperthreaded
CPU cores and 128 GB RAM, running TCP CUBIC on Linux
3.16.5. Most of our experimental results except the large-scale
simulation in §5.2 are obtained on this testbed.
Packet-level simulator. In order to simulate a wider vari-
ety of experimental settings, we have developed a packet-
level simulator based on htsim, which was used to evaluate
MPTCP [97] and NDP [67]. This simulator has a full imple-
mentation of TCP flow control and congestion control algo-
rithms and supports ECMP. We simulate a conservative circuit
reconfiguration delay of 8.5 ms, which is what our testbed
3D-MEMS switch achieves. As discussed in §2.5, much faster
circuit switching technologies exist [33, 48, 58, 86] that can
further improve the performance of RDC. Note that only the
circuit that is being reconfigured will experience a disruption;
all other circuits continue to function. Packets in flight during
reconfiguration will be dropped if they traverse the disrupted
links, and unsent packets will be buffered at the servers. We
simulate an RDC pod with 512 servers, 32 servers per rack,

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1273

Row-wise broadcast

Column-wise shift

(a) (b) (e) (f)
HDFS Memcached DMM

(c) (d)

1.78☓

2.35☓

0.48☓
0.29☓

0.44☓
0.38☓

HDFS write
awared of RDC’s
logical topology

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

HDFS write
optimized
by Sinbad

HDFS write A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P# of received
blocks across rack
HDFS (per rack)
Sinbad (per rack)
RDC (logical rack)

Physical racks

Logical racks

0
1
0

2
1
0

1
1
0

1
1
0

4-1 o.s.

RDC
NBLK

4-1 o.s.

NBLK NBLK
4-1 o.s.RDC

RDC

Figure 8: Application performance improvements of RDC compared with the 4:1 oversubscribed network (4:1-o.s.), 4:1-o.s.
network powered with Sinbad [45], or the non-blocking network (NBLK). (a) The HDFS write traffic pattern and the number of
received blocks per rack. (b) The HDFS transfer time. (c)-(d) Memcached query throughput and latency. (e) The DMM traffic
pattern. (f) Average shift time and broadcast time.

and 16 racks overall. The 16 ToR switches are connected
to a single agg. switch with tunable oversubscription ratios.
Results in §5.2 are obtained via simulation.

5.1 Real-world applications

First, we show how RDC can improve the performance of
real-world applications for each of its use cases.
HDFS. We set up an HDFS cluster with 16 datanodes across
4 racks and 1 namenode, with a replication factor of 3 and
a block size of 256 MB. All data blocks are cached in the
RAM disk to prevent the hard drive from being the bottleneck.
The 16 clients initiated concurrent write requests to 16 HDFS
files, respectively. According to the default HDFS data block
placement policy, when writing a data block to a datanode,
a replica of the block will be placed on the same rack of
the original copy, and another replica is placed on a remote
rack for resilience (Fig. 8(a)). Therefore, a write operation
generates an intra-rack flow and an inter-rack flow.

HDFS can localize all the inter-rack traffic (for storing repli-
cas) by using both proactive RDC and network-aware replica
placements. Fig. 8(b) shows the performance gain with RDC
and compares it with the non-blocking network (NBLK) and
an advanced bandwidth-centric replica placement solution,
Sinbad [45]). Sinbad keeps track of the paths and links to
reach the replicas within the most recent period and assigns
the next replica to the least-utilized paths in the recent pe-
riod. Therefore, Sinbad does not reduce cross-rack traffic, but
can relieve bottlenecks at network links by load balancing
as shown in Fig. 8(a). Specifically, it detects traffic imbal-
ance for transferring inter-rack replicas and aims to utilize all
links roughly equally—i.e., each rack hosts one replica. In
the results, we can see that Sinbad improves the total time for
HDFS writes, but still underperforms the NBLK network. In
contrast, RDC allows the HDFS to regroup servers directly.
Moreover, with the new topology, HDFS could change the
replica placement scheme to keep all traffic within the log-
ical racks but satisfy fault-tolerance constraints at the same
time, as shown in Fig. 8(a). HDFS with RDC achieves similar
performance as the NBLK network, reducing the total time
to 0.59× on average, compared to the original topology and

A A A A C C C C

E E E E G G G G

I I I I K K K K

M M M M O O O O

B B B B D D D D

F F F F H H H H

J J J J L L L L

N N N N P P P P

(a) Placement 1

A E I M B F J N

A E I M B F J N

A E I M B F J N

A E I M B F J N

C G K O D H L P

C G K O D H L P

C G K O D H L P

C G K O D H L P

(b) Placement 2

A A B B I I J J

A A B B I I J J

C C D D K K L L

C C D D K K L L

E E F F M M N N

E E F F M M N N

G G H H O O P P

G G H H O O P P

(c) Placement 3

Figure 9: Three different placements for DMM. A-P represent
16 servers and A-D, E-H, I-L, M-P belong to four physical
racks separately.

placement policy.
Memcached. We then configured Memcached [23] servers
on two racks, and issued read/write requests from two other
racks. This emulates the scenario where clients in one pod
access cache servers in another pod. Our workload has a)
200 k key-value pairs uniformly distributed across 8 servers,
b) a 99%/1% read/write ratio, and c) 512 byte keys and 10 KB
values. We adopted a Zipfian query key distribution of skew-
ness 0.99 similar to previous works [31, 93], which led to a
load imbalance ratio of ∼1.8 on the server racks.

By reallocating the servers with hot keys equally onto ev-
ery ToR, RDC improves the query throughput by 1.78× on
average and reduces the median latency to 0.48× as shown
in Fig. 8(c)-(d). These improvements are close to what a
non-blocking network could achieve. RDC also cuts the tail
latency significantly, for which network congestion is a major
cause [30, 117]. Since in the baseline setting, ToR uplink can
easily get congested when several hot keys are coincidentally
located in the same rack, even if the overall uplink utilization
is low. In contrast, RDC can observe the traffic patterns due
to the hot keys, and spread the servers hosting these keys to
different racks. This reduces the peak uplink utilization.

OpenMPI DMM. We set up a 16-node OpenMPI cluster
across 4 racks and implemented a commonly used DMM
algorithm [54] with 64 processes. Matrices are divided into
64 blocks (submatrices). Each server has 4 processes to form
an 8×8 process layout. Then in each iteration, it performs a
“broadcast-shift-multiply” cycle where a process a) broadcasts
submatrix row-wise, b) shifts submatrices column-wise, and

1274 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 10: Performance comparison with RDC. Group 0 shows that RDC delivers performance improvements by dynamically
reconfiguring the network and achieves similar performance as NBLK; group 1 shows that RDC outperforms alternative designs
by benefiting a higher amount of inter-rack traffic.

c) multiplies submatrices as shown in Fig. 8(e). We consider
three placements for processes: 1) Fig. 9(a): places them
row-wise (no cross-rack traffic for broadcast), 2) Fig. 9(b):
places them column-wise (no cross-rack traffic for shift) and
3) Fig. 9(c): places them in a mixed manner, considering both
broadcast and shift traffic across racks.

By dynamically configuring the topology for different
phases during DMM, RDC shrinks the communication time
as well as the end-to-end execution time. Fig. 8(f) shows
that RDC improves the overall communication time for place-
ments 1, 2, and 3 by 3.9×, 2.3×, and 1.26× respectively com-
pared to a static 4:1 oversubscribed network, achieving almost
the same performance with the NBLK network. Since the ap-
plications have evolving traffic patterns, no static process
placement is consistently optimal. Out of the three place-
ments, placement 3 jointly minimizes the cross rack traffic
for both communication patterns in DMM, outperforming the
other two strategies.

5.2 Performance at scale

Next, we evaluate the reactive RDC pods at the data center
scale using the packet-level simulator. Our baselines are a) a
static non-blocking network (NBLK), b) a static network with
4:1 oversubscription (4:1-o.s.), c) RDC with future traffic-
demand information (Ideal RDC), d) a 4:1-o.s. network that
applies RDC’s reconfiguration algorithm only once over the
entire traffic trace (One-time RDC). e) a hybrid network—
like C-Through [110] with 16 4:1/1:1 oversubscribed reconfig-
urable circuit ToR-pair links in addition to a 4:1-o.s. network,
which is similar to Firefly [66], and ProjecToR [59] in terms of
performance. f) a novel circuit-core network—RotorNet [86]
with 4:1/1:1 oversubscribed ToR uplink bandwidth. Note C-
through has the same circuit switching delay as RDC and
buffers packets at ToRs during the circuit downtime.

We used the Cache, Web, and Hadoop traffic traces from
Facebook. Since the original traces do not contain flow-level
information, we generated flow-level traffic based on the sam-
pled packet traces from [99]. Specifically, we inferred the
source/destination servers of the flows from the trace, and
simulated flow sizes and arrival times based on Figures 6 and
14 in the same Facebook paper. The Cache workload has an
average flow size of 680 KB, with 87% being inter-rack. The
Web workload has an average size of 63 KB with 96% inter-
rack. For the Hadoop workload, the average size is 67.18 KB

Figure 11: RDC’s average circuit duty cycle is >99% even
with frequent reconfigurations; RDC has an average path
length 35% shorter than NBLK.

but only 60% is inter-rack traffic. All traffic traces last for 30s
in the simulation, and RDC’s reconfiguration period is 1s.

Fig. 10 shows the boxplot of flow completion times (FCT)
for RDC and the baselines using the three traces. We ob-
serve that RDC reduces the median FCT by more than an
order of magnitude compared to 4:1-o.s. network. Applying
RDC’s traffic localization algorithm once can bring some
improvements on the median FCT but not as significant as
RDC and NBLK, since the traffic pattern changes during the
simulation. We found that one root cause for the performance
improvements is due to TCP dynamics—severe inter-rack
congestion causes consecutive packet losses and TCP be-
comes very conservative in increasing its sending rate. More
importantly, we observe that RDC with future knowledge
of traffic demands performs consistently close to the non-
blocking network, which again demonstrates the power of a
rackless network. Without future knowledge, RDC can still
achieve similar performance as NBLK with a slightly longer
median FCT, because the cache workload is largely stable
at the time scale of seconds, similar to that in the Database
workload in the original traces. As for other solutions, C-
Through’s average FCTs are at least 3.21× higher than RDC.
Because although C-Through adds extra inter-rack bandwidth,
it is provisioned for only 16 ToR pairs. As the traffic traces
that motivate our RDC design have more than 16 intensively-
communicating ToR pairs (see the heatmap in Fig: 1), C-
Through falls short in relieving inter-rack congestion even
after enlarging the bandwidths of 16 extra links. 4:1-o.s. Ro-
torNet has the same total uplink bandwidth as RDC, but its
performance is much worse than RDC. The non-blocking Ro-
torNet is 2× and 2.17× slower than RDC on the Cache and
Web traces; only for the Hadoop traces, it can reduce RDC’s
average FCT to 0.576×. Since RotorNet provides a dedicated

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1275

s

Fiber
bundle

Agg.
switches

ToR
switches

OCS

Server rack
Switch
 rack

Server rack

Server rack Server rack

Server rack

Server rack

Connectors to core switches

Figure 12: Packaging design of an RDC pod.

link between each ToR pair, if the traffic is skewed between
some ToR pairs, it cannot achieve the best performance. So
only the Hadoop trace, which has only 60% inter-rack and is
quite evenly distributed across different ToRs, enjoys better
performance on non-blocking RotorNet.

Fig. 11(a) shows that the average number of servers being
relocated in each epoch is different across traces. The duty
cycle is an important metric in optical networks to represent
the percentage of time that an optical link is up and available
for transmission. Assuming one reconfiguration per second,
the lowest circuit duty cycle of RDC is 99.2% in theory (de-
tails about downtime in §5.4); since not all servers will be
relocated in practice, the average circuit duty cycle for all
transmissions can be as high as 99.83%. Fig. 11(b) shows the
distribution of flow path lengths for RDC, C-Through, and
NBLK. (Two C-Through settings have the same distribution;
NBLK, 4:1-o.s., and RotorNet also have the same distribu-
tion). An intra-rack flow has path length 2 in all networks;
and an inter-rack flow has path length 4 in RDC, NBLK, and
4:1-o.s.; the path length could vary in C-Through—3 for the
circuit path and 4 for the normal packet-switched path. Over-
all, RDC localizes more than 70% of the inter-rack traffic and
achieves an average path length of 0.75× of C-Through and
0.65× of NBLK.

5.3 Packaging, power, and capital cost

Packaging. Fig. 12 shows the packaging design of an RDC
pod, which is somewhat different from that of a traditional pod.
RDC has a central switch rack dedicated to hosting ToRs, agg.
switches, and OCSes. Server racks are connected to OCSes
via fiber bundles to reduce wiring complexity. On the central
rack, ToRs are connected to OCSes and agg. switches using
short fibers and cables, respectively. Agg. switches provide
similar connectivity to core switches outside the pod, just
like in traditional data centers. To ensure that centralized
switch placement has similar reliability as traditional switch
placement, backup power supplies are employed. Similar to
the existing modular data centers, RDC supports incremental
expansion by adding RDC pods.
Power and capital cost modeling. We show that RDC is
more economical by comparing the power and capital cost
between RDC and NBLK, at 400 Gbps data rate. They both

Optical transceiver Optical fiber Direct attach cable

ToR

Aggr

OCS layer

ToR ToR

Aggr

OCS layer

ToR ToR

Aggr

OCS layer

ToR ToR

Aggr

OCS layer

ToR

Core Core

Server

𝑥𝑝 = 2:1

Pod

ToR uplink =
ToR downlink

𝑥𝑝

Aggr downlink = # ToR uplink

ToR downlink = # OCS uplink

Aggr uplink = # Aggr downlink

Inside each pod

OCS uplink = # OCS downlink

OCS downlink = # server

Core link = # Aggr uplink × # Pods

Figure 13: RDC example with detailed components, including
the governing equations for power and capital cost model.

Components Power
(Watt)

Cost
(USD)

Relative count
RDC (xp : 1) NBLK

Ethernet port [16] 40.6 312.5 1+4/xp 5
Optical transceiver [15] 10 799 2+2/xp 4

Inter-rack fiber [20] 0 6.9 1+1/xp 2
Intra-rack fiber [21] 0 4.9 1 0

DAC [17] 1.5 249 1/xp 1
OCS port [8] 0.14 400 [52] 2 0

Table 1: Power/cost data and relative count of the components
for RDC (xp:1 o.s.) and NBLK at 400 Gbps.

consist of the following types of networking components: a)
400 Gbps Ethernet port, b) 400 Gbps Optical transceiver, c)
inter-rack duplex single-mode fiber (average length 10m), d)
intra-rack duplex single-mode fiber (average length 3m), e)
400 Gbps Direct Attach Cables (average length 3m) and f)
OCS port. NBLK network can use DAC to directly connect
the server-ToR downlinks, while RDC needs fiber-optic cables
along with optical transceivers both at the server and ToR ends
to connect the OCSes in between.

We assume that RDC has an xp : 1 oversubscription above
the ToR level. Fig. 13 demonstrates a 4-pod RDC network
(total 16 servers) with component-level details (where xp = 2)
and shows the governing equations to find the component
counts across the network. Based on our modeling, given the
number of servers and pods are the same, the relative com-
ponent count for RDC and NBLK network only depends on
xp. Table 1 shows the recent power and cost values of dif-
ferent components along with their relative count for RDC
and NBLK network (400 Gbps). On one hand, the power
consumption values of the network components are funda-
mental and well-documented in datasheets. On the other hand,
the component cost can vary based on sales volume, and
since we have no proprietary industry pricing figures, we do
a "best-effort" calculation based on readily available retail
pricing (in other words worst-case or no-discount pricing)
for all components, so at least it is somewhat objective and
unbiased. We consider $400 to be the OCS per-port cost, the
worst-case price adopted from a recently reported article from
Microsoft [52]. Readers should be aware of the limitation of
this pricing assumption and take the capital cost results for
general guidance only.

As shown in the governing equations in Fig. 13, an xp :
1 RDC network with s servers have s ToR downlink ports,
s

xp
ToR uplink ports, s

xp
agg. switch downlink ports, s

xp
agg.

1276 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 14: a) RDC (4:1-o.s.) has 2.1-2.4× improvements in
performance per watt than NBLK at 400 Gbps data rate; b)
RDC (4:1-o.s.) has 1.3-1.5× improvements in performance
per dollar than NBLK at 400 Gbps data rate, assuming worst-
case component pricing.

switch uplinks ports and s
xp

core switch ports; leading to

(s+ 4s
xp
) Ethernet ports in total. Consider a traditional NBLK

(fat-tree) network with the same number of servers and pods,
where the number of Ethernet switch ports at each layer is
the same as the number of servers. This leads to a total of
5s (using xp = 1 in RDC) Ethernet ports. Hence, the relative
Ethernet port count is (1+ 4

xp
) to 5 (see Table 1). Similar

calculation can be applied to other components as well.
Power efficiency. A 4:1-o.s. RDC network consumes 2.29×
less power than an NBLK network considering 400 Gbps data
rate. RDC significantly improves the performance (median
FCT) per watt compared to that of NBLK for diverse traffic
patterns across different network loads, as shown in Fig. 14(a).
We use five different production traces i.e., Cache [99], Web
[99], Hadoop [99], DCTCP [29] and VL2 [62]. For median
FCT, RDC has 2.1×−2.4× improvements in performance
per watt compared to NBLK. RDC also significantly reduces
the power consumption of the network because it requires
fewer power-hungry packet switches in the core. The optical
circuit switch at the RDC edge consumes very little power
since it only directs the incoming photon beams using mirror
rotation or diffraction.
Capital cost. We again emphasize that readers should take
this “best-effort” cost analysis for general guidance only. A
4:1-o.s. RDC network costs 1.4× less than an NBLK net-
work at 400 Gbps. Using the same five production traces,
we observe that RDC has 1.3×−1.5× improvements in per-
formance (median FCT) per dollar compared to NBLK, as
shown in Fig. 14(b). We also estimate OCS per-port cost
which would let 4:1-o.s. RDC has an equal performance per
dollar as NBLK: it ranges from $1000-$1300.

5.4 RDC reconfigurations

To have a deeper understanding of RDC, we break down this
analysis into the effectiveness study of the demand estima-
tion algorithm, the non-disruptive control loop before the
reconfiguration, and the hardware transient state during the
reconfiguration.
Effectiveness of demand estimation algorithm To show
the effectiveness of our demand estimation algorithm, we
examine how our heuristic interacts with consecutive topology

Figure 15: Average demand estimation error over multiple
consecutive epochs (epoch duration: 10s).

reconfigurations, by an in-depth study of traffic localization.
We use the same packet-level simulation as §5.2 to illus-

trate this demand estimation technique. For each simulation,
RDC performs traffic localization and reconfigures the topol-
ogy once every 10s according to the algorithm detailed in
§4.3. The senders and receivers of elastic flows are deter-
mined based on a chosen traffic pattern, while non-elastic
flows are generated with randomly chosen senders and re-
ceivers with a data rate < 10Mbps. The ratio between the
number of non-elastic and elastic flows is 10:1. Besides the
three trace-derived traffic patterns – Cache, Web, and Hadoop,
we also test three synthetic traces as follows. Each traffic
pattern remains the same throughout the simulation.

Random: Each host i sends a flow to one of the other hosts
with uniform random probability;

Shuffle: Each host i sends to a set of 31 other hosts with
indexes (i+ j ∗16)%num_hosts, j ∈ [1..31];

Stride: Each host i sends a flow to another host with index
(i+32)%num_hosts;

Fig. 15 shows the average demand estimation errors over
five consecutive reconfiguration epochs for all server pairs.
We observe that while the initial demand estimation errors
can be moderately high (10%), the errors decrease as the net-
work reconfigures to adapt to the traffic pattern in subsequent
epochs. In the first epoch, many elastic flows congest the
oversubscribed network core. As a result, their flow counters
can be small and they could be misidentified as non-elastic
flows. However, as RDC adapts the topology to localize the
identified elastic flows, fewer elastic flows are transmitted
across racks, congestion in the network core is reduced, and
thus more elastic flows are correctly identified. For example,
because the elastic flows in the stride pattern are eventually all
localized within racks, the demand estimation errors for these
elastic flows drop to nearly zero. Therefore, we can see that
the Hedera technique is well-suited to RDC—reconfiguring
the topology to suit the traffic patterns helps improve the
accuracy of demand estimates for the next epoch.
Non-disruptive control loop. Next, we evaluate the latency
of the RDC control loop, which includes four components:
1) collecting flow counters, 2) estimating traffic demands, 3)
computing new topologies, and 4) modifying forwarding rules.
This latency will affect how fast RDC can respond to chang-
ing traffic patterns. Note that the reactive RDC uses all four
components; for proactive RDC using traffic demand matrix,

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1277

#Racks 4 8 16 32

TL ULB TL ULB TL ULB TL ULB
Counter collection 10.6 2.3 21.3 2.6 42.6 3.4 85.1 4.5
Demand estimation 10.8 0.7 24.9 1.1 80.6 1.3 310.6 1.7
Topo. computation 7.8 0.1 28.2 0.1 40.3 0.3 69.3 0.6
Rule installation 32.5 30.6 45.6 30.8 75.6 41.4 147.6 70.6

Proactive - Command 32.5 30.6 45.6 30.8 75.6 41.4 147.6 70.6

Proactive - Demand 40.3 30.7 73.8 30.9 115.9 41.7 216.9 71.2

Reactive 61.7 33.7 120 34.6 239.1 46.4 612.6 77.4

Table 2: Control loop latency breakdown (ms) for traffic lo-
calization (TL) and uplink load-balancing (ULB).

only steps 3 & 4 will be executed; for proactive RDC with
direct configuration command, only the last step is required.

To obtain these results, we ran a set of experiments using
different numbers of racks, with 32 servers per rack, using the
traffic patterns from the Facebook traces. The ToR switches
are connected to a single agg. switch. Since our testbed only
has four ToR switches, we emulated more ToR switches using
servers and ensured that each server has the same latency for
collecting counters and installing routing rules as a physical
ToR switch. The number of forwarding rules to be installed is
bounded by 32 for the ToR switches and 32 × #racks for the
agg. switch. And the number varies depending on the traffic
patterns and may be different across switches. The overall
rule installation delay is determined by the slowest switch,
which has the most number of changes.

Table 2 breaks down the control loop latency for traffic
localization (TL) and uplink load-balancing (ULB) use cases.
Overall, reactive RDC’s non-disruptive control loop latency
before reconfiguration is 612.6ms for TL and 77.4ms for
ULB, which are on similar timescales with state-of-the-art
traffic engineering techniques [38]. Whereas, proactive RDC
can reduce this control loop delay to 147.6 ms and 70.6 ms
respectively. Since RDC aims to reconfigure the network at
large timescales (e.g., seconds or longer), this control loop is
efficient enough to be practical. Note that all the above num-
bers are obtained with our own testbed. With the cutting-edge
high-performance switch hardware [9,16,18], the latency can
be further reduced to support more frequent reconfiguration.

Reconfiguration transient state. It is important to observe
that a circuit reconfiguration in RDC happens only when
needed, and for the vast majority of the time, circuits are con-
tinuously active. When a reconfiguration happens to a circuit,
a transient disruption to that circuit does occur. For example,
AWGR and star-coupler-based OCSes are becoming popular
as tunable lasers with sub-nanosecond wavelength switching
are being fabricated [33, 35, 48, 49, 58, 77]. Considering 400
Gbps link speed and 1 ns of switching delay, only 50 bytes
of traffic will be buffered or dropped during the transient
phase. Also, 2D-MEMS based OCSes are available, having a
reconfiguration delay of few microseconds [96]. Even with
a relatively slow OCS in our testbed, our experiments show
that RDC provides large performance benefits.

6 Related Work
Various DCN proposals recognize the need for serving dy-
namic workloads and provision bandwidth on demand with
reconfigurable topologies. It can be achieved by adding extra
bandwidth to the network by creating ad hoc links at run-
time [53, 74, 80, 110, 118], but they mostly focus on pro-
viding reconfigurable topology at the rack level, assuming
skewed inter-rack traffic. RDC, however, alleviates the re-
liance on such an assumption and achieves higher perfor-
mance without adding extra bandwidth. Another line of work
constructs an all-connected flexible network core with a high
capacity [32, 44, 84–86, 96], but they mostly focus on rack-
level rather than edge reconfigurability. Flat-tree [115] is
an architecture proposal with partial edge-level reconfigura-
bility, which enables DC-wide reconfigurability by dynami-
cally changing the topology between Clos [26] and random
graph [106]. However, the topology modes are limited and
only suitable for generally expected workload patterns, e.g.,
rack-, pod-, or DC-local. Our workshop paper [111] does not
contain a detailed design, implementation, or evaluation.

Besides architectural solutions, there are also numerous
works that improve flow performance by optimizing task
placements. For instance, Sinbad [45] selectively chooses data
transfer destinations to avoid network congestion; Shuffle-
Watcher [25] attempts to localize the shuffle phase of MapRe-
duce jobs to one or a few racks; Corral [72] jointly places
input data and compute to reduce inter-rack traffic for recur-
ring jobs. However, these works all have important drawbacks
as they only optimize data transfer for one or two stages of
job executions. As we noted before, the traffic pattern may
change in different stages of a job’s lifetime. Also, there is
a set of research projects that improve network performance
at the upper layers in the stack. Optimized transport proto-
cols (e.g., DCTCP [28], MPTCP [97]) and traffic engineering
techniques (e.g., Hedera [27], MicroTE [38], Varys [47]) can
improve flow performance for many applications.

7 Conclusion
The rackless data center (RDC) is a novel network architecture
that logically removes the static rack boundaries, using circuit
switching to achieve topological reconfigurability at the edge.
In this architecture, servers in different physical racks can
be grouped into the same locality group at runtime based
on traffic patterns. By co-designing the network architecture
and the control systems, RDC can benefit a wide range of
realistic data center workloads. Our evaluations with testbed
and simulation setups show that RDC leads to substantial
performance benefits for real-world applications.

Acknowledgment
We thank our shepherd George Porter and the anonymous
reviewers for their valuable feedback. This research is partly
sponsored by the NSF under CNS-1718980, CNS-1801884,
and CNS-1815525.

1278 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Top of rack vs end of row data center de-

signs. http://bradhedlund.com/2009/04/05/
top-of-rack-vs-end-of-row-data-center-designs/,
2009.

[2] S320 photonic switch hardware user
manual. http://www.calient.net/wp-
content/uploads/downloads/2013/04/CALIENT-
S-Series-Photonic-Switch-Hardware-User-Manual-
Rev-A-460xxx-00-v10.pdf, 2012.

[3] Introducing data center fabric, the next-
generation facebook data center network. https:
//code.fb.com/production-engineering/
introducing-data-center-fabric-the-next-\
generation-facebook-data-center-network,
2014.

[4] Facebook network analytics data sharing. https://
www.facebook.com/groups/1144031739005495/,
2016.

[5] Apache hadoop: Fair scheduler.
https://hadoop.apache.org/docs/r2.7.4/hadoop-
yarn/hadoop-yarn-site/FairScheduler.html, 2017.

[6] Sailing through the data deluge.
https: //rockleyphotonics.com/wp-
content/uploads/2019/02/Rockley-Photonics-
Sailing-through-the-Data-Deluge.pdf., 2019.

[7] 25.6 tb/s strataxgs broadcom tom-
ahawk 4 ethernet switch series.
https://www.broadcom.com/products/ethernet-
connectivity/switching/ strataxgs/bcm56990-series,
2020.

[8] 320x320 3D MEMS optical circuit switch.
https://www.calient.net/products/
edge640-optical-circuit-switch/, 2020.

[9] 32*100Gbps Ethernet Switch. https://www.fs.
com/products/107081.html, 2020.

[10] Apache hadoop. http://hadoop.apache.org, 2020.

[11] Apache hadoop: Capacity scheduler.
https://hadoop.apache.org/docs/current/hadoop-
yarn/hadoop-yarn-site/CapacityScheduler.html,
2020.

[12] Apache hadoop yarn project.
http://hadoop.apache.org/docs/current/hadoop-
yarn/hadoop-yarn-site/YARN.html, 2020.

[13] Hdfs architecture. https://hadoop.apache.org/docs/current/hadoop-
project-dist/hadoop-hdfs/HdfsDesign.html, 2020.

[14] Specifying data center it pod architec-
tures. https://www.apc.com/salestools/
WTOL-AHAPRN/WTOL-AHAPRN_R0_EN.pdf, 2020.

[15] 100G PAM4 850nm 100m optical transceiver mod-
ule. https://www.fs.com/products/93264.html,
2021.

[16] 32*400Gbps Ethernet Switch. https://www.fs.
com/products/96982.html, 2021.

[17] 400G QSFP-DD Passive Direct Attach Copper Twinax
Cable (3m). https://www.fs.com/products/
82454.html, 2021.

[18] Barefoot tofino. https://www.barefootnetworks.
com/products/brief-tofino, 2021.

[19] Core and pod data center design. http:
//go.bigswitch.com/rs/974-WXR-561/images/
Core-and-Pod%20Overview.pdf, 2021.

[20] Duplex single mode optical fiber cable (10m). https:
//www.fs.com/products/40203.html, 2021.

[21] Duplex single mode optical fiber cable (3m). https:
//www.fs.com/products/40193.html, 2021.

[22] Ibm prefabricated modular data center.
https://www.ibm.com/us-en/marketplace/
prefabricated-modular-data-center, 2021.

[23] Memcached. https://memcached.org, 2021.

[24] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: A system for large-scale machine learning.
In 12th USENIX symposium on operating systems de-
sign and implementation (OSDI 16), pages 265–283,
2016.

[25] Faraz Ahmad, Srimat T Chakradhar, Anand Raghu-
nathan, and TN Vijaykumar. Shufflewatcher: Shuffle-
aware scheduling in multi-tenant mapreduce clus-
ters. In 2014 USENIX Annual Technical Conference
(USENIX ATC 14), pages 1–13, 2014.

[26] Mohammad Al-Fares, Alexander Loukissas, and Amin
Vahdat. A scalable, commodity data center network
architecture. In ACM SIGCOMM Computer Communi-
cation Review, volume 38, pages 63–74. ACM, 2008.

[27] Mohammad Al-Fares, Sivasankar Radhakrishnan,
Barath Raghavan, Nelson Huang, and Amin Vahdat.
Hedera: dynamic flow scheduling for data center net-
works. In NSDI, volume 10, pages 89–92, 2010.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1279

http://bradhedlund.com/2009/04/05/top-of-rack-vs-end-of-row-data-center-designs/
http://bradhedlund.com/2009/04/05/top-of-rack-vs-end-of-row-data-center-designs/
https://code.fb.com/production-engineering/introducing-data-center-fabric-the-next-\generation-facebook-data -center-network
https://code.fb.com/production-engineering/introducing-data-center-fabric-the-next-\generation-facebook-data -center-network
https://code.fb.com/production-engineering/introducing-data-center-fabric-the-next-\generation-facebook-data -center-network
https://code.fb.com/production-engineering/introducing-data-center-fabric-the-next-\generation-facebook-data -center-network
https://www.facebook.com/groups/1144031739005495/
https://www.facebook.com/groups/1144031739005495/
https://www.calient.net/products/edge640-optical-circuit-switch/
https://www.calient.net/products/edge640-optical-circuit-switch/
 https://www.fs.com/products/107081.html
 https://www.fs.com/products/107081.html
http://hadoop.apache.org
https://www.apc.com/salestools/WTOL-AHAPRN/WTOL-AHAPRN_R0_EN.pdf
https://www.apc.com/salestools/WTOL-AHAPRN/WTOL-AHAPRN_R0_EN.pdf
https://www.fs.com/products/93264.html
 https://www.fs.com/products/96982.html
 https://www.fs.com/products/96982.html
https://www.fs.com/products/82454.html
https://www.fs.com/products/82454.html
https://www.barefootnetworks.com/products/brief-tofino
https://www.barefootnetworks.com/products/brief-tofino
http://go.bigswitch.com/rs/974-WXR-561/images/Core-and-Pod%20Overview.pdf
http://go.bigswitch.com/rs/974-WXR-561/images/Core-and-Pod%20Overview.pdf
http://go.bigswitch.com/rs/974-WXR-561/images/Core-and-Pod%20Overview.pdf
https://www.fs.com/products/40203.html
https://www.fs.com/products/40203.html
https://www.fs.com/products/40193.html
https://www.fs.com/products/40193.html
https://www.ibm.com/us-en/marketplace/prefabricated-modular-data-center
https://www.ibm.com/us-en/marketplace/prefabricated-modular-data-center
https://memcached.org

[28] Mohammad Alizadeh, Albert Greenberg, David A
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prab-
hakar, Sudipta Sengupta, and Murari Sridharan. Data
center tcp (dctcp). In Proceedings of the ACM SIG-
COMM 2010 Conference, pages 63–74, 2010.

[29] Mohammad Alizadeh, Albert Greenberg, David A
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prab-
hakar, Sudipta Sengupta, and Murari Sridharan. Data
center tcp (dctcp). In Proceedings of the ACM SIG-
COMM 2010 conference, pages 63–74, 2010.

[30] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall,
Balaji Prabhakar, Amin Vahdat, and Masato Yasuda.
Less is more: trading a little bandwidth for ultra-low
latency in the data center. In Presented as part of the
9th USENIX Symposium on Networked Systems Design
and Implementation NSDI 12), pages 253–266, 2012.

[31] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload analysis of a
large-scale key-value store. In ACM SIGMETRICS
Performance Evaluation Review, volume 40, pages 53–
64. ACM, 2012.

[32] Paraskevas Bakopoulos, Konstantinos
Christodoulopoulos, Giada Landi, Muzzamil
Aziz, Eitan Zahavi, Domenico Gallico, Richard
Pitwon, Konstantinos Tokas, Ioannis Patronas, Marco
Capitani, et al. Nephele: An end-to-end scalable
and dynamically reconfigurable optical architecture
for application-aware sdn cloud data centers. IEEE
Communications Magazine, 56(2):178–188, 2018.

[33] Hitesh Ballani, Paolo Costa, Raphael Behrendt, Daniel
Cletheroe, Istvan Haller, Krzysztof Jozwik, Fotini Kari-
nou, Sophie Lange, Kai Shi, Benn Thomsen, et al. Sir-
ius: A flat datacenter network with nanosecond optical
switching. In Proceedings of the Annual conference
of the ACM Special Interest Group on Data Communi-
cation on the applications, technologies, architectures,
and protocols for computer communication, pages 782–
797, 2020.

[34] Hitesh Ballani, Paolo Costa, Istvan Haller, Krzysztof
Jozwik, Kai Shi, Benn Thomsen, and Hugh Williams.
Bridging the last mile for optical switching in data
centers. In Optical Fiber Communication Conference,
pages W1C–3. Optical Society of America, 2018.

[35] Joshua L Benjamin, Thomas Gerard, Domaniç Lavery,
Polina Bayvel, and Georgios Zervas. Pulse: optical
circuit switched data center architecture operating at
nanosecond timescales. Journal of Lightwave Technol-
ogy, 38(18):4906–4921, 2020.

[36] Theophilus Benson, Aditya Akella, and David A Maltz.
Network traffic characteristics of data centers in the
wild. In Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement, pages 267–280,
2010.

[37] Theophilus Benson, Ashok Anand, Aditya Akella, and
Ming Zhang. Understanding data center traffic char-
acteristics. In Proceedings of the 1st ACM workshop
on Research on enterprise networking, pages 65–72.
ACM, 2009.

[38] Theophilus Benson, Ashok Anand, Aditya Akella, and
Ming Zhang. Microte: Fine grained traffic engineer-
ing for data centers. In Proceedings of the Seventh
COnference on emerging Networking EXperiments and
Technologies, page 8. ACM, 2011.

[39] Sergey Blagodurov, Alexandra Fedorova, Evgeny Vin-
nik, Tyler Dwyer, and Fabien Hermenier. Multi-
objective job placement in clusters. In SC’15: Proceed-
ings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis,
pages 1–12. IEEE, 2015.

[40] Peter Bodík, Ishai Menache, Mosharaf Chowdhury,
Pradeepkumar Mani, David A Maltz, and Ion Stoica.
Surviving failures in bandwidth-constrained datacen-
ters. ACM SIGCOMM Computer Communication Re-
view, 42(4):431–442, 2012.

[41] Nathan Bronson, Zach Amsden, George Cabrera,
Prasad Chakka, Peter Dimov, Hui Ding, Jack Ferris,
Anthony Giardullo, Sachin Kulkarni, Harry Li, et al.
{TAO}: Facebook’s distributed data store for the social
graph. In 2013 USENIX Annual Technical Conference
(USENIX ATC 13), pages 49–60, 2013.

[42] Marco Canini, Petr Kuznetsov, Dan Levin, and Stefan
Schmid. A distributed and robust sdn control plane
for transactional network updates. In 2015 IEEE con-
ference on computer communications (INFOCOM),
pages 190–198. IEEE, 2015.

[43] Andromachi Chatzieleftheriou, Sergey Legtchenko,
Hugh Williams, and Antony Rowstron. Larry: Prac-
tical network reconfigurability in the data center. In
15th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 18), pages 141–156,
2018.

[44] Kai Chen, Ankit Singla, Atul Singh, Kishore Ra-
machandran, Lei Xu, Yueping Zhang, Xitao Wen, and
Yan Chen. Osa: An optical switching architecture for
data center networks with unprecedented flexibility.
IEEE/ACM Transactions on Networking, 22(2):498–
511, 2014.

1280 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[45] Mosharaf Chowdhury, Srikanth Kandula, and Ion Sto-
ica. Leveraging endpoint flexibility in data-intensive
clusters. In ACM SIGCOMM Computer Communica-
tion Review, volume 43, pages 231–242. ACM, 2013.

[46] Mosharaf Chowdhury, Matei Zaharia, Justin Ma,
Michael I Jordan, and Ion Stoica. Managing data trans-
fers in computer clusters with orchestra. ACM SIG-
COMM Computer Communication Review, 41(4):98–
109, 2011.

[47] Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica.
Efficient coflow scheduling with varys. In Proceedings
of the 2014 ACM conference on SIGCOMM, pages
443–454, 2014.

[48] Kari Clark, Hitesh Ballani, Polina Bayvel, Daniel
Cletheroe, Thomas Gerard, Istvan Haller, Krzysztof
Jozwik, Kai Shi, Benn Thomsen, Philip Watts, et al.
Sub-nanosecond clock and data recovery in an
optically-switched data centre network. In 2018 Euro-
pean Conference on Optical Communication (ECOC),
pages 1–3. IEEE, 2018.

[49] Kari A Clark, Daniel Cletheroe, Thomas Gerard, Ist-
van Haller, Krzysztof Jozwik, Kai Shi, Benn Thomsen,
Hugh Williams, Georgios Zervas, Hitesh Ballani, et al.
Synchronous subnanosecond clock and data recovery
for optically switched data centres using clock phase
caching. Nature Electronics, 3(7):426–433, 2020.

[50] Sushovan Das, Weitao Wang, and TS Ng. Towards
all-optical circuit-switched datacenter network cores:
The case for mitigating traffic skewness at the edge. In
ACM SIGCOMM 2021 Workshop on Optical Systems
(OptSys’ 21), 2021.

[51] Mauro Dell’Amico and Silvano Martello. Bounds for
the cardinality constrained p cmax problem. Journal
of Scheduling, 4(3):123–138, 2001.

[52] Vojislav Dukic, Ginni Khanna, Christos Gkantsidis,
Thomas Karagiannis, Francesca Parmigiani, Ankit
Singla, Mark Filer, Jeffrey L Cox, Anna Ptasznik, Nick
Harland, et al. Beyond the mega-data center: network-
ing multi-data center regions. In Proceedings of the
Annual conference of the ACM Special Interest Group
on Data Communication on the applications, technolo-
gies, architectures, and protocols for computer com-
munication, pages 765–781, 2020.

[53] Nathan Farrington, George Porter, Sivasankar Rad-
hakrishnan, Hamid Hajabdolali Bazzaz, Vikram Subra-
manya, Yeshaiahu Fainman, George Papen, and Amin
Vahdat. Helios: a hybrid electrical/optical switch
architecture for modular data centers. ACM SIG-
COMM Computer Communication Review, 40(4):339–
350, 2010.

[54] G.C Fox, S.W Otto, and A.J.G Hey. Matrix algorithms
on a hypercube i: Matrix multiplication. Parallel Com-
puting, 4(1):17 – 31, 1987.

[55] Rohan Gandhi, Hongqiang Harry Liu, Y Charlie Hu,
Guohan Lu, Jitendra Padhye, Lihua Yuan, and Ming
Zhang. Duet: Cloud scale load balancing with hard-
ware and software. ACM SIGCOMM Computer Com-
munication Review, 44(4):27–38, 2014.

[56] Peter X Gao, Akshay Narayan, Sagar Karandikar, Joao
Carreira, Sangjin Han, Rachit Agarwal, Sylvia Rat-
nasamy, and Scott Shenker. Network requirements
for resource disaggregation. In 12th USENIX sympo-
sium on operating systems design and implementation
(OSDI 16), pages 249–264, 2016.

[57] Thomas Gerard, Kari Clark, Adam Funnell, Kai Shi,
Benn Thomsen, Philip Watts, Krzysztof Jozwik, Istvan
Haller, Hugh Williams, Paolo Costa, et al. Fast and
uniform optically-switched data centre networks en-
abled by amplitude caching. In 2021 Optical Fiber
Communications Conference and Exhibition (OFC),
pages 1–3. IEEE, 2021.

[58] Thomas Gerard, Christopher Parsonson, Zacharaya
Shabka, Polina Bayvel, Domaniç Lavery, and Geor-
gios Zervas. Swift: Scalable ultra-wideband sub-
nanosecond wavelength switching for data centre net-
works. arXiv preprint arXiv:2003.05489, 2020.

[59] Monia Ghobadi, Ratul Mahajan, Amar Phanishayee,
Nikhil Devanur, Janardhan Kulkarni, Gireeja Ranade,
Pierre-Alexandre Blanche, Houman Rastegarfar,
Madeleine Glick, and Daniel Kilper. Projector:
Agile reconfigurable data center interconnect. In
Proceedings of the 2016 ACM SIGCOMM Conference,
pages 216–229. ACM, 2016.

[60] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy
Konwinski, Scott Shenker, and Ion Stoica. Dominant
resource fairness: Fair allocation of multiple resource
types. In Nsdi, volume 11, pages 24–24, 2011.

[61] Robert Grandl, Ganesh Ananthanarayanan, Srikanth
Kandula, Sriram Rao, and Aditya Akella. Multi-
resource packing for cluster schedulers. ACM SIG-
COMM Computer Communication Review, 44(4):455–
466, 2014.

[62] Albert Greenberg, James R Hamilton, Navendu Jain,
Srikanth Kandula, Changhoon Kim, Parantap Lahiri,
David A Maltz, Parveen Patel, and Sudipta Sengupta.
Vl2: A scalable and flexible data center network. In
Proceedings of the ACM SIGCOMM 2009 conference
on Data communication, pages 51–62, 2009.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1281

[63] Juncheng Gu, Youngmoon Lee, Yiwen Zhang,
Mosharaf Chowdhury, and Kang G Shin. Efficient
memory disaggregation with infiniswap. In 14th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), pages 649–667, 2017.

[64] Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu,
Xuan Zhang, Yunfeng Shi, Chen Tian, Yongguang
Zhang, and Songwu Lu. Bcube: a high performance,
server-centric network architecture for modular data
centers. ACM SIGCOMM Computer Communication
Review, 39(4):63–74, 2009.

[65] Chuanxiong Guo, Haitao Wu, Kun Tan, Lei Shi, Yong-
guang Zhang, and Songwu Lu. Dcell: a scalable and
fault-tolerant network structure for data centers. In
ACM SIGCOMM Computer Communication Review,
volume 38, pages 75–86. ACM, 2008.

[66] Navid Hamedazimi, Zafar Qazi, Himanshu Gupta,
Vyas Sekar, Samir R Das, Jon P Longtin, Himanshu
Shah, and Ashish Tanwer. Firefly: A reconfigurable
wireless data center fabric using free-space optics. In
ACM SIGCOMM Computer Communication Review,
volume 44, pages 319–330. ACM, 2014.

[67] Mark Handley, Costin Raiciu, Alexandru Agache, An-
drei Voinescu, Andrew W. Moore, Gianni Antichi, and
Marcin Wójcik. Re-architecting datacenter networks
and stacks for low latency and high performance. In
Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM
’17, pages 29–42, New York, NY, USA, 2017. ACM.

[68] Keqiang He, Junaid Khalid, Aaron Gember-Jacobson,
Sourav Das, Chaithan Prakash, Aditya Akella, Li Er-
ran Li, and Marina Thottan. Measuring control plane
latency in sdn-enabled switches. In Proceedings of the
1st ACM SIGCOMM Symposium on Software Defined
Networking Research, page 25. ACM, 2015.

[69] Christian E Hopps. Analysis of an equal-cost multi-
path algorithm. 2000.

[70] Chang-Hong Hsu, Qingyuan Deng, Jason Mars, and
Lingjia Tang. Smoothoperator: Reducing power frag-
mentation and improving power utilization in large-
scale datacenters. In Proceedings of the Twenty-Third
International Conference on Architectural Support for
Programming Languages and Operating Systems, AS-
PLOS ’18, pages 535–548, New York, NY, USA, 2018.
ACM.

[71] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi
Wieder, Kunal Talwar, and Andrew Goldberg. Quincy:
fair scheduling for distributed computing clusters. In
Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles, pages 261–276, 2009.

[72] Virajith Jalaparti, Peter Bodik, Ishai Menache, Sriram
Rao, Konstantin Makarychev, and Matthew Caesar.
Network-aware scheduling for data-parallel jobs: Plan
when you can. ACM SIGCOMM Computer Communi-
cation Review, 45(4):407–420, 2015.

[73] Xin Jin, Hongqiang Harry Liu, Rohan Gandhi, Srikanth
Kandula, Ratul Mahajan, Ming Zhang, Jennifer Rex-
ford, and Roger Wattenhofer. Dynamic scheduling of
network updates. ACM SIGCOMM Computer Commu-
nication Review, 44(4):539–550, 2014.

[74] Srikanth Kandula, Jitendra Padhye, and Paramvir Bahl.
Flyways to de-congest data center networks. 2009.

[75] Robert Krauthgamer, Joseph Naor, and Roy Schwartz.
Partitioning graphs into balanced components. In Pro-
ceedings of the twentieth annual ACM-SIAM sympo-
sium on Discrete algorithms, pages 942–949. SIAM,
2009.

[76] Maciej Kuźniar, Peter Perešíni, and Dejan Kostić. What
you need to know about sdn flow tables. In Interna-
tional Conference on Passive and Active Network Mea-
surement, pages 347–359. Springer, 2015.

[77] Sophie Lange, Arslan S Raja, Kai Shi, Maxim Karpov,
Raphael Behrendt, Daniel Cletheroe, Istvan Haller, Fo-
tini Karinou, Xin Fu, Junqiu Liu, et al. Sub-nanosecond
optical switching using chip-based soliton microcombs.
In Optical Fiber Communication Conference, pages
W2A–4. Optical Society of America, 2020.

[78] Dominique LaSalle and George Karypis. Multi-
threaded graph partitioning. In Parallel & Distributed
Processing (IPDPS), 2013 IEEE 27th International
Symposium on, pages 225–236. IEEE, 2013.

[79] T Li, B Cole, P Morton, and D Li. Rfc2281: Cisco hot
standby router protocol (hsrp), 1998.

[80] He Liu, Feng Lu, Alex Forencich, Rishi Kapoor,
Malveeka Tewari, Geoffrey M. Voelker, George Papen,
Alex C. Snoeren, and George Porter. Circuit switch-
ing under the radar with reactor. In 11th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 14), pages 1–15, Seattle, WA, 2014.
USENIX Association.

[81] Hongqiang Harry Liu, Xin Wu, Ming Zhang, Lihua
Yuan, Roger Wattenhofer, and David Maltz. zupdate:
Updating data center networks with zero loss. In ACM
SIGCOMM Computer Communication Review, vol-
ume 43, pages 411–422. ACM, 2013.

[82] Vincent Liu, Daniel Halperin, Arvind Krishnamurthy,
and Thomas Anderson. F10: A fault-tolerant engi-
neered network. In Presented as part of the 10th

1282 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

USENIX Symposium on Networked Systems Design
and Implementation (NSDI 13), pages 399–412, 2013.

[83] Vincent Liu, Danyang Zhuo, Simon Peter, Arvind Kr-
ishnamurthy, and Thomas Anderson. Subways: A case
for redundant, inexpensive data center edge links. In
Proceedings of the 11th ACM Conference on Emerging
Networking Experiments and Technologies, page 27.
ACM, 2015.

[84] Yunpeng James Liu, Peter Xiang Gao, Bernard Wong,
and Srinivasan Keshav. Quartz: a new design element
for low-latency dcns. In ACM SIGCOMM Computer
Communication Review, volume 44, pages 283–294.
ACM, 2014.

[85] William M. Mellette, Rajdeep Das, Yibo Guo, Rob
McGuinness, Alex C. Snoeren, and George Porter.
Expanding across time to deliver bandwidth ef-
ficiency and low latency. arXiv e-prints, page
arXiv:1903.12307, Mar 2019.

[86] William M Mellette, Rob McGuinness, Arjun Roy,
Alex Forencich, George Papen, Alex C Snoeren, and
George Porter. Rotornet: A scalable, low-complexity,
optical datacenter network. In Proceedings of the Con-
ference of the ACM Special Interest Group on Data
Communication, pages 267–280. ACM, 2017.

[87] Xiaoqiao Meng, Vasileios Pappas, and Li Zhang. Im-
proving the scalability of data center networks with
traffic-aware virtual machine placement. In 2010 Pro-
ceedings IEEE INFOCOM, pages 1–9. IEEE, 2010.

[88] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun
Lee, and Minlan Yu. Silkroad: Making stateful layer-4
load balancing fast and cheap using switching asics.
In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, pages 15–28.
ACM, 2017.

[89] Wil Michiels, Jan Korst, Emile Aarts, and Jan
Van Leeuwen. Performance ratios for the differencing
method applied to the balanced number partitioning
problem. In Annual Symposium on Theoretical Aspects
of Computer Science, pages 583–595. Springer, 2003.

[90] Tal Mizrahi and Yoram Moses. Time4: Time for sdn.
IEEE Transactions on Network and Service Manage-
ment, 13(3):433–446, 2016.

[91] Samuel K Moore. Another step toward the end of
moore’s law: Samsung and tsmc move to 5-nanometer
manufacturing-[news]. IEEE Spectrum, 56(6):9–10,
2019.

[92] Mihir Nanavati, Jake Wires, and Andrew Warfield.
Decibel: Isolation and sharing in disaggregated {Rack-
Scale} storage. In 14th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI
17), pages 17–33, 2017.

[93] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, et al. Scaling
memcache at facebook. In Presented as part of the
10th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 13), pages 385–398,
2013.

[94] Vlad Nitu, Boris Teabe, Alain Tchana, Canturk Isci,
and Daniel Hagimont. Welcome to zombieland: prac-
tical and energy-efficient memory disaggregation in a
datacenter. In Proceedings of the Thirteenth EuroSys
Conference, pages 1–12, 2018.

[95] Rina Panigrahy, Kunal Talwar, Lincoln Uyeda, and Udi
Wieder. Heuristics for vector bin packing. research.
microsoft. com, 2011.

[96] George Porter, Richard Strong, Nathan Farrington,
Alex Forencich, Pang Chen-Sun, Tajana Rosing, Yesha-
iahu Fainman, George Papen, and Amin Vahdat. In-
tegrating microsecond circuit switching into the data
center. In Proceedings of the ACM SIGCOMM 2013
Conference on SIGCOMM, SIGCOMM ’13, pages 447–
458, New York, NY, USA, 2013. ACM.

[97] Costin Raiciu, Sebastien Barre, Christopher Pluntke,
Adam Greenhalgh, Damon Wischik, and Mark Hand-
ley. Improving datacenter performance and robustness
with multipath tcp. ACM SIGCOMM Computer Com-
munication Review, 41(4):266–277, 2011.

[98] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole
Schlesinger, and David Walker. Abstractions for net-
work update. ACM SIGCOMM Computer Communi-
cation Review, 42(4):323–334, 2012.

[99] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George
Porter, and Alex C. Snoeren. Inside the social net-
work’s (datacenter) network. SIGCOMM Comput.
Commun. Rev., 45(4):123–137, August 2015.

[100] Liron Schiff, Stefan Schmid, and Petr Kuznetsov. In-
band synchronization for distributed sdn control planes.
ACM SIGCOMM Computer Communication Review,
46(1):37–43, 2016.

[101] Tae Joon Seok, Niels Quack, Sangyoon Han, Wencong
Zhang, Richard S Muller, and Ming C Wu. Reliability
study of digital silicon photonic mems switches. In
2015 IEEE 12th International Conference on Group
IV Photonics (GFP), pages 205–206. IEEE, 2015.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1283

[102] Tae Joon Seok, Niels Quack, Sangyoon Han, Wencong
Zhang, Richard S Muller, and Ming C Wu. Reliability
study of digital silicon photonic mems switches. In
Group IV Photonics (GFP), 2015 IEEE 12th Interna-
tional Conference on, pages 205–206. IEEE, 2015.

[103] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying
Zhang. {LegoOS}: A disseminated, distributed {OS}
for hardware resource disaggregation. In 13th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 18), pages 69–87, 2018.

[104] Vishal Shrivastav, Asaf Valadarsky, Hitesh Ballani,
Paolo Costa, Ki Suh Lee, Han Wang, Rachit Agarwal,
and Hakim Weatherspoon. Shoal: A network archi-
tecture for disaggregated racks. In 16th USENIX Sym-
posium on Networked Systems Design and Implemen-
tation (NSDI 19), pages 255–270, Boston, MA, 2019.
USENIX Association.

[105] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson,
Ashby Armistead, Roy Bannon, Seb Boving, Gaurav
Desai, Bob Felderman, Paulie Germano, et al. Jupiter
rising: A decade of clos topologies and centralized
control in google’s datacenter network. ACM SIG-
COMM computer communication review, 45(4):183–
197, 2015.

[106] Ankit Singla, Chi-Yao Hong, Lucian Popa, and
Philip Brighten Godfrey. Jellyfish: Networking data
centers, randomly. In NSDI, volume 12, pages 1–6,
2012.

[107] Rob Stone, Ruby Chen, Jeff Rahn, Srinivas Venkatara-
man, Xu Wang, Katharine Schmidtke, and James Stew-
art. Co-packaged optics for data center switching. In
2020 European Conference on Optical Communica-
tions (ECOC), pages 1–3. IEEE, 2020.

[108] Xiongchao Tang, Haojie Wang, Xiaosong Ma, Nosayba
El-Sayed, Jidong Zhai, Wenguang Chen, and Ashraf
Aboulnaga. Spread-n-share: improving application per-
formance and cluster throughput with resource-aware
job placement. In Proceedings of the International
Conference for High Performance Computing, Net-
working, Storage and Analysis, pages 1–15, 2019.

[109] Meg Walraed-Sullivan, Amin Vahdat, and Keith
Marzullo. Aspen trees: balancing data center fault
tolerance, scalability and cost. In Proceedings of the
ninth ACM conference on Emerging networking exper-
iments and technologies, pages 85–96, 2013.

[110] Guohui Wang, David G Andersen, Michael Kaminsky,
Konstantina Papagiannaki, TS Ng, Michael Kozuch,
and Michael Ryan. c-through: Part-time optics in data
centers. In ACM SIGCOMM Computer Communica-
tion Review, volume 40, pages 327–338. ACM, 2010.

[111] Dingming Wu, Weitao Wang, Ang Chen, and TS Ng.
Say no to rack boundaries: Towards a reconfigurable
pod-centric dcn architecture. In Proceedings of the
2019 ACM Symposium on SDN Research, pages 112–
118. ACM, 2019.

[112] Dingming Wu, Yiting Xia, Xiaoye Steven Sun,
Xin Sunny Huang, Simbarashe Dzinamarira, and
TS Eugene Ng. Masking failures from application
performance in data center networks with shareable
backup. In Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication,
pages 176–190, 2018.

[113] Xin Wu, Daniel Turner, Chao-Chih Chen, David A
Maltz, Xiaowei Yang, Lihua Yuan, and Ming Zhang.
Netpilot: automating datacenter network failure mitiga-
tion. In Proceedings of the ACM SIGCOMM 2012 con-
ference on Applications, technologies, architectures,
and protocols for computer communication, pages 419–
430. ACM, 2012.

[114] Yiting Xia, Xin Sunny Huang, and T. S. Eugene Ng.
Stop rerouting!: Enabling sharebackup for failure re-
covery in data center networks. In Proceedings of
the 16th ACM Workshop on Hot Topics in Networks,
HotNets-XVI, pages 171–177, New York, NY, USA,
2017. ACM.

[115] Yiting Xia, Xiaoye Steven Sun, Simbarashe Dzina-
marira, Dingming Wu, Xin Sunny Huang, and TS Eu-
gene Ng. A tale of two topologies: Exploring convert-
ible data center network architectures with flat-tree. In
Proceedings of the Conference of the ACM Special In-
terest Group on Data Communication, pages 295–308,
2017.

[116] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma,
Khaled Elmeleegy, Scott Shenker, and Ion Stoica. De-
lay scheduling: a simple technique for achieving local-
ity and fairness in cluster scheduling. In Proceedings
of the 5th European conference on Computer systems,
pages 265–278, 2010.

[117] David Zats, Tathagata Das, Prashanth Mohan, Dhruba
Borthakur, and Randy Katz. Detail: reducing the flow
completion time tail in datacenter networks. In Pro-
ceedings of the ACM SIGCOMM 2012 conference on
Applications, technologies, architectures, and protocols
for computer communication, pages 139–150. ACM,
2012.

[118] Xia Zhou, Zengbin Zhang, Yibo Zhu, Yubo Li, Saipriya
Kumar, Amin Vahdat, Ben Y Zhao, and Haitao Zheng.
Mirror mirror on the ceiling: Flexible wireless links for
data centers. ACM SIGCOMM CCR, 42(4):443–454,
2012.

1284 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[119] Danyang Zhuo, Monia Ghobadi, Ratul Mahajan, Klaus-
Tycho Förster, Arvind Krishnamurthy, and Thomas An-
derson. Understanding and mitigating packet corrup-
tion in data center networks. In Proceedings of the
Conference of the ACM Special Interest Group on Data
Communication, pages 362–375, 2017.

[120] Christopher Zimmer, Saurabh Gupta, Scott Atchley,
Sudharshan S Vazhkudai, and Carl Albing. A multi-
faceted approach to job placement for improved perfor-
mance on extreme-scale systems. In SC’16: Proceed-
ings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis,
pages 1015–1025. IEEE, 2016.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1285

A Appendix
This appendix includes more discussions and results.

A.1 The RDC 0/1 updates

Instead of changing packet version, in RDC a switch performs
binary changes from VLAN tagging packets to not, and from
not VLAN tagging packets to tagging. Assume packets are in
VLAN tagging mode before the change and there is a single
VLAN tagging rule at the ingress switch for all packets. We
first install the new set of rules with lower priority that matches
only on destination IPs, note that the more general matching
rules always have lower priority. Then, we remove the VLAN
tagging rule. The untagged packets in the transient state can
immediately match against the new set of rules. Similarly, if
packets are not in VLAN tagging mode before the update, we
first install the new set of rules matches on both VLAN tag
and destination IPs and then install a single VLAN tagging
rule for all packets.

Fig. 16 illustrates the update mechanism in RDC, which we
call 0/1 update. It uses an example of forwarding state updates
on an OpenFlow ToR switch, which has 4 ports. Ports 1 and
2 are connected to servers, ports 3 and 4 are connected to the
agg. switches. Packet versions are encoded in the VLAN tag.
Before the update, packets are first matched against a VLAN
table that tags packets with a VLAN ID. Those tagged packets
are then matched against the old rules in the forwarding table.
During the transient state of rule updating, packets become
untagged and can thus immediately match against the new
rules without being dropped. The instructions of the forward-
ing table direct packets to the group table where packets are
either directly sent out via an output port or get load-balanced
over multiple output ports using the select group type. Sim-
ilarly, an update from the not-tagging mode to the tagging
mode also causes no packet loss.

MatchFields Priority Instruction
vlanID dstIp GroupID
1 d1 2 1
1 d2 2 2
* d1 1 2
* d2 1 1
* * 3

GroupID GroupType ActionBuckets
1 indirect out_port 1
2 indirect out_port 2

3 select out_port 3: 0.5
out_port 4: 0.5

MatchFields Instruction
ingressPort set-field

* set vlanID 1/None
vlan table

forwarding table

group table

old
rules
new
rules

Figure 16: An example of RDC’s 0/1 rule update on an
OpenFlow-enabled ToR switch.

A.2 Use case: Uplink load-balancing

In §4, we have discussed four use cases for RDC. Among
these, uplink load balancing is another reactive RDC algo-
rithm. We discuss this use case in more detail, including the
data collection, bias mitigation, and control algorithm. The
proactive mode (Use case 3) is simply driven by applications,

and the mixed optimization (Use case 4) is also case-specific,
so we focus on the reactive algorithm for Use case 2.
Traffic data collection. RDC maintains flow counters on
ToRs to monitor the amount of traffic that each server has
sent outside the pod. We assume each RDC pod has a unique
ID, e.g., an IP address prefix shared by all servers in the pod.
Counters are only installed and updated for inter-pod traffic.
This can be implemented in the switch using two separate
flow tables. The first flow table matches on the destination IP
prefix and has only one rule matching the switch’s own pod
ID. If the first table misses, the second table then matches the
5-tuple and updates the associated counters. Otherwise, the
packet skips the second table and goes to the forwarding table.
By default, a miss on the second table will not result in packet
loss, but a go-to action to the rest of the switch pipeline, which
avoids traffic disruption when the counter rules change.
Demand estimation. We use a similar technique to estimate
the true demand of servers in bottlenecked racks assuming
they fair-share the uplink bandwidth. The estimates are ob-
tained by first aggregating the flow counters for each server
and then scaling up the per-server demand to reach an aggre-
gate uplink throughput as if the rack is not oversubscribed.
We only apply this technique to racks that have been bottle-
necked in the collection period to prevent idle racks from
being mistakenly treated as hot. This technique keeps the rel-
ative order of server traffic load but brings larger quantitative
differences among servers, guiding our algorithm to compute
better topologies.
Algorithm. For 1-CS RDC, we view the uplink load-
balancing problem as a balanced graph partition problem;
for multi-CS RDC, we use a heuristic algorithm to obtain the
reconfiguration plan. The details of the above two algorithms
are included in §A.4.

A.3 Hedera demand estimation algorithm

The pseudocode is shown in Algorithm 1. M is the demand
matrix, H is the set of hosts in the network. eS is the equal
share rate of the flows, dT is the total demand for the desti-
nation, and dS is the demand limited by the sender, f .rl is a
flag for a receiver-limited flow, and < src→ anydst > rep-
resents all the flows from the specific source host src to any
destination host.

A general explanation for this algorithm is expanding the
flow demand at the source host with the fair share, and then
reducing the demand of some flows according to the capacity
of the destination hosts. In each iteration, one or more flows
will converge. Eventually, all the flows will converge after
multiple iterations [27].

A.4 Topology optimization algorithm details

1. Problem formulation. Assume that the number of racks
in a pod is m, each rack has n servers, and each pod has k CS
switches to reallocate the server. To keep a record of which
server is connected to which ToR switch, we use another

1286 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 1: Hedera demand estimation [27]
Input: M: traffic matrix, H: the set of all hosts
Output: M: estimated demand matrix

1 while some Mi, j demand changed do
2 for host src ∈ H do
3 es← 1−∑converged flow demand

unconverged flow number ,
f low ∈< src→ anydst >

4 for flow f ∈< src→ anydst > do
5 if f not converged then
6 M f .src, f .dst .demand← eS

7 for host dst ∈ H do
8 for f ∈< anysrc→ dst > do
9 f .rl← true

10 dT ← dT + f .demand
11 nR← nR +1

12 if dT > 1 then
13 eS← 1

nR

14 while some f .rl was set to false do
15 nR← 0
16 for f ∈< anysrc→ dst > & f .rl do
17 if f .demand < eS then
18 dS← dS + f .demand
19 f .rl← f alse

20 else
21 nR← nR +1

22 es← 1−dS
nR

23 for f ∈< src→ dst > & f .rl do
24 M f .src, f .dst .demand← es
25 M f .src, f .dst .converged← true

matrix C[mn][m], if C[i][j] is 1, then server i is connected to
ToR j; the server and TOR are not connected if the value is 0.
For a valid allocation of the servers, the first constraint is that
one server should only be connected to one ToR:

m−1

∑
j=0

C[i][j] = 1,∀i ∈ [0,mn) (1)

The second constraint is because only a limited number of
ports from each ToR are connected to every CS, which is n

k .
Thus, among all the mn

k servers connected to one CS, only n
k

of them can be connected to the same ToR switch:

m−1

∑
x=0

n
k−1

∑
y=0

C[x ·n+ i∗ n
k
+ y][j] =

n
k
,∀i ∈ [0,k),∀ j ∈ [0,m)

(2)
The goal for traffic localization is to localize the inter-rack

traffic within a pod as much as possible. Hence, the objective
function is to maximize the total amount of localized traffic.
Assume that the traffic demand matrix is D[mn][mn], which
covers all the server pairs in a pod. Only when two servers
are connected to the same ToR, C[x][j] ·C[y][j] = 1, so that
the following equation shows the amount of localized traffic
demand:

Maximize:
mn−1

∑
x=0

mn−1

∑
y=0

m−1

∑
j=0

C[x][j] ·C[y][j] ·D[x][y] (3)

The goal for uplink load-balancing is to balance the load
across all uplinks. Hence, we choose to minimize the maxi-
mum load of any uplink for the out-of-pod traffic. Assume that
the out-of-pod traffic demand matrix is U [mn]. The objective
function is:

Minimize: MAX

{
mn−1

∑
i=0

C[i][j] ·U [i]

}
, j ∈ [0,m) (4)

2. Heuristic traffic localization algorithm for 1-CS RDC.
For RDC with only 1 circuit switch, the topology optimization
problem will just become a graph partition problem. And the
new objective function is that we want to partition the vertices
(servers) in the graph into groups equally and let the edges
(traffic demand) within the groups to be maximum. Assume
the traffic demand is a graph G = (E,V), where V is the ver-
tex set (i.e., servers) and E is the edge set. The weight of an
edge e,w(e), is the traffic demand between the vertices. To
simplify the computation, we do not distinguish the directions
of traffic between a server pair, i.e., graph G is non-directional.
Our goal is to partition the graph into subgraphs of equal num-
bers of vertices such that the weighted sum of cross-subgraph
edges is minimized. We require partitions of the same size
because each ToR must connect to the same fixed number of
servers. The balanced graph partitioning problem is NP-hard,
but high-quality, efficient heuristics have been proposed in a
library parmetis [78]. Thus, for the traffic localization prob-
lem, we can set the objective to maximize the edge weights
insides each group and use the BGP method to solve it.

3. Heuristic uplink load-balancing algorithm for 1-CS
RDC. For RDC with only 1 circuit switch, the uplink load-
balancing problem will also become a graph partition problem.
Our formulation partitions mn number of servers 1,2, ...,mn
into m subsets S1,S2, ...Sm such that each subset S j has ex-
actly n servers and the maximum cost of a subset, defined
as max({c(S j)}) is minimized, where c(S j) = ∑U [i](i ∈ S j).
Again, we require a balanced partition of the servers because
each ToR must host the same number of servers. The prob-
lem is also NP-hard when k > 2 [51, 89]. We use the same
high-quality and efficient heuristics, parmetis, to solve this
problem by simply changing the objective function to balance
the out-of-pod throughput for each group.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1287

4. Heuristic traffic localization algorithm for multi-CS
RDC. For RDC with multiple circuit switches, our heuristic
firstly groups the servers under the same CS into m bundles
equally and maximizes the traffic within each bundle, since all
the servers within a bundle should be connected to the same
ToR. After obtaining the bundles, for one CS, we only need
to assign each of them to a different ToR switch, and the goal
is to maximize the traffic demand among bundles under the
same ToR switch. In total we have mk bundles, each bundle
will be connected to one ToR switch, recorded as BC[mk][m].
Moreover, the bundles can be used to calculate an aggregated
traffic demand matrix BD[mk][mk]. Thus, the simplified traffic
localization algorithm can be presented as:

m−1

∑
j=0

BC[i][j] = 1,∀i ∈ [0,mk) (5)

m−1

∑
x=0

BC[x ·m+ i][j] = 1,∀i ∈ [0,m),∀ j ∈ [0,m) (6)

Maximize:
mk−1

∑
x=0

mk−1

∑
y=0

m−1

∑
j=0

BC[x][j] ·BC[y][j] ·BD[x][y] (7)

5. Heuristic uplink load-balancing algorithm for multi-
CS RDC. For the heuristic ULB algorithm, again the servers
are grouped under the same CS into m bundles equally. And
the objective function is to minimize the maximum out-of-pod
traffic of each bundle. The idea behind this heuristic is that
if each OCS gives balanced out-of-pod traffic to each ToR,
then the total out-of-pod traffic from each ToR should also be
balanced. The constraints remain the same. Thus, we divide
the problem into many sub-problems, and each sub-problem
focuses on the servers connected to the same OCS:

m−1

∑
j=0

C[i][j] = 1,∀i ∈ [0,mn) (8)

m−1

∑
x=0

n
k−1

∑
y=0

C[x ·n+ i∗ n
k
+ y][j] =

n
k
,∀i ∈ [0,k),∀ j ∈ [0,m)

(9)

Minimize: MAX

{
m−1

∑
r=0

n
k−1

∑
i=0

C[r ∗n+
n
k
∗ s+ i][j] ·U [i]

}
,∀ j∈ [0,m)

(10)

1288 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Isolation Mechanisms for High-Speed Packet-Processing Pipelines

Tao Wang† Xiangrui Yang‡∗ Gianni Antichi⋆⋆ Anirudh Sivaraman† Aurojit Panda†

†New York University ‡National University of Defense Technology
⋆⋆Queen Mary University of London

Abstract
Data-plane programmability is now mainstream. As we find
more use cases, deployments need to be able to run multiple
packet-processing modules in a single device. These are
likely to be developed by independent teams, either within the
same organization or from multiple organizations. Therefore,
we need isolation mechanisms to ensure that modules on the
same device do not interfere with each other.

This paper presents Menshen, an extension of the Reconfig-
urable Match Tables (RMT) pipeline that enforces isolation
between different packet-processing modules. Menshen is
comprised of a set of lightweight hardware primitives and
an extension to the open source P4-16 reference compiler
that act in conjunction to meet this goal. We have prototyped
Menshen on two FPGA platforms (NetFPGA and Corundum).
We show that our design provides isolation, and allows new
modules to be loaded without impacting the ones already run-
ning. Finally, we demonstrate the feasibility of implementing
Menshen on ASICs by using the FreePDK45nm technology
library and the Synopsys DC synthesis software, showing
that our design meets timing at a 1 GHz clock frequency and
needs approximately 6% additional chip area. We have open
sourced the code for Menshen’s hardware and software at
https://isolation.quest/.

1 Introduction
Programmable network devices in the form of programmable
switches [6, 15, 26] and smart network interface cards
(SmartNICs) [10, 11, 44] are becoming commodity. Such
devices allow the network infrastructure to provide its users
additional services beyond packet forwarding, e.g., conges-
tion control [41, 66], measurement [52], load balancing [62],
in-network caches [60], and machine learning [72].

As network programmability matures, a single device
will have to concurrently support multiple independently
developed modules. This is the case for networks in the
public cloud where tenants can provide packet-processing

∗Work done at Queen Mary University of London

...…

Traffic M
anager

...
Module M

…Module 1

Program
m

able
Parser

Match-action Pipelinepackets
stage 1 stage N

D
eparser

Figure 1: The RMT architecture [36] typically consists of a
programmable parser/deparser, match-action pipeline and traffic
manager. Menshen provides isolation between RMT modules. In the
figure we show resources allocated to module 1 and module m by
shading them in the appropriate color.

modules that are installed and run on the cloud provider’s
devices. Another example is when different teams in an
organization write different modules, e.g., an in-networking
caching module and a telemetry module.

Isolation is required to safely run multiple modules on a
single device. Several prior projects have observed this need
and proposed solutions targeting multicore network proces-
sors [50, 68], FPGA-based packet processors [63, 73, 77, 82],
and software switches [53, 81]. However, thus far, high-speed
pipelines such as RMT that are used in switch and NIC ASICs
provide only limited support for isolation. For instance, the
Tofino programmable switch ASIC [26] provides mechanisms
to share stateful memory across modules but cannot share
other resources, e.g., match-action tables [79].

Our goal with this paper is to lay out the requirements
for isolation mechanisms on the RMT architecture that are
applicable to all resources and then to design lightweight
mechanisms that meet these requirements. As presented in
Figure 1, the desired isolation mechanisms should guarantee
that multiple modules can be allocated to different resources,
and process packets in parallel without impacting each other.
In brief (§2.1 elaborates), we seek isolation mechanisms
that ensure that (1) one module’s behavior (input, output,
and internal state) is unaffected by another module; (2)
one module can not affect another’s throughput and/or
latency; and (3) one module can not access RMT pipeline
resources belonging to another. Given the high performance

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1289

https://isolation.quest/

requirements of RMT, we also seek mechanisms that are
lightweight. Finally, the isolation mechanism should ensure
that one module can be updated without disturbing any other
modules and that the update process itself is quick.

The RMT architecture poses unique challenges for isola-
tion because its pipeline design means that neither an OS nor
a hypervisor can be used to enforce isolation.1 This is because
RMT is a dataflow or spatial hardware architecture [34, 39]
with a set of instructions units continuously processing data
(packets). This is in contrast to the Von Neumann architecture
found on processors [27], where a program counter decides
what instruction to execute next. As such, an RMT pipeline
is closer in its hardware architecture to an FPGA or a
CGRA [70] than a processor. This difference in architecture
has important implications for isolation. The Von Neumann
architecture supports a time-sharing approach to isolation
(in the form of an OS/hypervisor) that runs different modules
on the CPU successively by changing the program counter to
point to the next instruction of the next module. We instead
use space-partitioning to divide up the RMT pipeline’s
resources (e.g., match-action tables) across different modules.

Unfortunately, space partitioning is not a viable option for
certain RMT resources because there are very few of them
to be effectively partitioned across modules (e.g., match key
extraction units (§3.1)). For such resources, we add additional
hardware primitives in the form of small tables that store
module-specific configurations for these resources. As a
packet progresses through the pipeline, the packet’s module
identifier is used as an index into these tables to extract
module-specific configurations before processing the packet
according to the just extracted configuration. These primitives
are similar to the use of overlays [3, 16] in embedded sys-
tems [1, 25] and earlier PCs [17]. They effectively allow us to
bring in different configurations for the same RMT resource,
in response to different packets from different modules.

Based on the ideas of space partitioning and overlays, we
build a system, Menshen, for isolation on RMT pipelines.
Specifically, Menshen makes the following contributions:

1. The use of space partitioning and overlays as techniques
to achieve isolation when sharing an RMT pipeline
across multiple modules.

2. A hardware design for an RMT pipeline that employs
these techniques.

3. An implementation on 2 open-source FPGA platforms:
the NetFPGA switch [84] and Corundum NIC [45].

4. A compiler based on the open-source P4-16 com-
piler [18] that supports multiple modules running on
RMT, along with a system-level module to provide basic
services (e.g., routing, multicast) to other modules.

5. An evaluation of Menshen using 8 modules—based
on tutorial P4 programs, and the NetCache [60]
and NetChain [59] research projects—showing that

1An OS does run on the network device’s control CPU, allowing isolation
in the control plane. Our focus, instead, is on isolation in the data plane.

Menshen meets our isolation requirements.
6. An ASIC analysis of the Menshen, which shows that

our design can meet timing at 1 GHz (comparable to
current programmable ASICs) with modest additional
area relative to a baseline RMT design.

Overall, we find that Menshen adds modest overhead to
an existing RMT pipeline in both FPGA and ASIC imple-
mentations (§5). Our main takeaway is that a small number
of simple additions to RMT along with changes to the RMT
compiler can provide inter-module isolation for a high-speed
packet-processing pipeline. We have made Menshen’s
hardware design and software available under an open-source
license at https://isolation.quest/ to enable further
research into isolation mechanisms for high-speed pipelines.

2 The case for isolation
A single network device might host a measurement
module [52], a forwarding module [74], an in-network
caching [60] module, and an in-network machine-learning
module [72]—each written by a different team in the
same organization. It is important to isolate these modules
from each other. This would prevent bugs in measurement,
in-network caching, and in-network ML from causing
network downtime. It would also ensure that memory for
measuring per-flow stats [65] is separated from memory for
routing tables, e.g., a sudden arrival of many new flows does
not cause cached routes to be evicted from the data plane.

The packet-processing modules in question do not even
have to be developed by teams in the same organization [79].
They could belong to different tenants sharing the same
public cloud network. This would allow cloud providers
to offer network data-plane programmability as a service
to their tenants, similar to cloud CPU, GPU, and storage
offerings today. Such a capability would allow tenants to
customize network devices in the cloud to suit their needs.

2.1 Requirements for isolation mechanisms
For the rest of this paper, we will use the term module to
refer to a packet-processing program that must be isolated
from other such programs, regardless of whether the modules
belong to different mutually distrustful tenants or to a single
network operator. Importantly, modules can not call each
other like functions, but are intended to isolate different
pieces of functionality from each other—similar to processes.
Based on our use cases above (§2), we want an inter-module
isolation mechanisms that meet the requirements below:

1. Behavior isolation. The behavior of one module must
not affect the behavior (i.e., input, output, computation
and internal state) of another. This would prevent a
faulty or malicious module from adversely affecting
other modules. Further, one module should not be able
to inspect the behavior of another module.

2. Resource isolation. A switch/NIC pipeline has multiple
resources, e.g., static random-access memory (SRAM)

1290 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://isolation.quest/

for exact matching and ternary content-addressable
memory (TCAM) for ternary matching. Each module
should be able to access only its assigned subset of
the pipeline’s resources and no more. It should also be
possible to allocate each resource independent of other
resources. For example, an in-network caching module
may need large amounts of stateful memory [60] for
its caches, but a routing module may need significant
TCAM for routing tables.

3. Performance isolation. Each module should stay
within its allotted ingress packets per second and bits
per second rates. One module’s behavior should not
affect the throughput and latency of another module.

4. Lightweight. The isolation mechanisms themselves
must have low overhead so that their presence does
not significantly degrade the high performance of
the underlying network device. In addition, the extra
hardware consumed by these mechanisms must be small.

5. Rapid reconfiguration. If a module is reconfigured
with new packet-processing logic, the reconfiguration
process should be quick.

6. No disruption. If a module is reconfigured, it must
not disrupt the behavior of other unchanged modules—
especially important in a multi-tenant environment [40].

2.2 Target setting for Menshen
We target both programmable switches and NICs with a
programmable packet-processing pipeline based on the RMT
pipeline [36], a common architecture for packet processing
for the highest end devices. Other projects have looked at
isolation for software switches, multicore network processors,
FPGA-based devices, and the Barefoot Tofino switch
(without hardware changes). §6 compares against them.

An RMT pipeline can be implemented either on an FPGA
(e.g., FlowBlaze [71], Lightning NIC [57], nanoPU [56]) or
an ASIC (e.g., the Tofino [26], Spectrum [15], and Trident [6]
switches; and the Pensando NIC [13]). This pipeline has
also been embedded within larger hardware designs (e.g.,
PANIC [67]). Menshen builds on a baseline RMT pipeline
to provide isolation between different modules/tenants. A
high-speed implementation of Menshen would likely be
based on an RMT ASIC. For this paper, we prototype RMT
on 2 FPGA-based platforms: the NetFPGA switch [84] and
the Corundum NIC [45]. Our ASIC synthesis results suggest
that our lessons generalize to ASICs as well (§5.2).

3 Design
In order to meet its performance goals, RMT’s pipelined
architecture ensures that processing stages never stall, i.e.,
they can process a packet every clock cycle. The Menshen
design aims to preserve this invariant so that isolation does
not come at the cost of performance. To maintain this in-
variant, Menshen’s isolation mechanisms cannot reconfigure
stages or change table contents between packets. As a result,

Applied Mechanism Targeted Resources

Space partitioning Match action table entries, stateful memories

Overlays Parsing actions, key extractors,
packet header vector (PHV) containers,
arithmetic logic units (ALUs)

Table 1: Summary of Menshen’s mechanisms.

Menshen provides isolation by spatially partitioning switch
resources between packet processing modules.

While spatial partitioning is easy for resources, e.g.,
match-action tables and stateful memory, that are provisioned
so they can be allocated at flow granularity, it is much more
challenging for resources such as key extractors (§3.1) which
are generally shared across flows. This is because naive
approaches to spatially partitioning such shared resources
across packet-processing modules would severely reduce
the number of resources available to each packet processing
module—and hence the richness of that module.

To see why, consider a case where a key extractor is split
between two packet processing modules: in this setting each
packet processing module can only use half the key extractor,
limiting its key length to half of what it would be able to
use were it running on the entire pipeline. This problem is
of course further exacerbated as we increase the number of
packet processing modules sharing the pipeline.

Menshen addresses this problem using overlays: we
associate a configuration lookup table with each shared
resource in the switch. This lookup table is keyed by the
packet processing module’s ID and contains the configuration
that should be used when processing packets for this
module. For example, in the case of the key extractor, the
configuration table contains the instructions that the module
uses to construct key (§3.1). Our use of overlays means that
we do not need to partition resources including ALUs or
PHVs between modules. Instead, the module has exclusive
access to all PHVs/ALUs in a stage when processing a packet.
Table 1 summarizes our mechanisms.

To realize Menshen, on the software side, we modify an
RMT compiler to target a block of resources rather than the
entire pipeline. Overlays require new hardware primitives
to be added to the RMT pipeline. These hardware primitives
are small tables that contain per-module configurations of
shared resources. On every packet, these tables are indexed
using the packet’s module ID to determine the configuration
to use for that packet at that resource. An incremental
deployment pathway for Menshen would be to only modify
an RMT compiler (e.g., Tofino’s compiler) to implement
space partitioning without investing in new overlay hardware.

3.1 Menshen hardware
The Menshen hardware design (Figure 2) builds on RMT
by adding hardware primitives for isolation into the RMT
pipeline. Because these isolation primitives are added

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1291

Parser

stage N

Packet Filter

packets

data pkt
reconf pkt

…

header D
eparser

…

new
 header

Modified
packets

Packet Buffer

Metadata
stage 1

Key Extractor

Match-
action
Table

Action
Engine

Stateful
Memory

Segment
Table

Software-to-Hardware Interface

read HW
registers

lookup

Figure 2: Menshen hardware and software-to-hardware interface.
Menshen builds on a RMT [36] pipeline, by adding Yellow
components and modifying Green ones.

pervasively throughout the pipeline, we first describe the
overall Menshen hardware design including both RMT and
the new isolation primitives. We then summarize the new
isolation primitives added by Menshen.

Menshen expects that a data packet’s header carries
information identifying what module should process the
packet. Currently in our prototype, this is the VLAN ID
(VID) header, which we assume is set by the vSwitch [51],
but other fields, e.g., VxLAN ID, can be used instead.
Packets entering Menshen are first handled by a packet filter
that discards packets without a VLAN ID.2 Next, a parser
extracts the VLAN ID from the packet and applies module-
specific parsing to extract module-specific headers from the
TCP/UDP payload. The parser then pushes these parsed
packet headers into packet header vector (PHV) containers
that travel through the pipeline of match-action stages.

Each stage forms keys out of headers, looks up the keys in a
match-action table, and performs actions. At the start of each
stage, a key extractor in the stage forms a key by combining
together the headers in a module-specific manner. The keys
are then concatenated with the module ID and looked up in a
match-action table, whose space is partitioned across different
modules. If the key matches against a match-action pair in
the table, the lookup result is used to index an action table.

Similar to the match-action table, the action table is
also partitioned across modules. Each action in the table
identifies opcodes, operands, and immediate constants for
a very-large instruction word (VLIW), controlling many
parallel arithmetic and logic units (ALUs). The VLIW
instruction consumes the current PHV to produce a new PHV
as input for the next stage. The table’s action can modify
persistent pipeline state, stored in stateful memory. Stateful
memory is indexed by a physical address that is computed
from a local address, obtained from a module’s packets. This
computation is done by a segment table, which stores the
offset and range of each module’s slice of stateful memory.
We now detail the main components of our design.
Parser. The Menshen parser is driven by a table lookup
process similar to the RMT parser [36, 49]. Specifically,
whenever a new packet comes in, the module ID is extracted

2The filter can be configured to send control packets without VLAN tags,
e.g., BFD packets [5], to the control plane or system-level module (§3.3).

Parser Action
Table

packets VID
Fields

Extraction

Bytes from head Container Type Container Index

PHV
Container

Per-packet
Metadata

Programmable Parser

…

……

Figure 3: Menshen programmable parser.

PHV

Key Extractor Table

Key Extraction

VID

Key VLIW
Action
Table

Exact
Match
Table

Match-Action Table

…

Crossbar &
ALU opcode

Segment Table
write

Stateful
Memory

read

VID

…

Input C
rossbar

ALU
ALU

New
PHV

Action Engine

Output to
next stageinput

input

output

output

Key Mask Table
Key Extraction

physical
address

pe
r-m

od
ul

e
ad

dr
es

s

Stateful ALU

Figure 4: Menshen processing stage.

from its VLAN ID prior to parsing the rest of the packet.
This module ID is then used as an index into the table that
determines how to parse the rest of the packet (Figure 3).
Each table entry corresponds to multiple parsing actions for
a module—one action per extracted PHV container. Each
parsing action specifies (1) bytes from head, indicating where
in the packet the parser should extract a particular header, (2)
container type (e.g., 4-byte container, etc.), indicating how
many bytes we should extract; (3) container index, indicating
where in the PHV we should put the extracted header into.
The parser also sets aside space in the PHV for metadata that
is automatically created by the pipeline (e.g., time of enqueue
into switch output queues and queueing delay after dequeue)
and for temporary packet headers used for computation.

Key extractor. Before a stage performs a lookup on a match-
action table, a lookup key must be constructed by extracting
and combining together one or more PHV containers. This
key extraction process differs between modules in the same
stage, and between different stages for the same module. To
implement key extraction, just like the parser, we use a key
extractor table (Figure 4) that is indexed by a packet’s module
ID. Each entry in this table specifies which PHV containers
to combine together to form the key. These PHV containers
are then selected into the key using a multiplexer for each
portion of the key. To enable variable-length key matching
for different modules, the key extractor also includes a key
mask table, which also uses the module ID as an index to
determine how many bits to pad in the key to bring it up to
a certain fixed key size before lookup.

Match table. Each stage looks up the fixed-size key con-

1292 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

structed by the key extractor in a match table. Currently,
we support only exact-match lookup. The match table is
statically partitioned across modules by giving a certain
number of entries to each module. To enforce isolation
among different modules, the module ID is appended to the
key output by the key extractor. This augmented key is what
is actually looked up against the entries in the match table;
each entry stores both a key and the module ID that the key
belongs to. The lookup result is used as index into the VLIW
action table to identify a corresponding action to execute.

Action table and action engine. Each VLIW action table
entry indicates which fields from the PHV to use as ALU
operands (i.e., the configuration of each ALU’s operand
crossbar) and what opcode should be used for each ALU
controlled by the VLIW instruction (i.e., addition, subtraction,
etc.). Each ALU outputs a value based on its operands and
opcode. There is one ALU per PHV container, removing the
need for a crossbar on the output because each ALU’s output
is directly connected to its corresponding PHV container.
After a stage’s ALUs have modified its PHV, the modified
PHV is passed to the next stage.

Stateful memory. Menshen’s action engines can also modify
persistent pipeline state on every packet. Each module is as-
signed its own address space, and the available stateful mem-
ory in Menshen is partitioned across modules. When a module
accesses its slice of stateful memory, it supplies a per-module
address that is translated into a physical address by a segment
table before accessing the stateful memory. To perform this
translation, Menshen stores per-module configuration (i.e.,
base address and range) in a segment table, which can be in-
dexed by the packet’s module ID. Menshen borrows this idea
of a segment table from NetVRM’s [79, 83] page table, but
implements it in hardware instead of programming it in P4
atop Tofino’s stateful memory like NetVRM does. This allows
Menshen to avoid using scarce Tofino stateful memory to em-
ulate a segment table. Also, by adding segment table hardware
to each stage, Menshen avoids sacrificing the first stage of
stateful memory for a segment table, instead reclaiming it for
useful packet processing. This is unlike NetVRM, which can
share stateful memory across modules only from the second
stage because the first stage is used for the page table.

Deparser. The deparser performs the inverse operation of the
parser. It takes PHV containers and writes them back into
the appropriate byte offset in the packet header, merges the
packet header with the corresponding payload in the packet
buffer, and transmits the merged packet out of the pipeline.
The format of the deparser table is identical to the parser
table and is similarly indexed by a module ID.

Secure reconfiguration. Our threat model assumes that the
Menshen hardware and software are trusted, but that data
packets that enter the Menshen pipeline are untrusted. Data
packets are untrusted because for a switch, they can come
from physical machines outside the switch’s control and,

for a NIC, they can come from tenant VMs sharing the NIC.
Hence, the pipeline should be reconfigured only by Menshen
software, not data packets.

This is a security concern faced by existing RMT pipelines
as well, even without isolation support. Commercial pro-
grammable switches solve this problem by using a separate
daisy chain [7] to configure pipeline stages. This chain
carries configuration commands that are picked up by the
intended pipeline stage as the command passes that stage.
The chain is only accessible over PCIe, which is connected
to the control-plane CPU, but not by Ethernet ports, which
carry outside data packets. Hence, the only way to write new
configurations into the pipeline is through PCIe. The packet-
processing pipeline is restricted to just reading configurations
and using them to implement packet processing. Thus, the
daisy chain provides secure reconfiguration by physically
separating reconfiguration and packet processing.

Menshen uses a similar approach by employing a daisy
chain for reconfiguration when a module is updated. A special
reconfiguration packet carries configuration commands for
the pipeline’s resources (e.g., parser). Our implementation
of this daisy chain varies depending on the platform. For our
NetFPGA prototype, this daisy chain is connected solely to
the switch CPU via PCIe, similar to current switches. For our
Corundum NIC prototype, we connect the daisy chain directly
to PCIe and use a packet filter before our parser to filter
out reconfiguration packets from untrusted data packets by
ensuring that reconfiguration packets have a specific UDP des-
tination port. An ideal solution would be to use a physically
separate interface, e.g., USB or JTAG, for reconfiguring the
Menshen pipeline on Corundum, but we found it challenging
to implement such a physically separate reconfiguration
interface on Corundum. In Appendix A, we show how a daisy
chain permits more rapid reconfiguration than an alternative
approach of using the AXI-L protocol on an FPGA.
Summary of Menshen’s new primitives. The hardware
primitives introduced by Menshen on top of an RMT pipeline
(Figure 2) are the configuration tables for the parser, deparser,
key extractor, key mask units and segment table. These tables
provide an overlay feature to share the same unit across mul-
tiple modules. Specifically, for each unit, Menshen provides
a table with a configuration entry per module, rather than
one configuration for the whole unit. In addition, Menshen
introduces the packet filter to ensure secure reconfiguration.
Menshen also modifies match tables, by appending the mod-
ule ID to the match key and the match-action entries. Finally,
Menshen partitions match-action tables and stateful memory
across all modules. These primitives ensure that updating one
module only affects a single entry (for Menshen resources
that use overlays) and only affects a subset of memory (for
Menshen resources that use space partitioning), thus allowing
us to update one module without disrupting others (§2.1).
ASIC feasibility of Menshen’s primitives. Menshen’s parser,
deparser, key extractor, key mask, and segment tables are

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1293

stage N

…

header

new
header

stage 1

Key Extractor

Action
Engine

Parser

Packet Filter

packets

data pkt

Deparser

Modified
packets

Packet Buffer Deparser

Packet Buffer

Parser

… …

…
Stateful Mem.

Seg. Table

module ID (i.e., VLAN ID)1

2 2

C
AM

 Lookup

R
AM

 R
EAD

MA Table 3

Figure 5: Three optimization techniques applied in Menshen.
Numbered circles refer to specific techniques in §3.2.

small and simple arrays indexed by the module identifier.
They can be readily realized in SRAM that can support a
memory read every clock cycle. The packet filter is a simple
combinational circuit that checks if the incoming packet is
destined to a specific UDP destination port. Extending the
match-action tables in each stage to append a module ID to ev-
ery entry amounts to modestly increasing the key width in the
table. While these new primitives add some additional latency
relative to RMT, e.g., to go through the packet filter or reading
out the per-module parser configuration, the pipelined nature
of RMT means that this additional latency does not impact
packet-forwarding rate. The ASIC area overhead increases
as we increase the number of simultaneous programming
modules that need to be supported; we quantify it in §5.2.

3.2 Improving Menshen’s throughput
As shown in Figure 5, we apply 3 main techniques to optimize
the forwarding performance of Menshen: (1) masking RAM
read latency, (2) using multiple parsers and deparsers, and (3)
increasing pipeline depth. We demonstrate the effect these
techniques have on Menshen’s throughput in §5.2.

¬ Masking RAM read latency. The design described in §3.1
attaches the module ID to the PHV that is sent from one
element (e.g., parser, key extractor) to the next. In this design,
we read the module’s configuration from SRAM after the PHV
arrives, thus incurring a few additional clock cycles of latency.
To optimize this, we mask SRAM access latency by splitting
the module ID from the PHV and sending the module ID to
the next element ahead of time. The PHV follows the module
ID, and thus the module configuration at a stage can be read
concurrently with the PHV being transmitted to that stage.

 Multiple parsers and deparsers. In §3.1’s design, there is
one parser, deparser, and packet buffer. The parser extracts
and parses the header and puts the full packet in the packet
buffer. Then the deparser takes the modified headers from
the last stage, uses them to overwrite the relevant portions of
the full packet in the packet buffer, and sends out the packet.

Our optimized design uses multiple parallel parsers, de-
parsers, and packet buffers to improve throughput. Deparsing
is the most expensive operation as any position within the
PHV container might be modified, and thus any part of the
packet header (128 bytes in our implementation) might need

Modules

Resource Sharing Policy

Resource Usage Checker

Sanity Checking with
Static Analysis

Program Configuration

Software

Submit request
(e.g., modify table entries, etc.)Receive response

(e.g., gather
statistics, etc.)

Hardware

Loaded
on

Header & M
etadata

System
Tables

stage 1

…
Module
Tables

stage 2

System
Tables

stage n

Software-to-Hardware Interface

Individual Module

Submit

System-level
Module

Figure 6: Menshen software and system-level module.

to be updated. Furthermore, deparsing has to process both the
packet header and the payload. Therefore, we use 4 parallel
deparsers and 2 parsers. We also associate a separate packet
buffer with each deparser.

On ingress, the packet filter tags each packet with a packet
buffer number (0–3) in round robin order. It also round robins
incoming packets to the 2 parsers. The last pipeline stage
uses the packet buffer tag to determine which packet buffer’s
packet the last stage’s modified PHV should be combined
with. Each packet buffer’s deparser combines the earliest
packet from the packet buffer along with the last stage’s most
recently modified PHV for that buffer.
® Deep pipelining. With careful digital design, in Menshen’s
implementation, we can pipeline each element (e.g., match-
action table) into several sub elements to improve throughput.
For example in Figure 5, we divide the match-action table
into CAM-lookup and action-RAM-read sub elements. In
this specific example, this allows us to process a PHV every
2 clock cycles at each sub-element rather than every 4 clock
cycles at the whole match-action table.

3.3 The Menshen system-level module
To hide information about the underlying physical infras-
tructure (e.g., topology) from tenant modules in a virtualized
environment, modules in Menshen can use virtual IP ad-
dresses to operate in a shared environment [51]. Here, virtual
IP addresses are local and scoped to modules belonging to
a particular tenant, regardless of which physical device these
modules are on. To support virtual IPs and provide basic
services to other modules, Menshen contains a system-level
module written in P4-16 that provides common OS-like
functionality, e.g., converting virtual IPs to physical IPs, mul-
ticast, and looking up physical IPs to find output ports. The
system-level module has 3 benefits: (1) it avoids duplication
among different modules re-implementing common functions,
improving the resource efficiency of the pipeline, (2) it hides
underlying physical details (e.g., topology) from each module
so that one tenant’s modules on different network devices can
form a virtual network [51], and (3) it provides common and
useful real-time statistics (e.g., link utilization, queue length,
etc.) that can inform packet processing within modules.

Figure 6 shows how the system-level module is laid out

1294 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

relative to the other modules. Packets entering the Menshen
pipeline are first processed by the system-level module before
being handed off to their respective module for module-
specific processing. After module-specific processing, these
packets enter the system module for a second time before
exiting the pipeline. The first time they enter the system-level
module, packets can read and update system-level state
(e.g., link utilization, packet counters, queue measurements),
whereas the second time they enter the system-level module,
module-specific packet header fields (e.g., virtual IP address)
can be read by the system-level module to determine device-
specific information (e.g., output port). In both halves, there is
a narrow interface by which modules communicate with the
system-level module. This split structure of the system-level
module arises directly from the feed-forward nature of the
RMT pipeline, where packets typically only flow forward, but
not backward. Hence, packets pick up information from the
system-level module in the first stage and pass information
to the system-level module in the last stage. The non-system
modules are sandwiched in between these two halves.

3.4 Menshen software

The software-hardware interface. The Menshen software-
to-hardware interface works similar to P4Runtime [19] to
support interactions (e.g., modifying match-action entries,
fetching hardware statistics, etc.) between the Menshen
software and the Menshen hardware. However, in addition
to P4Runtime’s functions, Menshen’s software-hardware
interface can also be used to reconfigure different hardware
resources (Appendix C) in Menshen to reprogram them when
a module is added or updated. This allows us to dynamically
reconfigure portions of Menshen as module logic changes.

The Menshen resource checker. The Menshen resource
checker ensures that each module’s resource allocation com-
plies with an operator specified resource sharing policy (e.g.,
dominant resource sharing (DRF) [48], or a utility-based [54]
policy). In our current design we check allocations statically
because reassigning resources from one module to another
disrupts processing for both modules. Instead we rely on
admission control and do not load a module whose resource
requirements cannot be met. We leave the question of what
is an appropriate resource allocation policy to future work.

The Menshen static checker. To ensure isolation, Menshen’s
static checker analyzes 3 properties of the module’s P4
source code. First, it checks that modules do not modify
hardware-related statistics (e.g., link utilization) provided
by the system-level module to all modules. Second, modules
can not modify their VID. This is because a module can be
spread across multiple programmable devices [46, 59], and
changes to VIDs by module A on a device can unintentionally
affect a module B on a downstream device, where B’s real
VID happens to be the same as A’s modified VID. Third,
modules must not recirculate packets and their routing tables

should be loop-free.3 This is because all modules share the
same ingress pipeline bandwidth. Recirculating packets or
looping them back through multiple devices will degrade the
ability of other modules to process packets.

The Menshen compiler. Packet-processing pipelines (e.g.,
RMT [36]) are structured as feed-forward pipelines of
programmable units, each of which has limited processing
capabilities. This design ensures the all-or-nothing property:
once a module has been compiled and loaded it can run at up
to line rate, while modules that can not run at line rate cannot
be compiled. Menshen’s compiler follows the same design,
and only admits modules that meet line-rate requirements.

The compiler reuses the frontend and midend of the
open-source P4-16 reference compiler [18] and creates a
new backend similar to BMv2 [4]. This backend has a parser,
a single processing pipeline, and a deparser. The compiler
takes a module’s P4-16 program as input and conducts all the
resource usage and static checks described above. Then, for
the parser and deparser, it transforms the parser defined in the
module to configuration entries for the parser and deparser
tables. For the packet-processing pipeline, which consists
of match-action tables, it transforms the key in a table to a
configuration in the key extractor table, and actions to VLIW
action table entries according to the opcodes. The compiler
also performs dependency checking [36, 61] to guarantee that
all ALU actions and key matches are placed in the proper
stage, respecting table dependencies.

The Menshen compiler can be extended to support the
same packet flowing through different P4 modules belonging
to one tenant. The compiler can take multiple P4 modules as
input, assign them the same module ID, and allocate them to
non-overlapping pipeline stages—similar to how we lay out
user and system modules in different stages as in Figure 6.

3.5 Limitations
As a research prototype, Menshen has several limitations.
First, while we have developed mechanisms to support
isolation across multiple modules, we have not yet designed
policies that decide how much of each resource a module
should be given [35]. Second, our FPGA implementation
of RMT lacks many features present in a commercial RMT
implementation such as the Barefoot Tofino switch [26].
Third, our compiler currently does not perform any com-
piler optimizations for code generation [47] or memory
allocation [46, 61]. Fourth, Menshen proposes isolation
mechanisms for the packet-processing pipeline, but does not
deal with isolating traffic from different modules competing
for output link bandwidth, which is a orthogonal traffic
management problem. Proposals like PIFO [75] can be used
here, by assigning PIFO ranks to different modules to realize
a desired inter-module bandwidth-sharing policy.

3We check loop freedom in the control plane.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1295

Index Index Index Index Index Index
3b

1st 6B 2nd 6B 1st 4B 2nd 4B 1st 2B 2nd 2B

opcode
4b

operand 1 operand 2
8b 8b

1st 6B 1st 2B1st 4B 2nd 2B2nd 6B 2nd 4B flag
1b

Common Hdr Resource ID Resv. Index Padding Payload
46B 12 bits 4b 1B 15B Varied

opcode
4b

container 1
5b 5b

reserved
11b

container 2

opcode
4b

container 1
5b 16b

immediate value

(1) Action with 2 operands
from PHV container

(2) Action with 1 operand
from PHV container

Format of match key

Format of Menshen’s reconfiguration packet

Format of entry in key extractor table

Figure 7: Formats of Menshen’s packets and tables.

4 Implementation

4.1 Menshen hardware

To implement Menshen, we first built a baseline RMT imple-
mentation for an FPGA. Menshen includes (1) a packet filter
to filter out reconfiguration packets from data packets using
a specific predefined UDP destination port (i.e., 0xf1f2), (2) a
programmable parser, (3) a programmable RMT pipeline with
5 programmable processing stages, (4) a deparser, and (5) a
separate daisy-chain pipeline for reconfiguration. It also in-
cludes Menshen’s primitives for isolation. We have integrated
it into both the Corundum NIC [45] and the NetFPGA refer-
ence switch [84]. The Menshen code base together with the
optimizations (§3.2) consists of 9975 lines of Verilog. Of this,
3098 and 3226 lines are for handling data bus widths of 512
bits (Corundum) and 256 bits (NetFPGA) respectively. 3651
lines are for the common blocks, e.g., key extractor, etc. Be-
low, we describe our hardware implementation in more detail.
Figure 7 shows the formats of Menshen’s packets and tables.

PHV format. Menshen’s PHV has 3 types of containers of
different sizes, namely 2-byte, 4-byte and 6-byte containers.
Each type has 8 containers. Also, we allocate and append
an additional 32 bytes to store platform-specific metadata
(e.g., an indication to drop the packet, destination port, etc.),
which results in a PHV length of 128 bytes in total. Thus,
we have a total of 3∗8+1=25 PHV containers. To prevent
any possibility of PHV contents leaking from one module
to another, the PHV is zeroed out for each incoming packet.

Reconfiguration packet format. Figure 7 shows the format of
Menshen reconfiguration packets. The reconfiguration packet
is a UDP packet with the standard UDP, Ethernet, VLAN,
and IP headers. Within the UDP payload, a 12-bit resource
ID indicates which hardware resource within which stage
should be updated (e.g., key extractor table in stage 3). To
reconfigure the resource, the table storing the configuration
for this resource must be updated by writing the entry stored
within the reconfiguration packet’s payload at the location
specified by the 1-byte index field in the reconfiguration
packet header. The UDP destination port field determines
whether the reconfiguration packet is valid or not.

Operation Description

add/sub Add/subtract between containers
addi/subi Add/subtract an immediate to/from container
set Set a container to an immediate value
load Load a value from stateful memory
store Store a value to stateful memory
loadd Load value from stateful memory, add 1, and store back
port Set destination port
discard Discard packet

Table 2: Supported operations in Menshen’s ALU.

Packet filter. The packet filter has 2 registers that can be
accessed by the Menshen software via Xilinx’s AXI-Lite
protocol [28]: (1) a 4-byte reconfiguration packet counter,
which monitors how many reconfiguration packets have
passed through the daisy chain; (2) a 32-bit bitmap, which
indicates which module is currently being updated (e.g.,
bit 1 stands for module 1, bit 2 for module 2, etc.). During
reconfiguration of a module, via the software-to-hardware
interface, the Menshen software reads the reconfiguration
packet counter. It then writes the bitmap to reflect the module
ID M of the module currently being updated. The bitmap
is then consulted on every packet to drop data packets from
M until reconfiguration completes, so that M’s “in-flight”
packets aren’t incorrectly processed by partial configurations.

Then, the Menshen software sends all reconfiguration
packets embedded with the predefined UDP destination
port to the daisy chain. Finally, it polls the reconfiguration
packet counter to check if reconfiguration is over and then
zeroes the bitmap so that M’s packets are no longer dropped.
Reconfiguration packets maybe dropped before they reach
the RMT pipeline. This can be detected by polling the
reconfiguration packet counter to see if it has been correctly
incremented or not. If it hasn’t been incremented correctly,
then the entire reconfiguration process restarts with M’s
packets being dropped until reconfiguration is successful.

Programmable parser/deparser. We currently support
per-module packet header parsing in the first 128 bytes of the
packet. These 128 bytes also include the headers common to
all modules (e.g., Ethernet, VLAN, IP, and UDP). We design
the parser action for each parsed PHV container as a 16-bit
action. The first 3 bits are reserved. The next 7 bits indicate
the starting extraction position in bytes from byte 0. These
7 bits can cover the whole 128-byte length. Then, the next
2 bits and 3 bits indicate the container type (2, 4, or 6 byte)
and number (0–7) respectively. The last bit is the validity bit.
For each module, we allocate 10 such parser actions (i.e., to
parse out at most 10 containers), resulting in a 160-bit-wide
entry for the parser action table.

We note that we only parse out fields of a packet into PHV
containers, if those fields are actually used as part of either
keys or actions in match-action tables. Before packets are
sent out, the deparser pulls out the full packet (including the
payload) from the packet buffer and only updates the portions
of the packet that were actually modified by table actions. This
approach allows us to reduce the number of PHV containers to

1296 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

25 because packet fields that are never modified or looked up
by the Menshen pipeline need not travel along with the PHV.

Key extractor. The key for lookup in the match-action table
is formed by concatenating together up to 2 PHV containers
each of the 2-byte, 4-byte, and 6-byte container types. Hence
the key can be up to 24 bytes and 6 containers long. Since
there are 8 containers per type, the key extraction table entry
for each module in each stage uses log2(8)∗6 = 18 bits to
determine which container to use for the 6 key locations. Ad-
ditionally, the key extractor is also used to support conditional
execution of actions based on the truth value of a predicate
of the form A OP B, where A and B are packet fields and OP
is a comparison operator. For this purpose, each key extractor
table entry also specifies the 2 operands for the comparison op-
eration and the comparison opcode. The opcode is a 4-bit num-
ber, while the operands are 8 bits each. The operands can ei-
ther be an immediate value or refer to one of the PHV contain-
ers. The result of the predicate evaluation adds one bit to the
original 24 byte key, bringing the total key length to 24∗8+1=
193 bits. Because not all keys need to be 193 bits long, we use
a 193-bit-wide mask table. Each entry in this table denotes the
validity of each of the 193 key bits for each module in each
stage. This is somewhat wasteful and can be improved by stor-
ing validity information within the key extractor table itself.

Exact match table. To implement the exact match table, we
leverage the Xilinx CAM block [31]. This CAM matches the
key from the key extractor module against the entries within
the CAM. As discussed in §3.1, to ensure isolation between
different modules, we append the module ID (i.e., VLAN
ID) to each entry, which means that the CAM has a width of
193+12=205 bits. The lookup result from the CAM is used
to index the VLIW action table. The action is designed in
a 25-bit format per ALU/container (Figure 7). As we have
24+1 = 25 PHV containers, the width of the VLIW action
table is 25∗25=625 bits. The Xilinx CAM block simplifies
implementation of an exact-match table and can also easily
support ternary matches if needed (Appendix B).

Action engine. The crossbar and ALUs in the action engine
use the VLIW actions to generate inputs for each ALU and
carry out per-ALU operations. ALUs support simple arith-
metic, stateful memory operations (e.g., loads and stores),
and platform-specific operations (e.g., discard packets)
(Table 2). The formats of these actions are shown in Figure 7.
Additionally, in stateful ALU processing, each entry in the
segment table is a 2-byte number, where the first byte and
second byte indicate memory offset and range, respectively.

Menshen primitives. Menshen’s isolation primitives (e.g.,
key-extractor and segment tables) are simple arrays
implemented using the Xilinx Block RAM [30] feature.

4.2 Menshen Software
The Menshen compiler reuses the open-source P4-16
reference compiler [18] and implements a new backend

Program Description

CALC [20] return value based on parsed opcode and operands
Firewall [20] stateless firewall that blocks certain traffic
Load Balancing [20] steer traffic based on 4-tuple header info
QoS [20] set QoS based on traffic type
Source Routing [20] route packets based on parsed header info
NetCache [60] in-network key-value store
NetChain [59] in-network sequencer
Multicast [20] multicast based on destination IP address

Table 3: Evaluated use cases.

extension in 3773 lines of C++. It takes the module written
in P4-16 together with resource allocation as the inputs, and
generates per-module configurations for Menshen hardware.
Specifically, it (1) conducts resource usage checking to ensure
every program’s resource usage is below its allocated amount;
(2) places the system-level module’s (120 lines of P4-16) con-
figurations in the first and last stages in the Menshen pipeline;
and (3) allocates PHV containers to the fields shared between
the system-level and other modules so that the other modules
can be sandwiched between the two halves of the system-level
module (§3.4). The Menshen software-to-hardware interface
is written in Python. It configures Menshen hardware by
converting program configurations to reconfiguration packets.

4.3 Corundum and NetFPGA integrations
We have integrated Menshen into 2 FPGA platforms: one for
the NetFPGA platform that captures the hardware architecture
of a switch [84], and another for the Corundum platform that
captures the hardware architecture of a NIC [45]. Menshen’s
integration on Corundum [45] is based on a 512-bit AXI-
S [29] data width and runs at 250 MHz. Although Menshen’s
pipeline can be integrated into both the sending and receiving
path, in our current implementation, we have integrated
Menshen into only Corundum’s sending path, i.e., PCIe input
to Ethernet output. Menshen on NetFPGA [84] uses a 256-bit
AXI-S [29] data width and runs at 156.25 MHz.

On the Corundum NIC platform, we insert a 1-bit discard
flag, while on the NetFPGA switch platform, we insert a
1-bit discard flag and 128-bit platform-specific metadata, i.e.,
source port, destination port and packet length, into the PHV’s
metadata field. A 4-bit one-hot encoded tag indicates the
packet buffer (§3.2). The table depth in Menshen’s parser, key
extractor, key mask, page, and deparser tables affects the max-
imum number of modules we can support and is currently 32.
The depth of CAM and VLIW action table directly influences
the amount of match-action entries and VLIW actions that can
be allocated to all modules. Due to the open technical chal-
lenge of implementing CAMs on FPGAs efficiently [58, 71],
we set their depth to 16 in each stage. While 16 is a small
depth, the depth can be improved by using a hash table, rather
than a CAM, for exact matching, e.g., cuckoo hashing [69].

5 Evaluation
In §5.1, we show that Menshen can meet our requirements
(§2.1): it can be rapidly reconfigured, is lightweight, provides
behavior isolation, and is disruption-free. Menshen achieves

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1297

performance isolation by (1) assuming packets exceed a
minimum size (to guarantee line rate) and (2) forbidding
recirculation. If either is violated, hardware rate limiters can
be used to limit each module’s packet/bit rate. It achieves
resource isolation by ensuring that a table entry for a resource
(e.g., parser) is allotted to at most one module. In §5.2, we
evaluate the current performance of Menshen.
Experimental setup. To demonstrate Menshen’s ability
to provide multi-module support, we picked 6 tutorial P4
programs [20], as detailed in Table 3, together with simplified
versions of NetCache [60] and NetChain [59].4 The system-
level module provides basic forwarding and routing, with
multicast logic integrated in it. Menshen’s parameters are
detailed in §4 and summarized in Table 5 in the Appendix.
Testbed. We evaluate Menshen based on our Corundum and
NetFPGA integrations as described in §4. For the switch
platform experiments on NetFPGA, we use a single quad-port
NetFPGA SUME board [14], where two ports are connected
to a machine equipped with an Intel Xeon E5645 CPU
clocked at 2.40 GHz and a dual-port Intel XXV710 10/25GbE
NIC. For the NIC platform experiments on Corundum, we use
a single Xilinx Alveo U250 board [2], where one port is with
Menshen for the transmitting path and this port is connected
to a 100 GbE NIC as the receiving path. Both setups are used
to check Menshen’s correctness (§5.1). For NetFPGA perfor-
mance tests (§5.2), we use the host as a packet generator. For
Corundum performance tests (§5.2), we internally connect its
receiving and transmitting path, and use the Spirent tester [22]
to generate traffic. We depict our testing setup in Appendix D.

5.1 Does Menshen meet its requirements?

Menshen can be rapidly reconfigured. Reconfiguration time
includes both the software’s compilation time (Figure 8) and
the hardware’s configuration time (Figure 9); we evaluate
each separately. When a module is compiled, the compiler
needs to generate both configuration bits for various hardware
resources as well as match-action entries for the tables the
module looks up. These match-action entries can and will
be overwritten by the control plane, but we need to start out
with a new set of match-action entries for a module to ensure
no information leaks from a previous module.

Hence, every time a module is compiled, the compiler also
generates match-action entries. Within an exact match table,
these entries must be different from each other to prevent
multiple lookup results. As a result, Menshen’s compilation
time increases with the number of match-action entries in the
module (Figure 8). To contextualize this, Menshen’s compile
times (few seconds) compare favorably to compile times for
Tofino (∼10 seconds for our use cases) and FPGA synthesis
times (10s of minutes). We note that this is an imperfect
comparison: our compiler performs fewer optimizations than

4Our versions of NetChain and NetCache do not include some features
such as tagging hot keys.

Hardware Implementation Slice LUTs Block RAMs

NetFPGA reference switch 42325 (9.77%) 245.5 (16.7%)
RMT on NetFPGA 200573 (46.3%) 641 (43.6%)
Menshen on NetFPGA 200733 (46.34%) 641 (43.6%)
Corundum 61463 (3.56%) 349 (12.98%)
RMT on Corundum 235686 (13.63%) 316 (11.75%)
Menshen on Corundum 235903 (13.65%) 316 (11.75%)

Table 4: Resources used by 5-stage Menshen pipeline, on NetFPGA
SUME and AU250 boards, compared with reference switch,
Corundum NIC, and RMT.

either the Tofino or FPGA compilers and our targets are sim-
pler. That said, compilation can happen offline, and hence it
is not as time-sensitive compared to run-time reconfiguration.

To measure time taken for Menshen’s configuration post
compilation, we vary the number of entries the Menshen
software has to write into the pipeline.5 Also, as a comparison,
we evaluate the cost of the Tofino run-time APIs from Tofino
SDE 9.0.0 to insert match-action table entries for the CALC
program. From Figure 9, we observe that the time spent in
configuration of the hardware via Menshen’s software-to-
hardware interface is similar to Tofino’s run-time APIs.
Menshen can reconfigure without disruption. To show
Menshen can support disruption-free reconfiguration, we
launch three CALC programs with fixed input packet rate, i.e.,
5:3:2 ratio on a single link for module 1, 2 and 3, respectively.
We use netmap-based tcprelay to generate total traffic of 9.3
Gbit/s on a 10 Gbit/s link. 0.5 seconds in, we start to recon-
figure the first module to see if the packet processing of other
modules has stalled or not. In Figure 10 we show the through-
put achieved by each of three modules when reconfiguring
module 1. We can observe that model 2 and 3 see no impact
on their throughput. This demonstrates that Menshen provides
performance isolation, and that it is feasible for a tenant to
reconfigure their module without impacting other tenants. By
contrast, updating a module on Tofino (§6) requires resetting
the entire switch pipeline. Even with Tofino’s Fast Refresh [9],
this leads to a 50 ms disruption of all servers (and their VMs)
whose traffic is routed through the switch. This disruption
can be significant in public cloud environments, and in many
cases renders dynamic reconfiguration infeasible.
Menshen is lightweight. We list Menshen’s resource
usage of logic and memory (i.e., LUTs and Block RAMs),
including absolute numbers and fractions, in Table 4. For
comparison, we also list the resource usage of the NetFPGA
reference switch and the Corundum NIC. We believe that the
additional hardware footprint of Menshen is acceptable for
the programmability and isolation mechanisms it provides
relative to the base platforms. The reason that Menshen uses
more LUTs than Block RAMs is that Menshen leverages
the Shift Register Lookup (SRL)-based implementation of
Xilinx’s CAM IP [31]. We also compared with an RMT
design, where we modified Menshen’s hardware to support
only one module. Relative to RMT, Menshen incurs an extra

5Since the Menshen hardware can’t currently support so many entries
(§4.3), we overwrite previously written entries to measure configuration time.

1298 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

CA
LC

Fir
ew

all
Lo

ad
Ba

lan
cin

g Qo
S

So
ur

ce
Ro

ut
ing

Ne
tC

ac
he

Ne
tC

ha
in

Sy
ste

m-le
ve

l
Pr

og
ra

m

0

2

4

6

8

10

Co
m

pi
la

tio
n

Ti
m

e
(s

) 16 entries
64 entries

256 entries
1024 entries

Figure 8: Compilation time.

CA
LC

Fir
ew

all
Lo

ad
Ba

lan
cin

g Qo
S

So
ur

ce
Ro

ut
ing

Ne
tC

ac
he

Ne
tC

ha
in

Sy
ste

m-le
ve

l
Pr

og
ra

mTo
fin

o
Ru

nt
im

e

0

200

400

600

800

Co
nf

ig
ur

at
io

n
Ti

m
e

(m
s) 16 entries

64 entries
256 entries
1024 entries

Figure 9: Configuration time.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

0

1

2

3

4

5

Th
ro

ug
hp

ut
 (G

bp
s)

Module 1's
Reconfiguration

Module 1's Throughput
Module 2's Throughput
Module 3's Throughput

Figure 10: Throughput during reconfiguration.

0.65% (NetFPGA) and 0.15% (Corundum) in LUTs usage.

Menshen provides behavior isolation. Next, we spot check
that Menshen can correctly isolate modules, i.e., every
running module can concurrently execute its desired func-
tionality. For this, we ran the CALC, Firewall, and NetCache
module simultaneously on the Menshen pipeline. We
generate data packets of different VIDs, which indicate which
of these 3 modules they belong to, and input them to the
Menshen FPGA prototype on both platforms. By examining
the output packets at the end of Menshen’s pipeline, we
checked that Menshen had correctly isolated the modules, i.e.,
each module behaved as it would have had it run by itself. We
repeated the same experiment by running the Load Balancing,
Source Routing, and NetChain modules simultaneously; we
observed correct behavior isolation here too.

5.2 Menshen Performance

How many modules can be packed? In our current prototype
on both Corundum and NetFPGA, we can support at most 32
modules because each isolation primitive (e.g., key extractor
table) currently has 32 entries. In practice, the number of
modules could be less than 32 if modules need to share a
more bottlenecked hardware resource. For instance, if each
module wants a match-action entry in every pipeline stage,
the maximum number of modules is at most 16 because
there are only 16 match-action entries in each stage in our
current prototype. However, the numbers above are entirely
a function of how much hardware one is willing to pay in
exchange for multitenancy support. If we can afford to expend
additional resources on an FPGA or extra area on an ASIC,
we can correspondingly support a larger number of modules.

Latency. In our current implementation, the number of clock
cycles needed to process a packet in the pipeline depends on
packet size. This is because the number of cycles to process
both the header and the payload depend on the header and
payload length. For instance, for a minimum packet size of
64 bytes, Menshen’s pipeline introduces 79 and 106 cycles
of processing for NetFPGA and Corundum, resulting in
79∗ 1000

156.25 =505.6 ns and 106∗ 1000
250 =424 ns latency, respec-

tively. For the max. packet size of 1500 bytes, Menshen incurs
146 and 112 cycles for NetFPGA and Corundum, resulting
in 150∗ 1000

156.25 =960 ns and 129∗ 1000
250 =516 ns latency.

Throughput. For NetFPGA, we used MoonGen [42] to gen-
erate packets with different sizes. Figure 11a shows that Men-
shen achieves a rate of 10 Gbit/s after a packet size of 96
bytes. This is the maximum supported by our MoonGen setup
because we have a single 10G NIC. For Corundum, we in-
ternally connected Corundum’s receiving and transmitting
path. Rather than using a host-based packet generator through
PCIe, we used Spirent FX3-100GO-T2 tester to test Men-
shen’s throughput. The MTU size is set to 1500 bytes. As
shown in Figure 11b and Figure 11c, optimized Menshen on
Corundum achieves 100 Gbit/s at 256 bytes, while unopti-
mized Menshen can only achieve 80 Gbit/s at MTU-size pack-
ets. Also, we sample packets to evaluate the packet latency of
optimized Menshen on Corundum with full rate. As depicted
in Figure 11d, at full rate, it incurs about 1.2 µs latency.
ASIC feasibility. With the same parameter settings in §5, we
use the Synopsys DC synthesis tool [24] and FreePDK45nm
technology library [8] to assess the ASIC feasibility of the
Menshen pipeline.6 At 1 GHz frequency, when compared with
an RMT design, where we modified Menshen to support only
one module, Menshen incurs 18.5%, 7%, 20.9% additional
chip area for the parser, deparser and one stage, respectively.
For a 5-stage pipeline along with the packet filter, parser,
deparser and packet buffers, Menshen (10.81 mm2) incurs
11.4% additional chip area compared with RMT (9.71 mm2).

Considering that memory (i.e., lookup tables) and packet
processing logic only costs at most 50% in switch chip
area [21, page 36], Menshen’s chip area overhead is moderate
(11.4% ∗ 50% = 5.7%), which is conservative since the
number of entries in our match-action table is only 16
(§4.1). With much larger number of entries in lookup
tables—which is the common block between Menshen and
RMT—Menshen’s additional chip area will be negligible.

6 Related work
Multi-core architecture solutions. To support isolation
on programmable network devices based on multi-
cores [10, 11, 23], FairNIC [50] partitions cores, caches, and
memory across tenants and shares bandwidth across tenants
through Deficit Weighted Round Robin (DWRR) scheduling.

6Since we can not have access to source code of Xilinx IPs (e.g., DMA,
Ether+PHY, etc.), we solely run synthesis on Menshen’s Verilog codebase.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1299

64 96 12
8

25
6

51
2

Packet size (B)

7.0

7.5

8.0

8.5

9.0

9.5

10.0

Th
ro

ug
hp

ut
 (G

bp
s)

2

4

6

8

10

12

14

Pa
ck

et
 ra

te
 (M

pp
s)

Layer 1 Throughput
Layer 2 Throughput
Packet rate

(a) Optimized NetFPGA.

70 12
8

25
6

51
2

76
8

10
24

15
00

Packet size (B)

40

60

80

100

Th
ro

ug
hp

ut
 (G

bp
s)

10

20

30

40

50

60

Pa
ck

et
 ra

te
 (M

pp
s)Layer 1 Throughput

Layer 2 Throughput
Packet rate

(b) Optimized Corundum.

70 12
8

25
6

51
2

76
8

10
24

15
00

Packet size (B)

20

40

60

80

100

Th
ro

ug
hp

ut
 (G

bp
s)

10

20

30

40

50

60

Pa
ck

et
 ra

te
 (M

pp
s)

Layer 1 Throughput
Layer 2 Throughput
Packet rate

(c) Unoptimized Corundum.

70 12
8

25
6

51
2

76
8

10
24

15
00

Packet size (B)

1.00

1.05

1.10

1.15

1.20

1.25

Sa
m

pl
e

Pa
ck

et
 L

at
en

cy
 (u

s)

Latency

(d) Optimized Corundum latency.
Figure 11: Results for performance benchmarks.

iPipe [68] uses a hybrid DRR+FCFS scheduler to share
SmartNIC and host processors between different programs.
Menshen uses space partitioning as well to allocate different
resources to different modules. However, RMT’s spatial/-
dataflow architecture differs considerably from the Von Neu-
mann architectures for multi-core network processors targeted
by FairNIC and iPipe. An RMT architecture can not support a
runtime system similar to the ones used by iPipe and FairNIC.

FPGA-based solutions. Several FPGA platforms exist for
programmable packet processing. These platforms can
be broadly categorized into (1) direct programming of
FPGAs [12, 44, 55, 64, 73, 77, 78] and (2) higher-level
abstractions built on top of FPGAs [33, 37, 43, 71].

Systems (e.g., VirtP4 [73], MTPSA [77]) based on direct
FPGA programming typically implement packet-processing
logic in a hardware-description language (HDL) or using a
high-level language like P4 [55, 78] or C [32, 64] that is trans-
lated into HDL. The HDL program is fed to an FPGA synthe-
sis tool to produce a bitstream, which is written into the FPGA.
This approach requires combining the programs of different
modules into a single Verilog program, which can then be
fed to the synthesis tool. Thus, changing one module disrupts
other modules, violating our requirement of no disruption.

FlowBlaze [71], SwitchBlade [33], and hXDP [37] expose
a restricted higher-level abstraction like RMT or eBPF on top
of an FPGA. FlowBlaze and hXDP do not provide support for
isolation. SwitchBlade does, but its higher-level abstraction
is much less flexible than the RMT abstraction in Menshen.
NICA [43] targets an FPGA NIC and is designed to share
one pre-programmed offloading engine across many modules,
while Menshen also targets ASIC pipelines and supports
reprogramming individual modules without disrupting others.

Tofino [26]. Tofino is a commercial switch ASIC that uses
multiple parallel RMT pipelines. However, Tofino currently
does not support multiple modules/P4 programs within a sin-
gle pipeline. The current Tofino compiler requires a single P4
program per pipeline. Multiple P4 programs can be merged
into a single program per pipeline and then fed into the Tofino
compiler (Wang et al. [79] and µP4 [76]). However, both
approaches still disrupt all tenants every time a single tenant
in any pipeline is updated. This is because despite supporting
an independent program per pipeline, updating any of these
programs requires a reset of the entire Tofino switch [9].

Emulation-based solutions. Hyper4 [53] and HyperV [81]
propose to emulate multiple P4 programs/modules using a
single hypervisor P4 program, which can be configured at
run time by the control plane, thus supporting disruption-free
reconfiguration. However, we found that it was very challeng-
ing to design a sufficiently “universal” hypervisor program
on a commercial RMT switch like Tofino.

As one example, the hypervisor program needs to support
performing a bit-shift by an amount determined by a packet
field, where the packet field is specified by the control plane.
However, a high-speed chip like Tofino has several restric-
tions on bit-shifts and other computations for performance,
e.g., on Tofino, the shift width and field to shift must be
supplied at compile time, not at run time by the control plane.
PANIC [67] and FlexCore [80]. PANIC and FlexCore [80]
are programmable multi-tenant NIC and switch designs,
respectively. They both suffer from scalability issues
because they need to build a large crossbar with long wires
interconnecting all engines to each other, which requires
careful physical design [38, Appendix C]. Menshen’s RMT
pipeline is easier to scale as its wires are shorter: they only
connect adjacent pipeline stages [36, 2.1].

7 Conclusion
This paper described Menshen, a system for isolating
co-resident packet-processing modules on pipelines similar
to RMT. Menshen builds on the idea of space partitioning
and overlays, and is comprised of a set of simple hardware
primitives that are inserted at different points in an RMT
pipeline. These primitives are straightforward to realize
in both ASICs and FPGAs. Menshen thus demonstrates
that providing inter-module isolation in high-speed packet-
processing pipelines is practical. Our software and hardware
are available at https://isolation.quest/.
Acknowledgements. We thank the NSDI reviewers and our
shepherd Rodrigo Fonseca for their insightful comments and
suggestions. We also thank Mike Walfish, Ravi Netravali,
Mina Tahmasbi Arashloo, Amy Ousterhout, and Fabian Ruffy
for their suggestions on this paper. We thank Han Wang and
Anurag Agrawal with whom we discussed the Tofino architec-
ture, and Alex Forencich, the FlowBlaze and NetFPGA teams,
who helped us with debugging and design. This work was
funded in part by NSF grants CCF-2028832, CNS-2008048,
UK EPSRC project EP/T007206/1, and a gift from Google.

1300 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://isolation.quest/

References
[1] About Arm Debugger Support for Overlays. https:

//developer.arm.com/documentation/101470/2
021-0/Debugging-Embedded-Systems/About-Arm
-Debugger-support-for-overlays?lang=en.

[2] Alveo U250 Data Center Accelerator Card. https:
//www.xilinx.com/products/boards-and-kits/
alveo/u250.html.

[3] Before Memory was Virtual. http://160592857366
.free.fr/joe/ebooks/ShareData/Before%20Mem
ory%20was%20Virtual%20By%20Peter%20J.%20De
nning%20from%20George%20Mason%20University
.pdf.

[4] Behavioral model targets. https://github.com/p4l
ang/behavioral-model/blob/master/targets/R
EADME.md.

[5] Bidirectional Forwarding Detection (BFD). https:
//tools.ietf.org/html/rfc5880.

[6] BROADCOM Trident Programmable Switch. https:
//www.broadcom.com/products/ethernet-conne
ctivity/switching/strataxgs/bcm56870-serie
s.

[7] Daisy Chain. https://en.wikipedia.org/wiki/Da
isy_chain_(electrical_engineering).

[8] FreePDK45. https://www.eda.ncsu.edu/wiki/Fr
eePDK45:Contents.

[9] Leveraging Stratum and Tofino Fast Refresh for Soft-
ware Upgrades. https://opennetworking.org/wp-
content/uploads/2018/12/Tofino_Fast_Refresh
.pdf.

[10] LiquidIO Smart NICs. https://www.marvell.com/
products/ethernet-adapters-and-controllers
/liquidio-smart-nics.html.

[11] Mellanox BlueField VPI 100Gps SmartNIC. https:
//www.mellanox.com/files/doc-2020/pb-bluef
ield-vpi-smart-nic.pdf.

[12] Mellanox Innova Open Programmable SmartNIC. ht
tps://www.mellanox.com/sites/default/files
/doc-2020/pb-innova-2-flex.pdf.

[13] Naples DSC-100 Distributed Services Card. https:
//pensando.io/assets/documents/Naples_100_P
roductBrief-10-2019.pdf.

[14] NetFPGA-SUME Virtex-7 FPGA Development Board.
https://reference.digilentinc.com/referenc
e/programmable-logic/netfpga-sume/start.

[15] NVIDIA Mellanox Spectrum Switch. https://www.
mellanox.com/files/doc-2020/pb-spectrum-sw
itch.pdf.

[16] Operating Systems Three Easy Pieces. https://iitd
-plos.github.io/os/2020/ref/os-arpaci-dess
au-book.pdf.

[17] Overlaying in Commodore. https://www.atarimag
azines.com/compute/issue73/loading_and_lin
king.php.

[18] P4-16 Reference Compiler. https://github.com/p
4lang/p4c.

[19] P4 Runtime. https://p4.org/p4-runtime/.

[20] P4 Tutorial. https://github.com/p4lang/tutori
als.

[21] Programmable Forwarding Planes are Here to Stay. ht
tps://conferences.sigcomm.org/sigcomm/2017
/files/program-netpl/01-mckeown.pptx.

[22] Spirent Quint-Speed High-Speed Ethernet Test Modules.
https://assets.ctfassets.net/wcxs9ap8i19s/
12bhgz12JBkRa66QUG4N0L/af328986e22b1694b95
b290c93ef6c21/Spirent_fX3_HSE_Module_datas
heet.pdf.

[23] Stingray SmartNIC Adapters and IC. https://www.br
oadcom.com/products/ethernet-connectivity/
smartnic.

[24] Synopsys DC Ultra. https://www.synopsys.com/i
mplementation-and-signoff/rtl-synthesis-te
st/dc-ultra.html.

[25] The Space Shuttle Fight Software Development Process.
https://www.nap.edu/read/2222/chapter/5.

[26] Tofino: P4-programmable Ethernet switch ASIC. http
s://www.intel.com/content/www/us/en/produc
ts/network-io/programmable-ethernet-switch
/tofino-series/tofino.html.

[27] Von Neumann Architecture. https://en.wikipedia
.org/wiki/Von_Neumann_architecture.

[28] Xilinx AXI4-Lite Interface Protocol. https://www.xi
linx.com/products/intellectual-property/ax
i.html.

[29] Xilinx AXI4-Stream. https://www.xilinx.com/pro
ducts/intellectual-property/axi4-stream_i
nterconnect.html.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1301

https://developer.arm.com/documentation/101470/2021-0/Debugging-Embedded-Systems/About-Arm-Debugger-support-for-overlays?lang=en
https://developer.arm.com/documentation/101470/2021-0/Debugging-Embedded-Systems/About-Arm-Debugger-support-for-overlays?lang=en
https://developer.arm.com/documentation/101470/2021-0/Debugging-Embedded-Systems/About-Arm-Debugger-support-for-overlays?lang=en
https://developer.arm.com/documentation/101470/2021-0/Debugging-Embedded-Systems/About-Arm-Debugger-support-for-overlays?lang=en
https://www.xilinx.com/products/boards-and-kits/alveo/u250.html
https://www.xilinx.com/products/boards-and-kits/alveo/u250.html
https://www.xilinx.com/products/boards-and-kits/alveo/u250.html
http://160592857366.free.fr/joe/ebooks/ShareData/Before%20Memory%20was%20Virtual%20By%20Peter%20J.%20Denning%20from%20George%20Mason%20University.pdf
http://160592857366.free.fr/joe/ebooks/ShareData/Before%20Memory%20was%20Virtual%20By%20Peter%20J.%20Denning%20from%20George%20Mason%20University.pdf
http://160592857366.free.fr/joe/ebooks/ShareData/Before%20Memory%20was%20Virtual%20By%20Peter%20J.%20Denning%20from%20George%20Mason%20University.pdf
http://160592857366.free.fr/joe/ebooks/ShareData/Before%20Memory%20was%20Virtual%20By%20Peter%20J.%20Denning%20from%20George%20Mason%20University.pdf
http://160592857366.free.fr/joe/ebooks/ShareData/Before%20Memory%20was%20Virtual%20By%20Peter%20J.%20Denning%20from%20George%20Mason%20University.pdf
https://github.com/p4lang/behavioral-model/blob/master/targets/README.md
https://github.com/p4lang/behavioral-model/blob/master/targets/README.md
https://github.com/p4lang/behavioral-model/blob/master/targets/README.md
https://tools.ietf.org/html/rfc5880
https://tools.ietf.org/html/rfc5880
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56870-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56870-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56870-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56870-series
https://en.wikipedia.org/wiki/Daisy_chain_(electrical_engineering)
https://en.wikipedia.org/wiki/Daisy_chain_(electrical_engineering)
https://www.eda.ncsu.edu/wiki/FreePDK45:Contents
https://www.eda.ncsu.edu/wiki/FreePDK45:Contents
https://opennetworking.org/wp-content/uploads/2018/12/Tofino_Fast_Refresh.pdf
https://opennetworking.org/wp-content/uploads/2018/12/Tofino_Fast_Refresh.pdf
https://opennetworking.org/wp-content/uploads/2018/12/Tofino_Fast_Refresh.pdf
https://www.marvell.com/products/ethernet-adapters-and-controllers/liquidio-smart-nics.html
https://www.marvell.com/products/ethernet-adapters-and-controllers/liquidio-smart-nics.html
https://www.marvell.com/products/ethernet-adapters-and-controllers/liquidio-smart-nics.html
https://www.mellanox.com/files/doc-2020/pb-bluefield-vpi-smart-nic.pdf
https://www.mellanox.com/files/doc-2020/pb-bluefield-vpi-smart-nic.pdf
https://www.mellanox.com/files/doc-2020/pb-bluefield-vpi-smart-nic.pdf
https://www.mellanox.com/sites/default/files/doc-2020/pb-innova-2-flex.pdf
https://www.mellanox.com/sites/default/files/doc-2020/pb-innova-2-flex.pdf
https://www.mellanox.com/sites/default/files/doc-2020/pb-innova-2-flex.pdf
https://pensando.io/assets/documents/Naples_100_ProductBrief-10-2019.pdf
https://pensando.io/assets/documents/Naples_100_ProductBrief-10-2019.pdf
https://pensando.io/assets/documents/Naples_100_ProductBrief-10-2019.pdf
https://reference.digilentinc.com/reference/programmable-logic/netfpga-sume/start
https://reference.digilentinc.com/reference/programmable-logic/netfpga-sume/start
https://www.mellanox.com/files/doc-2020/pb-spectrum-switch.pdf
https://www.mellanox.com/files/doc-2020/pb-spectrum-switch.pdf
https://www.mellanox.com/files/doc-2020/pb-spectrum-switch.pdf
https://iitd-plos.github.io/os/2020/ref/os-arpaci-dessau-book.pdf
https://iitd-plos.github.io/os/2020/ref/os-arpaci-dessau-book.pdf
https://iitd-plos.github.io/os/2020/ref/os-arpaci-dessau-book.pdf
https://www.atarimagazines.com/compute/issue73/loading_and_linking.php
https://www.atarimagazines.com/compute/issue73/loading_and_linking.php
https://www.atarimagazines.com/compute/issue73/loading_and_linking.php
https://github.com/p4lang/p4c
https://github.com/p4lang/p4c
https://p4.org/p4-runtime/
https://github.com/p4lang/tutorials
https://github.com/p4lang/tutorials
https://conferences.sigcomm.org/sigcomm/2017/files/program-netpl/01-mckeown.pptx
https://conferences.sigcomm.org/sigcomm/2017/files/program-netpl/01-mckeown.pptx
https://conferences.sigcomm.org/sigcomm/2017/files/program-netpl/01-mckeown.pptx
https://assets.ctfassets.net/wcxs9ap8i19s/12bhgz12JBkRa66QUG4N0L/af328986e22b1694b95b290c93ef6c21/Spirent_fX3_HSE_Module_datasheet.pdf
https://assets.ctfassets.net/wcxs9ap8i19s/12bhgz12JBkRa66QUG4N0L/af328986e22b1694b95b290c93ef6c21/Spirent_fX3_HSE_Module_datasheet.pdf
https://assets.ctfassets.net/wcxs9ap8i19s/12bhgz12JBkRa66QUG4N0L/af328986e22b1694b95b290c93ef6c21/Spirent_fX3_HSE_Module_datasheet.pdf
https://assets.ctfassets.net/wcxs9ap8i19s/12bhgz12JBkRa66QUG4N0L/af328986e22b1694b95b290c93ef6c21/Spirent_fX3_HSE_Module_datasheet.pdf
https://www.broadcom.com/products/ethernet-connectivity/smartnic
https://www.broadcom.com/products/ethernet-connectivity/smartnic
https://www.broadcom.com/products/ethernet-connectivity/smartnic
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.nap.edu/read/2222/chapter/5
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://en.wikipedia.org/wiki/Von_Neumann_architecture
https://en.wikipedia.org/wiki/Von_Neumann_architecture
https://www.xilinx.com/products/intellectual-property/axi.html
https://www.xilinx.com/products/intellectual-property/axi.html
https://www.xilinx.com/products/intellectual-property/axi.html
https://www.xilinx.com/products/intellectual-property/axi4-stream_interconnect.html
https://www.xilinx.com/products/intellectual-property/axi4-stream_interconnect.html
https://www.xilinx.com/products/intellectual-property/axi4-stream_interconnect.html

[30] Xilinx Block Memory Generator v8.4. https://www.
xilinx.com/support/documentation/ip_documen
tation/blk_mem_gen/v8_4/pg058-blk-mem-gen
.pdf.

[31] Xilinx Parameterizable Content-Addressable Memory.
https://www.xilinx.com/support/documentati
on/application_notes/xapp1151_Param_CAM.p
df.

[32] Xilinx Vitis High-Level Synthesis. https://www.xi
linx.com/products/design-tools/vivado/inte
gration/esl-design.html.

[33] M. B. Anwer, M. Motiwala, M. b. Tariq, and N. Feam-
ster. SwitchBlade: A Platform for Rapid Deployment
of Network Protocols on Programmable Hardware. In
ACM SIGCOMM, 2010.

[34] K. Arvind and R. S. Nikhil. Executing a Program on
the MIT Tagged-Token Dataflow Architecture. IEEE
TC, 1990.

[35] M. Blöcher, L. Wang, P. Eugster, and M. Schmidt.
Switches for HIRE: Resource Scheduling for Data
Center in-Network Computing. In ACM ASPLOS, 2021.

[36] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese,
N. McKeown, M. Izzard, F. Mujica, and M. Horowitz.
Forwarding Metamorphosis: Fast Programmable
Match-Action Processing in Hardware for SDN. In
ACM SIGCOMM, 2013.

[37] M. S. Brunella, G. Belocchi, M. Bonola, S. Pontarelli,
G. Siracusano, G. Bianchi, A. Cammarano, A. Palumbo,
L. Petrucci, and R. Bifulco. hXDP: Efficient Software
Packet Processing on FPGA NICs. In USENIX OSDI,
2020.

[38] S. Chole, A. Fingerhut, S. Ma, A. Sivaraman, S. Var-
gaftik, A. Berger, G. Mendelson, M. Alizadeh,
S.-T. Chuang, I. Keslassy, A. Orda, and T. Edsall.
dRMT: Disaggregated Programmable Switching. In
ACM SIGCOMM, 2017. Tech report available at
https://cs.nyu.edu/~anirudh/sigcomm17_drm
t_extended.pdf.

[39] J. B. Dennis and D. P. Misunas. A Preliminary
Architecture for a Basic Data-Flow Processor. In ACM
ISCA, 1974.

[40] S. Dharanipragada, S. Joyner, M. Burke, J. Nelson,
I. Zhang, and D. R. K. Ports. PRISM: Rethinking the
RDMA Interface for Distributed Systems, 2021.

[41] N. Dukkipati. Rate Control Protocol (RCP): Congestion
Control to Make Flows Complete Quickly. PhD thesis,
Stanford University, 2008.

[42] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart,
and G. Carle. MoonGen: A Scriptable High-Speed
Packet Generator. In ACM IMC, 2015.

[43] H. Eran, L. Zeno, M. Tork, G. Malka, and M. Silberstein.
NICA: An Infrastructure for Inline Acceleration of
Network Applications. In USENIX ATC, 2019.

[44] D. Firestone, A. Putnam, S. Mundkur, D. Chiou,
A. Dabagh, M. Andrewartha, H. Angepat, V. Bhanu,
A. Caulfield, E. Chung, H. K. Chandrappa, S. Chatur-
mohta, M. Humphrey, J. Lavier, N. Lam, F. Liu,
K. Ovtcharov, J. Padhye, G. Popuri, S. Raindel, T. Sapre,
M. Shaw, G. Silva, M. Sivakumar, N. Srivastava,
A. Verma, Q. Zuhair, D. Bansal, D. Burger, K. Vaid,
D. A. Maltz, and A. Greenberg. Azure Accelerated
Networking: SmartNICs in the Public Cloud. In
USENIX NSDI, 2018.

[45] A. Forencich, A. C. Snoeren, G. Porter, and G. Papen.
Corundum: An Open-Source 100-Gbps NIC. In IEEE
FCCM, 2020.

[46] J. Gao, E. Zhai, H. H. Liu, R. Miao, Y. Zhou, B. Tian,
C. Sun, D. Cai, M. Zhang, and M. Yu. Lyra: A
Cross-Platform Language and Compiler for Data Plane
Programming on Heterogeneous ASICs. In ACM
SIGCOMM, 2020.

[47] X. Gao, T. Kim, M. D. Wong, D. Raghunathan, A. K.
Varma, P. G. Kannan, A. Sivaraman, S. Narayana, and
A. Gupta. Switch Code Generation Using Program
Synthesis. In ACM SIGCOMM, 2020.

[48] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,
S. Shenker, and I. Stoica. Dominant Resource Fairness:
Fair Allocation of Multiple Resource Types. In USENIX
NSDI, 2011.

[49] G. Gibb, G. Varghese, M. Horowitz, and N. McKeown.
Design Principles for Packet Parsers. In ACM/IEEE
ANCS, 2013.

[50] S. Grant, A. Yelam, M. Bland, and A. C. Snoeren.
SmartNIC Performance Isolation with FairNIC:
Programmable Networking for the Cloud. In ACM
SIGCOMM, 2020.

[51] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,
C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta.
VL2: A Scalable and Flexible Data Center Network. In
ACM SIGCOMM, 2009.

[52] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rex-
ford, and W. Willinger. Sonata: Query-Driven Streaming
Network Telemetry. In ACM SIGCOMM, 2018.

1302 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.xilinx.com/support/documentation/ip_documentation/blk_mem_gen/v8_4/pg058-blk-mem-gen.pdf
https://www.xilinx.com/support/documentation/ip_documentation/blk_mem_gen/v8_4/pg058-blk-mem-gen.pdf
https://www.xilinx.com/support/documentation/ip_documentation/blk_mem_gen/v8_4/pg058-blk-mem-gen.pdf
https://www.xilinx.com/support/documentation/ip_documentation/blk_mem_gen/v8_4/pg058-blk-mem-gen.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1151_Param_CAM.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1151_Param_CAM.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1151_Param_CAM.pdf
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://cs.nyu.edu/~anirudh/sigcomm17_drmt_extended.pdf
https://cs.nyu.edu/~anirudh/sigcomm17_drmt_extended.pdf

[53] D. Hancock and J. van der Merwe. HyPer4: Using P4
to Virtualize the Programmable Data Plane. In ACM
CoNEXT, 2016.

[54] M. Hogan, S. Landau-Feibish, M. T. Arashloo, J. Rex-
ford, and D. Walker. Modular Switch Programming
Under Resource Constraints. In USENIX NSDI, 2022.

[55] S. Ibanez, G. Brebner, N. McKeown, and N. Zilberman.
The P4->NetFPGA Workflow for Line-Rate Packet
Processing. In ACM/SIGDA FPGA, 2019.

[56] S. Ibanez, A. Mallery, S. Arslan, T. Jepsen, M. Shahbaz,
N. McKeown, and C. Kim. The nanoPU: Redesigning
the CPU-Network Interface to Minimize RPC Tail
Latency, 2020.

[57] S. Ibanez, M. Shahbaz, and N. McKeown. The Case for
a Network Fast Path to the CPU. In ACM HotNets, 2019.

[58] W. Jiang. Scalable Ternary Content Addressable
Memory Implementation Using FPGAs. In ACM/IEEE
ANCS, 2013.

[59] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé,
C. Kim, and I. Stoica. NetChain: Scale-Free Sub-RTT
Coordination. In USENIX NSDI, 2018.

[60] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster,
C. Kim, and I. Stoica. NetCache: Balancing Key-Value
Stores with Fast In-Network Caching. In ACM SOSP,
2017.

[61] L. Jose, L. Yan, G. Varghese, and N. McKeown. Com-
piling Packet Programs to Reconfigurable Switches. In
USENIX NSDI, 2015.

[62] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford.
HULA: Scalable Load Balancing Using Programmable
Data Planes. In ACM SOSR, 2016.

[63] J. Krude, J. Hofmann, M. Eichholz, K. Wehrle, A. Koch,
and M. Mezini. Online Reprogrammable Multi Tenant
Switches. In 1st ACM CoNEXT Workshop on Emerging
In-Network Computing Paradigms, 2019.

[64] B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu,
Y. Xiong, P. Cheng, and E. Chen. ClickNP: Highly Flex-
ible and High Performance Network Processing with
Reconfigurable Hardware. In ACM SIGCOMM, 2016.

[65] Y. Li, R. Miao, C. Kim, and M. Yu. FlowRadar: A Better
NetFlow for Data Centers. In USENIX NSDI, 2016.

[66] Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang,
Z. Cao, M. Zhang, F. Kelly, M. Alizadeh, and M. Yu.
HPCC: High Precision Congestion Control. In ACM
SIGCOMM, 2019.

[67] J. Lin, K. Patel, B. E. Stephens, A. Sivaraman, and
A. Akella. PANIC: A High-Performance Programmable
NIC for Multi-tenant Networks. In USENIX OSDI, 2020.

[68] M. Liu, T. Cui, H. Schuh, A. Krishnamurthy, S. Peter,
and K. Gupta. Offloading Distributed Applications onto
SmartNICs Using IPipe. In ACM SIGCOMM, 2019.

[69] R. Pagh and F. F. Rodler. Cuckoo Hashing. Journal of
Algorithms, 2004.

[70] Y. Park, H. Park, and S. Mahlke. CGRA Express:
Accelerating Execution Using Dynamic Operation
Fusion. In ACM CASES, 2009.

[71] S. Pontarelli, R. Bifulco, M. Bonola, C. Cascone,
M. Spaziani, V. Bruschi, D. Sanvito, G. Siracusano,
A. Capone, M. Honda, F. Huici, and G. Siracusano.
FlowBlaze: Stateful Packet Processing in Hardware. In
USENIX NSDI, 2019.

[72] A. Sapio, M. Canini, C.-Y. Ho, J. Nelson, P. Kalnis,
C. Kim, A. Krishnamurthy, M. Moshref, D. R. K. Ports,
and P. Richtarik. Scaling Distributed Machine Learning
with In-Network Aggregation. In USENIX NSDI, 2021.

[73] M. Saquetti, G. Bueno, W. Cordeiro, and J. R. Azam-
buja. Hard Virtualization of P4-Based Switches with
VirtP4. In ACM SIGCOMM Posters and Demos, 2019.

[74] A. Sivaraman, C. Kim, R. Krishnamoorthy, A. Dixit,
and M. Budiu. DC.P4: Programming the Forwarding
Plane of a Data-Center Switch. In ACM SOSR, 2015.

[75] A. Sivaraman, S. Subramanian, M. Alizadeh, S. Chole,
S.-T. Chuang, A. Agrawal, H. Balakrishnan, T. Edsall,
S. Katti, and N. McKeown. Programmable Packet
Scheduling at Line Rate. In ACM SIGCOMM, 2016.

[76] H. Soni, M. Rifai, P. Kumar, R. Doenges, and N. Foster.
Composing Dataplane Programs with µP4. In ACM
SIGCOMM, 2020.

[77] R. Stoyanov and N. Zilberman. MTPSA: Multi-Tenant
Programmable Switches. In 3rd P4 Workshop in Europe,
2020.

[78] H. Wang, R. Soulé, H. T. Dang, K. S. Lee, V. Shrivastav,
N. Foster, and H. Weatherspoon. P4FPGA: A Rapid
Prototyping Framework for P4. In ACM SOSR, 2017.

[79] T. Wang, H. Zhu, F. Ruffy, X. Jin, A. Sivaraman,
D. R. K. Ports, and A. Panda. Multitenancy for Fast
and Programmable Networks in the Cloud. In USENIX
HotCloud, 2020.

[80] J. Xing, K.-F. Hsu, M. Kadosh, A. Lo, Y. Piaset-
zky, A. Krishnamurthy, and A. Chen. Runtime
Programmable Switches. In USENIX NSDI, 2022.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1303

[81] C. Zhang, J. Bi, Y. Zhou, A. B. Dogar, and J. Wu. Hy-
perV: A High Performance Hypervisor for Virtualization
of the Programmable Data Plane. In IEEE ICCCN, 2017.

[82] P. Zheng, T. Benson, and C. Hu. P4Visor: Lightweight
Virtualization and Composition Primitives for Building
and Testing Modular Programs. In ACM CoNEXT, 2018.

[83] H. Zhu, T. Wang, Y. Hong, D. Ports, A. Sivaraman,
and X. Jin. NetVRM: Virtual Register Memory for
Programmable Networks. In USENIX NSDI, 2022.

[84] N. Zilberman, Y. Audzevich, G. A. Covington, and
A. W. Moore. NetFPGA SUME: Toward 100 Gbps as
Research Commodity. IEEE Micro, 2014.

1304 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A Daisy-Chain vs. Fully-AXI-L-Based Config-
uration

As discussed in §3.1, Menshen uses a daisy chain pipeline
to configure the Menshen pipeline and uses the AXI-L [28]
protocol for safety alone, i.e., to read the reconfiguration
packet counter and update the bitmap during reconfiguration.
Before using this daisy-chain approach, we considered a
different approach based fully on the AXI-L protocol. In this
approach, all configuration settings on the FPGA would be
set using the AXI-L protocol via PCIe from the host instead
of passing a reconfiguration packet through a daisy chain
pipeline. We elected to use the daisy-chain approach instead
for 2 reasons described below.

First, as one AXI-L write in Corundum can only support
a 32-bit data length, we have to write ⌈625/32⌉ = 20 and
⌈205/32⌉ = 7 times for configuring one entry in the VLIW
action table and CAM respectively. For our test modules, we
estimate AXI-L reconfiguration time based on the write time
of a single AXI-L write. As shown in Figure 12, Menshen’s
daisy-chain configuration is much faster than the AXI-L based
method, especially for longer entries (i.e., VLIW action table).
These benefits are likely to be more pronounced on a larger im-
plementation of Menshen because the entries (both for VLIW
action table and CAM) will be even longer in that case. Sec-
ond, the daisy-chain approach is more similar in style to how
programmable switch ASICs are configured today, hence, it is
preferable for an eventual ASIC implementation of Menshen.

ST
AG

E
0

VL
IW

 a
ct

io
n

ta
bl

e

ST
AG

E
0

CA
M

ST
AG

E
1

VL
IW

 a
ct

io
n

ta
bl

e

ST
AG

E
1

CA
M

ST
AG

E
2

VL
IW

 a
ct

io
n

ta
bl

e

ST
AG

E
2

CA
M

ST
AG

E
3

VL
IW

 a
ct

io
n

ta
bl

e

ST
AG

E
3

CA
M

ST
AG

E
4

VL
IW

 a
ct

io
n

ta
bl

e

ST
AG

E
4

CA
M

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Co
nf

ig
ur

at
io

n
Ti

m
e

(m
s)

AXI-L based Configuration Daisy-chain Configuration

Figure 12: Configuration time comparison for AXI-L based
(estimated) and Menshen’s daisy-chain configuration (measured).

B Isolation of ternary match tables using the
Xilinx CAM IP

While our current Menshen implementation only supports
exact matching, we could reuse our implementation strategy
(the Xilinx CAM IP) for ternary matching as well. However,
supporting isolation between the ternary match tables of
multiple different modules requires some care. This is to

ensure that updates to the ternary match-action rules for one
module do not cause updates to the ternary match-action
rules for another module.

In the case of ternary matching, the Xilinx CAM IP block
uses the address of a CAM entry as the TCAM priority to
determine which entry to return when there are multiple
matches [31]. Concretely, the Xilinx CAM IP block can
prioritize either the entry with the lowest address or the
highest address. To support isolation on top of this block,
first, we append the module ID (i.e., VLAN ID) to ternary
match-action rules as we do currently for exact matches (§3).
Second, we allocate contiguous addresses within the Xilinx
CAM IP block to a particular module.

Appending the module ID ensures that a module’s packets
do not match any other module’s match-action rules. Allocat-
ing contiguous addresses ensures that a new match-action rule
can be added (or an old rule can be updated) for a module with
disruption to that module’s match-action rules alone—and im-
portantly, without disturbing the rules for any other modules.7

C Hardware resources in Menshen

Hardware Resource Description

Packet Filter A 32-bit bitmap,
and a 4-byte reconfiguration packet counter

PHV
2-byte, 4-byte, 6-byte containers,
each type has 8 containers
a 32-byte container for platform-specific metadata

Parsing action 16 bits wide
Parser and deparser table 10 parsing actions, 160 bits wide, 32 entries deep

Key extractor table 38 bits wide, 32 entries deep
Key mask table 193 bits wide, 32 entries deep

Exact match table 205 bits wide, 16 entries deep
ALU Action 25 bits wide

VLIW action table 25 ALU actions, 625 bits wide, 16 entries deep
Segment table 16 bits wide, 32 entries deep

Stages 5
Module ID 12 bits

Table 5: Hardware resources in Menshen

D Experimental setup

Host

N
IC

N
IC

NetFPGA

SFP+

Host
PCIe PCIe

Corundum

Q
SFP28

(1) NetFPGA
Setup

(2) Corundum
Correctness Setup

SFP+

N
IC

(a) Correctness setup.

Spirent Tester

Host
PCIe

Corundum

(3) Corundum
Performance Test Setup

Q
SFP28

Q
SFP28Q

SFP28

Q
SFP28

Menshen

(b) Performance test setup.
Figure 13: Testbed setup. Red arrow shows packet flow.

7Note that a new rule can be added to a module only if there are still empty
addresses within that module’s chunk of contiguously allocated addresses.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1305

Justitia: Software Multi-Tenancy in Hardware Kernel-Bypass Networks

Yiwen Zhang∗, Yue Tan∗�, Brent Stephens†, and Mosharaf Chowdhury∗
∗University of Michigan, �Princeton University, †University of Illinois at Chicago

Abstract
Kernel-bypass networking (KBN) is becoming the new

norm in modern datacenters. While hardware-based KBN
offloads all dataplane tasks to specialized NICs to achieve
better latency and CPU efficiency than software-based KBN,
it also takes away the operator’s control over network shar-
ing policies. Providing policy support in multi-tenant hard-
ware KBN brings unique challenges – namely, preserving
ultra-low latency and low CPU cost, finding a well-defined
point of mediation, and rethinking traffic shapers. We present
Justitia to address these challenges with three key design as-
pects: (i) Split Connection with message-level shaping, (ii)
sender-based resource mediation together with receiver-side
updates, and (iii) passive latency monitoring. Using a latency
target as its knob, Justitia enables multi-tenancy policies such
as predictable latencies and fair/weighted resource sharing.
Our evaluation shows Justitia can effectively isolate latency-
sensitive applications at the cost of slightly decreased utiliza-
tion and ensure that throughput and bandwidth of the rest are
not unfairly penalized.

1 Introduction
To deal with the growing demands of ultra-low latency with
high throughput (message rates) and high bandwidth in large
fan-out services, ranging from parallel lookups in in-memory
caches [16, 30, 32] and resource disaggregation [2, 22, 52]
to analytics and machine learning [1, 26, 47], kernel-bypass
networking (KBN) is becoming the new norm in modern
datacenters [14, 23, 43, 44, 64]. As the name suggests, with
KBN, applications bypass the operating system (OS) kernel
to improve performance while relieving the CPU.

There are two major trends in KBN today. Software-based
KBN (e.g., DPDK) removes the kernel from the data path
and performs packet processing in the user space. In contrast,
hardware-based KBN (e.g., RDMA) further lowers latency
by at least one order of magnitude and reduces CPU usage by
offloading dataplane tasks to specialized NICs (e.g., RDMA
NICs) with on-board compute.

Hardware KBN, however, takes away the operator’s con-
trol over network sharing policies such as prioritization, iso-
lation, and performance guarantees. Unlike software KBN,
coexisting applications must rely on the specialized NIC to
arbitrate among data transfer operations once they are posted
to the hardware. We observe that existing hardware KBNs

Multi-Tenancy Support in KBN

Fabric-Level Isolation

DCQCN[64], TIMELY[44],
HPCC[41], Swift[36]

Host-Level Isolation

Software-Based KBN
(Performance and/or Security)

Andromeda[14], PicNIC[38],
Snap[43]

Hardware-Based KBN

Security

FreeFlow[35]

Performance

Justitia
Figure 1: Design space for multi-tenancy support in KBN.

provide poor support for multi-tenancy. For example, even
for real-world applications such as DARE [49], eRPC [32],
and FaSST [31], sharing the same NIC leads to severe perfor-
mance anomalies including unpredictable latency, throttled
throughput (i.e., lower message rates), and unfair bandwidth
sharing (§3). In this paper, we aim to address the following
question: Can we marry the benefits of software KBN with the
efficiency of hardware KBN and enable fine-grained multi-
tenancy support?

Recent works have explored multi-tenancy support in large-
scale software-based KBN deployments [14, 38, 43]. Their
designs enforce fine-grained sharing policies such as perfor-
mance and security (address space) isolation at the end hosts
and pair with fabric-level solutions (e.g., congestion control)
in case the network fabric becomes a bottleneck (Figure 1).
However, existing software KBN solutions cannot be applied
to hardware-based KBN due to three unique challenges:

1. Because host CPU is no longer involved, common CPU-
based resource allocation mechanism cannot be applied.
Instead, tenants issue RDMA operations with arbitrary
data load at no CPU cost, which leaves no obvious point
of control to exert resource mediation.

2. Hardware offloading brings packetization from user space
into the NIC, disabling fine-grained user-space shaping at
the packet level [27, 51].

3. It is also crucial to preserve hardware-based KBN’s effi-
ciency (i.e., single µs latency and low CPU cost1) while
providing multi-tenancy support.

We present Justitia, a software-only solution that enables

1This does not apply to applications that aim for low latency or high
message rates and busy spin their cores for maximum performance.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1307

multi-tenancy support in hardware-based KBN, to address the
aforementioned challenges (§4). Our key idea is to introduce
an efficient software mediator in front of the NIC that can
implement performance-related multi-tenancy policies – in-
cluding (1) fair/weighted resource sharing and (2) predictable
latencies while maximizing utilization or a mix of the two.
Given that RDMA is the primary hardware-based KBN im-
plementation today, in this paper, we specifically focus our
solutions on RDMA NICs (RNICs).

Enabling fine-grained sharing policies in RDMA requires
an efficient way of managing RNIC resources (i.e., link band-
width and execution throughput). To this end, we propose
Split Connections that decouple a tenant application’s intent
from its actuation and introduces a point of resource medi-
ation. Justitia mediates RNIC resources by combining the
benefits of sender-based and receiver-based design. RDMA
operations are split and paced at the sender side before plac-
ing them onto the RNIC; receiver-side updates are collected
to avoid spurious resource allocation caused by either incast
or RDMA READ contention. Shaping is performed at the
message level, where message sizes and their pacing rate are
adjusted dynamically based on the current policy in use. By
splitting RDMA connections, Justitia can effectively manage
tenants’ connections to consume RNIC resources based on the
policy we set instead of letting tenants themselves compete
by arbitrarily issuing RDMA operations.

To provide predictable latencies for latency-sensitive ap-
plications, Justitia introduces the concept of reference flow
and monitors its latency instead of intercepting low-latency
tenant applications. By comparing the latency measurements
of many reference flows from the same sender machine to dif-
ferent receivers, Justitia can quickly detect (local and remote)
RNIC resource contention. Given a tail latency target, Justitia
maximizes RNIC resource utilization without violating the
target. When the target is unachievable, based on the operator-
defined policy, Justitia can choose to ensure that each of the
competing n entities gets at least 1

n th of one of the RNIC’s
two resources, extending the classic hose model of network
sharing [17] to multi-resource RNICs.

We have implemented (§5) and evaluated (§6) Justitia on
both InfiniBand and RoCEv2 networks. It provides multi-
tenancy support among different types of applications with-
out incurring high CPU usage (1 CPU core per host), intro-
ducing additional overheads, or modifying application codes.
For example, using Justitia, DARE’s tail latency improves by
3.4× when running in parallel with Apache Crail [5, 60], a
bandwidth-sensitive storage application, and Justitia preserves
81% of Crail’s original performance. Justitia also comple-
ments RDMA congestion control protocols like DCQCN [64]
while further mitigating receiver-side RNIC contention, and
reduces tail latency even when the network is congested.

App

Memory

SQ RQ

QP RNIC
2

3

Packetization

NIC
Processor

4
RNIC

App

Memory

QP

5

1

4’

5’

Figure 2: Overview of host-RNIC interaction when posting (i) an RDMA
WRITE operation (1 → 2 .→ 3 → 4 → 5) and (ii) an RDMA READ
operation (1 → 2 → 3 → 4’ → 5’).

2 Background
Recent works [36, 38] have discovered unpredictable laten-
cies due to end-host resource contention, but their primary
focus is on receiver-side engine congestion in software-based
KBN. In this work, we aim to emphasize that sender-side
resource contention in hardware-based KBN such as RDMA
can also lead to severe performance degradation when mul-
tiple tenants coexist. An ideal solution should address both
sender- and receiver-side issues. In this section, we give an
overview on how an RDMA operation is performed, followed
by the root cause of RDMA’s lack of multi-tenancy support.

2.1 Life Cycle of an RDMA Operation

RDMA enables direct access between user-registered mem-
ory regions without involving the OS kernel, offloading data
transfer tasks to the RNIC. Applications initiate RDMA op-
erations by posting Work Requests (WRs) via Queue Pairs
(QPs) to describe the messages to transmit. Figure 2 shows
how an RDMA application interacts with an RNIC to initiate
an RDMA operation. To start an RDMA WRITE, 1 the user
application place a Work Queue Element (WQE) describing
the message to the Send Queue (SQ), and 2 rings a door
bell to notify the RNIC by writing its QP number into the
corresponding doorbell register on RNIC. At this point, the
user application has completed its task and offloads the rest of
the work to RNIC. After the RNIC gets notified, it 3 fetches
and processes the requests from the send queue, and 4 pulls
the message from the user memory, splits it into packets, and
sends it to the remote RNIC. Finally, the remote RNIC 5
writes the received message directly into the remote memory.

In the case of an RDMA READ operation, the user applica-
tion again posts the WQE and notifies the RNIC to collect it
(1 → 3). The local RNIC then 4’ notifies the remote RNIC
to pull the data from remote memory, and 5’ places the mes-
sage back to local memory after de-packetizing the received
packets. Despite the opposite direction of data transfer, the
remote OS remains passive just as the case with an RDMA
WRITE. In both cases, the sender of the RDMA operation
actively controls what goes into the RNIC while the remote
side stays passively unaware.2

2This is true even for two-sided operations that require the receiver to
post WQEs to its Receive Queue before a Send Request arrives. We still

1308 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2.2 Lack of Multi-Tenancy Support

RDMA lacks multi-tenancy support for two primary reasons:
(i) tenants/applications compete for multiple RNIC resources,
and (ii) RNIC processes ready-to-consume message in a
greedy fashion to maximize utilization. Both are related to
different symptoms of the isolation issues.

Multi-Resource Contention There exist two primary re-
sources that need to be shared on an RNIC: link bandwidth
and execution throughput. Bandwidth-sensitive applications
consume RNIC’s link bandwidth to issue large DMA re-
quests. Throughput-sensitive applications, on the other hand,
consume RNIC’s execution throughput to issue small DMA
requests in batches. Latency-sensitive applications, how-
ever, consume neither resource with the small messages they
sparsely send. As we will soon show (§3), isolation anomalies
can occur when applications compete for different resources.

Greedy Processing for High Utilization Although the ac-
tual RNIC implementation details are private, we can consider
two hypotheses on how RNIC handles multiple requests si-
multaneously: either the RNIC buffers WQEs collected in 3
in Figure 2 from multiple applications and arbitrates among
them using some scheduling mechanism; or it processes them
in a greedy manner. When a latency-sensitive application
competes with a bandwidth-sensitive application, too much
arbitration in the former can cause low resource utilization
(e.g., unable to catch up the line rate), whereas too little ar-
bitration in the latter leads to head-of-line (HOL) blocking
(which leads to latency variation). Our observations across
all three RDMA implementations (§3), where applications
using small messages are consistently affected by the ones
using larger ones, suggest the latter. Note that even though
receiver-side congestion can also happen during step 5 as
pointed out in [38], both root causes can easily stem from the
sender side of the operation via step 3 and thus cannot be
ignored. We elaborate on how Justitia mitigates both sender-
and receiver-side issues in Section 4.

3 Performance Isolation Anomalies in RDMA
This section establishes a baseline understanding of sharing
characteristics in hardware KBN and identifies common isola-
tion anomalies across different RDMA implementations with
both microbenchmarks (§3.1) and highly optimized, state-of-
the-art RDMA-based applications (§3.2).

To study RDMA sharing characteristics among applica-
tions with different objectives, we consider three major types
of RDMA-enabled applications:
1. Latency-Sensitive: Sends small messages and cares about

the individual message latencies.
2. Throughput-Sensitive: Sends small messages in batches

to maximize the number of messages sent per second.

consider the receiver as passive because it can only control where to place a
message but cannot control when a message will arrive.

1.3 1.7 0.9
2.4

6.5

1.0

0.0

3.0

6.0

9.0

12.0

IB RoCEv2 iWARP

M
ed

ia
n

La
te

nc
y

(u
s) Lat App Alone

With B/w App

(a) Latency App (Med)

1.4 1.7 1.1
2.9

6.8
104.5

0.0

3.0

6.0

9.0

12.0

15.0

IB RoCEv2 iWARP

99
th

 P
er

ce
nt

ile
 (

us
)

Lat App Alone
With B/w App

(b) Latency App (99th)

43
.7

30
.5

33
.845

.3

32
.1

33
.8

0

20

40

60

IB RoCEv2 iWARP

B
an

dw
id

th
 (G

bp
s)

B/w App Alone
With Lat App

(c) Bandwidth App
Figure 3: Latency-sensitive applications require ioslation against
bandwidth-sensitive applications.

10.7 10.6

3.73.2 3.1
0.4

0.0

4.0

8.0

12.0

16.0

IB RoCEv2 iWarp

M
ill

io
n

M
es

sa
ge

s/
se

c Tput App Alone With B/w App

(a) Throughput App

43
.7

30
.5 33
.843

.2

29
.9 33

.6

0.0

20.0

40.0

60.0

IB RoCEv2 iWARP

B
an

dw
id

th
 (G

B
ps

)

B/w App Alone With Tput App

(b) Bandwidth App
Figure 4: Throughput-sensitive application requires isolation from
bandwidth-sensitive applications.

3. Bandwidth-Sensitive: Sends large messages with high
bandwidth requirements.

Summary of Key Findings:
• Both latency- and throughput-sensitive applications need

isolation from bandwidth-sensitive applications (§3.1.1).
• If only latency- or throughput-sensitive applications (or

a mix of the two types) compete, they are isolated from
each other (§3.1.2).

• Multiple bandwidth-sensitive applications can lead to un-
fair bandwidth allocations depending on their message
sizes (§3.1.3).

• Highly optimized, state-of-the-art RDMA-based systems
also suffer from the anomalies we discovered (§3.2).

In the rest of this section, we describe our experimental set-
tings and elaborate on these findings.

3.1 Observations From Microbenchmarks

We performed microbenchmarks between two machines with
the same type of RNIC, where both are connected to the same
RDMA-enabled switch. For most of the experiments, we used
56 Gbps Mellanox ConnectX-3 Pro for InfiniBand, 40 Gbps
Mellanox ConnectX-4 for RoCEv2, and 40 Gbps Chelsio
T62100 for iWARP; 10 and 100 Gbps settings are described
similar. More details on our hardware setups are in Table 1 of
Appendix A.

Our benchmarking applications are written based on Mel-
lanox perftest [61] and each of them uses a single Queue Pair.
Unless otherwise specified, latency-sensitive applications in
our microbenchmarks send a continuous stream of 16B mes-
sages, throughput-sensitive ones send a continuous stream
of batches with each batch having 64 16B messages, and
bandwidth-sensitive applications send a continuous stream
of 1MB messages. Although all applications send messages

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1309

using RDMA WRITEs over reliable connection (RC) QPs in
the observations below, other verbs show similar anomalies as
well. We defer the usage and discussion of hardware virtual
lanes to Section 6.3.

3.1.1 Both Latency- and Throughput-Sensitive
Applications Require Isolation

The performance of the latency-sensitive applications deteri-
orate for all RDMA implementations (Figure 3). Out of the
three implementations we benchmarked, InfiniBand and Ro-
CEv2 observes 1.85× and 3.82× degradations in median la-
tency and 2.23× and 4× at the 99th percentile. While iWARP
performs well in terms of median latency, its tail latency de-
grades dramatically (95×).

Throughput-sensitive applications also suffer. When a
background bandwidth-sensitive application is running, the
throughput-sensitive ones observe a throughput drop of
2.85× or more across all RDMA implementations (Figure 4).
Note that in our microbenchmark with 1 QP per application,
throughput-sensitive applications that consume NIC execu-
tion throughput hit the bottleneck. This does not imply RNIC
always favors link bandwidth over execution throughput. We
notice RNIC bandwidth starts to become the bottleneck when
there exists 4× more throughput-sensitive applications.

More importantly, both latency- and throughput-sensitive
applications experience more severe performance degrada-
tions (e.g., 139X worse latency with the presence of 16 band-
width applications) as more bandwidth-sensitive applications
join the competition, which is prevalent in shared datacenters
[23, 64]. Appendix B.1 provides more details.

3.1.2 Latency-Sensitive Applications Coexist Well;
So Do Throughput-Sensitive Ones

We observe no obvious anomalies among latency- or
throughput-sensitive applications, or a mix of the two types.
Detailed results can be found in Appendix B.

3.1.3 Bandwidth-Sensitive Applications
Hurt Each Other

Unlike latency- and throughput-sensitive applications,
bandwidth-sensitive applications with different message sizes
do affect each other.Figure 5 shows that a bandwidth-sensitive
application using 1MB messages receive smaller share than
one using 1GB messages. The latter receives 1.42×, 1.22×
and 1.51× more bandwidth in InfiniBand, RoCEv2, and
iWARP, respectively.

3.1.4 Anomalies are Present in Faster Networks Too

We performed the same benchmarks on 100 Gbps InfiniBand,
only to observe that most of the aforementioned anomalies
are still present. Appendix C.1 has the details.

3.2 Isolation Among Real-World Applications

In this section, we demonstrate how real RDMA-based sys-
tems fail to preserve their performance in the presence of the

26.7

18.6
21.0

18.7
15.3 13.9

0
5

10
15
20
25
30

IB RoCEv2 iWARP

B
an

dw
id

th
 (G

pb
s)

1GB 1MB

Figure 5: Anomalies among
Bandwidth-sensitive applications
with different message sizes.

9.2
19.319.3

89.1

0

20

40

60

80

100

Alone Shared

D
A

R
E

La
te

nc
y

(u
s)

Median 99th

Figure 6: Latency of DARE’s Put
and Get operations when coexisting
with Apache Crail’s storage traffic.

aforementioned anomalies.
Specifically, we performed experiments with Apache

Crail [5, 60] and DARE [49]. Crail is a bandwidth-hungry
distributed data storage system that utilizes RDMA. In con-
trast, DARE is a latency-sensitive system that provides high-
performance replicated state machines through the use of a
strongly consistent RDMA-based key-value store.

In these experiments, we deployed DARE in a cluster of
4 nodes with 56 Gbps Mellanox ConnectX-3 Pro NIC on
InfiniBand with 64GB memory. Crail is deployed in the same
cluster with one node running the namenode and one other
node running the datanode.

To evaluate the performance of Crail, we launch 8 parallel
writes (each to a different file) in Crail’s data storage with
the chunk size of the data transfer configured to be 1MB,
and we measure the application-level throughput reported
by Crail. To evaluate the performance of DARE, one DARE
client running on the same server as the namenode of Crail
issues PUT and GET operations (each PUT is followed by a
GET) to the DARE server on the other 3 nodes with a sweep
of message sizes from 8 byte to 1024 bytes, and we measure
the application-level latency reported by DARE.

Figure 6 plots the latency of DARE’s queries with and
without the presence of Crail. In this experiment, we observe a
4.6× increase in DARE’s tail latency. Additionally, regardless
of whether it is competing with DARE, Crail’s total write
throughput stays at 51.1 Gbps.

Besides DARE, highly-optimized RDMA-based RPC sys-
tem such as FaSST [31] and eRPC [32] also suffer from iso-
lation anomalies caused by unmanaged resource contention
on RNICs. In fact, when background bandwidth-heavy traffic
is present, FaSST’s throughput experiences a 74% drop (Fig-
ure 32) and eRPC’s tail latency increases by 40× (Figure 33).
More details can be found in Appendix C.2.

3.3 Congestion Control is not Sufficient

To demonstrate that DCQCN [64] and PFC are not sufficient
to solve these anomalies, we performed the benchmarks again
with PFC enabled at both the NICs and switch ports, DC-
QCN [64] enabled at the NICs, and ECN markings enabled
on a Dell 10 Gbps Ethernet switch (S4048-ON). In these ex-
periments, latency- and throughput-sensitive applications still
suffer unpredictably (Section 6.3 has detailed results). This
is because DCQCN focuses on fabric-level isolation whereas

1310 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the observed anomalies happen at the end host due to RNIC
resource contention (§2.2).

4 Justitia
Justitia enables multi-tenancy in hardware-based KBN, with
a specific focus on enabling two performance-related policies:
(1) fair/weighted resource sharing, or (2) predictable latencies
while maximizing utilization, or a mix of the two. Note that we
restrict our focus on a cooperative datacenter environment in
this paper and defer strategyproofness [20, 21, 50] to mitigate
adversarial/malicious behavior to future work.

Granularity of Control: We define a flow to be a stream
of RDMA messages between two RDMA QPs. Justitia can
be configured to work either at the flow granularity or at the
application granularity by considering all flows between two
applications as a whole.3 In this paper, by default, we set
Justitia’s granularity of control to be at the application level
to focus on application-level performance.

4.1 Key Design Ideas

Justitia resolves the unique challenges of enabling multi-
tenancy in hardware KBN with five key design ideas.

• Tenant-/application-level connection management: To
prevent tenants from hogging RNIC resources by issu-
ing arbitrarily large messages or creating a large number
of active QPs at no cost, Justitia provides a tenant-level
connection management scheme by adding a shim layer
between tenant applications and the RNIC. Tenant opera-
tions are handled by Justitia before arriving at the RNIC.

• Sender-based proactive resource mediation: Justitia
proactively controls RNIC resource utilization at the
sender side. This is based on the observation that the
sender of an RDMA operation – that decides when an
operation gets initiated, how large the message is, and in
which direction the message flows – has active control
over every aspect of the transmission while the other side
of the connection remains passive. Such sender-based con-
trol can react before the RNIC takes over and maintain
isolation by directly controlling RNIC resources.

• Dynamic receiver-side updates: Pure sender-based ap-
proaches can sometimes lead to spurious resource allo-
cation when multiple senders coexist but are unaware
of each other. Justitia leverage receiver-side updates to
provide information (e.g., the arrival or departure of an
application) back to the senders to react correctly when a
change in the setting happens.

• Passive latency monitoring: Instead of actively measuring
each application’s latency, which can introduce high over-
head, Justitia uses passive latency monitoring by issuing
reference flows to detect RNIC resource contention.

3Each granularity has its pros and cons when it comes to performance
isolation, without any conclusive answer on the right one [46].

Justitia Shaper
Split QP

SQ RQ

User Apps

Message
Pacer

Splitter

RNIC

Justitia Daemon

Latency
Monitor

Safe
Utilization
Calculator

Tokens (t)

App1

Memory

QP

App2

Memory

QP

App3

Memory

QP

2a

3

4

1

2b

2c

Figure 7: Justitia architecture. Bandwidth- and throughput-sensitive ap-
plications are shaped by tokens generated at a regular interval by Justitia.
Latency-sensitive ones are not paced at all.

• Message-level shaping with splitting: Justitia performs
shaping at the message level to suit RDMA’s message-
oriented transport layer. At the message level, it is easy
to apply specific strategies to control how messages enter
the RNIC based on their sizes and the resource they con-
sume. Large messages are split into roughly equal-sized
sub-messages or chunks to (i) avoid a single message re-
questing too many RNIC resources; (ii) facilitate network
sharing policies such as fair/weighted bandwidth share;
and (iii) mitigate HOL Blocking for latency-sensitive ap-
plications.

4.2 System Overview

Figure 7 presents a high-level system overview of Justitia
handling an RDMA WRITE operation (to compare with Fig-
ure 2). Each machine has a Justitia daemon that performs
latency monitoring and proactive rate management, and appli-
cations create QPs using the existing API to perform RDMA
communication. Justitia relies on applications to optionally
identify their application type. By default, they are treated
as bandwidth-sensitive. VMs, containers, bare-metal appli-
cations, and SR-IOV are all compatible with the design of
Justitia.

As before, the user application starts an RDMA WRITE
operation by 1 posting a WQE into the Send Queue. Latency-
sensitive applications will 2a bypass Justitia and directly
interact with the RNIC as shown in Figure 2. The other two
types of applications will enter Justitia’s shaper. The Splitter
will 2b split the big message from a bandwidth-sensitive ap-
plications equally into sub-messages or 2c do nothing given
a small message from a throughput-sensitive application. We
introduce Split Connection – and corresponding split queue
pair (Split QP) – to handle the messages passed through the
Splitter. Before sending out the message, it 3 asks the dae-
mon to fetch a token from Justitia, which is generated at a
rate to maximize RNIC resource utilization consumed by
resource-hungry applications. Once the token is fetched, the
Split QP 4 posts a WQE for the sub-message into its SQ and
rings the door bell to notify the RNIC. The RNIC then grabs

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1311

the WQE from Split QP, issue a DMA read for the actual data
in application’s memory region, and sends the message to the
remote side (arrows not shown in the figure). Steps 3 and 4
repeat until all messages in the Split QP have been processed.
The implementation details of Split QP is in Section 5.1.

The Justitia daemon in Figure 7 is a background process
that performs latency monitoring and proactive rate manage-
ment to maximize RNIC resource utilization when latency
target is met.

4.3 Justitia Daemon

Justitia daemon performs two major tasks: (i) proactively
manages rate of all bandwidth- and throughput-sensitive ap-
plications using the hose model [17]; (ii) ensures predictable
performance for latency-sensitive applications while maxi-
mizing RNIC resource usage.

4.3.1 Minimum Guaranteed Rate

Justitia enforces rate based on the classic hose model [17],
and always maintains a minimum guaranteed rate Rmin:

Rmin =
∑wi

B +∑wi
T

∑wi
B +∑wi

T +∑wi
L
×MaxRate

where wi
X represents the weight of application i of type X (i.e.,

bandwidth-, throughput-, or latency-sensitive), and MaxRate
represents the maximum RNIC bandwidth or maximum RNIC
throughput (both are pre-determined on a per-RNIC basis) de-
pending on the type of the application. The idea of Rmin is to
recognize the existence of latency-sensitive applications, and
provide isolation for them by taking out their share from the
RNIC resources which otherwise they cannot acquire by them-
selves. In the absence of latency-sensitive applications (i.e.,
∑wi

L = 0), Rmin is equivalent to MaxRate, and all the resource-
hungry applications share the entire RNIC resources. If all
applications have equal weights, and there exist B bandwidth-,
T throughput-, and L latency-sensitive applications, Rmin can
be simplified as B+T

B+T+L ×MaxRate.
In the presence of a large number of latency-sensitive ap-

plications, Rmin could be really small, essentially removing
RNIC resource guarantee. To accommodate such cases, one
can fix L = 1 no matter how many latency-sensitive appli-
cations join the system since they do not consume much of
RNIC’s resources. We find this setting works well in practice
(§6.4) and make it the default option for Justitia.

With Rmin provided, Justitia then maximizes RNIC’s safe
resource utilization (which we denote SafeUtil) until the per-
formance of latency-sensitive applications crosses the target
tail latency (Target99).

4.3.2 Latency Monitoring via Reference Flows

Justitia does not interrupt or interact with latency-sensitive
applications because (i) they cannot saturate either of the two
RNIC resources, and (ii) interrupting them fails to preserve
RDMA’s ultra-low latency.

Pseudocode 1 Maximize SafeUtil
1: procedure ONLATENCYFLOWUPDATE(L, Estimated99)
2: if L = 0 then . Reset if no latency-sensitive applications
3: SafeUtil = MaxRate
4: else
5: if Estimated99 > Target99 then
6: SafeUtil = max(SafeUtil

2 , Rmin)
7: else
8: SafeUtil = SafeUtil + 1
9: end if

10: end if
11: τ = TokenBytes/ SafeUtil
12: end procedure

Instead, whenever there exists one or more latency-sensitive
applications to particular receiving machine, Justitia main-
tains a reference flow to that machine which keeps sending
10B messages to the same receiver as the latency-sensitive
applications in periodic intervals (by default, RefPeriod = 20
µs) to estimate the 99th percentile (Estimated99) latency for
small messages. By monitoring its own reference flow, Justi-
tia does not need to wait on latency-sensitive applications to
send a large enough number of sample messages for accurate
tail latency estimation. It does not add additional delay by
directly probing those applications either.

Given the stream of measurements, Justitia maintains a
sliding window of the most recent RefCount (=10000) mea-
surements for a reference flow estimate its tail latency.

4.3.3 Maximizing SafeUtil

Using the selected latency measurement from the reference
flow(s), Justitia maximizes SafeUtil based on the algorithm
shown in Pseudocode 1. To continuously update SafeUtil,
Justitia uses a simple AIMD scheme that reacts to Estimated99
every RefPeriod interval as follows. If the estimation is above
Target99, Justitia decreases SafeUtil by half; SafeUtil is guar-
anteed to be at least Rmin. If the estimation is below Target99,
Justitia slowly increases SafeUtil. Because SafeUtil ranges be-
tween Rmin to the total RNIC resources and latency-sensitive
applications are highly sensitive to too high a utilization
level, our conservative AIMD scheme, which drops utilization
quickly to meet Target99, works well in practice.

To determine the value of Target99, we constructs a latency
oracle that performs pair-wise latency measurement by issu-
ing reference flows across all the nodes in the cluster when
there is no other background. Microsoft applies a similar ap-
proach in [24], which is shown to work well in estimating
steady-state latency in the cluster. We adopt this approach to
give a good estimate of the latency target under well-isolated
scenarios.

4.3.4 Token Generation And Distribution

Justitia uses multi-resource tokens to enforce SafeUtil among
the B bandwidth- and T throughput-sensitive applications in
a fair or weighted-fair manner. Each token represents a fixed

1312 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

amount of bytes (TokenBytes) and a fixed number of messages
(TokenOps). In other words, the size of TokenBytes determines
the chunk size a message from bandwidth-sensitive applica-
tion is split into. A token is generated every τ interval, where
the value of τ depends on SafeUtil as well as on the size of
each token. For example, given 48 Gbps application-level
bandwidth and 30 Million operations/sec on a 56 Gbps RNIC,
if TokenBytes is set to 1MB, then we set TokenOps =5000 ops
and τ =167 µs.

Justitia daemon continuously generates one token every τ

interval and distributes it among the active resource-hungry
applications in a round-robin fashion based on application
weights wi

X . When wi
X = 1 for all applications, Justitia en-

forces traditional max-min fairness; otherwise, it enforces
weighted fairness. Each application independently enforces
its rate using one of the shapers described below.

4.4 Justitia Shapers

Justitia shapers – implemented in the RDMA driver – enforce
utilization limits provided by the Justitia daemon-calculated
tokens. There are two shapers in Justitia: one for bandwidth-
and another for throughput-sensitive applications.

Split Connection Justitia introduces the concept of a Split
Connection to provide an interface to coordinate between ten-
ant applications and the RNIC. It consists of a message splitter
and custom Split QPs (§5.1) to initiate RDMA operations for
tenants. Each application’s Split Connection cooperate with
Justitia daemon to pace split messages transparently.

Shaping Bandwidth-Sensitive Applications. This in-
volves two steps: splitting and pacing. For any bandwidth-
sensitive application, Justitia transparently divides any mes-
sage larger than TokenBytes into TokenBytes-sized chunks to
ensure that the RNIC only sees roughly equal-sized messages.
Splitting messages for diverse RDMA verbs – e.g., one-sided
vs. two-sided – requires careful designing (§5.1).

Given chunk(s) to send, the pacer requests for token(s) from
the Justitia daemon by marking itself as an active application.
Upon receiving a token, it transfers chunk(s) until that token
is exhausted and repeats until there is nothing left to send.
The application is notified of the completion of a message
only after all of its split messages have been transferred.

Batch Pacing for Throughput-Sensitive Applications.
These applications typically deal with (batches of) small mes-
sages. Although there is no need for message splitting, pacing
individual small messages requires the daemon to generate
and distribute a large number of tokens, which can be CPU-
intensive. Moreover, for messages as small as 16B, such fine-
grained pacing cannot preserve RDMA’s high message rates.

To address this, Justitia performs batch pacing enabled by
Justitia’s multi-resource token. Each token grants an appli-
cation a fixed batch size (TokenOps) that it can send together
before receiving the next token. Batch pacing on throughput-
sensitive applications removes the bottleneck on token gener-

RNIC

1App

Memory

QP
2 Justitia

App

Memory

QP

RNIC

Justitia
3

5 4

Machine A Machine B

Figure 8: How Justitia handles READs via remote control.

ation and distribution; it also relieves daemon CPU cost with
a unified token bucket.

Mitigating Head-of-Line Blocking. One of the foremost
goals of Justitia is to mitigate HOL blocking caused by the
bandwidth-sensitive applications to provide predictable la-
tencies. To achieve this goal, we need to split messages into
smaller chunks and pace them at a certain rate (enforcing
SafeUtil) with enough spacing between them to minimize the
blocking. However, this simple approach creates a dilemma.
On the one hand, too large a chunk may not resolve HOL
Blocking. On the other hand, too small a chunk may not be
able to reach SafeUtil. It also leads to increased CPU over-
head from using a spin loop to fetch tokens generated in a
very short period in which context switches are not affordable.
This is a manifestation of the classic performance isolation-
utilization tradeoff. We discuss how to pick the chunk size in
Section 5.2.

4.5 Dynamic Receiver-Side Updates

Justitia relies on receiver-side updates to coordinate among
multiple senders to avoid spurious allocation of RNIC re-
sources. The benefits of this design is three-fold: (i) it coordi-
nates with multiple senders to provide the correct resource al-
location; (ii) it keeps track of RDMA READ issued which can
collide with applications issuing RDMA WRITE in the oppo-
site direction; (iii) it mitigates receiver-side engine congestion
by rate-limiting senders with the correct fan-in information.

The updates are communicated among Justitia Daemons
only when a change in the application state happened to a
certain receiver (i.e., an arrival or an exit of an application)
is detected. Two-sided operations, SEND and RECV, are se-
lected in such case so that the daemon gets notified when
an update arrives. Once a change is detected by a sender, it
informs the receiver, which then broadcasts the change back
to all the senders it connects to so that they can update the
correct Rmin. In such case, Rmin considers remote resource-
hungry application count as part of the total share. If the local
daemon has not issued a reference flow and a remote latency-
sensitive applications launches to the receiver, the daemon
will start a new reference flow to start latency monitoring.

Handling READs RDMA specification allows remote ma-
chines to read from a local machine using the RDMA READ
verb. RDMA READ operations issued by machine A to read
data from machine B compete with all sending operations
(e.g., RDMA WRITE) from machine B. Consequently, Justi-
tia must handles remote READs as well.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1313

Post
WQE

App QP RNICCQ

Post
CQE

Polling

Post
WQE

App QP CQ RNIC

Post
CQE

Post
WQE

Justitia Split QP

Polling

Split CQ

Split

Polling

Repeat shaded
part for

N-1 Chunks
Post
WQE

Post
CQE

Figure 9: High-level overview of transparent message splitting in Justitia
for one-sided verbs using Split QP. Times are not drawn to scale. Two-
sided verbs involve extra bookkeeping.

0
20
40
60
80

100

1k 2k 5k 10kB
an

dw
id

th
 (G

bp
s)

Chunk Size (Bytes)

RoCEv2 (10 Gbps)

RoCEv2 (40 Gbps)

IB (56Gbps)
IB (100Gbps)

Figure 10: Maximum achievable bandwidth vs. chunk sizes.

In such a case, the receiver of the READ operation, ma-
chine B, sends the updated guaranteed utilization Rmin, with
the updated count of senders including remote READ appli-
cations) as shown in 1 in Figure 8. After A receives that
utilization, it operates RDMA READ by interact with Justitia
normally via 2 → 5 and enforces the updated rate.

5 Implementation
We have implemented the Justitia daemon as a user-space
process in 3,100 lines of C, and the shapers are implemented
inside individual RDMA drivers with 5,200 lines of C code.
Our current implementation focuses on container/bare-metal
applications. Justitia code is available at https://github.
com/SymbioticLab/Justitia.

5.1 Transparently Splitting RDMA Messages

Justitia splitter transparently divides large messages of
bandwidth-sensitive applications into smaller chunks for pac-
ing. Our splitter uses a custom QP called a Split QP to handle
message splitting, which is created when the original QP of
a bandwidth-sensitive flow is created. A corresponding Split
CQ is used to handle completion notifications. A custom
completion channel is used to poll those notifications in an
event-triggered fashion to preserve low CPU overhead.

To handle one-sided RDMA operations, when detecting a
message larger than TokenBytes, we divide the original mes-
sage into chunks and only post the last chunk to the appli-
cation’s QP (Figure 9). The rest of the chunks are posted
to the Split QP. Split QP ensures all chunks have been suc-
cessfully transferred before the last chunk handled by the
application’s QP. The two-sided RDMA operations such as
SEND are handled in a similar way, with additional flow con-
trol messages for the chunk size change and receive requests

1.3 1.7
2.4

6.5

1.3
1.9

0

2

4

6

8

IB RoCEv2

M
ed

ia
n

La
te

nc
y

(u
s)

1.4 1.7
2.9

6.8

2.1 2.5

0

2

4

6

8

IB RoCEv2

99
th

 P
er

ce
nt

ile
 (

us
)

1.3 1.7
2.4

6.5

1.3
1.9

0

2

4

6

8

IB RoCEv2

La
te

nc
y

(u
s)

Lat App Alone With B/w App With B/w App + Justitia

(a) Latency-sensitive App

45.3

32.1
22.4

16.3

0

20

40

60

IB RoCEv2

B
an

dw
id

th
 (G

bp
s)

With Lat App
With Lat App + Justitia

(b) Bandwidth App
Figure 11: Performance isolation of a latency-sensitive application run-
ning against a bandwidth-sensitive one.

10.8

7.1

2.2

6.2

0

5

10

15

20

IB RoCEv2

M
ed

ia
n

La
te

nc
y

(u
s)

14.1
16.2

3.2

6.9

0

5

10

15

20

IB RoCEv2

99
th

 P
er

ce
nt

ile
 (

us
)

2.4

6.5

1.3
1.9

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0

IB RoCEv2

La
te

nc
y

(u
s)

With B/w App With B/w App + Justitia

(a) Latency-sensitive App

47.7

32.8
41.3

29.7

0

20

40

60

IB RoCEv2

B
an

dw
id

th
 (G

bp
s)

With Lat App
With Lat App + Justitia

(b) Bandwidth App
Figure 12: Latency of a latency-sensitive application running against a
bandwidth-sensitive application with 4 QPs with a relaxed latency target
(10 µs).

to be pre-posted at the receiver side.

5.2 Determining Token Size for Bandwidth Target

One of the key steps in determining SafeUtil is deciding the
size of each token. Because the RNIC can become throughput-
bound for smaller messages instead of bandwidth-bound, we
cannot use arbitrarily small messages to resolve HOL block-
ing. At the same time, given a utilization target, we want
to use the smallest TokenBytes value to achieve that target to
reduce HOL blocking while maximizing utilization.

Instead of dynamically determining it using another AIMD-
like process, we observe that (i) this is an RNIC-specific char-
acteristic and (ii) the number of RNIC types is small. With
that in mind, we maintain a pre-populated dictionary to store
the smallest token size that can saturate a given rate (to en-
force SafeUtil) when sending in a paced batch for different
latency targets; Justitia simply uses the mappings during run-
time. When latency-sensitive applications are not present, a
large token size (1MB) is used. Otherwise, Justitia looks up
the token size in the dictionary based on the current SafeUtil
value. This works well since the lower the SafeUtil is, the
smaller the chunk size it requires to achieve such SafeUtil,
and the better it helps mitigating HOL blocking. Based on
our microbenchmarks (Figure 10), we pick 5KB as the chunk
size when latency-sensitive applications are present.

6 Evaluation
In this section, we evaluate Justitia’s effectiveness in pro-
viding multi-tenancy support among latency-, throughput-,
and bandwidth-sensitive applications on InfiniBand and Ro-
CEv2. To measure latency, we perform 5 consecutive runs
and present their median. We do not show error bars when
they are too close to the median.

1314 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/SymbioticLab/Justitia
https://github.com/SymbioticLab/Justitia

22.5
16.4

22.3
16.4

0

10

20

30

IB RoCEv2

B
an

dw
id

th
 (G

pb
s)

1GB 1MB

(a) Different message sizes

22.3
16.4

22.4
16.4

0.0

10.0

20.0

30.0

IB RoCEv2

B
an

dw
id

th
 (G

bp
s) Single-QP 16-QP

(b) Single-QP vs. 16-QP
Figure 13: Fair bandwidth share of bandwidth-sensitive applications. (a)
different message sizes. (b) different number of QPs.

1.3
1.7

1.3
1.7

1.4
1.7

0

1

2

3

4

IB RoCEv2

M
ed

ia
n

La
te

nc
y

(u
s)

1.4
1.71.7

2.1
1.7

2.1

0

1

2

3

4

IB RoCEv2

99
th

 P
er

ce
nt

ile
 (

us
)

10.7 10.6

3.2 3.1

0

4

8

12

16

IB RoCEv2

M
ill

io
n

M
es

sa
ge

s/
se

c Lat App Alone With Tput App With Tput App + Justitia

(a) Latency-sensitive App

10.4 10.210.3 10.2

0

4

8

12

16

IB RoCEv2

M
ill

io
n

M
es

sa
ge

s/
se

c

With Lat App
With Lat App + Justitia

(b) Throughput App
Figure 14: Performance isolation of a latency-sensitive application run-
ning against a throughput-sensitive application.

10.7 10.6

3.2 3.1
5.4 5.5

0

4

8

12

16

20

IB RoCEv2

M
ill

io
n

M
es

sa
ge

s/
se

c

Tput App Alone
With B/w App
With B/w App + Justitia

(a) Throughput App

43
.2

29
.9

22
.4

16
.5

0

20

40

60

IB RoCEv2

B
an

dw
id

th
 (G

bp
s)

With Tput App
With Tput App + Justitia

(b) Bandwidth App
Figure 15: Performance isolation of a throughput-sensitive application
running against a bandwidth-sensitive application.

Our key findings can be summarized as follows:

• Justitia can effectively provide multi-tenancy support
highlighted in Section 3 both in microbenchmarks and at
the application-level (§6.1).

• Justitia scales well to a large number of applications and
works for a variety of settings (§6.2); it complements
DCQCN and hardware virtual lanes (§6.3).

• Justitia’s benefits hold with many latency- and bandwidth-
sensitive applications (§6.4), in incast scenarios (§6.5),
and under unexpected network congestion (§6.6).

A detailed sensitivity analysis of Justitia parameters can be
found in Appendix D.

6.1 Providing Multi-Tenancy Support

We start by revisiting the scenarios from Section 3 to evaluate
how Justitia enables sharing policies among different RDMA
applications. We use the same setups as those in Section 3.
Unless otherwise specified, we set Target99 =2 µs on both
InfiniBand and RoCEv2 for the latency-sensitive applications.
Justitia works well in 100 Gbps networks too (Appendix C.1).
Unless otherwise specified, Rmin with all applications sharing
the same weights is enforced as a default policy.

9.2
19.3

13.2
19.3

89.1

26.1

0

20

40

60

80

100

Alone w/o Justitia

D
A

R
E

La
te

nc
y

(u
s)

Median 99th

(a) DARE Latency

51.1

41.7

0

20

40

60

w/o Justitia

C
ra

il
W

R
IT

E
T

hr
ou

gh
pu

t (
G

bp
s)

(b) CRAIL Throughput
Figure 16: [InfiniBand] Performance isolation of DARE running against
Crail.

45.46

22
.9

0

12
.0

0

5.
80

3.
01

1.
46

0.
72

0.
36

0.
17

0

10

20

30

40

50

1 2 4 8 16 32 64 128256A
vg

. B
an

dw
id

th
(G

bp
s)

Number of Apps

(a) Bandwidth-sensitive

8.99
8.00

6.55

3.37
1.69

0.85

0

2

4

6

8

10

1 2 4 8 16 32

A
vg

. T
pu

t(
M

op
s/

se
c)

Number of Apps

(b) Throughput-sensitive
Figure 17: [InfiniBand] Justitia scales to a large number of applications
and still provides equal share. The error bars represent the minimum and
the maximum values across all the applications.

1.3 1.7
2.4

6.5

1.3
1.9

0

2

4

6

8

IB RoCEv2

La
te

nc
y

(u
s)

Lat App Alone With B/w App With B/w App + Justitia

1.
3

1.
3 1.
7 2.
1 2.
9

2.
4 2.
5

4.
6 4.
7 5.
4

1.
3 1.
4 1.
8 2.
2 3.
0

0

2

4

6

16 64 256 1024 4096

M
ed
ia
n
la
te
nc
y
(u
s)

Message size (B)

1.
4

1.
3 2.
0 2.
4 3.
2

2.
9

2.
9

4.
9 6.
0

8.
7

2.
1 2.
3 3.
2 3.
4

6.
3

0

2

4

6

8

10

16 64 256 1024 4096

99
th
Pe
rc
en
til
e(
us
)

Message size (B)

Figure 18: [InfiniBand] Latency-sensitive applications with different mes-
sage sizes competing against a bandwidth-sensitive app.

Predictable Latency Latency-sensitive applications are
affected the most when they compete with a bandwidth-
sensitive application. In the presence of Justitia, both median
and tail latencies improve significantly in both InfiniBand
and RoCEv2 (Figure 11a). Due to the enforcement of Rmin,
the bandwidth-sensitive application is receiving half of the
capacity (Figure 11b).

Next we evaluate how Justitia performs when the latency
target is set to a relaxed value (Target99 =10 µs) that can be
easily met (Figure 12). For a slightly high Target99, Justitia
maximizes utilization, illustrating that splitting and pacing
are indeed beneficial.

Fair Bandwidth and Throughput Sharing Justitia en-
sures that bandwidth-sensitive applications receive equal
shares regardless of their message sizes and number of QPs
in use (Figure 13) with small bandwidth overhead (less than
6% on InfiniBand and 2% on RoCEv2). The overhead be-
comes negligible when applying Justitia to throughput- or
latency-sensitive applications (Figure 14).

Justitia’s benefits extends to the bandwidth- vs through-
sensitive application scenario as well. In this case, it ensures

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1315

2.9 3.0

25.8
31.3

3.0 5.3
0

20

40

60

80

Median 99th

La
te

nc
y

(u
s)

Lat App Alone
With B/w App
With B/w App + Justitia

(a) Latency-sensitive App

8.2

4.1

0

4

8

B/w
B

an
dw

id
th

 (G
bp

s)

With Lat App

With Lat App + Justitia

(b) Bandwidth App
Figure 19: [DCQCN] Latency-sensitive application
against a bandwidth-sensitive one.

5.6

1.0
2.6

0

4

8

12

M msg/s

M
ill

io
n

M
es

sa
ge

s/
se

c

Tput App Alone
With B/w App
With B/w App + Justitia

(a) Tput App

7.6

4.1

0.0

4.0

8.0

B/w

B
an

dw
id

th
 (G

bp
s)

With Tput App

With Tput App + Justitia

(b) Bandwidth App
Figure 20: [DCQCN] Throughput-sensitive app
against a bandwidth-sensitive one.

2.9 3.03.0 4.13.1 4.2

0

4

8

12

16

Median 99th

La
te

nc
y

(u
s)

Lat App Alone
With Tput App
With Tput App + Justitia

(a) Latency-sensitive App

4.5 4.4

0.0

4.0

8.0

M msg/s

M
ill

io
n

M
es

sa
ge

s/
se

c With Lat App

With Lat App + Justitia

(b) Tput App
Figure 21: [DCQCN] Latency-sensitive application
against a throughput-sensitive one.

that both receive roughly half of their resources. Figure 15
illustrates this behavior. In both InfiniBand and RoCEv2, the
throughput-sensitive application is able to achieve half of its
original message rate of itself running alone (Figure 15a). The
bandwidth-sensitive application, on the other hand, is limited
to half its original bandwidth as expected (Figure 15b).

Justitia and Real-World RDMA Applications To demon-
strate that Justitia can isolate highly optimized real-world ap-
plications, we performed experiments with DARE and Crail.
Thanks to Justitia’s high transparency, we did not need to
make any source code changes in Crail (given it is bandwidth-
sensitive by default), and we only changed DARE by marking
it as latency-sensitive.

From these experiments, we find that Justitia improves
isolation for latency-sensitive applications while also preserv-
ing high bandwidth of the background storage application.
Figure 16 plots the performance of DARE and Crail after
applying Justitia with the same setting as in Section 3.2. We
observe that, with Justitia, DARE achieves performance that
is close to running in isolation even when running alongside
Crail, and Justitia improves DARE’s tail latency performance
by 3.4× when compared to the baseline scenario while Crail
also achieves 81% of its original throughput performance.
This is close to the expected throughput of 8

9 of Crail’s orig-
inal throughput since in this experiment Justitia treats the 8
parallel writes on top of Crail as separate applications.

Justitia improves performance isolation of FaSST by 2.5×
in throughput and eRPC by 32.2× in tail latency. More details
can be found in Appendix C.2.

6.2 Justitia Deep Dive

Scalability and Rate Conformance Figure 17a shows that
as the number of bandwidth-sensitive applications increases,
all applications receive the same amount of bandwidth using
Justitia with total bandwidth close to the line rate. Justitia also
ensures that all throughput-sensitive application send roughly
equal number of messages (Figure 17b).

CPU and Memory Consumption Justitia daemon uses
one dedicated CPU core per node to generate and distribute
tokens. Its memory footprint is not significant.

2.8

5.4

0

2

4

6

8

M msg/sec

M
ill

io
n

M
es

sa
ge

s/
se

c

2.0 2.22.0
2.3

0

1

2

3

4

Median 99th

La
te

nc
y

(u
s)

27.2

16.1

0

8

16

24

32

40

B/w

B
an

dw
id

th
 (G

bp
s)

0

8

16

24

32

Lat Alone PFC PFC
DCQCN

La
te

nc
y

(u
s)

Without Justitia With Justitia

Figure 22: [RoCEv2] A bandwidth-, throughput-, and latency-sensitive
application running on two hardware priority queues at the NIC. The
latency-sensitive application uses one queue, while the other two share
the other queue.

Varying Message Sizes Justitia can provide isolation at a
wide range of message sizes for latency-sensitive applications
(Figure 18). The bandwidth-sensitive application receives half
the bandwidth in all cases.

6.3 Justitia + X

Justitia + DCQCN The anomalies we discover in this pa-
per does not stem from the network congestion, but rather
happens at the end hosts. We found that DCQCN falls
short for latency- and throughput-sensitive applications (Fig-
ures 19, 20, 21). Justitia can complement DCQCN and im-
prove latencies by up to 8.6× and throughput by 2.6×.

Justitia + Hardware Virtual Lanes Although RDMA
standards support up to 15 virtual lanes [7] for separating
traffic classes, they only map to very few hardware shapers
and/or priority queues (2 queues in our RoCE NIC) that are
rarely sufficient in shared environments [3, 37]. Besides, the
hardware rate limiters in the RNIC are slow when setting
new rates (2 milliseconds in our setup), making it hard to use
with real dynamic arrangement. Moreover, it is desirable to
achieve isolation within each priority queue, as those hard-
ware resources are often used to provide different levels of
quality of service, within which many applications reside.

In this experiment, we show how limited number of hard-
ware queues are insufficient to provide isolation and how
Justitia can help in this scenario. we run three applications,
one each for each of the three types (Figure 22). Although the
latency-sensitive application remains isolated in its own class,
the bandwidth- and throughput-sensitive applications compete
in the same class. As a result, the latter observes throughput
loss (similar to Figure 15). Justitia can effectively provide
performance isolation between bandwidth- and throughput-

1316 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

47
.8

42
.7

0

10

20

30

40

50

60

w/o
Justitia

w/
Justitia

A
gg

. B
an

dw
id

th
(G

bp
s)

(a) Bandwidth Apps

92
.8 11
1.

7

3.
5

8.
8

1

10

100

Median 99th

La
te

nc
y

(u
s)

w/o Justitia Justitia

(b) Latency-Sensitive Apps
Figure 23: [InfiniBand] Justitia isolating 8 latency-sensitive applications
from 8 bandwidth-sensitive ones. Note that 8/9th of the bandwidth share
is guaranteed since Justitia counts all latency-sensitive apps as one by
default (§4.3.3).

13.4 13.6

132.9

30.5

0

40

80

120

160

DCQCN DCQCN +
Justitia

La
te

nc
y

(u
s)

Median 99th

(a) Latency

8.6 8.4

0

2

4

6

8

10

DCQCN DCQCN +
Justitia

A
gg

. B
an

dw
id

th
 (G

bp
s)

(b) Bandwidth
Figure 24: [DCQCN] Incast experiment with 33 senders and a single
receiver. 32 senders launch bandwidth-sensitive applications, the other
sender launches a latency-sensitive application.

sensitive applications in the shared queue.

6.4 Isolating among More Competitors

We focus on Justitia’s effectiveness in isolating many applica-
tions with different requirements and performance character-
istics. Specifically, we consider 8 bandwidth-sensitive appli-
cations – 2 each with message sizes: 1MB, 10MB, 100MB,
and 1GB, and 8 latency-sensitive applications. We measure
the latency and bandwidth when all the applications are active
in Figure 23. Target99 is set to 2µs and 20 million samples are
collected for latency measurements.

Without Justitia, latency-sensitive applications suffer large
performance hits: individually each application had median
and 99th percentile latencies of 1.3 and 1.4 µs (Figures 3a and
3b). With bandwidth-sensitive applications, they worsen by
71.4× and 79.8×. Justitia improves median and tail latencies
of latency-sensitive applications by 26.5× and 12.7× while
guaranteeing Rmin among all the applications.

6.5 Handling Incast with Receiver-Side Updates

So far, we have focused on host-side RNIC contentions where
the network fabric is not a bottleneck. We now evaluate how
Justitia leverages receiver-side updates to handle receiver-
side incast in both RoCEv2 with DCQCN and InfiniBand
with its native credit-based flow control. In this experiment,
33 senders are used with the first 32 continuously launch a
bandwidth-sensitive application sending 1MB messages to
a single receiver. Simultaneously, the last sender launches a
latency-sensitive application with messages sent to the same

S2 S24…

Core SW

ToR SW

S25

ToR SW

R1 …S1 R2 S24 S25

(a) Topology

19.9 20.2

501.7

277.3

0

200

400

600

w/o Justitia

La
te

nc
y

(u
s)

Median 99th

(b) Latency

5.7 5.7

0

2

4

6

8

10

w/o Justitia

B
an

dw
id

th
 (G

bp
s)

(c) Bandwidth
Figure 25: [DCQCN] Justitia’s performance when Inter-ToR links are
congested. Justitia achieves the same bandwidth performance because the
total amount of bandwidth share on S25 is smaller than SafeUtil due to
other traffic flowing in the fabric.

receiver. As described in Section 4.5, Justitia daemon at the
receiver sends updates to all the senders whenever a sender
application starts or exits, resulting in 1

32 -th of line rate guar-
anteed at each of the first 32 senders.

Figure 24 plots the results of this experiment, which show
that Justitia still reduces tail latency even after the impact of
fabric-level congestion on the reference flow latency mea-
surements. Since the monitored latency misses the target, all
the bandwidth-sensitive applications send at the minimum
guaranteed rate. However, Justitia still achieves high aggre-
gate bandwidth because this is greater than the fair share.
This shows that Justitia complements congestion control and
further improves the performance of latency-sensitive appli-
cations by mitigating receiver-side RNIC congestion.

We have also included a discussion on frequently asked
questions regarding reference flows’ impact in large-scale
incast scenarios in Appendix E.4.

6.6 Justitia with Unexpected Network Congestion

When there is congestion inside the network, all traffic flow-
ing through the network will experience increased latency,
including the packets generated by Justitia as latency signals.
Because today’s switches and NICs do not report their in-
dividual contributions to end-to-end latency, Justitia cannot
tell them apart. However, in practice, this is not a problem
because the same response is appropriate in both scenarios.

To evaluate how Justitia performs under such cases, we
performed experiments utilizing two interconnected ToR
switches on CloudLab [11]. There are servers attached to
each ToR switch, and every server has a line rate of 10Gbps.
The experiment topology is shown in Figure 25a. In this topol-
ogy, there is a third core switch that connects to each of the
ToR switches with a link with a capacity of 160 Gbps. In this
experiment, we enable DCQCN at all the servers and ECN
marking at the ToR switches in the cluster.

To create a congested ToR uplink, we launch 24 bandwidth-
sensitive applications each issuing 1MB messages from 24
servers (S1–S24) under one rack to the other 24 servers (R1–
R24) under another rack, and none of the servers run Justitia.
At the same time, we issue 8 bandwidth-sensitive applications
and 1 latency-sensitive application between a pair of servers
(S25 and R25) that is controlled by Justitia. Figure 25 shows
the performance with and without Justitia applied. Even in

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1317

the case where fabric congestion is out of Justitia’s control,
we see that Justitia can still function correctly, and Justitia
still provides additional performance isolation benefits when
compared with just using congestion control (DCQCN).

7 Related Work
RDMA Sharing Recently, large-scale RDMA deployment
over RoCEv2 have received wide attention [23, 41, 44, 45, 64].
However, the resulting RDMA congestion control algo-
rithms [40, 41, 44, 64] primarily deal with Priority-based Flow
Control (PFC) to provide fair sharing between bandwidth-
sensitive applications inside the network. In contrast, Justitia
focuses on RNIC isolation and complements them (§6.3).

Justitia is complementary to FreeFlow [35] as well.
FreeFlow enables untrusted containers to securely preserve
the performance benefits of RDMA. Because it does not
change how verbs are sent to queue pairs, it can still suffer
from the performance isolation problems Justitia addresses.
Justitia can complement FreeFlow to provide performance iso-
lation by implementing Justitia splitter in FreeFlow’s network
library and Justitia daemon in its virtual router.

SR-IOV [55] is a hardware-based I/O virtualization tech-
nique that allows multiple VMs to access the same PCIe
device on the host machine. Justitia design does not interfere
with SR-IOV and will still work on top of it. To provide multi-
tenant fairness, Justitia can be modified to distribute credits
among VMs via shared memory channel similar to [35].

LITE [62] also addresses resource sharing and isolation
issues in RNICs. However, LITE does not perform well in the
absence of hardware virtual lanes (Appendix C.4).

PicNIC [38] tries to provide performance isolation at the
receiver-side engine congestion in software-based kernel-
bypass networks, where it utilizes user-level packet process-
ing instead of offloading packetization to an RNIC. Hence,
PicNIC’s CPU-based resource allocation and packet-level
shaping cannot be applied to RDMA.

Swift [36] also considers receiver-side enginer congestion
in software KBN by using a dedicated enging congestion
window in the congestion algorithm. However, both Swift
and PicNIC ignores sender-side congestion.

Offloading with SmartNICs Recent research in Smart-
NICs has focused on providing programmability and effi-
ciency in hardware offloading [6, 19, 33, 39, 42]. However,
on-NIC packet orchestration leads to tens of microsecond
overhead [19, 57], making performance-related multi-tenancy
support still an open problem.

NICA [18] provides isolation for FPGA-based SmartNICs
by I/O channal virtualization and time-sharing of the Acceler-
ation Functional Units. Justitia focus on normal RNICs and
does not require hardware changes.

Link Sharing Max-min fairness [9, 15, 28, 54] is the well-
established solution for link sharing that achieves both sharing
incentive and high utilization, but it only considers bandwidth-

sensitive applications. Latency-sensitive applications can rely
on some form of prioritization for isolation [3, 25, 63].

Although DRFQ [20] deals with multiple resources, it con-
siders cases where a packet sequentially accessed each re-
source, both link capacity and latency were significantly dif-
ferent than RDMA, and the end goal is to equalize utilization
instead of performance isolation. Furthermore, implementing
DRFQ required hardware changes.

Both Titan [58] and Loom [56] improve performance iso-
lation on conventional NICs by programming on-NIC packet
schedulers. However, this is not sufficient for RDMA perfor-
mance isolation because it schedules only the outgoing link.
Further, Justitia works on existing RNICs that are opaque and
do not have programmable packet schedulers.

TAS [34] accelerates TCP stack by separating the TCP
fast-path from OS kernel to handle packet processing and
resource enforcement. However, TAS does not solve the type
of isolation anomalies Justitia deals with. Justitia’s design
idea can be applied to improve isolation for TAS.

Datacenter Network Sharing With the advent of cloud
computing, the focus on link sharing has expanded to net-
work sharing between multiple tenants [4, 8, 10, 46, 50, 53].
Almost all of them – except for static allocation – deal with
bandwidth isolation and ignore predicted latency on latency-
sensitive applications.

Silo [29] deals with datacenter-scale challenges in pro-
viding latency and bandwidth guarantees with burst al-
lowances on Ethernet networks. In contrast, we focus on iso-
lation anomalies in multi-resource RNICs between latency-,
bandwidth-, and throughput-sensitive applications.

8 Concluding Remarks
We have demonstrated that RDMA’s hardware-based kernel
bypass mechanism has resulted in lack of multi-tenancy sup-
port, which leads to performance isolation anomalies among
bandwidth-, throughput-, and latency-sensitive RDMA appli-
cations across InfiniBand, RoCEv2, and iWARP and in 10,
40, 56, and 100 Gbps networks. We presented Justitia, which
uses a combination of sender-based resource mediation with
receiver-side updates, Split Connection with message-level
shaping, and passive machine-level latency monitoring, to-
gether with a tail latency target as a single knob to provide
network sharing policies for RDMA-enabled networks.

Acknowledgments
Special thanks go to the CloudLab and ConFlux teams for
enabling most of the experiments and to RTCL for some early
experiments on RoCEv2. We would also like to thank all
the anonymous reviewers, our shepherd, Costin Raiciu, and
SymbioticLab members for their insightful feedback. This
work was supported in part by NSF grants CNS-1845853,
CNS-1909067, and CNS-2104243, gifts from VMware and
Google, and an equipment gift from Chelsio Communications.

1318 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,
Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. TensorFlow: A system for large-
scale machine learning. In OSDI, 2016.

[2] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier
Deguillard, Jayneel Gandhi, Stanko Novakovic, Arun
Ramanathan, Pratap Subrahmanyam, Lalith Suresh, Ki-
ran Tati, Rajesh Venkatasubramanian, , and Michael Wei.
Remote regions: a simple abstraction for remote memor.
In ATC, 2018.

[3] Mohammad Alizadeh, Shuang Yang, Milad Sharif,
Sachin Katti, Nick Mckeown, Balaji Prabhakar, and
Scott Shenker. pFabric: Minimal near-optimal data-
center transport. In SIGCOMM, 2013.

[4] Sebastian Angel, Hitesh Ballani, Thomas Karagiannis,
Greg O’Shea, and Eno Thereska. End-to-end perfor-
mance isolation through virtual datacenters. In OSDI,
2014.

[5] Apache. Apache crail. http://crail.incubator.
apache.org/., 2021.

[6] Mina Tahmasbi Arashloo, Alexey Lavrov, Manya
Ghobadi, Jennifer Rexford, David Walker, and David
Wentzlaff. Enabling programmable transport protocols
in high-speed nics. In NSDI, 2020.

[7] Infiniband Trade Association. Infiniband architecture
specification volume 1. https://cw.infinibandta.
org/document/dl/7859, 2015.

[8] Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and
Ant Rowstron. Towards predictable datacenter networks.
In SIGCOMM, 2011.

[9] J.C.R. Bennett and H. Zhang. WF2Q: Worst-case fair
weighted fair queueing. In INFOCOM, 1996.

[10] M. Chowdhury, Z. Liu, A. Ghodsi, and I. Stoica. HUG:
Multi-resource fairness for correlated and elastic de-
mands. In NSDI, 2016.

[11] Cloudlab. http://cloudlab.us/.

[12] RL Cruz. A calculus for network delay, Part I: Network
elements in isolation. IEEE Transactions on Information
Theory, 37(1):114–131, 1991.

[13] RL Cruz. A calculus for network delay, Part II: Network
analysis. IEEE Transactions on Information Theory,
37(1):132–141, 1991.

[14] Michael Dalton, David Schultz, Jacob Adriaens, Ahsan
Arefin, Anshuman Gupta, Brian Fahs, Dima Rubinstein,
Enrique Cauich Zermeno, Erik Rubow, James Alexan-
der Docauer, Jesse Alpert, Jing Ai, Jon Olson, Kevin
DeCabooter, Marc de Kruijf, Nan Hua, Nathan Lewis,
Nikhil Kasinadhuni, Riccardo Crepaldi, Srinivas Krish-
nan, Subbaiah Venkata, Yossi Richter, Uday Naik, , and
Amin Vahdat. Andromeda: Performance, isolation, and
velocity at scale in cloud network virtualization. In
NSDI, 2018.

[15] A. Demers, S. Keshav, and S. Shenker. Analysis and
simulation of a fair queueing algorithm. In SIGCOMM,
1989.

[16] Aleksandar Dragojevic, Dushyanth Narayanan, Orion
Hodson, and Miguel Castro. FaRM: Fast remote mem-
ory. In NSDI, 2014.

[17] Nick G. Duffield, Pawan Goyal, Albert Greenberg,
Partho Mishra, Kadangode K Ramakrishnan, and Ja-
cobus E van der Merwe. A flexible model for resource
management in virtual private networks. In SIGCOMM,
1999.

[18] Haggai Eran, Lior Zeno, Maroun Tork, Gabi Malka, and
Mark Silberstein. NICA: An infrastructure for inline
acceleration of network applications. In USENIX ATC,
2019.

[19] Daniel Firestone, Andrew Putnam, Sambhrama Mund-
kur, Derek Chiou, Alireza Dabagh, Mike Andrewartha,
Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, Harish Kumar Chandrappa, Somesh Chaturmo-
hta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen
Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri,
Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva,
Madhan Sivakumar, Nisheeth Srivastava, Anshuman
Verma, Qasim Zuhair, Deepak Bansal, Doug Burger,
Kushagra Vaid, David A. Maltz, , and Albert Greenberg.
Azure accelerated networking: Smartnics in the public
cloud. In NSDI, 2018.

[20] Ali Ghodsi, Vyas Sekar, Matei Zaharia, and Ion Sto-
ica. Multi-resource fair queueing for packet processing.
2012.

[21] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy
Konwinski, Scott Shenker, and Ion Stoica. Dominant
resource fairness: Fair allocation of multiple resource
types. In NSDI, 2011.

[22] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin.
Efficient memory disaggregation with Infiniswap. In
NSDI, 2017.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1319

http://crail.incubator.apache.org/.
http://crail.incubator.apache.org/.
https://cw.infinibandta.org/document/dl/7859
https://cw.infinibandta.org/document/dl/7859
http://cloudlab.us/

[23] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni,
Jianxi Ye, Jitu Padhye, and Marina Lipshteyn. RDMA
over commodity Ethernet at scale. In SIGCOMM, 2016.

[24] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong
Dang, Ray Huang, Dave Maltz, Zhaoyi Liu, Vin Wang,
Bin Pang, Hua Chen, Zhi-Wei Lin, and Varugis Kurien.
Pingmesh: A large-scale system for data center network
latency measurement and analysis. In SIGCOMM, 2015.

[25] Chi-Yao Hong, Matthew Caesar, and P. Brighten God-
frey. Finishing flows quickly with preemptive schedul-
ing. In SIGCOMM, 2012.

[26] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron
Ogus, Brad Calder, Parikshit Gopalan, Jin Li, and Sergey
Yekhanin. Erasure coding in Windows Azure Storage.
In USENIX ATC, 2012.

[27] Intel. HTB Home. http://luxik.cdi.cz/~devik/
qos/htb/, 2003.

[28] Jeffrey M Jaffe. Bottleneck flow control. IEEE Trans-
actions on Communications, 29(7):954–962, 1981.

[29] Keon Jang, Justine Sherry, Hitesh Ballani, and Toby
Moncaster. Silo: Predictable message latency in the
cloud. In SIGCOMM, 2015.

[30] Anuj Kalia, Michael Kaminsky, and David G Andersen.
Using RDMA efficiently for key-value services. In
SIGCOMM, 2014.

[31] Anuj Kalia, Michael Kaminsky, and David G Andersen.
FaSST: fast, scalable and simple distributed transactions
with two-sided (RDMA) datagram RPCs. In OSDI,
2016.

[32] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
Datacenter rpcs can be general and fast. In NSDI, 2019.

[33] Antoine Kaufmann, Simon Peter, Naveen Kr. Sharma,
Thomas Anderson, and Arvind Krishnamurthy. High
performance packet processing with flexnic. In ASPLOS,
2016.

[34] Antoine Kaufmann, Tim Stamler, Simon Peter,
Naveen Kr. Sharma, Arvind Krishnamurthy, and
Thomas Anderson. TAS: TCP acceleration as an OS
service. In EuroSys, 2019.

[35] Daehyeok Kim, Tianlong Yu, Hongqiang Harry Liu,
Yibo Zhu, Jitu Padhye, Shachar Raindel, Chuanxiong
Guo, Vyas Sekar, and Srinivasan Seshan. Freeflow:
Software-based virtual RDMA networking for container-
ized clouds. In NSDI, 2019.

[36] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan
M. G Wassel, Xian Wu, Yaogong Montazeri, Behnam
andand Wang, Kevin Springborn, Christopher Alfeld,
Michael Ryan, David Wetherall, and Amin Vahdat.
Swift: Delay is simple and effective for congestion con-
trol in the datacenter. In SIGCOMM, 2020.

[37] Gautam Kumar, Srikanth Kandula, Peter Bodik, and
Ishai Menache. Virtualizing traffic shapers for prac-
tical resource allocation. In HotCloud, 2013.

[38] Praveen Kumar, Nandita Dukkipati, Nathan Lewis,
Yi Cui, Yaogong Wang, Chonggang Li, Valas Valancius,
Adriaens Jake, Steve Gribble, Nate Foster, and Amin
Vahdat. PicNIC: Predictable virtualized nic. In SIG-
COMM, 2019.

[39] Yanfang Le, Hyunseok Chang, Sarit Mukherjee, Limin
Wang Aditya Akella, Michael M. Swift, and T.V. Lak-
shman. Uno: Unifying host and smart nic offload for
flexible packet processing. In SoCC, 2017.

[40] Yanfang Le, Brent Stephens, Arjun Singhvi, Aditya
Akella, and Michael M. Swift. RoGUE: RDMA over
generic unconverged ethernet. In SoCC, 2018.

[41] Yuliang LI, Harry Hongqiang Liu, Yan Zhuang, Fei
Feng, Lingbo Tang, Zheng Cao, Ming Zhang, Frank
Kelly, Mohammad Alizadeh, and Minlan Yu. Hpcc:
High precision congestion control. In SIGCOMM, 2019.

[42] Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishna-
murthy, Simon Peter, and Karan Gupta. Offloading dis-
tributed applications onto smartnics using ipipe. In
SIGCOMM, 2019.

[43] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christo-
pher Alfeld, Sean Bauer, Carlo Contavalli, Michael Dal-
ton, Nandita Dukkipati, William C. Evans, Steve Grib-
ble, Nicholas Kidd, Roman Kokonov, Gautam Kumar,
Carl Mauer, Emily Musick, Lena Olson, Erik Rubow,
Michael Ryan, Kevin Springborn, Paul Turner, Valas
Valancius, Xi Wang, and Amin Vahdat. Snap: a micro-
kernel approach to host networking. In SOSP, 2019.

[44] Radhika Mittal, Nandita Dukkipati, Emily Blem, Hassan
Wassel, Monia Ghobadi, Amin Vahdat, Yaogong Wang,
David Wetherall, and David Zats. TIMELY: RTT-based
congestion control for the datacenter. In SIGCOMM,
2015.

[45] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan
Zahavi, Arvind Krishnamurthy, Sylvia Ratnasamy, and
Scott Shenker. Revisiting network support for RDMA.
In SIGCOMM, 2018.

[46] Jeffrey C Mogul and Lucian Popa. What we talk about
when we talk about cloud network performance. SIG-
COMM CCR, 42(5):44–48, 2012.

1320 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://luxik.cdi.cz/~devik/qos/htb/
http://luxik.cdi.cz/~devik/qos/htb/

[47] Jacob Nelson, Brandon Holt, Brandon Myers, Preston
Briggs, Luis Ceze, Simon Kahan, and Mark Oskin.
Latency-tolerant software distributed shared memory.
In USENIX ATC, 2015.

[48] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan,
Devavrat Shah, and Hans Fugal. Fastpass: A centralized
zero-queue datacenter network. 2014.

[49] Marius Poke and Torsten Hoefler. DARE: High-
performance state machine replication on rdma net-
works. In HPDC, 2015.

[50] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy,
S. Ratnasamy, and I. Stoica. FairCloud: Sharing the
network in cloud computing. In SIGCOMM, 2012.

[51] Ahmed Saeed, Nandita Dukkipati, Vytautas Valancius,
Carlo Contavalli, Amin Vahdat, et al. Carousel: Scalable
traffic shaping at end hosts. In SIGCOMM, 2017.

[52] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying
Zhang. LegoOS: A disseminated, distributed os for
hardware resource disaggregation. In OSDI, 2018.

[53] Alan Shieh, Srikanth Kandula, Albert Greenberg, and
Changhoon Kim. Sharing the data center network. In
NSDI, 2011.

[54] Madhavapeddi Shreedhar and George Varghese. Effi-
cient fair queuing using deficit round-robin. IEEE/ACM
Transactions on Networking, 4(3):375–385, 1996.

[55] SR-IOV. Single root i/o virtualization. http://pcisig.
com/specifications/iov/single_root/., 2018.

[56] Brent Stephens, Aditya Akella, and Michael Swift.
Loom: Flexible and efficient nic packet scheduling. In
NSDI, 2017.

[57] Brent Stephens, Aditya Akella, and Michael Swift. Your
programmable nic should be a programmable switch. In
HotNets, 2018.

[58] Brent Stephens, Arjun Singhvi, Aditya Akella, and
Michael Swift. Titan: Fair packet scheduling for com-
modity multiqueue nics. In USENIX ATC, 2017.

[59] I. Stoica, H. Zhang, and T.S.E. Ng. A hierarchical fair
service curve algorithm for link-sharing, real-time and
priority service. In SIGCOMM, 1997.

[60] Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, Ana
Klimovic, Adrian Schuepbach, and Bernard Metzler.
Unification of temporary storage in the nodekernel ar-
chitecture. In ATC, 2019.

[61] Mellanox Technologies. Mellanox Perftest Pack-
age. https://community.mellanox.com/docs/
DOC-2802, 2017.

[62] Shin-Yeh Tsai and Yiying Zhang. LITE kernel rdma
support for datacenter applications. In SOSP, 2017.

[63] Christo Wilson, Hitesh Ballani, Thomas Karagiannis,
and Ant Rowtron. Better never than late: Meeting dead-
lines in datacenter networks. In SIGCOMM, 2011.

[64] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong
Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra Pad-
hye, Shachar Raindel, Mohamad Haj Yahia, and Ming
Zhang. Congestion control for large-scale RDMA de-
ployments. In SIGCOMM, 2015.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1321

http://pcisig.com/specifications/iov/single_root/.
http://pcisig.com/specifications/iov/single_root/.
https://community.mellanox.com/docs/DOC-2802
https://community.mellanox.com/docs/DOC-2802

0
4
8

12
16
20

1 2 4 8 16 32 64

La
te

nc
y

(u
s)

Number of Apps

Median
99 Tail

(a) Latency

0
0.5

1
1.5

2
2.5

3
3.5

1 2 4 8 16 32 64M
ill

io
n

M
es

sa
ge

s/
se

c

Number of Apps

Average

Aggregate

(b) Throughput
Figure 26: Latencies and throughputs of multiple latency-sensitive appli-
cations in InfiniBand. Error bars (almost invisible due to close proximity)
represent the applications with the lowest and highest values.

0
6

12
18
24
30

1 2 4 8 16 32M
ill

io
n

M
es

sa
ge

s/
se

c

Number of Apps

Average

Aggregate

Figure 27: Throughputs of multiple throughput-sensitive applications in
InfiniBand. Error bars (almost invisible due to close proximity) represent
the applications with the lowest and highest values.

1.3
1.7

0.9
1.3

1.7

3.0

0

1

2

3

4

5

IB RoCEv2 iWARP

M
ed

ia
n

La
te

nc
y

(u
s)

Lat App Alone
With Tput App

(a) Latency App (Med)

1.4 1.7
1.1

1.7 2.1

4.5

0

2

4

6

8

IB RoCEv2 iWARP

99
th

 P
er

ce
nt

ile
 (

us
) Lat App Alone

With Tput App

(b) Latency App (99th)

10.7 10.6

3.7

10.4 10.2

3.6

0

4

8

12

16

20

IB RoCEv2 iWARP

M
ill

io
n

M
es

sa
ge

s/
se

c Tput App Alone
With Lat App

(c) Throughput App
Figure 28: Performance anomalies of a latency-sensitive application run-
ning against a throughput-sensitive application.

A Hardware Testbed Summary

Table 1 summarizes the hardware we use for different RDMA
protocols in our experiments.

B Characteristics of Latency- and
Throughput-Sensitive Applications in the
Absence of Bandwidth-Sensitive Ones

Multiple latency-sensitive applications can coexist without
affecting each other (Figure 26). Although latencies increase,
everyone suffers equally. All applications experience the same
throughputs as well.

Similarly, multiple throughput-sensitive applications re-
ceive almost equal throughputs when competing with each
other, as shown in Figure 27.

Finally, throughput-sensitive applications do not get af-
fected by much when competing with latency-sensitive ap-
plications (Figure 28c). Nor do latency-sensitive applications
experience noticeable latency degradations in the presence
of throughput-sensitive applications except for iWARP (Fig-
ure 28a and Figure 28b).

1.3 2.3

6.1

10.8
12.2

178

1.4
2.9

11.4
14.1

95.0
194

0

5

10

15

20

Alone 1 2 4 8 16

La
te

nc
y

(u
s)

Number of Bandwidth-Sensitive Apps

Median 99th

(a) Impact on Latency

10.5

3.2
2.4 2.3 1.8 1.0

0

3

6

9

12

Alone 1 2 4 8 16

M
ill

io
n

M
es

sa
ge

s/
se

c

Number of Bandwidth-Sensitive Apps

(b) Impact on Throughput
Figure 29: Impact of increasing background bandwidth-sensitive applica-
tions (sending 1MB messages) in InfiniBand.

1.5

12.9

2.5

0
3
6
9

12
15

Lat
Alone

w/o
Justitia

w/
Justitia

M
ed

ia
n

La
te

nc
y

(u
s)

1.6

13.7

3.4

0
3
6
9

12
15

Lat
Alone

w/o
Justitia

w/
Justitia

99
th

 P
er

ce
nt

ile
 (

us
)

(a) Latency-sensitive App

86.5

42.7

0.0

25.0

50.0

75.0

100.0

w/o
Justitia

w/
Justitia

B
an

dw
id

th
 (G

bp
s)

(b) Bandwidth App
Figure 30: [100 Gbps InfiniBand] Performance isolation of a latency-
sensitive application against a bandwidth-sensitive application.

B.1 Adding More Competitors Exacerbates the Anoma-
lies

The lack of protection for the latency-sensitive applications
further exacerbates as more bandwidth-sensitive applications
(or equivalently more QPs) are created. We increase the num-
ber of bandwidth-sensitive applications (each with a single
QP) in our experiment to simulate more realistic datacenter
applications. Although InfiniBand performs relatively well
in the presence of a single background bandwidth-sensitive
application (Figure 3), adding one more competitors incurs
an additional drop of 2.65× and 3.79× in median and 99th
percentile latencies (Figure 29a). With 16 or more bandwidth-
sensitive applications, the latency-sensitive application can
barely make any progress. We observed a similar trend in
other RDMA technologies.

Similarly, a throughput-sensitive application loses 90% of
its original throughput with 16 bandwidth-sensitive applica-
tions (Figure 29b).

Those anomalies illustrate RNIC’s inability to handle mul-
tiple types of applications, which could stem from the limited
number of queues inside the RNIC hardware, increasing Head-
of-Line blocking of small messages.

C Additional Evaluation Results
C.1 100 Gbps Results With/Without Justitia

Similar to the anomalies observed for 10, 40, and 56 Gbps
networks (§3), Figure 30 and Figure 31 show that latency-
and throughput-sensitive applications are not isolated from
bandwidth-sensitive applications even in 100 Gbps networks.
In these experiments, we use 5MB messages since 1MB mes-
sages are not large enough to saturate the 100 Gbps link.
Justitia can effectively mitigate the challenges by enforcing
performance isolation.

1322 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Protocol NIC Switch NIC Capacity
InfiniBand ConnectX-3 Pro Mellanox SX6036G 56 Gbps
InfiniBand ConnectX-4 Mellanox SB7770 100 Gbps
RoCEv2 ConnectX-4 Mellanox SX6018F 40 Gbps
RoCEv2 (DCQCN) (§6.3) ConnectX-4 Lx Dell S4048-ON 10 Gbps
iWARP T62100-LP-CR Mellanox SX6018F 40 Gbps
RoCEv2 (DCQCN) (§6.5 and §6.6) ConnectX-3 Pro HP Moonshot-45XGc 10 Gbps

Table 1: Testbed hardware specification.

8.2

2.6
4.5

0

3

6

9

12

Tput
Alone

w/o
Justitia

w/
Justitia

M
ill

io
n

M
es

sa
ge

s/
se

c

(a) Throughput App

85.7

43.4

0

25

50

75

100

w/o
Justitia

w/
Justitia

B
an

dw
id

th
 (G

bp
s)

(b) B/w App
Figure 31: [100 Gbps InfiniBand] Performance isolation of a throughput-
sensitive application against a bandwidth-sensitive application.

C.2 Real RDMA-based Systems Require Isolation

Besides DARE, highly-optimized RDMA-based RPC systems
also suffer from unmanaged RNIC resources. Here we pick
two representative systems, FaSST [31] and eRPC [32], to
illustrate why they require performance isolation and how
Justitia effectively achieves it. To generate background traffic,
we implemented a simple RDMA-based blob storage backend
across 16 machines. Users read/write data to this storage using
a PUT/GET interface via frontend servers. Objects larger than
1MB are divided into 1MB splits and distributed across the
backend servers. This generates a stream of 1MB transfers,
and the following RDMA-optimized systems have to compete
with them in our experimental setup.

FaSST is an RDMA-based RPC system optimized for high
message rate. We deploy FaSST in 2 nodes with message
size of 32 bytes and a batch size of 8. We use 4 threads to
saturate FaSST’s message rate at 9.8 Mrps. In the presence
of the storage application, FaSST’s throughput experiences a
74% drop (Figure 32).

eRPC is an even more recent RPC system built on top of
RDMA. We deploy eRPC in 2 nodes with message size of 32
bytes. We evaluate eRPC’s latency and throughput using the
microbenchmark provided by its authors. For the throughput
experiment, we use 2 worker threads with a batch size of
8 on each node because 2 threads are enough to saturate
the message rate in our 2-node setting. In the presence of
the storage application, eRPC’s throughput drops by 93%
(Figure 33b), and its median and tail latencies increase by
67× and 40×, respectively (Figure 33a).

By applying Jusitita, FaSST’s throughput improves by
2.5× (Figure 32). Justitia also improves eRPC’s median (tail)

9.8

2.3

5.8

0

2

4

6

8

10

12

Alone w/o Justitia

Re
qu

es
t R

at
e

(M
rp

s)

38.5

22.4

0

20

40

60

w/o Justitia

St
or

ag
e

A
pp

lic
at

io
n

Ba
nd

w
id

th
 (G

bp
s)

Figure 32: Performance isolation of FaSST running against a bandwidth-
sensitive storage application.

2.7

182

3.2
4.8

190

5.9

0

3

6

9

12

15

Alone w/o Justitia

La
te

nc
y

(u
s)

Median 99th
47.2

22.4

0

20

40

60

w/o Justitia

St
or

ag
e

A
pp

lic
at

io
n

B
an

dw
id

th
 (G

bp
s)

(a) Latency

4.6

0.3

2.9

0

2

4

6

Alone w/o Justitia

R
eq

ue
st

 R
at

e
(M

rp
s)

43.4

22.4

0

20

40

60

w/o Justitia

St
or

ag
e

A
pp

lic
at

io
n

B
an

dw
id

th
 (G

bp
s)

(b) Throughput
Figure 33: Performance isolation of eRPC running against a bandwidth-
sensitive storage application.

latency improves by 56.9× (32.2×) and its throughput by
9.7× (Figure 33). Note that the throughput of the storage
applications drops to half of the maximum throughput in both
cases because we treat the background application as a whole
(and thus with equal weights to all applications, the SafeUtil
is 1

2 of the line rate), which is different from how we treat the
parallel writes in the case of Apache Crial.

C.3 Handling Remote READs

RDMA READ verbs can compete with WRITEs and SENDs
issued from the opposite direction (§4.5) Figure 34 shows
that Justitia can isolate latency-sensitive remote READs from
local bandwidth-sensitive WRITEs and vice versa.

C.4 Justitia vs. LITE

LITE [62] is a software-based RDMA implementation that
adds a local indirection layer for RDMA in the Linux kernel

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1323

47
.8

22
.4

0

10

20

30

40

50

60

B/W

B
an

d
w

id
th

 (G
bp

s)

w/o Justitia Justitia
11
.5

11
.7

2.
2 3.
5

0.0

5.0

10.0

15.0

20.0

Med 99th

La
te
nc
y
(u
s)

(a)

47
.8

22
.4

0.0
10.0
20.0
30.0
40.0
50.0
60.0

B/W

Ba
nd

w
id

th
 (G

bp
s)

(b)

10
.9 14
.1

1.
3 2.
7

0.0

5.0

10.0

15.0

20.0

Med 99th

La
te
nc
y
(u
s)

(c)

47
.8

22
.4

0.0
10.0
20.0
30.0
40.0
50.0
60.0

B/W

Ba
nd

w
id

th
 (G

bp
s)

(d)
Figure 34: [InfiniBand] (a)–(b) Justitia isolating remote latency-sensitive
READs from local bandwidth-sensitive WRITEs. (c)–(d) Justitia isolating
local latency-sensitive WRITEs from remote bandwidth-sensitive READs.

2.4 2.9

1.3
2.12.4

158.7

0.0

2.0

4.0

6.0

8.0

Median Tail

La
te

nc
y

(u
s)

InfiniBand w/ Justitia w/ LITE

(a) Latency-sensitive App

45.3

22.4

37.75

0

20

40

60

Baseline Justitia LITE

B
an

dw
id

th
 (G

bp
s)

(b) Bandwidth App
Figure 35: [InfiniBand] Performance isolation of a latency-sensitive flow
running against a 1MB background bandwidth-sensitive flow using Justi-
tia and LITE.

26.7
22.5

41.8

18.7 22.3

5.8

0
10
20
30
40
50

Baseline Justitia LITE

B
an

dw
id

th
 (G

pb
s)

1GB (100MB) 1MB

Figure 36: [InfiniBand] Bandwidth allocations of two bandwidth-sensitive
applications using Justitia and LITE. LITE uses 100MB messages instead
of 1GB due to its own limitation.

to virtualize RDMA and enable resource sharing and perfor-
mance isolation. It can use hardware virtual lanes and also
includes a software-based prioritization scheme.

We found that, in the absence of hardware virtual lanes,
LITE does not perform well in isolating latency-sensitive flow
from the bandwidth-sensitive one (Figure 35) – 122× worse
99th percentile latency than Justitia. In terms of bandwidth-
sensitive applications using different message sizes, LITE
performs even worse than native InfiniBand (Figure 36). Justi-
tia outperforms LITE’s software-level prioritization by being
cognizant of the tradeoff between performance isolation and
high utilization.

D Sensitivity Analysis
Setting Applications Weights To evaluate how assigning
different application weights (§4.3.1) affects Justitia’s perfor-
mance, we launch 4 bandwidth-sensitive applications each
sending 1MB message together with a latency-sensitive ap-
plication, and we vary the weights of the bandwidth-sensitive
applications. Figure 37 illustrates the impact of setting dif-
ferent application weights with latency target set to 2 µs. As

10.8

2.0 2.0 2.0

14.1

2.2 2.3 2.4

0

5

10

15

Baseline 1 1.5 2

La
te

nc
y

(u
s)

Weight

Median 99th

(a) Latency

47.7

37.1 39.7 41.3

0

20

40

60

Baseline 1 1.5 2

B
an

dw
id

th
 (G

bp
s)

Weight

(b) Bandwidth
Figure 37: [InfiniBand] Sensitivity analysis of application weights.

10.8

1.6 2.0 2.0 2.4

14.1

1.9 2.4 2.5
4.8

0

5

10

15

Baseline 1K 5K 10K 50K

La
te

nc
y

(u
s)

Chunk Size (Bytes)

Median 99th

(a) Latency

47.7
38.1 41.3 41.3 41.3

0

20

40

60

Baseline 1K 5K 10K 50K

B
an

dw
id

th
 (G

bp
s)

Chunk Size (Bytes)

(b) Bandwidth
Figure 38: [InfiniBand] Sensitive analysis of chunk sizes.

1.94 1.95 1.92 2.442.17 2.19 2.18

13.46

0

5

10

15

1000 10000 100000 500000

La
te

nc
y

(u
s)

RefCount

Median 99th

Figure 39: [InfiniBand] Sensitivity analysis of RefCount.

the weight increases, the value of SafeUtil increases, and thus
more aggregate bandwidth share is obtained for bandwidth-
sensitive applications. Higher SafeUtil leads to worse latency
isolation, but in these experiments the effect of weights on tail
latency performance is not huge. In fact, we do not find much
latency performance degradation as the weight increases, il-
lustrating the effectiveness of Justitia mitigating head-of-line
blocking via its splitting mechanism. The cluster operator can
choose weights based on the priority of the applications in
the cluster based on the Quality-of-Service inside the cluster
(similar to deciding bandwidth resources in a shared environ-
ment), or based on how much each application pays to obtain
the service. Additionally, if multi-tenant fairness is desired,
one can achieve that by modifying how credits are allocated
in Justitia on a per-tenant basis. Justitia supports allocating
tokens at multiple granularities if needed, which can be per-
tenant, per-application, or per group of connections within an
application.

Setting Chunk Size When latency-sensitive applications
are present, Justitia picks the smallest chunk size that still
provides a wide range of bandwidth in case SafeUtil is high
(Figure 10). Here we evaluate how setting the correct chunk
size affects Justitia’s performance. We use the same setting
as the sensitivity analysis of application weights and set the
weight to be 2. Figure 38 illustrates the experiment results
with different chunk sizes. Although a smaller chunk size pro-
vides better latency isolation, it is not able to achieve SafeUtil
and thus waste bandwidth resources. On the other hand, too
big of a chunk size does not provide enough latency isolation.

1324 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Setting RefCount To evaluate how sensitive the value
RefCount (§4.3.2) is, we design an experiment where initially
we launch one latency-sensitive application to compete with a
bandwidth-sensitive application. Once the experiment starts,
we add three additional bandwidth-sensitive application, with
a gap of 1 second between their arrival time. We measure
the latency of latency-sensitive application after it completes
10 million messages. Figure 39 plots the results with differ-
ent RefCount values. It turns out that Justitia tracks the tail
latency closely as long as RefCount is not huge. In Justitia,
we set the default value of RefCount =10000 to have some
memory of latency spikes but not longer enough to impact
stable performance.

E Discussion

E.1 Why not simply use hardware priority queues in
the RNIC?

Mellanox NICs have priority queues, but as we mention in
the paper, the number of queues they support is very limited
(e.g., only 2 lossless queues in the RoCE NICs we test out),
and we have illustrated such limited number priority queues
are insufficient to provide isolation in Figure 23. In addi-
tion, the time needed to reconfigure and modify the mapping
from applications’ QPs to the priority queues is in the order
of milliseconds. Last but not the least, it is sometimes also
desireable to provide isolation inside a priority level (e.g.,
bandwidth-sensitive applications and latency-sensitive appli-
cations are both assigned with the same QoS level) where
hardware priority queues will not be sufficient. Thus, using
the priority queues provided by existing hardware does not
solve the isolation problem that Justitia faces.

E.2 Why use only 1 QP in most of the microbenchmark
experiments?

We use a small number of QPs to show that the performance
isolation issues can easily occur even with a very small num-
ber of active connections. We also test with more number of
QPs but the results are placed in Appendix due to limit of
space. In fact, adding more QPs exacerbates the performance
degradation (Figure 30 in the appendix).

E.3 How does Justitia handle the incast experiment?

Justitia leverages receiver-side updates to make sure the cor-
rect minimum rate guarantees are updated correctly at each
sender. Due to large latency spike in the case of a network
incast, senders will mostly like send via the minimum guaran-
teed rate (Rmin) given the latency target will not be met. We
discussed receiver-side updates in Section 4.5 and illustrate
Justitia complements with existing congestion control and
can further help reduce receiver-side engine congestion in
Section 6.5.

E.4 Does reference flow and receiver-side updates cre-
ate additonal congestion in a large scale deploy-
ment?

The reference flow sends small messages (10 Bytes every
20 µs) and only amount to a very small Gbps number (1e6 /
20 * 10 / 1e9 * 8 = 0.004 Gbps), which consumes less than
0.1% of the total link capacity even at nodes with only 10
Gbps link, and thus is not likely to generate any hot spot in
the network. When the server broadcasts the receiver-side
update, the message is sent using SEND and RECV with a
message size of 16 Bytes. With even 1000 client machines
this amounts to around 16KB total message size, which is too
small to create a potential congestion problem.

In the case of a large-scale latency-sensitive flow incast,
if congestion indeed happens, DCQCN will work together
with Justitia since it is the major congestion control deal-
ing with fabric congestion. In this scenario, adding more
latency-sensitive flows does not prevent Justitia guaranteeing
bandwidth share of bandwidth hungry applications.

In the current design of Justitia, the bandwidth-sensitive
applications can be rate-limited due to a coexisting latency-
sensitive application which is launched at the same host but
sends data to a different destination. This is intended behavior
to mitigate the anomalies caused by contention at sender-side
RNICs, which happens regardless of whether two compet-
ing applications are targeting the same receiver. We defer a
comprehensive fabric-level solution which involves multiple
senders and receives as our future work.

E.5 How to ensure all cooperating SW uses the right
protocols and protocol versions?

To deploy Justitia, one only needs to install the Justitia Dae-
mon code and a modified Mellanox driver code on the host
machine, and Justitia is compatible with all existing RDMA
protocols, including RDMA over Infiniband and RoCE. In dat-
acenter deployments, cluster management tools like Ansible
can be used to ensure the appropriate code is deployed at each
machine. Additionally, it is straightforward to upgrade Justitia.
Because each server in Justitia operates independently, it is
not necessary for the same version of Justitia to be deployed
across the cluster. Justitia will operate as long as servers are
running some version of Justitia.

E.6 How can Justitia be implemented in hardware?

Without having a software layer to split the large RDMA
operations before they arrive at the NIC, one probably need to
somehow control how the NIC issues PCIe reads. Hardware
is often optimized for performance, which in fact is why we
are having such isolation issues, so simply decreasing the
size of each PCIe reads will definitely affect its maximum
throughput performance. To bring Justitia into the hardware
design, similar to what we have done in the software layer,
the hardware need to recognize when splitting and pacing is
needed to provide isolation, and when it should process at

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1325

maximum capacity for higher utilization.

E.7 Long-term value of Justitia

As RNICs keep evolving, its performance isolation issues
may be mitigated in newer hardware designs. The purpose
of this work is to show that there exist such isolation issues
in current kernel-bypass networks and illustrate one working
approach to mitigate the issue. Design ideas presented in this
work can inform hardware designers when developing future
RNIC as well as programmable NIC designs.

F Future Research Directions
Interesting short-term improvements of this work include,
among others, dynamically determining an application’s per-
formance requirements to handle multi-modal applications,
handling idle applications, and extending to more complicated
application- and/or tenant-level isolation isolation policies.
Long-term future directions include implementing Justitia
logic on an RNIC and integrating Justitia with congestion
control algorithms.

We highlight these immediate next-steps in the following:
Dynamic Classification (Strategyproof Justitia). Appli-

cations may not always correctly or truthfully identify their
flow types. To improve Justitia, it is possible to modify
the driver to monitor QP usage and automatically identify
whether individual connections are bandwidth-, throughput-,
or latency-sensitive. This would provide support for multi-
model applications.

Idle Applications. It is straightforward to support idle ap-

plications in Justitia without wasting bandwidth. If a band-
width hungry app stops sending messages for a long time
but does not exit, the driver and daemon can work together
to stop token issuing when tokens are not being used and a
configurable backlog of tokens has been accumulated.

Justitia at Application and Tenant Levels. Currently,
Justitia isolates applications/tenants by treating all flows from
the same originator as one logical flow with a single type.
However, for an application with flows with different require-
ments or for a tenant running multiple applications compet-
ing with another tenant only running a single application,
more complex policies may be desirable. With Justitia, it is
straightforward to instead support per-tenant, per-application,
or per-flow-group isolation. This is done by allocating tokens
at multiple different granularities.

Co-Designing with Congestion Control. Although Justi-
tia effectively complements DCQCN (§6.3) in simple sce-
narios, DCQCN considers only bandwidth-sensitive flows.
A key future work would be a ground-up co-design of Justi-
tia with DCQCN [64] or TIMELY [44] to handle all three
traffic types for the entire fabric with sender- and receiver-
side contentions (§6.5). While network calculus and service
curves [12, 13, 29, 59] dealt with point-to-point bandwidth-
and latency-sensitive flows, their straightforward usage can
be limited by multi-resource RNICs and throughput-sensitive
flows. At the fabric level, exploring a Fastpass-style central-
ized solution [48] can be another future work.

1326 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

NetHint: White-Box Networking for Multi-Tenant Data Centers

Jingrong Chen Hong Zhang† Wei Zhang Liang Luo# Jeffrey Chase Ion Stoica† Danyang Zhuo

Duke University †UC Berkeley #University of Washington

Abstract
A cloud provider today provides its network resources to
its tenants as a black box, such that cloud tenants have
little knowledge of the underlying network characteristics.
Meanwhile, data-intensive applications have increasingly
migrated to the cloud, and these applications have both the
ability and the incentive to adapt their data transfer schedules
based on the cloud network characteristics. We find that
the black-box networking abstraction and the adaptiveness
of data-intensive applications together create a mismatch,
leading to sub-optimal application performance.

This paper explores a white-box approach to resolving this
mismatch. We propose NetHint, an interactive mechanism
between a cloud tenant and a cloud provider to jointly enhance
application performance. With NetHint, the provider provides
a hint — an indirect indication of the underlying network
characteristics (e.g., link-layer network topologies for a
tenant’s virtual machines, number of co-locating tenants,
network bandwidth utilization), and the tenant’s applications
then adapt their transfer schedules accordingly. The NetHint
design provides abundant network information for cloud
tenants to compute their optimal transfer schedules, while
introducing little overhead for the cloud provider to collect and
expose this information. Evaluation results show that NetHint
improves the average performance of allreduce completion
time, broadcast completion time, and MapReduce shuffle
completion time by 2.7×, 1.5×, and 1.2×, respectively.

1 Introduction
Data-intensive applications (e.g., network functions, data
analytics, deep learning) have increasingly moved to the cloud
for resource elasticity, performance, security, and ease of
management. The performance of the cloud network is critical
for these applications’ performance. Cloud providers have thus
spent significant effort to optimize various aspects of cloud
networks, including network topology [34, 73, 76], congestion
control and network stack [3, 33, 42, 44, 69, 77, 92], load bal-
ancing [2,46,63,88], bandwidth guarantee [6,9,43,48,51,67],
debugging [7, 31], fault recovery [53], hardware [8, 27, 52, 58],
and virtualization [66].

Today, a cloud provider exposes the network to its tenants
as a black box: the cloud tenants have little visibility into their
expected network performance (e.g., a constant worst-case
bandwidth assurance) or the underlying network character-
istics including the link-layer network topology, number of
co-locating tenants, and instantaneous available bandwidth.

A

C

B

D

(a) Network characteristics (b) network-agnostic (c) topology-aware (d) network-aware

0.5

0.5

0.5

A

C

B

D

Link BW(1, bidirectional)

Traffic(0.25, upstream)

Rack 1 Rack 2

bottleneck

A

C

B

D
1

1 0.75

A

C

B

D

11 1

bottleneck optimal

Finish time:1/0.5=2 Finish time:1/0.75=4/3 Finish time:1/1=1

Possible broadcast trees (throughput)

Figure 1: Applications have the ability and the incentive to
adapt their transfer schedules based on network characteristics:
Consider broadcasting a unit-size data object from VM A to VM
B, C, and D. (a) shows the network characteristics, all links have
bidirectional bandwidth of 1. VM D has upstream background
traffic of 0.25. (b) to (d) show possible broadcast trees and their
corresponding broadcast finish time. The arrows represent traffic
flows and the numbers represent the throughput.

The black-box model has worked well for decades due to
its simplicity. However, with the emergence of popular data-
intensive applications (e.g., data analytics, distributed deep
learning, and distributed reinforcement learning) in the cloud,
we observe that such a black-box model is no longer efficient
(§2). The crux is that many of these emerging applications
have both the ability and the incentive to adapt their transfer
schedules based on the underlying network characteristics,
but it is difficult to do so with a black-box network.

Consider broadcast, an important communication primitive
in reinforcement learning and ensemble model serving.
Figure 1 shows an example that VM A broadcasts to VM B to
VM D. Figure 1b shows a possible broadcast tree constructed
under the black-box model. Without the underlying network
characteristics, the broadcast tree is network-agnostic, which
introduces link stress on the cross-rack link. Figure 1c shows
a broadcast tree based on the topology information (i.e.,
topology-aware), which improves the broadcast finish time
from 2 to 4

3 time units by minimizing the cross-rack traffic.
Figure 1d shows a broadcast tree based on both the topology
and bandwidth information (i.e., network-aware). It builds an
optimal broadcast tree that avoids the congested upstream link
on VM D, further improving the finish time to 1 time unit. The
performance gains increase for data center networks that have
larger oversubscription ratios or more skewed traffic.

The above example illustrates a fundamental mismatch
between the black-box nature of existing network abstractions
and the ability of a data-intensive application to adapt its traffic.
With the black-box model, the cloud tenant is unaware of the
network characteristics, and the cloud provider is unaware
of the application communication semantics and the transfer
schedule. This misses an opportunity for the cloud tenants and

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1327

the cloud provider to adapt the data flows to the underlying
network topology and conditions to enhance performance
and efficiency for these applications. The potential gains are
substantial: our benchmark experiment on AWS shows that
the allreduce latency for a deep learning experiment varies by
up to 2.8× across different allreduce transfer schedules. One
candidate approach is for applications to probe and profile the
network and then plan their data flows accordingly [5, 57]. A
second option is to report their possible transfer schedules to
the provider for the provider to choose. We observe that these
alternatives introduce substantial communication latency and
system overhead (§2.2).

In this paper, we explore a white-box approach to resolve
this mismatch. One possibility would be for the cloud provider
to expose the physical network topology, the VM locations,
along with bandwidth assurances to the application. However,
this approach has two major drawbacks. First, exposing VM
placement and data center network topology may compromise
security for cloud tenants and can raise concerns for the cloud
provider (§2). Second, the bandwidth available to a tenant
depends on the communication patterns of other tenants,
which may be highly dynamic. Predictions that are not timely
or not accurate may do more harm than good.

This paper explores an alternative approach. We design and
implement NetHint, a mechanism for a cloud tenant and cloud
provider to interact to enhance the application performance
jointly. The key idea is that the provider provides a hint —
an indirect indication of the bandwidth allocation to a cloud
tenant (e.g., a virtual link-layer network topology, number
of co-locating tenants, network bandwidth utilization). The
tenant applications then adapt their transfer schedules based
on the hints, which may change over time. NetHint balances
confidentiality and expressiveness: on one hand, the hint
avoids exposing the physical network topology or traffic
characteristics of other tenants (§9). On the other hand, we
show that the hint provides sufficient network information to
enable tenants to plan efficient transfer schedules. (§5).

The effectiveness of NetHint relies on addressing three
important challenges. First, what information should the
hint contain? We provide each cloud tenant with a virtual
link-layer network topology along with available bandwidth
on each link in the virtual topology. This allows applications
to adapt their transfer schedules to avoid network congestion.

The second challenge is how to provide this hint at a low
cost. We design a two-layer aggregation method to collect
network statistics on the hosts. We designate a NetHint server
in a rack to aggregate network characteristics in the rack.
NetHint servers then use all-to-all communication to exchange
network characteristics globally. A cloud tenant can thus
query its rack-local NetHint server for hints.

The final challenge is how should applications react
to the hint. We present several use cases for NetHint to
optimize communication in a range of popular data-intensive
applications including deep learning, MapReduce, and

Figure 2: Examples to illustrate the black-box networking
abstraction: tenants cannot predict their network performance.
VM A to D are placed in two servers. All links have 10 Gbps
bandwidth. We assume bandwidth is statically partitioned on the end
host (each VM can get at most 5 Gbps).

serving ensemble models. The takeaway is that for all these
applications, tenants can use the NetHint information via
simple scheduling algorithms. Adaptation also has a downside:
hints can be stale and adapting transfer schedules based on
stale information can hurt performance. We design a policy for
applications to adapts flexibly with different hints in different
scenarios: applications use temporal bandwidth information
when background network conditions are stable and adaptation
overhead is low, and otherwise applications fall back to using
only the time-invariant topology information (§6).

We evaluate the overheads and the potential performance
gain of having NetHint in data centers using a small testbed
and large-scale simulations. Our results show that NetHint
speeds up the average performance of allreduce completion
time in distributed data-parallel deep learning, broadcast
completion time in ensemble model serving, and MapReduce
shuffle completion time in distributed data analytics by 2.7×,
1.5×, and 1.2×, respectively. Moreover, these benefits are
cheap to obtain: NetHint incurs modest CPU, memory, and
network bandwidth overheads.

In summary, this paper makes the following contributions:
• We identify a mismatch between the current black-box

network abstraction and the communication needs of
data-intensive applications.

• We explore a white-box networking approach for
multi-tenant data centers.

• We design and implement NetHint, a low-cost system to
allow data-intensive applications to adapt their data transfer
schedules to enhance performance.

2 Background

2.1 Black-Box Networking Abstraction

Today, the networking abstraction a cloud has is merely a
per-VM bandwidth allocation at the end hosts. The abstraction
is a black box: tenants are unaware of the underlying network
characteristics including network topology, number of
co-locating tenants, and instantaneous available bandwidth.
As a result, the cloud tenants cannot predict their network
performance. Figure 2 shows an example. Even with a static
allocation of 5 Gbps per VM, VM A cannot predict its network
performance because it depends on the traffic demand of other
VMs. VM A can get only a bandwidth of 3.33 Gbps when

1328 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0:00 4:00 8:00 12:00
Time of Day

0.0

0.5

1.0

La
te

nc
y

(s
)

(a) Allreduce latency across time

0.4 0.6 0.8 1.0 1.2
Latency (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

2.8x

1.8x

(b) CDF
Figure 3: Empirical allreduce (256MB) latency of 5 trials. Two trials
may have different VM allocations spatially, and each trial contains
100 consecutive runs. (a) shows 5 trials over different times of a day.
In (b), each line is the latency CDF of a trial. Each vertical line is the
mean latency for a trial. Allreduce latencies vary both across time
(up to 2.8x) and across VM allocations (up to 1.8x).

two flows of VM C and D cause congestion inside the network
(case 2). Even with work-conserving bandwidth guarantees,
a VM’s network performance depends on other VMs.

To quantify this effect, we benchmark allreduce latency on
Amazon Web Service (AWS). Allreduce is a collective com-
munication primitive that is commonly used for distributed
deep learning. It aggregates a vector (i.e., gradient updates
in deep learning) across all worker processes (each running
in its own VM). In our experiment, we launch 32 g4dn.2XL
(with Linux kernel 5.3) instances in the EC2 US-East-1 region
and test ring-allreduce latency with NVIDIA NCCL (version
2.4.8)—the most popular collective communication library for
deep learning—for 100 consecutive runs. We repeat the above
experiment for 5 trials, and different trials may have different
VM placements on the physical topology. Figure 3 shows
our findings: ring-allreduce performance on 256MB buffer
varies both spatially across different trials and temporally
within a trial. Comparing across different trials, the fastest
trial has a 1.8× better mean performance than the slowest trial;
comparing the 100 runs within a trial, the fastest run is up to
2.8× faster than the slowest run.

2.2 Adaptiveness in Data-Intensive Applications

Besides reinforcement learning and ensemble model serving,
which can broadcast model and input data adaptively, as
illustrated in Figure 1, we show that many other applications
also have both the ability and incentive to adapt their transfer
schedules based on the underlying network characteristics.

Many distributed data analytics workloads contain network-
intensive shuffle phases between different job stages. For ex-
ample, the shuffle in MapReduce applications creates an all to
all data transfer between the map and reduce stages. The shuf-
fle phase accounts for a large portion of the execution time for
many data analytics workloads [16], and numerous studies [4,
15,16,39,84,87,90] have demonstrated that optimizing shuffle
performance significantly improves application performance.
Given network characteristics, distributed data analytics appli-
cations can change their transfer schedules (by changing the
task placement) to minimize shuffle completion time. Figure 4a

bottleneckbottleneck

m1 m2 A

C

B

D

A

C

B

D

A

C

B

D
r1 r2

Mapreduce shuffle

11 11

Finish time: 4/1=4 Finish time: 2/0.75=2.67 Finish time: 2/1=2

Possible task placement

(b) network-agnostic (c) topology-aware (d) network-aware(a) Traffic demand

Figure 4: MapReduce jobs can adapt transfer schedules via task
placement. Assume the same network characteristics as in Figure 1a.
(a) shows the traffic demand for a MapReduce shuffle. Each arrow
represents a unit traffic. (b) to (d) show possible task placement and
the corresponding shuffle finish time.

shows the shuffle traffic for a MapReduce job with two mappers
(m1 and m2) and two reducers (r1 and r2). We observe from Fig-
ure 4b to Figure 4d that allocating mappers and reducers based
on the topology and bandwidth information effectively im-
proves this shuffle completion time from 4 to 2 units. Moreover,
emerging task-based distributed systems (e.g., Ray, Dask, Hy-
dro) support applications with dynamic task graphs. Similar to
the MapReduce example, we can change the transfer schedule
of these applications by choosing different VMs to place a task.

Moreover, many deep learning jobs are network-
intensive. This claim is validated by numerous recent
studies [14, 35, 40, 71, 86] and observations from production
clusters (e.g., Microsoft [30, 41, 82] and ByteDance [65]). In
particular, as mentioned in §2.1, deep learning jobs contain
an allreduce phase to synchronize gradient updates among
workers in each training iteration. As shown in Figure 5, an
allreduce phase has multiple candidate topologies. For exam-
ple, the allreduce traffic can be sent via a ring connecting all
the workers with a flexible ordering (Figure 5a and Figure 5b).
Or, we can build an allreduce tree to (1) aggregate gradient
updates to one of the workers, and (2) send the aggregated
gradient updates back in the reverse direction (Figure 5c and
Figure 5d). Different allreduce topologies introduce different
transfer schedules. Thus, given network characteristics, deep
learning jobs can change their transfer schedules by selecting
the algorithm and configuration of allreduce.

2.3 Addressing the Mismatch

The black-box nature of the existing networking abstraction
and the adaptiveness of data-intensive applications create
a mismatch. Data-intensive applications would benefit
from more network information from the cloud provider to
configure their transfer schedules, but black-box networking
hides this information.

Solutions based on the black-box abstraction. There are
two approaches to address this mismatch without modifying
the existing black-box networking abstraction. One possible
approach is to let the cloud provider optimize the communica-
tion for tenants as a cloud service. To this end, we first have to
develop a general networking API for cloud tenants to express
their communication semantics, traffic loads and optimization
objectives to the cloud provider. The API design should be
similar to the coflow abstraction [16] or the virtual cluster ab-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1329

A

C

B

D

(a) allredcue ring 1 (b) allredcue ring 2 (c) allreduce tree 1

A

C

B

D

A

C

B

D

(d) allreduce tree 2

A

C

B

D

Possible allreduce topologies

Figure 5: Allreduce can be performed with different topologies.
(a) to (d) show 4 possible allreduce topologies to perform allreduce
among the 4 VMs (workers).

straction [9], but more general to support a large variety of pos-
sible traffic patterns and user-defined objectives. Moreover, a
recent measurement study [78] shows that major public clouds
exhibit high bandwidth variability at a time granularity of sec-
onds. Thus it is hard, if not impossible, for the cloud provider
to perform timely network scheduling for thousands of tenants
in a centralized manner, while ensuring network SLAs (e.g.,
defined via the networking API) for each tenant respectively.

Another potential approach is for cloud tenants to run exten-
sive performance profiling in their allocated VMs [29, 49, 57].
For example, PLink [57] probes the VM pair-wise bandwidth
and latency with DPDK and uses K-means clustering to
reverse engineer the underlying network topology. This allows
it to achieve high allreduce performance by choosing a good
allreduce algorithm. Choreo [49] uses 3-step measurements
to pinpoint congested links in the data center network to
schedule data analytics workloads. Similar approaches were
explored decades ago on Internet traffic routing on wide-area
overlay networks [5]: picking a high-performance Internet
path based on user measurement. Unfortunately, this approach
is both costly, as each tenant/user has to profile the network
independently, and slow, because the probing phase delays
the start of the application. The PLink authors told us that they
use 10000 packets to determinte bandwidth between a pair
of hosts. Choreo generates 3 minutes of probe traffic to infer
the network characteristics for 10 VMs.

A white-box network abstraction? Given the deficiencies
of the two black-box based approaches, we instead explore a
white-box approach: the provider reveals essential information
about the network characteristics to the tenant, and the tenants
then optimize their transfer schedules accordingly.

One possible way to achieve this objective is for the cloud
provider to reveal to a tenant the location of each VM in the
physical link-layer network topology, and estimate available
bandwidth between each of the VM-pairs. However, this
method can raise security and competitive issues. First,
exposing VM allocations in the physical network introduces
privacy risks for cloud tenants. For example, a malicious
user can locate a targeted tenant’s VMs and perform attacks.
Second, the exposed VM allocation information can raise
competitive concerns for the cloud provider. For instance, this
information might be valuable for competitors to learn a cloud
provider’s scheduling policies, thus, lowering its competitive
advantage. Third, the bandwidth a tenant can acquire depends
on the transfer schedules of all the tenants, and a single change
in transfer schedule of one tenant may trigger a recalculation

NetHint Service

Cloud Provider

Network
Characteristics Change

Cloud Tenant

Application
Hint

1Collect

Query2

Adapt3
Transfer

Schedule

Figure 6: NetHint overview. NetHint service collects network
characteristics. Cloud tenants poll hints from NetHint service and
adapt their transfer schedules.

for all the tenants. As such, it is computationally expensive
for the cloud provider to update the bandwidth shares in real
time. Moreover, an application’s bandwidth also depends on
its own transfer schedule. For example, in Case 2 of Figure 2,
if VM A sends one extra flow, the total egress bandwidth of
VM A increases to 5 Gbps1. As a result, without knowing a
tenant’s transfer schedule, the cloud provider cannot provide
accurate bandwidth estimates to its tenants.

3 NetHint Overview
NetHint is an interactive mechanism between a cloud tenant
and a cloud provider to jointly enhance the application
performance. The key idea is that the provider provides a hint
— an indirect indication of the underlying network character-
istics (e.g., a virtual link-layer topology for a tenant’s VMs,
number of co-located tenants, network bandwidth utilization)
to a cloud tenant. As illustrated in Figure 6, the provider
provides a NetHint service, which periodically (100 ms by
default) collects the hint information to capture changes of the
underlying network characteristics. A tenant application can
query the NetHint service to get the hint information, and then
adapt its transfer schedules based on this provided hint. Note
that NetHint does not change the fairness mechanism of the un-
derlying network. A tenant can opt in/out any time — whether
or not to use NetHint will not affect its fair share of the network.

The hint provides a white-box network abstraction which
includes additional network information to tenants. As such,
users can infer their best transfer schedule without substantial
probing latency or communication overhead with the provider.
The hint exposes neither the physical network topology nor
the location of a tenant’s VMs within it (e.g., which racks).
Compared with providing bandwidth information, the hint
relieves the provider from the burden of calculating accurate
bandwidth allocations. Moreover, compared with calculating
bandwidth allocation, it is easier to acquire accurate hint
messages (e.g., a virtual link-layer topology for a tenant’s
VMs, number of co-located tenants, network bandwidth
utilization). As such, the provider is free from the potential
risk of providing inaccurate information.

We require NetHint to be: (1) readily deployable: all
the mechanisms are implementable using commodity
hardware; (2) low cost: the cloud provider can collect network
characteristics with minimal CPU, memory, and bandwidth

1Assume per-flow fair sharing in the network.

1330 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

overheads; (3) useful: data-intensive workloads can leverage
the hints to achieve high performance. To achieve these goals,
NetHint’s design and implementation must address three
questions. First, what hints should be provided to the tenants?
Second, how should cloud providers collect the hints with low
cost? Third, how should applications use the hints to adapt
their transfer schedules?

NetHint describes a virtual link-layer topology that connects
a tenant’s VMs. In addition, NetHint provides to the tenant
recent utilization summaries and counts of co-locating tenant
connections on shared network links in the virtual topology.
This information allows the tenant to adapt its transfer
schedules based on both the topological and temporal hot
spots in the network. Further, our design ensures that the only
additional information NetHint exposes is aggregated network
statistics across all tenants. It is thus difficult for a tenant to
acquire information about any individual other tenant. (§4.1)

For the second question, our preferred approach to collect-
ing hints is to measure network traffic in the physical switches
using network telemetry, e.g., sketching [54, 55]. However,
sketches depend on specific programmable switch features,
which are not widely deployed. Instead, our prototype employs
a host-driven approach, in which each machine monitors
local flows and transmits flow-level statistics to a NetHint
measurement plane. One machine in each rack runs a NetHint
server process to aggregate the rack-level information. These
NetHint servers exchange information using periodic all-to-all
communication. A cloud tenant connects to the local NetHint
server to fetch hints. We show that this approach allows
NetHint to provide timely hints to tenants with low CPU and
bandwidth overheads (§4.2).

As for the third question, we consider two aspects of
adaptation in response to the hints. First, we observe that the
adaptation algorithm should take into account the application
transfer schedule and semantics to maximize the performance
gain. To this end, we consider several use cases for NetHint
which cover a range of popular data-intensive applications,
including (1) choosing allreduce algorithms in distributed deep
learning, (2) constructing broadcast trees for serving ensemble
models, and (3) placing tasks in MapReduce frameworks. For
each case, we show how applications can adapt their transfer
schedules based on the information in the hint. The takeaway
is that for all of these examples, tenants can make use of the
NetHint information via simple scheduling algorithms (§5).

Second, we explore the drawbacks of adaptation: it intro-
duces extra computational overhead, and may be ineffective
or even harmful or unstable if network conditions change too
rapidly. We conclude that the adaptation algorithm should
use different sets of hints depending on network changing
frequency and adaptation overhead. For example, we find that
if an application has a non-negligible latency to collect hints
and compute the transfer schedules, the bandwidth information
may be stale and thus may negatively affect the application per-
formance (detailed in §6). Based on this intuition, we design

Notations & Descriptions
T A virtual topology connecting all the tenant’s VMs
l A virtual link in virtual topology T

Bl
e A tenant’s bandwidth share on link l

Bl
t Total bandwidth on link l

Bl
r Residual bandwidth on link l

nl Number of shared objects on link l

Table 1: Notations and descriptions for NetHint.

a policy for applications to react to hints in a flexible manner:
under stable network conditions and low adaptation overheads,
applications use both bandwidth and topology information
to maximize the performance gain of adaptation. Otherwise,
applications use only the stable topology information (§6).

4 Providing NetHint Service
4.1 What Is in the Hint?

NetHint exposes a virtual link-layer topology T to a cloud
tenant. The tenant’s virtual topology abstracts the network as a
tree data structure in which the tenant’s VMs are leaf nodes. A
link in the tree represents one or more physical links in the data
center network, and an interior node may abstract a region of
switches and links. The prototype uses a three-layer tree that
captures how VMs are distributed among racks in a data center
and collapses the network structure above the rack level into
a single root node. VMs residing in the same rack are in the
same subtree. The virtual topology abstraction does not reveal
racks or servers where the tenant has no presence. Following
the common observation that congestion losses often occur at
the rack level [12, 43, 60, 89], these virtual topologies in the
NetHint prototype ignores congestion at any structure above
the rack level [23]. It is possible to represent more structure by
adding layers to the tree. The tree approximation presumes that
the data center network is able to balance its load, so that traffic
among children of an abstract node see similar available band-
width. There is a rich literature on efficient network load balanc-
ing for data centers [2,21,22,26,28,36,46,47,63,88], and some
of them are readily deployable with commodity hardware.

NetHint allows applications to react to temporal hot spots
in the network. For this purpose, NetHint exposes an estimate
of utilization on each virtual link l. Recall Case 1 in Figure 2,
now assume the orange flow from VM A uses only 2 out of
10 Gbps. If the tenant of VM B knows the network utilization
information, it can infer that VM B can send traffic at 8 Gbps.
As such, NetHint provides (1) the total bandwidth Bl

t and (2)
the residual bandwidth Bl

r on each virtual link l. However,
we find that this information alone is insufficient for an
application to adapt its transfer schedule, especially when
links are congested. For example, even if one link l has already
reached 100% utilization, a tenant can still send flows through
l and get a fair bandwidth share.

Shared objects and fairness models. In fact, the bandwidth
share depends on the fairness model implemented by the
cloud provider. Per-flow-fairness and per-VM-pair-fairness

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1331

are enforced naturally for RDMA-based networks because
modern RDMA NICs can be configured to choose either of
them. Per-flow-fairness is ensured for containerized clouds
because cloud users cannot modify the kernel TCP stack. For
traditional TCP-based and VM-based clouds, many recent
studies [18, 37, 62] describe how to enforce per-VM-pair-
fairness. With the increasing programmability of modern
switches, it now becomes possible to implement other fairness
models in the network [74, 83], such as per-tenant fairness.

Consider an application placing 3 connections on a
100 Gbps network link with 7 existing connections from
3 other tenants. We assume each flow can reach 100 Gbps
throughput. With per-flow fairness model, the application
should get 30 Gbps bandwidth. With per-tenant fairness model,
the application should get 25 Gbps bandwidth.

The example indicates that the bandwidth share also
depends on the number of shared objects on each link l. The
definition of shared object depends on the fairness model:
it is a flow (VM-pair, tenant) under per-flow (per-VM-pair,
per-tenant) fairness, respectively.

To provide bandwidth information, NetHint exposes the
number of shared objects nl on each link l. Taken together,
NetHint provides a tuple (nl , Bl

t , Bl
r), which includes both the

current link utilization and the number of shared objects.

Bandwidth estimation. The information in the virtual
topology enables a tenant to estimate its available bandwidth
on each virtual link l efficiently. More formally, consider a
tenant who plans to place kl shared objects on link l in its
transfer schedule. If link l is an in-network link in virtual
topology T (i.e., not attached to any VM), the bandwidth
share the tenant gets can be estimated as:

Bl
e=max(

kl

nl+kl Bl
t ,B

l
r) (1)

Equation 1 indicates that when the link is under-utilized,
the tenant can use up all the residual bandwidth Bl

r, and even
if the link is already congested, the tenant can at least achieve
its fair share based on the number of shared objects.

If link l is an edge link (i.e., attached to one VM), the
bandwidth share is also affected by the underlying sharing
approach. More specifically, denote the per-VM bandwidth
guarantee provided by the sharing approaches as Bv, we have:

Bl
e=

{
min(Bv,max(kl

nl+kl Bl
t ,B

l
r)) static partitioning

max(kl

nl+kl Bl
t ,B

l
r,Bv) work-conserving

(2)

Sources and impact of inaccuracy We acknowledge that
both Equation 1 and Equation 2 are approximations and can
sometimes be inaccurate. First, some shared objects (i.e.,
tenant, VM-pair, or connection) may have traffic demands less
than their fair network share, thus calculating the exact value
of Bl

e requires knowing the traffic demand for each shared
object. NetHint does not provide per-object information, as
doing so introduces security concerns and significant overhead
given the huge number of such objects. Second, since a virtual

link corresponds to the aggregation of multiple parallel paths
in the physical topology, the estimation may be inaccurate
under poor network load balancing across these parallel
paths. We note that this is less likely to happen with recently
proposed data center network load balancing designs.

Despite these inaccuracies in bandwidth estimation, our
results (§8) show that even the three-level tree approximation
is sufficient to adapt the transfer schedules and improve the
performance of our target applications. Moreover, evaluation
results also show that the benefits degrade gracefully with the
quality of the approximations.

Alleviating security and competitive issues. Compared
with a naive white-box solution that exposes VM allocation
information and physical network topology, NetHint has
alleviated the security and the competitive concerns. First,
NetHint does not expose the physical location of allocated
VMs, so a tenant cannot learn the provider’s VM allocation
policy. Second, our network statistics are aggregated over all
other tenants, so it is difficult for a tenant to infer from them
the network behavior of any other individual tenant. Finally,
network topology among a tenant’s VMs is already accessible
even in today’s black-box model via user probing approaches,
e.g., as presented in PLink [57] and Choreo [49]. NetHint does
provide easier access to this information, but we believe this
does not increase the security risks. Note that NetHint does
not fully eliminate these issues, and we discuss them in §9.

4.2 Timely NetHint with Low Cost

User query overhead The virtual topology is presented as
a set of links (each with a Link ID). Each virtual link has its
associated Bt . The temporal utilization information for each
link includes a tuple of three fields (Link ID, n, Br). Each field
occupies 8 bytes. As such, the amount of data returned by a
query is small. Consider a cloud tenant that has rented 100
VMs allocated across 10 racks. As upstream and downstream
virtual links are considered separately, the number of virtual
links equals twice the sum of the number of VMs and the
number of racks the tenant occupies. The amount of query
information thus has (100+10)×2×3×8=5280 Bytes.

There is no value or incentive for a tenant to query at
a higher frequency than the information update period of
NetHint (100 ms by default). Tenant VMs communicate with
a NetHint server through TCP connections with rate limits
that prevent queries more frequent than once per 50 ms.

Collection overhead We design a two-layer host-driven ag-
gregation approach to collect timely hint information with low
cost. Recall that we select one machine in each rack to run
a NetHint server process. Each machine collects flow-level
network characteristics from its operating system, and sends
them to its rack-local NetHint server periodically. The informa-
tion each machine has to send to the local NetHint server is a
virtual link ID plus one (n, Br) for each virtual machine to ToR
link and another (n, Br) containing only the traffic transmitting

1332 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

across the rack, for adding its contribution to the ToR uplink’s
(n, Br). Each field is 8 bytes, so the total data size per virtual
link is (1+2×2)×8=40 bytes. It is necessary to consider the
upstream and downstream bandwidth independently, so each
virtual machine or ToR has two associated virtual links. For
example, assuming a physical machine has 10 VMs, it sends
40×2×10=800 bytes of data to the NetHint server in each pe-
riod. We set the information update period to 100 ms by default.
Thus, the total aggregated information for one NetHint server is
two (n,Br) for every VM-to-ToR virtual link and the ToR uplink
in the virtual topology. The NetHint servers then use all-to-all
communication to exchange their aggregated information.

Suppose a data center has 1000 racks, and every rack has 20
machines. In each information update period, a local NetHint
server gathers 16 KB information (800 bytes × 20 machines).
With a 100 ms update period, the total amount of cross-rack
traffic introduced by the all-to-all information exchange is
16 MB/100 ms= 1.3 Gbps per rack. Let’s assume each rack
has outgoing bandwidth of 500 Gbps. Then the bandwidth
overhead of NetHint is 0.26%.

Failure detection and recovery NetHint is a best-effort
service, and applications should be prepared to function
without hints, e.g., if their rack-local NetHint servers become
unavailable due to failures such as link failure and server crash-
ing. In this case, applications just revert the transfer schedule
to a default one assuming no known network characteristics
until a new NetHint server is available in the rack.

5 Adapting Transfer Schedules with NetHint
We find that most data-intensive applications can be catego-
rized into two classes, based on how they can adapt to network
characteristics. For each application class, we show that
adapting transfer schedules corresponds to an optimization
problem. Our goal here is not to present the optimal algorithm
to solve the scheduling problems. Rather, our goal is to show
that a broad set of distributed applications can benefit from
NetHint using simple scheduling algorithms.

5.1 Optimizing Collective Communication

Many data-intensive applications run a high-level collective
communication primitive (e.g., broadcast, allreduce) among
a set of processes. Any such operation can be accomplished
flexibly via a large set of possible overlay topologies among
all the processes. For example, a broadcast can be performed
with different broadcast trees connecting all the receivers, and
an allreduce may employ different allreduce topologies (e.g.,
tree-allreduce or ring-allreduce). For all these communication
primitives, the choice of overlay topologies affects only the
efficiency (i.e., finish time) but not the correctness. Many
popular ML applications belong to this category:
• Data-parallel deep learning: each server holds a replica

of the model and calculates gradients locally. Servers use
allreduce to synchronize gradients in each training iteration.

• Reinforcement learning: the trainer process in reinforce-
ment learning repeatedly broadcasts the model (i.e., policy)
to a dynamic set of agents.

• Serving ensemble models: multiple servers run DNN
models simultaneously to predict the label on the same
input data, and then use voting to decide the final output.
For every input data batch, the front-end server broadcasts
it to a set of servers holding different DNNs.
Moreover, as the object of collective communication is usu-

ally a vector of numbers, we can partition the object and apply
different overlay topologies on each partition. For example,
a broadcast can be accomplished via multiple broadcast trees,
with each broadcast tree transferring a different (weighted)
portion of the broadcast object. Similarly, an allreduce can be
performed via a weighed combination of different allreduce
topologies. The transfer schedule thus depends on both the
choices of overlay topologies and their corresponding weights.

With NetHint, the tenant can estimate the bandwidth Bl
e

available on each link l based on Equation 1 and Equation 2.
For a transfer schedule s, denote the volume it transfers on
each link l as dl

s. The corresponding latency of the schedule
can be estimated as maxl(dl

s/Bl
e). Thus, we have:

Problem statement: Given the virtual topology T and the
estimated bandwidth on each virtual link l, find a transfer
schedule that minimizes the latency maxl(dl

s/Bl
e).

To solve the above problem, one major challenge is that
the number of candidate transfer schedules can be huge. For
example, there can be O(n(n−2)) possible broadcast trees to
broadcast a message to n processes [79]. One possible solution
is to use tree packing algorithms [13, 25, 79]. However, since
the goal here is to show the usefulness of NetHint information
rather than to find the optimal algorithm, we design simple
heuristics to solve the problem. We first sample a random set
of overlay topologies (broadcast and allreduce trees) which
cross each rack only once. We then use linear programming
to find the best weight assignment among these trees, so that
the transfer schedule minimizes the latency maxl(dl

s/Bl
e).

5.2 Optimizing Task Placement

Many distributed applications execute based on a task graph
describing the tasks and their dependencies. The task graph
can be static (i.e., task graph is known before the workload
runs) [19, 85] or dynamic (i.e, tasks arrive as the workload
runs) [61]. Since different tasks may send and receive different
amounts of data, the placement of tasks onto VMs determines
the transfer schedule among the VMs. Applications in data
analytics frameworks and task-based distributed systems
therefore can benefit from network-aware task placement:
• Data analytics frameworks [32, 85]: data analytics work-

loads contain network-intensive shuffle phases between
different job stages. One shuffle phase creates an all-to-all
communication between a set of sender tasks and receiver
tasks, so task placement controls the shuffle performance.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1333

Notations & Descriptions
Tb Average changing period of the background network condition
Tu Duration of a transfer schedule being used
Ta Latency to adapt (collecting information and computing a schedule)
Ts Staleness of the hint
p A threshold defined by the ratio between total adapting latency and JCT

Table 2: Important factors related to the impact of staleness.

• Task-based distributed systems [38, 61] are increasingly
popular in industry. In these applications, the task graph
is dynamic and generated at runtime. Tasks launch after
fetching input objects from upstream tasks. As such,
efficient task placement can minimize the task launch
latency reducing the object fetch time.

Problem formulation For both applications, we can
formulate the task placement as a classical network embedding
problem. Denote the set of tasks as T and the set of VMs as V.
Compared with the problem statement in §5.1, which selects
an efficient data transfer schedule, here we need to find an
embedding E :T 7→V given the transfer schedule among all
tasks. The algorithm inputs and optimization goals are the
same as the problem statement in §5.1, except that the latency
is calculated as maxl(dl

e/Bl
e). dl

e is the transfer volume on link
l introduced by embedding E .

We make minor modifications to the greedy heuristics
proposed in Hedera [1] to solve the embedding problem. We
first sort all tasks in T based on the amount of data they receive
in decreasing order (no need if |T| = 1). We then place tasks
one by one following this order. When placing a task to V, we
optimize greedily for the objectives described in the problem
statement. Before processing the next task, we update the
cross rack traffic and dl

e based on the placement.

6 Flexible Adaptation for Stale Information

Staleness of NetHint information The staleness of NetHint
information during job execution is affected by the following
two factors (notations listed in Table 2). First, an application
controller can have a non-negligible latency to collect hints
and compute the transfer schedules based on the hints, which
makes the hints stale when being applied. We denote the
adaptation latency as Ta.

Second, applications can adapt to hints periodically. For
each adaptation period, the schedule calculated based on the
previous hint will be used for the entire duration Tu. Note
that for recursive jobs (e.g., model serving), recomputing the
schedule for every iteration introduces too much latency. To
this end, we fetch hints and recompute the schedule every k
iterations, so that the latency to compute transfer schedule is
within a portion p (e.g., 10% by default) of the job execution
time. Moreover, for jobs that adapt the task placement based
on hints (e.g., MapReduce), the adaptation period Tu equals
job completion time, as the task placement usually cannot be
changed during job execution.

Taken together, the staleness of NetHint information is quan-
tified as Ts=Ta+Tu, which is the combination of both above

factors. Ta is the total latency of four steps. The first three
steps are to collect hints: sending host network characteristics
to NetHint service, NetHint service exchanges rack-level net-
work characteristics, and applications querying the NetHint
service. The maximum latency for these three steps combined
is 300 ms (100 ms per step due to NetHint frequency), so we
use 150 ms as the estimate for the average case latency. The last
step is to compute the transfer schedule, and it is application-
specific (Figure 8). In our evaluation, a deep learning job of 64
workers requires 10 ms to compute its transfer schedule. We
thus set Ta=150+10=160 ms. We set Tu=100 ms to keep the
compute overhead to be less than 10% of the total running time.

Impact of the stale information The impact of stale
information depends on the relative relationship between
(1) the staleness of the information; and (2) the stability of
the underlying network condition. Assume the background
network condition changes every Tb time in average. A hint
with staleness Ts much less than Tb can still be helpful since
the network condition is likely to be similar with the condition
Ts time ago. In contrast, a hint with staleness Ts much larger
than Tb will be misleading, since the current network condition
may be very different from the condition Ts time ago. In this
case, adaptation with misleading hints can negatively affect
the application performance (Figure 12d).

Flexible adaptation based on application and network con-
dition. There are two takeaways from the above analysis. First,
stale information should not be used when it is misleading.
Regarding this, one approach is to simply ignore the provided
hints and run applications as we run them today. However, as
we show in motivating examples (e.g., Figure 1c and Figure 4c),
the link-layer network topology alone can be useful for some
types of applications to reduce the amount of cross-rack traffic.
Compared with the bandwidth information, topology infor-
mation is more stable and not affected by network dynamics.

Therefore, we propose NetHint-TO, a class of scheduling
algorithms that use only the stable topology information from
NetHint. For example, with NetHint-TO, we create a ring that
crosses each rack only once for ring-allreduce and a chain that
crosses each rack only once for tree-broadcast.

The second takeaway is that there is no one-size-fits-all
solution. Each application should have two scheduling algo-
rithms, one uses bandwidth information (in §5) and another
one uses stable topology information only (NetHint-TO).
We design a policy to choose between these two algorithms
based on both the application and the network conditions
(i.e., Tb, Tu, Ta). More specifically, when Ts<Tb, applications
use the scheduling algorithm in §5 to calculate the optimal
schedule based on both bandwidth and topology information.
When Ts ≥ Tb, applications adopt NetHint-TO to minimize
the impact of stale information.

1334 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

7 Implementation
We implement NetHint using 4600 lines of Rust code. 2300
additional lines of code are in NetHint server to provide
NetHint to cloud tenants. The algorithms for applications
to adapt transfer schedules (i.e., MapReduce, allreduce, and
broadcast) are implemented using 149, 216, and 144 lines of
code. We use lpsolve [56] for solving linear programs.

To compute the hints in our testbed, we take an endhost-
based approach. We hook an eBPF program into the OS
kernel. The eBPF program counts the total number of bytes
going within the rack and outside the rack. A userspace
program polls the counters from the eBPF program every
10 ms and maintains a moving average of the number of
existing shared objects (i.e., flows, in a per-flow fairness
model). The userspace program sends the number of shared
objects and traffic data to the NetHint server every 100 ms. In
a deployment environment where SmartNICs is available, we
can also program the SmartNICs to implement this logic.

NetHint server binds to a TCP port, where VMs connect
to to fetch hints. NetHint server uses a single thread to respond
to NetHint queries. A single thread is enough for our design
because queries are not frequent.

For an application to use NetHint, we need to modify the
application. For traditional collective communication, the
transfer schedule is static and decided before runtime. Recent
collective communication designs have shown that transfer
schedules can be dynamically decided at runtime [93]. NetHint
can help these dynamic collective communication designs
to decide on an efficient transfer schedule based on network
characteristics. These dynamic collective communication
designs can query and adapt transfer schedule every k iterations
before issuing data transfer operation. For task placement,
the global scheduler of a distributed system (e.g., master in
MapReduce [19]) queries the NetHint server and uses both the
task information and the NetHint information to decide task
placement. For our evaluation purpose, we build a dynamic
scheduler for collective communication and a task scheduler
for MapReduce tasks according to the descriptions above.

8 Evaluation
8.1 Setup and Workloads

We evaluate NetHint using an on-premise testbed and large-
scale simulations. Our setting is that hosts ensure work-
conserving bandwidth guarantee for VMs and the network
ensures per-flow fairness. We compare NetHint with the sce-
narios where cloud tenants (1) do not consider network charac-
teristics and (2) probe the network to reverse-engineer the net-
work characteristics and then adapt transfer schedules. For user
probing, we assume network information is always correctly
reverse engineered. We assume the probing strategy is the fol-
lowing: For a tenant that owns n hosts, user probing runs in n/2
rounds, where each round’s latency is either the latency to send
10000 packets or 1 second, whichever is smaller, to measure

throughput and latency between n/2 pairs of hosts. 2 Similar to
NetHint, user probing adopts the same strategy to periodically
update the transfer schedule, but with a lower frequency due
to its higher overheads. We calculate user probing’s frequency
using the same method described in the second paragraph of §6.

We use a mix of two types of background traffic to simulate
skewed and long-tailed traffic in data centers [3, 12, 70, 89].
One slow-moving background traffic occupies 0-50%
bandwidth of the link capacity on each link in a Zipfian
distribution. The slow-moving background traffic occupies
10% bandwidth in total and changes every 10 seconds. The
other is a fast-moving background traffic which is on all
links and occupies 0-10% bandwidth of the link capacity in a
uniform random fashion. The fast changing background traffic
changes every 10 ms. We use the following workloads. We
run each experiment 5 times and report the average speedup
for each job. To quantify the overall speedup, we also measure
the arithmetic average of speedups across jobs.

Distributed data-parallel deep learning. We test the
allreduce completion time. The job sizes are either 16 or 32
(in terms of number of nodes) with equal probability. For each
allreduce job, we set the buffer size to be 100 MB (≈ the size
of ResNet-50). We run 100 jobs and assume jobs arrive as a
Poisson process. We choose Poisson lambda = 24 seconds,
so that the average network utilization approximates to 12%.

Serving an ensemble of ML models. We test the broadcast
completion time. We use the same job size distribution de-
scribed in Hoplite [93]. We run 100 jobs and assume jobs arrive
as a Poisson process. We choose Poisson lambda =8 seconds,
so that the average network utilization approximates to 12%.

MapReduce. We test the latency of the data shuffling phase of
MapReduce. We use Facebook’s MapReduce trace [17], which
contains 500 MapReduce jobs and their arrival time. We as-
sume the traffic is divided evenly from a reducer to the mappers.

8.2 NetHint in Testbed Experiments

We build a 6-server testbed. Each server has a 100 Gbps
Mellanox ConnectX-5 NIC and two Intel 10-core Xeon Gold
5215 CPUs (2.5 GHz). These machines are connected via
an emulated 40 Gbps 2-stage FatTree network using a single
100 Gbps Mellanox SN2100 switch through self-wiring. 3
machines are in one rack, and the rest 3 machines are in the
other rack. The oversubscription ratio on our network is 3.
Each machine runs 4 VMs where each VM is guaranteed
10 Gbps through fair-queuing on the NICs.

Overheads. We already provide analysis of bandwidth
overheads in §4.2. Now the remaining question is how much
overhead NetHint incurs in terms of latency and CPU cycles.

2We believe this is a best-case scenario for existing user probing
techniques. Plink [57] sends 10000 packets per VM-pair to reverse engineer
link-layer topologies. Choreo [49] uses a 3-step strategy to pinpoint congested
links and its first step is measure pair-wise bandwidth. It takes 3 minutes to
reverse engineer the network conditions for 10 VMs (90 VM-pairs).

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1335

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Speedup to No Information

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

User Probe (1.58x)
NetHint (2.17x)

(a) Distributed deep learning

0.6 0.8 1.0 1.2 1.4 1.6 1.8
Speedup to No Information

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

User Probe (0.90x)
NetHint (1.41x)

(b) Ensemble model serving

0.4 0.8 1.2 1.6 2.0 2.4 2.8
Speedup to No Information

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

User Probe (0.84x)
NetHint (1.16x)

(c) MapReduce
Figure 7: Testbed results: NetHint’s speedup on testbed for allreduce in data-parallel distributed training, broadcast in ensemble ML model
serving, and mapreduce shuffle compared with user probing and not using network information. Numbers in the legend shows the average
of speedups compared with running applications without network information.

2 4 8 16 32 64
Job Scale

10
−1

10
1

10
3

O
ve

rh
ea

d
(m

s)

Broadcast
Allreduce
MapReduce
User Probe

Figure 8: Testbed results: Latency to compute transfer schedules.

Collecting statistics from eBPF program is instant, and the
polling period for flow statistics is 10 ms.

To measure the overheads in large deployment, we use each
CPU core in our testbed to emulate a rack by instantiating
a NetHint server per-core. We use pidstat to measure the
CPU cycles and memory footprint on NetHint server. Table 3
shows the result. When the number of racks scale up to 240
racks, the CPU time spent on NetHint servers is negligible,
i.e., less than 0.66%. The memory footprint on each NetHint
server is small (less than 80 MB) and scales with the number
of racks mainly due to the increase in the hint size. The latency
to collect network information is less than 14 ms.

We implement the algorithms described in §5. We test the
computation latency of running each algorithm at different
scales (number of workers). Figure 8 presents the results. The
latency to make a scheduling decision remains low, ranging
from 10 us to 30 ms. Compared with the computation latency,
the extra latency introduced by user probing is much higher,
ranging from 100 ms to 3 seconds. The round-trip latency to
fetch hints takes 100 us because it is rack-local.

Results. NetHint improves application performance. Figure 7
shows the normalized speedup to running applications without
network information. Using user probing speeds up the commu-
nication by 1.6x for distributed data-parallel deep learning and
slows down the communication by 1.1x and 1.2x for serving an
ensemble of ML models, and MapReduce shuffle, respectively.
NetHint speeds up communication of these workloads by
2.2x, 1.4x, and 1.2x, substantially outperforming user probing.
NetHint can outperform user probing because collecting hints
is more lightweight than each application individually probing
the network characteristics. User probing hurts many ensemble
model serving and MapReduce jobs because of the probing
overheads. In addition, we notice that a small portion of jobs
in Figure 7c are penalized. On our testbed, the job log shows

Racks CPU Util. (%) Memory (MB) Latency (ms)
6 0.06 4.53 10.60

24 0.14 5.90 10.73
96 0.41 19.28 11.91
240 0.66 78.16 13.73

Table 3: Testbed results: The system overhead of a NetHint server
in CPU utilization, memory, and information collection latency.

that there are on average 2.8 jobs sharing the rack bandwidth.
One job arrival or departure changes the network condition
for all the other jobs on the rack. However, the task placement
decision cannot be changed during job execution, and thus the
initial placement can be imperfect. In contrast, deep learning
and model serving workloads in Figure 7 do not severely suffer
from this problem, as they can timely modify the transfer sched-
ule for each iteration based on the latest NetHint information.

8.3 NetHint in Simulations
We use simulations to evaluate NetHint in large-scale
deployments and in various operating environments. Our
simulator is written in 5000 lines of Rust. The simulation
is at flow level, and throughput of each flow is the result of
solving a max-min fairness formula based on traffic demand.
We simulate a CPU cluster and a GPU cluster individually.
Both the CPU and GPU clusters have 150 racks. In the GPU
cluster network, each rack has 6 machines with 100 Gbps NIC,
and each rack has total upstream bandwidth of 200 Gbps. In
the CPU cluster network, each rack has 18 machines with
100 Gbps NIC and the total upstream bandwidth is 600 Gbps.
The oversubscription ratios are both 3. In the CPU cluster, each
machine has 4 VMs. In the GPU cluster, each machine only
has 1 VM. All VMs have bandwidth guarantee of 25 Gbps.

Results. Figure 9 shows the NetHint’s speedup of the three
workloads in our simulations. In summary, the trend of the
simulation results matches what we have observed on the
testbed. NetHint speeds up communication by 2.7x, 1.5x, and
1.2x, respectively. On allreduce, the speedup is higher than
that on the testbed because the number of hosts involved in
a job is larger than that on the testbed, and thus the amount
of cross-rack traffic is also larger, giving NetHint more room
to optimize transfer schedules.

User probing incurs substantial overheads in both traffic and
latency. Figure 10 shows the overheads of using NetHint and

1336 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Speedup to No Information

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

User Probe (1.79x)
NetHint (2.70x)

(a) Distributed deep learning

0.8 1.2 1.6 2.0 2.4 2.8
Speedup to No Information

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

User Probe (1.19x)
NetHint (1.47x)

(b) Ensemble model serving

0.0 0.4 0.8 1.2 1.6 2.0 2.4
Speedup to No Information

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

User Probe (0.62x)
NetHint (1.19x)

(c) MapReduce
Figure 9: Simulation results: Comparing NetHint with dynamic user probe in the default background traffic setting.

10
1

10
3

10
5

Shuffle Size (GB)

10
−6

10
−3

10
0

10
3

Pr
ob

e
Tr

af
fic

 /
Ap

p
Tr

af
fic

Solution
User Probe
NetHint
Job Size
25
50
75
100
125

(a) Probing traffic over application traffic

0 100
Job Size

0

2

4

6

Ex
tra

 L
at

en
cy

 (s
) User Probe

NetHint

(b) Extra time
Figure 10: Simulation results [MapReduce]: Extra overhead for
MapReduce jobs comparing NetHint and user probing.

user probing in MapReduce. The amount of overhead depends
on both MapReduce shuffle size and job size. Figure 10a
shows the extra traffic introduced by NetHint and user probing
over application traffic. NetHint only adds less than 0.1% extra
traffic. User probing, in contrast, adds 15% to 420% extra
traffic, and 90% of jobs double their traffic. This is because user
probing needs to generate probe traffic, and each application
has to probe independently. For large shuffle sizes, the probing
traffic is less of a concern because it constitutes a smaller frac-
tion of the total traffic. Figure 10b shows the extra latency due
to probing and fetching hints for MapReduce jobs of various
sizes. NetHint only adds a constant RTT-level extra latency
which is negligible. User probing has a large latency overhead,
which is linear in job size. This is expected because user prob-
ing needs to run for n/2 rounds, where n is the job size. There
are a set of MapReduce jobs that are penalized substantially by
user probing (as shown in Figure 9c). These are MapReduce
jobs with large job sizes but with small shuffle sizes.

When should NetHint use topology information only? As
we have described in §6, there are two situations we prefer
letting NetHint use topology information only: (1) workload
granularity is large, and (2) overhead of computing a transfer
schedule is non-negligible. To demonstrate these situations,
we set the slow-moving background traffic change frequency
to every 0.2 seconds. Other environment settings remain the
same as those in previous simulations.

To show the case when background traffic changes faster
than job completion time, we run 100 broadcast jobs with the
model sizes increased to 1 GB. We let NetHint recompute a
new broadcast strategy every iteration (but we still guarantee
that the computational overhead is under a certain threshold
p=10%). We use NetHint-TO to denote using only topology
information when calculating the transfer schedule. We use
NetHint-BW to denote using bandwidth information when

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
Speedup to No Information

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

NetHint-TO (1.39x)
NetHint-BW (1.26x)

(a) Coarse-grained workloads

0.90 0.96 1.02 1.08 1.14 1.20 1.26 1.32
Speedup to No Information

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

NetHint-TO (1.24x)
NetHint-BW (1.02x)

(b) Non-negligible overhead to
compute a transfer schedule

Figure 11: Simulation results [Model serving]: Using topology
information alone can outperform using bandwidth information.

calculating the transfer schedule. Figure 11a shows that
NetHint-TO and NetHint-BW speed up the communication by
1.4x and 1.3x. NetHint-BW is slightly slower than NetHint-TO.
Applying a bandwidth-aware algorithm does not bring benefit
compared with using topology information only because the
background traffic changes even within a single broadcast.
Instead, it can slow down the job due to the additional overhead
to compute data transfer schedules.

To demonstrate an extreme example for the computational
overhead, we run 100 broadcasts of 64 workers with data size
set to 12 MB, and we double the bandwidth capacity of ToR
switch. Figure 11b shows that NetHint-TO and NetHint-BW
speed up by 1.2x and 1.0x compared with no information.
NetHint-BW cannot improve because the computation latency
using LP is large in contrast to the broadcast latency on such a
small data size. It has to adapt its traffic less frequently (≈0.2s)
to ensure the compute overhead is within 10% of the total
job completion time. Without being affected by inaccurate
hints, NetHint-TO aims to minimize the cross-rack traffic,
thus achieving better performance.

Figure 12 shows which adaptation method NetHint choose
under different background traffic change periods and
oversubscription ratios. The result demonstrates that NetHint
chooses the best of NetHint-TO and NetHint-BW for all the
three applications we use and also for both oversubscription
ratio of 3 and 1.5.

Inaccurate bandwidth estimation. The bandwidth estima-
tions in Equation 1 and Equation 2 is based on approximations,
as the accurate estimation requires knowing the traffic demand
for each tenant. One question to ask is whether NetHint’s
design fundamentally relies on the accuracy of bandwidth
estimation. To answer this question, we intentionally add noise
to the input of NetHint. Having additional noise of x% means
the link utilization provided to NetHint is between 100-x%

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1337

0.1 0.8 6.4 51.2
Background Traffic Change Period (s)

1.75

2.00

2.25

2.50

2.75

Sp
ee

du
p

NetHint-TO
NetHint-BW
NetHint

(a) Deep Learning (Oversub=3)

0.1 0.8 6.4 51.2
Background Traffic Change Period (s)

1.2

1.4

1.6

Sp
ee

du
p NetHint-TO

NetHint-BW
NetHint

(b) Deep Learning (Oversub=1.5)

0.1 0.8 6.4 51.2
Background Traffic Change Period (s)

1.2

1.3

1.4

1.5

Sp
ee

du
p

NetHint-TO
NetHint-BW
NetHint

(c) Model Serving (Oversub=3)

0.1 0.8 6.4 51.2
Background Traffic Change Period (s)

1.0

1.1

1.2

Sp
ee

du
p

NetHint-TO
NetHint-BW
NetHint

(d) MapReduce (Oversub=3)
Figure 12: Simulation results: Average speedup to background traffic change period under two different topology settings. The shaded area
represents 95% confidence interval.

0 20 40 60 80
Bandwidth Estimation Noise (%)

0.5

1.0

1.5

2.0

2.5

Sp
ee

du
p

Deep Learning
Ensemble Model Serving

Figure 13: Simulation results:
NetHint’s speedup to not using
network information when we
add noise to the input of NetHint.

5 10 20 30
of Overlapped Jobs

0.0

0.5

1.0

1.5

Sp
ee

du
p

Deep Learning
MapReduce

Figure 14: Simulation results:
NetHint’s performance when
varying the number of overlapped
jobs.

and 100+x% of the actual utilization. We then evaluate the
speedup of allreduce and broadcast jobs. Figure 13 shows the
result. NetHint’s speed up degrades gracefully. NetHint can
still outperform not using network information when there
is up to at most 50% noise.

Performance stability. To evaluate if NetHint’s performance
remains stable when the number of NetHint users is large, we
increase the number of overlapped jobs. For deep learning,
we enlarge the rack size to allow more jobs to share a ToR
link and start all the jobs at the beginning. For MapReduce, we
scale up the job arrival rate to create more overlapping among
jobs. Figure 14 shows that NetHint can constantly achieve
performance gain over not using network information.

Sensitivity to network configurations. We evaluate
NetHint’s speedup under different network configurations in
terms of the number of machines per rack and oversubscription
ratios. We vary the number of machines per rack while keeping
the oversubsription the same at 3. Figure 15a shows that
NetHint can reduce the communication latency consistently
for different rack sizes. We then vary the oversubscription ratio.
Figure 15b shows that NetHint’s improvement compared with
not using network information increases as oversubscription
ratio increases. This is because, when oversubscription ratio
is high, the cross-rack communication is more likely to
become the bottleneck. NetHint can mitigate this bottleneck
by reducing the total amount of cross-rack traffic.

Performance gain over perfect user probing. In our
evaluation, for n hosts, user probing is performed in n/2
rounds. In each round, it measures the bidirectional bandwidth
and latency between n/2 pairs of hosts in parallel for a
certain duration (default to 100 ms). Moreover, we show some
evidence that it can be difficult to design better user probing

1.5 2.0 2.5
Speedup to No Information

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F Rack Size
5
10
20

(a) Number of machines per rack

1.0 1.5 2.0 3.0 4.0 10.0
Oversubscription Ratio

0

2

4

6

Sp
ee

du
p

NetHint

(b) Oversubscription ratios
Figure 15: Simulation results [Distributed deep learning]:
NetHint’s speedup to not using network information when we
evaluate under different deployment environments.

technique to achieve similar performance as NetHint. First,
we demonstrate how low the user probing duration has to be in
order to achieve similar performance as NetHint. For this, we
artificially reduce the probing duration while ensuring probing
is accurate in simulations. Figure 16a shows the result: even
when probing duration is reduced to 1 ms, NetHint still has
a small performance advantage over user probing. Second, we
show that such a low probing duration (i.e., 1 ms) for accurate
bandwidth estimation can be difficult due to data center
microbursts. We simulate data center microbursts based on
measurement results in Facebook data centers [89] and calcu-
late whether probing for x ms is sufficient to predict the average
bandwidth of 100 ms. Figure 16b shows that if we measure for
less than 25 ms, there is a 50% probability that the estimation
error is above 75%. This is because there are gaps between
microbursts, when a busy link is temporarily idle. Probing for
such a short amount of time may not detect any traffic.

Does NetHint work for other fairness models? The
rapid advancement in the programmability in emerging
programmable switches makes it possible to implement other
types of fairness models in the network [74, 83]. This trend
makes it interesting to also understand NetHint’s potential
performance gains if we move to other fairness models in the
future. We simulate the same allreduce jobs except that we
modify our simulator for different fairness models. As shown
in Figure 17, the trend of the simulation results matches what
we have obtained in a per-flow based fairness setting.

9 Discussion

Herd behaviors. Tenants adapting transfer schedules with pro-
vided hints in a distributed way can potentially cause stability
issues. For example, given the information of an under-utilized

1338 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

100.0 25.0 10.0 1.0
Probing Duration Per Round (ms)

0

1

2

Sl
ow

do
w

n

Deep Learning
MapReduce

(a) Sensitivity to probing cost

0 25 50 75 100
Bandwidth Estimation Error (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Probing Duration (ms)
1
10

25

(b) Probing accuracy
Figure 16: Simulation results: The speedup of user probing to
NetHint and the relative bandwidth estimation difference under
different assumptions of probing durations. The black line in (a)
represents NetHint.

link, many tenants may make identical choices to move traffic
to this link, causing congestion. Such herd behavior causes load
imbalance and performance oscillation in distributed load bal-
ancing problems [2,59,88]. We note that herd behavior is a com-
mon problem in some specific applications such as distributed
load balancers. There are also standard techniques such as
adding random jitters, and power of two choices to alleviated
herd effect [59]. Whether and how NetHint should help specific
applications avoid herd behavior is an interesting future direc-
tion. In the workload and setting of our evaluation, NetHint’s
speedup does not decrease when we increase the number of
overlapped jobs (Figure 14). This infers that the performance
of NetHint is not significantly affected by herd behavior.

Other competitive concerns for NetHint. NetHint exposes
network utilization information to tenants. Network utilization
can be a sensitive information. For example, one can infer
whether a cloud has customers and whether a cloud provider
does a decent job in network load balancing. NetHint makes
it easy for a customer to compare network characteristics
at different times. If a customer finds that the achievable
bandwidth is reducing via NetHint, there may be a risk that
the customer will switch to another cloud provider.

10 Related Work
Sharing network bandwidth. How to share network among
many applications or cloud tenants is one of the oldest prob-
lems in computer networks. Today, network sharing is opaque
to the application or cloud tenants. Within a single tenant,
bandwidth sharing is through the fairness property of the un-
derlying congestion control algorithms [24]. Across tenants, a
cloud provider usually enforces strong isolation through static
bandwidth allocation [68] or work-conserving bandwidth
guarantee [9, 10, 50] on the NICs. It is difficult to enable either
static bandwidth allocation or work-conserving bandwidth
guarantee in the network because commodity switches have
limited numbers of hardware queues. NetHint is complemen-
tary to these bandwidth sharing design: NetHint does not
change any fairness property of the network. NetHint provides
guidance for applications to use the network bandwidth better.
A non-participating tenant can simply ignore the hint.

Collective communication and task placement based on

0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Speedup to No Information

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

User Probe (1.82x)
NetHint (2.72x)

(a) Per-tenant fairness

1.2 1.5 1.8 2.1 2.4 2.7 3.0
Speedup to No Information

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

User Probe (1.78x)
NetHint (2.57x)

(b) Per-VM-pair fairness
Figure 17: Simulation results [Distributed deep learning]:
Speedup for other fairness models.

network characteristics. Many related works optimize
collective communication [20, 29, 45, 64, 79] or task place-
ment [39, 49, 75, 80, 91] based on topology or bandwidth
information. Similar considerations can also be applied inside
OS for multi-core machines [11]. Most of these solutions
assume the network topology or bandwidth information is
already known. As such, NetHint can work in complementary
with these solutions by providing them timely network infor-
mation. Second, these works do not consider a multi-tenant
environment. They assume workloads can be controlled by a
logically centralized controller, while we assume each tenant’s
workload is controlled only by the tenant itself. Because
tenants do not know other tenants’ communication patterns,
this knowledge needs to be provided either through cloud
provider’s support as proposed in this paper or using probing.

User probing. In addition to PLink and Choreo, many
past works [5, 72, 81] also propose to measure network
characteristics in wide-area networks to choose Internet route.
NetHint is different in two aspects: (1) NetHint does not rely
on active probe, and thus NetHint has low cost. NetHint simply
reads counters directly from NICs or operating systems. (2)
NetHint is for distributed applications that can adapt their
transfer schedules rather than choosing routes in the network.

11 Conclusion

Today, the networking abstraction a cloud tenant has is a
black box. This prevents a tenant’s data-intensive applications
from adapting the data transfer schedules to achieve high
performance. We design and implement NetHint, a new
paradigm for division of work between a cloud provider
and its tenants. A cloud provider provides a hint, network
characteristics (e.g., a virtual link-layer network topology,
number of co-locating tenants, available bandwidth), directly
to its tenants. Applications then adapt their transfer schedules
based on these hints. We demonstrate the performance gain
of NetHint on three use cases of NetHint including allreduce
communication in distributed deep learning, broadcast in
serving ensemble models, and scheduling tasks in MapReduce
frameworks. Our evaluations show that NetHint improves
the performance of these workloads by up to 2.7×, 1.5×,
and 1.2×, respectively. Our source code is available at
https://github.com/crazyboycjr/nethint.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1339

https://github.com/crazyboycjr/nethint

Acknowledgement
We thank our shepherd John Wilkes and the anonymous
NSDI reviewers for their insightful feedback. We thank Alvin
R. Lebeck and Xiaowei Yang for their feedback on earlier
versions of the paper. Our work is partially supported by an
Amazon Research Award, a Meta Research Award, and an
IBM Academic Award.

References
[1] Mohammad Al-Fares, Sivasankar Radhakrishnan,

Barath Raghavan, Nelson Huang, and Amin Vahdat.
Hedera: Dynamic Flow Scheduling for Data Center
Networks. In NSDI, 2010.

[2] Mohammad Alizadeh, Tom Edsall, Sarang Dharma-
purikar, Ramanan Vaidyanathan, Kevin Chu, Andy
Fingerhut, Vinh The Lam, Francis Matus, Rong Pan,
Navindra Yadav, and George Varghese. CONGA:
Distributed Congestion-Aware Load Balancing for
Datacenters. In SIGCOMM, 2014.

[3] Mohammad Alizadeh, Albert Greenberg, David A.
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar,
Sudipta Sengupta, and Murari Sridharan. Data Center
TCP (DCTCP). In SIGCOMM, 2010.

[4] Ganesh Ananthanarayanan, Srikanth Kandula, Albert
Greenberg, Ion Stoica, Yi Lu, Bikas Saha, and Edward
Harris. Reining in the Outliers in Map-Reduce Clusters
using Mantri. In OSDI, 2010.

[5] David Andersen, Hari Balakrishnan, Frans Kaashoek,
and Robert Morris. Resilient Overlay Networks. In
SOSP, 2001.

[6] Sebastian Angel, Hitesh Ballani, Thomas Karagiannis,
Greg O’Shea, and Eno Thereska. End-to-end Perfor-
mance Isolation Through Virtual Datacenters. In OSDI,
2014.

[7] Behnaz Arzani, Selim Ciraci, Luiz Chamon, Yibo Zhu,
Hongqiang (Harry) Liu, Jitu Padhye, Boon Thau Loo,
and Geoff Outhred. 007: Democratically Finding the
Cause of Packet Drops. In NSDI, 2018.

[8] Hitesh Ballani, Paolo Costa, Raphael Behrendt, Daniel
Cletheroe, Istvan Haller, Krzysztof Jozwik, Fotini
Karinou, Sophie Lange, Kai Shi, Benn Thomsen, and
Hugh Williams. Sirius: A Flat Datacenter Network with
Nanosecond Optical Switching. In SIGCOMM, 2020.

[9] Hitesh Ballani, Paolo Costa, Thomas Karagiannis,
and Ant Rowstron. Towards Predictable Datacenter
Networks. In SIGCOMM, 2011.

[10] Hitesh Ballani, Keon Jang, Thomas Karagiannis,
Changhoon Kim, Dinan Gunawardena, and Greg O’Shea.

Chatty Tenants and the Cloud Network Sharing Problem.
In NSDI, 2013.

[11] Andrew Baumann, Paul Barham, Pierre-Evariste
Dagand, Tim Harris, Rebecca Isaacs, Simon Peter,
Timothy Roscoe, Adrian Schüpbach, and Akhilesh
Singhania. The Multikernel: A New OS Architecture
for Scalable Multicore Systems. In SOSP, 2009.

[12] Theophilus Benson, Aditya Akella, and David A. Maltz.
Network Traffic Characteristics of Data Centers in the
Wild. In IMC, 2010.

[13] Chandra Chekuri and Kent Quanrud. Near-linear time
approximation schemes for some implicit fractional
packing problems. In Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 801–820. SIAM, 2017.

[14] Trishul M Chilimbi, Yutaka Suzue, Johnson Apacible,
and Karthik Kalyanaraman. Project Adam: Building an
Efficient and Scalable Deep Learning Training System.
In OSDI, 2014.

[15] Mosharaf Chowdhury and Ion Stoica. Efficient Coflow
Scheduling Without Prior Knowledge. In SIGCOMM,
2015.

[16] Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica.
Efficient Coflow Scheduling with Varys. In SIGCOMM,
2014.

[17] Coflow-Benchmark. https://github.com/coflow/
coflow-benchmark, 2020.

[18] Bryce Cronkite-Ratcliff, Aran Bergman, Shay Vargaftik,
Madhusudhan Ravi, Nick McKeown, Ittai Abraham,
and Isaac Keslassy. Virtualized Congestion Control. In
SIGCOMM, 2016.

[19] Jeffrey Dean and Sanjay Ghemawat. MapReduce:
Simplified Data Processing on Large Clusters. In OSDI,
2004.

[20] Mathijs Den Burger, Thilo Kielmann, and Henri E
Bal. Balanced Multicasting: High-Throughput
Communication for Grid Applications. In SC, 2005.

[21] Advait Dixit, Pawan Prakash, Y Charlie Hu, and
Ramana Rao Kompella. On the Impact of Packet
Spraying in Data Center Networks. In INFOCOM, 2013.

[22] Vanini Erico, Pan Rong, Alizadeh Mohammad, Taheri
Parvin, and Edsall Tom. Let it Flow: Resilient Asymmet-
ric Load Balancing with Flowlet Switching. In NSDI,
2017.

1340 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/coflow/coflow-benchmark
https://github.com/coflow/coflow-benchmark

[23] Introducing data center fabric, the next-
generation Facebook data center network.
https://engineering.fb.com/2014/11/14/
production-engineering/introducing-data-
center-fabric-the-next-generation-facebook-
data-center-network, 2020.

[24] S. Ben Fred, T. Bonald, A. Proutiere, G. Régnié, and
J. W. Roberts. Statistical Bandwidth Sharing: A Study
of Congestion at Flow Level. In SIGCOMM, 2001.

[25] Harold N Gabow and KS Manu. Packing Algorithms
for Arborescences (And Spanning Trees) In Capacitated
Graphs. Mathematical Programming, 82(1):83–109,
1998.

[26] Yilong Geng, Vimalkumar Jeyakumar, Abdul Kabbani,
and Mohammad Alizadeh. JUGGLER: A Practical
Reordering Resilient Network Stack for Datacenters. In
EuroSys, 2016.

[27] Monia Ghobadi, Ratul Mahajan, Amar Phanishayee,
Nikhil Devanur, Janardhan Kulkarni, Gireeja Ranade,
Pierre-Alexandre Blanche, Houman Rastegarfar,
Madeleine Glick, and Daniel Kilper. ProjecToR: Agile
Reconfigurable Data Center Interconnect. In SIGCOMM,
2016.

[28] Soudeh Ghorbani, Brighten Godfrey, Yashar Ganjali,
and Amin Firoozshahian. Micro Load Balancing in Data
Centers with DRILL. In HotNets, 2015.

[29] Y. Gong, B. He, and J. Zhong. Network Performance
Aware MPI Collective Communication Operations in the
Cloud. IEEE Transactions on Parallel and Distributed
Systems, 26(11):3079–3089, 2015.

[30] Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin,
Yibo Zhu, Myeongjae Jeon, Junjie Qian, Hongqiang Liu,
and Chuanxiong Guo. Tiresias: A GPU Cluster Manager
for Distributed Deep Learning. In NSDI, 2019.

[31] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong
Dang, Ray Huang, Dave Maltz, Zhaoyi Liu, Vin Wang,
Bin Pang, Hua Chen, Zhi-Wei Lin, and Varugis Kurien.
Pingmesh: A Large-Scale System for Data Center
Network Latency Measurement and Analysis. In
SIGCOMM, 2015.

[32] Apache Hadoop. https://hadoop.apache.org/, 2020.

[33] Mark Handley, Costin Raiciu, Alexandru Agache, An-
drei Voinescu, Andrew W. Moore, Gianni Antichi, and
Marcin Wójcik. Re-Architecting Datacenter Networks
and Stacks for Low Latency and High Performance. In
SIGCOMM, 2017.

[34] Vipul Harsh, Sangeetha Abdu Jyothi, and P. Brighten
Godfrey. Spineless Data Centers. In HotNets, 2020.

[35] Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, and Roy
Campbell. TicTac: Accelerating Distributed Deep Learn-
ing with Communication Scheduling. In A. Talwalkar,
V. Smith, and M. Zaharia, editors, MLSys, 2019.

[36] Keqiang He, Eric Rozner, Kanak Agarwal, Wes Felter,
John Carter, and Aditya Akella. Presto: Edge-based
Load Balancing for Fast Datacenter Networks. In
SIGCOMM, 2015.

[37] Keqiang He, Eric Rozner, Kanak Agarwal, Yu (Jason)
Gu, Wes Felter, John Carter, and Aditya Akella. AC/DC
TCP: Virtual Congestion Control Enforcement for
Datacenter Networks. In SIGCOMM, 2016.

[38] Hydro. https://github.com/hydro-project, 2020.

[39] Virajith Jalaparti, Peter Bodik, Ishai Menache, Sriram
Rao, Konstantin Makarychev, and Matthew Caesar.
Network-Aware Scheduling for Data-Parallel Jobs: Plan
When You Can. In SIGCOMM, 2015.

[40] Anand Jayarajan, Jinliang Wei, Garth Gibson, Alexandra
Fedorova, and Gennady Pekhimenko. Priority-based
Parameter Propagation for Distributed DNN Training. In
A. Talwalkar, V. Smith, and M. Zaharia, editors, MLSys,
2019.

[41] Myeongjae Jeon, Shivaram Venkataraman, Amar
Phanishayee, Junjie Qian, Wencong Xiao, and Fan Yang.
Analysis of Large-Scale Multi-Tenant GPU Clusters for
DNN Training Workloads. In ATC, 2019.

[42] EunYoung Jeong, Shinae Wood, Muhammad Jamshed,
Haewon Jeong, Sunghwan Ihm, Dongsu Han, and
KyoungSoo Park. mTCP: a Highly Scalable User-level
TCP Stack for Multicore Systems. In NSDI, 2014.

[43] Vimalkumar Jeyakumar, Mohammad Alizadeh, David
Mazières, Balaji Prabhakar, Albert Greenberg, and
Changhoon Kim. EyeQ: Practical Network Performance
Isolation at the Edge. In NSDI, 2013.

[44] Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter RPCs can be General and Fast. In NSDI, 2019.

[45] Nicholas T Karonis, Bronis R De Supinski, Ian Foster,
William Gropp, Ewing Lusk, and John Bresnahan.
Exploiting Hierarchy in Parallel Computer Networks to
Optimize Collective Operation Performance. In IPDPS,
2000.

[46] Naga Katta, Aditi Ghag, Mukesh Hira, Isaac Keslassy,
Aran Bergman, Changhoon Kim, and Jennifer Rexford.
Clove: Congestion-Aware Load Balancing at the Virtual
Edge. In CoNEXT, 2017.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1341

https://engineering.fb.com/2014/11/14/production-engineering/introducing-data-center-fabric-the-next-generation-facebook-data-center-network
https://engineering.fb.com/2014/11/14/production-engineering/introducing-data-center-fabric-the-next-generation-facebook-data-center-network
https://engineering.fb.com/2014/11/14/production-engineering/introducing-data-center-fabric-the-next-generation-facebook-data-center-network
https://engineering.fb.com/2014/11/14/production-engineering/introducing-data-center-fabric-the-next-generation-facebook-data-center-network
https://hadoop.apache.org/
https://github.com/hydro-project

[47] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh
Sivaraman, and Jennifer Rexford. HULA: Scalable Load
Balancing Using Programmable Data Planes. In SOSR,
2016.

[48] Praveen Kumar, Nandita Dukkipati, Nathan Lewis,
Yi Cui, Yaogong Wang, Chonggang Li, Valas Valancius,
Jake Adriaens, Steve Gribble, Nate Foster, and Amin
Vahdat. PicNIC: Predictable Virtualized NIC. In
SIGCOMM, 2019.

[49] Katrina LaCurts, Shuo Deng, Ameesh Goyal, and Hari
Balakrishnan. Choreo: Network-Aware Task Placement
for Cloud Applications. In IMC, 2013.

[50] Vinh The Lam, Sivasankar Radhakrishnan, Rong Pan,
Amin Vahdat, and George Varghese. Netshare and
Stochastic Netshare: Predictable Bandwidth Allocation
for Data Centers. SIGCOMM Comput. Commun. Rev.,
2012.

[51] Jeongkeun Lee, Yoshio Turner, Myungjin Lee, Lucian
Popa, Sujata Banerjee, Joon-Myung Kang, and Puneet
Sharma. Application-Driven Bandwidth Guarantees in
Datacenters. In SIGCOMM, 2014.

[52] He Liu, Feng Lu, Alex Forencich, Rishi Kapoor,
Malveeka Tewari, Geoffrey M. Voelker, George Papen,
Alex C. Snoeren, and George Porter. Circuit Switching
Under the Radar with REACToR. In NSDI, 2014.

[53] Vincent Liu, Daniel Halperin, Arvind Krishnamurthy,
and Thomas Anderson. F10: A Fault-Tolerant
Engineered Network. In NSDI, 2013.

[54] Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron
Kassner, Vladimir Braverman, Roy Friedman, and Vyas
Sekar. Nitrosketch: Robust and General Sketch-Based
Monitoring in Software Switches. In SIGCOMM, 2019.

[55] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger,
Vyas Sekar, and Vladimir Braverman. One Sketch to
Rule Them All: Rethinking Network Flow Monitoring
with UnivMon. In SIGCOMM, 2016.

[56] Lpsolve. http://web.mit.edu/lpsolve_v5520/doc/
index.htm, 2020.

[57] Liang Luo, Peter West, Jacob Nelson, Arvind Krish-
namurthy, and Luis Ceze. PLink: Discovering and
Exploiting Locality for Accelerated Distributed Training
on the Public Cloud. In MLSys, 2020.

[58] William M. Mellette, Rob McGuinness, Arjun Roy, Alex
Forencich, George Papen, Alex C. Snoeren, and George
Porter. RotorNet: A Scalable, Low-Complexity, Optical
Datacenter Network. In SIGCOMM, 2017.

[59] Michael Mitzenmacher. How Useful Is Old Information?
IEEE Transactions on Parallel and Distributed Systems,
11(1):6–20, 2000.

[60] Behnam Montazeri, Yilong Li, Mohammad Alizadeh,
and John Ousterhout. Homa: A Receiver-Driven
Low-Latency Transport Protocol Using Network
Priorities. In SIGCOMM, 2018.

[61] Philipp Moritz, Robert Nishihara, Stephanie Wang,
Alexey Tumanov, Richard Liaw, Eric Liang, Melih
Elibol, Zongheng Yang, William Paul, Michael I. Jordan,
and Ion Stoica. Ray: A Distributed Framework for
Emerging AI Applications. In OSDI, 2018.

[62] Zhixiong Niu, Hong Xu, Peng Cheng, Qiang Su,
Yongqiang Xiong, Tao Wang, Dongsu Han, and Keith
Winstein. NetKernel: Making Network Stack Part of the
Virtualized Infrastructure. In USENIX ATC, 2020.

[63] Vladimir Olteanu, Alexandru Agache, Andrei Voinescu,
and Costin Raiciu. Stateless Datacenter Load-balancing
with Beamer. In NSDI, 2018.

[64] Pitch Patarasuk and Xin Yuan. Bandwidth Efficient All-
reduce Operation on Tree Topologies. In IPDPS, 2007.

[65] Y Peng, Y Zhu, Y Chen, Y Bao, B Yi, C Lan, C Wu,
and C Guo. A Generic Communication Scheduler for
Distributed DNN Training Acceleration. In SOSP, 2019.

[66] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson,
Andy Zhou, Jarno Rajahalme, Jesse Gross, Alex Wang,
Joe Stringer, Pravin Shelar, Keith Amidon, and Martin
Casado. The Design and Implementation of Open
vSwitch. In NSDI, 2015.

[67] Lucian Popa, Praveen Yalagandula, Sujata Banerjee,
Jeffrey C. Mogul, Yoshio Turner, and Jose Renato Santos.
ElasticSwitch: Practical Work-Conserving Bandwidth
Guarantees for Cloud Computing. In SIGCOMM, 2013.

[68] Barath Raghavan, Kashi Vishwanath, Sriram Ramabhad-
ran, Kenneth Yocum, and Alex C. Snoeren. Cloud Con-
trol with Distributed Rate Limiting. In SIGCOMM, 2007.

[69] Costin Raiciu, Sebastien Barre, Christopher Pluntke,
Adam Greenhalgh, Damon Wischik, and Mark Handley.
Improving Datacenter Performance and Robustness with
Multipath TCP. In SIGCOMM, 2011.

[70] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter,
and Alex C. Snoeren. Inside the Social Network’s
(Datacenter) Network. In SIGCOMM, 2015.

[71] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob
Nelson, Panos Kalnis, Changhoon Kim, Arvind Krish-
namurthy, Masoud Moshref, Dan R. K. Ports, and Peter

1342 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://web.mit.edu/lpsolve_v5520/doc/index.htm
http://web.mit.edu/lpsolve_v5520/doc/index.htm

Richtárik. Scaling Distributed Machine Learning with
In-Network Aggregation. Technical report, KAUST,
Feb 2019. http://hdl.handle.net/10754/631179.

[72] S. Savage, T. Anderson, Amit Aggarwal, David Becker,
N. Cardwell, A. Collins, Eric Hoffman, John Snell, Amin
Vahdat, G. Voelker, and J. Zahorjan. Detour: Informed
Internet Routing and Transport. IEEE Micro, 19:50–59,
1999.

[73] Brandon Schlinker, Radhika Niranjan Mysore, Sean
Smith, Jeffrey C. Mogul, Amin Vahdat, Minlan Yu, Ethan
Katz-Bassett, and Michael Rubin. Condor: Better Topolo-
gies Through Declarative Design. In SIGCOMM, 2015.

[74] Naveen Kr. Sharma, Ming Liu, Kishore Atreya, and
Arvind Krishnamurthy. Approximating Fair Queueing
on Reconfigurable Switches. In NSDI, 2018.

[75] Haiying Shen, Ankur Sarker, Lei Yu, and Feng Deng.
Probabilistic Network-Aware Task Placement for
MapReduce Scheduling. In 2016 IEEE International
Conference on Cluster Computing (CLUSTER), pages
241–250. IEEE, 2016.

[76] Ankit Singla, Chi-Yao Hong, Lucian Popa, and
P. Brighten Godfrey. Jellyfish: Networking Data Centers
Randomly. In NSDI, 2012.

[77] Shin-Yeh Tsai and Yiying Zhang. LITE Kernel RDMA
Support for Datacenter Applications. In SOSP, 2017.

[78] Alexandru Uta, Alexandru Custura, Dmitry Duplyakin,
Ivo Jimenez, Jan Rellermeyer, Carlos Maltzahn, Robert
Ricci, and Alexandru Iosup. Is Big Data Performance Re-
producible in Modern Cloud Networks? In NSDI, 2020.

[79] Guanhua Wang, Shivaram Venkataraman, Amar Phan-
ishayee, Nikhil Devanur, Jorgen Thelin, and Ion Stoica.
Blink: Fast and Generic Collectives for Distributed ML.
In I. Dhillon, D. Papailiopoulos, and V. Sze, editors,
MLSys, 2020.

[80] R. Wang, J. A. Wickboldt, R. P. Esteves, L. Shi, B. Jen-
nings, and L. Z. Granville. Using Empirical Estimates
of Effective Bandwidth in Network-Aware Placement of
Virtual Machines in Datacenters. IEEE Transactions on
Network and Service Management, 13(2):267–280, 2016.

[81] Rich Wolski,Neil T. Spring, and Jim Hayes. The Network
Weather Service: A Distributed Resource Performance
Forecasting Service for Metacomputing. Future Gener.
Comput. Syst., 15(5–6):757–768, October 1999.

[82] Wencong Xiao, Romil Bhardwaj, Ramachandran
Ramjee, Muthian Sivathanu, Nipun Kwatra, Zhenhua
Han, Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu
Zhang, et al. Gandiva: Introspective Cluster Scheduling
for Deep Learning. In OSDI, 2018.

[83] Zhuolong Yu, Jingfeng Wu, Vladimir Braverman, Ion
Stoica, and Xin Jin. Twenty Years After: Hierarchical
Core-Stateless Fair Queueing. In NSDI, 2021.

[84] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma,
Khaled Elmeleegy, Scott Shenker, and Ion Stoica. Delay
Scheduling: A Simple Technique for Achieving Locality
and Fairness in Cluster Scheduling. In EuroSys, 2010.

[85] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tatha-
gata Das, Michael Armbrust, Ankur Dave, Xiangrui
Meng, Josh Rosen, Shivaram Venkataraman, Michael J.
Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker,
and Ion Stoica. Apache Spark: A Unified Engine for Big
Data Processing. Commun. ACM, 2016.

[86] Hao Zhang, Zeyu Zheng, Shizhen Xu, Wei Dai, Qirong
Ho, Xiaodan Liang, Zhiting Hu, Jinliang Wei, Pengtao
Xie, and Eric P Xing. Poseidon: An Efficient Commu-
nication Architecture for Distributed Deep Learning on
GPU Clusters. In ATC, 2017.

[87] Hong Zhang, Li Chen, Bairen Yi, Kai Chen, Mosharaf
Chowdhury, and Yanhui Geng. CODA: Toward
Automatically Identifying and Scheduling Coflows in
the Dark. In SIGCOMM, 2016.

[88] Hong Zhang, Junxue Zhang, Wei Bai, Kai Chen, and
Mosharaf Chowdhury. Resilient Datacenter Load
Balancing in the Wild. In SIGCOMM, 2017.

[89] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind
Krishnamurthy. High-Resolution Measurement of Data
Center Microbursts. In IMC, 2017.

[90] Yangming Zhao, Kai Chen, Wei Bai, Chen Tian, Yanhui
Geng,Yiming Zhang,Dan Li, and Sheng Wang. RAPIER:
Integrating Routing and Scheduling for Coflow-aware
Data Center Networks. In INFOCOM, 2015.

[91] Yangming Zhao, Chen Tian, Jingyuan Fan, Tong Guan,
and Chunming Qiao. RPC: Joint Online Reducer
Placement and Coflow Bandwidth Scheduling for
Clusters. In 2018 IEEE 26th International Conference
on Network Protocols (ICNP), 2018.

[92] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong
Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra
Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. Congestion Control for Large-Scale
RDMA Deployments. In SIGCOMM, 2015.

[93] Siyuan Zhuang, Zhuohan Li, Danyang Zhuo, Stephanie
Wang, Eric Liang, Robert Nishihara, Philipp Moritz,
and Ion Stoica. Hoplite: Efficient and Fault-Tolerant
Collective Communication for Task-Based Distributed
Systems. In SIGCOMM, 2021.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1343

Tiara: A Scalable and Efficient Hardware Acceleration Architecture for Stateful
Layer-4 Load Balancing

Chaoliang Zeng1∗ Layong Luo2 Teng Zhang2 Zilong Wang1∗ Luyang Li3∗ Wenchen Han4∗

Nan Chen2 Lebing Wan2 Lichao Liu2 Zhipeng Ding2 Xiongfei Geng2 Tao Feng2

Feng Ning2 Kai Chen1 Chuanxiong Guo2

1Hong Kong University of Science and Technology 2ByteDance 3ICT/CAS 4Peking University

Abstract
Stateful layer-4 load balancers (LB) are deployed at datacen-
ter boundaries to distribute Internet traffic to backend real
servers. To steer terabits per second traffic, traditional soft-
ware LBs scale out with many expensive servers. Recent
switch-accelerated LBs scale up efficiently, but fail to offload
a massive number of concurrent flows into limited on-chip
SRAMs.

This paper presents Tiara, a hardware architecture for state-
ful layer-4 LBs that aims to support a high traffic rate (> 1
Tbps), a large number of concurrent flows (> 10M), and many
new connections per second (> 1M), without any assump-
tion on traffic patterns. The three-tier architecture of Tiara
makes the best use of heterogeneous hardware for stateful
LBs, including a programmable switch and FPGAs for the
fast path and x86 servers for the slow path. The core idea of
Tiara is to divide the LB fast path into a memory-intensive
task (real server selection) and a throughput-intensive task
(packet encap/decap), and map them into the most suitable
hardware, respectively (i.e., map real server selection into
FPGA with large high-bandwidth memory (HBM) and packet
encap/decap into a high-throughput programmable switch).
We have implemented a fully functional Tiara prototype, and
experiments show that Tiara can achieve extremely high per-
formance (1.6 Tbps throughput, 80M concurrent flows, 1.8M
new connections per second, and less than 4 us latency in the
fast path) in a holistic server equipped with 8 FPGA cards,
with high cost, energy, and space efficiency.

1 Introduction

Large service providers deploy various services inside their
geo-distributed datacenters of different scales. At the bound-
ary of these datacenters, stateful layer-4 load balancers (LB),
a.k.a., multiplexers (Mux), are deployed to distribute user
requests from the Internet to many real servers inside data-
centers while preserving connection consistency. Driven by

∗ This work is done while Chaoliang Zeng, Zilong Wang, Luyang Li,
and Wenchen Han are interns in Bytedance.

exponentially increased content delivery and cloud computing
demands, a typical LB in large service providers usually has
to process terabits per second of Internet traffic, with tens
of millions of concurrent flows [25, 31] and millions of new
connections per second (CPS) [12].

To support such high performance, vendor-proprietary hard-
ware LBs (e.g., F5 [9]) were deployed in the early days
of some datacenters. However, they lacked agility, which is
highly desirable in modern hyper-scale datacenters. In recent
years, the move from vendor-proprietary hardware to in-house
software LBs, or software Muxes (SMux), e.g., Ananta [36]
and Maglev [21], was mainly driven by requirements like man-
ageability, reliability, and agility, but sacrificed efficiency (i.e.,
cost, energy, and space efficiency). For example, Ananta [36]
achieves 10 Gbps per instance, and supporting up to terabits
per second throughput requires scale-out with a large number
of servers. Deploying so many servers for just LB is not only
costly but also challenging at energy- or space-limited bound-
aries of massive small/medium-scale datacenters (e.g., 10s-
100s of servers in PoPs [15] or edge [40]). Moreover, software
LBs usually suffer from high latency and jitter, sometimes
comparable to Internet access latency (in the order of millisec-
onds [24]) when CPU load is high. Such latency churn will
adversely impact users’ network experience.

To improve the efficiency of software LBs without sacrific-
ing agility, there is an emerging trend to accelerate software
LBs with in-house software and hardware co-design. Recent
work [16, 23, 24, 31] leverages programmable switches to
accelerate LBs. Nevertheless, programmable switches have
inherent scalability issues (§2.3). On the data plane, a mod-
ern switch cannot store a large number of concurrent flows
due to its small memory size (typically 50-100 MB on-chip
SRAMs); on the control plane, the switch fails to support a
large CPS given its slow entry insertion speed (∼ 100 Kps).

Existing switch-accelerated LBs do not address both chal-
lenges simultaneously. For example, Silkroad [31] stores a
small hash of a connection instead of the 5-tuple to compress
the connection table. However, its scalability is still bounded
by the switch’s small memory size, and it may suffer from

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1345

throughput reduction due to switch pipeline folding. More-
over, Silkroad does not address the scalability problem on
the control plane. Cheetah [16] provides a fast entry insertion
mechanism by storing an index in the packet header but re-
quires modifications on services’ client sides. Thus, applying
such a mechanism is difficult, if not impossible, in the dat-
acenter with thousands of services [19, 36]. Furthermore, it
does not address the scalability issue on the data plane.

One plausible approach to address the above problems
is to leverage traffic locality in hardware offloading. If the
traffic pattern follows a long-tail distribution (i.e., a small
number of flows carry the majority of the traffic), only a few
elephant flows need to be offloaded and stored in the switch,
thus lowering the requirements of both the hardware memory
size and entry insertion speed. However, we observe from
production datacenters that the traffic patterns at datacenter
boundaries do not necessarily follow a long-tail distribution.
Instead, the mix of VIP traffic for multiple services is highly
dynamic and unpredictable, detailed in §2.2.

Based on the above analysis and observation, we ask: can
we design a scalable and efficient stateful LB without any
assumption on traffic patterns? Specifically, the design should
be:

• scalable on both data plane (store > 10M concurrent flows)
and control plane (support > 1M CPS);

• efficient in terms of high cost, energy, and space efficiency;
and

• generic without any assumption on traffic patterns.
To this end, we move one step further beyond the existing

switch-server architecture [23, 24] by exploring more flexi-
ble hardware, i.e., FPGA. FPGA is a high-performance and
programmable device becoming an important building block
in the datacenter infrastructure [22, 28, 29, 42]. The modern
FPGA equipped with gigabytes of high-bandwidth memory
(HBM) is well-suited to improve LB scalability, as HBM can
store a large number of concurrent flows with high lookup
and insertion rate.

In this paper, we present Tiara, a three-tier hardware ac-
celeration architecture composed of a programmable switch,
FPGAs, and commodity servers, for a high-performance state-
ful LB with scalability and efficiency. The core idea behind
Tiara is that we map different LB tasks into different devices
by matching task requirements with device capabilities (§3.1).
Specifically, Tiara divides the LB fast path into real server
selection, a memory-intensive task with both large capacity
and high bandwidth requirements, and packet encap/decap, a
throughput-intensive task. Then, Tiara maps these two tasks
into FPGAs with large HBM and a programmable switch
with high packet processing throughput, respectively. Simi-
lar to other hardware-accelerated systems [23, 24, 37], Tiara
leverages commodity servers as the slow path to handle the
unprocessed traffic from the fast path.

To support high CPS without compromising line-rate

Vendor-proprietary hardware
(e.g., F5)

High-performance,
but poor with agility

In-house design
Agile

Software only
(e.g., Ananta, Maglev)

High-performance via scale out,
but poor with efficiency

Hardware Acceleration

Programmable Switch only
(e.g., Silkroad, Cheetah)
Efficient, but not scalable

Programmable Switch + FPGA
(Tiara)

Efficient and scalable

Design Space

Figure 1: Design space for stateful LB architectures.

packet processing in a heterogeneous system, we optimize
several key design components in Tiara (§3.3). First, for both
fast lookup and insertion, Tiara adopts fixed-length hash chain-
ing, which leverages the parallel processing capability in both
FPGAs and multi-core servers. Second, we design a lock-free
offloading approach to support issuing millions of entry op-
erations per second from a server to an FPGA. Third, Tiara
employs a lightweight aging mechanism to recycle outdated
entries, where FPGAs periodically report connection active-
ness via a dedicated accessing bitmap, preventing interference
with the data plane.

We have implemented a fully functional Tiara prototype
based on a Barefoot Tofino switch, a Xilinx FPGA-based
SmartNIC card, and a commodity server. We modified a
production-level SMux for the slow path and the control plane
(§4). The key results from our experiments (§5) show that our
prototype can support 10M concurrent flows and 1.8M CPS,
9× better than Silkroad [31], at 200 Gbps with less than 4 us
average latency and small jitter in the fast path. In a holistic
server with 8 FPGA cards, Tiara can provide superiority in
throughput (up to 1.6 Tbps) and flow capacity (up to 80M con-
current flows). Meanwhile, Tiara achieves 17.4×, 12.8×, and
16.8× higher cost, energy, and space efficiency, respectively,
compared to SMux.

As a summary, Figure 1 shows the design space for state-
ful LB architectures and the unique position of Tiara. Tiara
is more agile than traditional vendor-proprietary hardware,
faster and more cost-, energy-, and space-efficient than soft-
ware LBs, and more scalable than switch-accelerated solu-
tions. Specifically, Tiara makes the following contributions:

• We propose a three-tier architecture that matches key LB
tasks to the most suitable hardware: programmable switch
for packet encap/decap, FPGA with HBM for connection
management, and x86 CPU for SMux.

• We design and optimize key LB components, including
an efficient hash table structure for fast lookup and effi-
cient insertion, a lock-free offloading approach to improve
connection offloading speed, and a lightweight aging mech-
anism with little overhead and minimal interference on the
data plane.

• We implement the Tiara prototype and conduct testbed
experiments to show its performance superiority.

1346 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2 Background

2.1 Layer-4 Load Balancing

Layer-4 LB can be classified into the stateful LB, which stores
the connection-to-real server (RS) mapping as a connection
table (CT), and the stateless LB, which does not maintain
any per-connection state. Most of the industry LBs are state-
ful [3, 5, 8, 21, 36] because stateful LBs can easily ensure
per connection consistency (PCC) [16, 31], which means all
packets of a connection should be delivered to the same RS to
avoid breaking the connection. In this paper, we focus on the
stateful LB, which usually contains the following two parts.

Real server selection: The LB selects an RS for each in-
coming packet by identifying its connection via the 5-tuple
in the packet header. The LB selects RS in two ways. For
the first packet of a connection, the LB selects an RS based
on a pre-defined algorithm, e.g., hash, round-robin, or least-
loaded, and creates a connection entry in the CT to record this
selection. The LB selects the same RS for the other packets
of this connection by looking up the CT. This mechanism
ensures PCC. An RS can be specified by a tuple of {RS_IP,
RS_Port} based on backend service implementations.

Packet encap/decap: After an RS is selected for an in-
bound packet, the LB encapsulates the packet with RS_IP and
RS_Port. The encapsulation process may include multiple
steps in practice. Given a tuple of {RS_IP, RS_Port}, the
LB enforces Port NAT (virtual Port (VPort)→ RS_Port),
IP NAT (virtual IP (VIP)→ RS_IP), and packet encapsu-
lation with VxLAN. Unlike inbound traffic processing involv-
ing both RS selection and packet encapsulation, outbound
traffic processing only needs packet decapsulation.

2.2 Nature of Internet traffic at the Datacen-
ter Boundary

Large service providers usually deploy many Internet services
in a datacenter, and the Internet traffic at the datacenter bound-
ary is a mix of multiple services’ traffic, with the following
properties.

The flow distribution of individual services varies. The
distribution of service traffic depends heavily on the service’s
client- and server-side implementations. For example, certain
service clients may split an elephant flow into multiple smaller
ones to reduce the cost of TCP disconnection over unstable
Internet, leading to a uniform distribution. In contrast, other
service clients may use short connections for synchronization
and long connections for massive data transmission, leading
to a long-tail distribution. To show this fact, we analyze flow
distributions for three different services, as shown in Figure 2.
These three services have various flow distributions: service
C shows a uniform distribution (where top 10% flows carry
19.6% traffic), while service A and B exhibit traffic locality

0 20 40 60 80 100
Percentage of connections (%)

0

20

40

60

80

100

CD
F

of
 s

er
ve

d
tr

af
fic

 (
%

)

Service A
Service B
Service C
Long tail distribution

Figure 2: The traffic distribu-
tion varies among three dif-
ferent services.

Month0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
or

m
al

iz
ed

 n
um

be
r

of
 V

IP
s

Figure 3: The number of
VIPs in a typical LB. It
shows a high variation over
6 months.

(where top 10% flows carry 46.3% and 35.5% traffic, respec-
tively) to different extents.

The traffic volume of a service can dynamically change.
The traffic volume of an individual service keeps chang-
ing independently, with different short-term daily peaks and
troughs [21] and long-term uncertainty due to the change in
user interest [20]. At any given time in the mixed service
traffic, mice flows of one service at peak might consume more
bandwidth than elephant flows of another service at the trough,
making the overall distribution of their mix unpredictable.

The number of VIPs at a datacenter boundary can
change over time. Large service providers keep launching,
stopping, and migrating services, driven by various reasons
like changes in user interest or business opportunities. Fig-
ure 3 reveals a high variation (3.2×) of the number of VIPs
served by an LB over 6 months. The dynamic change of
services inside the datacenter further makes the mixed VIP
traffic at the boundary highly dynamic without any specific
distribution.

Based on these observations, we should not rely on any
assumption of specific traffic distributions (e.g., long-tail dis-
tribution) when designing load balancers at datacenter bound-
aries for mixed services.

2.3 Accelerating LB with Programmable
Switches

Most recent proposals accelerate LBs by realizing hardware
Muxes (HMux) [23, 24, 31] with programmable switches,
where the RS selection and packet encapsulation are imple-
mented in switch processing pipelines. HMuxes can effec-
tively reduce the number of required servers, which is sig-
nificant, especially for small/medium-scale datacenters. Nev-
ertheless, using programmable switches as HMuxes suffers
from scalability issues on both data and control planes.

Data plane: As widely discussed, switching ASICs cannot
support many concurrent flows due to their limited memory
sizes [24,25,31,37]. Considering a CT with an entry size of 64
bytes1 and a typical concurrent flow number of 10M [25, 31],

164 bytes/entry is an empirical value for IPv6, including 37 bytes for the

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1347

Internet

Datacenter
Network Programmable Switch

(T-Switch)
FPGA-based SmartNIC

(T-NIC)
x86 Server
(T-Server)

RS Table
(idx -> RS IP, RS MAC,

RS VTEP IP & VNI)

Forw
arding &

 ECM
P Tables

Parser

Offloaded
Connection Table (OCT)

(5 Tuple -> idx & RS Port)

Encap.

Inbound Pipeline

Outbound Pipeline

Table
Mgmt.

(Insertion &
aging)Table

Lookup

Offloading
Engine

Full
Connection Table

(FCT)

SMux

Ethernet M
AC

PCIe DM
A

Inbound Fast Path

Outbound Path Control Path

Inbound Slow Path

hit

miss

Tiara System

Decap. HBM

1~2 us 1~2 us 10~1000 us

Figure 4: Tiara architecture. Tiara consists of three tiers: T-switch, T-NIC, and T-server. Tiara divides LB into multiple key
tasks and matches them respectively to suitable hardware tiers: T-switch for stateless packet encap/decap, T-NIC with HBM for
connection lookup and management, and T-server as a last resort.

the CT size is 640 MB. However, modern programmable
switches only provide 50-100 MB SRAMs [31]. Moreover,
these SRAMs are typically distributed into multiple pipelines,
e.g., 15 MB/pipeline. To look up a larger table than a single
pipeline’s SRAM size, HMuxes typically use folded pipelines
and resubmit a packet to switch pipelines via different physi-
cal ports, reducing the available throughput.

Control plane: State-of-the-art programmable switches are
slow for entry insertion. For example, a Barefoot Tofino
switch can only do ∼ 100K insertions per second after our
optimizations. We measure the entry insertion overhead. Our
result reveals that the top two time-consuming functions are
the hash computation and the Cuckoo search algorithm [34].
Our result is similar to those of previous work [16, 31]. The
root causes exist in the low-end switch CPU, slow PCIe in-
terconnect between the CPU and the switching ASIC, and
the small memory size in the switching ASIC. The first two
factors affect the speed of hash computation and operation of-
floading. Then the limited memory space forces the switching
ASIC to rely on space-efficient Cuckoo hashing for hash col-
lision resolution. The Cuckoo hashing impedes fast insertion
by (1) multiple entry movements during collision resolution
and (2) incapability of parallelization due to the dependency
between two insertions (the previous insertion location may
affect the latter one). The above hardware constraints make
it difficult for a switch to support > 1M CPS required by
production LBs [5].

5-tuple as match key, 18 bytes for RS_IP and RS_Port as action data, and a
few bytes for packing and alignment overhead.

3 Tiara Design

We now present Tiara, a novel hardware-accelerated LB archi-
tecture, which can support > 1 Tbps traffic, > 10M concurrent
flows, and > 1M CPS, without any assumption on traffic pat-
terns.

3.1 Architecture Overview
Tiara is a three-tier architecture as demonstrated in Figure 4.
The outermost tier is a programmable switch (T-switch),
which sits between the Internet and the datacenter network
as a bump in the wire. The second tier is a group of FPGA-
based SmartNICs (T-NIC), which act as the HMux jointly
with T-switch for LB fast path. The third tier consists of com-
modity servers (T-server), which host T-NICs and implement
SMuxes for LB slow path. The number of T-NICs hosted
by a T-server and the number of T-servers behind T-switch
are configurable, making the three-tier architecture flexible
enough to meet different performance requirements at various
datacenter entrances.

The novel idea of Tiara is that it maps different LB tasks
into their most suitable devices based on their unique capabili-
ties. In the fast path, Tiara divides the HMux between T-NICs
and T-switch. Tiara leverages the large and fast HBM inside
T-NIC’s FPGA for memory-intensive RS selection. One typ-
ical HBM stack comprises 16 256-MB memory channels,
and each channel provides ∼100 million lookups per second
(MLPS)2. To maximize the accessing performance, we should
separate memory accesses to different memory channels. The

2One memory channel provides ∼100 million random read accesses per
second based on our emulation [1].

1348 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

parallelism among HBM channels is carefully explored to
meet memory capacity and throughput requirements of RS
selection, which will be discussed in §3.3.1. Meanwhile, Tiara
leverages the high performance and programmability prop-
erties of T-switch pipelines for throughput-intensive packet
encap/decap.

Besides the fast path processing, Tiara instantiates several
SMuxes in T-server to act as a backstop for unprocessed traffic.
Each SMux maintains a full connection table (FCT) for all
inbound flows, and is associated with a T-NIC virtual function
with dedicated DMA channels used for packet receiving and
sending.

Programmable switch or fixed-function switch. Another
option of Tiara’s three-tier architecture demonstrated in Fig-
ure 4 is that the programmable T-switch could be replaced
by a fixed-function switch that only performs forwarding and
ECMP routing. If so, the switch packet processing logic, in-
cluding RS table, packet encapsulation, and decapsulation,
can be moved into T-NICs. We do not choose this option for
a few reasons. First, the performance, cost, and power con-
sumption of programmable switches is comparable to that of
traditional fixed-function switches [14]. Second, with packet
decapsulation implemented in programmable T-switch, the
architecture allows outbound traffic to bypass T-NICs (as
described in §3.2.2), thus halving the T-NICs bandwidth re-
quirements and the number of required T-NICs. Third, the
programmability of T-switch relieves T-NIC implementation.
If all fast path functions are implemented in T-NIC, it will
increase not only the FPGA size, power consumption, and
cost, but also the development time, as programming switches
with P4 is easier than programming FPGA with Verilog.

3.2 Control & Data Planes

3.2.1 Control Plane

A typical LB usually includes a centralized controller config-
uring VIP→ RS_IP mappings into Muxes and BGP speakers
for VIP announcements. As they are common and well de-
scribed in previous work [21, 23, 24, 36], we will skip them in
this paper and pay more attention to the acceleration-related
control flow, i.e., the connection management between soft-
ware and hardware. Tiara relies on T-servers to make the local
control plane decisions, including the CT entry insertion and
the entry recycling (connection aging). The powerful CPU
prevents inefficient hash computations like that on the switch-
based HMux. T-servers use offloading engines to offload the
entry operations generated by SMuxes, to a specific T-NIC,
and each offloading engine is associated with a dedicated
DMA channel for entry operations. To efficiently process
entry insertion and aging, a few optimizations are made in
offloading engines, which will be discussed in §3.3.

Moreover, Tiara integrates many more features like man-
agement, telemetry, and fault tolerance in the control plane.

Except for the telemetry, Tiara can support all these function-
alities solely in the control plane. Network telemetry requires
collecting statistic counters from the data plane, and T-NIC
and T-switch can provide them easily without affecting the
fast path performance.

3.2.2 Data Plane

Inbound fast path. Upon receiving a packet from the In-
ternet, T-switch distributes it to one of the T-NICs based
on ECMP. Then, T-NIC parses the packet header and uses
the extracted fields (i.e., 5-tuple) to look up the offloaded
connection table (OCT), which maintains up to tens of mil-
lions of connections in FPGA HBM and sustains fast lookup.
The lookup result from OCT is an LB decision, i.e., a two-
tuple {RS_Index, RS_Port}, where RS_Index represents a
real server and will be used in later RS table lookup in T-
switch. Instead of replacing the RS_Port locally, which will
incur checksum computation, Tiara delays this operation to
T-switch processing. T-NIC encapsulates the retrieved tuple
into a packet metadata header between the Ethernet header
and the IP header, and sends back the packet to T-switch. T-
switch looks up an RS table and gets the corresponding RS
information, including RS_VTEP_IP, RS_MAC, RS_IP, and VNI.
Finally, T-switch enforces Port NAT, IP NAT, and VxLAN
encapsulation sequentially, and forwards the encapsulated
packet to the RS. Since we decouple the RS_Port from the
RS table, the number of entries in the RS table is the same as
the number of real servers, typically 10K-100K3. Compared
to CT, the RS table is relatively stable, updated in second time
granularity [36], which is far slower than the entry insertion
speed provided by T-switch. Based on these two features, the
RS table is achievable in the T-switch SRAMs.

Inbound slow path. When a packet misses in the OCT, the
T-NIC uploads it to an SMux via a PCIe DMA channel chosen
by Receive Side Scaling (RSS). Upon receiving the packet,
the SMux looks up the FCT and moves to one of the following
two workflows according to the lookup result.

If the packet belongs to an established connection, it will
hit in the FCT lookup. SMux retrieves the corresponding
{RS_Index, RS_Port}, and further processes the encapsu-
lation for this packet by looking up the RS table locally4.
Finally, SMux sends the encapsulated packet to the real server
(via T-NIC and T-switch). There is a trick on VxLAN source
port calculation. Since the source port is calculated by hash-
ing [13], SMux reuses the last 2 bytes of RSS hash value from
the T-NIC to avoid duplicate hash computation.

If it is the first packet of a new connection, it will miss in
the FCT lookup. SMux makes the LB decision to create a
connection entry for this connection and inserts the generated

3A typical datacenter supports thousands of services [19, 36], and each
one usually holds 10-100 instances.

4In fact, these two tables can fuse into one table.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1349

entry into the FCT. Then, SMux encapsulates the packet and
sends it out.

In both cases, SMux will try to insert the corresponding
connection entry into OCT. If there are empty slots in the
corresponding hash bucket in OCT, the insertion will be suc-
cessful; otherwise, Tiara will fail the insertion without cache
eviction and keep that flow in SMux. We leave the cache
eviction policy for the LB connection table as future work.

Outbound path. For outgoing packets, real servers leverage
XDP [4] or OVS Conntrack [10] to perform SNAT locally.
The real servers rewrite source IP with VIP and source ports
with VPort, and forward the packets in VxLAN encapsulation
to T-switch. T-switch further performs packet decapsulation
and sends the packets to the Internet. As the only LB operation
(i.e., packet decapsulation) for outbound packets is offloaded
completely in T-switch, outbound traffic can bypass T-NICs
and SMuxes, halving the T-NICs bandwidth requirements.

3.3 Component Design & Optimization

3.3.1 Efficient Hash Table Structure

The hash table design of OCT affects not only lookup perfor-
mance in hardware but also entry insertion speed in software.
We leverage an efficient hash table structure that enables
both fast lookup in T-NIC and fast entry insertion in T-server.
Specifically, we expect the hash table used in T-NIC should
(1) support O(1) and parallel insertions in software and (2)
support line-rate lookup in hardware.

We observe that a hash table with fixed-length chaining
can satisfy all requirements. First, the insertion complexity of
hash chaining is O(1). Second, since the hash computations
of different insertion indexes are independent, we can utilize
multiple cores in T-server to compute the insertion indexes in
a parallel manner. Third, T-NIC can support O(1) lookup by
mapping fix-length chains into multiple HBM channels. Last,
fix-length hash chaining simplifies hardware design. If using
variable-length hash chaining, dynamic memory management
is mandatory and unfriendly to hardware implementation.

T-NIC manages OCT using a hash table with fixed-length
chaining, as illustrated in Figure 5. Despite the simple struc-
ture, determining the proper parameters of the hash table
in HBM to achieve both fast lookup and low collision rate
is non-trivial. For the hash table with fixed-length chaining,
two parameters control the shape of the table: the number
of hash indexes (depth) and the number of entries at each in-
dex (width), following that depth×width = hash table size.
Given a fixed hash table size, a deeper hash table results in a
higher hash collision rate (see analysis in Appendix A), while
a wider hash table poses challenges for line-rate lookup on
HBM, as the number of parallel HBM memory channels is
limited.

Based on the above analysis, T-NIC determines the hash
table parameters with a principle that maximizing the width

entry 0 …

entry 0 …

… …

M

M+1

…

entry 0 …2M-1

Index

entry N-1

entry N-1

…

entry N-1

HBM
channel pair N

HBM
channel pair 2N-1

entry 0 …

entry 0 …

… …

0

1

…

entry 0 …M-1

Index

entry N-1

entry N-1

…

entry N-1

HBM
channel pair 0

HBM
channel pair N-1

Figure 5: The fixed-length hash chaining design in Tiara OCT,
where depth is M and width is N. Each channel pair saves
a column of the hash table. For a table lookup, T-NIC can
launch multiple parallel accesses of N entries inside 2N HBM
channels.

while guaranteeing line-rate lookup. Take the FPGA card
used in our implementation (§4) as an example. It has two
100GE ports, each requiring 150 MLPS to sustain line rate,
and one HBM stack of 16 256-MB (8M × 256-bit width)
memory channels, each providing up to 100 MLPS. We divide
16 channels evenly between two ports so that there are 8
channels to support 100 Gbps traffic. Moreover, the entry
size is 512 bits, as discussed in §2.3, so we need to pair two
channels for one entry access and construct 4 channel pairs for
each port. Given that each channel pair can support 8M entries,
there are three candidate hash table structures: 8M (depth)
×4 (width), 16M×2, 32M×1, where one lookup operation
involves 4, 2, and 1 channel pair(s), respectively. However,
the lookup performance of the 8M×4 hash table structure is
only 100 MLPS (using all channels for one lookup), failing
to support the 100 Gbps line rate. Based on the principle, the
best hash table structure for one 100GE port is 16M×2 in our
FPGA card.

T-NIC relies on the connected T-server to simplify hash
collision resolution. When there is a hash collision in the table
lookup, T-NIC will forward the packet to the slow path in T-
server; when there is a hash collision in the entry insertion, the
insertion fails in the offloading engine (§3.3.2), and that flow
will be kept in the slow path. As long as the hash collision
rate is low (2.6% in theory for 10M flows in the 16M×2 hash
table), hash collision does not have significant performance
penalty.

3.3.2 Lock-free Offloading Approach

We design a lock-free offloading approach to enable issuing
millions of insertion or deletion operations per second from
SMuxes to T-NIC, which is required to support > 1M CPS.

In Tiara, SMuxes offload the generated entry operations, in-
cluding entry insertion and deletion, to T-NICs via offloading
engines. Given the multi-channel feature of our PCIe DMA
engine, Tiara instantiates a few offloading engines and asso-
ciates each with a dedicated DMA channel, so that offloading
engines can offload entries independently.

1350 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

SMux

SMux

SMux

Offloading Enginepolling
SMux

OP Queue

DMA Channel
Index Entry 0 Entry 1

2 ✔

Local Offloaded Table

Offloading Enginepolling

DMA Channel

Index Entry 0 Entry 1

0 ✔ ✔

1 ✔

Local Offloaded Table

Figure 6: Tiara’s lock-free offloading design.

A straightforward offloading approach introduces locks in
two places. The first lock happens when multiple SMuxes
are mapped to the same offloading engine with only one OP
queue. SMuxes can write their operations to the OP queue
only when they retrieve a write lock. The second lock exists
when multiple offloading engines insert entries into the same
hash index. A lock is required for unavoidable synchroniza-
tions on a global OCT, maintained in the server to track the
OCT usage among different offloading engines. These two
locks prevent us from fully leveraging the parallelism in both
the multi-core server and the multi-channel DMA to achieve
fast entry offloading.

We design a lock-free offloading mechanism, as shown
in Figure 6. First, to realize lock-free entry delivery from
SMux to the offloading engine, Tiara sets up an OP queue
for each SMux-engine pair. The offloading engine polls OP
queues in a round-robin manner to retrieve the offloading op-
erations. Second, Tiara adopts the mapping method based on
the entry’s hash index, i.e., index-to-engine mapping. Entries
inserted into the same place are delivered to the same offload-
ing engine. Consequently, different offloading engines handle
entries with different hash indexes, and each offloading engine
maintains a local OCT to track the offloaded indexes. Since
the local OCTs are disjoint with each other, it is lock-free
during the table update.

For each entry operation, offloading engines will notify
SMuxes whether the operation is successful or not (an inser-
tion will fail when the corresponding hash bucket is full) via
completion queues (not shown in Figure 6).

3.3.3 Lightweight Aging Mechanism

The purpose of this component is to recycle outdated entries
in the OCT, i.e., when a connection is disconnected, its related
entry in the OCT should be released so that it can be reused
for new connections. To realize it, we need to detect the close
of connections. One naive method is to use the TCP FIN
packet as the signal of the connection close, which can be
captured in T-NICs. However, this method fails on abnormal
close of TCP traffic and connection-free UDP traffic.

To unify the flow removing process for TCP and UDP, Tiara
adopts an entry aging mechanism that removes a flow entry

from the OCT if it is not accessed in a period T . This aging
mechanism may kick out connections whose access interval is
larger than T by mistake, but those connections can be further
processed in the slow path FCT5.

The challenge of this aging mechanism is to monitor the
accessing states of 10M connection entries periodically with
a small memory footprint, minimal performance interference
on the data plane, and low CPU overhead.

To address this challenge, T-NIC leverages an accessing
bitmap to track connection activities, signals activities to
SMuxes, and SMuxes make aging decisions by issuing entry
deletion operations based on signals.

T-NIC maintains the accessing bitmap in on-chip SRAMs,
using each bit as an indicator for a connection entry. All indi-
cators are reset to 0 at the beginning of every detection period
∆t (< T). An indicator will be marked as active, i.e., set to
1, only if a packet is accessing the corresponding connection
entry. As an active signal, the packet header will be sent to an
SMux by RSS, ensuring that the same SMux processes both
teardown and establishment for a connection. Subsequent
packets accessing active connection entries neither change
the indicator status nor trigger signaling to SMuxes. In this
way, if the connection is active in a detection period, the re-
lated SMux will get a signal. If the SMux does not receive any
signal for a connection in multiple continuous (T/∆t) periods,
that connection is considered outdated and should be aged.
T-NIC leverages the length of the detection period to control
the reporting frequency, which balances the SMux load and
the detection precision.

This mechanism is lightweight in three aspects. First, the
memory footprint used for tracking connection states in FPGA
is minimal, with one bit per connection in the bitmap. Second,
as the accessing bitmap is stored in on-chip SRAMs, the aging
process will not interfere with HBM lookup in the fast path.
Third, given the low signaling frequency (likely to be minutes
level), the PCIe and CPU overhead are both low.

4 Implementation

We implement a fully functional prototype of Tiara with one
T-switch and one T-server, equipped with one T-NIC through
a PCIe Gen3 x16 link. T-switch and T-NIC are connected via
100G Ethernet cables. In the rest of this section, we discuss
the implementation details of each component.

4.1 T-switch

We build a P4 prototype of T-switch with a Barefoot Tofino
switch, where one pipeline has 12 physical stages, each with
1.25 MB SRAMs and 528 KB TCAMs.

5The aging procedure in the FCT is implemented by the SMux, which
should provide a longer life cycle for a typical entry compared to the OCT
due to its larger memory space.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1351

Ingress pipeline

Egress pipeline

Ingress
Parser

RS Table I
(idx -> RS IP)

Fast path traffic Routing
Table

Inbound & slow path traffic

UDP src port
calc

Egress
Parser

Next Hop
Rewrite

Inbound & slow path traffic

RS Table II
(idx -> RS VTEP IP,

RS MAC, VNI)

Tunnel
Rewrite

Fast path traffic

Ingress
De-parser

Metadata:
idx, RS_IP,
RS_Port,

UDP_src_port

Inner IP
retrieval

Outbound traffic

DIP = RS IP

DIP = Inner IP

Outbound traffic

Egress
De-parser

Checksum update

Figure 7: T-switch pipeline implementation.

��� �	
���
�

��������
�����

�������
�����

���
�����

�������� ����������	
�����

�������� ����

��

��
�

Figure 8: The metadata format.

We modify a baseline switch.p46 to implement the packet
processing pipeline, including the RS table, routing tables
(forwarding table and ECMP table), and tunnel processing
(VxLAN encapsulation and decapsulation). Figure 7 shows
an overall pipeline of T-switch. It is worth mentioning that we
split the RS table into two parts. The RS table I (RS_Index
→ RS_IP) exists in the ingress pipeline, where T-switch re-
trieves RS_IP for routing tables lookup. T-switch postpones
the lookup of the rest values in RS table II (RS_Index →
RS_VTEP_IP, VNI, RS_MAC), to the egress pipeline. This
decoupling helps mitigate resource contention between RS
Table and routing tables in the ingress pipeline.

The modified switch.p4 takes 53.85% of SRAMs and
13.19% of TCAMs to implement the pipeline described in
Figure 7 with 64K RS table entries, 2K IPv4 addresses, 1K
IPv4 prefixes, 1K IPv6 addresses, and 1K IPv6 prefixes.

Recall that, in slow path processing, the VxLAN source port
is computed based on the last 2 bytes of RSS value (§3.2.2).
To be consistent with the slow path, the fast path in T-switch
should compute this field in the same way. However, T-switch
pipeline does not support the Toeplitz hash [18, 26, 30] used
in RSS computation7. To address this issue, T-NIC carries
the computed RSS value (last 2 bytes) on packets within
an extended metadata header to T-switch (§4.2). T-switch
retrieves the hash value from the packet and performs the
same computations as SMuxes. In our implementation, the
VxLAN source port is computed as followed: port = (RSS∧
(65535−49152))+49152.

6A simplified version can be found at https://github.com/p4lang/
switch

7We follow the standard RSS computation procedure for compatibility

4.2 T-NIC
T-NIC is implemented in a Xilinx FPGA-based SmartNIC
card, with two 100GE ports and one HBM stack of 16 256MB
memory channels. We use Xilinx QDMA IP [11] as the DMA
engine. We implement the T-NIC logic described in Fig-
ure 4, in System Verilog, including the OCT management
and lookup, packet metadata encapsulation, entry aging, and
the slow path delivery.

Tiara relies on a metadata header in the packet to pass
information between T-NIC and T-switch. Figure 8 shows
the format of the metadata header, which is inserted between
the Ethernet header and the IP header. The metadata header
includes a 4-byte RS_Index, a 2-byte RS_Port, a 2-byte RSS,
and a 2-byte EtherType. The field EtherType in the meta-
data header follows the IEEE 802 standard [6] to indicate the
following header type (IPv4 or IPv6). In the Ethernet header,
the original EtherType field is changed to 0x88B5, which
indicates the next header is private. To avoid the drop of over-
sized packets caused by inserting the metadata header, we
increase the MTU of T-NIC and the corresponding T-switch
ports by 10 bytes, i.e., the size of the metadata header.

4.3 T-server
T-server contains 2 Intel(R) Xeon(R) Platinum 8260 CPU.
We run SMuxes and offloading engines in one CPU in the
same NUMA node as T-NIC without hyper-threading. We
build a T-NIC driver as a DPDK [2] PMD and implement the
offloading engine on top of it. We leverage an in-house SMux
implementation modified from DPVS [3]. The SMux has been
deployed over three years, and we make necessary changes
to adapt it for the Tiara architecture. The hash computation
used in both SMuxes and T-NICs is the CRC32 algorithm.

We optimize the DMA transmission between T-NIC and
the PMD. QDMA is a type of Scatter-Gather DMA from Xil-
inx [11]. For any DMA transaction, it first reads a descriptor
from the host to get the physical address of the DMA buffer.
The speed of descriptor filling affects the DMA performance.
Tiara leverages SIMD instructions provided by Intel proces-
sors [7] to accelerate the descriptor filling. For example, we
use _mm_storeu_si128 and _mm_storeu_si128 to copy the
DMA information between the DPDK mbuf and the QDMA
descriptor. Moreover, Tiara decouples DMA control channels
from data channels to avoid head of line blocking and mutual
interference. Tiara guarantees lossless control channels by
fine-grained credit control between T-server and T-NIC while
remaining data channels to be lossy like conventional NIC
data paths.

5 Evaluation

In this section, we use testbed experiments to evaluate the
Tiara prototype as described in §4. We first show the micro-

1352 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/p4lang/switch
https://github.com/p4lang/switch

32M*1 16M*2 8M*4
Hash Table Structure

60

65

70

75

80

85

90

95

100

Th
ro

ug
hp

ut
 (

G
bp

s)

Figure 9: HBM lookup performance on
different hash table structures with 10M
flows.

1 2 3 4 5 6 7 8
Number of SMuxes

2

3

4

5

6

7

8

M
ill

io
n

of
 e

nt
ri

es
/s

Figure 10: Entry insertion speed of a
single offloading engine.

1 2 3
Number of offloading engines

1

2

3

Sp
ee

du
p

Tiara
Linear scaling

Figure 11: Insertion speedup with multi-
ple offloading engines.

benchmarks to assess the effectiveness of Tiara component
designs (§5.1). Then, we measure the end-to-end system per-
formance of Tiara (§5.2). Last, we compare Tiara with ex-
isting approaches, i.e., SMux and Silkroad [31] (§5.3). Our
results reveal that:
• A T-server with a single T-NIC can provide 200 Gbps

throughput with 10M concurrent flows and could scale lin-
early up to 1.6 Tbps and 80M concurrent flows by hosting
8 T-NICs within a T-server.

• Tiara fast path can provide less than 4 us average latency
with small jitter even at line rate.
• Tiara can serve up to 1.8M new connections per second,

which is larger than switch-based HMux.
• Tiara is cost-, energy-, and space-efficient, costing 17.4×

less money, consuming 12.8× less energy, and taking
16.8× less rack space than SMux, given the same target
throughput.

Testbed setup. We leverage the same SMux used in the Tiara
slow path as the baseline of software LBs. The Tiara prototype
and the baseline are directly connected to the traffic generator
using 100 Gbps cables. Test traffic is generated by a hardware
traffic generator, sent to the LB (Tiara or baseline), and then
routed back to the generator. In this way, we could test the
throughput and latency for both Tiara and the baseline.

Traffic. We use a hardware generator to inject synthetic
TCP/UDP flows. Since we do not hold any assumption on
traffic patterns in Tiara design, the traffic is generated in a
random manner.

5.1 Micro-benchmarks
A few micro-benchmarks are designed to evaluate the major
component optimizations described in §3.3. Specifically, we
evaluate the lookup performance of our hash table design,
measure the insertion speed of offloading engines, and test
the PCIe overhead incurred by our aging mechanism.

Tiara OCT provides line-rate lookup. We run a benchmark
with 10M flows in the OCT, implemented with three candi-
date hash table structures described in §3.3.1, i.e., 32M×1,

16M×2, and 8M×4. Figure 9 shows the lookup throughput
on 10M flows with 128-byte packet size in three candidate
hash structures. It reveals that both 32M×1 and 16M×2 struc-
tures approach line rate (97.2 Gbps and 97.15 Gbps), but
16M×2 provides a lower theoretic hash collision rate. When
the width expands to 4, the throughput drops to 72.9 Gbps
since all channels are used for each access at this width. This
benchmark is consistent with our analysis in §3.3.1.

Tiara offloading engine achieves fast entry offloading. We
randomly generate new flow entries in SMuxes and offload
them to T-NIC by offloading engines. Therefore, in this exper-
iment, all offloading operations are entry insertions. Figure 10
demonstrates the offloading speed of a single offloading en-
gine, which is shared among SMuxes. The speed sticks to
6.8M operations per second with more than two SMuxes,
which is bounded by the offloading engine. Figure 11 further
shows how offloading speed changes with more offloading
engines working in parallel. It achieves near linear-scaling
with 2.77× speedup when using three offloading engines.
The linear scalability of offloading speed makes Tiara able
to support a high CPS scenario. For example, the LB in [5]
processes 6.9M CPS, requiring at least 13.8M offloading op-
erations (insertion or deletion), which can be supported by
two offloading engines, as shown in Figure 11.

Tiara entry aging mechanism incurs negligible overhead.
We evaluate the PCIe utilization caused by the aging mech-
anism, i.e., sending signals (packet headers) to SMuxes via
PCIe, with 10M flows and a 1 minute detection period. The
average PCIe utilization is less than 0.05%. Given that the
control plane and data plane share the same PCIe interface,
the low PCIe utilization of Tiara aging mechanism incurs
little influence on the data plane.

5.2 Tiara Performance

A complete Tiara system consists of at least one T-switch
connected by multiple T-servers, each hosting up to 8 200GE
T-NICs. We will show in this section whether such a system
could meet the design goals: > 1 Tbps, > 10M concurrent
flows, and > 1M CPS, without any assumption on traffic pat-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1353

128 256 512 1024 1280
Packet Size

1000

1100

1200

1300

1400

1500

1600

1700

1800

Th
ro

ug
hp

ut
 (

G
bp

s)

Throughput
Average latency

0

2

4

6

8

10

Av
er

ag
e

la
te

nc
y

(u
s)

Figure 12: Forwarding performance in Tiara fast path. A T-
server with 8 T-NICs achieves up to 1.6 Tbps with less than 4
us latency.

terns.

Throughput and latency. To measure the throughput and
latency of Tiara with 10M concurrent flows, we generate
traffic consisting of 10M flows and send them to Tiara, which
offloads these flows into the fast path.

We first test the performance of Tiara fast path with a single
T-NIC. It can achieve the line rate of 200 Gbps and provide an
extremely low average latency of less than 4 us, with packet
sizes ranging from 128 to 1280 bytes. We further break down
the latency distribution in Tiara fast path, which shows about
1 : 1 latency between T-switch and T-NIC.

The throughput and the number of concurrent flows sup-
ported in one T-server can scale linearly with the number
of T-NICs, as T-NICs plugged in the same server are totally
independent of each other, and they share nothing in the fast
path processing. As a result, with 8 T-NICs in one T-server,
the aggregate throughput of T-server fast path scales linearly
to 1.6 Tbps, and the latency remains exactly the same as that
of a single T-NIC (i.e., less than 4 us), as shown in Figure 12.
Similarly, the number of concurrent flows increases to 80M
for a holistic T-server with 8 T-NICs. If the throughput re-
quirement of an LB system is larger than 1.6 Tbps or the flow
number requirement is larger than 80M, more T-servers can
be connected to the T-switch tier, given the flexibility of this
architecture. The aggregate throughput and the flow capac-
ity of Tiara in the fast path can also scale linearly with the
number of T-servers, as they are physically independent as
well.

CPS. We evaluate Tiara ability to serve new TCP connections
by issuing HTTP transactions, including a TCP connection
establishment, an HTTP GET request, an HTTP response (by-
passing LB), and a closure of TCP connection. We gradually
increase the target CPS in 0.1M granularity at the generator
to find the maximum available CPS that the target LB can
serve all the incoming requests. The result reveals that Tiara
can support up to 1.8M CPS (bounded by SMux), which is
higher than our goal (i.e., 1M CPS).

Resilience to traffic patterns. By leveraging the large ca-
pacity of FPGA HBM for the connection table, almost all

20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0
Throughput (Gbps)

25

50

75

100

125

150

175

200

P9
9

La
te

nc
y

(u
s)

Tiara
SMux

Figure 13: Latency-bounded throughput. With the tail (P99)
latency bound of 100us, Tiara can achieve 200Gbps per T-
NIC and 1.6Tbps per T-server with 8 T-NICs. However, since
SMux suffers from high jitter when the load increases, the
maximum latency-bounded throughput of SMux is 38Gbps.

flows can be offloaded to the fast path in Tiara as long as the
number of concurrent flows is less than 10M per T-NIC and
80M per T-server, which is true in most cases as we observed
at our datacenter boundaries. As a result, Tiara is insensitive
to traffic patterns, and it keeps consistent high throughput and
low latency on different traffic patterns.

5.3 Tiara vs. Existing Approaches
In this section, we compare Tiara with existing approaches
(the SMux baseline, Silkroad [31]) in terms of performance
and efficiency. The results are summarized in Table 1.

Performance. SMux suffers from high latency and jitter
when the traffic load is heavy [33] due to high CPU uti-
lization and cache misses. High latency and jitter will ad-
versely impact the user’s network experience. Therefore, we
use "latency-bounded throughput" as the metric to compare
SMux and Tiara more fairly. Given that the end-to-end latency
from Internet users to datacenter services could be as low as
a few milliseconds [35, 39], we should bound the tail latency
of LB to the sub-millisecond level to minimize its impact
on the user’s network experience. In this experiment, we run
SMux on 16 cores of a server with the same configuration
as T-server (§4.3), except that the SMux server is equipped
with a 100 Gbps Mellanox ConnectX-5 NIC rather than T-
NICs. We set the bound of LB P99 latency to 100 us and
compare the latency-bounded throughput with the packet size
of 512 bytes between Tiara and SMux. Figure 13 shows the
P99 latency of Tiara and SMux, respectively, with different
throughputs. For the Tiara fast path, P99 latency is consis-
tently below 4 us at throughput up to 200 Gbps per T-NIC,
while SMux P99 latency breaks the 100 us bound when the
throughput is higher than 38 Gbps. Therefore, we consider
38 Gbps as the maximum latency-bounded throughput of the
baseline SMux. In Tiara, the latency-bounded throughput of a
single T-server with 8 T-NICs is 1.6 Tbps, 42.1× higher than
SMux (38 Gbps), and its P99 latency (4 us) is 25× lower than

1354 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Throughput P99 lat. CPS CT size∗ Cost efficiency Energy efficiency Space efficiency

SMux 38 Gbps 100 us 1.8M ∼100 GB 4.75 Gbps/(cost unit) 76 Mbps/Watt 19 Gbps/U
Silkroad∗∗ 1.6 Tbps < 2 us 200K 100 MB 457.14 Gbps/(cost unit) 2909.1 Mbps/Watt 1600 Gbps/U
Tiara 1.6 Tbps < 4 us 1.8M 4 GB 82.05 Gbps/(cost unit) 969.7 Mbps/Watt 320 Gbps/U

Table 1: Performance and efficiency comparison among different LBs. ∗Since the connection table (CT) compression in Silkroad
is orthogonal to Tiara and can be applied in any architecture, we use the CT size as the metric to compare the data plane scalability
of different architectures. ∗∗The Silkroad paper does not report throughput and tail latency explicitly, and we use the same
throughput and latency results as T-switch to simplify comparison.

SMux (100 us).
Silkroad achieves comparable high throughput and low la-

tency as Tiara, as most connections are processed in the hard-
ware fast path in both solutions. However, Silkroad is less
scalable in both control and data paths than Tiara. Silkroad
leverages the embedded management CPU in switch for con-
nection creation and offloading, thus expecting only 200K
CPS [31]. Tiara achieves 1.8M CPS, 9× higher than Silkroad,
thanks to the optimizations in the control plane of Tiara.
Silkroad stores the connection table in the switch’s limited
on-chip SRAMs. Despite compression with hash digest, the
connection table is still bounded by the on-chip SRAM size,
i.e., 50-100 MB in modern switching ASICs. Tiara leverages
4 GB HBM in modern FPGA, increasing the connection ta-
ble size in the fast path by orders of magnitude compared to
Silkroad.

Efficiency. In this section, we quantify and compare the
efficiency of SMux, Silkroad, and Tiara, in terms of cost ef-
ficiency (performance per dollar), energy efficiency (perfor-
mance per watt), and space efficiency (performance per rack
unit).
• Cost efficiency. As the concrete cost numbers of T-NIC,

T-switch, and T-server used in the Tiara prototype are con-
fidential, we normalize them to 1, 3.5, and 8, respectively.
With these cost units, the normalized system costs of SMux,
Silkroad, and Tiara are 8, 3.5, and 19.5 (=3.5+1*8+8),
respectively. Given these normalized system costs and
the throughput data shown in Table 1, the cost efficiency
of these three approaches will be 4.75 Gbps/(cost unit),
457.14 Gbps/(cost unit), and 82.05 Gbps/(cost unit), re-
spectively.

• Energy efficiency. According to hardware datasheets, T-
NIC, T-switch, and T-server used in the Tiara prototype con-
sume 75 Watt, 550 Watt, and 500 Watt power, respectively.
Based on these power consumption and throughput data,
the energy efficiency of SMux, Silkroad, and Tiara will be
76 Mbps/Watt, 2909.1 Mbps/Watt, and 969.7 Mbps/Watt,
respectively.

• Space efficiency. The server used in SMux is 2 rack-unit
(i.e., 2U) high, the switch used in Silkroad is 1U high, and
the entire Tiara system is 5U high, as it includes a 1U T-
switch and a 4U T-server hosting 8 T-NICs. Based on these

heights and throughput data, the space efficiency of SMux,
Silkroad, and Tiara will be 19 Gbps/U, 1600 Gbps/U, and
320 Gbps/U, respectively.

• Tiara vs. SMux in efficiency. The cost, energy, and space
efficiency of Tiara are 17.4× , 12.8× , and 16.8× higher
than those of SMux, respectively. In other words, given
the same target throughput, Tiara costs 17.4× less money,
consumes 12.8× less energy, and takes 16.8× less rack
space than SMux. All these efficiency advantages of Tiara
over SMux come from hardware acceleration, as suitable
hardware (i.e., FPGA and programmable switch in Tiara)
is fundamentally much more efficient than x86 servers in
network packet processing.

• Tiara vs. Silkroad in efficiency. As we can see from Ta-
ble 1, the switch-only solution in Silkroad outperforms
Tiara in all efficiency metrics. This is expected as Silkroad
only leverages a switch, which is fundamentally more cost-,
energy- and space-efficient than FPGA and x86 in network
packet processing. However, as we discussed in the above
section, the efficiency of Silkroad comes at the cost of
lower CPS and smaller connection tables due to switch in-
herent scalability limitations. Compared to Silkroad, Tiara
strikes a better balance between efficiency and scalability.
Furthermore, the switch-only solution may not be that prac-
tical in traffic scenarios with a large number of connections,
where Silkroad suggests operators combine its switch with
an SMux for the slow path [31]. With this hybrid setting
(switch + server), the efficiency of Silkroad will become
similar to Tiara, but its scalability in hardware is still lower
than Tiara.

One more option to further improve the efficiency of Tiara
is to bake its implementation into a custom ASIC, which
makes it as efficient as the Silkroad switch-only solution and
as scalable as current Tiara. However, a custom ASIC incurs
a significant NRE (non-recurring engineering) cost. Without
a big enough volume to amortize the NRE, the cost efficiency
of custom ASIC is worse than that of current Tiara design. As
the performance of a single T-server is already high enough
(up to 1.6 Tbps), we do not necessarily need a large number
of T-servers to load-balance Internet traffic in even hyper-
scale datacenters. Therefore, the design choice of using FPGA
rather than custom ASIC in Tiara is justified in this context.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1355

6 Related Work

Memory enhanced switches: eXtra Large Table (XLT) [17]
enhances programmable switches with FPGA + DRAM com-
plexes to support large tables. It works well when all rule/flow
tables are stored in DRAM, and the switch and FPGA can
handle all data plane processing entirely. However, that is not
the case for stateful load balancers discussed in this paper.
Despite large DRAM, packet lookup may still miss in XLT
FPGA due to hash collision or first packet processing for new
connections, but how to handle these exceptions is unclear.

TEA [25] extends switching ASIC memory virtually by
utilizing the host DRAM via RDMA. However, looking up
a table at the remote memory prevents switches from line-
rate processing. TEA relies heavily on traffic locality that
caches hot traffic in the on-chip SRAMs to preserve high
throughput. Otherwise, its performance approaches the server-
based lookup table, as demonstrated in its experiment (TEA
with and without cache). Moreover, TEA shares the same
scalability issue on the control plane as other programmable
switches.

Layer-4 load balancing: There have been continuous ef-
forts on layer-4 load balancing. In general, two LB categories
are explored: stateful LBs that keep the per-connection state
at Muxes and stateless LBs that do not maintain any per-
connection state.

Ananta [36] and Maglev [21] are two proposed software
stateful LBs with a series of packet processing optimizations,
including batch processing, poll mode NIC driver, and zero-
copy operations. Despite these optimizations, the packet for-
warding throughput on a single server is still limited, so that
they need a large number of servers to support terabits per
second traffic.

Duet [24] and Rubik [23] accelerate Ananta with commod-
ity switches in a stateless style. They store the VIP-to-DIP
(RS_IP) mapping in switch on-chip SRAMs as an ECMP ta-
ble. To support large-scale mapping rules, they leverage the
tail distribution in VIP traffic to configure the heavy-hitting
rules on switches while processing the rest in the software.

Beamer [33] is a recently proposed stateless LB. It relies
on hash functions on the switch to proceed fast real server
selection and uses "daisy chaining" techniques to mitigate the
PCC violations. The "daisy chaining" requires real servers
to redirect unexpected packets. However, it is empirically
impractical to modify the service servers. Moreover, stateless
LBs can only provide suboptimal workload balancing due to
the nature of hash functions as described in [16].

Silkroad [31] is the most related work, which accelerates
stateful LB with programmable switches. It faces the same
problems as mentioned in §2.3, but it only focuses on ad-
dressing the data plane scalability issue with on-chip SRAMs.
Silkroad stores a hash digest of a connection instead of the
5-tuple in the connection table, which reduces the key size

of each connection from dozens of bytes to 16 bits. Such
compression technique scales to support millions of concur-
rent flows. However, Silkroad will suffer from throughput
degradation due to pipeline folding for those switches that
distribute their SRAM resources in multiple pipelines.

Cheetah [16] aims to design a high-speed LB for both
stateless and stateful manners. One of its contributions is to
solve the entry insertion inefficiency problem in stateful LB
by storing unused hash indexes in a connection stack. For
every new coming connection, Cheetah pops an index from
the connection stack and inserts the connection entry into the
hash table with the retrieved index. This index, encoded in the
packet header as a cookie, is carried by the connection in the
following packets. The change on the packet header requires
modifications on services’ client sides. This requirement pre-
vents Cheetah from deploying on large-scale datacenters with
hundreds and thousands of services.

Component design & optimization: Some techniques used
in the component design and optimization in Tiara have
been extensively studied. Tong et al. [41] propose a high-
throughput hash table structure with the idea of fixed-length
hashing in FPGA DRAM. Mogul et al. [32] eliminate the
livelock by a polling-based mechanism, and Kuperman et
al. [27] match each net device TX queue to a hardware send
queue to avoid spin-lock contention. Ross [38] splits tables
into different cores in a multi-core database system to reduce
the synchronization cost. The SmartNIC used in Azure [22]
periodically reports flow states to the software, which allows
the software manager to age the inactive flows. Our contri-
bution is to integrate those techniques to achieve the design
goals of Tiara.

7 Conclusion

Tiara is a novel hardware acceleration architecture for stateful
load balancers. It simultaneously provides high throughput,
low latency, high scalability, and high efficiency by mapping
different LB tasks into their most suitable hardware and care-
fully designing and optimizing a few key components. Al-
though we only show Tiara’s capabilities to accelerate stateful
load balancers in this paper, we believe this architecture is
generic for network function acceleration and can be explored
in the future in more gateway scenarios, such as DDoS pro-
tection and firewall.

Acknowledgments

We thank our anonymous reviewers and shepherd Anuj Kalia
for their insightful comments. We also thank Naiqian Zheng,
Kaicheng Yang, and Yuxuan Gao for their support of the
project. The work of Chaoliang Zeng, Zilong Wang, and Kai
Chen was supported in part by a ByteDance Research Collab-
oration Project and the Hong Kong RGC TRS T41-603/20-R
and GRF 16215119.

1356 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Axi high bandwidth memory controller v1.0. https:
//www.xilinx.com/support/documentation/ip_
documentation/hbm/v1_0/pg276-axi-hbm.pdf.

[2] Dpdk. https://www.dpdk.org/.

[3] Dpvs is a high performance layer-4 load balancer based
on dpdk. https://github.com/iqiyi/dpvs.

[4] express data path. https://www.iovisor.org/
technology/xdp.

[5] High-performance dpdk-based server load bal-
ancing for alibaba singles’ day shopping festi-
val. https://www.alibabacloud.com/blog/
593984?spm=a2c5t.11065265.1996646101.
searchclickresult.289b2f059llA1a.

[6] Ieee 802 numbers. https://www.iana.
org/assignments/ieee-802-numbers/
ieee-802-numbers.xhtml.

[7] Intel intrinsics guide. https://software.intel.
com/sites/landingpage/IntrinsicsGuide.

[8] Katran: A high performance layer 4 load bal-
ancer. https://github.com/facebookincubator/
katran.

[9] Load balancing 101: Nuts and bolts. https:
//www.f5.com/services/resources/glossary/
load-balancer.

[10] Ovs conntrack. https://docs.openvswitch.org/
en/latest/tutorials/ovs-conntrack/.

[11] Qdma subsystem for pci express. https://www.
xilinx.com/products/intellectual-property/
pcie-qdma.html.

[12] Unveiling the networks behind the 2018 dou-
ble 11 global shopping festival. https://www.
alibabacloud.com/blog/594167?spm=a2c5t.
11065265.1996646101.searchclickresult.
289b2f0575gg5Z.

[13] Virtual extensible local area network (vxlan): A frame-
work for overlaying virtualized layer 2 networks over
layer 3 networks. https://tools.ietf.org/html/
rfc7348.

[14] Anurag Agrawal and Changhoon Kim. Intel tofino2–a
12.9 tbps p4-programmable ethernet switch. In HCS
2020.

[15] João Taveira Araújo, Lorenzo Saino, Lennert Buytenhek,
and Raul Landa. Balancing on the edge: Transport
affinity without network state. In NSDI 2018.

[16] Tom Barbette, Chen Tang, Haoran Yao, Dejan Kostić,
Gerald Q Maguire Jr, Panagiotis Papadimitratos, and
Marco Chiesa. A high-speed load-balancer design with
guaranteed per-connection-consistency. In NSDI 2020.

[17] Curt Beckmann, Ramkumar Krishnamoorthy, Han
Wang, Andre Lam, and Changhoon Kim. Hurdles for a
dram-based match-action table. In ICIN 2020.

[18] John Black, Shai Halevi, Hugo Krawczyk, Ted Krovetz,
and Phillip Rogaway. Umac: Fast and secure message
authentication. In CRYPTO 1999.

[19] Peter Bodík, Ishai Menache, Mosharaf Chowdhury,
Pradeepkumar Mani, David A Maltz, and Ion Stoica.
Surviving failures in bandwidth-constrained datacenters.
In SIGCOMM 2012.

[20] Alan Edelman. Akamai technologies: A mathematical
success story. In SIAM News 1999.

[21] Daniel E Eisenbud, Cheng Yi, Carlo Contavalli, Cody
Smith, Roman Kononov, Eric Mann-Hielscher, Ardas
Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-
nah Dylan Hosein. Maglev: A fast and reliable software
network load balancer. In NSDI 2016.

[22] Daniel Firestone, Andrew Putnam, Sambhrama Mund-
kur, Derek Chiou, Alireza Dabagh, Mike Andrewartha,
Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, et al. Azure accelerated networking: Smartnics
in the public cloud. In NSDI 2018.

[23] Rohan Gandhi, Y Charlie Hu, Cheng-Kok Koh,
Hongqiang Harry Liu, and Ming Zhang. Rubik: un-
locking the power of locality and end-point flexibility
in cloud scale load balancing. In ATC 2015.

[24] Rohan Gandhi, Hongqiang Harry Liu, Y Charlie Hu,
Guohan Lu, Jitendra Padhye, Lihua Yuan, and Ming
Zhang. Duet: Cloud scale load balancing with hardware
and software. In SIGCOMM 2014.

[25] Daehyeok Kim, Zaoxing Liu, Yibo Zhu, Changhoon
Kim, Jeongkeun Lee, Vyas Sekar, and Srinivasan Se-
shan. Tea: Enabling state-intensive network functions
on programmable switches. In SIGCOMM 2020.

[26] Hugo Krawczyk. Lfsr-based hashing and authentication.
In CRYPTO 1994.

[27] Yossi Kuperman, Maxim Mikityanskiy, and Rony
Efraim. Hierarchical qos hardware offload (htb).

[28] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu,
Yongqiang Xiong, Andrew Putnam, Enhong Chen, and
Lintao Zhang. Kv-direct: High-performance in-memory
key-value store with programmable nic. In SOSP 2017.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1357

https://www.xilinx.com/support/documentation/ip_documentation/hbm/v1_0/pg276-axi-hbm.pdf
https://www.xilinx.com/support/documentation/ip_documentation/hbm/v1_0/pg276-axi-hbm.pdf
https://www.xilinx.com/support/documentation/ip_documentation/hbm/v1_0/pg276-axi-hbm.pdf
https://www.dpdk.org/
https://github.com/iqiyi/dpvs
https://www.iovisor.org/technology/xdp
https://www.iovisor.org/technology/xdp
https://www.alibabacloud.com/blog/593984?spm=a2c5t.11065265.1996646101.searchclickresult.289b2f059llA1a
https://www.alibabacloud.com/blog/593984?spm=a2c5t.11065265.1996646101.searchclickresult.289b2f059llA1a
https://www.alibabacloud.com/blog/593984?spm=a2c5t.11065265.1996646101.searchclickresult.289b2f059llA1a
https://www.iana.org/assignments/ieee-802-numbers/ieee-802-numbers.xhtml
https://www.iana.org/assignments/ieee-802-numbers/ieee-802-numbers.xhtml
https://www.iana.org/assignments/ieee-802-numbers/ieee-802-numbers.xhtml
https://software.intel.com/sites/landingpage/IntrinsicsGuide
https://software.intel.com/sites/landingpage/IntrinsicsGuide
https://github.com/facebookincubator/katran
https://github.com/facebookincubator/katran
https://www.f5.com/services/resources/glossary/load-balancer
https://www.f5.com/services/resources/glossary/load-balancer
https://www.f5.com/services/resources/glossary/load-balancer
https://docs.openvswitch.org/en/latest/tutorials/ovs-conntrack/
https://docs.openvswitch.org/en/latest/tutorials/ovs-conntrack/
https://www.xilinx.com/products/intellectual-property/pcie-qdma.html
https://www.xilinx.com/products/intellectual-property/pcie-qdma.html
https://www.xilinx.com/products/intellectual-property/pcie-qdma.html
https://www.alibabacloud.com/blog/594167?spm=a2c5t.11065265.1996646101.searchclickresult.289b2f0575gg5Z
https://www.alibabacloud.com/blog/594167?spm=a2c5t.11065265.1996646101.searchclickresult.289b2f0575gg5Z
https://www.alibabacloud.com/blog/594167?spm=a2c5t.11065265.1996646101.searchclickresult.289b2f0575gg5Z
https://www.alibabacloud.com/blog/594167?spm=a2c5t.11065265.1996646101.searchclickresult.289b2f0575gg5Z
https://tools.ietf.org/html/rfc7348
https://tools.ietf.org/html/rfc7348

[29] Bojie Li, Kun Tan, Layong Luo, Yanqing Peng, Ren-
qian Luo, Ningyi Xu, Yongqiang Xiong, Peng Cheng,
and Enhong Chen. Clicknp: Highly flexible and high
performance network processing with reconfigurable
hardware. In SIGCOMM 2016.

[30] Yishay Mansour, Noam Nisan, and Prasoon Tiwari. The
computational complexity of universal hashing. In TCS
1993.

[31] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun
Lee, and Minlan Yu. Silkroad: Making stateful layer-4
load balancing fast and cheap using switching asics. In
SIGCOMM 2017.

[32] Jeffrey C Mogul and KK Ramakrishnan. Eliminating
receive livelock in an interrupt-driven kernel. In TOCS
1997.

[33] Vladimir Olteanu, Alexandru Agache, Andrei Voinescu,
and Costin Raiciu. Stateless datacenter load-balancing
with beamer. In NSDI 2018.

[34] Rasmus Pagh and Flemming Friche Rodler. Cuckoo
hashing. In Journal of Algorithms 2004.

[35] Fabio Palumbo, Giuseppe Aceto, Alessio Botta,
Domenico Ciuonzo, Valerio Persico, and Antonio
Pescapé. Characterization and analysis of cloud-to-user
latency: the case of azure and aws. In CN 2021.

[36] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin
Murthy, Albert Greenberg, David A Maltz, Randy Kern,
Hemant Kumar, Marios Zikos, Hongyu Wu, et al.
Ananta: Cloud scale load balancing. In SIGCOMM
2013.

[37] Kun Qian, Sai Ma, Mao Miao, Jianyuan Lu, Tong Zhang,
Peilong Wang, Chenghao Sun, and Fengyuan Ren. Flex-
gate: High-performance heterogeneous gateway in data
centers. In APNet 2019.

[38] Kenneth A Ross. Multicore processors and database
systems: The multicore transformation. In Ubiquity
2014.

[39] Ao-Jan Su, David R Choffnes, Aleksandar Kuzmanovic,
and Fabian E Bustamante. Drafting behind akamai:
Inferring network conditions based on cdn redirections.
In TON 2009.

[40] Ao-Jan Su and Aleksandar Kuzmanovic. Thinning aka-
mai. In SIGCOMM 2008.

[41] Da Tong, Shijie Zhou, and Viktor K Prasanna. High-
throughput online hash table on fpga. In IPDPS 2015.

[42] Teng Zhang, Jianying Wang, Xuntao Cheng, Hao Xu,
Nanlong Yu, Gui Huang, Tieying Zhang, Dengcheng He,
Feifei Li, Wei Cao, et al. Fpga-accelerated compactions
for lsm-based key-value store. In FAST 2020.

A Analysis on Hash Collision

Suppose there are n random entries inserted into a hash table
with width w and depth d. The probability that any i entries
are hashed to the same index is:

p(i) =Ci
n(

1
d
)i(1− 1

d
)n−i (1)

The probability for any indexes that hold 0∼ w entries is:

p(num≤ w) =
w

∑
i=0

Ci
n(

1
d
)i(1− 1

d
)n−i (2)

For all indexes, this probability becomes:

p(num≤ w)all = (
w

∑
i=0

Ci
n(

1
d
)i(1− 1

d
)n−i)d (3)

Therefore, the probability for all indexes that exist at least
once collision, i.e., holding more than w entries, is:

p(num > w)all = 1− (
l

∑
i=0

Ci
n(

1
d
)i(1− 1

d
)n−i)d (4)

1 2 4 8 16
width

12

10

8

6

4

2

0

lo
g

(c
ol

lis
io

n
ra

te
)

width * depth = 2 * #entry
width * depth = 4 * #entry
width * depth = 8 * #entry

Figure 14: The numerical simulation on collision rates in dif-
ferent widths and depths with #entry = 32768. The collision
rates are shown in the log scale.

To get an intuitive relationship between the collision rate
and the width, we conduct a numerical simulation on different
settings based on Equation 4. The results are demonstrated
in Figure 14, and show that given a fixed hash space (> n), a
larger width results in a lower hash collision rate.

1358 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Scaling Open vSwitch with a Computational Cache

Alon Rashelbach, Ori Rottenstreich, Mark Silberstein
Technion

Abstract
Open vSwitch (OVS) is a widely used open-source virtual
switch implementation. In this work, we seek to scale up OVS
to support hundreds of thousands of OpenFlow rules by accel-
erating the core component of its data-path - the packet clas-
sification mechanism. To do so we use NuevoMatch, a recent
algorithm that uses neural network inference to match packets,
and promises significant scalability and performance benefits.
We overcome the primary algorithmic challenge of the slow
rule update rate in the vanilla NuevoMatch, speeding it up by
over three orders of magnitude. This improvement enables
two design options to integrate NuevoMatch with OVS: (1)
using it as an extra caching layer in front of OVS’s megaflow
cache, and (2) using it to completely replace OVS’s data-
path while performing classification directly on OpenFlow
rules, and obviating control-path upcalls. Our comprehen-
sive evaluation on real-world packet traces and ClassBench
rules demonstrates the geometric mean speedups of 1.9× and
12.3× for the first and second designs, respectively, for 500K
rules, with the latter also supporting up to 60K OpenFlow rule
updates/second, by far exceeding the original OVS.

1 Introduction

Open vSwitch (OVS) [22] is one of the most popular soft-
ware switches used by cloud providers to implement software-
defined networks [1, 8, 23]. As part of its main tasks, OVS
classifies packets according to a set of match-action tuples,
i.e., OpenFlow rules dynamically installed by the network con-
troller. To achieve high throughput, OVS adopts the fast/slow
path separation principle: the majority of the packets are clas-
sified in the fast data-path, which maintains a megaflow cache
optimized for speedy matching. Upon a miss, OVS invokes
the slower upcall into a control-path, which populates the
megaflow cache with tuples called megaflows.

Unfortunately, OVS suffers from two primary scalability
issues. First, the megaflow cache becomes slower as the num-
ber of megaflows in it grows. Our experiments (§3) show that

with 500K megaflows, OVS is about an order of magnitude
slower than with 1K megaflows. Importantly, the cache might
hold a large number of megaflows even if the number of the
original OpenFlow rules is small. This is because when OVS
populates the cache, it transforms the relevant OpenFlow rules
into a set of non-overlapping megaflows [22]. As a result, the
OpenFlow rules might get fragmented; under certain common
traffic patterns, this fragmentation leads to a dramatic increase
in the number of megaflows in the cache [3, 4].

The second problem is the performance degradation that oc-
curs when new rules are inserted into OVS by a network con-
troller. We observe (§3) that the throughput might be affected
significantly even when adding only a few dozens of new
OpenFlow rules at a time. The main reason stems from the
need to enforce the non-overlapping property of megaflows,
which might cause OVS to remove existing megaflows, lead-
ing to slow path upcalls. Clearly, the problem gets worse in
systems with frequent rule updates.

In this work, we seek to overcome these OVS limitations.
Our key idea is to leverage the recently published algorithm
for packet classification, called NuevoMatch [26, 27], which
was shown to significantly outperform state-of-the-art alter-
natives when scaling to a large number of OpenFlow rules.
NuevoMatch uses shallow neural networks comprising a
Range-Query Recursive Model Index (RQ-RMI) to learn the
distribution of the rules. The rule lookup is translated into
neural-network inference that replaces the traditional index
data structure traversal. Upon an update, new rules are first
added to a slow-path remainder classifier, and the model is pe-
riodically retrained to incorporate them in the fast path. Thus,
the RQ-RMI model serves as a computational cache for the
remainder, while retraining the model is equivalent to filling
that cache. The scalability of NuevoMatch follows from its
small memory footprint and efficient use of CPU hardware,
which together enable fast execution on modern CPUs [26].

However, our initial attempts to integrate OVS and Nuevo-
Match revealed one critical limitation of the original algo-
rithm: its inability to accommodate fast updates. When rules
are modified, NuevoMatch must retrain the RQ-RMI model

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1359

from scratch on the updated rule-set, in order to reach its full
performance potential. Unfortunately, RQ-RMI training time
is too long and cannot support the required update rate, partic-
ularly with a large number of OpenFlow rules as targeted by
our work. Our analysis (§3) shows that the NuevoMatch train-
ing rate is orders of magnitude slower than the one necessary
to achieve its promised performance benefits.

We tackle this challenge by introducing NuevoMatchUP
which extends the original NuevoMatch training algorithm
and improves the training rate by over three orders of magni-
tude. Thus, it requires only a few milliseconds to train tens
of thousands of rules, and about one second for 500K rules,
thereby paving the way to the practical integration of compu-
tational cache into OVS.

We consider two design options for integrating Nuevo-
MatchUP with OVS. The first design, OVS with computa-
tional cache (OVS-CCACHE), targets the scalability of the
megaflow cache by accelerating it with NuevoMatchUP. OVS-
CCACHE achieves higher throughput than the original design,
but unfortunately inherits the low rule update performance. To
support fast updates, we introduce OVS with computational
flows (OVS-CFLOWS), which leverages the power of Nuevo-
MatchUP to efficiently match complex OpenFlow rules and
obviates the need for the megaflow cache and fast-slow path
separation of the original OVS. This change eliminates the
the key bottleneck that restricts the rule update rates in the
original OVS.

We comprehensively evaluate OVS-CCACHE and OVS-
CFLOWS using real-world CAIDA [2] and MAWI [37] traces,
and the standard ClassBench-generated rule-sets [32]. OVS-
CCACHE improves the megaflow cache performance, achiev-
ing the end-to-end geometric mean speedups of 1.5×, and
1.9× for 100K, and 500K OpenFlow rules, respectively.

OVS-CFLOWS sidesteps the control-path limitations and
is thus significantly faster, with the end-to-end geometric
mean speedups of 2.6×, 8.5×, and 12.3× for 1K, 100K, and
500K OpenFlow rules, respectively. Moreover, OVS-CFLOWS
handles more than 60K OpenFlow rule updates/second.

These results demonstrate the first practical use of RQ-RMI
models in a production packet processing system, and show
their ability to improve throughput and scalability.

2 Background

We explain the relevant details about the operation of Open
vSwitch (OVS) [22, 23], and describe the NuevoMatch algo-
rithm [26] for packet classification.

2.1 Open vSwitch
Open vSwitch (OVS) is a popular open-source virtual switch
that supports industry standard OpenFlow protocols. OVS
determines which action to apply on each packet according
to the OpenFlow rules installed by the network controller.

Packet

Data-path
Matches on
megaflows

Upcall

Flow

Control-path
Matches on

OpenFlow rules
Rule

Flow← Rule

Miss

Hit
Perform action

Packet
Metadata

Install flow
in data-path

Convert rule
to flow

Figure 1: Fast/slow path separation in OVS.

This task is known as packet classification, and has been
extensively studied [6, 10, 18, 19, 26, 28, 30, 35, 39].
Matching a rule. In its simplest form, a rule is a boolean
predicate parametrized by one or more fields in the packet
header (e.g., IP address, IP protocol). If a predicate is true
for a given packet (the rule matches), an action associated
with the rule is invoked to process the packet. An action is an
operation to apply to the packet (e.g., forward to port or drop).
A packet may match several overlapping rules, but only the
one with the highest priority is selected.
Control-/data- path. OVS is split into data- (fast) and control-
(slow) paths (Figure 1). All OpenFlow rules are installed and
maintained in the control-path. The data-path, on the other
hand, uses a megaflow cache to achieve high processing rates.

The megaflow cache holds non-overlapping rules called
megaflows, generated by the control-path from the installed
OpenFlow rules. Specifically, whenever the data-path encoun-
ters a packet that does not match any previously installed
megaflow, it performs an upcall to the control-path, which in
turn finds the relevant OpenFlow rule and converts it into a
megaflow. Future packets with the same header fields will not
require upcalls unless the megaflow is removed. OVS ensures
the correctness of the matching process with the megaflow
cache, terminating lookup after a hit in it. To achieve that,
OVS tracks all modifications to the OpenFlow rules in the
control-path. In particular, it might need to invalidate pre-
viously installed megaflows when new OpenFlow rules are
added. As we show in §3, these operations might significantly
affect OVS’s performance.

In addition to the megaflow cache, OVS often activates a
short-term exact-match cache (EMC) in front of it. The EMC
can be helpful with high-locality traffic.
Megaflow cache implementation. The megaflow cache uses
the Tuple Space Search (TSS) [30] algorithm for packet clas-
sification, as follows. Megaflows with the same mask m are
stored in the same hash table Hm, with masked flow keys as
entries. Given a packet header h, the megaflow cache iterates
over all hash tables to find an entry that matches h (i.e., the
masked header equals to the masked key). The lookup latency
increases linearly with the number of hash tables traversed.

OVS’s data-path can run either in the user-space using
DPDK [25], or as a dedicated Kernel module. In this paper
we use the DPDK version for its higher performance [34].

1360 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

iSet 0

RQ-RMI
Candidate

iSet 0 Rules
hint

error

Validation

iSet 1

RQ-RMI Candidate

iSet 1 Rules

hint

error

Validation

Remainder

Packet

Selector

Figure 2: NuevoMatch algorithm [26], RQ-RMI inference
provides hints to find the matching rule (details in §2.2).

Size Category SC 0 SC 1 SC 2 SC 3

Input Rules < 103 103 - 104 104-105 > 105

Neural Nets 5 21 133 265 or 521

Table 1: RQ-RMI model size (number of neural nets) for
different number of rules to index (values taken from [26]).

2.2 NuevoMatch Classification Algorithm
NuevoMatch (NM) is a new class of packet classification al-
gorithms that leverage neural nets to scale to many rules [26].

Figure 2 presents the main components of the algorithm.
NM partitions a given set of rules into several independent
subsets (iSets), such that each iSet s has a header field hs in
which its rules do not overlap. The fraction of an iSet’s rules
out of all rules is called the iSet’s coverage. In practice, two
iSets are often sufficient to cover more than 90% of the rules
for large enough rule-sets [26]. Rules that do not fit in any of
the iSets are handled by a remainder classifier, which can be
implemented by any other packet classification technique.

For each iSet s, NM trains a hierarchical model called
Range-Query Recursive Model Index (RQ-RMI) which con-
sists of multiple shallow neural-nets. RQ-RMI learns the dis-
tribution of ranges represented by the rules and outputs the
estimated index of the matching rule within an array. At the
inference time, this estimation is used as a starting index to
search for the matching rule within the array. Crucially, the
RQ-RMI training algorithm guarantees a tight bound on the
maximum error of the estimated index, which in turn bounds
the search and ensures lookup correctness. During the search,
the candidate rules are validated by matching over all fields
of the incoming packet. Finally, the highest priority rule is
selected out of all the matching rules from all the iSets and
the remainder.

The number of neural nets (NNs) in an RQ-RMI model
depends on the number of rules it indexes. The original paper
suggests four RQ-RMI size categories, reported in Table 1.
The larger the model, the longer it takes to train it. However

1K 100K 500K
101

102

103

104

Number of OpenFlow rules

A
vg

.t
im

e
pe

rp
ac

ke
t(

ns
)

Megaflow cache
Exact-match cache
Applying actions

97%

2%

1%

86%

9%

5%

5%
70%
25%

Figure 3: Breakdown of packet processing times in the data-
path for different number of OpenFlow rules.

smaller models would fail to achieve the target error bound
guarantees and would result in a slower lookup. Thus, there is
a fundamental trade-off between the lookup latency and the
training time. NuevoMatchUP changes the way RQ-RMI is
constructed to modify this trade-off, allowing a much faster
training with negligible degradation in the lookup latency.

3 Motivation

We analyze OVS’s scalability bottlenecks and highlight the
potential benefits of using faster packet classification.

For the analysis we use the same setup and workloads as de-
scribed in §7. In particular, we generate 36 ClassBench Open-
Flow rule-sets (12 application types of three size categories
each: 1K, 100K, 500K rules), and evaluate the throughput by
replaying Caida-short packet trace (100M packets).
Does OVS get slower with more rules? We compare the
throughput with 1K rules vs. the throughput with 100K and
500K rules, separately for each ClassBench application type.
We observe that the geometrical mean slowdown for 100K
and 500K rules vs. 1K rules is 5.8× and 9.1×, respectively.

Takeaway 1: OVS does not scale well to a large number of
OpenFlow rules.
Where is the bottleneck in the data-path? We analyze the
average processing time of a packet in the OVS data-path
while varying the number of OpenFlow rules across all the
rule-sets. Figure 3 shows that packets spend the majority of
time in the megaflow cache, i.e., 86% and 97% of the CPU
time on average, for 100K and 500K rules respectively.

Takeaway 2: OVS megaflow cache becomes the main data-
path performance bottleneck as the number of OpenFlow
rules increases.
Are the control-path upcalls the primary bottleneck?
Misses in the megaflow cache trigger upcalls into the control-
path. The frequency of the upcalls is hard to predict; it de-
pends on the interplay between the rule-set and the traffic
pattern [3, 4]. Unfortunately, frequent upcalls cause major
throughput drop. For example, Figure 4 shows the throughput
and the rate of deletions and upcalls, sampled every 100ms,
for a 100K rules (rule-set number 2 in §7). The higher the

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1361

0
0.4
0.8
1.2

T
hr

.

0
4
8
12

D
el

s/
s

0 5 10 15 20
0
3
6
9

Time (sec)

U
pc

ls
/s

Throughput (Mpps) Upcalls/sec (×103) Deletions/sec (×103)

Figure 4: OVS throughput is affected by control-path upcalls.

0
2
4
6

D
el

s/
s

Throughput (Mpps) Upcalls/sec (×104) Deletions/sec (×106)

6 8 10 12 14 16
0
1
2
3

Time (sec)

U
pc

ls
/s

0
1
2
3

T
hr

.

Figure 5: Insertion of new OpenFlow rules: the throughput
drops at t = 7s when 60 new OpenFlow rules are added to
500 existing ones. Note the coinciding peak in the deletion
rate from the megaflow cache and the subsequent increase in
the number of upcalls.

number of upcalls, the lower the throughput. Similarly, the
performance drop is observed due to deletions, triggered by
the periodic megaflow cache cleanup of idle flows. For other
rule-sets the behavior is similar.

Takeaway 3: frequent upcalls are detrimental to perfor-
mance.
Impact of OpenFlow rule updates. OVS might experience a
sharp drop in throughput when OpenFlow rules are modified.

To show that, we install 500 OpenFlow rules in the begin-
ning and update 60 rules at time t = 7. Figure 5 shows the
results. The moment before the update occurs, there are 144K
megaflows in the cache. We see that the update causes about
104K deletions from the megaflow cache, followed by tens
of thousands of upcalls. As a result, the throughput drops
dramatically and takes a few seconds to recover.

This graph illustrates a general problem rooted in the
megaflow algorithm. When inserting new rules that over-
lap existing ones with lower priorities, OVS must delete all
megaflows that correspond to the existing rules (§3). While
the magnitude of the throughput degradation depends on the
rules being updated, the issue is significant in particular with
high update rates.

Takeaway 4: modifying a handful of OpenFlow rules might
significantly affect the throughput because of the increase in
upcalls.

Incoming Packet

Exact Match Cache

Cache Miss

NuevoMatch: Megaflows

iSet 0 RQ-RMI

iSet 1 RQ-RMI(optional)

Cache Miss

Megaflow Cache (remainder)

Upcall
Cache Miss

(a) OVS-CCACHE with NuevoMatch accelerating the megaflow
cache.

Incoming Packet

Exact Match Cache

Cache Miss

NuevoMatch: OpenFlow Rules

iSet 0 RQ-RMI

iSet 1 RQ-RMI(optional)

Cache Miss

TupleMerge Classifier (remainder)

Control-Path

Constant
Updates

Network
Controller

OpenFlow

(b) OVS-CFLOWS with NuevoMatch performing OpenFlow rule classi-
fication in the data-path.

Figure 6: Design options for integrating NuevoMatch with
OVS. See §8 for the discussion why to choose one over the
other.

4 Design Options and Challenges

Our analysis indicates two primary reasons for the OVS per-
formance degradation: (a) poor scalability of the megaflow
cache; (b) frequent upcalls to the control-path. In the follow-
ing we consider two designs to solve these issues.

4.1 OVS with Computational Cache
To tackle the first issue, the most natural solution is to re-
place the megaflow cache with a more scalable NuevoMatch.
This approach is appealing because it fits well in the existing
OVS design. Here, NuevoMatch uses the megaflow cache
as a remainder, and can be seen as an additional layer of
caching for megaflows. We call this approach an OVS with a
computational cache (OVS-CCACHE).

Figure 6a shows the proposed OVS-CCACHE design, depict-

1362 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Num.
of OF
rules

Upcalls
per sec

Num. of
Megaflows

in cache

Training
time est.

Coverage
degrad.

est.

1K 128 6.5K 30s 3.8%
100K 6.7K 102K 270s 7%
500K 6.4K 90K 250s 8%

Table 2: Characterization of rule update rate requirements in
the megaflow cache. NuevoMatch training should be at least
100× faster to be applicable to the megaflow cache.

ing only the data-path. The control-path is unmodified. Incom-
ing packets are first matched against the exact-match cache.
A miss is then forwarded to the computational cache provided
by NuevoMatch RQ-RMI models. The original megaflow
cache serves the lookups which did not match in RQ-RMI.
If missed again, the packet continues with the original OVS
upcall mechanism.

When new megaflows are added to the data-path, they
are first inserted into the original megaflow cache. The RQ-
RMI model is periodically re-trained in a separate thread by
pulling the added megaflows from the megaflow cache. When
the training finishes, the old RQ-RMI models are replaced
with the newly trained ones that already incorporate the new
megaflows, and the megaflow cache is emptied.

Unfortunately, this solution inherits the performance lim-
itations of the upcall mechanism, and thus would not scale
well in case of frequent upcalls.

4.2 OVS with Computational Flows
To solve the issue of slow upcalls, one option is to apply
NuevoMatch to the control-path classifier to speed up the
handling of upcalls. Unfortunately, control-path tasks go well
beyond OpenFlow rule matching, and it is unclear how to
use NuevoMatch in this context. Specifically, the control-path
effectively implements the algorithm for tracking and gen-
erating non-overlapping megaflows. This is the core of the
control-path and it is tightly coupled with the rule match-
ing logic. Thus, NuevoMatch is not suitable for control-path
acceleration.

On the other hand, the excessive number of upcalls we
observed stems primarily from the design choice to generate
non-overlapping megaflows for the data-path. The fact that
megaflows do not overlap is an essential feature in OVS de-
sign that allows fast-path performance optimizations, but it is
also the one that deteriorates the throughput dramatically in
case of frequent upcalls [3, 4].

Therefore, our proposed solution, OVS with computational
flows (OVS-CFLOWS), leverages NuevoMatch to perform ef-
ficient packet classification directly on complex OpenFlow
rules, without resorting to non-overlapping megaflows. As a
result, we remove the megaflow cache mechanism and the

associated control-path logic, and obviate the need for upcalls.
This approach, while more intrusive than OVS-CCACHE, holds
the promise to boost OVS performance both with and without
OpenFlow rule updates. How it fairs against OVS-CCACHE is
one of the questions we answer in our evaluation.

Figure 6b shows the design of OVS-CFLOWS. While it
resembles OVS-CCACHE, the difference is that NuevoMatch
here is used to match OpenFlow rules instead of megaflows
as in OVS-CCACHE. Similarly to OVS-CCACHE, updates are
first inserted into the remainder (we use TupleMerge [6] for
its implementation), and RQ-RMI models are periodically
retrained to accommodate them.

4.3 Challenge: Slow NuevoMatch Updates
Unfortunately, in practice, NuevoMatch cannot support either
OVS-CCACHE or OVS-CFLOWS. Recall that rule modification
in the classifier requires retraining all its RQ-RMI models
from scratch with the new, modified set of rules (§2.1). There-
fore, the rule update rate is bounded by the training time of
the models, which in turn depends on the number of rules in
the classifier rather than on the number of modified rules.

In the following, we analyze the update rate requirements
for OVS-CCACHE and OVS-CFLOWS, and show that Nuevo-
Match is over two orders of magnitude slower than required.
Megaflow cache rule churn. To understand the training rate
requirements for NuevoMatch in OVS-CCACHE, we analyze
the rule churn rate in the megaflow cache. For each OpenFlow
rule size category we measure (1) the average rate of upcalls,
which is equivalent to the rate of updates in the megaflow
cache (we count insertions only, as NuevoMatch supports
deletions without retraining), and (2) the average number
of megaflows in the cache, which dictates the NuevoMatch
training time if it were used to accelerate the megaflow cache.

Table 2 shows that for larger rule-sets (100K, 500K) there
are about 6.5K upcalls per second, and the megaflow cache
holds about 100K megaflows. Thus, NuevoMatch would have
to retrain the model with 100K rules every 150 µs. This is of
course unrealistic: training a model of that size would require
about 270 seconds according to the original paper.

The solution suggested by the authors of NuevoMatch is to
accumulate the updates in the remainder and serve the queries
from it while training. Thus, the coverage of the RQ-RMI
model is lower during the training; hence, the performance
is lower because more queries are served in the remainder.
When the training is finished, the coverage improves, and a
new round of training begins right away to catch up with the
rules modified during the previous training round.

Unfortunately, this option is not practical either. If 6.7K
rules get modified each second, the expected coverage degra-
dation per second would be about 7% (see Table 2). If we accu-
mulate the updates while training for 270 seconds, the cover-
age will become practically zero, nullifying the NuevoMatch
performance benefits completely. For comparison, even to

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1363

1 8 16 24 32 40 48 56
0

2

4

6

Bucket size l

Tr
ai

ni
ng

(s
)

Training Time
Lookup Time

0

0.1

0.2

0.3

SC0 SC1 SC2

L
oo

ku
p

(µ
s)

(a)

2 6 10 14 18
0

10

20

30

40

#Samples (×103)

Tr
ai

ni
ng

(s
)

Uniform sampling
Approximate sampling

(b)

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
103

104

105

106

1K 100K 500K

Tr
ai

ni
ng

(s
)

NuevoMatch NuevoMatchUp

Rule-set
Speedup 17 18 19 20 35 18 18 18 19 19 21 37 22 34 30 30 22 35 31 18 19 35 29 29

(c)

Figure 7: (a) The effect of the bucket size l on the RQ-RMI
training and lookup times. See RQ-RMI size categories (SC)
in Table 1. (b) Training using approximate sampling is faster.
Here we train 500K rules using bucket size l = 40. (c) The
training implementation of NuevoMatchUP is 20 times more
efficient than that of NuevoMatch.

achieve the coverage of 25%, which is the cutoff suggested in
the paper for NuevoMatch to provide minimum performance
benefits, the training must complete within 4 seconds. This is
almost two orders of magnitude faster compared to 270 sec-
onds that NuevoMatch allows today. We use the same model
as the original paper to produce these estimates: E =R ·e−U/R,
where R and U are the total number of rules and the number
of updates respectively, and E is the expected number of rules
in the model left after the updates.
OVS-CFLOWS update requirements. The update rate of Open-
Flow rules varies between 400 to 338K updates per sec-
ond [12, 13]. Supporting an average rate of 100K updates
per second in NuevoMatch would require retraining every
500ms to achieve a coverage of 90% for a rule-set of 500K
OpenFlow rules. Unfortunately, the actual NuevoMatch train-
ing time for a rule-set of that size is about 600s, which is over
three orders of magnitude slower.

We conclude that NuevoMatch training algorithm is too
slow to support the update requirements of OVS in the consid-
ered designs.

5 NuevoMatchUP: Speeding-up Updates

We introduce NuevoMatchUP (NMU), a series of enhance-
ments to NuevoMatch which together significantly improve

its update rate by several orders of magnitude.
NMU introduces important changes to the RQ-RMI con-

struction and training algorithms, as well as to their implemen-
tation. First, it enables creating much smaller (thus faster-to-
train) RQ-RMI models by constructing iSets with overlapping
rules. Second, it enables major improvement in training speed
by cutting down the number of memory accesses. We now
discuss these changes in detail.

5.1 Relaxing iSet Constraints

An iSet s is a set of rules associated with a field hs for which
rules do not overlap (§2.2). We relax the no-overlap constraint,
by allowing overlap between a certain number of rules. Infor-
mally, a relaxed iSet is an iSet with up to l overlapping rules
in field hs, grouped in buckets (defined next).

We now describe the algorithm for constructing a relaxed
iSet s on a header field hs.

Lemma 1. Given an OVS classification rule r and a packet
header field h, the set of values in h that match r can be
represented by an integer range, denoted as h(r).

The correctness of the lemma directly follows from the
usage of prefix based wildcard representation in OVS.

Definition 1. A bucket is a set of up to l rules. We say that two
buckets b1 and b2 do not overlap with respect to the header
field h if for any rule r1,r2 in b1,b2 respectively, h(r1) does
not overlap h(r2).

To create buckets that do not overlap with respect to the
header field hs, we sort the rules by their ranges in hs, and iter-
ate over them allowing up to l overlapping ranges per bucket.
Whenever we encounter a rule with a range that does not over-
lap with its predecessors, we include it in a new bucket. If
buckets contain less than l rules, we merge adjacent buckets
while keeping the constraint to have at most l rules per bucket.
Next, we use RQ-RMI models to learn the distribution of the
buckets rather than the distribution of the rules [26].

Since the number of buckets is smaller by up to a factor
of l than the number of rules, RQ-RMI models in Nuevo-
MatchUP are smaller and train faster than in NuevoMatch
(see Table 1). Of course, the cost of this optimization is a
slower lookup: all the rules in the same bucket must be val-
idated via a linear scan. This trade-off, however, turned out
to be beneficial to accelerate training with a negligible slow-
down for the lookup. Figure 7a demonstrates this trade-off
using a representative rule-set (12-500K, see §7). Buckets of
sizes l = 8,48 change the RQ-RMI size category and dramati-
cally improve the model’s training performance. Other bucket
sizes (l = 16,24,32,40,48,56) do not change the RQ-RMI
size category and only add to the linear scan overhead.

1364 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

5.2 Training via Approximate Sampling

In NuevoMatch, each neural net in RQ-RMI is trained using
supervised learning on a labeled dataset S that is generated
in advance. The dataset is sampled from an ordered set of
ranges, R, sorted by the ranges’ start values. An RQ-RMI
model learns the function represented by the ordered set R: it
maps an input to the index of the matching range. To learn
this function, NuevoMatch samples from it uniformly [26].
This uniform sampling is expensive, as it requires to scan all
the ranges and sample from them according to their relative
sizes in the function input domain. This sampling must be
done for each neural-network (NN) in the RQ-RMI model,
sometimes multiple times to achieve the desired accuracy.

Our goal is to modify the sampling process to reduce the
number of memory accesses from O(|R|), which can be on
the order of tens of thousands per NN, to O(|S|), which is
about several thousand per NN. Doing so is not trivial since
the training converges faster when the samples are distributed
with parameters (µ,σ) = (0,1).

We make two observations. First, it is possible to analyti-
cally estimate the expectation µ and standard deviation σ of
a uniform sampling of the NN input domain (see Appendix
A.1), and thus enable correct normalization of the samples
regardless of the way they are actually sampled. Second,
given correct normalization, sampling R in a non-uniform
way might only affect the model accuracy but not the lookup
correctness, thanks to the search in the rule array (§2.2) that
eliminates model approximation errors.

These observations allow us to accelerate the sampling
process as follows. We generate a set of 32 samples per batch,
each of the form (x,y). First, we uniformly select a range
r with index i from R. Second, we uniformly select a value
x′ ∈ r. We then generate a normalized x = x′−µ

σ
; y = i

|R| as in
the original algorithm.

In Figure 7b we train a model over a representative rule-
set (12-500K, see §7) and get 4-5.3× faster training using
approximate sampling.

5.3 Optimized Training Implementation

NuevoMatch uses a hybrid training approach that mixes
Python code, TensorFlow, and a custom native library. In
contrast, NuevoMatchUP is implemented in C++, which re-
duces its memory requirements, and takes advantage of the
CPU SIMD instructions. Figure 7c shows a 23.8× geometri-
cal mean speedup of NuevoMatchUP over NuevoMatch over
all rule-sets. In this experiment we disable all algorithmic
optimizations, highlighting the speedup due to the implemen-
tation.

5.4 Putting It All Together

Each of the described optimizations in isolation would not
suffice to achieve the target performance goals to support
the necessary update rate. However, when combined, they
allow between two to three orders of magnitude faster training
(depending on the rule-set), making NuevoMatchUP suitable
for integration with OVS.

6 Implementation

We implement OVS-CCACHE in C as an additional OVS mod-
ule, and NuevoMatchUP in C++ as an external library (lib-
nuevomatchup). We add support for OVS-CFLOWS by chang-
ing existing components in several OVS modules1.
Overview. OVS uses poll mode driver (PMD) threads for
packet processing and revalidator threads for integrity. The
flows 2 are kept in a dedicated flow-table, one per PMD thread,
that supports a single writer and multiple concurrent readers.
A PMD thread is responsible for inserting new flows into its
flow-table, while the revalidator threads remove stale ones.

We modify OVS as follows. We introduce a single trainer
thread to train all the NuevoMatchUP models used by each
PMD thread. In addition, we add manager threads, one per
PMD thread, for tracking the PMD flows, and create training
tasks to accommodate the changes.
Concurrency. We use a fine grained locking with a spinlock
per flow-table entry, and limit the number of occurrences in
which we modify the flow-table. This mechanism is essential
mostly for OVS-CCACHE, in which valid flows frequently mi-
grate between the megaflow cache and the RQ-RMI models.
Training RQ-RMI models. At any given time, there are two
instances of RQ-RMI models per manager thread: the one
that is used by an active classifier in the packet processing
pipeline, and the one being trained, referred to as a shadow
model. In each iteration, a manager thread goes over all the
flows, checks which are marked for deletion and which are
new. Next, it enqueues the request with the modified rule-
set to the trainer thread to retrain the shadow model. The
rules added during training are updated in the remainder of
the active classifier. When the training completes, the active
classifier replaces its model with the newly trained shadow
model, and the recently learned rules are removed from the
remainder. This process repeats whenever the number of flows
in the remainder is higher than 10%.
Data-path modifications. The megaflow cache constructs a
new hash table whenever it encounters a previously unseen
mask, and destroys it when it no longer holds flows.Since
in OVS-CCACHE, megaflows frequently migrate between the
megaflow cache and the RQ-RMI models, we enable the exis-

1https://github.com/acsl-technion/ovs-nuevomatchup
2In this section we use the OVS terminology and refer to match-action

rules of any kind, either megaflows or OpenFlow rules, as flows.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1365

https://github.com/acsl-technion/ovs-nuevomatchup

Name Number of
Packets

Unique
5-Tuples

Average Delay
Between Packets (µs)

CAIDA-short 100 M 6 M 1.68 ± 69.54
Mawi 237 M 15 M 3.39 ± 9.11

CAIDA-long 401 M 23 M 1.62 ± 119.20

Table 3: Evaluated traces.

tence of empty hash tables to reduce the number of hash table
constructions and deletions to bare minimum.

6.1 Updates in OVS-CFLOWS

OVS-CFLOWS offers a new design trade-off for performing
OpenFlow rule updates. Specifically, it allows trading the
time it takes to activate the updated rules in the data-path
for higher throughput during the update. When a network
controller updates the rules, it might need to ensure that the
updates are installed and visible to the data-path. In OVS and
OVS-CCACHE, the acknowledgement to the controller is sent
when the rules are installed in the control-path. The data-path
pulls the rules on demand via upcalls.

In OVS-CFLOWS, we can implement two policies. The in-
stant update policy updates the active classifier with the new
rules immediately, pushing them into the remainder and thus
applying them to the data-path without any delay. The delayed
update policy first stores the new rules in a temporary struc-
ture not visible to the classifier, retrains the shadow model
and only then updates the data-path.

As we will see in the evaluation, when a large number
of updates is necessary, the instant update policy results in
lower throughput while the new rules are being added due to
reduced model coverage, but provides lower update latency
from the perspective of the network controller. Delayed up-
dates yield higher latency for the controller, but avoid the
throughput degradation during the update. On the other hand,
with only a handful of updated rules, the immediate update
policy achieves low latency without affecting the throughput.

7 Evaluation

We perform end-to-end experiments and provide an in-depth
analysis of the system performance using microbenchmarks.

7.1 Methodology

Setup. We use two machines connected back-to-back via
Intel X540-AT2 10Gb Ethernet NICs with DPDK-compatible
driver. All our tests stress the OVS logic thus the workload is
CPU-bound and the network is not saturated.

The system-under-test machine (SUT) runs Ubuntu 18.04,
Linux 5.4, OVS 2.13 with DPDK 19.11, on Intel Xeon Sliver

4116 CPU @ 2.1GHz with 32KB L1 cache, 1024KB L2 cache,
and 16.5MB LLC. The load-generating machine (LGEN) runs
a native DPDK application that generates packets on-the-fly
according to a predefined policy, and records the responses
from the SUT.

We configure both machines to use DPDK with four 1GB
huge pages for maximum performance. We disable hyper-
threading and set the CPU governor to maximum performance
for stable results.
Synthetic OpenFlow rules. We generate OpenFlow rules
using ClassBench [33], the standard benchmark for packet
classification [6, 18, 19, 26, 35, 39]. ClassBench creates 5-
tuple rule-sets that correspond to the distribution of three
applications: Access Control List (ACL), Firewall (FW), and
IP Chain (IPC). We generate rule-sets with 1K, 100K, and
500K rules, each size category with 12 rule-sets. We only
generate rules for either TCP, UDP, or ICMP IP protocols.
The mapping between the generated rule-sets’ names to their
numbers appears in Appendix A.3.
Traffic traces. The traces are summarized in Table 3 and
detailed below.

(1) CAIDA [2]. The real trace from the Equinix data-center
in Chicago, collected in January 2019. We use CAIDA-
short in all experiments except for the one that needs
longer trace (Figure 14) where we use CAIDA-long.

(2) MAWI [37]. The real trace from a link between Japan
and the USA, collected in April 2020.

Adjusting traces to rules. There are no published OpenFlow
rules used for processing the packets in the recorded traces.
We thus resort to the method used in prior work [26]. Specifi-
cally, we modify the packet headers in the trace to match the
evaluated ClassBench rule-sets, as follows. For each unique
5-tuple we uniformly select a rule, and modify the packet
header to match it. We also set all TCP packets to have a
SYN flag. This method preserves the temporal locality of the
original trace while consistently covering all the rules.
Packet generation policies. We use minimum-size 64-byte
packets to stress the OVS classification logic. We evaluate the
system with two load generation methods.
Constant TX rate. To ensure unbiased evaluation, we run the
experiments with a constant-rate load generator, and report
the highest rate that permits the average drop rate over the
whole trace to be below 1%. The first 5% of the packets in
each trace are used as a warmup and the associated drops
are ignored. We do this as we observe that bootstrapping the
megaflow-cache causes many packet drops. With 5% warmup
packets, we achieve consistent throughput results.
Adaptive TX rate. We use the timestamps from
CAIDA/MAWI packet traces but scale down the inter-
packet delay to replay the packets at the highest rate that
strives to maintain an average per-second packet drop rate
below 1%. To achieve that, we dynamically adjust the

1366 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
10−2

10−1

100

101
1K 100K 500K

T
hr

.(
M

pp
s)

OVS-ORIG OVS-CCACHE OVS-CFLOWS

Rule-set
Speedups

OVS-CCACHE

OVS-CFLOWS

1.2 0.9 1.3 1.6 1.3 1.3 1.0 1.1 0.7 0.4 1.7 0.7 1.2 1.7 2.0 2.0 1.0 1.2 1.2 1.5 2.0 1.0 2.8 0.9 0.9 2.0 2.4 2.4 1.0 2.0 1.0 2.1 5.0 4.0 3.0 0.8
2.8 2.1 4.6 4.0 2.1 2.5 7.2 2.4 1.0 1.1 5.6 1.6 1.2 6.2 44 42 3.2 1.9 9.6 20 89 1.7 8.4 7.1 0.7 8.0 80 120 2.6 7.9 12 33 159 4.0 16 2.7

Figure 8: OVS-CFLOWS, OVS-CCACHE and OVS-ORIG on CAIDA-short using constant TX rate. Higher is better.

sending rate once per second: we cut it to half when the drop
rate over the last second exceeds 1%, and increase by 50%
otherwise. This methods provides a conservative estimate
of expected system performance because of its simplistic
congestion control which does not aggressively ramp up the
throughput after drops.
Measurements. We measure end-to-end performance, i.e.,
receiving, processing, and sending packets back to the LGEN.
We preload all OpenFlow rules into control-path.
OVS configuration. We use the default OVS configura-
tion [22] both for the baseline and our designs: revalidator
threads support up to 200K flows, flows with no traffic are
removed after 10 seconds, and the signature-match-cache
(SMC) is disabled. The EMC insertion probability is 20%.
Connection tracking is not used. Unless stated otherwise, all
experiments use a single NUMA node with one core dedi-
cated to a PMD (poll mode driver) thread and another core
dedicated to all other threads. Thus, the baseline OVS, OVS-
CCACHE, and OVS-CFLOWS always use the same number of
CPU cores.
NuevoMatchUP configuration. We use iSets with minimum
45% coverage, and train RQ-RMI neural nets with 4K sam-
ples. Similar to [26], we repeat the training until the RQ-RMI
maximal error is lower than 128, and stop after 6 unsuccessful
ones. We set l = 40, namely, each iSet bucket has at most 40
overlapping rules. We use the same RQ-RMI size categories
as in Table 1. Due to the use of buckets, the largest size cate-
gory is never used. We keep OVS’s flow matching mechanism
that supports an arbitrary number of fields, but limit the iSet
construction mechanism to use 5-tuples.

We train RQ-RMI models based on either all megaflows
(for OVS-CCACHE) or OpenFlow rules (for OVS-CFLOWS).
The model size is determined by the NuevoMatchUP algo-
rithm to allow lowest error, fast training time and low memory
footprint.

7.2 End-to-end Performance
Figure 8 shows the throughput comparison of OVS-CFLOWS,
OVS-CCACHE and OVS-ORIG (unmodified OVS) for CAIDA-
short with constant TX rate and without updates to the Open-
Flow rule-set. The geometric mean speedups of OVS-CCACHE

8K 128K 2M
0
1
2
3
4 1-500K

T
hr

.(
M

pp
s)

8K 128K 2M

5-500K

Exact match cahce size (#entries)

OVS-ORIG OVS-CCACHE OVS-CFLOWS

8K 128K 2M

12-500K

Figure 9: The effect of the exact-match cache size on through-
put for the top three fastest rule-sets with 500K rules.

are 1.02×, 1.5×, and 1.9× for 1K, 100K, and 500K Open-
Flow rules respectively. Note that for OVS-CCACHE the com-
putational cache is constantly updated with newly installed
megaflows.

The same setup with OVS-CFLOWS yields higher speedups.
OVS-CFLOWS is 2.6×, 8.5×, and 12.3× faster than OVS-
ORIG for 1K, 100K, and 500K OpenFlow rules, respectively.
Not only is OVS-CFLOWS faster than OVS-CCACHE, but it
also maintains a relatively stable absolute throughput for
100K and 500K rules. OVS-ORIG performance varies substan-
tially across rule-sets of the same size, whereas OVS-CFLOWS
shows more homogeneous behavior. OVS-ORIG has particu-
larly low performance for larger rule-sets (e.g., 3,4 for 500K)
due to a massive number of upcalls.

The performance trends with an adaptive TX rate are con-
sistent with those obtained with the constant TX-rate (see
Figure 18a in the Appendix). The speedups are still signifi-
cant but more modest for two reasons: the adaptive TX fails
to increase the sending rate fast enough after packet drops,
which particularly affects the absolute throughput of faster
OVS-CFLOWS. At the same time, it achieves higher average
rate for lower-performant OVS-ORIG and OVS-CCACHE be-
cause it suffices to slowly increase the rate when the traffic
pattern affords that. Rule-set 9-100K and 3-500K are the best
illustrations of this effect.

Rule-set 1-500K performs differently from the rest. Here,
OVS runs faster with 100K and 500K rules than with 1K
rules. We find that this is due to the high temporal locality,
which leads to a low upcall rate (over 3× less than in other
rule-sets for 500K) and a small megaflow cache. This analysis

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1367

2 3 4 5 6 7 8 9 10
0

4

8

12

16

1.3X
1.3X 1.3X

1.3X 1.3X
1.3X 1.3X 1.3X 1.2X

4.7X
4.8X

4.9X 4.9X
4.3X 3.7X 3.1X 2.8X 2.6X

Max. throughput

Number of cores

T
hr

ou
gh

pu
t(

M
pp

s)

OVS-ORIG OVS-CCACHE OVS-CFLOWS

Figure 10: OVS throughput as a function of the number of
cores. One core is dedicated to revalidator, manager, and
trainer threads. For the rest, we allocate one PMD thread
per core. The maximum throughput is measured with only
EMC hits. The numbers refer to speedups vs. OVS-ORIG.

is corroborated by the experiments that vary the EMC size
(Figure 9). This result motivates dynamic choice between the
original and the suggested classification mechanisms as we
discuss in §8.

The same experiments on the Mawi trace yield low through-
put results for OVS-CCACHE and OVS-ORIG using constant
TX rates due to the excessive number of drops. For the dy-
namic TX rate, the geometric mean speedups are: 2.1×,
18.2×, and 18.7× for 1K, 100K, and 500K rules for OVS-
CFLOWS, and 1.02×, 1.4×, and 1.7× for 1K, 100K, and 500K
rules for OVS-CCACHE.

7.3 Sensitivity to OVS parameters

The effect of the EMC size. We take the top three rule-sets
with 500K rules that perform best for OVS-ORIG (rule-sets
1,5 and 12), and test their throughput with different Exact
Match Cache (EMC) sizes (8K (default) to 2M), see Figure 9.
The performance effect of the EMC size depends on the rule-
set. The default size (8K) works reasonably well, whereas
a too large EMC reduces throughput, likely because of the
CPU cache contention. The relative performance of different
designs, however, remains largely the same with the EMC of
up to 128K entries.
Megaflow cache size. When the OVS megaflow cache
reaches its maximum capacity it flushes all its contents. We
validated that this never occurs in our experiments. Thus, the
megaflow cache can practically grow as necessary, periodi-
cally evicting idle (for 10s) flows. This is the most favorable
configuration.
Data-path scalability. We add PMD threads and pin them
each to a separate core, while dedicating one more core for the
revalidator, manager and trainer threads. We use the CAIDA-
short trace with the constant TX setting, and report the results
of a representative rule-set with 1K rules (3-1K) in Figure 10.

1 2 3 4 5 6 7 8 9 10 11 12
10−1

100

101

102

103

1K 100K
500K

A
vg

.n
um

.o
f

H
as

h-
Ta

bl
es

OVS-ORIG OVS-CCACHE

Rule-set
Speedup 0.9 2.0 2.4 2.4 1.0 2.0 1.0 2.1 5.0 4.0 3.0 0.8

Figure 11: The average number of hash-tables in the megaflow
cache on CAIDA-short trace. Lower is better. See full chart
in the Appendix (Figure 18b).

This is the best-case scenario for OVS-ORIG because in larger
rule-sets it is much slower. We measure the upper bound of
the OVS forwarding performance by sending 100M packets
that always hit the 8K flows-large EMC (black dashed line).
For a 10Gb NIC, the performance saturates at 13.8Mpps, 93%
of the line-rate3.

Figure 10 shows that OVS-CCACHE maintains a constant
speedup of 1.3× over OVS-ORIG, even though more PMD
threads lead to higher model retraining load. This is because
the single trainer thread is fast enough to retrain models from
eight PMD threads (nine cores in total on the graph). The
additional, ninth PMD thread saturates the trainer. Without
training fast enough, the scaling is no longer linear (1.2×
speedup vs. 1.3× for fewer PMD cores). Thus, more PMD
threads would require allocating additional trainer cores to
maintain the speedup.

OVS-CFLOWS reaches the maximum throughput with five
PMD cores (six cores overall), a 4.3× speedup over OVS-
ORIG using the same number of cores. OVS-ORIG would have
required about 26 cores (linear extrapolation of the current
trend) to reach the same performance. Note that in contrast
to OVS-CCACHE, models in OVS-CFLOWS are not retrained
in the steady state between OpenFlow rule updates, thus the
throughput scales linearly with more PMD threads without
additional trainer cores.

7.4 Analysis of OVS-CCACHE

Understanding performance variability of OVS-CCACHE.
Why does OVS-CCACHE is faster than OVS-ORIG for some
rule-sets and is on-par or slower for others? The answer fol-
lows from Figure 11 which shows the average number of
megaflow cache hash-tables traversed for OVS-ORIG and OVS-
CCACHE. Recall that the classification is slower with higher
number of hash-tables [3]. The computational cache achieves
higher speedups when the number of hash-tables traversed
by OVS-ORIG is large enough to justify inference computa-
tions instead of memory lookup. As a result, the performance

314.88Mpps for 64B packets on a 10Gb NIC, considering bytes of Ether-
net preamble and 9.6ns of inter-frame gap.

1368 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

102 103 104 105 106
100

101

102

103

Number of Megaflows

Ti
m

e
(m

s)

SC0 SC1 SC2

Figure 12: NuevoMatchUP training time in OVS-CCACHE as a
function of number of megaflows and the model size category
(Table 1). SC0=5, SC1=21, SC2=133 neural nets.

12 13 14 15 16 17 18 19 20
0.4
0.50.5
0.6
0.7
0.8

Time (sec)

H
it-

R
at

e

No Delay 3× Delay 5× Delay

0.4
0.7
1.0
1.3
1.6

T
hr

.(
M

pp
s)

Figure 13: OVS-CCACHE throughput and computational cache
hit-rate for different training rates, while adding megaflows.
Rapid retraining is critical for high throughput.

savings from using NuevoMatchUP are higher in such cases.
Training in the data-path. In the following experiments,
we generate packets at a constant rate of 5 Mpps. This setup
saturates the OVS packet-processing pipeline and thus helps
highlight the reasons why NuevoMatchUP improves the end-
to-end performance.

We measure the actual training time for RQ-RMI models
in the data-path during the experiment. To understand the
training behavior, we measure the number of megaflows being
used and the training time. We show the training time for each
of the three used RQ-RMI size categories.

Figure 12 shows that the training time ranges from millisec-
onds for a small number of megaflows, to about one second
for 200K megaflows. For comparison, NuevoMatch reported
the training time of 270 seconds for a rule-set with 100K rules
which NuevoMatchUP can train in 500ms - 540× faster.
Hit-rate and training time. We further analyze the dynamic
throughput behavior of OVS-CCACHE when new megaflows
are installed in it by the control path.We use a single rule-set
with 100K OpenFlow rules (rule-set 9-100K), and vary the
training rate while measuring the throughput.

Figure 13 shows that when new rules are just added the

0 10 20 30 40 50 60 70 80
0

0.1
0.2
0.3
0.4

OVS-ORIG

Time (sec)

T
hr

ou
gh

pu
t

Throughput (Mpps) Upcalls/sec (×103)

0
1.5
3.0
4.5
6.0

U
pc

al
ls

/s
ec

0
0.5
1.0
1.5
2.0

T
hr

ou
gh

pu
t

0
5
10
15
20

OVS-CCACHE

U
pc

al
ls

/s
ec

0
0.5
1.0
1.5
2.0

OVS-CFLOWS

T
hr

ou
gh

pu
t

Figure 14: The throughput and number of upcalls over time.

throughput decreases initially, but then recovers. This behav-
ior is expected. The rules are first installed in the original
megaflow cache, which causes an increase in the number of
hash-tables in it and the throughput drops. Also, the hit-rate in
RQ-RMI models drops because the new rules are not yet part
of the model. However, after the RQ-RMI model is retrained
with the new rules, the hit-rate increases back, until the new
rules get installed, and so on. Observe that the throughput
is lower when the training is slower (i.e., 5× slower than
the original rate) since in such cases the system cannot keep
up with new rules. This experiment clearly demonstrates the
importance of fast training provided by NuevoMatchUP.
Updates in OVS-CCACHE. We measure OVS-CCACHE average
update rate for a different number of OpenFlow rules. We see
944, 11.6K and 11.2K updates per second, on average, for 1K,
100K and 500K rules, respectively.

Further inspection reveals that OVS-CCACHE sensitivity to
upcalls affect its update rate, similar to the effect presented
in Figures 4,5 for OVS-ORIG. Since we cannot explicitly con-
trol the upcalls, we test this by artificially delaying Nuevo-
MatchUP updates and measuring the temporal behavior of
the throughput, number of upcalls, and iSet coverage. We find
that while NuevoMatchUP accelerates the megaflow cache,
upcalls are still the dominating factor for its performance. See
Appendix A.2 for details.

7.5 Analysis of OVS-CFLOWS

No upcalls in OVS-CFLOWS.We compare the throughput of
OVS-ORIG, OVS-CCACHE and OVS-CFLOWS over time, sam-
pled every 500ms. We use the CAIDA-long trace, so that each
experiment is roughly 80 seconds long, and show the results
of a single rule-set with 100K OpenFlow rules (rule-set 9-
100K) while keeping the rules unmodified throughout the

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1369

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
0
2
4
6
8 100K 500K

Rule-set

U
pd

at
e

R
at

e
(1

04
ru

le
s/

se
c)

90% Coverage 75% Coverage

Figure 15: Max OpenFlow rule update rate of OVS-CFLOWS,
for maintaining 75% and 90% NuevoMatch coverage.

8 9 10 11 12 13 14 15
0

0.5
1.0
1.5
2.0

I+R T I+R T

Time (sec)

T
hr

ou
gh

pu
t

Throughput (Mpps) iSet Coverage

22 23 24 25 26 27 28 29
I+R T I+R T 0

25
50
75
100

C
ov

er
ag

e

/ /

/ /

0
0.5
1.0
1.5
2.0

TI I TT
hr

ou
gh

pu
t

I T I T/ /

/ /

Instant Updates

Delayed Updates

Figure 16: Update policies in OVS-CFLOWS. I: iteration time,
R: remainder time, T: training time.

experiments. Other rule-sets behave similarly.
The results in Figure 14 clearly illustrate the benefits of

OVS-CFLOWS design (top graph). OVS-ORIG (bottom) and
OVS-CCACHE (middle) suffer from significant performance
fluctuations directly correlated with the number of upcalls into
the control-path. This experiment corroborates our conclu-
sions in Section §3. OVS-CCACHE inherits these performance
problems because it simply replaces the megaflow cache with
a faster alternative, but uses the same fast-/slow- path split. It
does, however, improve the end-to-end throughput. The higher
throughput of OVS-CCACHE is the reason why its upcall rate
is proportionally higher than in OVS-ORIG.

OVS-CFLOWS avoids the use of upcall mechanism alto-
gether, achieving consistently higher throughput and good
scalability for a large number of OpenFlow rules.
OpenFlow updates in OVS-CFLOWS. We estimate the maxi-
mum OpenFlow rule update rate in OVS-CFLOWS for 100K
and 500K rule-sets, as they pose the main challenge. Unfor-
tunately, we could not measure the maximum update rate
experimentally because of the slow OVS control-path that did
not allow us to invoke updates back-to-back.

Our estimate of the update rate indicates the number of
rules that can be updated per second in order to achieve 75%
and 90% coverage by NuevoMatchUP. These are conservative

coverage values that were shown to result in small through-
put degradation in NuevoMatch. To estimate, we measure
the training time for each rule-set and compute the expected
update rate according to the formula in §4.3. The results
in Figure 15 show an average of 19K and 51K updates per
second for 90% and 75% coverage, respectively. Both size
categories achieve similar update rates since the average train-
ing time per rule is roughly the same, while the coverage
deteriorates slower with more rules. These results assume
the use of delayed updates which achieve higher throughput
during the update.
Throughput during OpenFlow rule updates. We periodi-
cally add bundles of 125K new OpenFlow rules, so the num-
ber of rules increases throughout the experiment. We use this
number of updates to make the dynamic system behavior
over time more visible. We disable the EMC so that the mea-
surements capture only NuevoMatchUP characteristics. We
start the experiment with 100K OpenFlow rules, and measure
the throughput and iSet coverage over time. We show the
results on a representative rule-set (rule-set 9-500K), but the
performance is representative of all rule-sets.

Figure 16 compares the delayed and instant update poli-
cies (§6.1). For the delayed policy, the time it takes for the
data-path to receive the recent changes includes the time to
process new rules (iterate over them) and to train, whereas
in the instant updates setting, it includes the iteration and
remainder update times. The training time depends only on
the total number of rules, i.e., 225K and 350K in the first and
second training sessions at 10 sec and 24 sec respectively. As
expected, the instant update policy causes throughput degrada-
tion because the rules are added to the remainder, and thus the
model coverage is low. Further, the accesses to the remainder
data structure must be synchronized, creating contention. In
this case, the use of delayed updates is beneficial as insertions
do not cause measurable performance drop.

However, the instant update policy works well when the
number of the inserted rules is small. An experiment using
bundles of 100, 1K, and 10K new OpenFlow rules yields a
150ms-long drop in throughput with a maximum drop of 2%,
8% and 13% for 100, 1K and 10K rules, respectively. We start
OVS with 500 OpenFlow rules and issue an update at t = 10
seconds. We use the CAIDA-short trace and the constant TX
setting with 2.5Mpps. We use the same rule-set as in Figure 16
(rule-set 9-500K); other rule-sets behave similarly. We disable
the EMC so the measurements capture only the characteristics
of NuevoMatchUP. Figure 17 reports the throughput and iSet
coverage within a three second time-frame surrounding the
update.

8 Discussion and Future Work

Combining OVS-CCACHE and OVS-CFLOWS. Our evaluation
shows that in most cases, OVS-CFLOWS is faster than both

1370 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0
1
2
3
4

I+R: 100ms
T: 71ms10K Rules

T
hr

.

0
25
50
75
100

C
ov

.

0
1
2
3
4

I+R: 50ms
T: 113ms1K Rules

T
hr

.

0
25
50
75
100

C
ov

.

9 10 11 12
0
1
2
3
4

I+R: 50ms
T: 49ms

Time (sec)

T
hr

.

Throughput (Mpps) iSet Coverage

0
25
50
75
100

100 Rules

C
ov

.
Figure 17: OVS-CFLOWS throughput and iSet coverage upon
OpenFlow rule updates using the instant update policy. I:
iteration time, R: remainder time, T: training time.

OVS-CCACHE and OVS-ORIG. However, there are cases where
it would be desirable to switch between the classification
mechanisms dynamically. The computational cache is benefi-
cial when the number of hash-tables in the megaflow cache
increases. This can be used to determine when to use it in-
stead of the megaflow cache. Similarly, when the number of
control-path upcalls increases, they become the main bottle-
neck, suggesting the use of OVS-CFLOWS.
NIC OVS offloads. OVS-CCACHE is compatible with the
OVS ecosystem, and can be used with in-NIC OVS of-
floads [20]. In particular, it may accelerate the CPU handling
of misses to the hardware OVS cache. Another question is
how to use NIC OVS offloads with OVS-CFLOWS. It was
shown that NICs become slow when the number of updates
gets higher [13]. Thus, switching to OVS-CFLOWS whenever
a high number of cache misses is detected may improve per-
formance. We leave it for future work.
In-switch applications. Our work shows a practical use of
NuevoMatchUP in packet classification. There are many sim-
ilar tasks, e.g., longest-prefix matching in switches, which
cannot scale due to small on-chip memory. We believe that
NuevoMatchUP might help scaling up these tasks by com-
pressing the indexing structure to save on-chip memory.
In-NIC NuevoMatchUP. RQ-RMI inference is a hardware-
friendly task. Enabling its execution on the emerging data-
parallel accelerators integrated with SmartNICs [21] may
improve flexibility of the restricted packet classification of-
floading logic in NICs today.
P4 OVS. The possibility to use OVS with P4 in addition to
OpenFlow was recently suggested [24]. Both the computa-
tional cache and computational flows are compatible with P4
as it uses the general structure of match-action tuples which
is the fundamental building block for NuevoMatch.

9 Related Work

Packet classification. Software algorithms for packet clas-
sification are categorized into decision-tree approaches [9,
10, 18, 19, 28, 35, 39] and hash-table approaches [6, 22, 30].
NuevoMatch [26] is a new approach that shows superior per-
formance for a larger number of rules, hence our choice to
use it in this work.
OVS performance. Previous works have highlighted the
problem of match-action fragmentation in OVS, and exploited
it for mounting denial of service attacks on OVS [3, 4]. Ours
is different: it analyses the causes of throughput degeneration
and offers a solution.
Machine-learning in the data-path. Several works apply
machine-learning models in performance-critical parts of the
design, i.e., flash devices [11], RDMA key-value stores [36],
programmable switches [38], and NICs [29]. To the best of
our knowledge, ours is the first work that applies neural nets
and integrates their training into a virtual network switch.
Trading memory accesses for computations. The pioneer-
ing work on learned indices [16] and several later works
[5, 7, 14, 15, 17, 31] have shown the performance benefits
of trading memory accesses for computations using machine-
learning models, applying them to data-bases and key-value
stores. NuevoMatch [26] extends these concepts and intro-
duces the RQ-RMI data-structure that specializes in range-
value queries. Our work improves the training technique of
NuevoMatch by several orders of magnitude, making its inte-
gration with real-world systems feasible.

10 Conclusion

OVS is a leading virtual networking infrastructure used by
many cloud systems. Our work demonstrates two designs
which improve its throughput and scalability. We adopt a re-
cent NuevoMatch algorithm for packet classification using
neural nets, and integrate it with OVS. Our modifications to
NuevoMatch make its use in OVS practical by accelerating
its training by over three orders of magnitude. We show sig-
nificant improvements in both steady-state throughput and
update rate for large rule-sets on real-world packet traces. We
believe that our work opens new opportunities to practical
applications of neural-net based data structures in production
networking systems.

11 Acknowledgements

We thank the anonymous reviewers of NSDI’22 and our shep-
herd Anuj Kalia for their helpful comments and feedback.
This work was partially supported by the Technion Hiroshi
Fujiwara Cyber Security Research Center and the Israel Na-
tional Cyber Directorate. We gratefully acknowledge support
from Israel Science Foundation (Grant 1027/18).

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1371

References

[1] The OpenStack authors. The OpenStack project.
https://docs.openstack.org/liberty/
networking-guide/scenario-classic-ovs.html,
2021.

[2] CAIDA. The CAIDA UCSD anonymized inter-
net traces. http://www.caida.org/data/passive/
passive_dataset.xml, 2019.

[3] Levente Csikor, Dinil Mon Divakaran, Min Suk Kang,
Attila Korösi, Balázs Sonkoly, Dávid Haja, Dimitrios P.
Pezaros, Stefan Schmid, and Gábor Rétvári. Tuple space
explosion: A denial-of-service attack against a software
packet classifier. In ACM CoNEXT, 2019.

[4] Levente Csikor, Vipul Ujawane, and Dinil Mon Di-
vakaran. On the feasibility and enhancement of the tuple
space explosion attack against Open vSwitch. arXiv
preprint arXiv:2011.09107, 2020.

[5] Yifan Dai, Yien Xu, Aishwarya Ganesan, Ramnatthan
Alagappan, Brian Kroth, Andrea Arpaci-Dusseau, and
Remzi Arpaci-Dusseau. From Wisckey to Bourbon: A
learned index for log-structured merge trees. In USENIX
OSDI, 2020.

[6] James Daly, Valerio Bruschi, Leonardo Linguaglossa,
Salvatore Pontarelli, Dario Rossi, Jerome Tollet, Eric
Torng, and Andrew Yourtchenko. TupleMerge: Fast
software packet processing for online packet classifica-
tion. IEEE/ACM Transactions on Networking (TON),
27(4):1417–1431, 2019.

[7] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang,
Jaeyoung Do, Yinan Li, Hantian Zhang, Badrish Chan-
dramouli, Johannes Gehrke, Donald Kossmann, David B.
Lomet, and Tim Kraska. ALEX: An updatable adaptive
learned index. In ACM SIGMOD, 2020.

[8] The Linux Foundation. Kubernetes.
https://kubernetes.io/docs/concepts/
services-networking/network-policies/,
2021.

[9] Pankaj Gupta and Nick McKeown. Packet classification
on multiple fields. In ACM SIGCOMM, 1999.

[10] Pankaj Gupta and Nick McKeown. Classifying pack-
ets with hierarchical intelligent cuttings. IEEE Micro,
20(1):34–41, 2000.

[11] Mingzhe Hao, Levent Toksoz, Nanqinqin Li, Edward Ed-
berg Halim, Henry Hoffmann, and Haryadi S Gunawi.
Linnos: Predictability on unpredictable flash storage
with a light neural network. In USENIX OSDI, 2020.

[12] Danny Yuxing Huang, Ken Yocum, and Alex C. Sno-
eren. High-fidelity switch models for software-defined
network emulation. In ACM HotSDN, 2013.

[13] Georgios P. Katsikas, Tom Barbette, Marco Chiesa, De-
jan Kostic, and Gerald Q. Maguire Jr. What you need
to know about (smart) network interface cards. In PAM,
2021.

[14] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mi-
hail Stoian, Alfons Kemper, Tim Kraska, and Thomas
Neumann. RadixSpline: A single-pass learned index.
arXiv preprint arXiv:2004.14541, 2020.

[15] Tim Kraska, Mohammad Alizadeh, Alex Beutel, Ed H.
Chi, Jialin Ding, Ani Kristo, Guillaume Leclerc, Samuel
Madden, Hongzi Mao, and Vikram Nathan. SageDB: A
learned database system. In CIDR, 2019.

[16] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and
Neoklis Polyzotis. The case for learned index structures.
In ACM SIGMOD, 2018.

[17] Pengfei Li, Yu Hua, Pengfei Zuo, and Jingnan Jia. A
scalable learned index scheme in storage systems. arXiv
preprint arXiv:1905.06256, 2019.

[18] Wenjun Li, Xianfeng Li, Hui Li, and Gaogang Xie. Cut-
Split: A decision-tree combining cutting and splitting
for scalable packet classification. In IEEE INFOCOM,
2018.

[19] Eric Liang, Hang Zhu, Xin Jin, and Ion Stoica. Neural
packet classification. In ACM SIGCOMM, 2019.

[20] NVIDIA Networking (Mellanox). OVS offload us-
ing ASAP2 direct. https://docs.mellanox.com/
pages/viewpage.action?pageId=39264792, 2020.

[21] NVIDIA. NVIDIA BlueField-2x AI-Powered DPU.
https://www.nvidia.com/en-us/networking/
products/data-processing-unit/, 2021.

[22] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jack-
son, Andy Zhou, Jarno Rajahalme, Jesse Gross, Alex
Wang, Joe Stringer, Pravin Shelar, Keith Amidon, and
Martin Casado. The design and implementation of Open
vSwitch. In USENIX NSDI, 2015.

[23] A Linux Foundation Collaborative Project. Open
vSwitch. https://www.openvswitch.org/, 2020.

[24] A Linux Foundation Collaborative Project. Open
vSwitch and OVN 2020 fall conference. https://
www.openvswitch.org/support/ovscon2020/#D4,
2021.

[25] The DPDK Project. DPDK - data plane development
kit. https://www.dpdk.org, 2020.

1372 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://docs.openstack.org/liberty/networking-guide/scenario-classic-ovs.html
https://docs.openstack.org/liberty/networking-guide/scenario-classic-ovs.html
http://www.caida.org/data/passive/passive_dataset.xml
http://www.caida.org/data/passive/passive_dataset.xml
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://docs.mellanox.com/pages/viewpage.action?pageId=39264792
https://docs.mellanox.com/pages/viewpage.action?pageId=39264792
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.openvswitch.org/
https://www.openvswitch.org/support/ovscon2020/#D4
https://www.openvswitch.org/support/ovscon2020/#D4
https://www.dpdk.org

[26] Alon Rashelbach, Ori Rottenstreich, and Mark Silber-
stein. A computational approach to packet classification.
In ACM SIGCOMM, 2020.

[27] Alon Rashelbach, Ori Rottenstreich, and Mark Silber-
stein. A computational approach to packet classification.
IEEE/ACM Transactions on Networking (TON), pages
1–15, 2021.

[28] Sumeet Singh, Florin Baboescu, George Varghese, and
Jia Wang. Packet classification using multidimensional
cutting. In ACM SIGCOMM, 2003.

[29] Giuseppe Siracusano, Salvator Galea, Davide Sanvito,
Mohammad Malekzadeh, Hamed Haddadi, Gianni An-
tichi, and Roberto Bifulco. Running neural networks on
the NIC. arXiv preprint arXiv:2009.02353, 2020.

[30] Venkatachary Srinivasan, Subhash Suri, and George
Varghese. Packet classification using tuple space search.
In ACM SIGCOMM, 1999.

[31] Chuzhe Tang, Youyun Wang, Zhiyuan Dong, Gansen Hu,
Zhaoguo Wang, Minjie Wang, and Haibo Chen. XIndex:
A scalable learned index for multicore data storage. In
ACM PPoPP, 2020.

[32] David E Taylor. Survey and taxonomy of packet classi-
fication techniques. ACM Computing Surveys (CSUR),
37(3):238–275, 2005.

[33] David E Taylor and Jonathan S Turner. ClassBench: A
packet classification benchmark. IEEE/ACM transac-
tions on networking (TON), 15(3):499–511, 2007.

[34] William Tu, Yi-Hung Wei, Gianni Antichi, and Ben
Pfaff. Revisiting the Open vSwitch dataplane ten years
later. In ACM SIGCOMM, 2021.

[35] Balajee Vamanan, Gwendolyn Voskuilen, and T. N. Vi-
jaykumar. EffiCuts: Optimizing packet classification for
memory and throughput. In ACM SIGCOMM, 2010.

[36] Xingda Wei, Rong Chen, and Haibo Chen. Fast RDMA-
based ordered key-value store using remote learned
cache. In USENIX OSDI, 2020.

[37] WIDE MAWI WorkingGroup. Measurement and analy-
sis on the wide internet (MAWI). http://mawi.wide.
ad.jp/mawi/, 2020.

[38] Zhaoqi Xiong and Noa Zilberman. Do switches dream
of machine learning?: Toward in-network classification.
In ACM SIGCOMM HotNets Workshop, 2019.

[39] Sorrachai Yingchareonthawornchai, James Daly, Alex X
Liu, and Eric Torng. A sorted-partitioning ap-
proach to fast and scalable dynamic packet classifica-
tion. IEEE/ACM Transactions on Networking (TON),
26(4):1907–1920, 2018.

A Appendix

A.1 Approximate sampling
We show how to analytically calculate the expectation µ and
standard deviation σ of a uniform sampling of an RQ-RMI
neural-net input domain. We use the definitions and notations
from [26].

RQ-RMI models contain several stages of submodels
(neural-networks). In each stage, a single submodel is se-
lected based on the output of the previous stage [26]. Let m
be an RQ-RMI submodel.

The responsibility Rm of m is defined as the set of all values
in R that might reach m as inputs, formally I1∪ ...∪ In, where
n≥ 1 and Ii = [ai,bi] are sorted non-overlapping intervals in
R.

For 1≤ i≤ n, define ti as the sum of all weighted averages
of I j, 1 ≤ j ≤ i. For ease of notation, t0 = 0. Note that the
intervals [ti−1, ti)⊆ [0,1] do not overlap, and their location in
[0,1] is relative to the weighted average of Ii.

For all 1≤ i≤ n, define the linear function gi(z) : [0,1]→
Rm as follows:

gi(z) =
bi−ai

ti− ti−1
· (z− ti−1)+ai

In particular, gi(z) maps between the weighted average of Ii
in [0,1] to Ii = [ai,bi]. The complete mapping between [0,1]
to Rm can be described as the collection of all gi functions, or
as follows:

g(z) =
{

gi(z)
∣∣z ∈ [ti−1, ti),1≤ i≤ n

}
Given a uniform random variable z∼U [0,1], the expecta-

tion µ and variance σ2 of Rm can be described using g(z):

µ = E[g(z)] σ
2 = E[g(z)2]−E[g(z)]2

The two can be manually calculated from the equations above.

A.2 More on updates in OVS-CCACHE

We test the temporal behavior of OVS-CCACHE when fac-
ing upcalls and different update rates, similar to the analy-
sis presented for OVS-ORIG (§3). Since we cannot control
OVS-CCACHE update rate (§7), we artificially delay adjacent
NuevoMatchUP training sessions. We use the same rule-set
and trace as in Figure 4, and sample the system’s throughput,
number of upcalls, and NuevoMatchUP iSet coverage, each
100ms.

The results shown in Figure 19 emphasize the importance
of fast updates in OVS-CCACHE, as frequent upcalls cause
the iSet coverage to drop to zero after just a few seconds,
cutting the throughput by half (t = 5 sec). Note that the slow
throughput of the system causes it to effectively digest the
input at a lower rate, which in turn causes the upcall rate to
go down as a result.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1373

http://mawi.wide.ad.jp/mawi/
http://mawi.wide.ad.jp/mawi/

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
10−2
10−1

100
101

1K 100K 500K
T

hr
.

(M
pp

s)

OVS-ORIG OVS-CCACHE OVS-CFLOWS

Rule-set
Speedups

OVS-CCACHE

OVS-CFLOWS

1.2 1.0 1.0 1.1 1.0 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 4.1 1.1 1.1 1.4 2.2 1.2 1.4 2.3 2.2 3.5 1.0 1.0 2.2 3.2 2.2 1.0 3.5 1.2 3.5 3.2 5.1 2.2 1.0
1.4 2.1 5.3 5.8 1.7 2.2 15 1.6 2.1 3.0 4.2 1.1 1.2 15 27 30 6.2 3.7 11 44 28 9.8 17 8.0 0.9 2.2 18 11 1.6 3.6 1.2 6.9 6.9 5.1 10 0.8

(a)

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
10−1

100
101
102 1K 100K 500K

A
vg

.#
H

as
h-

T
bl

.

OVS-ORIG OVS-CCACHE

Rule-set
Speedup 1.2 0.9 1.3 1.6 1.3 1.3 1.0 1.1 0.7 0.4 1.7 0.7 1.2 1.7 2.0 2.0 1.0 1.2 1.2 1.5 2.0 1.0 2.8 0.9 0.9 2.0 2.4 2.4 1.0 2.0 1.0 2.1 5.0 4.0 3.0 0.8

(b)

Figure 18: (a) OVS-CFLOWS, OVS-CCACHE and OVS-ORIG on CAIDA-short using adaptive TX rate. Higher is better. (b) The
average number of hash-tables in the megaflow cache on CAIDA-short trace. Lower is better. This is an extended version of
Figure 11.

0

1

2

T
hr

.
(M

pp
s)

0

10

20No Delay

U
pc

ls
/s

(×
10

3)

0
50

100

No DelayC
ov

.

0

1

2

T
hr

.
(M

pp
s)

0

10

2010 Sec Delay

U
pc

ls
/s

(×
10

3)

0
50

100 10 Sec Delay

C
ov

.

0

1

2

T
hr

.
(M

pp
s)

0

10

2015 Sec Delay

U
pc

ls
/s

(×
10

3)

0 5 10 15 20
0

50
100 15 Sec Delay

Time (sec)

C
ov

.

Throughput Upcalls/sec iSet Coverage

Figure 19: The effect of upcalls and NuevoMatchUP update
rate on OVS-CCACHE throughput.

The results also show that upcalls still dominate the
throughput as in OVS-ORIG (t = 11 sec), thus paving the
motivation for OVS-CFLOWS.

A.3 Rule-set names
Rule-set names in Figures 7c, 8, 11, 15, 18a, and 18b by order:
ACL1, ACL2, ACL3, ACL4, ACL5, FW1, FW2, FW3, FW4,

FW5, IPC1, IPC2.

1374 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Backdraft: a Lossless Virtual Switch that Prevents the Slow Receiver Problem

Alireza Sanaee†, Farbod Shahinfar∗, Gianni Antichi†, Brent E. Stephens‡

†Queen Mary University of London, ∗Sharif University of Technology, ‡University of Utah

Abstract

Virtual switches, used for end-host networking, drop pack-

ets when the receiving application is not fast enough to con-

sume them. This is called the slow receiver problem, and it

is important because packet loss hurts tail communication

latency and wastes CPU cycles, resulting in application-level

performance degradation. Further, solving this problem is

challenging because application throughput is highly variable

over short timescales as it depends on workload, memory

contention, and OS thread scheduling.

This paper presents Backdraft, a new lossless virtual switch

that addresses the slow receiver problem by combining three

new components: (1) Dynamic Per-Flow Queuing (DPFQ)

to prevent HOL blocking and provide on-demand memory

usage; (2) Doorbell queues to reduce CPU overheads; (3)

A new overlay network to avoid congestion spreading. We

implemented Backdraft on top of BESS and conducted ex-

periments with real applications on a 100 Gbps cluster with

both DCTCP and Homa, a state-of-the-art congestion con-

trol scheme. We show that an application with Backdraft can

achieve up to 20x lower tail latency at the 99th percentile.

1 Introduction

Virtual switches (vswitches) play an important role in today’s

data center networks operation [30, 33, 38, 68]. They are in

charge of routing packets to one of the many competing mi-

croservices and applications running on a server that are com-

municating both locally and remotely [48, 66, 86]. They also

provide isolation [61, 68, 87], enable load balancing [51], and

perform packet encapsulation and decapsulation for secure

virtual networking [30, 38, 39].

Virtual switches are fundamentally different from their

physical counterpart. A physical switch has fixed port band-

width, and its draining rate of output queues does not change

over time. This is not the case for vswitches, as their draining

rate of output queues depends on the ability of connected

applications to consume packets. When packets arrive faster

than an application can process, queues inside the vswitch

fill up and overflow, leading to packet loss. This is called the

slow receiver problem [21,44,60,73], and it hurts tail network

communication latency and wastes CPU cycles, impacting

application-level performance [22, 27, 91, 96].

In this paper, we show that slow receivers can manifest at

short timescales and cause packet loss even in the presence of

state-of-the-art congestion controls such as Homa [72] (§2.1).

Moreover, CPU cycles are wasted in handling dropped pack-

ets, and this further increases latency and the already high soft-

ware overheads of current network stacks [21,72,73], inflating

the problem. Although there are existing approaches to miti-

gate packet loss (i.e., bandwidth reservation [13,49,50], back-

pressure [31, 43], credit-based hop-by-hop flow control [62],

PicNIC [61]), they all have key limitations (§2.2). For ex-

ample, because virtual ports bandwidth are variable over

time, reservation schemes either lead to reduced network

throughput or fail to prevent packet loss. Today’s backpres-

sure flow control solutions suffer from severe Head-of-Line

(HOL) blocking and congestion spreading, leading to reduced

throughput across the entire cluster [44, 88, 99] and unaccept-

able latency for some applications [16, 65]. PicNIC [61, 79],

a state-of-the-art solution to provide predictable performance

in a multi-tenant data center, incurs high CPU utilization and

consequent throughput degradation and HOL blocking for

flows sharing a Virtual Machine (VM).

To prevent packet loss from the slow receiver problem, this

paper presents Backdraft, a new lossless vswitch. Backdraft

prevents packet loss while (1) avoiding HOL blocking, (2)

reducing the required CPU cycles, and (3) preventing con-

gestion spreading in the network core (§3). Our main insight

is that, unlike physical switches, vswitches have abundant

memory that can be used to support a large number of queues.

Leveraging this property, Backdraft assigns a separate

queue for every single flow, preventing HOL blocking. To

ensure that per-flow queuing is not prohibitive in its mem-

ory overheads, we introduce an approach that dynamically

reclaims queues from idle flows and resizes them to accom-

modate in-flight packets from bursty flows.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1375

Also, Backdraft uses separate queues for doorbells (notifica-

tions) and packet data to reduce the CPU overhead induced by

per-flow queueing that can impact the vswitch performance.

In this approach, the vswitch has only to poll the doorbell

queue to find where the new to be processed data is located.

By keeping the number of doorbell queues low, it is possi-

ble to greatly reduce CPU overheads, enabling per-flow data

queueing and scaling to 100 Gbps switching performance.

Finally, Backdraft uses an overlay network between com-

municating vswitches. When a queue inside the vswitch be-

gins to fill because of a slow receiver, Backdraft preemptively

sends an Overlay Pause Frame (OPF) to the upstream vswitch

responsible for the congestion with pause time and the slow

receiver’s bandwidth. This is practical because vswitches have

a large amount of memory that can be used to store in-flight

packets generated by the sender before receiving the OPF

notification. Indeed, even buffering a full RTT of packets in a

100 Gbps network, a worst case of 1ms RTT would only re-

quire 12.5 MB of space (1 Bandwidth-Delay-Product - BDP),

and end-hosts have GBytes of memory.

We implemented Backdraft on top of the BESS vswitch [3,

45] (§4), and evaluated it using a cluster of servers on Cloud-

Lab [75] equipped with 10 and 100 Gbps NICs (§6). We ex-

perimented with both standard and state-of-the-art congestion

controls: in the first case we used unmodified POSIX appli-

cations leveraging the TAS TCP acceleration service [56]; In

the second, we used Homa [72] with its DPDK implemen-

tation. When we ran a distributed application that performs

RPCs, Backdraft in conjuction with Homa could lower its tail

latency by up to 20x at the 99th percentile. With Memcached,

instead, Backdraft could improve its goodput by up to 2.71x

when compared to BESS. We also show that Backdraft does

not suffer by HOL blocking and because of this can achieve

100 Gbps throughput in a cluster where a slow receiver is

present. Finally, we demonstrate that Backdraft ensures high

throughput with large number of queues. With 2K queues,

throughput is 9x higher than BESS. This paper makes three

contributions:

1. We make the case for building a lossless virtual switch by

demonstrating the impact of slow receivers on packet loss

and network performance using both DCTCP and Homa,

a state-of-the-art congestion control algorithm.

2. We introduce Backdraft, a new lossless virtual switch that

prevents the slow receiver problem and overcomes the

drawbacks of state-of-the-art solutions: It (1) prevents

packet loss, (2) removes HOL blocking, (3) increases

throughput by eliminating wasted CPU cycles, and (4)

avoids congestion spreading in the core network.

3. We implement and evaluate Backdraft on top of BESS

using different congestion control mechanisms in a clus-

ter of servers on CloudLab equipped with 10 Gbps and

100 Gbps NICs. We released our code under a flexible

NIC
 Datacenter

Network

Vswitch
Pull

Pull

1

2

3

Drop

TCP Library

App

NIC
 Datacenter

Network

Vswitch
Pull

Kernel

1

2

3

Drop

TCP Stack

VM User

NIC
 Datacenter

Network

Vswitch
Pull 1

2

3

Drop

TCP
Service App

NIC
 Datacenter

Network

Vswitch
Pull 1

2

3

Drop

App

TCP Service

(a) (b) (c) (d)

Figure 1: Various deployments of transport layer with respect

to vswitches. (a) transport as a library. (b) transport as an OS

service. (c) transport as a network function. (d) transport as a

vswitch service.

open-source license to enable reproducibility1.

2 Motivation

Virtual switches use shared memory queues to transmit and

receive packets to and from connected end-points (Figure 1).

Here, depending on the settings, the transport layer can be

directly included into the application as a library (case a) [56],

deployed in the kernel of a virtual machine (case b), used

as a network service directly attached to the vswitch (case

c) [59], or implemented in the vswitch (case d) [68]. Regard-

less, whenever the vswitch is ready to handle new data coming

from the wire, it pulls a packet pointer from one of the NIC

queues (point 1), performs processing and places it in the

queue associated to the destination endpoint (point 2). Finally,

the endpoint pulls the pointer and consumes the data (point

3). If this last step is not fast enough, the queue saturates and

packets will be dropped at the vswitch. Notably, the discussed

queue is not subjected to transport-level flow control mecha-

nisms, so even if an endpoint has enough memory reserved

for incoming packets (for example, TCP’s receive window en-

sures there is space in the receive buffer), it is still possible for

packets to arrive faster than the endpoint can process them and

eventually get dropped. This issue has been acknowledged in

the past, and it is called the slow receiver problem [21, 44].

2.1 The Slow Receiver Problem

There are many reasons for slow receivers, including alloca-

tion limitations [81], application-level limitations, load im-

balance [19, 28, 32, 51, 52, 63, 71, 74], CPU performance vari-

ability [17, 25, 37, 42, 54, 66, 82, 97], and CPU/Memory con-

tention [14, 35, 40, 41, 67].

To better understand this, we performed a number of

tests on a 100 Gbps cluster (more information available in

§6). First, we measured the achievable throughput of data-

intensive (i.e., Nginx [8] and Memcached [7]) and network-

only applications (iperf3 [6]) using an increasing number

1https://github.com/Lossless-Virtual-Switching/Backdraft

1376 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/Lossless-Virtual-Switching/Backdraft

4 16 32 64
Number of CPU Cores

(a)

0

50

100

Th
ro

ug
hp

ut
 (G

bp
s)

25 50 75 100
Throughput (Gbps)

(b)

0.00

0.25

0.50

0.75

1.00

CD
F

IPerf3
Nginx(L)
Memcached(L)

Nginx(S)
Memcached-DPDK(S)
Memcached(S)

Memcached(L) + BG2
Memcached(L) + BG1
Memcached(L)

Figure 2: Maximum achieved throughput by Memcached, Ng-

inx, and Iperf running with DPDK and Linux with large (L)

and small (S) response sizes. (a) They require more than 6 cores

to achieve 100 Gbps. (b) Memcached exhibits high throughput

variability with and without the background workload. (BG1:

on isolated cores. BG2: on shared cores)

of assigned processing cores. We also used different packet

I/O frameworks (e.g., standard Linux socket and DPDK) and

different workloads. For Memcached, we used both small

(200 B) and large values (4.8 KB) with sizes inspired by an

analysis of caching at Twitter [92]. For Nginx, we served both

small (4.8 KB) and large (1 MB) web pages.

Figure 2a shows the result of this experiment. We find

that even iperf3, an application that only performs network-

ing functionalities and no other specific processing, cannot

hit 100 Gbps throughput with less than 6 cores. For other

applications, even 64 cores might not be enough. Further,

performance is highly dependent on the specific workload:

Memcached using the Linux socket interface and serving

4.8 KB values with 32 cores achieves 16x higher bandwidth

than the counterpart serving 200 B values. In contrast, Mem-

cached can achieve 187 KRPS per core when serving 200 B

items, while only 78 KRPS when serving 4.8 KB items.

Resource provisioning (OS scheduling) also plays a key

role in application behavior [21, 73]. To better understand

this, we run Memcached with 32 threads solely on bare-metal

servers, where each thread resides on a separate logical core

(the number of total logical cores is 64). Then, we use sys-

bench [58], which only exercises 32 logical cores, along with

Memcached on the same machine. We evaluated both sce-

narios when Memcached and sysbench share CPU cores and

when the two applications are isolated on different cores. Fig-

ure 2b shows that the Memcached server is unpredictable even

without a background workload. When it is run with sysbench,

its performance degrades by 12% or by 50% depending on

the amount of contention. Moreover, the standard deviation

of the throughput distribution increases by up to 1.71x.

Even worse, applications behavior can be highly variable

and dependent on the workload [92]. We show this with ex-

periments using Memcached and Nginx. To test the former,

we used four clients generating a workload resembling the

one experienced by Facebook [15]. For the latter, we used

sixty single threaded clients requesting data from a copy of

0 350 700 10501400
Time (us)

45

60

75

85

Th
ro

ug
hp

ut
 (G

bp
s)

(a) Memcached

0 350 700 10501400
Time (us)

45

60

75

85

Th
ro

ug
hp

ut
 (G

bp
s)

(b) Nginx

0 20 40 60 80 10
0

Throughput (Gbps)

0.0

0.5

1.0

CD
F

Memcached
Nginx

(c) Both

Figure 3: Throughput variability of Memcached (a) and Nginx

(b) in a 1.4ms window. Throughput is highly variable over short

timespans: box is 100 µs. In the box, we can see over 40 Gbps

variability in less than 100 µs. (c) CDF of Memcached and Nginx

throughput over the entire experiment.

1 2 4 8
of CPU Cores

(a)

10

20

Th
ro

ug
hp

ut
 (G

bp
s)

1 2 4 8
of CPU Cores

(b)

0

5

10

Dr
op

 (%
)

1 2 4 8
of CPU Cores

(c)

5

15

25

RP
C

Co
m

pl
.T

im
e

(m
s)

@99.99
@99.9

@99
@50

Figure 4: Throughput (a), packet loss (b) and RPC completion

time (c) for a bidirectional RPC using Homa, the state-of-the-

art transport protocol for data center networks. Packet loss can

reach even 10% when only one core is assigned to the server

application. RPC completion time can increase by ∼9.3x at 99th.

the NSDI’21 website2, a fairly light website composed of

static pages. In Figures 3a and 3b, we show that performance

variability in these applications is temporal. For instance,

throughput varies about 45 Gbps in less than 100 µs.

Furthermore, in Figure 3c, we illustrate the CDF of through-

put for both Memcached and Nginx. Again, we can see vari-

ability: although they can both reach 100 Gbps, but for 50%

of the time their throughput stays under 80 Gbps and 60 Gbps

for Memcached and Nginx, respectively.

Observation I: Slow receivers are pervasive and can

manifest at short timescales.

There are many new congestion control algorithms. How-

ever, even new algorithms still suffer from slow receivers. To

show this, we ran a number of tests using Homa, a state-of-the-

art transport protocol for data center networks [72]. Precisely,

we performed a few tests where a client requests Remote

Procedure Calls (RPCs) on a server, a dominating pattern in

production data centers [57, 86], using a workload similar to

the one experienced by Memcached servers at Facebook [72].

In Figures 4a and Figure 4b, we show that when the end-

point cannot process incoming packets fast enough, the drop

rate increases. In this experiment, all packet loss occurs at the

end-host, and the core network is loss free. This is particu-

larly problematic because packet reception is expensive [69]

and CPU cycles spent to eventually drop a packet are wasted

resources that can amplify the problem. For example, it has

been demonstrated that an increasing loss rate can cause ad-

2https://www.usenix.org/conference/nsdi21

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1377

https://www.usenix.org/conference/nsdi21

10−4 10−2 100

Drop Probability
0

10

20

30

40
Th

ro
ug

hp
ut

 (K
 R

PC
/s

)

(a)

10−4 10−2 100

Drop Probability
0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 (K

 R
PC

/s
)

(b)

1 2 4 8 16 32
Batch size

0

7

14

21

28

Tp
ut

 S
lo

wd
ow

n
(%

)

(c)

Figure 5: (a) The impact of packet loss on Homa’s and, (b)

TCP’s throughput. Packet loss of 10−2 can halve the through-

put. (c) The CPU cost of packet admission in PicNIC given dif-

ferent packet batch sizes. PicNIC’s out-of-order packet comple-

tion queues incur high CPU utilization.

ditional CPU cycles spent in handling the transport protocol,

leading to fewer available cycles for data processing [21].

Further, Figure 4c shows that slow receivers lead to an

increase in RPC completion time. This is because vswitch

queues are shared across flows/RPCs belonging to the same

application. As a queue becomes full, flows not responsible

for the congestion (victim flows) will experience high latency.

Specifically, we can see that even a slight slow down of the

receiver application can cause the 99.9th percentile latency

to hit values higher than 1ms. Those results show that even

small amounts of packet loss can have a dramatic impact on

the performance of receiver applications. We also performed

a similar set of tests using DCTCP [12] to show DCTCP is

also susceptible to high packet loss and report our results in

Appendix (§ A.1.1).

To better understand the cost of packet loss, we performed

an experiment where the vswitch is configured to drop pack-

ets according to a uniform probability distribution. We also

used a standard TCP and Homa as transport protocols and

measured the maximum sustainable throughput in terms of

RPCs-per-second. In Figures 5a and 5b, we can see that even

a small percentages of packet loss can dramatically impact

performance. For example, the maximum sustainable RPCs-

per-second can be halved with a packet loss probability of

just 10−2 when using Homa. Also, the latency of Homa can

reach milliseconds scale as packet loss exceeds 10−2, as we

show in Appendix (§A.1.2).

Observation II: Slow receivers cause sudden packet loss

even in the presence of state-of-the-art congestion control

mechanisms. Packet loss impacts network throughput and

application service completion time.

2.2 Lossless Vswitching to the Rescue?

Packet loss at the vswitch is the source of many problems.

However, there are already a variety of approaches that can

be taken to avoid packet loss. These include reservations/rate-

limiting, backpressure, credit-based flow control, or a com-

bination thereof. Unfortunately, these have their own key

limitations as discussed below and recap in Table 1.

Approach

Prevents

packet

loss

HOL

blocking

free

Avoids

wasted

CPU

Congestion

spreading

prevention

Rate-limiting [50] ✗ ✗ ✗ ✗

Backpressure [31, 43] ✓ ✗ ✗ ✗

Credit-based [62] ✓ ✗ ✓ ✗

PicNIC [61] ✓ ✗* ✗ ✗

Backdraft ✓ ✓ ✓ ✓

Table 1: A comparison of existing approaches to reducing

packet loss. (*) PicNIC only prevents HOL blocking for flows

coming from different VMs.

Reservation Schemes (Rate limiting). One option could

be to rate-limit traffic according to bandwidth reservation

schemes [13, 49, 50]. Although this is a good option for phys-

ical switches, it is not applicable in the virtual context. This

is because such schemes assume that the line-rate processing

is known in advance and deterministic. While this is the case

for hardware switches, it is not for virtual ones.

Backpressure. Another option is to use a backpressure flow

control scheme such as PFC [31] or BFC [43]. The main

idea here is to send a pause message to the upstream switch

before incurring a buffer overflow. Unfortunately, both PFC

and BFC have key limitations that prevent them to be used

as viable solution in a vswitch. The former might cause HOL

blocking [29] and congestion spreading [44, 99] when the

PAUSE frame from the vswitch reaches the upstream hard-

ware switch. The second relies on the observation that most

flows in a data center network are relatively short at today’s

100 Gbps line-rates to avoid HOL blocking from priority hash

collisions inside the network core. However, this assumption

breaks if slow applications connected to a vswitch are allowed

to generate PAUSE messages. In this case, slow receivers will

cause congestion spreading, and hash collisions will result in

reduced throughput of victim flows from line-rate (100 Gbps)

to the rate of the slow receiver.

Credit-based Flow Control. Hop-by-hop credit-based flow

control is another mechanism for ensuring zero packet

drop [62]. Unfortunately, this technique requires an RTT

to request credits and specific support from switches which

makes it difficult to be deployed on production networks [24].

Similar to backpressure schemes, credit-based flow control

requires packets to be buffered at switches when there are no

credits available, leading to HOL blocking.

Observation III: Standard lossless techniques either

cannot be used in a virtual context or cause severe HOL

blocking and congestion spreading.

Other Approaches (PicNIC). PicNIC [61, 79] is a state-of-

the-art solution to provide predictable performance in a multi-

tenant data center where per-VM service level objectives

(SLO) must be met. PicNIC takes an end-to-end approach to

provide backpressure from receivers to senders and aims at

preventing HOL blocking at the transmit-side by introducing

a packet admission control system where descriptors may be

completed out-of-order. This is implemented using a specific

1378 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Backdraft

Component
Purpose Expected result

Dynamic per-flow

queuing

Avoids HOL blocking,

On-demand memory usage

Mitigates tail latency,

Improves throughput,

Flexible packet scheduling,

Prevents pause frame flood.

Doorbell queue Avoids wasted CPU

Avoids extra pause frame generation,

Saves network bandwidth,

Alleviates the slow receiver problem.

Virtual switch

backpressure

overlay network

Avoids packet loss,

Vswitch-level flow control,

PFC/BFC compatibility

Avoids extra pause frame generation,

Saves network bandwidth,

Alleviates the slow receiver problem.

Table 2: Backdraft’s components and their contributions

feature available in virtio interface [10, 78]. To understand

its associated cost, we conducted an experiment where two

end-points are connected to a vswitch on the same host. Each

end-point is assigned a single core. Then we experimented

with both out-of-order and in-order completion queues in

the vswitch. Figure 5c, depicts that the out-of-order packet

completion approach is slower than in-order by 20% and 28%

when using a batch size of 16 [68] and 32 [3], respectively.

Further, this is a baseline with only one core, and these over-

heads increase with a larger number of cores and queues.

Thus, irrespective of application behavior, PicNIC imposes a

high toll on performance. Furthermore, while PicNIC can suc-

cessfully provide predictable performance for flows generated

by different VMs, it does not have any mechanisms to ensure

isolation between flows coming from the same VM as the

out-of-order completion queues have a per-VM granularity,

meaning that the slow-receiver problem can still happen and

affect all the flows within the same VM.

Observation IV: PicNIC can only isolate slow receivers at

a per-VM granularity. It also imposes high CPU utilization

and causes throughput degradation.

3 Backdraft Overview

Backdraft is a vswitch that provides lossless networking

with higher throughput and lower CPU overheads than lossy

switching, and Backdraft does not suffer from HOL blocking

or congestion spreading. Backdraft achieves its goals by us-

ing three main components: (1) Dynamic Per-flow Queuing

(DPFQ); (2) Separate queues for doorbells and data; and a (3)

Virtual switch overlay network used for backpressure. Table 2

summarizes the purpose and effect of each component.

Dynamic Per-Flow Queuing (DPFQ): To avoid HOL block-

ing, Backdraft assigns a separate queue for every single flow

in the vswitch, where a flow is an individual TCP connection.

However, preallocating queues and memory for the worst case

number of flows and burst sizes would be prohibitive. To en-

sure that per-flow queuing is not prohibitive in its memory

overheads, we introduce a new approach that dynamically re-

claims queues from idle flows and dynamically resizes queues

to accommodate in-flight packets from bursty flows (DPFQ).

By enabling per-flow queueing, Backdraft fundamentally

eliminates the HOL blocking caused by slow receivers and

Victim Flow

S
1

S
N

…

D
1

D
2

…

S
2

S
3

…

Incast Flow

(a) A traffic pattern where

using backpressure suffers

from HOL blocking.

Victim Flow

S
1

S
N

…

D
1

D
2

…

S
2

S
3

Incast Flow

…

(b) An illustration of why

using separate queues for

each virtual switch port

avoids HOL blocking.

Figure 6: Queuing and HOL blocking with backpressure.

incasts. HOL blocking only occurs when flows share a queue,

and every flow in DPFQ is served by its own queue (Figure 6b

versus Figure 6a). DPFQ is possible because end-host mem-

ory is not as limited as in physical switches [43,84]. However,

the challenge is ensuring that DPFQ does not incur prohibitive

memory overheads even though the number of active flows

is potentially large [77]. Over-provisioning leads to memory

pressure, while under-provisioning forces flows to fall back to

sharing the same queue, potentially incurring HOL blocking.

To solve this issue, Backdraft introduces a new approach

to efficiently resize queues on demand. Although all memory

for queues and packet buffers is allocated when the process is

created to avoid performance stalls, queues are dynamically

allocated and reclaimed from flows as they start and stop,

and queues are dynamically grown by combining queues as

needed to accommodate bursts of packets. This dynamism

allows for efficient per-flow queuing without increasing mem-

ory overheads. Our insight is that the total amount of conges-

tion that can occur in a vswitch is limited by things like the

line-rate of the NIC and not by the number of active flows.

Given the same amount of memory, DPFQ enables the same

congestion tolerance as a single queue.

DPFQ introduces a new interface to the vswitch. However,

it is still possible to support DPFQ without modifying appli-

cations. For example, most TCP applications (e.g., POSIX

sockets applications) already perform per-flow operations. In

this case, only the TCP stack needs to be modified to support

DPFQ. Further, Backdraft supports legacy DPDK [47] and

Netmap [76] applications that expect a shared queue interface

with a vswitch by performing DPFQ inside the vswitch.

Doorbell Queues: The CPU overheads of a vswitch increase

linearly with the number of queues that need to be polled [41],

and data center workloads may have thousands of flows [18,

77]. Backdraft overcomes this limitation by using separate

queues for data and doorbells. For each endpoint, there is

a data queue for each flow and a doorbell queue for each

core. To send data, an end-point first enqueues packets in data

queues then sends a doorbell message to the doorbell queue.

This allows the vswitch to poll only an application’s doorbell

queue to learn about new data.

Doorbell queues also provide a mechanism for applica-

tions to communicate scheduling information about the rel-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1379

VSwitch

Userspace
Transport Library

POSIX/Windows
Apps POSIX/Windows AppsAllocated

Cores

Legacy Kernel
Bypass Apps

(DPDK)

VM/
Container

Command
Queue

TX

Available
Cores

OS Networking Stack

Data Queue Pool

2

1

3

F1 F2

Wire

User
space

Shared
Memory

PCIe Bus

RXNIC

Figure 7: An overview of Backdraft’s architecture.

ative priorities and weights of all active flows. Similar to

prior work [79, 80, 87], this enables Backdraft to perform pro-

grammable scheduling and ensure that the appropriate queues

are scheduled first to ensure low latency.

Virtual Switch Backpressure Overlay Network: When

combined with backpressure, DPFQ can avoid both packet

loss and HOL blocking for traffic local to the vswitch (server).

However, if Backdraft runs out of buffer space and data is

still incoming from a NIC, it must send a pause frame to the

upstream TOR switch connected to the NIC to avoid packet

loss when interfacing with a lossless network core, and it must

drop packets when interfacing with a lossy network core. Un-

fortunately, generating pause frames can lead to congestion

spreading, while dropping packets has a significant impact on

network performance (Figure 5a and Figure 5b).

To avoid such problems, Backdraft builds an overlay net-

work out of vswitches where Backdraft eagerly sends pause

messages on the overlay network to the upstream vswitches

that are causing congestion and either lazily sends pause mes-

sages to the upstream physical switch or lazily drops packets.

This enables the local congested vswitch to continue buffer-

ing packets while waiting for the remote vswitch to react

without causing congestion spreading. Additionally, DPFQ

ensures that there is no congestion spreading inside the up-

stream vswitches because it is possible to pause only the flows

responsible for the congestion.

With a lossless network core, the difference between the

overlay pause threshold (T hover) and the network pause thresh-

old used for PFC or BFC (T hnet) determines the amount

of data that can be buffered while waiting for the upstream

vswitch to react. If the difference in bytes between these two

thresholds is greater than the current network’s bandwidth

delay product (BDP), i.e., the RTT times the network line

rate (T hover −T hnet > RT T ∗BW), then it is possible for the

overlay network to react to a slow receiver without needing to

send a network-level pause message. Because buffering 1ms

of packets at 100 Gbps line-rate only requires 12.5 MB of

buffering, it is easy to buffer multiple BDPs of packets in a

vswitch with low overheads.

4 Design

Applications connect to Backdraft through queues imple-

mented on top of shared memory, and both applications and

Lockless stack

E
xtended R

ings

Shared Memory
Region

C
M

D
 Q

ue
ue

D
at

a
Q

ue
ue

s

Backdraft

Transmit Receive

Network

NIC

C
M

D
 Q

ue
ue

D
at

a
Q

ue
ue

s

APP

b) Dynamic Queue
Management

a) Data and
Doorbell queues

Flow 1

Flow 2

1

2

3 4

5

6

1

2

Figure 8: (a) Life cycle of control messages and data messages.

(b) Data queue pool memory overview in DPFQ.

the vswitch detect packets by polling. Native Backdraft ap-

plications use doorbell queues and data queues in both RX

and TX directions. However, Backdraft also supports legacy

DPDK applications that only use data queues to send packets

as well as standard applications using the kernel networking

stack through a custom kernel driver. Currently, Backdraft is

designed to be a userspace vswitch although its key ideas are

also applicable to kernel-space switching.

Figure 7 provides an overview of Backdraft. First an appli-

cation sends control messages to the vswitch 1 . Upon the

arrival of the doorbell message, Backdraft allocates the appro-

priate data queues 2 . Finally, data packets exchange starts

3 . Similarly, as new flows start and stop, an application can

send more doorbell messages to allocate or release additional

data queues. Backdraft supports dynamic queue allocation

and resizing via a linked list structure to efficiently manage

packet buffers. The rest of this section discusses the design of

the Backdraft components in more detail.

4.1 Doorbell Queues

Backdraft uses doorbell queues to reduce the CPU overheads

of DPFQ and achieve high throughput. DPFQ increases the

number of available queues, and polling them all is inefficient.

Checking for outstanding packets costs a memory access,

which requires ∼100 cycles per queue. There are two ways

doorbell queues reduce polling overheads: First, only doorbell

queues and not data queues need to be polled. Second, the

total number of doorbell queues is kept small. To support

parallelism, an application needs at most one hardware thread

per doorbell queue.

Figure 8a illustrates the control flow between doorbell and

data queues. 1 The application generates a doorbell message,

notifying the vswitch. 2 The vswitch receives outstanding

packets. If the destination is a remote server, 3 the vswitch

sends the packets to the NIC, and then 4 the packets arrive

1380 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

at the destination vswitch. Once the packet is at the receiv-

ing vswitch, 5 the vswitch places the received packet in the

appropriate per-flow queue and then generates doorbell mes-

sage for the application. Finally, 6 the application receives

a doorbell message and then polls the data. Additionally, all

of the command messages in a command queue are read at

once in a batch to ensure there is no HOL blocking.

4.2 Dynamic Per-Flow Queuing (DPFQ)

It is important to ensure that DPFQ does not put pressure on

memory; hence, DPFQ dynamically reclaims, reassigns, and

resizes queues to reduce the memory pressure.

When an application initially connects to Backdraft, the

data queue descriptors are negotiated between the vswitch

and the application. As applications push packets to buffers,

Backdraft allocates individual queues on demand (Figure 8b).

To prevent applications’ address spaces from being exposed to

others, separate shared memory regions and pools of queues

are used for each application. This separation of buffering

across applications ensures isolation.

Backdraft dynamically resizes queues to absorb packet

bursts while minimizing memory overheads. To this end,

Backdraft allocates ring buffers of fixed size and then links

them together to form and extend queues (Figure 8b-2). Be-

fore a ring buffer gets full, Backdraft extends the queue by

placing a pointer to a new ring buffer instead of a packet

buffer in the overloaded queue. This enables it to learn about

an extended queue without any race conditions. Then, once a

flow becomes idle, Backdraft reclaims the initial queue into a

pool that it can allocate to other queues.

Backdraft pre-allocates all queues at boot time and pushes

all the pointers to these queues in a lockless stack. The number

of pre-allocated queues can be configured depending on the

workload but we used 50 queues for the experiments of this

paper. Backdraft benefits from the lockless stack in two ways:

First, this structure improves cache efficiency as a pushed

pointer can be used immediately from the top of the stack.

Second, Backdraft is capable of supporting multiple threads

accessing the data queue pool. When a new flow arrives at

Backdraft, it borrows a pointer to a queue from the stack

and enqueues packet pointers in the queue (Figure 8b-1). If

this queue becomes fully occupied, Backdraft borrows an-

other pointer and links it to the previous one as is depicted in

Figure 8b-2.

Backdraft does not deallocate empty queues, nor does it

leave empty queues allocated to idle flows. Instead, it reclaims

empty queues and pushes them back to the lockless stack. This

helps Backdraft to reuse reclaimed queues promptly without

deallocating them. Backdraft is only responsible for queue

assignment/reclamation leading to no race conditions. An

entire queue can be reclaimed once there are no outstanding

packets in the queue. Full reclamation only happens when a

receiver application notifies Backdraft by means of a doorbell

message about the emptiness of a data queue. Similarly, for

new queues, applications must send a doorbell message to

Backdraft requesting a queue corresponding to the new flow.

Both RX queues and TX queues can be extended. RX

queues are frequently extended to tolerate bursts. In contrast,

TX queues are only extended for flows with large BDPs, and

there is no need to extend TX queues beyond a BDP in length.

Instead of extending transmit queues beyond a BDP in length,

an application can infer that a transmit queue being full is

because of congestion or a slow receiver, and DPFQ enables

applications to react to congestion. Many applications can

simply keep packets buffered inside a TCP stack until the

queue drains. However, it is also possible for some applica-

tions to mutate or even discard packets to reduce load.

Legacy Interfaces: Backdraft is backward compatible with

both POSIX applications and DPDK applications. For the

former, there are two ways to interface with Backdraft: (1)

Backdraft uses a userspace TCP library that dynamically links

to legacy socket applications (TAS [56]). (2) Packets can be

received from the kernel through a custom networking driver.

This is useful for applications that require features not yet

supported by our library, e.g., PF_RING.

4.3 VSwitch Backpressure Overlay Network

When there is congestion because of a slow receiver, Back-

draft uses backpressure and sends pauses messages to the

upstream sources of traffic to avoid packet losses. However,

Backdraft is unique in that there are two different types of

pause messages that it can generate: Overlay Pause Frames

(OPFs) that are sent on a vswitch-to-vswitch overlay net-

work and network-level pause frames that are sent hop-by-hop

across the physical topology by a backpressure flow control

scheme like PFC or BFC [43]. Backdraft implements PAUSEs

internally by function calls instead of sending PAUSE frames

throughout the pipeline because this reduces CPU overheads.

PAUSE frames are only created if the PAUSE frame is des-

tined for a remote end-point, which enables Backdraft to pro-

vide lossless forwarding across a cluster.

To avoid congestion spreading, Backdraft eagerly generates

OPFs. When the occupancy of a receive queue crosses a

configurable threshold (T hover), Backdraft generates an OPF

and sends it to the upstream Backdraft virtual switch that is

causing congestion. Because there is only one flow per receive

queue in Backdraft, only one message needs to be generated.

OPFs contain three pieces of information that are used by

the upstream vswitch: 1) flow identifier, 2) pause time, and 3)

new transmission rate. When an upstream vswitch receives

an OPF, it pauses the input queue for the specified pause

time, and then it applies a transmission rate-limit on the input

queue.

Although prior backpressure schemes only send a pause

time, sending a rate in an OPF is important to avoid persistent

on/off congestion bursts from transmitters restarting after

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1381

being paused. To support this, Backdraft tracks an estimated

receive rate (Rrecv) using an exponential weighted moving

average (EWMA) for each receive queue as it delivers packets,

and it uses this rate when generating an OPF. The pause time

is set as (T hcurr −T hgoal)/Rrecv where T hcurr is the current

length of the queue and T hgoal is the target queue length,

which is equal to the batch size of packets read by the TCP

stack by default to help ensure efficient CPU utilization.

The biggest concerns with respect to choosing values for

T hgoal and T hover are in avoiding starvation and reducing

CPU overheads. Starvation is possible if the receiver vswitch

either underestimates the end-point’s rate or sets too large of

a pause value. T hgoal provides headroom to avoid this, and

if starvation is observed to be a problem with a running ap-

plication, both the application and the vswitch can increase

this value. In contrast, to avoid congestion spreading, it is

desirable to set as large of a value for T hnet as possible be-

cause Backdraft generates PFC/BFC messages that will be

processed by the upstream switch when this threshold is ex-

ceeded. This value can be as large as the maximum length of

the queue minus the 1-hop bandwidth-delay product between

the server and its TOR switch (1-hop RTT × line-rate).

On the whole, sending OPF messages significantly reduces

CPU utilization by preventing packet drops. However, to re-

duce the CPU overheads of OPF messages, T hover is set to

be at least one batch size of packets larger than T hgoal to

not interfere with batching. Further, to avoid excessive OPF

generation, Backdraft generates a new OPF message only if

the previous OPF message pause time has gone past. When

the pause time passes, Backdraft checks the queue length to

decide whether to generate another OPF message or not.

5 Implementation

Backdraft builds upon the BESS virtual switch [3] (commit

0145a1c). We have extended the TAS TCP stack [56] (commit

a1c158f) to support TCP legacy applications. Further, we

have implemented a Homa open-loop app based on the Homa

DPDK library (commit 392b577) and altered the DPDK driver

to interface with Backdraft. Our changes to BESS amount to

about 3.5K LOC, and our changes to TAS and Homa required

about 100 and 500 LOC, respectively. Apps running TAS and

Homa both connect to BESS via a DPDK vHost user port.

6 Evaluation

In this section, we evaluate the performance of Backdraft

and demonstrate that Backdraft is able to prevent packet loss

while providing 100 Gbps switching capabilities and without

incurring in HOL blocking.

Experimental cluster: We used two different types of clus-

ters from CloudLab [75]. On the first, we were able to use

PFC to perform experiments with a lossless fabric. This clus-

30 50 70 90 110
Load (KRPC/sec)

(a) 200B message size

200

400

RP
C

Co
m

pl
. T

im
e

@
99

 (u
s)

30 50 70 90
Load (KRPC/sec)

(b) 5KB message size

500

1000

RP
C

Co
m

pl
. T

im
e

@
99

 (u
s)

BESS BD BESS BD
Figure 9: Performance of a victim RPC with Homa in the pres-

ence of an increasing load generated by a competing applica-

tion. We used two different message sizes and either BESS or

Backdraft as vswitch. The victim RPC is less impacted by the

competing workload in the presence of Backdraft.

ter has 6 servers, and each server has an Intel Xeon E5-2640

CPU running at 2.40 GHz with 64 GB of RAM and a 10G

ConnectX4-L NIC. These servers are connected via a Mel-

lanox SN240 10 Gbps TOR switch. We used a second cluster

with 4 servers to perform experiments at 100 Gbps. Each

server has an AMD EPYC 7452 64-Core CPU running at

2.30 GHz with 128 GB of RAM and a 100 Gbps ConnectX-

5 NIC. These servers are connected via a Dell Z9264F-ON

switch.

Applications: When experimenting with TCP, we leveraged

the TAS TCP acceleration service to connect three unmodi-

fied POSIX applications to Backdraft: Memcached [7], Muti-

late [64], and a custom distributed application that performs

RPCs. To perform experiments with Homa, we utilized the

Homa DPDK implementation [4], which unfortunately does

not have any native support for applications. We overcome

this problem by developing an open-loop RPC application on

top of Homa. Because PicNIC [61] is proprietary software, a

head-to-head comparison is not feasible.

Performance metrics and comparison points: Our exper-

iments focus on four main metrics: packet drop rate, CPU

utilization, throughput, and 99th percentile request completion

time latency. We also compared Backdraft against two varia-

tions of BESS virtual switch: lossy (default), and a lossless

variation which generates PFC messages.

Key results: With Backdraft, the Homa-based RPC appli-

cation achieves 20x lower tail latency at the 99th percentile

(§6.1). Further, Memcached achieves 1.9x higher goodput

with Backdraft (§6.2). In a lossless multi-node scenario, Back-

draft prevents congestion spreading in the network core (§6.3).

In a 100 Gbps setup, Backdraft avoids HOL blocking and

reaches 100 Gbps even in presence of slow receivers (§6.4).

Finally, Backdraft supports 16 K queues without any through-

put slow down (§6.5).

6.1 Backdraft Complements Homa

Our first experiment demonstrates that Backdraft comple-

ments Homa. In this experiment, we used two different ma-

chines in the 100 Gbps cluster: one of them hosting three

client applications and the other two server applications. Each

client/server application is assigned to a single CPU core. We

used two clients to generate fixed-size RPC requests towards

one server. The other client, instead, generates requests to-

1382 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/NetSys/bess/commit/0145a1c388ecfd1d80992f14fba7997191b3dde6
https://github.com/tcp-acceleration-service/tas/commit/a1c158fdebeca4a315ca334ddebb9c74bcbe3d14
https://github.com/PlatformLab/Homa/tree/392b577bbdad2f5aa42faefc88614992b5e505d2

VSwitch

UDP App

F1

F51-60

Memcached

UDP Receiver

F1-50

F50

Mutilate

F60F51

(a)

Lossy BP DPFQ DPFQ
+DQ

BD0
1
2
3
4

Lo
ss

 ra
te

(M
pp

s)

Fast Receiver(0 cyc)
Slow Receiver(0.5K cyc)
Slow Receiver(5K cyc)

(b)

Fast
Receiver
(0 cyc)

Slow
Receiver

(0.5K cyc)

Slow
Receiver
(5K cyc)

0

2

4

Go
od

pu
t (

M
pp

s)

Lossy
BP

DPFQ
DPFQ+DQ

BD

(c)

Fast
Receiver
(0 cyc)

0.0

0.1

0.2

Re
qu

es
t C

om
pl

.
Ti

m
e

@
99

 (m
s)

Slow
Receiver

(0.5K cyc)

0.0

0.1

0.2

Slow
Receiver
(5K cyc)

0.0

0.5

1.0

1.5

Lossy
BP

DPFQ
DPFQ+DQ

BD

(d)

Figure 10: Performance of the individual components of Backdraft in presence of slow receivers when handling a Memcached TCP

incast (10 flows) workload with a background UDP workload (50 flows). (a) Experimental setup (b) Aggregate drop rate, when the

UDP server spends on average 0/0.5 K/5 K extra cycles on every delivered packet. Slower receivers have more detrimental impact on

the performance. (c,d) detailed breakdown of goodput and latency impact of Backdraft. Backdraft improves tail latency up to 5.65x

compared to BESS, and 45.2x compared to BESS augmented with PFC at the 99th percentile while achieving 1.9x higher goodput.

wards the remaining server using the Facebook Memcached

workload [15].

We compare the RPC performance of the client using the

Memcached workload when using either BESS or Backdraft

as vswitch. In Figure 9a and Figure 9b, we show the results

when fixed-size RPCs are 200 B and 5 KB, respectively. When

the RPC load increases, the completion time with Backdraft

remains stable, while it inflates by over 20x with BESS. The

poor results experienced with BESS are a consequence of

its single queue design. In contrast, Backdraft keeps tail la-

tency low because each RPC_ID occupies a single queue in

the vswitch. This way, Backdraft removes HOL blocking of

various RPCs with different service times.

Homa and Backdraft have strong synergy. Homa eagerly

sends RESEND control messages to peers (RESEND_INTERVAL

= 2 µs [5]). This enables Homa to detect packet loss proac-

tively, resulting in better tail latency. The CPU overhead of

this task can be prohibitively high in presence of packet loss.

For instance, without Backdraft, the CPU usage of Homa in-

creases 8-10% because there are more outstanding messages

to manage due to loss. Backdraft avoids wasting CPU cycles

by preventing packet loss, enabling the transport protocol to

provide better performance.

6.2 Per-Component Analysis

To provide a performance breakdown of the benefits of the

different Backdraft'components, we created a scenario in a

single host where background UDP packets destined to a slow

receiver (50 flows) compete against a Memcached applica-

tion with 10 active flows generated by Mutilate (Figure 10a).

Here, we considered three cases: (1) the receiver spends 0

cycles processing the received packet; (2) the receiver spends

500 cycles; and (3) the receiver spends 5000 cycles. For con-

text, Facebook’s Katran load balancer spends 100 cycles per

packet [20], and complex functions like range queries in key-

value stores can easily take more than 1 K cycles.

Figure 10 shows the results of this experiment. With

Lossy, we consider the default behavior of BESS, while

BP is BESS with PFC enabled. DPFQ, DPFQ+DQ, and

DPFQ+DQ+ON (BD) show the incremental benefits of differ-

ent Backdraft components: dynamic per-flow input queueing

(DPFQ), doorbell queues (DQ), and the overlay network (ON).

BD indicates our final system with all components.

Figure 10b shows packet loss rates given the slow receiver

application (UDP receiver) in Figure 10a. BESS with PFC

and Backdraft both report zero packet loss. Without PFC for

BESS and without the overlay network for Backdraft, packets

may be dropped. Packet loss occurs in both the slow and fast

flows, and it is more problematic in the presence of a slow

receiver. DPFQ+DQ reduces CPU overheads and can forward

at higher throughputs than just DPFQ. This results in even

more packet loss at the receiver. This packet loss, however, is

avoided by introducing the overlay network (ON). Backdraft

prevents packet loss and achieves higher throughput and lower

tail latency.

Next, Figure 10c shows the aggregate goodput achieved by

the applications (UDP and Memcached). Backdraft always

outperforms BESS, even when the latter is augmented with

lossless capabilities using PFC. In this experiment, for the 0,

500, and 5 K cycle receiver, Backdraft achieves 22%, 10%,

and 200% and higher goodput than the lossy counterpart,

respectively. Backdraft also mitigates tail latency at the 99th

percentile by up to 5.65x.

Looking at the individual components, we find that DPFQ

has a negative impact on performance because polling more

queues consumes more CPU cycles. However, combining

DPFQ and doorbell queues (DPFQ+DQ) improves goodput

by reducing cycles spent polling. This effect is more visible

in the presence of a fast receiver, as the faster the receiver

the more packets need to be process by the vswitch. The last

component (ON) enables Backdraft to prevent packet loss.

This is illustrated in Figure 10b.

Figure 10d shows the latency experienced by Memcached.

In this figure, Backdraft similarly outperforms both BESS

configurations. The BP bar shows that naively applying a

backpressure mechanism dramatically increases network la-

tency, and this is mainly an effect of HOL blocking. DPFQ, in

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1383

10Kq 2.5Kq DPFQ
Number of queues

0

200

400

Co
llis

io
n

ra
te

(c
ps

)

Figure 11:
Compares

collision rate of a

skewed workload

when varying the

number of queues.

64 25
6

10
24

Burst Size
(1)

5

6

7

Go
od

pu
t (

M
pp

s)
64 25

6
10

24

Burst Size
(2)

0
200
400
600

RP
C

Co
m

pl
. T

im
e

(u
s)

64 25
6

10
24

Burst Size
(3)

0

2

4

10
3

×
 P

AU
SE

 p
er

 S
ec

on
d

Static Queue 64 Static Queue 512 DPFQ (64)

Figure 12: Shows goodput, latency and

PAUSE rate of short queues, long queues

verses DPFQ. Backdraft can absorb

different burst sizes compared to static

queue allocation with PFC.

contrast, keeps the overall latency low, even in the presence

of a slow receiver. This is because providing per-flow queues

prevents HOL blocking.

To better understand Dynamic Queue Allocation (DQA),

we used a sample client application generating approximately

100 K flows to a server sink application on the same machine

where only 1 K flows are active at any point in time. We

compared two different policies for queue allocation: a static

number defined at configuration time and a dynamic. The

former assigns flows to queues using an RSS (Receive Side

Scaling) hash function, the latter creates a new queue anytime

a new flow shows up. Figure 11 shows that when using only

2.5 K queues, the collision rate is high, even if only 1 K flows

are active. Having 10x more static queues than active flows

helps, but still collisions occur. In contrast, DPFQ avoids

wasted memory and achieves a zero-collision rate thanks to

its per-flow queueing mechanism. Each ring buffer consumes

about 20 B. 10 K queues will consume 200 KB, where DPFQ

allocates only 1 K queues since we have 1 K active flows,

requiring only 20 KB. This is a 10x reduction in memory

utilization in addition to the reduction in collisions.

Next, we evaluated Backdraft’s ability to absorb packet

bursts by extending queues by performing an experiment

where a sender pushes different batch sizes (64 to 1024) to

a receiver. The receiver is attached to a vswitch on the same

server and pulls packets in large batches of 1024. This experi-

ment compares Backdraft against two different configurations

of BESS augmented with PFC: one with short queues, the

other with long. Short queues are more likely to generate

PAUSE frames at a higher rate, whereas longer queues are

less likely.

Figure 12 shows that, when increasing the burst size, loss-

less BESS with short queues causes a high PFC PAUSE frame

generation rate that would hurt application performance in

terms of goodput and tail latency. Although long queues re-

duce the PAUSE frame generation problem, this is at the cost

of increased latency. In contrast, this experiment shows that

Backdraft is able to absorb variations, particularly in a bursty

workload with its dynamic queue extensions. It is the only

configuration that does not generate PAUSE frames. More-

over, Backdraft maintains high goodput with DPFQ because

the cost of queue extension is relatively low.

F5-8F1-4

Switch

N1

N2

UDP TCP

N3

N4

(a)

Backdraft BESS

0.5

1.0

Ag
g.

 th
ro

ug
hp

ut
(M

pp
s)

(b)

0 50 100
Average cycles spent
per delivered packets

0
10
20
30

PA
US

E
ra

te
(K

p/
s)

Backpressure victim
Backdraft victim

(c)
Figure 13: Performance of Backdraft overlay network in a

cluster-wide experiment. Backdraft achieves higher through-

put and avoids extra PAUSE frame generation in presence of

a slow receiver. (a) Experiment setup. (b) Overall throughput.

(c) Pause frame generation rate due to a slow receiver.
Config Tput (Gbps) Pause (Kfps) Drop (Mpps)

BESS Lossy

+ Lossy Network
(2.36,21.85) N/A (1.6,0)

BESS Lossless

+ Lossy Network
(2.66,19.29) (2.8,0) (1.3,0)

ON

+ Lossy Network
(2.3,21.98) (0,0) (0,0)

Table 3: Virtual overlay network performance

results (Victim,Non-victim flow)

Finally, we also measured the overheads of extending

queues in DPFQ and found that it is small. The number of cy-

cles required to extend queues fluctuates between 24 and 350

cycles, and this value is dependent on caching. This shows

that the overheads of DPFQ are low, especially when amor-

tized over all of the packets in the added queue, which has

a default size of 64 packets. Further, if desired, Backdraft’s

queue size can be configured as a parameter based on the

measured overhead according to the user’s preference for

performance versus memory efficiency.

6.3 Multi-node Performance

This section studies the behavior of the overlay network be-

tween vswitches used in Backdraft. To do this, we used a

cluster of four different servers. Each server is running its own

vswitch, and they are connected through a physical switch

with PFC enabled. We generated background UDP flows com-

peting with TCP victim flows (Figure 13a) and compared the

results when using either BESS or Backdraft as a vswitch.

Backdraft achieves higher aggregate throughput than BESS

(Figure 13b). This is because Backdraft sends PAUSE frames

through the overlay networks as soon as it notices queue

buildup. This is not done by BESS, which in turn induces

the physical switch to send PFC PAUSE frames and trigger

congestion spreading inside the network.

Figure 13c shows the number of PFC PAUSE frames sent

by the receiving server to the upstream PFC enabled switch

as a receiver gets slower. In this scenario, BESS causes the

physical switch to also generate PAUSE frames. However, this

does not happen with Backdraft because the overlay network

pauses the flow for the slow receiver before queues fill up.

We also compared the performance of BESS and Backdraft

using two nodes in the 100 Gbps CloudLab testbed connected

1384 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

BD BESS0
25
50
75

100

Th
ro

ug
hp

ut
(G

bp
s)

Slow Recv
No Slow Recv

(a)

BD BESS0

5

10

15

Dr
op

 ra
te

(M
pp

s) Slow Recv
No Slow Recv

(b)
Figure 14: Multithreading in Backdraft, (a) Aggregate

throughput, (b) Drop rate of victim flow. Backdraft achieves

100 Gbps using multiple cores while ensuring zero drop at

the vswitch. In this experiment, applications are allocated

enough number of cores to drive 100 Gbps.

by a lossy switch. Here, we used one server to send two UDP

flows towards another machine where one receiver is slow

and the other instead is a victim. Table 3 reports our results.

When using standard BESS (lossy) with a lossless network

core (first row), the overall throughput is high. However, it

also suffers from a high degree of packet loss. When, instead,

using BESS generating PFC frames (lossless), the throughput

is reduced and a considerable amount of packet loss still

appear, as the network core is lossy. Finally, due to overlay

messages, Backdraft it is able to avoid packet losses, while

keeping network throughput high.

Finally, we performed an experiment to demonstrate that

the overlay network in Backdraft does not suffer from starva-

tion, even when the rate of the slow receiver is variable over

the time. In this experiment, one machine is sending packets

towards a slow receiver. Initially, the destination polls packets

at rate 3 Mpps, then it doubles its rate at time T30. In Fig-

ure 15, BP (BESS with PFC) suffers from starvation and the

receiver spends its extra cycles polling instead of processing

packets. In contrast, at T = T30, Backdraft detects a change

in the receivers rate and increases T hgoal to avoid starvation

for the rest of the application’s life.

6.4 100 Gbps Forwarding Performance

To show that Backdraft can achieve 100 Gbps throughput

regardless of the presence of slow receivers, we performed

an experiment where an 8-core sender is generating a heavily

skewed workload consisting of 12 flows (11 fast flows and

1 slow flow) towards an 8-core receiver. To cause a slow

flow, one of 8 cores of the receiver application is slowed

down in this experiment. When using BESS, the slow flow

will eventually block the others, forcing the vswitch to drop

packets due to a lack of queue descriptors at the receiver’s

RX queues. In contrast, Backdraft does not suffer from this

problem because of its ability to dynamically resize queues

and send overlay PAUSE frames.

Figure 14 shows the aggregate throughput for all flows and

the drop rate for the victim flow in presence of slow receivers

in this experiment. With BESS, this experiment results in

high packet loss and a decreased throughput of ∼75 Gbps

0 10 20 30 40 50 60

Time(s)

0

100

200

Av
g

cy
cle

s s
pe

nt
 p

ol
lin

g
em

pt
y

RX
 q

ue
ue

(K
cy

c)

Double RX capacity

BD BP

Figure 15: Backdraft has

no starvation. Backdraft ad-

justs the sender rate using

overlay messages to ensure

enough buffering at the re-

ceiver’s queues.

1
51

2 1K 2K 4K 8K 16
K

Number of queues

0

5

10

Th
ro

ug
hp

ut
(M

pp
s)

Backdraft BESS
Figure 16: Backdraft, com-

pared to BESS, sustains high

throughput with a single core

while managing large number

of queues as it mitigates the

polling overhead.

even though there is only one core receiving slower than the

expected pace. In contrast, Backdraft achieves full line-rate

without any packet drops. Backdraft sends overlay messages

on a per-queue basis to notify the upstream sender to reduce

its rates. This allows Backdraft to utilize the extra bandwidth

for the other flows in order to drive the 100 Gbps line-rate.

6.5 Backdraft Scalability

Finally, we assessed the scalability of Backdraft in terms of

its throughput and memory requirements.

The impact of number of queues on performance. To

demonstrate the benefits of doorbell queues, we performed

an experiment where an application sends packets from UDP

flows in a skewed pattern based on the Zipfian distribution,

and we compared the throughput achieved between doorbell

queues (Backdraft) and polling every queue (BESS).

Figure 16 shows the aggregate vswitch throughput when a

single core is allocated to the switch as we vary the number

queues. With a small number of queues, both Backdraft and

BESS perform similarly, which shows that the overheads of

doorbell queues are quite low. However, when the number of

queues increase, only Backdraft maintains its throughput.

The amount of memory needed varying network RTT. Fi-

nally, we performed an analysis of the memory overheads

of Backdraft to demonstrate that this is not prohibitive. In

order to avoid congestion spreading, T hnet must be suffi-

ciently larger when compared to T hover so that packets can

be buffered during the time it takes for the source of the con-

gestion to pause and adjust its rate. The increased memory

overheads of Backdraft are small and can be estimated by

bandwidth-delay product for different network line-rates. For

example, a 100 Gbps network with a 1ms RTT only requires

12.5 MB of buffering to avoid congestion spreading. Further,

it is important to note that DPFQ ensures that this buffering

requirement is for the entire switch and not per-flow.

7 Discussion

Slow NICs. NICs may be slow and unable to achieve line-

rate, and this can cause packet loss [44, 83]. If a slow NIC

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1385

participates in the overlay network by generating OPFs, it can

avoid both packet loss and congestion spreading.

Slow virtual switches. There are many reasons a vswitch

may be slow, including CPU limitations, memory bandwidth

limitations, and insufficient LLC cache [34, 36, 89, 95], and

packets can be dropped at the NIC when a vswitch cannot

keep up with the ingress rate, resulting in a slow vswitch

problem. This can be solved by offloading part of Backdraft’s

processing onto a programmable NIC [2, 9, 39, 46, 87]. This

should be feasible because recent developments in NIC de-

signs have brought models that provide a large amount of

on-NIC memory that can be used for Backdraft. For exam-

ple, Xilinx Alveo NICs support High Bandwidth Memory

(HBM), fast memory that is directly embedded on-chip in an

FPGA [11, 53].

RDMA support. Backdraft can support 2-sided RDMA verbs

by monitoring the length of receive queues in the application

or a library and generating OPF messages to transmitters as

appropriate. Further, if offloaded onto a NIC, Backdraft can

mitigate the effect of the slow NIC problem for 1-sided verbs

and complement the sender-based approaches that can be used

for congestion control [55, 68, 98].

Programmable packet scheduling. If Backdraft is deployed

without enough memory, multiple flows have to share the

same queue. Although this can cause HOL blocking, this

can be mitigated with opportunistic packet scheduling. For

example, Backdraft could employ software solutions like Eif-

fel [80] or hardware ones like AIFO [94] and PIFO [85] if

Backdraft is offloaded to a programmable NIC.

Linux kernel compatibility. Backdraft is implemented using

DPDK. Thus, all of the traffic coming from the NIC bypasses

the Linux kernel. However, we believe that the same design

principles are applicable to the Linux kernel. Further, being

implemented in userspace does not even preclude Backdraft

from interfacing with the Linux kernel networking stack. For

example, Backdraft can use a custom kernel driver to inter-

face with traditional applications, and the recently proposed

AF_XDP Poll Mode driver [1] enables DPDK applications to

natively support the AF_XDP socket and retain compatibility

with the Linux tools that operators expect [90].

8 Related Work

Slow receiver problem. Past research has acknowledged the

slow receiver problem in the context of the overheads of

the Linux networking stack [21], Linux-based transport pro-

tocol implementations [73], and production networks from

Microsoft [44], and Google Swift [60].

Virtual switching. Snap, Andromeda, and PicNIC all per-

form lossy vswitching [30, 61, 68], which drops packets. On

the other hand, Zfabric, NFVNice, and zOVN are lossless

vswitches. These, however, suffer from HOL blocking as they

share queues among active flows in the vswitch [26, 27, 59].

Moreover, unlike Backdraft, none of these approaches address

the slow receiver problem. Similarly, FreeFlow ensures high

performance by using shared memory, but it does not consider

packet loss problem at the end-hosts [93].

Packet scheduling and rate limiting. Backdraft is compat-

ible with Eiffel and Carousel and can mitigate their CPU

utilization overheads with its command queue [79, 80]. Sim-

ilarly, hyperplane can be used to reduce the CPU polling

overheads of Backdraft [70]. EyeQ is a related system that

builds an overlay network that performs rate-limiting [50].

However, EyeQ pays high CPU utilization overhead when

rate limiting, and EyeQ works at millisecond-scale, which is

not fast enough to address the slow receiver problem.

Congestion control. In addition to Homa, there are other

important new congestion control algorithms like Google’s

Swift, which performs fine grain time stamping to identify the

congestion source (end-host, network) [60]. Similar to how

we have found that Backdraft is complementary to Homa, we

expect that Backdraft is complementary to Swift as well.

Flow control. Backdraft is complementary to flow control

protocols designed to provide a lossless core network. For ex-

ample, Backdraft is complementary to PFC because it strives

to minimize the PAUSE frames sent across the network. PCN

ensures high throughput for victim flows if congestion spread-

ing occurs and is also complementary to Backdraft [23]. BFC

is a new backpressure flow control protocol intended to re-

place PFC [43]. Backdraft solves a key problem that arises

with deploying BFC in practice. This is because BFC as-

sumes that flows can be received at 100 Gbps line-rates, and

this assumption can be violated by slow receivers. Backdraft

addresses this problem and prevents congestion spreading

from slow receivers.

9 Conclusions

In this paper, we present the design and implementation of

Backdraft, a new lossless virtual switch. We make a case for

providing lossless networking at the vswitch level by showing

the impact of packet loss caused by slow receivers on network

performance using existing congestion control algorithms.

We implemented Backdraft on top of the BESS virtual

switch and performed experiments with two different clusters

of servers on CloudLab (10 Gbps and 100 Gbps). We used

unmodified POSIX applications with TAS TCP and a custom

distributed application that performs RPCs with Homa, a state-

of-the-art datacenter transport protocol. We demonstrate that

Backdraft is effective in preventing packet loss and reduces

tail latency by up to 20x compared to BESS.

Acknowledgements: We thank our shepherd, Anurag Khan-

delwal, the anonymous NSDI reviewers, Praveen Kumar, and

Djordje Jevdjic for their feedback. This work was funded

by NSF Awards CNS-2200783 and CNS-2008273, the UK

EPSRC project EP/T007206/1, and by gifts from Google and

VMware.

1386 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Af-xdp poll mode driver. https://doc.dpdk.org/

guides/nics/af_xdp.html.

[2] Alveo SN1000 SmartNIC Accelerator Card. https:

//www.xilinx.com/products/boards-and-kits/

alveo/sn1000.html.

[3] BESS: Berkeley Extensible Software Switch. https:

//github.com/NetSys/bess.

[4] Homa. https://github.com/PlatformLab/Homa.

[5] Homa commit 47265bf. https://

github.com/PlatformLab/Homa/blob/

392b577bbdad2f5aa42faefc88614992b5e505d2/

src/TransportImpl.cc#L36.

[6] iperf3: Documentation. http://software.es.net/

iperf/.

[7] Memcached. https://memcached.org/.

[8] Nginx. https://www.nginx.com/.

[9] Virtual Switch on BlueField SmartNIC. https://docs.

mellanox.com/display/BlueFieldSWv20110841/

Virtual+Switch+on+BlueField+SmartNIC.

[10] What’s New in Virtio 1.1. https://www.dpdk.

org/wp-content/uploads/sites/35/2018/09/

virtio-1.1_v4.pdf.

[11] Xilinx alveo u280. https://www.xilinx.com/

products/boards-and-kits/alveo/u280.html.

[12] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,

P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan.

Data center tcp (dctcp). In Special Interest Group on

Data Communication (SIGCOMM). ACM, 2010.

[13] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar,

A. Vahdat, and M. Yasuda. Less is more: Trading a

little bandwidth for ultra-low latency in the data cen-

ter. In Networked Systems Design and Implementation

(NSDI). USENIX, 2012.

[14] N. Amit, A. Tai, and M. Wei. Don’t shoot down tlb

shootdowns! In European Conference on Computer

Systems (EuroSys). ACM, 2020.

[15] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and

M. Paleczny. Workload analysis of a large-scale key-

value store. In SIGMETRICS/PERFORMANCE Joint

International Conference on Measurement and Model-

ing of Computer Systems. ACM, 2012.

[16] L. Barroso, M. Marty, D. Patterson, and P. Ranganathan.

Attack of the killer microseconds. In Communications

of the ACM, volume 60, pages 48–54. ACM, 2017.

[17] L. A. Barroso, J. Clidaras, and U. Hölzle. The Data-

center as a Computer: An Introduction to the Design of

Warehouse-Scale Machines, Second Edition. 2013.

[18] T. Benson, A. Akella, and D. A. Maltz. Network Traffic

Characteristics of Data Centers in the Wild. In Special

Interest Group on Data Communication (SIGCOMM).

ACM, 2010.

[19] J. Bouron, S. Chevalley, B. Lepers, W. Zwaenepoel,

R. Gouicem, J. Lawall, G. Muller, and J. Sopena. The

battle of the schedulers: Freebsd ULE vs. linux CFS. In

Annual Technical Conference (ATC). USENIX, 2018.

[20] M. S. Brunella, G. Belocchi, M. Bonola, S. Pontarelli,

G. Siracusano, G. Bianchi, A. Cammarano, A. Palumbo,

L. Petrucci, and R. Bifulco. hXDP: Efficient software

packet processing on FPGA nics. In Operating Systems

Design and Implementation (OSDI). USENIX, 2020.

[21] Q. Cai, S. Chaudhary, M. Midhul, Vuppalapati,

J. Hwang, and R. Agarwal. Understanding Host Net-

work Stack Overheads. In Special Interest Group on

Data Communication (SIGCOMM). ACM, 2021.

[22] Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D. Joseph.

Understanding TCP incast throughput collapse in dat-

acenter networks. In Workshop on Research on Enter-

prise Networking (WREN). ACM, 2009.

[23] W. Cheng, K. Qian, W. Jiang, T. Zhang, and F. Ren. Re-

architecting congestion management in lossless Ether-

net. In Networked Systems Design and Implementation

(NSDI). USENIX, 2020.

[24] I. Cho, K. Jang, and D. Han. Credit-scheduled delay-

bounded congestion control for datacenters. In Special

Interest Group on Data Communication (SIGCOMM).

ACM, 2017.

[25] C. Chou, L. N. Bhuyan, and D. Wong. µdpm: Dynamic

power management for the microsecond era. In Inter-

national Symposium on High Performance Computer

Architecture (HPCA). IEEE, 2019.

[26] D. Crisan, R. Birke, N. Chrysos, C. Minkenberg, and

M. Gusat. zFabric: How to virtualize lossless Ether-

net? In International Conference On Cluster Computing

(CLUSTER). IEEE, 2014.

[27] D. Crisan, R. Birke, G. Cressier, C. Minkenberg, and

M. Gusat. Got loss? get zOVN! In Special Interest

Group on Data Communication (SIGCOMM). ACM,

2013.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1387

https://doc.dpdk.org/guides/nics/af_xdp.html
https://doc.dpdk.org/guides/nics/af_xdp.html
https://www.xilinx.com/products/boards-and-kits/alveo/sn1000.html
https://www.xilinx.com/products/boards-and-kits/alveo/sn1000.html
https://www.xilinx.com/products/boards-and-kits/alveo/sn1000.html
https://github.com/NetSys/bess
https://github.com/NetSys/bess
https://github.com/PlatformLab/Homa
https://github.com/PlatformLab/Homa/blob/392b577bbdad2f5aa42faefc88614992b5e505d2/src/TransportImpl.cc#L36
https://github.com/PlatformLab/Homa/blob/392b577bbdad2f5aa42faefc88614992b5e505d2/src/TransportImpl.cc#L36
https://github.com/PlatformLab/Homa/blob/392b577bbdad2f5aa42faefc88614992b5e505d2/src/TransportImpl.cc#L36
https://github.com/PlatformLab/Homa/blob/392b577bbdad2f5aa42faefc88614992b5e505d2/src/TransportImpl.cc#L36
http://software.es.net/iperf/
http://software.es.net/iperf/
https://memcached.org/
https://www.nginx.com/
https://docs.mellanox.com/display/BlueFieldSWv20110841/Virtual+Switch+on+BlueField+SmartNIC
https://docs.mellanox.com/display/BlueFieldSWv20110841/Virtual+Switch+on+BlueField+SmartNIC
https://docs.mellanox.com/display/BlueFieldSWv20110841/Virtual+Switch+on+BlueField+SmartNIC
https://www.dpdk.org/wp-content/uploads/sites/35/2018/09/virtio-1.1_v4.pdf
https://www.dpdk.org/wp-content/uploads/sites/35/2018/09/virtio-1.1_v4.pdf
https://www.dpdk.org/wp-content/uploads/sites/35/2018/09/virtio-1.1_v4.pdf
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html

[28] A. Daglis, M. Sutherland, and B. Falsafi. RPCValet:

Ni-driven tail-aware balancing of µs-scale RPCs. In

Architectural Support for Programming Languages and

Operating Systems (ASPLOS). ACM, 2019.

[29] W. J. Dally and C. L. Seitz. Deadlock-free message

routing in multiprocessor interconnection networks. In

Transactions on Computers, volume 36, pages 547–553.

IEEE, 1987.

[30] M. Dalton, D. Schultz, J. Adriaens, A. Arefin, A. Gupta,

B. Fahs, D. Rubinstein, E. C. Zermeno, E. Rubow, J. A.

Docauer, et al. Andromeda: Performance, isolation, and

velocity at scale in cloud network virtualization. In

Networked Systems Design and Implementation (NSDI).

USENIX, 2018.

[31] C. DeSanti. IEEE 802.1: 802.1Qbb - Priority-based

Flow Control. http://www.ieee802.org/1/pages/

802.1bb.html, 2009.

[32] D. Didona and W. Zwaenepoel. Size-aware sharding

for improving tail latencies in in-memory key-value

stores. In Networked Systems Design and Implementa-

tion (NSDI). USENIX, 2019.

[33] C. Fang, H. Liu, M. Miao, J. Ye, L. Wang, W. Zhang,

D. Kang, B. Lyv, P. Cheng, and J. Chen. Vtrace: Au-

tomatic diagnostic system for persistent packet loss in

cloud-scale overlay network. In Special Interest Group

on Data Communication (SIGCOMM). ACM, 2020.

[34] A. Farshin, T. Barbette, A. Roozbeh, G. Q. Maguire Jr.,

and D. Kostić. PacketMill: Toward per-core 100-gbps

networking. In Architectural Support for Programming

Languages and Operating Systems (ASPLOS). ACM,

2021.

[35] A. Farshin, A. Roozbeh, G. Q. M. Jr., and D. Kostić.

Reexamining direct cache access to optimize i/o inten-

sive applications for multi-hundred-gigabit networks. In

Annual Technical Conference (ATC). USENIX, 2020.

[36] A. Farshin, A. Roozbeh, G. Q. Maguire Jr, and D. Kostić.

Reexamining direct cache access to optimize I/O inten-

sive applications for multi-hundred-gigabit networks. In

Annual Technical Conference (ATC). USENIX, 2020.

[37] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Al-

isafaee, D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ail-

amaki, and B. Falsafi. Clearing the clouds: A study

of emerging scale-out workloads on modern hardware.

In Special Interest Group on Programming Languages

(SIGPLAN). ACM, 2012.

[38] D. Firestone. VFP: A virtual switch platform for host

SDN in the public cloud. In Networked Systems Design

and Implementation (NSDI). USENIX, 2017.

[39] D. Firestone, A. Putnam, S. Mundkur, D. Chiou,

A. Dabagh, M. Andrewartha, H. Angepat, V. Bhanu,

A. Caulfield, E. Chung, H. K. Chandrappa, S. Chatur-

mohta, M. Humphrey, J. Lavier, N. Lam, F. Liu,

K. Ovtcharov, J. Padhye, G. Popuri, S. Raindel, T. Sapre,

M. Shaw, G. Silva, M. Sivakumar, N. Srivastava,

A. Verma, Q. Zuhair, D. Bansal, D. Burger, K. Vaid,

D. A. Maltz, and A. Greenberg. Azure accelerated net-

working: SmartNICs in the public cloud. In Networked

Systems Design and Implementation (NSDI). USENIX,

2018.

[40] J. Fried, Z. Ruan, A. Ousterhout, and A. Belay. Caladan:

Mitigating interference at microsecond timescales. In

Symposium on Operating Systems Design and Imple-

mentation (OSDI). USENIX, 2020.

[41] H. Golestani, A. Mirhosseini, and T. F. Wenisch. Soft-

ware data planes: You can’t always spin to win. In

Symposium on Cloud Computing (SoCC). ACM, 2019.

[42] R. Gouicem, D. Carver, J.-P. Lozi, J. Sopena, B. Lep-

ers, W. Zwaenepoel, N. Palix, J. Lawall, and G. Muller.

Fewer cores, more hertz: Leveraging high-frequency

cores in the OS scheduler for improved application

performance. In Annual Technical Conference (ATC).

USENIX, 2020.

[43] P. Goyal, P. Shah, K. Zhao, G. Nikolaidis, M. Alizadeh,

and T. E. Anderson. Backpressure flow control. In

Networked Systems Design and Implementation (NSDI).

USENIX, 2022.

[44] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, and

M. Lipshteyn. RDMA over Commodity Ethernet at

Scale. In Special Interest Group on Data Communica-

tion (SIGCOMM). ACM, 2016.

[45] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and S. Rat-

nasamy. SoftNIC: A software nic to augment hardware.

EECS Department, University of California, Berkeley,

Tech. Rep. UCB/EECS-2015-155, 2015.

[46] J. T. Humphries, K. Kaffes, D. Mazières, and

C. Kozyrakis. Mind the gap: A case for informed re-

quest scheduling at the nic. In Workshop on Hot Topics

in Networks (HotNets). ACM, 2019.

[47] D. Intel. Data plane development kit, 2014.

[48] C. Iorgulescu, R. Azimi, Y. Kwon, S. Elnikety, M. Sya-

mala, V. Narasayya, H. Herodotou, P. Tomita, A. Chen,

J. Zhang, and J. Wang. Perfiso: Performance isolation

for commercial latency-sensitive services. In Annual

Technical Conference (ATC). USENIX, 2018.

1388 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://www.ieee802.org/1/pages/802.1bb.html
http://www.ieee802.org/1/pages/802.1bb.html

[49] K. Jang, J. Sherry, H. Ballani, and T. Moncaster. Silo:

Predictable Message Latency in the Cloud. In Special

Interest Group on Data Communication (SIGCOMM).

ACM, 2015.

[50] V. Jeyakumar, M. Alizadeh, D. Mazières, B. Prabhakar,

C. Kim, and A. Greenberg. EyeQ: Practical Network

Performance Isolation at the Edge. In Networked Sys-

tems Design and Implementation (NSDI). USENIX,

2013.

[51] K. Kaffes, T. Chong, J. T. Humphries, A. Belay, D. Maz-

ières, and C. Kozyrakis. Shinjuku: Preemptive schedul-

ing for µsecond-scale tail latency. In Networked Systems

Design and Implementation (NSDI). USENIX, 2019.

[52] K. Kaffes, J. T. Humphries, D. Mazières, and

C. Kozyrakis. Syrup: User-defined scheduling across the

stack. In Symposium on Operating Systems Principles

(SOSP). ACM, 2021.

[53] K. Kara, C. Hagleitner, D. Diamantopoulos, D. Syrivelis,

and G. Alonso. High bandwidth memory on FPGAs: A

data analytics perspective. In International Conference

on Field-Programmable Logic and Applications (FPL).

IEEE, 2020.

[54] H. Kasture, D. B. Bartolini, N. Beckmann, and

D. Sanchez. Rubik: Fast analytical power management

for latency-critical systems. In International Symposium

on Microarchitecture (MICRO). IEEE/ACM, 2015.

[55] G. P. Katsikas, T. Barbette, M. Chiesa, D. Kostić, and

G. Q. Maguire. What you need to know about (smart)

network interface cards. In International Conference

on Passive and Active Network Measurement. Springer,

2021.

[56] A. Kaufmann, T. Stamler, S. Peter, N. K. Sharma, A. Kr-

ishnamurthy, and T. Anderson. TAS: TCP acceleration

as an OS service. In European Conference on Computer

Systems (EuroSys). ACM, 2019.

[57] M. Kogias, G. Prekas, A. Ghosn, J. Fietz, and

E. Bugnion. R2P2: Making RPCs first-class datacen-

ter citizens. In Annual Technical Conference (ATC).

USENIX, 2019.

[58] A. Kopytov. Sysbench: a system performance bench-

mark. http://sysbench. sourceforge. net/, 2004.

[59] S. G. Kulkarni, W. Zhang, J. Hwang, S. Rajagopalan,

K. K. Ramakrishnan, T. Wood, M. Arumaithurai, and

X. Fu. NFVnice: Dynamic Backpressure and Schedul-

ing for NFV Service Chains. In Special Interest Group

on Data Communication (SIGCOMM). ACM, 2017.

[60] G. Kumar, N. Dukkipati, K. Jang, H. M. G. Wassel,

X. Wu, B. Montazeri, Y. Wang, K. Springborn, C. Alfeld,

M. Ryan, D. Wetherall, and A. Vahdat. Swift: Delay

is simple and effective for congestion control in the

datacenter. In Special Interest Group on Data Commu-

nication (SIGCOMM). ACM, 2020.

[61] P. Kumar, N. Dukkipati, N. Lewis, Y. Cui, Y. Wang, C. Li,

V. Valancius, J. Adriaens, S. Gribble, N. Foster, and

A. Vahdat. Picnic: Predictable virtualized nic. In Special

Interest Group on Data Communication (SIGCOMM).

ACM, 2019.

[62] H. T. Kung, T. Blackwell, and A. Chapman. Credit-

based flow control for ATM networks: Credit update

protocol, adaptive credit allocation and statistical multi-

plexing. In Special Interest Group on Data Communi-

cation (SIGCOMM). ACM, 1994.

[63] B. Lepers, R. Gouicem, D. Carver, J.-P. Lozi, N. Palix,

M.-V. Aponte, W. Zwaenepoel, J. Sopena, J. Lawall, and

G. Muller. Provable multicore schedulers with ipanema:

Application to work conservation. In European Confer-

ence on Computer Systems (EuroSys). ACM, 2020.

[64] J. Leverich and C. Kozyrakis. Reconciling high server

utilization and sub-millisecond quality-of-service. In

European Conference on Computer Systems (EuroSys).

ACM, 2014.

[65] J. Li, N. K. Sharma, D. R. K. Ports, and S. D. Gribble.

Tales of the tail: Hardware, os, and application-level

sources of tail latency. In Symposium on Cloud Comput-

ing (SoCC). ACM, 2014.

[66] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and

C. Kozyrakis. Heracles: Improving resource efficiency

at scale. In International Symposium on Computer Ar-

chitecture (ISCA). ACM, 2015.

[67] A. Manousis, R. A. Sharma, V. Sekar, and J. Sherry.

Contention-aware performance prediction for virtual-

ized network functions. In Special Interest Group on

Data Communication (SIGCOMM). ACM, 2020.

[68] M. Marty, M. de Kruijf, J. Adriaens, C. Alfeld, S. Bauer,

C. Contavalli, M. Dalton, N. Dukkipati, W. C. Evans,

S. Gribble, et al. Snap: a microkernel approach to host

networking. In Symposium on Operating Systems Prin-

ciples (SOSP). ACM, 2019.

[69] A. Menon and W. Zwaenepoel. Optimizing TCP receive

performance. In Annual Technical Conference (ATC).

USENIX, 2008.

[70] A. Mirhosseini, H. Golestani, and T. F. Wenisch. Hyper-

plane: A scalable low-latency notification accelerator

for software data planes. In International Symposium

on Microarchitecture (MICRO). IEEE/ACM, 2020.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1389

[71] A. Mirhosseini, B. L. West, G. W. Blake, and T. F.

Wenisch. Q-zilla: A scheduling framework and core

microarchitecture for tail-tolerant microservices. In In-

ternational Symposium on High Performance Computer

Architecture (HPCA). IEEE, 2020.

[72] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout.

Homa: A Receiver-Driven Low-Latency Transport Pro-

tocol Using Network Priorities. In Special Interest

Group on Data Communication (SIGCOMM). ACM,

2018.

[73] J. Ousterhout. A linux kernel implementation of the

homa transport protocol. In Annual Technical Confer-

ence (ATC). USENIX, 2021.

[74] H. Qin, Q. Li, J. Speiser, P. Kraft, and J. Ousterhout.

Arachne: Core-aware thread management. In Operating

Systems Design and Implementation (OSDI). USENIX,

2018.

[75] R. Ricci, E. Eide, and The CloudLab Team. Introducing

CloudLab: Scientific infrastructure for advancing cloud

architectures and applications. USENIX ;login:, 2014.

[76] L. Rizzo. Netmap: a novel framework for fast packet i/o.

In Security Symposium (USENIX Security). USENIX,

2012.

[77] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren.

Inside the Social Network’s (Datacenter) Network. In

Special Interest Group on Data Communication (SIG-

COMM). ACM, 2015.

[78] R. Russell. virtio: towards a de-facto standard for virtual

I/O devices. In SIGOPS Operating Systems Review,

volume 42, pages 95–103. ACM, 2008.

[79] A. Saeed, N. Dukkipati, V. Valancius, V. The Lam,

C. Contavalli, and A. Vahdat. Carousel: Scalable traffic

shaping at end hosts. In Special Interest Group on Data

Communication (SIGCOMM). ACM, 2017.

[80] A. Saeed, Y. Zhao, N. Dukkipati, E. Zegura, M. Ammar,

K. Harras, and A. Vahdat. Eiffel: Efficient and flexi-

ble software packet scheduling. In Networked Systems

Design and Implementation (NSDI). USENIX, 2019.

[81] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang. Legoos:

A disseminated, distributed OS for hardware resource

disaggregation. In Operating Systems Design and Im-

plementation (OSDI). USENIX, 2018.

[82] E. Sharafzadeh, A. Sanaee, E. Asyabi, and M. Sharifi.

Yawn: A cpu idle-state governor for datacenter applica-

tions. In SIGOPS Asia-Pacific Workshop on Systems

(APSys). ACM, 2019.

[83] A. Singhvi, A. Akella, D. Gibson, T. F. Wenisch,

M. Wong-Chan, S. Clark, M. M. K. Martin, M. McLaren,

P. Chandra, R. Cauble, H. M. G. Wassel, B. Montaz-

eri, S. L. Sabato, J. Scherpelz, and A. Vahdat. 1RMA:

Re-envisioning remote memory access for multi-tenant

datacenters. In Special Interest Group on Data Commu-

nication (SIGCOMM). ACM, 2020.

[84] A. Sivaraman, S. Subramanian, M. Alizadeh, S. Chole,

S.-T. Chuang, A. Agrawal, H. Balakrishnan, T. Edsall,

S. Katti, and N. McKeown. Programmable packet

scheduling at line rate. In Special Interest Group on

Data Communication (SIGCOMM). ACM, 2016.

[85] A. Sivaraman, S. Subramanian, M. Alizadeh, S. Chole,

S.-T. Chuang, A. Agrawal, H. Balakrishnan, T. Edsall,

S. Katti, and N. McKeown. Programmable packet

scheduling at line rate. In Special Interest Group on

Data Communication (SIGCOMM). ACM, 2016.

[86] A. Sriraman and A. Dhanotia. Accelerometer: Un-

derstanding acceleration opportunities for data center

overheads at hyperscale. In Architectural Support for

Programming Languages and Operating Systems (ASP-

LOS). ACM, 2020.

[87] B. Stephens, A. Akella, and M. Swift. Loom: Flexi-

ble and efficient NIC packet scheduling. In Networked

Systems Design and Implementation (NSDI). USENIX,

2019.

[88] B. Stephens, A. L. Cox, A. Singla, J. Carter, C. Dixon,

and W. Felter. Practical DCB for improved data center

networks. In Conference on Computer Communications

(INFOCOM). IEEE, 2014.

[89] A. Tootoonchian, A. Panda, C. Lan, M. Walls, K. Ar-

gyraki, S. Ratnasamy, and S. Shenker. ResQ: Enabling

SLOs in network function virtualization. In Networked

Systems Design and Implementation (NSDI). USENIX,

2018.

[90] W. Tu, Y.-H. Wei, G. Antichi, and B. Pfaff. Revisiting

the open vswitch dataplane ten years later. In Special

Interest Group on Data Communication (SIGCOMM).

ACM, 2021.

[91] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G.

Andersen, G. R. Ganger, G. A. Gibson, and B. Mueller.

Safe and effective fine-grained TCP retransmissions for

datacenter communication. In Special Interest Group

on Data Communication (SIGCOMM). ACM, 2009.

[92] J. Yang, Y. Yue, and K. V. Rashmi. A large scale analysis

of hundreds of in-memory cache clusters at Twitter. In

Operating Systems Design and Implementation (OSDI).

USENIX, 2020.

1390 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[93] T. Yu, S. A. Noghabi, S. Raindel, H. Liu, J. Padhye,

and V. Sekar. FreeFlow: High Performance Container

Networking. In Workshop on Hot Topics in Networks

(HotNets). ACM, 2016.

[94] Z. Yu, C. Hu, J. Wu, X. Sun, V. Braverman, M. Chowd-

hury, Z. Liu, and X. Jin. Programmable packet schedul-

ing with a single queue. In Special Interest Group on

Data Communication (SIGCOMM). ACM, 2021.

[95] Y. Yuan, M. Alian, Y. Wang, R. Wang, I. Kurakin, C. Tai,

and N. S. Kim. Don’t forget the I/O when allocating

your LLC. In International Symposium on Computer

Architecture (ISCA). ACM, 2021.

[96] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz.

DeTail: Reducing the flow completion time tail in dat-

acenter networks. In Special Interest Group on Data

Communication (SIGCOMM). ACM, 2012.

[97] X. Zhan, R. Azimi, S. Kanev, D. Brooks, and S. Reda.

Carb: A c-state power management arbiter for latency-

critical workloads. In Computer Architecture Letters,

volume 16, pages 6–9. IEEE, 2016.

[98] Y. Zhang, Y. Tan, B. Stephens, and M. Chowdhury. Justi-

tia: Software multi-tenancy in hardware kernel-bypass

networks. In Networked Systems Design and Implemen-

tation (NSDI). USENIX, 2022.

[99] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn,

Y. Liron, J. Padhye, S. Raindel, M. H. Yahia, and

M. Zhang. Congestion control for large-scale RDMA

deployments. In Special Interest Group on Data Com-

munication (SIGCOMM). ACM, 2015.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1391

8421
Number of CPUs

(a)

0

2.5

5
Th

ro
ug

hp
ut

 (M
pp

s)

8421
Number of CPUs

(b)

0.0

0.5

1.0

Dr
op

 (%
)

8421
Number of CPUs

(c)

0

25

50

RP
C

Co
m

pl
. T

im
e

(m
s)

@99.99
@99.9

@99
@50

Figure 17: Throughput, loss and latency of DCTCP given dif-

ferent number of allocated cores. DCTCP still is unable to pre-

vent packet loss with 4 CPU cores.

10−4 10−2 100

Drop Probability
0

5

10

RP
C

Co
m

pl
.

Ti
m

e
(m

s)

p99 p99.9 p99.99
Figure 18: Homa experiences millisecond scale tail latency

with even 10−2 drop probability.

V
sw

itc
h

A

C DSlow

BFast

Fij: Flow i j

(a)

Lossy BESS BD
1
5

10

15

20

25

Go
od

pu
t(M

pp
s)

RX capacity

Fast Flow-FAB
Slow Flow-FCD

(b)

Figure 19: Backdraft TX bandwidth management in presence

of a slow receiver. (a) The experiment setup on a single machine.

(b) Backdraft prevents packet loss and saves CPU utilization

from slow receiver and can allocate it to other receiver applica-

tions.

A Appendices

In this section, we expand our experiments associated with

congestion controls, and bandwidth management on a single

host.

A.1 Slow Receivers and DCTCP/Homa

While we discussed the problem associated with congestion

controls such as Homa with regard to the slow receiver prob-

lem in Figure 4, we extended our study and performed similar

experiments on DCTCP (§A.1.1).

We then discuss the impact of packet loss on latency of

Homa (§A.1.2), given that Homa uses high granular timers to

identify lost packets which is already discussed in §6.1.

A.1.1 DCTCP

We show that congestion control algorithms fail to address

slow receiver problem in §2.1. Other than Homa, we per-

formed the same test on DCTCP congestion control. Fig-

ure 17a show that throughput of DCTCP application cannot

reach higher than 5 Mpps or 320 Mbps with even 8 cores

(64 B packets were used).

We have found that this packet loss occurs even when the

vswitch performs ECN marking and end-hosts use a state-of-

the-art congestion control algorithm like DCTCP [12]. This is

demonstrated in Figure 17b, which shows what happens when

we vary the number of allocated cores from 1 to 8 allocated

to a DCTCP receiver application experiencing receiving data

from a DCTCP client that is utilizing 8 CPU cores to send

messages as fast as possible. We enable ECN marking at

vswitch level to ensure DCTCP controls the flow rates in

the scenarios where only vswitches are involved. Finally,

Figure 17c demonstrates that packet loss has dramatic impact

on the tail latency of the DCTCP.

A.1.2 Packet Loss Effect on Homa

In this section, we further discuss packet loss overhead of

Homa protocol discussed in §4. In Figure 18, we observe

that RPC completion time increase to 5x higher with mere

packet loss probability of 10−2. Although Homa identifies

lost packets with high resolution timers, this does not seem to

be highly effective.

A.2 Single Host Bandwidth Management

We performed an extra experiment to show how Backdraft

works when dealing with a non-cooperative workload in terms

of bandwidth management. This experiment is carried on a

single node, we demonstrate that Backdraft delivers 2x higher

throughput than its counterpart, BESS. Figure 19a shows the

setup for this experiment. Here we have four applications

(A, B, C, and D), where application D is a slow receiver and

process packets at a maximum of 1 Mpps. The sender appli-

cations (i.e., A and C) are configured to transmit packets at

20 Mpps, instead. Reciver B is not limited in performance,

so we can consider it to be fast. When Backdraft identifies

the queue buildup due to slow receiver (i.e., D), it sends a

local overlay message towards the sender port that includes a

pause duration and an estimate of the receiver’s rate. Using

this information, Backdraft can pause the sender port, save

CPU cycles otherwise wasted in handling the slow receiver

flow, and use the saved resources to better handle the traffic

directed to the fast receiver.

Figure 19b demonstrates this. With Backdraft, flow fAB

achieves 19 Mpps throughput. BESS, however, wastes CPU

cycles and throughput bandwidth on dropping packets, caus-

ing the flow to reach only 10 Mpps.

1392 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

	nsdi22-monday-papers
	nsdi22-paper-mcclure
	Introduction
	Motivation
	Design Space of Policies
	Setting and Assumptions
	Policies
	Load-Balancing Policies
	Core-Allocation Policies

	Overheads

	Factor Analysis
	Simulation Methodology
	Load Balancing
	With Static Core Allocations
	With Dynamic Core Allocations

	Core Allocation
	Policy Takeaways

	Implementation
	Evaluation
	Policy Comparisons

	Related Work
	Conclusion
	Acknowledgments
	Appendix
	Proof of NP-Hardness for Optimal Core Allocations
	Extended Factor Analysis
	Additional Loads for Static Curves
	Additional Service Time Distributions

	nsdi22-paper-jajoo
	Introduction
	Background and Related Work
	Cluster Scheduling Problem
	Job Model
	Existing Learning-based Schedulers
	Learning from History: Assumptions and Reality

	SLearn – Learning in Space
	Accuracy Analysis
	Analytical Comparison
	History-based Schemes
	Sampling-based Schemes

	Trace-based Variability Analysis
	Experimental Prediction Error Analysis

	Integrating Sampling-based Learning with Job Scheduling: A Case Study
	Scheduler and Predictor Design
	Generic Scheduler GS
	SLearn
	Baseline Predictors and Policies

	Experimental Results
	Experimental Setup
	Effectiveness of Adaptive Sampling
	Prediction Accuracy
	Average JCT Improvement
	Impact of Sampling on Job Waiting Time
	Testbed Experiments
	Binning Analysis
	Sensitivity to Thin Job Bypass

	Scheduling for DAG Jobs
	Discussions and Future Work
	Conclusions

	nsdi22-paper-chen_jun_lin
	Introduction
	Background
	Edge Computing

	Motivation
	Pull-based Protocol
	Layered-based Structure
	No Explicit Update Support

	Starlight
	Design Considerations
	Overview
	Delta Bundle Protocol
	Proxy and Directory Database
	Snapshotter Plugin
	The Starlight Filesystem (StarlightFS)

	Evaluation
	Experimental Setup
	Provisioning Time
	Performance
	Geo-Distributed WAN Experiment

	Related Work
	Conclusion
	Appendix
	Container Images Used in Evaluation
	Analysis of Selected Containers

	nsdi22-paper-addanki
	Introduction
	 Motivation
	Desirable Control Law Properties
	Drawbacks of Existing Control Laws
	Lessons Learned and Design Goals

	Power-Based Congestion Control
	The Notion of Power
	Benefits of Power-Based CC
	The PowerTCP Algorithm
	Properties of PowerTCP
	-PowerTCP: Standalone Version
	Deploying PowerTCP

	Evaluation
	Setup
	Results

	Case Study: Reconfigurable DCNs
	Related Work
	Conclusion
	Analysis
	Justifying the Simplified Model
	HOMA's Overcommitment
	-PowerTCP

	nsdi22-paper-reda
	Abstract
	Introduction
	Background
	SmartNICs
	RDMA NICs

	The RedN Computational Framework
	RDMA execution model
	Dynamic RDMA Programs
	Conditionals
	Loops
	Putting it all together

	Implementation
	Evaluation
	Microbenchmarks
	RDMA Latency
	Ordering Overheads
	RDMA Verb Throughput

	Offload: Hash Lookup
	RedN's Approach
	Results

	Offload: List Traversal
	Results

	Use Case: Accelerating Memcached
	Use Case: Performance Isolation
	Use Case: Failure Resiliency

	Discussion
	Conclusion
	Appendix Turing completeness sketch
	Emulating the x86 mov instruction
	Allowing nontermination

	nsdi22-paper-shashidhara
	Abstract
	1 Introduction
	2 Background
	2.1 TCP Impact on Host CPU Performance
	2.2 Related Work
	2.3 On-path SmartNIC Architecture

	3 FlexTOE Design
	3.1 TCP Data-path Parallelization
	3.2 Sequencing and Reordering
	3.3 Flexibility
	3.4 Flow Scheduling

	4 Agilio-CX40 Implementation
	4.1 Near-memory Processing

	5 Evaluation
	5.1 Benefit of Flexible Offload
	5.2 Remote Procedure Calls (RPCs)
	5.3 Robustness

	6 Conclusion
	References
	A TCP Connection State Partitioning
	B Connection Splicing Implementation
	C TAS TCP/IP Processing Breakdown
	D Control Plane
	E FlexTOE x86 and BlueField Ports

	nsdi22-paper-dasari
	Introduction
	Motivation
	Limitations of Today's Video Streaming Due to Regular Coding
	Layered Coding
	Challenges of Adopting Traditional Layered Coding in Video Streaming
	Layered Coding using Neural Codecs

	Swift
	Overview
	Layered Neural Encoder
	Layered Neural Decoder

	Streaming with Layered Neural Codecs
	Scaling the Decoder based on Compute Capacity
	Adapting ABR for Layered Neural Codecs

	Implementation and System Setup
	Layered Codec Implementation
	Streaming Implementation

	Swift Evaluation
	Evaluation Methodology
	End-to-end Streaming Results
	End-to-end QoE Results
	Bandwidth Benefits
	Reaction to Bandwidth Fluctuations

	Compression Results
	Compression Efficiency
	Encoding and Decoding Latency

	Discussion
	Additional Opportunities of Neural Codecs
	Limitations of Neural Codecs

	Related Work
	Conclusions
	Appendix. Example Neural Codec

	nsdi22-paper-bhardwaj
	Introduction
	Continuous training on edge compute
	Edge Computing for Video Analytics
	Compressed DNN Models and Data drift
	Accuracy benefits of continuous learning

	Scheduling retraining and inference jointly
	Configuration diversity of retraining and inference
	Illustrative scheduling example

	Ekya: Solution Description
	Formulation of joint inference and retraining
	Thief Scheduler
	Performance estimation with micro-profiling

	Implementation and Experimental Setup
	Evaluation
	Overall improvements
	Understanding Ekya's improvements
	Effectiveness of micro-profiling
	Comparison with alternative designs

	Limitations and Discussion
	Related Work
	Acknowledgements
	Thief Scheduler
	Complexity Analysis.

	nsdi22-paper-zhang
	Introduction
	Background and Motivation
	YuZu Overview
	QoE Model for Volumetric Videos
	An Empirical QoE Model
	Model Validation through User Studies

	System Design of YuZu
	Accelerating SR Upsampling
	SR Model Optimization
	Trimming Pre- and Post-Processing

	Caching and Reusing SR Results
	Network/Compute Resource Adaptation
	Coloring SR Results

	Implementation
	Evaluation
	Experimental Setup
	SR Quality
	SR Performance Breakdown
	Diverse Network Conditions
	YuZu vs. Existing Approaches
	Micro Benchmarks and Resource Usage

	Related Work
	Concluding Remarks
	Evaluation of QoE Gain Brought by SR
	User Study for Collecting6DoF Motion Traces
	Colorization Algorithm of YuZu and its Evaluation
	Additional Micro Benchmarks

	nsdi22-paper-zhu
	Introduction
	Motivation and Related Work
	The Case of Dynamic Register Memory Allocation
	Target and Scope of NetVRM
	Existing Solutions and Limitations

	NetVRM Overview
	Virtual Register Memory
	Dynamic Memory Allocation
	Definition of Application Utility
	Problem Formulation
	Network-Wide Register Memory Allocation

	Language Extension and Autogeneration
	Implementation
	Evaluation
	Microbenchmark
	Macrobenchmark
	Generality
	Analysis of NetVRM
	NetVRM in Datacenter Network

	Conclusion
	Diminishing Return Examples
	Additional Evaluation Results
	Network Topology in Datacenter Scenario

	nsdi22-paper-zeno
	Introduction
	Background: Programmable Switches
	Motivation
	Application Consistency Requirements
	Strong Consistency
	Weak (Eventual) Consistency
	Bounded-Delay Consistent Snapshots

	SwiSh Abstractions
	In-Switch Replication Protocols
	Strong-Read Optimized (SRO)
	Eventual Write-Optimized (EWO)
	Strong Delayed-Writes (SDW)
	Handling Failures

	Design
	Replication Message Exchange
	Strong Delayed-Writes (SDW)

	Implementation
	Strong Read-Optimized (SRO)
	Eventual Write-Optimized (EWO)
	Distributed NFs
	Implementation Details

	Evaluation
	End-to-end benchmarks
	Analysis

	Related Work
	Conclusions
	Theoretical Analysis

	nsdi22-paper-hogan
	Introduction
	P4 Programming Challenges
	Constrained Data-Plane Resources
	Example: Implementing NetCache in P4

	Elastic Programming in P4All
	Declare the Elastic Parameters
	Declare Elastic State
	Define Elastic Operations
	Specify the Objective Function

	Compiling Elastic Programs
	Upper Bounds for Loop Unrolling
	Optimizing Resource Constraints
	Limitations

	Prototype P4All Compiler
	Performance Evaluation
	Compiler Performance
	Elasticity
	Case Study

	Related Work
	Conclusion

	nsdi22-paper-cangialosi
	Introduction
	Problem Statement
	Video Analytics Background
	Problem Definition
	Threat Model

	Limitations of Related Work
	Denaturing
	Differential Privacy

	Event Duration Privacy
	Definition
	Choosing a Privacy Policy
	Privacy Guarantees in Practice

	Privid
	Overview
	Privid Query Interface
	Providing Privacy Despite Blackbox Executables
	Interface Limitations
	Query Sensitivity
	Handling Multiple Queries
	Example Queries
	Benevolent Query
	Malicious Query Attempt

	Query Utility Optimization
	Spatial Masking
	Spatial Splitting

	Evaluation
	Evaluation Setup
	Query Case Studies
	Budget-Granularity Tradeoff
	Analyzing Sources of Inaccuracy

	Using Privid
	Video Owner
	Analyst

	Ethics
	Relative Privacy Guarantees
	Proof
	Degradation of Privacy

	Privid Sensitivity Definition
	Query Details
	Case 1 Query Statements
	Case 2: Complex Sensitivity Example

	Isolated Execution Requirements
	Query Grammar
	PROCESS Executable For §5.7.1
	Full Privid Execution Algorithm
	Conservatively Estimating Durations
	Masking Optimization
	Masking Effectiveness
	Mask to Policy Data Structure

	nsdi22-paper-newman
	Introduction
	Anonymous broadcast
	DC-nets
	Main ideas in realizing Spectrum
	System overview
	Threat model and security guarantees

	Spectrum with one channel
	Preventing disruption
	Putting things together
	Towards the full protocol

	Many channels and malicious servers
	Tool: distributed point functions
	Spectrum with many channels
	BlameGame: preventing audit attacks

	Optimizations and extensions
	Handling large messages efficiently
	Private broadcast downloads

	Security and efficiency analysis
	Efficiency analysis
	Security of Spectrum
	Security of BlameGame

	Evaluation
	Results
	Discussion

	Related work
	Conclusions
	Acknowledgments
	The audit attack
	Large message optimization (multi-server)
	BlameGame
	Verifiable Encryption
	BlameGame security

	nsdi22-paper-bromberg
	Introduction
	VoIP networking requirements
	VoIP over Tor: How bad is it?
	Evaluation of Tor links' QoS

	Donar: Enabling VoIP over Tor
	Link monitoring and selection
	Scheduling policies
	Establishing communication

	Security
	Evaluation
	Performance & comparison to SOTA
	Microbenchmarks

	Related Work
	Conclusion
	Appendix: Link monitoring effectiveness

	nsdi22-paper-wang_weitao_spidermon
	Introduction
	Motivation
	Root Causes Are Diverse
	Root Causes Are Unpredictable
	Existing Solutions Fall Short

	SpiderMon Design
	Problem Monitoring
	Telemetry Collection
	Relevant Switches Notification
	Telemetry Data Collection

	Root Cause Analysis
	Find the Possible Root Causes
	Precisely Identify Root Causes

	Evaluation
	Diagnosis Effectiveness
	Comparison with Baseline Systems
	Diagnostic Robustness

	Related Work
	Conclusion
	Proof for Contributors Identification Algorithm
	Fine-grained Sliding Window
	Resource Usage Optimization
	Avoid Duplicate Detection
	Data Field Compression

	Implementation
	Additional Experiment Results
	Header Bandwidth Usage
	Cache & Hadoop Workloads

	Tunable Parameters for Different Solutions
	Constructing Signatures for Root Causes

	nsdi22-paper-kong
	Introduction
	Background
	RDMA Subsystem Performance Anomalies
	Existing Approaches

	Overview
	Search Space and Workload Engine
	Search for Performance Anomalies
	Workloads Generation
	Anomaly Monitor

	Implementation
	Evaluation and Experience
	Performance Anomalies Found
	Running Time for Anomaly Search
	Using Collie for Application Design
	Implications of the Performance Anomalies Found

	Discussion and Future Work
	Related Work
	Conclusion
	Performance Anomalies Found
	Subsystem F with Mellanox 200Gbps CX-6 VPI
	Subsystem H with Broadcom 100Gbps P2100G

	nsdi22-paper-kakarla
	Introduction
	Background And Motivation
	Overview of DNS
	Finding DNS Errors with Ferret

	Methodology
	SCALE Approach
	An Executable Model of DNS
	Generating Valid Zone Files
	Data Representation
	Handling Unbounded Data
	Generating Tests for Invalid Zone Files

	System Overview
	Results
	Testing Using Valid Zone Files
	Testing Using Invalid Zone Files
	Example Bugs
	Small-scope Property Validation

	Discussion
	Related Work
	Conclusion

	nsdi22-paper-krishnaswamy
	Introduction
	Background and Motivation
	Bad luck comes in threes
	Blast Radius, Ripple and Shielding

	Slicing the cloud WAN
	BlastShield System Design
	System overview
	Design considerations

	Routing and forwarding in BlastShield
	Inter-slice routing
	Why not source routing?

	Evaluating BlastShield in production
	Availability vs. throughput trade-offs
	Stochastic effects of multiple controllers

	Discussion
	Operational experience
	Byzantine slice controllers

	Related work
	Conclusion

	nsdi22-paper-miao
	Introduction
	Background and Motivation
	Optical Backbone Network
	Monitoring Optical Backbone Network

	OpTel's Design and Implementation
	Design Goals
	Vendor-agnostic Centralized Control
	Standardized Model for Optical Devices
	Centralized Data Collection

	Streamlined Telemetry Pipeline

	Evaluation
	Setup
	Dataset
	Optical Events

	Data Collection Overheads
	Detecting Optical Events with OpTel
	Predicting Future Optical Events
	Troubleshooting Events with OpTel

	Related Work
	Conclusion
	The origins of telemetry data collected from optical device
	Filtering out the network events from trouble tickets dataset related to optical events
	Data collection point of power event.

	nsdi22-paper-arumugam
	Introduction
	Background
	Host SDN
	SmartNIC-based SDN
	SDN on ToR
	SDN Servers

	Design Goals and Rationale
	System Design
	Packet Flow
	Platform Selection
	P4 Pipeline Design
	Route Cache
	Control Plane and Policy Provisioning

	Performance
	Hardware Performance
	Performance Impact of Route Caching
	Validating Route Cache

	Operationalization and Experiences
	Lessons Learned

	Related Work
	Conclusions and Future Work

	nsdi22-paper-li_yifan
	Introduction
	Preliminary: Programmable Data Plane
	Hardware & Constraints of Chip
	Dependencies between Tables

	Key Findings & Solution Intuition
	Key Findings from Group A
	Key Findings from Group B
	Our Solution Idea

	Cetus's Workflow Overview
	Table Merging by Dependency Removal
	Dependency Removal Primitives
	Table Merging Approach

	Constraint-Based Filter & Optimizer
	PHV Sharing Encoding
	Two-Step Solving
	The Best Result Selection

	Control Plane APIs Converter
	Deployment Experience
	Evaluation
	Optimization
	Performance

	Discussion and Lessons
	Related Work
	Conclusion
	Control Plane APIs Converter

	nsdi22-paper-xu_talia
	Introduction
	System Analysis
	Maintaining the luminous flux
	Ray-tracing model
	Insights & Guidelines
	Choosing the right emitter and transmitter
	Choosing the right specular surface
	Choosing the right receiver

	Transmitter Design
	LC limitations
	Limitation 1: High signal attenuation
	Limitation 2: Limited bandwidth

	DMD basics
	Limitations of inexpensive DMDs.
	PhotoLink controller
	Hardware abstraction
	Operational modes.
	Summary of contributions.

	Optical Link
	Modulation
	Demodulation

	Evaluation
	Receiver Design & Data Rate
	Analyzing the Luminous Flux
	Issues with DMDs

	Related Work
	Conclusion

	nsdi22-paper-chakraborty
	Introduction
	Motivation from Real-world Experience
	Regulating NB Operation in TVWS
	System Design
	Whisper radio
	Whisper Gateway

	Whisper MAC Protocol
	FTDMA structure
	Slot allocation for periodic traffic
	Scheduling quantum selection
	Channel selection
	Slot allocation

	Slot allocation for event-driven traffic
	Bootstrap and Data Communication

	Dynamic Spectrum Access
	Spectrum awareness
	Spectrum exploitation
	Fallback

	Evaluation
	Real-world deployment
	Setup
	Results
	Range
	Energy profile
	Performance in presence of interference

	Simulation
	Setup
	Results

	Related Work
	Conclusion
	Compliance of Emission
	Setup
	Results

	MAC Protocol
	Handling collision in quantum selection
	Construction of channel occupancy table
	Pseudo code of slot allocation algorithm
	Cases where p is out of boundary
	Client bootstrapping
	Beacon
	Join

	nsdi22-paper-geissdoerfer
	Introduction
	Motivation
	The Bonito Protocol
	Overview
	Modeling Charging Time Distributions
	Learning Distribution Parameters Online
	Computing Inverse Joint CDF Efficiently
	Impact of Target Probability

	Implementation
	Hardware
	Software

	Evaluation
	Testbed and Settings
	Maintaining Long-running Connections
	Bonito versus Baseline Approaches
	Bonito's Runtime Overhead

	Case Study: Occupancy Monitoring
	Discussion
	Related Work
	Conclusions
	Appendix: Gradient Equations

	nsdi22-paper-guo
	Introduction
	Vanilla Saiyan
	Frequency-amplitude Transformation
	Demodulation
	Low-power Voltage Sampler

	Super Saiyan
	Cyclic-frequency Shifting
	Correlation

	Implementation
	Backscatter Tag
	LoRa Transmitter and Receiver
	ASIC Simulation
	MAC-layer for Multi-tag Coexistence

	Evaluation
	Field Studies
	Outdoor experiments
	Indoor experiments
	Comparison with state-of-the-art systems

	Micro-benchmarks
	Receiver sensitivity
	Performance of the SAW filter
	Ablation study
	Power consumption & system cost

	Case Studies
	Packet re-transmission through the ACK mechanism
	Interference avoidance through channel hopping

	Related Work
	Conclusion
	Appendix
	The Infeasibility of RLC Resonant Circuit

	nsdi22-tuesday-papers
	nsdi22-paper-najafi
	Introduction
	Clock Generation and Synchronization
	A typical Linux Intel x86 clock system
	Holdover Time
	Characterizing Oscillator Error
	Debunking the Myth of Unstable Clocks
	Software Temperature Compensation
	Other Oscillators

	Clocks and Sensors In Servers
	Graham Design
	Formulating the problem
	Implementation
	Addressing practical issues
	Timestamp Error
	Temperature Sensor Challenges
	Computation Accuracy

	Evaluation
	Learning over PPS
	Learning over NTP
	Holdover
	Rapid Changes

	Discussion
	Conclusion

	nsdi22-paper-shamis
	Introduction
	Overview of IA-CCF
	L-PBFT protocol and receipts
	Protocol
	View changes
	Receipts
	Performance optimizations

	Auditing and enforcement
	Auditing
	Enforcement

	Reconfiguration and auditing
	Reconfiguration
	Governance sub-ledger and receipts
	Auditing

	Evaluation
	Transaction throughput and latency
	Scalability
	Receipt validation
	Governance sub-ledger
	Ledger auditing
	Key-value store
	Checkpointing
	Overhead breakdown

	Related work
	Conclusions
	Proof of L-PBFT linearizability
	Proof of auditing correctness
	Correctness of auditing without reconfiguration
	Obtaining the ledger
	Incompatibility
	Violations

	Correctness of auditing with reconfiguration
	Updates to obtaining the ledger
	Mismatching configurations
	Updates to incompatibility
	Updates to violations

	nsdi22-paper-yang_lei
	Introduction
	Background and Related Work
	The BFT Problem
	Verifiable Information Dispersal
	Asynchronous BFT protocols
	Security Model

	AVID-M: An Efficient VID Protocol
	Problem Statement
	Overview of AVID-M
	AVID-M Protocol

	DispersedLedger Design
	Overview
	Single Epoch Protocol
	Inter-node Linking
	Correctness of DispersedLedger
	Practical Considerations

	Implementation
	Evaluation
	Experimental Setup
	Performance over the Internet
	Controlled experiments
	Scalability

	Conclusion
	Supplements to the Evaluations
	Latency metric
	Throughput on another testbed over the internet
	Example trace of temporal variation

	Correctness proof of AVID-M
	Specification of the full DispersedLedger protocol with Inter-node Linking
	Correctness proof of DispersedLedger

	nsdi22-paper-siracusano
	Introduction
	Motivation and Challenges
	Traffic Analysis with BNN
	Use cases
	BNN Analysis Pipeline

	System design and implementation
	SoC NIC: Netronome NFP4000
	BNN->P4->NetFPGA

	Hardware support for BNNs
	BNN inference primitive
	Enabling more challenging use cases

	System-level Evaluation
	End-to-end performance tests
	Scalability tests
	System resources usage

	Discussion
	Related Work
	Conclusion
	Appendix
	Input Features
	Machine Learning Models
	Additional evaluation metrics
	Security Anomaly Detection without host features
	Confusion Matrices

	In-NIC Feature Extraction
	Feature Extraction without connection tracking
	Feature Extraction with connection tracking

	nsdi22-paper-wang_yanshu
	Introduction
	Motivation and Challenges
	Traffic Measurement of Cloud Gateways
	Design Challenges

	Design
	Design Overview
	Periodic Large Flow Replacement
	Event-Driven Bursty Flow Replacement

	Implementation
	Evaluation
	Experimental Setup
	Micro-benchmarks
	Overall Performance

	Related Works
	Conclusion

	nsdi22-paper-gao_peixuan
	nsdi22-paper-iyer
	Abstract
	1 Introduction
	2 Performance Interfaces
	3 Extracting Performance Interfaces
	3.1 Extracting general-case interfaces
	3.2 Extracting deployment-specific interfaces

	4 Evaluation
	4.1 Does PIX Work?
	4.2 Are interfaces useful to NF developers?
	4.3 Are interfaces useful to NF operators?

	5 Does PIX Generalize?
	6 Related Work
	7 Conclusion
	8 Acknowledgements
	References
	A Using Freud on NFs
	B Accuracy of performance interfaces

	nsdi22-paper-pirelli
	Abstract
	1 Introduction
	2 Design Insights
	2.1 Network functions we target
	2.2 Information from environment interactions
	2.3 Using maps to bridge the gap

	3 Ghost Maps
	3.1 Symbolic execution background
	3.2 Expressivity, decidability, and completeness
	3.3 Representing ghost maps
	3.4 Translating ghost map operations

	4 Invariant inference
	5 Implementation
	6 Evaluation
	6.1 Verifying network functions
	6.2 Faster verified network functions
	6.3 Applicability

	7 Limitations
	8 Related work
	9 Conclusion
	References
	A Verified properties
	B Ghost maps get algorithm

	nsdi22-paper-zhang_peng
	Introduction
	Motivation
	Control plane changes are often small
	Identifying behaviors to (re-)verify is hard

	Overview
	The DNA workflow
	Challenges in realizing DNA

	Differential Control Plane Simulation
	Modeling the control plane
	Executing the control plane model
	Optimizations

	Differential Data Plane Modeling
	Single-rule model update
	Batched model update

	Differential Property Checking
	Defining differential properties
	Computing differential properties

	Implementation
	Experiments
	Synthetic changes
	Real changes
	Large changes and parallel simulation
	Enumerating link failures

	Related Work
	Conclusion
	An Algorithm for Computing Differential Reachability
	Experiments for Fat Tree Running OSPF
	Customized function for BGP best route selection in DDlog-based model

	nsdi22-paper-beckett
	Introduction
	Motivation and Background
	Layered Network Model
	Notation and Preliminaries
	Formal network model
	Network semantics
	Lifting networks to layered networks

	Realtime Verification of Layered Networks
	Existing incremental verifiers
	Partial equivalence classes
	Verification algorithm overview
	Layered verification algorithm
	Repairing the stack
	Property expressiveness

	Algorithm Correctness
	Infinite Loops and Termination

	Implementation
	Evaluation
	Different implementations
	Performance on multilayer networks
	Performance of loop checking

	Related Work
	Conclusion

	nsdi22-paper-feng
	nsdi22-paper-xing
	Introduction
	A Case for Runtime Programmability
	The FlexCore Switch Architecture
	Runtime Reconfiguration Primitives
	Program description table
	Runtime reconfigurable tables
	Runtime reconfigurable control flow
	In-place table modifications
	Runtime reconfigurable parsers
	Summary

	Runtime Reconfiguration Algorithms
	Program consistency
	Element consistency
	Execution consistency
	Summary

	Limitations and Discussions
	Implementation
	Evaluation
	Reconfiguration primitives
	Consistency algorithms
	Case study: Accelerated multicast
	Case study: Dynamic telemetry upgrade
	Simulator case studies

	Related work
	Conclusion
	Appendix
	Case study: Real-time attack mitigation
	Case study: Tenant-specific network extensions
	Evaluation: Ordering the transactions

	nsdi22-paper-li_guanyu
	Introduction
	Motivation and Observation
	Limitations of Current Network Scanners
	Opportunities by Programmable Switches

	IMap Overview
	Deployment Scenario
	Workflow and Design Requirements

	IMap Design
	Probe Packet Generation
	Random probe address
	Adaptive probe rate

	Response Packet Processing
	Distinguishing normal/response packets
	Aggregating response packets

	Implementation
	Evaluation
	Experimental Setup
	Overall Effectiveness
	Probe Packet Generation
	Response Packet Processing
	Analysis of Scanning Results

	Discussion
	Related Works
	Conclusion

	nsdi22-paper-yuan
	Introduction
	Background and Challenges
	PISA
	Floating Point Overview
	Challenges

	Fpisa Design
	Representing FP in PISA
	Performing FP operations in PISA
	Additional Floating Point Features and Operations

	Realizing Fpisa on PISA Architectures
	Challenges
	PISA Architectural Extensions
	Fpisa-a: Fpisa on Existing Architectures

	Case Study: Distributed ML Training
	Setup
	Characteristics of Training Gradients
	Evaluation
	Fpisa-a Error Analysis
	Fpisa-a's Impact on Training Convergence
	Training Speedup with Fpisa-a

	Related Work
	Conclusion

	nsdi22-paper-misa
	Introduction
	Background & Motivation
	Dynamic Telemetry Use Cases
	Ideal Telemetry System Requirements
	State-of-the-art and their Limitations
	Design Challenges

	DynATOS@let@token System Design
	Overview
	Preliminaries
	Key Ideas
	Limitations and Assumptions

	Time-Division Approximation in DynATOS@let@token
	Scheduling in DynATOS@let@token
	Optimization Formulation
	Challenges of Online Optimization

	Evaluation
	Experimental Setup
	Performance of Time-Division Approximation
	Performance of Scheduling Algorithm
	Scheduling loop overheads

	Conclusion and Future Work
	Appendix: Application of Cluster Sampling
	Trading Off Accuracy
	Trading Off Latency
	Correcting Distinct Operators

	nsdi22-paper-agarwal
	Introduction
	Background and Motivation
	System Overview
	Problem Scope
	HeteroSketch Workflow
	Challenges and Key Insights

	Performance Profiler
	Detailed Design of the Profiler

	Optimizer
	Scalability and Dynamics
	Clustering Approach
	Fast Path

	Evaluation and Implementation
	Performance Profiler
	Optimizer
	Dynamics - Fast Path

	Other Related Work
	Conclusions
	Clustering Details
	Performance Profiler Details
	Optimizer Details

	nsdi22-paper-namkung
	Introduction
	Background
	Background on Sketches
	Programmable Switch Hardware
	P4 Programming and Compilation

	Bottleneck Analysis
	Methodology and Setup
	Identified Bottlenecks

	Optimizations
	Optimizing Hash Calls
	Optimizing Pipeline Stages
	Optimizing Memory Accesses
	Optimizing Heavy Flowkey Reporting

	SketchLib API
	Evaluation
	Experimental Setup
	Accuracy
	Comparison with the Software Baseline
	Accuracy Improvement with SketchLib

	Switch Resource Consumption
	Comparison with FCM
	Tracking Heavy Flowkeys
	Other Benchmarks

	Related Work
	Conclusions
	Comparison of RMT resource mapper and Tofino compiler

	nsdi22-paper-olteanu
	Introduction
	Motivation
	Concept
	Design
	EQDS control loop

	Tunnel protocol
	Sending EQIF Specialization
	Implementation
	Evaluation
	Improving throughput
	Improving application latency
	Sharing the network
	EQDS in legacy networks
	Host processing evaluation for EQDS

	Related work
	Conclusions and next steps

	nsdi22-paper-goyal
	Introduction
	Motivation
	Limits of End-to-End Congestion Control
	Existing Solutions are Insufficient
	Revisiting Per-hop, Per-Flow Flow Control

	Design
	Design Constraints
	A Strawman Proposal
	Backpressure Flow Control (BFC)
	Assigning flows to queues
	Backpressure mechanism

	Tofino2 implementation
	Discussion
	Evaluation
	 Tofino2 evaluation
	Simulation-based evaluation
	Setup
	Performance

	Stress-testing BFC
	Dynamic Queue Assignment
	Additional Experiments

	Conclusion
	Additional Experiments
	 Understanding the limits of BFC
	 Comparison with Homa
	 Multiple traffic classes
	 Parameter sensitivity for comparison schemes
	 Impact of Spatial Locality
	Using TCP Slow-start
	Reducing contention for queues
	Incremental Deployment
	Cross data center traffic
	Physical queue assignment
	Size of flow table
	Incast flow performance

	Deadlock prevention
	Impact of Pause Threshold

	nsdi22-paper-ghasemirahni
	Introduction
	How Much Does Order Matter?
	Experimental Setup
	Network Stack Effects
	Software Switching Effects
	Network Functions' Effects
	Summary

	Packets Order in Real-world Traffic
	Spatial & Temporal Distance
	Potential of Per-flow Ordering

	The Reframer Design
	Reframer Evaluation
	Packet-Level Experiments (NF Chain)
	Same-Server Deployment
	Latency-Sensitive Flows
	Flow-Level Experiments (HTTP Server)

	Related Work
	Conclusions
	Supplementary Material
	Deploying a chain of NFs
	Running Reframer in a SmartNIC
	Analyzing the Trace

	nsdi22-paper-gao_kaihui
	Introduction
	Background and Motivation
	RLAs in the Cloud
	Limitations of Existing Monitoring Tools
	Motivation

	Design
	Overview
	Buffer Chain Modeling
	Event Definition & Generation
	Request-level Semantic Injection
	RLA Diagnosis and Mitigation

	Implementation
	Evaluation
	Coverage
	Scalability
	Performance Overhead

	Related Work
	Conclusion

	nsdi22-paper-hu
	Introduction
	Methodology
	DOCSIS Codeword
	Codeword Error Rate
	Codeword Errors vs. Packet Loss Rates

	Datasets
	Physical Layer Loss vs. Overall Loss
	Codeword Errors in Different Channels
	Comparison to FCC data

	Analysis of User Behavior
	Impact on Usage
	Impact on Customer Trouble Tickets
	Conditioned User Behavior

	What Affects Codeword Error Rate?
	SNR and TX Power
	Traffic Load
	Weather
	Codeword Error Correlation

	Implications
	Related Work
	Conclusion
	Raw Data of Codeword Error Rates

	nsdi22-paper-haecki
	Introduction
	Background and related work
	Diagnosing network delays at end-hosts

	Using NSight for diagnosis
	Challenges and key ideas
	Profiling network-message lifetimes
	Diagnosing high message latencies

	Design and implementation
	NSight profiler
	NSight analysis

	Evaluation
	Time reconciliation correctness
	Message profiling overheads
	Coverage after anomaly disambiguation

	Latency diagnosis with NSight
	First iteration
	Second Iteration
	Third iteration
	Analysis of diagnosis and configurations

	Diagnosing VMA network stack
	Limitations and future work

	nsdi22-paper-li_chenning
	nsdi22-paper-zhang_junbo
	Introduction
	Background and Related Work
	PLatter Design
	Designing Reader's Transmission
	Power Line Backscatter Model
	Choosing Frequency of Operation
	PLatter's Frequency Hopping Design
	Real-time Impedance Tuning

	Tag Design and Data Decoding
	Tag Data Modulation
	Tag Hardware Design
	Tag Detection and Decoding
	Scaling to Multiple Tags

	Implementation
	Evaluation
	Results
	Cable Length and Tag Position
	Cable Geometry
	Impact of Electrical Appliances
	Influence of Separating Material
	Multiple Tags
	Response on Active Power Lines

	Discussion and Limitation
	Conclusion

	nsdi22-paper-li_songfan
	Introduction
	Preliminary
	A Primer for Conventional DSSS
	Problem of DSSS Synchronization

	Passive DSSS Modulation and Transmission
	Interference Suppression
	Realistic Interference Signals
	Interference Suppression in Passive DSSS

	Low Power DSSS De-spreading
	Despreading Process
	Analog-Digital Correlation Computation

	Evaluation
	Implementation
	Performance and Baseline
	Real World Evaluation
	Realistic Interference Signals
	Communication Range

	Stress-test
	Anti-Interference
	Interference Correlation

	Case Study

	Discussion
	Related Work
	Conclusion

	nsdi22-wednesday-papers
	nsdi22-paper-eisenman
	Introduction
	Background
	Recommendation Models
	High Performance Training at Facebook

	Motivation
	Training Failures
	Model Size
	Model Updates

	Check-N-Run Design Overview
	What to Checkpoint?
	Decoupled Checkpointing
	Checkpointing Frequency
	Check-N-Run Workflow

	Checkpoint Optimizations
	Differential Checkpointing
	Efficient Tracking

	Checkpoint Quantization

	Experimental Evaluation
	Performance
	Accuracy
	Dynamic Bit-width Selection:

	Write Bandwidth and Storage Capacity
	Differential Checkpointing Policy Comparison
	Overall Reduction

	Related Work
	Conclusion

	nsdi22-paper-weng
	Introduction
	Background
	Workload Characterization
	Trace Overview
	Temporal Pattern
	Spatial Pattern

	GPU Machine Utilization
	Utilization of Compute Resources
	Low Usage of Network and I/O

	Opportunities for Cluster Management
	GPU Sharing
	Predictable Duration for Recurring Tasks

	Challenges of Scheduling
	Case Study of High-GPU Tasks
	Case Study of Low-GPU Tasks
	Deployed Scheduling Policies
	Open Challenges

	Discussion
	Related Work
	Conclusion
	Acknowledgment

	nsdi22-paper-zhou
	Introduction
	Motivation
	Bringing changes to first-class citizens
	Lessons from Previous Generations
	Challenges and PCAT Overview

	Changes in Facebook Network Telemetry
	Change Cube Definition
	Changes in PCAT
	Change Overview
	Device-Level Changes
	Collection Configuration Changes
	Application Intent Changes

	Change Tracking in Telemetry System
	Towards change-aware telemetry
	Change reduction w/ vendor-agnostic IR

	Change Exploration
	Change-driven Topology Derivation
	Improve Trust on Data Quality

	Evaluation
	Change tracking implementation
	Benefits of separation
	Benefits of change-driven Toposyncer

	Lessons and Future Directions
	Related Work
	Conclusion

	nsdi22-paper-xu_jingao
	Introduction
	Background and Motivation
	Edge-assisted visual SLAM systems
	The scalability issues
	SwarmMap: System goals

	Design
	System overview
	Mapit: Map Information Tracker
	STS: SLAM-Specific Task Scheduling
	Agent Status Evaluation and Updating
	Multi-level Queue Scheduling

	MBP: Map Backbone Profiling
	Map Element Evaluation
	Map Backbone Generation

	Implementation
	Evaluation
	Experimental Methodology
	Overall Performance Comparison
	Accuracy Comparison
	Map Updating Latency Comparison
	Resource Overhead Comparison

	Ablation Study

	Oil-field Case Study
	Related work
	Discussion
	Conclusions
	Appendix
	Functions Registered in Mapit
	Map-point Evaluation Metrics
	SwarmMap Abstraction
	Experimental Dataset Description
	Plug-and-play
	Case Study Setups

	nsdi22-paper-laki
	Introduction
	Related Work
	System Design
	System Requirements

	Robot Arm & Network Protocol
	Velocity Control in Data Plane
	Ingress pipeline
	Egress pipeline
	Approximating transformations
	Limiting joint velocities

	ROS integration
	Alternate trajectory generation

	Evaluation
	Response time analysis and traffic load
	Synchronization measurements
	Accuracy at stop position
	Accuracy along the trajectory
	Continuous table management

	Discussion on Possible Deployment
	Conclusion
	Scalability estimation
	Comparison to x86
	Interference with regular network traffic

	nsdi22-paper-jog
	nsdi22-paper-romero
	Introduction
	Background and Motivation
	Data Parallelism in DNN Training
	Communication Libraries for Gradient Synchronization
	Framework-native Libraries
	Framework-agnostic Libraries
	Hierarchical Approach in Horovod

	Discussions on Horovod Performance

	Boosting Collective Communication in DNN Training with Caching and Grouping
	Orchestrating Collective Communication with Caching
	Response Cache
	Cache-based Coordination with Response Cache and Bitvector

	Grouping

	Experiment
	Environment Setup
	Evaluations on Horovod's Strategies
	Evaluations across Frameworks and Communication Libraries
	Caching and Grouping across Frameworks
	Evaluations across Communication Libraries

	Scaling Analysis on Production Code

	Related Work
	Conclusion

	nsdi22-paper-gunasekaran
	Introduction
	Background and Motivation
	Model Serving in Public Cloud
	Related Work
	Pros and Cons of Model Ensembling
	Ensembling Compared to Single Models
	Ensembling Overhead

	Prelude to Cocktail
	Overall Design of Cocktail
	Dynamic Model Selection Policy
	Class-based Weighted Majority Voting

	Resource Management
	Resource Controller
	Autoscaler

	Implementation and Evaluation
	Cocktail Prototype Implementation
	Evaluation Methodology
	Evaluation Metrics

	Analysis of Results
	Latency, Accuracy and Cost Reduction
	Key Sources of Improvements
	Benefits from dynamic model selection
	Benefits from Autoscaling
	Benefits of Transient VMs

	Sensitivity Analysis
	Sampling Interval
	Cocktail Failure Resilience
	Sensitivity to Constraints
	Sensitivity to Dataset

	General Applicability of Cocktail

	Concluding Remarks
	Modeling of Ensembling
	Why DeepARest Model?
	System Overheads
	Instance configuration and Pricing
	CIFAR-100 and BERT Models
	Spot Instance Price Variation

	nsdi22-paper-kraft
	Introduction
	Background and Motivation
	Case Studies
	Motivating DPA

	DPA Overview and Interface
	Actors and Data
	Data Updates
	Queries
	Case Study: Solr

	Uniserve: A Runtime for DPA
	Architecture
	Update Consistency and Atomicity
	Fault Tolerance and Failure Recovery
	Load Balancing and Data Placement
	Elasticity and Auto-Scaling

	Generality of DPA
	Distributing Systems with DPA
	Experimental Evaluation
	Experimental Setup
	Experiment Workloads
	Benchmarks

	Related Work
	Conclusion

	nsdi22-paper-diab_orca
	Introduction
	Related Work
	Orca: Server-assisted Multicast
	Design Goals
	Overview
	Calculating Labels
	Handling Session Dynamics and Failures
	Server-assisted Data Plane Forwarding

	Implementation and Orca APIs
	Evaluation of Orca in Testbed
	Benefits of Orca
	Data Plane Performance
	Control Plane Performance

	Orca versus State-of-Art
	Simulation Setup
	Data Plane Performance
	Control Plane Performance

	Conclusions and Future Work
	Supplementary Materials
	Encoding Spine Downstream Links
	Processing Spine Downstream Labels
	Overheads of Orca
	Extensions and Limitations of Orca
	Additional Simulation Results

	nsdi22-paper-diab_yeti
	Introduction
	Related Work
	Problem Definition and Solution
	Problem Definition and Challenges
	Solution Overview
	Label Types in Yeti
	Creating Yeti Labels at the Controller
	Processing Yeti Packets
	Analysis and Practical Considerations

	Evaluation in a Testbed
	Testbed Setup
	Experiments and Results

	Evaluation using Simulation
	Simulation Setup
	Yeti vs Stateful and Hybrid Approaches
	Yeti vs A Stateless Approach
	Analysis of Yeti

	Conclusions
	Correctness of Yeti
	Practical Considerations of Yeti
	Illustrative Example
	Implementation of Yeti using P4
	Additional Simulation Results

	nsdi22-paper-bhattacherjee
	1 Introduction
	2 Technology background
	3 cISP Design
	4 A cISP for the United States
	5 Practical challenges
	5.1 Impairments due to weather
	5.2 Tower height and availability
	5.3 Integration into the Internet

	6 Empirical results
	6.1 Active measurements
	6.1.1 RTT and bandwidth
	6.1.2 Loss and FEC

	6.2 Trading data analysis

	7 A Few Potential Applications
	7.1 Online gaming
	7.2 Web Browsing

	8 Cost-benefit and market analysis
	9 Related Work
	10 Conclusion
	A Topology design
	B Routing & Queuing
	C Further design considerations
	C.1 Is the city-city traffic model special?
	C.2 Traffic model mismatches
	C.3 Is the US geography special?

	D American Tower deployment

	nsdi22-paper-naseer
	Introduction
	Configuration Tuning Status-Quo
	Configanator

	Empirical Study
	Fingerprinting web configurations
	Implications of Configuration Tuning

	Configanator's Algorithm
	Domain-Specific Multi-Armed Bandit
	Discovering Network Classes
	Configanator Workflow

	Architecture
	Configanator-API
	Configuration Agent
	Configuration Manager

	Prototype
	Evaluation
	Large Scale Trace Driven Simulations
	Effectiveness of Configanator
	Benefits of Learning Ensemble
	Impact of Network Classes
	TCP Connection Reuse (ConnReuse)
	System Benchmarks
	Fairness Implications
	Critical Knobs

	Live Deployment
	Validation at GlobalCDN
	Google Cloud Deployment

	Discussion and Limitations
	Related Work
	Conclusion
	Acknowledgments
	Fingerprinting Configurations
	TLS Fingerprinting for Device Identification
	Passively Recording Network Conditions
	Gaussian Process and Network Class Discussion
	Deployment Considerations
	Supplementary Evaluation Material
	Evaluation Setup
	Configanator Performance for CAIDA, FCC and Pantheon Traces
	Bandit Contribution
	Bandit Performance at Tail
	Configuration Stability
	Design Choices for Network Classes
	PLT Variability
	Dissecting PLT Degradation
	CM Design Choices
	Flows Through Access Link
	Additional Micro-benchmarks

	nsdi22-paper-yang_juncheng
	Introduction
	Background
	Production CDN Trace Analysis
	Diversity in workloads and object sizes
	Unavailability is common and transient
	Mitigating unavailability is challenging
	The need for write load balancing

	C2DN System Design
	Erasure coding and C2DN-NoRebal
	Parity rebalance and C2DN
	C2DN resolves partial hits

	C2DN Implementation
	Evaluation
	Experimental methodology and setup
	Miss ratio without unavailability
	Miss ratio under unavailability
	Write (Read) load balancing
	Latency
	Overhead assessment
	Sensitivity analysis

	Discussion
	Related work
	Conclusion
	Supplemental information
	Cluster size distribution
	Proof details
	Additional details on parity rebalance
	Additional figures for sensitivity analysis

	nsdi22-paper-sharma
	Introduction
	Comparison with Traffic Engineering

	Application Traffic Demands
	Demand Specification

	Cooperative Provisioning
	Background on Capacity Provisioning
	Leveraging Application Cooperation
	Explicit Demand Signal to Aid Smoothing
	Rightsizing Redundancy for Deferrable Demands
	Summary

	Framework for Capacity Provisioning
	Accommodating Probability of Satisfaction (p)
	Accommodating Demand-Specific p

	Failure Modeling
	Link Clustering and Characterization
	Failure Scenario Generation
	Properties of generated timeseries

	Provisioning and Control Interfaces

	Evaluation
	Application Demands
	Evaluation Methodology
	Input Demands
	Provisioning Approaches
	Network Topology and Link Characteristics

	Results

	Discussion
	Related Work
	Conclusion
	Appendix
	LP formulation
	Example of Cooperative Provisioning

	nsdi22-paper-yu
	Introduction
	Motivating Weaved Streams
	Generating a Weaved Stream
	Mechanism Overview
	Evaluating the Weaved Stream
	Can OrbWeaver Inject at Rate T?
	Can OrbWeaver Bound Packet Gaps?
	Do IDLE Packets Affect External Traffic?
	Does Injection Affect Power Usage?

	Use Cases
	Use Case #1: Fast Failure Detection
	An OrbWeaver Redesign
	Evaluation

	Use Case #2: Time Synchronization
	An OrbWeaver Redesign
	Evaluation

	Use Case #3: Congestion Feedback
	An OrbWeaver Redesign
	Evaluation

	Related Work
	Conclusion
	Applications of OrbWeaver
	Balancing Multiple Applications
	Preventing Starvation

	Generalization to Other Platforms
	Energy-Efficient Ethernet (EEE)
	Proof of Priority-effect on User Traffic
	Probability of Notification in Use Case #1
	OrbWeaver Data Plane Resource Overhead

	nsdi22-paper-pang
	Introduction
	Anatomy of a Cloud Service
	CloudCluster Design
	Goals, Approach, and Overview
	Feature Scaling
	Estimating M
	Hierarchical Clustering
	Cluster Merging

	CloudCluster Evaluation
	Methodology and Metrics
	The Carefully-Named Group
	Coarsely-Named Group
	Impact of Design Choices

	CloudCluster For Project Management
	Reconfiguration to Reduce Cost
	Anomaly Detection
	Potential Label Misconfiguration
	Potentially Mis-provisioned VMs
	Discussion

	Related Work
	Conclusion
	Detailed Explanation of Anomalies

	nsdi22-paper-zhang_qianyu
	Introduction
	Background and Motivation
	Limitations of Prior Works
	Our Intuitions

	System Design
	Design Goals
	System Overview

	Gateway Cluster Design
	Gateway Cluster Overview
	XDP-based Traffic Forwarding
	Gateway Flow Detection
	Dealing with Failures through Multi IPs

	On-host Forwarding Design
	Load Balancing through Group Tables
	Lightweight Control Agent

	Framework Management Design
	Gateway Cluster Mapping
	Multi IPs Scheduler

	Implementation
	Evaluation
	Experimental Setting
	Microbenchmark
	Robustness Evaluation
	Robustness under Burst Traffic
	Fast Recovery from Abnormal Events

	Scalability Evaluation
	Large-Scale Instances Launching
	Large-Scale Instances Communication

	Related Work
	Conclusion and Future Work
	Additional Details of Cluster Mapping
	Empirical Formula for Tenant Constraint
	Rounding-Based Algorithm

	Additional Implementation Details
	eBPF Map Size
	Best Practice for Physical Deployment
	Additional Details of Virtual Deployment

	Additional Evaluation Details
	Transformation of Google cluster-data
	Linear Scaling Throughput of Gateways

	nsdi22-paper-gibson
	Introduction
	Objectives and our Approach
	Hardware Design
	GNet Switch and Links
	The Dragonfly cell fabric
	IP Traffic
	1RMA
	Embedded control processor
	Putting it all together

	Software-Defined Network
	Control Architecture Overview
	Handling routing state
	Switch Firmware with limited state
	In-band Control and Bootstrap

	Experimental Results
	Data Plane Performance
	Application Impact

	Discussion
	Related work
	Conclusion
	Hardware Packaging Details
	Failure Domains

	Clock Synchronization
	Overview
	Implementation

	nsdi22-paper-wang_weitao_rdc
	Introduction
	Motivation
	Rack sizes are inherently limited
	Rack boundaries introduce bottlenecks
	Facebook trace analysis: A case study
	The Power of RDC
	Realizing RDC

	The RDC Architecture
	Connectivity structure
	The RDC Controller
	Routing
	Discussions

	RDC Control Algorithms
	Proactive-mode RDC
	Reactive-mode RDC
	Topology optimization algorithms

	Implementation and Evaluation
	Real-world applications
	Performance at scale
	Packaging, power, and capital cost
	RDC reconfigurations

	Related Work
	Conclusion
	Appendix
	The RDC 0/1 updates
	Use case: Uplink load-balancing
	Hedera demand estimation algorithm
	Topology optimization algorithm details

	nsdi22-paper-wang_tao
	Introduction
	The case for isolation
	Requirements for isolation mechanisms
	Target setting for Menshen

	Design
	Menshen hardware
	Improving Menshen's throughput
	The Menshen system-level module
	Menshen software
	Limitations

	Implementation
	Menshen hardware
	Menshen Software
	Corundum and NetFPGA integrations

	Evaluation
	Does Menshen meet its requirements?
	Menshen Performance

	Related work
	Conclusion
	Daisy-Chain vs. Fully-AXI-L-Based Configuration
	Isolation of ternary match tables using the Xilinx CAM IP
	Hardware resources in Menshen
	Experimental setup

	nsdi22-paper-zhang_yiwen
	Introduction
	Background
	Life Cycle of an RDMA Operation
	Lack of Multi-Tenancy Support

	Performance Isolation Anomalies in RDMA
	Observations From Microbenchmarks
	Both Latency- and Throughput-Sensitive Applications Require Isolation
	Latency-Sensitive Applications Coexist Well; So Do Throughput-Sensitive Ones
	Bandwidth-Sensitive Applications Hurt Each Other
	Anomalies are Present in Faster Networks Too

	Isolation Among Real-World Applications
	Congestion Control is not Sufficient

	Justitia
	Key Design Ideas
	System Overview
	Justitia Daemon
	Minimum Guaranteed Rate
	Latency Monitoring via Reference Flows
	Maximizing SafeUtil
	Token Generation And Distribution

	Justitia Shapers
	Dynamic Receiver-Side Updates

	Implementation
	Transparently Splitting RDMA Messages
	Determining Token Size for Bandwidth Target

	Evaluation
	Providing Multi-Tenancy Support
	Justitia Deep Dive
	Justitia + X
	Isolating among More Competitors
	Handling Incast with Receiver-Side Updates
	Justitia with Unexpected Network Congestion

	Related Work
	Concluding Remarks
	Hardware Testbed Summary
	Characteristics of Latency- and Throughput-Sensitive Applications in the Absence of Bandwidth-Sensitive Ones
	Adding More Competitors Exacerbates the Anomalies

	Additional Evaluation Results
	100 Gbps Results With/Without Justitia
	Real RDMA-based Systems Require Isolation
	Handling Remote READs
	Justitia vs. LITE

	Sensitivity Analysis
	Discussion
	Why not simply use hardware priority queues in the RNIC?
	Why use only 1 QP in most of the microbenchmark experiments?
	How does Justitia handle the incast experiment?
	Does reference flow and receiver-side updates create additonal congestion in a large scale deployment?
	How to ensure all cooperating SW uses the right protocols and protocol versions?
	How can Justitia be implemented in hardware?
	Long-term value of Justitia

	Future Research Directions

	nsdi22-paper-chen_jingrong
	Introduction
	Background
	Black-Box Networking Abstraction
	Adaptiveness in Data-Intensive Applications
	Addressing the Mismatch

	NetHint Overview
	Providing NetHint Service
	What Is in the Hint?
	Timely NetHint with Low Cost

	Adapting Transfer Schedules with NetHint
	Optimizing Collective Communication
	Optimizing Task Placement

	Flexible Adaptation for Stale Information
	Implementation
	Evaluation
	Setup and Workloads
	NetHint in Testbed Experiments
	NetHint in Simulations

	Discussion
	Related Work
	Conclusion

	nsdi22-paper-zeng
	Introduction
	Background
	Layer-4 Load Balancing
	Nature of Internet traffic at the Datacenter Boundary
	Accelerating LB with Programmable Switches

	Tiara Design
	Architecture Overview
	Control & Data Planes
	Control Plane
	Data Plane

	Component Design & Optimization
	Efficient Hash Table Structure
	Lock-free Offloading Approach
	Lightweight Aging Mechanism

	Implementation
	T-switch
	T-NIC
	T-server

	Evaluation
	Micro-benchmarks
	Tiara Performance
	Tiara vs. Existing Approaches

	Related Work
	Conclusion
	Analysis on Hash Collision

	nsdi22-paper-rashelbach
	Introduction
	Background
	Open vSwitch
	NuevoMatch Classification Algorithm

	Motivation
	Design Options and Challenges
	OVS with Computational Cache
	OVS with Computational Flows
	Challenge: Slow NuevoMatch Updates

	NuevoMatchUP: Speeding-up Updates
	Relaxing iSet Constraints
	Training via Approximate Sampling
	Optimized Training Implementation
	Putting It All Together

	Implementation
	Updates in OVS-CFLOWS

	Evaluation
	Methodology
	End-to-end Performance
	Sensitivity to OVS parameters
	Analysis of OVS-CCACHE
	Analysis of OVS-CFLOWS

	Discussion and Future Work
	Related Work
	Conclusion
	Acknowledgements
	Appendix
	Approximate sampling
	More on updates in OVS-CCACHE
	Rule-set names

	nsdi22-paper-sanaee
	Introduction
	Motivation
	The Slow Receiver Problem
	Lossless Vswitching to the Rescue?

	Backdraft Overview
	Design
	Doorbell Queues
	Dynamic Per-Flow Queuing (DPFQ)
	VSwitch Backpressure Overlay Network

	Implementation
	Evaluation
	Backdraft Complements Homa
	Per-Component Analysis
	Multi-node Performance
	100 Gbps Forwarding Performance
	Backdraft Scalability

	Discussion
	Related Work
	Conclusions
	Appendices
	Slow Receivers and DCTCP/Homa
	DCTCP
	Packet Loss Effect on Homa

	Single Host Bandwidth Management

	Blank Page
	Blank Page

